Sample records for cold fronts linked

  1. Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment

    NASA Astrophysics Data System (ADS)

    Kwon, B. H.; BéNech, B.; Lambert, D.; Durand, P.; Druilhet, A.; Giordani, H.; Planton, S.

    1998-10-01

    The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, the third phase of which took place between October 4 and November 17, 1993, was conducted over the oceanic Azores Current located in the Azores basin and mainly marked at the surface by a thermal front due to the gradient of the sea surface temperature (SST) of about 1° to 2°C per 100 km. The evolution of the marine atmospheric boundary layer (MABL) over the SST front was studied with two aircraft and a ship in different meteorological conditions. For each case, the influence of the incoming air direction with respect to the orientation of the oceanic front was taken into account. During the campaign, advanced very high resolution radiometer pictures did not show any relation between the SST field and the cloud cover. The MABL was systematically thicker on the warm side than on the cold side. The mean MABL structure described from aircraft data collected in a vertical plane crossing the oceanic front was characterized by (1) an atmospheric horizontal gradient of 1° to 2°C per 100 km in the whole depth of the mixed layer and (2) an increase of the wind intensity from the cold to the warm side when the synoptic wind blew from the cold side. The surface sensible heat (latent heat) flux always increased from the cold to the warm sector owing to the increase of the wind and of the temperature (specific humidity) difference between the surface and the air. Turbulence increased from the cold to the warm side in conjunction with the MABL thickening, but the normalized profiles presented the same structure, regardless of the position over the SST front. In agreement with the Action de Recherche Programme te Petite Echelle and Grande Echelle model, the mean temperature and momentum budgets were highly influenced by the horizontal temperature gradient. In particular, the strong ageostrophic influence in the MABL above the SST front seems linked with the secondary circulation due to the SST front.

  2. Cold fronts and reservoir limnology: an integrated approach towards the ecological dynamics of freshwater ecosystems.

    PubMed

    Tundisi, J G; Matsumura-Tundisi, T; Pereira, K C; Luzia, A P; Passerini, M D; Chiba, W A C; Morais, M A; Sebastien, N Y

    2010-10-01

    In this paper the authors discuss the effects of cold fronts on the dynamics of freshwater ecosystems of southeast South America. Cold fronts originating from the Antarctic show a monthly frequency that promotes turbulence and vertical mixing in reservoirs with a consequence to homogenize nutrient distribution, dissolved oxygen and temperature. Weak thermoclines and the athelomixis process immediately before, during and after the passage of cold fronts interfere with phytoplankton succession in reservoirs. Cyanobacteria blooms in eutrophic reservoirs are frequently connected with periods of stratification and stability of the water column. Cold fronts in the Amazon and Pantanal lakes may produce fish killings during the process of "friagem" associated mixing events. Further studies will try to implement a model to predict the impact of cold fronts and prepare management procedures in order to cope with cyanobacteria blooms during warm and stable water column periods. Changes in water quality of reservoirs are expected during circulation periods caused by cold fronts.

  3. A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2015-01-01

    The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.

  4. The split in the ancient cold front in the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Walker, Stephen A.; ZuHone, John; Fabian, Andy; Sanders, Jeremy

    2018-04-01

    Sloshing cold fronts in clusters, produced as the dense cluster core moves around in the cluster potential in response to in-falling subgroups, provide a powerful probe of the physics of the intracluster medium and the magnetic fields permeating it1,2. These sharp discontinuities in density and temperature rise gradually outwards with age in a characteristic spiral pattern, embedding into the intracluster medium a record of the minor merging activity of clusters: the further from the cluster centre a cold front is, the older it is. Recently, it was discovered that these cold fronts can survive out to extremely large radii in the Perseus cluster3. Here, we report on high-spatial-resolution Chandra observations of the large-scale cold front in Perseus. We find that rather than broadening through diffusion, the cold front remains extremely sharp (consistent with abrupt jumps in density) and instead is split into two sharp edges. These results show that magnetic draping can suppress diffusion for vast periods of time—around 5 Gyr—even as the cold front expands out to nearly half the cluster virial radius.

  5. Rossby waves, extreme fronts, and wildfires in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Reeder, Michael J.; Spengler, Thomas; Musgrave, Ruth

    2015-03-01

    The most catastrophic fires in recent history in southern Australia have been associated with extreme cold fronts. Here an extreme cold front is defined as one for which the maximum temperature at 2 m is at least 17°C lower on the day following the front. An anticyclone, which precedes the cold front, directs very dry northerlies or northwesterlies from the interior of the continent across the region. The passage of the cold front is followed by strong southerlies or southwesterlies. European Centre for Medium-Range Weather Forecasts ERA-Interim Reanalyses show that this regional synoptic pattern common to all strong cold fronts, and hence severe fire conditions, is a consequence of propagating Rossby waves, which grow to large amplitude and eventually irreversibly overturn. The process of overturning produces the low-level anticyclone and dry conditions over southern Australia, while simultaneously producing an upper level trough and often precipitation in northeastern Australia.

  6. Cold Fronts in RegCM/HadGEM simulations over South America

    NASA Astrophysics Data System (ADS)

    Pampuch, Luana; Marcos de Jesus, Eduardo; Porfírio da Rocha, Rosmeri; Ambrizzi, Tércio

    2017-04-01

    Cold front is one of the most important systems that contribute for precipitation over South America. The representation of this system in climate models is important for a better representation of the precipitation. The Regional Climate Model RegCM is widely used for climate studies in South America, being important to understand how this model represents the cold fronts. A climatology (from 1979-2004) of the number of cold fronts in each season for RegCM4 simulations over South America CORDEX domain nested in HadGEM2-ES. The simulated climatology was compared with ERA-Interim reanalysis cold fronts climatology over the South America and adjacent South Atlantic Ocean. The cold fronts tracking for the model and the reanalysis were performed using an objective methodology based on decrease of air temperature in 925hPa, shift of meridional wind in 925hPa from northern to southern quadrant and increased in sea level pressure. The main differences were observed on summer and winter. On summer the model overestimate the number of cold fronts over southeastern South America and adjacent Atlantic Ocean; and underestimate it over central-south Argentina and Atlantic Ocean. On winter, the signs were opposite of that summer. On autumn and spring the differences were smaller and occurs mainly over all South Atlantic and north Argentina.

  7. Lidar network observation of dust layer evolution over the Gobi Desert in MAY 2013

    NASA Astrophysics Data System (ADS)

    Kawai, Kei; Kai, Kenji; Jin, Yoshitaka; Sugimoto, Nobuo; Batdorj, Dashdondog

    2018-04-01

    A lidar network captured the evolution of a dust layer in the Gobi Desert on 22-23 May 2013. The lidar network consists of a ceilometer and two AD-Net lidars in Mongolia. The dust layer was generated by a strong wind due to a cold front and elevated over the surface of the cold front by an updraft of the warm air in the cold-front system. It was evolving from the atmospheric boundary layer to the free troposphere while moving 600 km through the desert with the cold front.

  8. Fronts and frontogenesis as revealed by high time resolution data

    NASA Technical Reports Server (NTRS)

    Frank, A. E.; Barber, D. A.

    1977-01-01

    Upper air sounding are used to examine a cold front of average intensity. Vertical cross sections of potential temperature and wind, and horizontal analyses were compared and adjusted for consistency. These analyses were then used to study the evolution of the front, found to consist of a complex system of fronts occurring at all levels of the troposphere. Low level fronts were strongest at the surface and rapidly weakened with height. Fronts in the midddle troposphere were much more intense. The warm air ahead of the fronts was nearly barotropic, while the cold air behind was baroclinic through deep layers. A deep mixed layer was observed to grow in this cold air.

  9. A Satellite View of a Back-door Cold Front

    NASA Image and Video Library

    2014-05-29

    A "backdoor cold front" is bringing April temperatures to the U.S. northeast and Mid-Atlantic today, May 29. The backdoor cold front brings relief to the Mid-Atlantic after temperatures in Washington, D.C. hit 92F on Tuesday, May 27 and 88F on Wednesday, May 28 at Reagan National Airport, according to the National Weather Service (NWS). NWS forecasters expect the high temperature for May 29 to only reach 60F in the District of Columbia. NOAA's GOES-East satellite captured a view of the clouds associated with the backdoor cold front that stretch from southern Illinois to North Carolina. The National Weather Service forecast expects the backdoor cold front to bring showers to the Midwest, Northeast, and Mid-Atlantic today, May 29. According to the National Oceanic and Atmospheric Administration, a backdoor cold front is a cold front moving south or southwest along the Atlantic seaboard and Great Lakes; these are especially common during the spring months. This visible image was taken by NOAA's GOES-East satellite on May 29 at 12:30 UTC (8:30 a.m. EDT). The image was created at NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. In addition to the backdoor cold front clouds, the GOES-East image shows clouds circling around a low pressure area located in eastern Texas. That low pressure area is expected to bring rain from Texas eastward over the southeastern U.S. According to NOAA's National Weather Service, the slow-moving low pressure area in the Deep South "will bring heavy showers and thunderstorms from Louisiana to Alabama through Thursday. This area is already saturated from previous rainfall, so flash flooding will be possible." Image: NASA/NOAA GOES Project Caption: NASA Goddard/Rob Gutro

  10. Double diffusion in the frontal zones of the Yellow and East China Seas in winter

    NASA Astrophysics Data System (ADS)

    Oh, K.; Lee, S.

    2017-12-01

    Where the cold, fresh water of the Yellow Sea (YS) and the warm, salty water of the East China Sea (ECS) meet, northern and southern fronts are formed in the southeastern YS and the northwestern ECS, respectively. Strong thermohaline fronts are formed on the northern front, and a strong thermocline and a temperature reversal phenomenon are represented in this front. To understand the water structure of this thermohaline zone, we examined double diffusion in the frontal zones in February 2003 using hydrographic data. In the northern front, the warm, salty Cheju Warm Current Water (CWCW) moved northwards along the bottom layer and the cold, fresh Yellow Sea Cold Water (YSCW) flowed southward in the upper layer. As a result, strong thermohaline fronts forms in the area where the two water masses met, and the slope was developed downward across the front. In this area, a strong thermocline and temperature reversal structures were present. The cold, fresh Korean Coastal Water (KCW) was also found in the upper layer near the thermocline, and has a low-temperature, low-salinity more than surrounding water. When cold, fresh water is located over warm, salty water, heat diffuses through the interface between the two water masses, and then the diffusive-convection can be expected to occur. On the other hand, when warm, salty water overlays cold, fresh water, heat in the upper layer is preferentially transferred downward, and the salt-fingering occurs. The diffusive-convection occurs predominantly in the northern thermohaline front, where the cold, fresh YSCW is situated above the warm, salty CWCW and has the effect of strengthening stratification, so that the water column maintains a physically stable structure. In addition, this phenomenon seems to play a role in maintaining the reversal structure. The salt-fingering occurs in upper layers of the northern front where the cold, fresh YSCW is located over the most cold, fresh KCW. Near the northern thermo-halocline zone, the salt-fingering occurs simultaneously with the diffusive-convection, because three water masses, YSCW, KCW and CWCW, interact in that area. Therefore, it can be seen that the water structure of the northern frontal zone in winter is influenced mainly by the cold, fresh YSCW, the most cold, fresh KCW, and the warm, salty CWCW.

  11. A Detailed Analysis of Frontal Precipitation in a Decadal Convection-Resolving Regional Climate Simulation over Europe

    NASA Astrophysics Data System (ADS)

    Ruedisuehli, S.; Sprenger, M.; Leutwyler, D.; Schar, C.; Wernli, H.

    2017-12-01

    We study fronts and precipitation in a decadal continental-scale convection-resolving (2.2 km) regional climate simulation over Europe, which has been conducted using a GPU-enabled version of the COSMO model. Resolving convection substantially improves the representation of precipitation, e.g., the diurnal cycle of summer convection or organization of convection along fronts, while the large domain is able to represent most synoptic fronts affecting Europe with their full spatial extent. Studying nine years of the simulation, we present climatological results of how precipitation relates to fronts both structurally and quantitatively, and address seasonal, regional, and diurnal effects. Cold and warm fronts are identified at hourly intervals based on horizontal gradients of equivalent potential temperature on 850 hPa. We track the frontal areas using a new feature tracking algorithm, which accounts for mergings and splittings and supports complex tracks.Based on track properties, we separate synoptic and local fronts. The latter mostly form along orography and coasts during summer. While the resulting front climatology is already valuable, we exploit the full potential of the simulation by relating fronts to precipitation. We subdivide the domain at every timestep into pre-, at-, post-, and non-frontal areas by considering at every grid point the time since the latest and until the next frontal passage (separately for cold and warm fronts). This allows, for the first time, to disaggregate the precipitation field into front-related components, and to quantify the influence of fronts on both regular and extreme precipitation throughout the domain. To investigate the average structure of precipitation across fronts, we composite precipitation relative to the time of frontal passage. This approach reveals characteristic properties of the precipitation distribution across fronts. The Figure shows the mean across-front distribution of precipitation, separated into intensity components, for all cold and warm fronts during JJA 2007. Precipitation amounts peak at the front for both front types, but the distribution around cold (warm) fronts is heavily tilted towards pre-frontal (post-frontal) precipitation. Post-frontal showers lead to a second increase behind many cold fronts, starting at around + 9 h.

  12. The influence of atmospheric cold fronts on larval supply and settlement of intertidal invertebrates: Case studies in the Cabo Frio coastal upwelling system (SE Brazil)

    NASA Astrophysics Data System (ADS)

    de Azevedo Mazzuco, Ana Carolina; Christofoletti, Ronaldo Adriano; Coutinho, Ricardo; Ciotti, Áurea Maria

    2018-07-01

    Atmospheric fronts such as cold fronts are dynamic mesoscale systems with potential effects on the ecology of marine communities. In this study, larval dynamics in subtropical rocky shore communities were evaluated under the influence of atmospheric frontal systems. The hypothesis is that these systems may promote favorable conditions for larval supply and settlement regardless of taxa or site, and that supply and settlement vary in association with fluctuations of meteorological and oceanographic conditions driven by the fronts. This study was carried out in the Southeastern Brazil littoral region under the influence of coastal upwelling events (Cabo Frio) and subject to weekly atmospheric frontal systems, cold polar fronts. The spatial and temporal variability of larvae and settlers of barnacles and mussels were assessed by collecting daily samples at three sites before, during and after atmospheric cold fronts, and the atmospheric and pelagic conditions were monitored. Contrasts among rates, events and sites were tested using discriminant function analysis, analyses of variance and correlation analysis. Atmospheric frontal systems were considered to influence the sites when wind direction changed to SW-S-SE and persisted for at least a day, and waves from SW-SW-SE increased in height. The results corroborate the hypothesis that cold fronts are important regulators of larval dynamics and intertidal communities on rocky shores of the studied area. Both larval supply and settlement were highly correlated with fluctuations in wind speed and direction. Higher settlement rates of barnacles occurred one-day prior, or on the onset of cold fronts. Mussels species tended to settle during all conditions, but on average, settlement rates were higher during the cold fronts. Some temporal trends were site specific and variability was detected among taxa and larval stages. Our findings suggest that mesoscale oceanographic/atmospheric systems are particularly relevant on the regulation and potentially forecasting of rocky shore invertebrates' ecology.

  13. An analysis of selected cases of derecho in Poland

    NASA Astrophysics Data System (ADS)

    Celiński-Mysław, Daniel; Matuszko, Dorota

    2014-11-01

    The paper analyses six cases of the derecho phenomena, which occurred in Poland between 2007 and 2012. The input data included reports on dangerous meteorological phenomena, SYNOP and METAR reports, MSL pressure maps, upper air maps at 500 hPa and 850 hPa, radar depictions and satellite images, upper air sounding plots and data from a system locating atmospheric discharges. Derechos are caused directly by the activity of mesoscale convective systems linked up with either, in winter, a cold front of a deep low-pressure system, or, in summer, with an area of wind convergence in a warm sector of a cyclone or with an articulated cold front which, moving within a low-pressure embayment, develops a very active secondary depression. It was found that southern and central Poland were the regions most frequently affected by derechos. Mid-level and high-level jet streams, augmented by high thermodynamic instability of air masses, were found to be conducive to the development of derechos.

  14. A study of frontal dynamics with application to the Australian summertime 'cool change'

    NASA Technical Reports Server (NTRS)

    Reeder, Michael J.; Smith, Roger K.

    1987-01-01

    The dynamics of frontal evolution is examined in terms of the Australian summertime cool change using a two-dimensional numerical model. The model is synthesized from observational data on surface cold fronts obtained during the Australian Cold Fronts Research Program, and the model develops a quasi-steady surface cold front during the 24 hours of integration. The characteristics of this model are compared with those of a kinematic model; it is observed that the features of the two models correspond. The two-dimensional and kinematic models are also compared with a 24-hour prediction of the cold front of February 1983 using the three-dimensional nested-grid model of the Australian Numerical Meteorology Research Center, developed by Gauntlett et al. (1984). Good correlation between these models is detected.

  15. Disturbance Driven Rainfall in O`ahu, Hawai`i (1990-2010)

    NASA Astrophysics Data System (ADS)

    Longman, R. J.; Elison Timm, O.; Giambelluca, T. W.; Kaiser, L.; Newman, A. J.; Arnold, J.; Clark, M. P.

    2017-12-01

    Trade wind orographic rainfall is the most prevalent synoptic weather pattern in Hawai`i and provides a year-round source of moisture to the windward areas across the Island chain. Significant contributions to total and extreme precipitation have also been linked to one of four atmospheric disturbance situations that include: cold fronts, Kona storms, upper-tropospheric disturbances (upper level lows), and tropical systems. The primary objective of this research is to determine how these disturbance types contribute to total wet-season rainfall (RF) on the Island of O`ahu, Hawai`i and to identify any significant changes in the frequency of occurrence and or the intensity of these events. Atmospheric fronts that occurred in the Hawai`i region (17-26°N, 150-165°W) were extracted from a global dataset and combined with a Kona low and upper level low dataset to create a daily categorical weather classification time series (1990-2010). Mean rainfall was extracted from gridded daily O`ahu RF maps. Results show that the difference between a wet and dry year is predominantly explained by the RF contributions from disturbance events (r2 = 0.57, p < 0.01), in particularly, the contributions coming from Kona low and cold fronts that cross the Island. During the wettest season on record, disturbances accounted for 48% of the total RF, while during the driest season they accounted for only 6% of the total RF. The event-based RF analysis also compared the RF intensity in the absence of disturbance events with the average RF intensity on days when atmospheric fronts are present but do not cross the island. The results show that non-crossing fronts reduce the average RF intensity. A possible explanation is that these events are too far away to produce RF, but close enough to disrupt normal trade wind flow, thus limiting orographic RF on the island. This new event-based RF analysis has important implications for the projection of regional climate change in Hawai`i. Our results suggest that if storm tracks were to shift poleward, O`ahu wet season RF would be reduced. The most obvious effect is that fronts crossing the Island would likely occur less frequently reducing the number of days per year with heavy cold front rainfall. In addition, non-crossing fronts could occur more often and hence reducing the orographic RF.

  16. THE EFFECT OF ANISOTROPIC VISCOSITY ON COLD FRONTS IN GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZuHone, J. A.; Markevitch, M.; Kunz, M. W.

    2015-01-10

    Cold fronts—contact discontinuities in the intracluster medium (ICM) of galaxy clusters—should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility of placing constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced bymore » a factor f ∼ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The rms velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g., viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significantly affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.« less

  17. Effects of cold front passage on turbulent fluxes over a large inland water

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, H.

    2011-12-01

    Turbulent fluxes of sensible and latent heat over a large inland water in southern USA were measured using the eddy covariance method through the year of 2008. In addition, net radiation, air temperatures and relative humidity, and water temperature in different depths were also measured. The specific objective of this study is to examine effects of a cold front passage on the surface energy fluxes. For the typical cold front event selected from April 11 to 14, air temperature decreased by 16°C, while surface temperature only dropped 6°C. Atmospheric vapor pressure decreased by 1.6 kPa, while that in the water-air interface dropped 0.7 kPa. The behavior difference in the water-air interface was caused by the passage of cold, dry air masses immediately behind the cold front. During the cold front event, sensible heat and latent heat flux increased by 171 W m-2 and 284 W m-2, respectively. Linear aggression analysis showed that the sensible heat flux was proportional to the product of wind speed and the temperature gradient of water-air interface, with a correlation coefficient of 0.95. Latent heat flux was proportional to the product of wind speed and vapor pressure difference between the water surface and overlaying atmosphere, with a correlation coefficient of 0.81. Also, the correlations between both fluxes and the wind speed were weak. This result indicated that the strong wind associated with the cold front event contributed to the turbulent mixing, which indirectly enhanced surface energy exchange between the water surface and the atmosphere. The relationship between the water heat storage energy and turbulent fluxes was also examined.

  18. Deep Chandra Observation and Numerical Studies of the Nearest Cluster Cold Front in the Sky

    NASA Technical Reports Server (NTRS)

    Werner, N.; ZuHone, J. A.; Zhuravleva, I.; Ichinohe, Y.; Simionescu, A.; Allen, S. W.; Markevitch, M.; Fabian, A. C.; Keshet, U.; Roediger, E.; hide

    2015-01-01

    We present the results of a very deep (500 ks) Chandra observation, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the north-west of M87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. Interestingly, comparison to magnetohydrodynamic simulations indicates that in order to maintain the observed sharp density and temperature discontinuities, conduction must also be suppressed along the magnetic field lines. However, the northwestern part of the cold front is observed to have a non-zero width. While other explanations are possible, the broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length-scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intracluster medium is suppressed by more than an order of magnitude with respect to the isotropic Spitzer-like temperature dependent viscosity. Underneath the cold front, we observe quasi-linear features that are approximately 10 per cent brighter than the surrounding gas and are separated by approximately 15 kpc from each other in projection. Comparison to tailored numerical simulations suggests that the observed phenomena may be due to the amplification of magnetic fields by gas sloshing in wide layers below the cold front, where the magnetic pressure reaches approximately 5-10 per cent of the thermal pressure, reducing the gas density between the bright features.

  19. The formation of a large summertime Saharan dust plume: Convective and synoptic-scale analysis

    PubMed Central

    Roberts, A J; Knippertz, P

    2014-01-01

    Haboobs are dust storms produced by the spreading of evaporatively cooled air from thunderstorms over dusty surfaces and are a major dust uplift process in the Sahara. In this study observations, reanalysis, and a high-resolution simulation using the Weather Research and Forecasting model are used to analyze the multiscale dynamics which produced a long-lived (over 2 days) Saharan mesoscale convective system (MCS) and an unusually large haboob in June 2010. An upper level trough and wave on the subtropical jet 5 days prior to MCS initiation produce a precipitating tropical cloud plume associated with a disruption of the Saharan heat low and moistening of the central Sahara. The restrengthening Saharan heat low and a Mediterranean cold surge produce a convergent region over the Hoggar and Aïr Mountains, where small convective systems help further increase boundary layer moisture. Emerging from this region the MCS has intermittent triggering of new cells, but later favorable deep layer shear produces a mesoscale convective complex. The unusually large size of the resulting dust plume (over 1000 km long) is linked to the longevity and vigor of the MCS, an enhanced pressure gradient due to lee cyclogenesis near the Atlas Mountains, and shallow precipitating clouds along the northern edge of the cold pool. Dust uplift processes identified are (1) strong winds near the cold pool front, (2) enhanced nocturnal low-level jet within the aged cold pool, and (3) a bore formed by the cold pool front on the nocturnal boundary layer. PMID:25844277

  20. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond

    NASA Astrophysics Data System (ADS)

    Walker, S. A.; Sanders, J. S.; Fabian, A. C.

    2016-09-01

    The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin-Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual `V' shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ˜0.1c, and lies much further from the central pulsar than the previous motions seen by Chandra.

  1. Evaluation of WRF physical parameterizations against ARM/ASR Observations in the post-cold-frontal region to improve low-level clouds representation in CAM5

    NASA Astrophysics Data System (ADS)

    Lamraoui, F.; Booth, J. F.; Naud, C. M.

    2017-12-01

    The representation of subgrid-scale processes of low-level marine clouds located in the post-cold-frontal region poses a serious challenge for climate models. More precisely, the boundary layer parameterizations are predominantly designed for individual regimes that can evolve gradually over time and does not accommodate the cold front passage that can overly modify the boundary layer rapidly. Also, the microphysics schemes respond differently to the quick development of the boundary layer schemes, especially under unstable conditions. To improve the understanding of cloud physics in the post-cold frontal region, the present study focuses on exploring the relationship between cloud properties, the local processes and large-scale conditions. In order to address these questions, we explore the WRF sensitivity to the interaction between various combinations of the boundary layer and microphysics parameterizations, including the Community Atmospheric Model version 5 (CAM5) physical package in a perturbed physics ensemble. Then, we evaluate these simulations against ground-based ARM observations over the Azores. The WRF-based simulations demonstrate particular sensitivities of the marine cold front passage and the associated post-cold frontal clouds to the domain size, the resolution and the physical parameterizations. First, it is found that in multiple different case studies the model cannot generate the cold front passage when the domain size is larger than 3000 km2. Instead, the modeled cold front stalls, which shows the importance of properly capturing the synoptic scale conditions. The simulation reveals persistent delay in capturing the cold front passage and also an underestimated duration of the post-cold-frontal conditions. Analysis of the perturbed physics ensemble shows that changing the microphysics scheme leads to larger differences in the modeled clouds than changing the boundary layer scheme. The in-cloud heating tendencies are analyzed to explain this sensitivity.

  2. Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events

    NASA Astrophysics Data System (ADS)

    Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.

    2013-11-01

    Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of the Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and the Centro de Investigación en Oceanografía y Meteorología of Colombia (CIOH, based on its initials in Spanish) during the last 16 yr. The highest number of cold fronts was observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was observed and the highest number of fronts occurred in 2010 (20 in total); moreover, an annual strong relationship between the maximum average wave values and the cold fronts in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.

  3. Cold Fronts in Clusters of Galaxies: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    Mergers of galaxy clusters -- some of the most energetic events in the Universe -- produce disturbances in hot intracluster medium, such as shocks and cold fronts, that can be used as tools to study the physics of galaxy clusters. Cold fronts may constrain viscosity and the structure and strength of the cluster magnetic fields. Combined with radio data, these observations also shed light on the production of ultrarelativistic particles that are known to coexist with the cluster thermal plasma. This talk will summarize the current X-ray observations of cluster mergers, as well as some recent radio data and high resolution hydrodynamic simulations.

  4. Gas Density Discontinuities in Merging Clusters

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Markevitch, Maxim

    2005-01-01

    Chandra has discovered a new phenomenon in galaxy clusters, the sharp gas density edges. Depending on the sign of the temperature jump across the edge, these features may either be bow shocks or cold fronts. While bow shocks obviously are driven by merging sub-clusters, what causes cold fronts is not entirely clear, as they are observed both in mergers and in relaxed clusters. The purpose of the XMM study of A3376, an interesting cluster with density edges, is to understand the origin of cold fronts and to look for possible shocks. The XMM data for A3376 have been mostly analyzed (the X-ray edge turned out to be a cold front). Preliminary results have been shown at a conference and a paper is in preparation. We also have Chandra data for this cluster, and are comparing and combining the two datasets. In the course of analyzing the X-ray data for this cluster as well as several others, it has become apparent that we need the help of hydrodynamic simulations to study the precise mechanism by which cold fronts are formed, the main goal of the present project. A postdoc (Yago Ascasibar) is currently running SPH simulations of an idealized sub- cluster merger. These advanced simulations are nearing completion and two papers with their results are in preparation.

  5. Long, Strong Eastern U.S. Cold Front Brings Changes

    NASA Image and Video Library

    2013-12-23

    A long, strong, cold front draped over the eastern U.S. is marking a stark change from record-warmth to very cold temperatures. This NOAA GOES-East satellite image from December 23 at 1515 UTC/10:15 a.m. EST shows a powerful cold front covering the U.S. East Coast and stretching into the central and southwestern Gulf of Mexico. According to the National Weather Service, that front is bringing rain and embedded thunderstorms over the Mid-Atlantic and Southeastern U.S. The same system is bringing lingering wintry precipitation to northern New England and upstate New York. Behind the cold front, much colder and dry Canadian air will filter in under high pressure and bring sunshine over the eastern U.S. in time for Christmas. The image was created by the NASA GOES Project at NASA's Goddard Space Flight Center, Greenbelt, Md. Rob Gutro NASA Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. U redox fronts and kaolinisation in basement-hosted unconformity-related U ores of the Athabasca Basin (Canada): late U remobilisation by meteoric fluids

    NASA Astrophysics Data System (ADS)

    Mercadier, Julien; Cuney, Michel; Cathelineau, Michel; Lacorde, Mathieu

    2011-02-01

    Proterozoic basement-hosted unconformity-related uranium deposits of the Athabasca Basin (Saskatchewan, Canada) were affected by significant uranium redistribution along oxidation-reduction redox fronts related to cold and late meteoric fluid infiltration. These redox fronts exhibit the same mineralogical and geochemical features as the well-studied uranium roll-front deposits in siliclastic rocks. The primary hydrothermal uranium mineralisation (1.6-1.3 Ga) of basement-hosted deposits is strongly reworked to new disseminated ores comprising three distinctly coloured zones: a white-green zone corresponding to the previous clay-rich alteration halo contemporaneous with hydrothermal ores, a uranium front corresponding to the uranium deposition zone of the redox front (brownish zone, rich in goethite) and a hematite-rich red zone marking the front progression. The three zones directly reflect the mineralogical zonation related to uranium oxides (pitchblende), sulphides, iron minerals (hematite and goethite) and alumino-phosphate-sulphate (APS) minerals. The zoning can be explained by processes of dissolution-precipitation along a redox interface and was produced by the infiltration of cold (<50°C) meteoric fluids to the hydrothermally altered areas. U, Fe, Ca, Pb, S, REE, V, Y, W, Mo and Se were the main mobile elements in this process, and their distribution within the three zones was, for most of them, directly dependent on their redox potential. The elements concentrated in the redox fronts were sourced by the alteration of previously crystallised hydrothermal minerals, such as uranium oxides and light rare earth element (LREE)-rich APS. The uranium oxides from the redox front are characterised by LREE-enriched patterns, which differ from those of unconformity-related ores and clearly demonstrate their distinct conditions of formation. Uranium redox front formation is thought to be linked to fluid circulation episodes initiated during the 400-300 Ma period during uplift and erosion of the Athabasca Basin when it was near the Equator and to have been still active during the last million years. A major kaolinisation event was caused by changes in the fluid circulation regime, reworking the primary uranium redox fronts and causing the redistribution of elements originally concentrated in the uranium-enriched meteoric-related redox fronts.

  7. Cold Fronts Research Programme: Progress, Future Plans, and Research Directions.

    NASA Astrophysics Data System (ADS)

    Ryan, B. F.; Wilson, K. J.; Garratt, J. R.; Smith, R. K.

    1985-09-01

    Following the analysis of data collected during Phases land II of the Cold Fronts Research Programme (CFRP) a conceptual model for the Australian summertime "cool change" has been proposed. The model provides a focus and a framework for the design of Phase III.The model is based on data gathered from a mesoscale network centered on Mount Gambier, South Australia, and includes the coastal waters to the west and relatively flat terrain to the east. The first objective of Phase III is to generalize the model so that it is applicable to the ocean waters to the far west of Mount Gambier and to the more rugged terrain farther to the east in the vicinity of Melbourne, Victoria. The remaining objectives concentrate on resolving unsatisfactory aspects of the model such as the evolution of convective lines and the relationship between the surface cold front and the upper-tropospheric cold pool and its associated jet stream.The integrated nature of the Cold Fronts Research Programme has meant that it has stimulated a wide range of research activities that extend beyond the field observations. The associated investigations include climatological, theoretical, and numerical modeling studies.

  8. Hydrodynamics and Marine Optics during Cold Fronts at Santa Rosa Island, Florida

    DTIC Science & Technology

    2012-09-01

    Journal of Coastal Research 28 S 1073-1087 Coconut Creek, Florida September 2012 Hydrodynamics and Marine Optics during Cold Fronts at Santa Rosa...Research, 28ɝ), 1073-1087. Coconut Creek (Florida), ISSN 0749-0208. Observations of optical and hydrodynamic processes were made on the open beach on

  9. Expansion of a cold non-neutral plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimov, A. R.; Department of Electrophysical Facilities, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409; Yu, M. Y., E-mail: myyu@zju.edu.cn

    2014-12-15

    Expansion of the ion and electron fronts of a cold non-neutral plasma slab with a quasi-neutral core bounded by layers containing only ions is investigated analytically and exact solutions are obtained. It is found that on average, the plasma expansion time scales linearly with the initial inverse ion plasma frequency as well as the degree of charge imbalance, and no expansion occurs if the cold plasma slab is stationary and overall neutral. However, in both cases, there can exist prominent oscillations on the electron front.

  10. Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina

    USGS Publications Warehouse

    Warner, John C.; Armstrong, Brandy N.; Sylvester, Charlene S.; Voulgaris, George; Nelson, Tim; Schwab, William C.; Denny, Jane F.

    2012-01-01

    Long Bay is a sediment-starved, arcuate embayment located along the US East Coast connecting both South and North Carolina. In this region the rates and pathways of sediment transport are important because they determine the availability of sediments for beach nourishment, seafloor habitat, and navigation. The impact of storms on sediment transport magnitude and direction were investigated during the period October 2003–April 2004 using bottom mounted flow meters, acoustic backscatter sensors and rotary sonars deployed at eight sites offshore of Myrtle Beach, SC, to measure currents, water levels, surface waves, salinity, temperature, suspended sediment concentrations, and bedform morphology. Measurements identify that sediment mobility is caused by waves and wind driven currents from three predominant types of storm patterns that pass through this region: (1) cold fronts, (2) warm fronts and (3) low-pressure storms. The passage of a cold front is accompanied by a rapid change in wind direction from primarily northeastward to southwestward. The passage of a warm front is accompanied by an opposite change in wind direction from mainly southwestward to northeastward. Low-pressure systems passing offshore are accompanied by a change in wind direction from southwestward to southeastward as the offshore storm moves from south to north.During the passage of cold fronts more sediment is transported when winds are northeastward and directed onshore than when the winds are directed offshore, creating a net sediment flux to the north–east. Likewise, even though the warm front has an opposite wind pattern, net sediment flux is typically to the north–east due to the larger fetch when the winds are northeastward and directed onshore. During the passage of low-pressure systems strong winds, waves, and currents to the south are sustained creating a net sediment flux southwestward. During the 3-month deployment a total of 8 cold fronts, 10 warm fronts, and 10 low-pressure systems drove a net sediment flux southwestward. Analysis of a 12-year data record from a local buoy shows an average of 41 cold fronts, 32 warm fronts, and 26 low-pressure systems per year. The culmination of these events would yield a cumulative net inner-continental shelf transport to the south–west, a trend that is further verified by sediment textural analysis and bedform morphology on the inner-continental shelf.

  11. Two cold-season derechoes in Europe

    NASA Astrophysics Data System (ADS)

    Gatzen, Christoph; Púčik, Tomas; Ryva, David

    2011-06-01

    In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.

  12. Characterization and effects of cold fronts in the Colombian Caribbean Coast and their relationship to extreme wave events

    NASA Astrophysics Data System (ADS)

    Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.

    2013-07-01

    Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and Centro de Investigación en Oceanografía y Meteorología of Colombia (CIOH, based on its initials in Spanish). The highest occurrences were observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was not observed, although the highest number of fronts occurred in 2010 (20 in total). An annual strong relationship between the maximum average wave values and the cold fronts, in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that, there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.

  13. Contribution of river floods, hurricanes, and cold fronts to elevation change in a deltaic floodplain, northern Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Bevington, Azure E.; Twilley, Robert R.; Sasser, Charles E.; Holm, Guerry O.

    2017-05-01

    Deltas are globally important locations of diverse ecosystems, human settlement, and economic activity that are threatened by reductions in sediment delivery, accelerated sea level rise, and subsidence. Here we investigated the relative contribution of river flooding, hurricanes, and cold fronts on elevation change in the prograding Wax Lake Delta (WLD). Sediment surface elevation was measured across 87 plots, eight times from February 2008 to August 2011. The high peak discharge river floods in 2008 and 2011 resulted in the greatest mean net elevation gain of 5.4 to 4.9 cm over each flood season, respectively. The highest deltaic wetland sediment retention (13.5% of total sediment discharge) occurred during the 2008 river flood despite lower total and peak discharge compared to 2011. Hurricanes Gustav and Ike resulted in a total net elevation gain of 1.2 cm, but the long-term contribution of hurricane derived sediments to deltaic wetlands was estimated to be just 22% of the long-term contribution of large river floods. Winter cold front passage resulted in a net loss in elevation that is equal to the elevation gain from lower discharge river floods and was consistent across years. This amount of annual loss in elevation from cold fronts could effectively negate the long-term land building capacity within the delta without the added elevation gain from both high and low discharge river floods. The current lack of inclusion of cold front elevation loss in most predictive numerical models likely overestimates the land building capacity in areas that experience similar forcings to WLD.

  14. Climatology of winter transition days for the contiguous USA, 1951-2007

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Davis, Robert E.

    2011-01-01

    In middle and high latitudes, climate change could impact the frequency and characteristics of frontal passages. Although transitions between air masses are significant features of the general circulation that influence human activities and other surface processes, they are much more difficult to objectively identify than single variables like temperature or even extreme events like fires, droughts, and floods. The recently developed Spatial Synoptic Classification (SSC) provides a fairly objective means of identifying frontal passages. In this research, we determine the specific meteorological patterns represented by the SSC's Transition category, a "catch-all" group that attempts to identify those days that cannot be characterized as a single, homogeneous air mass type. The result is a detailed transition climatology for the continental USA. We identify four subtypes of the Transition category based on intra-day sea level pressure change and dew point temperature change. Across the contiguous USA, most transition days are identified as cold fronts and warm fronts during the winter season. Among the two less common subtypes, transition days in which the dew point temperature and pressure both rise are more frequently observed across the western states, and days in which both variables fall are more frequently observed in coastal regions. The relative frequencies of wintertime warm and cold fronts have changed over the period 1951-2007. Relative cold front frequency has significantly increased in the Northeast and Midwest regions, and warm front frequencies have declined in the Midwest, Rocky Mountain, and Pacific Northwest regions. The overall shift toward cold fronts and away from warm fronts across the northern USA arises from a combination of an enhanced ridge over western North America and a northward shift of storm tracks throughout the mid-latitudes. These results are consistent with projections of climate change associated with elevated greenhouse gas concentrations.

  15. Boundary-layer effects on cold fronts at a coastline

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1986-07-01

    The present note discusses one physical mechanism which may contribute to cold air channelling, manifest as a frontal bulge on a surface-analysis chart, in the coastal region of Victoria in southeast Australia. This involves the modification of boundary-layer air in both offshore (prefrontal) and onshore (postfrontal) flow, and the effect on cross-frontal thermal contrast. The problem is discussed in terms of a north-south-oriented cold front behaving as an atmospheric gravity current, propagating along an east-west-oriented coastline, in the presence of a prefrontal offshore stream.

  16. Storms or cold fronts? What is really responsible for the extreme waves regime in the Colombian Caribbean coast

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2015-05-01

    On Friday, 7 March 2009, a 200 m-long section of the tourist pier in Puerto Colombia collapsed under the impact of the waves generated by a cold front in the area. The aim of this study is to determine the contribution and importance of cold fronts and storms on extreme waves in different areas of the Colombian Caribbean to determine the degree of the threat posed by the flood processes to which these coastal populations are exposed and the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the wave's height; therefore, it is necessary to definitively know the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. Using Gumbel's extreme value methodology, the significant height values for the study area were calculated. The methodology was evaluated using data from the re-analysis of the spectral NOAA Wavewatch III (WW3) model for 15 points along the 1600 km of the Colombia Caribbean coast (continental and insular) of the last 15 years. The results demonstrated that the extreme waves caused by tropical cyclones and cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area formed by Baja Guajira, Santa Marta, Barranquilla, and Cartagena, the strong influence of cold fronts on extreme waves is evident. On the other hand, in the southern region of the Colombian Caribbean coast, from the Gulf of Morrosquillo to the Gulf of Urabá, even though extreme waves are lower than in the previous regions, extreme waves are dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to its geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than the extreme waves associated with hurricane season. These results are of great importance when evaluating the threat of extreme waves in the coastal and port infrastructure, for purposes of the design of new constructions, and in the coastal flood processes due to run-up because, according to the site of interest in the coast, the forces that shape extreme waves are not the same.

  17. Role of surface heat fluxes underneath cold pools

    PubMed Central

    Garelli, Alix; Park, Seung‐Bu; Nie, Ji; Torri, Giuseppe; Kuang, Zhiming

    2016-01-01

    Abstract The role of surface heat fluxes underneath cold pools is investigated using cloud‐resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection. PMID:27134320

  18. Processes controlling the retreat of the Isles Dernieres, a Louisiana barrier-island chain

    USGS Publications Warehouse

    Dingler, John R.; Reiss, Thomas E.

    1991-01-01

    The Isles Dernieres is a low-lying, transgressive barrier-island chain situated about 150 km west of the modern Mississippi delta. Much of the Isles Dernieres consists of highly dissected salt-marsh muds that lie at or slightly above sea level and are covered by a veneer of sand along the shoreline facing the Gulf of Mexico. Maximum berm elevations are generally less than 1.5 m above mean sea level. Since the mid-1800s, the initial island has been fragmented into four islands, and the beach face has retreated landward at a rate of more than 10 m/yr. The dominant processes controlling degradation of the chain are cold fronts that pass through the area several times each year and occasional hurricanes. Beach surveys over a 2-year period on the Isles Dernieres document irreversible beach-face retreat in conjunction with multiple cold fronts and one major hurricane (Gilbert). Although both the hurricane and the cold fronts caused the island to erode, the erosional patterns of the two storm types differed from each other. During the two years, over 60 cold fronts collectively caused about 37 m of beach-face retreat, whereas Gilbert itself produced more than 40 m of retreat. A major difference between the two storm types was in the percentage of washover sand produced by each. Commonly, the cold fronts did not create enough of a storm surge to overtop the berm, so most of the material removed from the beach face must have moved offshore or alongshore. Gilbert, in contrast, inundated the study site, and essentially all the sand removed from the beach face moved to the backshore.

  19. Bacterial properties of rainwater associated with cyclones, stationary fronts and typhoons in southwestern Japan

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Hu, W.; Niu, H.

    2016-12-01

    The activities and role of bioaerosols in aerosol-cloud-precipitation links are important but unresolved issues in atmospheric and microbiological sciences. Bacteria, a main part of bioaerosols, are ubiquitous in atmospheric water. They are considered to be involved in the processes of cloud condensation and ice nuclei formation. However, to date, little information on rainwater bacteria is available. Rainwater samples were collected at a suburban site in southwestern Japan during October 2014 to September 2015. Results show that the cell concentration of rainwater bacteria was 2.3±1.5×104 cells ml-1, with a viability of 80±10% on average. The bacterial abundance and viability systematically differed with the weather systems causing rain. In cold-front-derived rain, the average bacterial concentration was the highest (3.5±1.6×104 cells ml-1), with the lowest viability as 75%. In the stationary-front-derived rain during Meiyu period and typhoon rain, the average bacterial concentrations were lower, but with higher viability. In stationary-front-derived rain during non-Meiyu period, the average abundance was higher (2.4±1.6×104 cells ml-1), while the viability was lower (78%) than those during Meiyu period. It was suggested that clouds produced by air mass from ocean areas carried fewer bacteria but with higher viability than those originated from continental regions. Bacterial concentrations in rainwater did not show good correlations with the ratios of total and decreased airborne particle concentrations to rainfall. Combining the univariate and factorial analysis of chemical compositions and bacterial abundance, we found that bacteria in rainwater were mainly associated with nss-SO42-, nss-Ca2+, and NO3-, which can act as nuclei or be produced within clouds. The cultured heterotrophic marine bacteria were of much higher abundance in stationary-front-derived rain than those in cold-front-derived rain. Bacterial genera containing ice nucleation active bacteria species (Pseudomonas, Xanthomonas and Erwinia) and marine bacterial indicator taxa, were also identified in rainwater samples. These results implicated that besides below-cloud removal, in-cloud processes contributed bacteria to rainwater, and marine bacteria could be disseminated via cloud or rainwater.

  20. Fast Simulations of Gas Sloshing and Cold Front Formation

    NASA Technical Reports Server (NTRS)

    Roediger, E.; ZuHone, J. A.

    2011-01-01

    We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artefacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artefacts.

  1. Fast Simulations of Gas Sloshing and Cold Front Formation

    NASA Technical Reports Server (NTRS)

    Roediger, E.; ZuHone, J. A.

    2012-01-01

    We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artifacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artifacts.

  2. Structure and Evolution of an Undular Bore on the High Plains and Its Effects on Migrating Birds.

    NASA Astrophysics Data System (ADS)

    Locatelli, John D.; Stoelinga, Mark T.; Hobbs, Peter V.; Johnson, Jim

    1998-06-01

    On 18 September 1992 a series of thunderstorms in Nebraska and eastern Colorado, which formed south of a synoptic-scale cold front and north of a Rocky Mountain lee trough, produced a cold outflow gust front that moved southeastward into Kansas, southeastern Colorado, and Oklahoma around sunset. When this cold outflow reached the vicinity of the lee trough, an undular bore developed on a nocturnally produced stable layer and moved through the range of the Dodge City WSR-88D Doppler radar. The radar data revealed that the undular bore, in the leading portion of a region of northwesterly winds about 45 km wide by 4 km high directly abutting the cold outflow, developed five undulations over the course of 3 h. Contrary to laboratory tank experiments, observations indicated that the solitary waves that composed the bore probably did not form from the enveloping of the head of the cold air outflow by the stable layer and the breaking off of the head of the cold air outflow. The synoptic-scale cold front subsequently intruded on the surface layer of air produced by the cold outflow, but there was no evidence for the formation of another bore.Profiler winds, in the region affected by the cold air outflow and the undular bore, contained signals from nocturnally, southward-migrating birds (most likely waterfowl) that took off in nonfavorable southerly winds and remained aloft for several hours longer than usual, thereby staying ahead of the turbulence associated with the undular bore.

  3. Effect of the Andes Cordillera on Precipitation from a Midlatitude Cold Front

    DTIC Science & Technology

    2009-09-01

    collective comments and suggestions have greatly improved the manuscript. We also thank Direccion de Aguas of Chile , and Mr. Dan Dawson of the...Annapolis, Maryland RENÉ D. GARREAUD AND MARK FALVEY Department of Geophysics, Universidad de Chile , Santiago, Chile (Manuscript received 24 November...trough and surface cold front produced widespread precipitation in central Chile . The primary goal was to analyze the physical mechanisms responsible

  4. DYNAMICS AND MAGNETIZATION IN GALAXY CLUSTER CORES TRACED BY X-RAY COLD FRONTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keshet, Uri; Markevitch, Maxim; Birnboim, Yuval

    2010-08-10

    Cold fronts (CFs)-density and temperature plasma discontinuities-are ubiquitous in cool cores of galaxy clusters, where they appear as X-ray brightness edges in the intracluster medium, nearly concentric with the cluster center. We analyze the thermodynamic profiles deprojected across core CFs found in the literature. While the pressure appears continuous across these CFs, we find that all of them require significant centripetal acceleration beneath the front. This is naturally explained by a tangential, nearly sonic bulk flow just below the CF, and a tangential shear flow involving a fair fraction of the plasma beneath the front. Such shear should generate near-equipartitionmore » magnetic fields on scales {approx}<50pc from the front and could magnetize the entire core. Such fields would explain the apparent stability of cool core CFs and the recently reported CF-radio minihalo association.« less

  5. Formation of a katabatic induced cold front at the east Andean slopes

    NASA Astrophysics Data System (ADS)

    Trachte, K.; Nauss, T.,; Rollenbeck, R.; Bendix, J.

    2009-04-01

    Within the DFG research unit 816, climate dynamics in a tropical mountain rain forest in the national reserve of the Reserva Biósfera de San Francisco in South Ecuador are investigated. Precipitation measurements in the mountain environment of the Estación Científica de San Francisco (ECSF) with a vertical rain radar profiler have been made over the last seven years. They reveal unexpected constant early morning rainfall events. On the basis of cloud top temperatures from corresponding GOES satellite imageries, a Mesoscale Convective System could be derived. Its formation region is located south-east of the ECSF in the Peruvian Amazon basin. The generation of the MCS is assumed to results from an interaction of both local and mesoscale conditions. Nocturnal drainage air from the Andean slopes and valleys confluences in the Amazon basin due to the concave lined terrain. This cold air converges with the warm-moist air of the Amazon inducing a local cold front. This process yields to deep convection resulting in a MCS. With the numerical model ARPS the hypothesized formation of a cloud cluster due to a katabatic induced cold front is shown in an ideal case study. Therefor an ideal terrain model representing the features of the Andes in the target area has been used. The simplification of the oprography concerns a concave lined slope and a valley draining into the basin. It describes the confluence of the cold drainage air due to the shape of the terrain. Inside the basin the generation of a local cold front is shown, which triggers the formation of a cloud cluster.

  6. Evaluating the role of fronts in habitat overlaps between cold and warm water species in the western North Pacific: A proof of concept

    NASA Astrophysics Data System (ADS)

    Mugo, Robinson M.; Saitoh, Sei-Ichi; Takahashi, Fumihiro; Nihira, Akira; Kuroyama, Tadaaki

    2014-09-01

    Cold- and warm-water species' fishing grounds show a spatial synchrony around fronts in the western North Pacific (WNP). However, it is not yet clear whether a front (thermal, salinity or chlorophyll) acts as an absolute barrier to fish migration on either side or its structure allows interaction of species with different physiological requirements. Our objective was to assess potential areas of overlap between cold- and warm-water species using probabilities of presence derived from fishery datasets and remotely sensed environment data in the Kuroshio-Oyashio region in the WNP. Fishery data comprised skipjack tuna (Katsuwonus pelamis) fishing locations and proxy presences (derived from fishing night light images) for neon flying squid (Ommastrephes bartrami) and Pacific saury (Cololabis saira). Monthly (August-November) satellite remotely sensed sea-surface temperature, chlorophyll-a and sea-surface height anomaly images were used as environment data. Maximum entropy (MaxEnt) models were used to determine probabilities of presence (PoP) for each set of fishery and environment data for the area 35-45°N and 140-160°E. Maps of both sets of PoPs were compared and areas of overlap identified using a combined probability map. Results indicated that areas of spatial overlap existed among the species habitats, which gradually widened from September to November. The reasons for these overlaps include the presence of strong thermal/ocean-color gradients between cold Oyashio and warm Kuroshio waters, and also the presence of the sub-arctic front. Due to the high abundance of food along frontal zones, the species use the fronts as foraging grounds while confining within physiologically tolerable waters on either side of the front. The interaction zone around the front points to areas that might be accessible to both species for foraging, which suggests intense prey-predator interaction zones.

  7. Shocking features in the merging galaxy cluster RXJ0334.2-0111

    NASA Astrophysics Data System (ADS)

    Dasadia, Sarthak; Sun, Ming; Morandi, Andrea; Sarazin, Craig; Clarke, Tracy; Nulsen, Paul; Massaro, Francesco; Roediger, Elke; Harris, Dan; Forman, Bill

    2016-05-01

    We present a 66 ks Chandra X-ray observation of the galaxy cluster RXJ0334.2-0111. This deep observation revealed a unique bow shock system associated with a wide angle tail (WAT) radio galaxy and several intriguing substructures. The temperature across the bow shock jumps by a factor of ˜1.5 (from 4.1 to 6.2 keV), and is consistent with the Mach number M = 1.6_{-0.3}^{+0.5}. A second inner surface brightness edge is a cold front that marks the border between infalling subcluster cool core and the intracluster medium of the main cluster. The temperature across the cold front increases from 1.3_{-0.8}^{+0.3} to 6.2_{-0.6}^{+0.6} keV. We find an overpressurized region ˜250 kpc east of the cold front that is named `the eastern extension (EE)'. The EE may be a part of the third subcluster in the ongoing merger. We also find a tail shaped feature that originates near the bow shock and may extend up to a distance of ˜1 Mpc. This feature is also likely overpressurized. The luminous FR-I radio galaxy, 3C89, appears to be the cD galaxy of the infalling subcluster. We estimated 3C89's jet power from jet bending and the possible interaction between the X-ray gas and the radio lobes. A comparison between the shock stand-off distance and the Mach number for all known shock front/cold front combinations suggests that the core is continuously shrinking in size by stripping.

  8. Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region?

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2016-02-01

    The aim of this study is to determine the contribution and importance of cold fronts and storms to extreme waves in different areas of the Colombian Caribbean in an attempt to determine the extent of the threat posed by the flood processes to which these coastal populations are exposed. Furthermore, the study wishes to establish the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the height of the wave. For this reason, it is necessary to establish the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. The significant height values for the areas focused on in the study were calculated in accordance with Gumbel's extreme value methodology. The methodology was evaluated using data from the reanalysis of the spectral National Oceanic and Atmospheric Administration (NOAA) WAVEWATCH III® (WW3) model for 15 points along the 1600 km of the Colombian Caribbean coastline (continental and insular) between the years 1979 and 2009. The results demonstrated that the extreme waves caused by tropical cyclones and those caused by cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area (consisting of Baja Guajira, and the cities of Santa Marta, Barranquilla, and Cartagena), the strong impact of cold fronts on extreme waves is evident. However, in the southern region of the Colombian Caribbean coast (ranging from the Gulf of Morrosquillo to the Gulf of Urabá), the extreme values of wave heights are lower than in the previously mentioned regions, despite being dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to their geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than those associated with the hurricane season.

  9. Role of surface heat fluxes underneath cold pools

    DOE PAGES

    Gentine, Pierre; Garelli, Alix; Park, Seung -Bu; ...

    2016-01-05

    In this paper, the role of surface heat fluxes underneath cold pools is investigated using cloud–resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerousmore » and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection.« less

  10. A series of shocks and edges in Abell 2219

    DOE PAGES

    Canning, R. E. A.; Allen, S. W.; Applegate, D. E.; ...

    2016-09-22

    Here, we present deep, 170 ks, Chandra X-ray observations of Abell 2219 (z = 0.23), one of the hottest and most X-ray luminous clusters known, and which is experiencing a major merger event. We discover a ‘horseshoe’ of high-temperature gas surrounding the ram-pressure-stripped, bright, hot, X-ray cores. We confirm an X-ray shock front located north-west of the X-ray centroid and along the projected merger axis. We also find a second shock front to the south-east of the X-ray centroid making this only the second cluster where both the shock and reverse shock are confirmed with X-ray temperature measurements. We alsomore » present evidence for a possible sloshing cold front in the ‘remnant tail’ of one of the sub-cluster cores. The cold front and north-west shock front geometrically bound the radio halo and appear to be directly influencing the radio properties of the cluster.« less

  11. A Strong Merger Shock in Abell 665

    NASA Technical Reports Server (NTRS)

    Dasadia, S.; Sun, M.; Sarazin, C.; Morandi, A.; Markevitch, M.; Wik, D.; Feretti, L.; Giovannini, G.; Govoni, F.

    2016-01-01

    Deep (103 ks) Chandra observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of M =?3.0 +/- 0.6, propagating in front of a cold disrupted cloud. This makes Abell 665 the second cluster, after the Bullet cluster, where a strong merger shock of M is approximately 3 has been detected. The shock velocity from jump conditions is consistent with (2.7 +/- 0.7) × 10(exp 3) km s(exp -1). The new data also reveal a prominent southern cold front with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the reacceleration model with the X-ray and radio data combined.

  12. WPC Product Legends - Surface fronts and precipitation areas/symbols

    Science.gov Websites

    , etc...) drawn on each segment. For example, the image below shows a forming cold front. Frontolysis is other segment. Below is an example of a dissipating warm front. Precipitation Areas and Symbols Areas of an example) Below are symbols found on our short range forecasts that represent categories (and in

  13. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    PubMed

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  14. Investigation of non-stationary self-focusing of intense laser pulse in cold quantum plasma using ramp density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M.; Ghamari, F.

    2012-11-15

    The authors have investigated the non-stationary self-focusing of Gaussian laser pulse in cold quantum plasma. In case of high dense plasma, the nonlinearity in the dielectric constant is mainly due to relativistic high intense interactions and quantum effects. In this paper, we have introduced a ramp density profile for plasma and presented graphically the behavior of spot size oscillations of pulse at rear and front portions of the pulse. It is observed that the ramp density profile and quantum effects play a vital role in stronger and better focusing at the rear of the pulse than at the front inmore » cold quantum plasmas.« less

  15. Gas Sloshing Regulates and Records the Evolution of the Fornax Cluster

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Nulsen, Paul E. J.; Kraft, Ralph P.; Roediger, Elke; ZuHone, John A.; Jones, Christine; Forman, William R.; Sheardown, Alex; Irwin, Jimmy A.; Randall, Scott W.

    2017-12-01

    We present results of a joint Chandra and XMM-Newton analysis of the Fornax Cluster, the nearest galaxy cluster in the southern sky. Signatures of merger-induced gas sloshing can be seen in the X-ray image. We identify four sloshing cold fronts in the intracluster medium, residing at radii of 3 kpc (west), 10 kpc (northeast), 30 kpc (southwest), and 200 kpc (east). Despite spanning over two orders of magnitude in radius, all four cold fronts fall onto the same spiral pattern that wraps around the BCG NGC 1399, likely all initiated by the infall of NGC 1404. The most evident front is to the northeast, 10 kpc from the cluster center, which separates low-entropy high-metallicity gas and high-entropy low-metallicity gas. The metallicity map suggests that gas sloshing, rather than an AGN outburst, is the driving force behind the redistribution of the enriched gas in this cluster. The innermost cold front resides within the radius of the strong cool core. The sloshing timescale within the cooling radius, calculated from the Brunt–Väsälä frequency, is an order of magnitude shorter than the cooling time. It is plausible that gas sloshing is contributing to the heating of the cool core, provided that gas of different entropies can be mixed effectively via Kelvin–Helmholtz instability. The estimated age of the outermost front suggests that this is not the first infall of NGC 1404.

  16. The ABCs of Front Management

    USDA-ARS?s Scientific Manuscript database

    Frost protection or protecting plants from cold temperatures where they could be damaged must be a major consideration in orchard planning. Cold temperature protection events commonly occur during "radiation" frost conditions when the sky is clear, there is little wind and temperature inversions ca...

  17. Submesoscale-selective compensation of fronts in a salinity-stratified ocean

    PubMed Central

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-01-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world’s upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity. PMID:29507874

  18. On a theory of the evolution of surface cold fronts

    NASA Technical Reports Server (NTRS)

    Levy, Gad; Bretherton, Christopher S.

    1987-01-01

    The governing vorticity and divergence equations in the surface layer are derived and the roles of the different terms and feedback mechanisms are investigated in semigeostrophic and nongeostrophic cold-frontal systems. A planetary boundary layer model is used to perform sensitivity tests to determine that in a cold front the ageostrophic feedback mechanism as defined by Orlanski and Ross tends to act as a positive feedback mechanism, enhancing vorticity and convergence growth. Therefore, it cannot explain the phase shift between convergence and vorticity as simulated by Orlanski and Ross. An alternative plausible, though tentative, explanation in terms of a gravity wave is offered. It is shown that when the geostrophic deformation increases, nonlinear terms in the divergence equation may become important and further destabilize the system.

  19. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-10-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (<60 ppbv and 20 ppbv CO, respectively) and were not detectable in the observations because of superposition of the much larger Asian pollution signal. Spring 2001 (La Niña) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  20. Transport Pathways for Asian Pollution Outflow Over the Pacific: Interannual and Seasonal Variations

    NASA Technical Reports Server (NTRS)

    Liu, Hong-Yu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-01-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (less than 60 ppbv and 20 ppbv CO, respectively) and were not detectable in the observations because of superposition of the much larger Asian pollution signal. Spring 2001 (La Nina) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  1. Turbulent statistics in the vicinity of an SST front: A north wind case, FASINEX February 16, 1986

    NASA Technical Reports Server (NTRS)

    Stage, Steven A.; Herbster, Chris

    1990-01-01

    The technique of boxcar variances and covariances is used to examine NCAR Electra data from FASINEX (Frontal Air-Sea Interaction EXperiment). This technique was developed to examine changes in turbulent fluxes near a sea surface temperature (SST) front. The results demonstrate the influence of the SST front on the MABL (Marine Atmospheric Boundary Layer). Data shown are for February 16, 1986, when the winds blew from over cold water to warm. The front directly produced horizontal variability in the turbulence. The front also induced a secondary circulation which further modified the turbulence.

  2. The Narrow Cold-Frontal Rainband of 22/23 November 2013

    NASA Technical Reports Server (NTRS)

    Kidd, Christopher

    2015-01-01

    The recent paper in Weather by Young (2014) provided a detailed analysis of an intensive cold front as it passed over the UK on 2223 November 2013. This was an extremely good example of linear convection, as it is described in the paper, or a narrow cold-frontal rainband (NCFR; Hobbs and Biswas, 1979). These features are associated with a low-level jet that lies ahead and parallel to the surface cold front, generating a band of intense but relatively shallow convection (see Koch and Kocin, 1991). Although the structure associated with these systems is not uncommon (e.g. Gatzen, 2011), this case was notable for the (linear) length and the longevity of the feature. Critically, fine-scale radar observations using the 1km, 5min UK composite radar product, produced by the UK Met Office and supplied by the British Atmospheric Data Centre, enabled the timing and progression of the most intense band of this feature tobe examined (see Figure 1).

  3. Coupling of Clouds and Moisture Transport in Extratropical Cyclonic Systems and the Associated Atmospheric Heating (Q1) and Moisture Sink (Q2)

    NASA Astrophysics Data System (ADS)

    Wong, S.; Naud, C. M.; Kahn, B. H.; Wu, L.; Fetzer, E. J.

    2017-12-01

    Different sectors in extratropical cyclonic systems (ETCs) exhibit various patterns in atmospheric moisture transport and provide an excellent test bed for studying coupling between cloud processes and large-scale circulation. Large-scale atmospheric moisture transport diagnosed from the Modern-Era Retrospective analysis for Research and Applications Version 2 and cloud properties (cloud top pressure and optical depth, cloud effective radii and thermodynamic phase) from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) will be composited around Northern Hemispheric ETCs over ocean according to their stages of development. Atmospheric diabatic heating rates (Q1) and moisture sinks (Q2) are also inferred from the reanalysis winds, temperature, and specific humidity. Across the warm fronts, elevated convection in the pre-warm front regime is associated with frequent stratiform clouds with middle-to-upper tropospheric heating and lower tropospheric cooling, while upright convection in the warm front regime has frequent deep convective clouds with free-tropospheric heating and strong boundary layer cooling. Thinner stratiform and cirrus clouds are evident in the warm sector with top-heavy profiles of rising motion and diabatic heating. Moisture advection exhibits a sharp gradient across the cold fronts, with convection in the pre-cold front regime highly dependent on the stage of the ETC development. Heating in the boundary layers of the cold sector, polar-air intrusion, and pre-warm sector regimes depends on the amount of low-level clouds, which is again modulated by the stage of the ETC development.

  4. Ocean backscatter across the Gulf Stream sea surface temperature front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nghiem, S.V.; Li, F.K.

    1997-06-01

    Ocean backscatter was measured by the Jet Propulsion Laboratory, with the airborne NUSCAT K{sub u}-band scatterometer, across the Gulf Stream sea surface temperature front during the Surface Wave Dynamics Experiment off the coast of Virginia and Maryland in the winter of 1991. Backscatter across the front between the National Oceanic and Atmospheric Administration experimental coastal buoy A (44024) on the cold side and Discus C buoy (44023) on the warm side shows a difference of more than 5 dB for vertical polarization in many cases. This large frontal backscatter change is observed in all upwind, downwind, and crosswind directions. Themore » sea surface temperature difference measured by the buoys was about 9{degrees}C. The corresponding difference in wind speed cannot account for the large backscatter change in view of geophysical model functions depending only on neutral wind velocity such as SASS. The measured backscatter also has larger upwind-downwind and upwind-crosswind ratios compared to the model results. Furthermore, NUSCAT data reveal that upwind backscatter on the cold side was smaller than or close to crosswind backscatter on the warm side for incidence angles between 30{degrees} to 50{degrees}. This suggests that the temperature front can be detected by the scatterometer at these incidence angles for different wind directions in the cold and warm sides.« less

  5. Effects of the large-scale atmospheric circulation on the onset and strength of urban heat islands: a case study

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Krecl, Patricia; Coraiola, Guilherme Conor

    2014-07-01

    Air temperature was monitored at 13 sites across the urban perimeter of a Brazilian midsize city in winter 2011. In this study, we show that the urban heat island (UHI) develops only at night and under certain weather conditions, and its intensity depends not only on the site's land cover but also on the meteorological setting. The urban heat island intensity was largest (6.6 °C) under lingering high-pressure conditions, milder (3.0 °C) under cold anticyclones and almost vanished (1.0 °C) during the passage of cold fronts. The cooling rates were calculated to monitor the growth and decay of the UHI over each specific synoptic setting. Over four contiguous days under the effect of a lingering high-pressure event, we observed that the onset of cooling was always at about 2 h before sunset. The reference site attained mean cooling rate of -2.6 °C h-1 at sunset, whilst the maximum urban rate was -1.2 °C h-1. Under a 3-day cold anticyclone episode, cooling also started about 2 h before sunset, and the difference between maximum rural (-2.0 °C h-1) and urban (-1.0 °C h-1) cooling rates diminished. Under cold-front conditions, the cooling rate was homogeneous for all sites and swang about zero throughout the day. The air temperature has a memory effect under lingering high-pressure conditions which intensified the UHI, in addition to the larger heat storage in the urban area. Cold anticyclone conditions promoted the development of the UHI; however, the cold air pool and relatively light winds smoothed out its intensity. Under the influence of cold fronts, the urban fabric had little effect on the city's air temperature field, and the UHI was imperceptible.

  6. Cold fronts and shocks formed by gas streams in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A. V.

    2018-05-01

    Cold fronts (CFs) and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and CFs in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyr and it could generate a particular pattern of multiple CFs and shocks.

  7. Through the X-ray looking glass, and what plasma physics found there

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Jones, Christine; Roediger, Elke

    2017-08-01

    How energy is transported and dissipated is the most fundamental process in the thermalization and evolution of galaxy clusters. At temperatures of 1--10 keV, intracluster medium (ICM) approximates a highly ionized plasma. Contemporary X-ray observations have revealed a wealth of substructures in the ICM, even in relatively relaxed clusters. Of particular interest is the ubiquitous presence of cold fronts, resulting from the shear interface between gaseous regions of different entropies. This configuration inevitably leads to the Kelvin-Helmholtz Instability (KHI), appearing as “horn” or “roll” features in X-ray images. Both viscosity and ordered magnetic field can suppress the growth of KHI. We present results of Chandra, XMM-Newton, and Suzaku observations of Fornax and Virgo. We probe the cluster plasma physics through the gas properties of the sloshing cold fronts, merging cold fronts, AGN bubbles, and gaseous stripped tails in these systems. We found that the ICM ought to be inviscous and we can put an upper limit on the intracluster magnetic field. Our results have also provided insights into the merging history of galaxy clusters, which have been reproduced in tailored simulations.

  8. Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Gastaldello, F.; Brunetti, G.

    2018-06-01

    A number of merging galaxy clusters show the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intracluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts, and eight with uncertain origin. All the six shocks detected have M< 2 derived from density and temperature jumps. This work contributed to increase the number of discontinuities detected in clusters and shows the potential of combining diverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.

  9. Cold-front driven storm erosion and overwash in the central part of the Isles Dernieres, a Louisiana barrier-island arc

    USGS Publications Warehouse

    Dingler, J.R.; Reiss, T.E.

    1990-01-01

    Tropical and extratropical storms produce significant erosion on the barrier islands of Louisiana. Over the past 100 years, such storms have produced at least 2 km of northward beach-face retreat and the loss of 63% of the surface area of the Isles Dernieres, a low-lying barrier-island arc along the central Louisiana coast. Elevations on the islands within the arc are typically less than 2 m above mean sea level. The islands typically have a washover-flat topography with occasional, poorly developed, dune-terrace topography consisting of low-lying and broken dunes. The central part of the arc consists of salt-marsh deposits overlain by washover sands along the Gulf of Mexico shoreline. Sand thicknesses range from zero behind the beach, to less than 2 m under the berm crest, and back to zero in the first nearshore trough. The sand veneer is sufficiently thin that storms can strip all the sand from the beach face, exposing the underlying marsh deposits. The geomorphic changes produced by cold fronts, a type of extratropical storm that commonly affect the Isles Dernieres between late fall and early spring are described. Between August 1986 and September 1987, repeated surveys along eleven shore-normal transects that covered 400 m of shoreline revealed the timing and extent of cold-front-produced beach change along a typical section of the central Isles Dernieres. During the study period, the beach face retreated approximately 20 m during the cold-front season but did not rebuild during the subsequent summer. Because the volume of sand deposited on the backshore (5600 m3) was less than the volume of material lost from the beach face (19,200 m3), approximately 13,600 m3 of material disappeared. Assuming that underlying marsh deposits decrease in volume in direct proportion to the amount of beach-face retreat, an estimate of the mud loss during the study period is 14,000 m3. Thus, the decrease in volume along the profiles can be accounted for without removing any sand from the area, suggesting that a major effect of cold fronts is first to strip the sand from the beach face and then to erode the underlying marsh deposits. After being eroded, the mud is lost from the islands because currents transport it away from the islands. ?? 1990.

  10. Seasonal and intraseasonal variations in evaporation and surface energy budget from eddy covariance measurements over an open water surface in Mississippi, U.S.A.

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, Y.; Williams, Q. L.; Jiang, H.; Sheng, L.

    2008-12-01

    Understanding seasonal and intraseasonal variations in evaporation over lake/reservoir is important for water resource management as well as predicting variations in hydrology as a result of climate change. Since August of 2007, we have conducted a long-term eddy covariance measurement of evaporation and the surface energy budget over Ross Barnett Reservoir (32o26'N, 90o02'W) in Mississippi, USA. The fetch for eddy covariance system exceeds 2 km in all directions and the water depth is about 4 m around the flux tower. The tower with its height of 4 m stands over a stationary wood platform with its size of 3 m × 3 m and height of about 1 m above the water surface. Along with sensible and latent heat fluxes, microclimate data are also measured, including wind speed, wind direction, relative humidity, solar radiation, net radiation, air temperature at four levels, water surface temperature, and water temperature at eight depths down to about 4 m. Mississippi is subject to frequent influences of different synoptic weather systems in a year around. Incursions of these different systems bring in air masses with different properties in temperature and moisture. Cold fronts, for example, carry them with cold and dry air from north while warm fronts with warm and moist air. Our results indicate that synoptic weather variations play an important role in controlling evaporations and the surface energy budget. For example, daily H and LE (i.e., evaporation) during the passages of cold fronts are around 2-4 times those of normal days and these cold front events lead to an increase in the seasonal H by approximately 420 and LE by 160%. However, the warm weather systems suppress largely the turbulent exchanges of sensible and latent heat, leading to very small evaporation and sensible heat fluxes (even negative). These results imply that future potential changes in cold front activities (intensity, frequency, and duration) as a result of climate change may lead to substantial shifts in regional energy budget and hydrological balance in the southern regions with an abundance of open water bodies (e.g., lakes, reservoirs, swamps etc). Using these datasets, the daytime and nighttime evaporation rates are also analyzed and nighttime evaporative water losses are substantial, contributing a significant portion to the total evaporative water loss.

  11. Blast waves from violent explosive activity at Yasur Volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Delle Donne, D.; Genco, R.; Finizola, A.; Garaebiti, E.

    2013-11-01

    and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging ~3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1-0.3 Hz) signal preceding ~5-6 s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5-106 Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front ~20 m thick, which moved between 342 and 405 m/s before the explosive hot gas/fragments cloud. We interpret this cold front as that produced by the vapor condensation induced by the passage of the shock front. We suggest that violent strombolian activity at Yasur was driven by supersonic dynamics with gas expanding at 1.1 Mach number inside the conduit.

  12. Relative contributions of synoptic and intraseasonal variations to strong cold events over eastern China

    NASA Astrophysics Data System (ADS)

    Song, Lei; Wu, Renguang; Jiao, Yang

    2018-06-01

    The present study investigates the relative roles of intraseasonal oscillations (ISOs) and synoptic variations in strong cold events over eastern China during the boreal winter. The ISOs and synoptic variations explain about 55% and 20% of the total area-mean temperature anomaly in eastern China, respectively. The advection of synoptic winds on synoptic temperature gradients has a leading contribution to the temperature decrease before the cold events and thus the synoptic variations are important in determining the time of peak cold anomalies. The ISOs have a larger role in sustaining the cold events. The height anomalies associated with ISOs and synoptic variations are manifested as Rossby wave trains propagating along the polar front jet over the Eurasian continent before the cold events. They both contribute to the deepening of the East Asian trough and the development of cold events. Compared to the ISO wave train, the synoptic wave train has a smaller spatial scale and moves faster. There are obvious intraseasonal signals in the stratosphere about 1 week before the cold events over eastern China. Large negative height anomalies associated with the weakening of the polar vortex are observed over the North Atlantic. These anomalies move eastwards and propagate downwards after reaching the west coast of Europe. The downward moving stratospheric signal triggers height anomalies in the troposphere over the entrance region of the polar front jet. Then the anomalies propagate towards East Asia along the wave train, contributing to the intensification of the Siberian high and the East Asian trough and the occurrence of cold events over eastern China.

  13. Effect of solar activity on the repetitiveness of some meteorological phenomena

    NASA Astrophysics Data System (ADS)

    Todorović, Nedeljko; Vujović, Dragana

    2014-12-01

    In this paper we research the relationship between solar activity and the weather on Earth. This research is based on the assumption that every ejection of magnetic field energy and particles from the Sun (also known as Solar wind) has direct effects on the Earth's weather. The impact of coronal holes and active regions on cold air advection (cold fronts, precipitation, and temperature decrease on the surface and higher layers) in the Belgrade region (Serbia) was analyzed. Some active regions and coronal holes appear to be in a geo-effective position nearly every 27 days, which is the duration of a solar rotation. A similar period of repetitiveness (27-29 days) of the passage of the cold front, and maximum and minimum temperatures measured at surface and at levels of 850 and 500 hPa were detected. We found that 10-12 days after Solar wind velocity starts significantly increasing, we could expect the passage of a cold front. After eight days, the maximum temperatures in the Belgrade region are measured, and it was found that their minimum values appear after 12-16 days. The maximum amount of precipitation occurs 14 days after Solar wind is observed. A recurring period of nearly 27 days of different phases of development for hurricanes Katrina, Rita and Wilma was found. This analysis confirmed that the intervals of time between two occurrences of some particular meteorological parameter correlate well with Solar wind and A index.

  14. A Systematic Study of Kelvin-Helmholtz Instability in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan

    2017-09-01

    Kelvin-Helmholtz instabilities (KHI) were observed at cold fronts in a handful of clusters. KHI are predicted at all cold fronts in hydro simulation of intracluster medium (ICM). Their presence and absence provides a unique probe of transport processes in the hot plasma, which are essential to the dissipation and redistribution of the energy in the ICM. We propose the first systematic study of the prevalence of KHI in galaxy clusters by analyzing the archived Chandra observations of a sample of 50 nearby galaxy clusters. We will associate the occurrence and properties of KHI rolls with various cluster parameters such as their gas temperature and density, and put constraints on effective transport coefficients in the ICM

  15. From the lab - Rare Gene Mutation May Have Link to Common Cold | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Common Cold Follow us Photo: AdobeStock Rare Gene Mutation May Have Link to Common Cold COLDS SEEM ... and Infectious Diseases (NIAID) identified a rare genetic mutation earlier this year. It can result in a ...

  16. A cluster in a crowded environment: XMM-Newton and Chandra observations of A3558

    NASA Astrophysics Data System (ADS)

    Rossetti, M.; Ghizzardi, S.; Molendi, S.; Finoguenov, A.

    2007-03-01

    Combining XMM-Newton and Chandra data, we have performed a detailed study of Abell 3558. Our analysis shows that its dynamical history is more complicated than previously thought. We have found some traits typical of cool core clusters (surface brightness peaked at the center, peaked metal abundance profile) and others that are more common in merging clusters, like deviations from spherical symmetry in the thermodynamic quantities of the ICM. This last result has been achieved with a new technique for deriving temperature maps from images. We have also detected a cold front and, with the combined use of XMM-Newton and Chandra, we have characterized its properties, such as the speed and the metal abundance profile across the edge. This cold front is probably due to the sloshing of the core, induced by the perturbation of the gravitational potential associated with a past merger. The hydrodynamic processes related to this perturbation have presumably produced a tail of lower entropy, higher pressure and metal rich ICM, which extends behind the cold front for~500 kpc. The unique characteristics of A3558 are probably due to the very peculiar environment in which it is located: the core of the Shapley supercluster. Appendices A and B are only available in electronic form at http://www.aanda.org

  17. A Review of Australian Investigations on Aeronautical Fatigue during the Period April 1985 to March 1987.

    DTIC Science & Technology

    1987-04-01

    to the edge, a process such as cold- expansion needs to be well proven before its adoption in service. Secondly, many Nomad aircraft operate in a...including the third front spar) has included extensive use of the FTI cold- expansion process in the fatigue-critical regions in 89 holes. Testing began...ANALYSIS AND REPAIR 9.4.1 Fatigue Life Enhancement (J.Y. Mann - ARL) Cold expansion of bolt holes was one of the techniques used to improve the

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Chen, H.; Wu, W.

    We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less

  19. Optimization on fixed low latency implementation of the GBT core in FPGA

    DOE PAGES

    Chen, K.; Chen, H.; Wu, W.; ...

    2017-07-11

    We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less

  20. Optimization on fixed low latency implementation of the GBT core in FPGA

    NASA Astrophysics Data System (ADS)

    Chen, K.; Chen, H.; Wu, W.; Xu, H.; Yao, L.

    2017-07-01

    In the upgrade of ATLAS experiment [1], the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link [2]. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, the GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA [3]. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system [4, 5] is used to interface the front-end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. The system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.

  1. Structure analyses of the explosive extratropical cyclone: A case study over the Northwestern Pacific in March 2007

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Fu, Gang; Pang, Huaji

    2017-12-01

    The synoptic situation and mesoscale structure of an explosive extratropical cyclone over the Northwestern Pacific in March 2007 are investigated through weather station observations and data reanalysis. The cyclone is located beneath the poleward side of the exit of a 200 hPa jet, which is a strong divergent region aloft. At mid-level, the cyclone lies on the downstream side of a well-developed trough, where a strong ascending motion frequently occurs. Cross-section analyses with weather station data show that the cyclone has a warm and moist core. A `nose' of the cold front, which is characterized by a low-level protruding structure in the equivalent potential temperature field, forms when the cyclone moves offshore. This `nose' structure is hypothesized to have been caused by the heating effect of the Kuroshio Current. Two low-level jet streams are also identified on the western and eastern sides of the cold front. The western jet conveys cold and dry air at 800-900 hPa. The wind in the northern part is northeasterly, and the wind in the southern part is northwesterly. By contrast, the eastern jet carries warm and moist air into the cyclone system, ascending northward from 900 hPa to 600-700 hPa. The southern part is dominated by the southerly wind, and the wind in the northern part is southwesterly. The eastern and western jets significantly increase the air temperature and moisture contrast in the vicinity of the cold front. This increase could play an important role in improving the rapid cyclogenesis process.

  2. Parameterization of synoptic weather systems in the South Atlantic Bight for modeling applications

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodong; Voulgaris, George; Kumar, Nirnimesh

    2017-10-01

    An event based, long-term, climatological analysis is presented that allows the creation of coastal ocean atmospheric forcing on the coastal ocean that preserves both frequency of occurrence and event time history. An algorithm is developed that identifies individual storm event (cold fronts, warm fronts, and tropical storms) from meteorological records. The algorithm has been applied to a location along the South Atlantic Bight, off South Carolina, an area prone to cyclogenesis occurrence and passages of atmospheric fronts. Comparison against daily weather maps confirms that the algorithm is efficient in identifying cold fronts and warm fronts, while the identification of tropical storms is less successful. The average state of the storm events and their variability are represented by the temporal evolution of atmospheric pressure, air temperature, wind velocity, and wave directional spectral energy. The use of uncorrected algorithm-detected events provides climatologies that show a little deviation from those derived using corrected events. The effectiveness of this analysis method is further verified by numerically simulating the wave conditions driven by the characteristic wind forcing and comparing the results with the wave climatology that corresponds to each storm type. A high level of consistency found in the comparison indicates that this analysis method can be used for accurately characterizing event-based oceanic processes and long-term storm-induced morphodynamic processes on wind-dominated coasts.

  3. Cold Front Cools the Eastern U.S.

    NASA Image and Video Library

    2014-07-16

    Summertime heat and humidity in the U.S. East Coast is on hold for a couple of days thanks to a cold front and that brought clouds, showers, thunderstorms, and some severe weather on July 16 to the coast. The National Oceanic and Atmospheric Administration (NOAA) noted that the dip in the jet stream will create below normal temperatures for most of the Central and Eastern U.S. for the next couple of days. NOAA's GOES-East satellite captured an image of the clouds associated with the cold front on July 16 at 1630 UTC (12:30 p.m. EDT).The clouds follow the front which stretches from the Florida panhandle, across Florida and up the U.S. East Coast into eastern Canada. Along the front lie two areas of low pressure, one over eastern New England, and the other offshore from South Carolina. Both of those low pressure areas are associated with additional cloudiness along the front. GOES satellites are managed by NOAA. The image was created by the NASA/NOAA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's National Weather Service website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Image Credit: NASA/NOAA GOES Project, Text: Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. Occurrence of acid rain in Baton Rouge, Louisiana, Summer 1981. The role of the catalytic converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J.W.; Ghane, H.

    1982-01-01

    Between June and October 1981, acid rain falling in Baton Rouge, LA was studied. The acidity of the rain ranged for pH 3.9 to pH 5.8. Preliminary data showed that rain associated with thermal cumulo nimbus tended to be more acidic, but rain associated with active cold fronts were less acid. This may relate to dispersion and dilution of the acid aerosols by the cold front. It is proposed that exhaust from automobiles fitted with catalytic converters is a substantial contributor to the acid rain problem, and that their net value to the abatement of pollution must be questioned, particularlymore » in regions of the country where smog is not a problem. (JMT)« less

  6. Surface temperatures and temperature gradient features of the US Gulf Coast waters

    NASA Technical Reports Server (NTRS)

    Huh, O. K.; Rouse, L. J., Jr.; Smith, G. W.

    1977-01-01

    Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field.

  7. The role of the cold Okhotsk Sea in strengthening of the Pacific subtropical high and Baiu precipitation

    NASA Astrophysics Data System (ADS)

    Kawasaki, K.; Tachibana, Y.; Nakamura, T.; Yamazaki, K.; Kodera, K.

    2016-12-01

    It is commonly known that the formation of a stationery precipitation zone in association with the Baiu front is influenced by the existence of the warm Tibetan Plateau. Some GCM studies in which the Tibetan Plateau is removed pointed out that without the Tibetan Plateau, the Baiu front wound not appear. The cold Okhotsk Sea, which is located to the north of Japan, is also important in forming cold air for the Bai front. This study focused on the role of the Okhotsk Sea in the formation of the Baiu front by using an atmospheric GCM. One GCM is executed without the Okhotsk Sea, in which was changed to an eastern part of the Eurasian continent as if the Okhotsk Sea was totally landfilled (land run). The other (sea run) is a control run under the boundary condition of climatic seasonal changes of the SST over the globe. The comparison of the land run with the sea run showed that precipitation over Japan would weaken in the Baiu season without the Okhotsk Sea, indicating that the existence of the Okhotsk Sea has an impact on the increase in precipitation. The precipitation increase in the sea run is directly accounted by the strengthening of southeast wind in association with the strengthening of the subtropical high located over the Pacific Ocean (Fig. 1). The westerly jet, which is located at the northern part of the subtropical high, was also accelerated in the sea run. The subtropical high in association with the accelerated jet was strengthened by meridional atmospheric thermal gradient caused by underlying cold Okhotsk Sea and the warm Pacific Ocean. The strengthened thermal gradient also activated the storm track that extends zonally over the Okhotsk Sea, and the activated storm track further strengthened the jet and subtropical high by wave-mean flow feedback. This feedback loop could further strengthen the Baiu precipitation. In consequence, the Okhotsk plays a significant role in the strengthening the subtropical high and its associated Baiu precipitation.

  8. Effects of sudden air pressure changes on hospital admissions for cardiovascular diseases in Prague, 1994-2009

    NASA Astrophysics Data System (ADS)

    Plavcová, Eva; Kyselý, Jan

    2014-08-01

    Sudden weather changes have long been thought to be associated with negative impacts on human health, but relatively few studies have attempted to quantify these relationships. We use large 6-h changes in atmospheric pressure as a proxy for sudden weather changes and evaluate their association with hospital admissions for cardiovascular diseases (CVD). Winter and summer seasons and positive and negative pressure changes are analysed separately, using data for the city of Prague (population 1.2 million) over a 16-year period (1994-2009). We found that sudden pressure drops in winter are associated with significant rise in hospital admissions. Increased CVD morbidity was observed neither for pressure drops in summer nor pressure increases in any season. Analysis of synoptic weather maps shows that large pressure drops in winter are associated with strong zonal flow and rapidly moving low-pressure systems with centres over northern Europe and atmospheric fronts affecting western and central Europe. Analysis of links between passages of strong atmospheric fronts and hospital admissions, however, shows that the links disappear if weather changes are characterised by frontal passages. Sudden pressure drops in winter are associated also with significant excess CVD mortality. As climate models project strengthening of zonal circulation in winter and increased frequency of windstorms, the negative effects of such weather phenomena and their possible changes in a warmer climate of the twenty-first century need to be better understood, particularly as their importance in inducing excess morbidity and mortality in winter may increase compared to cold spells.

  9. Borneo vortex and meso-scale convective rainfall

    NASA Astrophysics Data System (ADS)

    Koseki, S.; Koh, T.-Y.; Teo, C.-K.

    2013-08-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite datasets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth of the meso-α cyclone was achieved mainly by vortex stretching. The comma-shaped rainband consists of clusters of meso-β scale rainfall patches. The warm and wet cyclonic southeasterly flow meets with the cold and dry northeasterly surge forming a confluence front in the northeastern sector of the cyclone. Intense upward motion and heavy rainfall result both due to the low-level convergence and the favourable thermodynamic profile at the confluence front. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is much enhanced by nonlinear self-enhancement dynamics.

  10. Comparison of conditional sampling and averaging techniques in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Subramanian, C. S.; Rajagopalan, S.; Antonia, R. A.; Chambers, A. J.

    1982-10-01

    A rake of cold wires was used in a slightly heated boundary layer to identify coherent temperature fronts. An X-wire/cold-wire arrangement was used simultaneously with the rake to provide measurements of the longitudinal and normal velocity fluctuations and temperature fluctuations. Conditional averages of these parameters and their products were obtained by application of conditional techniques (VITA, HOLE, BT, RA1, and RA3) based on the detection of temperature fronts using information obtained at only one point in space. It is found that none of the one-point detection techniques is in good quantitative agreement with the rake detection technique, the largest correspondence being 51%. Despite the relatively poor correspondence between the conditional techniques, these techniques, with the exception of HOLE, produce conditional averages that are in reasonable qualitative agreement with those deduced using the rake.

  11. Temperature-Driven Convection

    NASA Astrophysics Data System (ADS)

    Bohan, Richard J.; Vandegrift, Guy

    2003-02-01

    Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.

  12. Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Chunyan

    2017-11-01

    With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.

  13. Discovery of a Giant, 200,000 Light-year Long Wave Rolling Through the Perseus Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Walker, Stephen; Hlavacek-Larrondo, Julie; Gendon-Marsolais, Marie-Lou; Fabian, Andy; Intema, Huib; Sanders, Jeremy

    2018-01-01

    Deep observations of nearby galaxy clusters with Chandra have revealed concave 'bay' structures in a number of clusters (Perseus, Centaurus and Abell 1795), which have similar X-ray and radio properties. These bays have all the properties of cold fronts brought about by minor mergers causing the cluster gas to slosh around in the gravitational potential. At these cold fronts the temperature rises and density falls sharply. Unusually, in the case of the 'bays' these cold fronts are concave rather than convex. By comparing to simulations of gas sloshing, we find that the bay in the Perseus cluster bears a striking resemblance in its size, location and thermal structure, to a giant (≈50 kpc) wave resulting from Kelvin-Helmholtz instabilities. Such instabilities are commonly seen on far smaller scales in nature, from billow clouds in the Earth's atmosphere, to structures in the cloud belts of gas giant planets. Here we are witnessing this phenomenon on the largest scale ever seen, twice the size of the Milky Way galaxy. The morphology of this structure seen in Perseus can be compared to simulations to put constraints on the initial magnetic pressure throughout the overall cluster before the sloshing occurs. Such Kelvin-Helmholtz features in galaxy clusters have long been predicted by simulations, but it is only now that they have finally been observed, opening up an important new way to probe the physics of the intracluster medium, which contains the majority of the baryonic matter in clusters.

  14. Assessing the Geomorphic Evolution and Hydrographic Changes Induced by Winter Storms along the Louisiana Coast

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher, C; Huh, Oscar K.; Roberts, Harry H.

    1998-01-01

    The influence that cold front passages have on Louisiana coastal environments, including land loss and land building processes, has been the primary topic of this multidisciplinary research. This research has combined meteorological, remote sensing, and coastal expertise from the University of Wisconsin (UW) and Louisiana State University (LSU). Analyzed data sets include remotely sensed radiometric data (AVHRR on NOAA-12,13,14, Multispectral Atmospheric Mapping Sensor (MAMS) and MODIS Airborne Simulator (MAS) on NASA ER-2), U.S. Army Corps of Engineers (USACE) water level data, water quality data from the Coastal Studies Institute (CSI) at LSU, USACE river discharge data, National Weather Service (NWS) and CSI wind in sitzi measurements, geomorphic measurements from aerial photography (NASA ER-2 and Learjet), and CSI ground based sediment burial pipes (for monitoring topographic change along the Louisiana coast) and sediment cores. The work reported here-in is a continuation of an initial investigation into coastal Louisiana landform modification by cold front systems. That initial effort demonstrated the importance of cold front winds in the Atchafalaya Bay sediment plume distribution (Moeller et al.), documented the sediment transport and deposition process of the western Louisiana coast (Huh et al.) and developed tools (e.g. water types identification, suspended solids estimation) from multispectral radiometric data for application to the current study. This study has extended that work, developing a Geomorphic Impact Index (GI(sup 2)) for relating atmospheric forcing to coastal response and new tools to measure water motion and sediment transport.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piper, M; Lundquist, J K

    Some recent investigations have begun to quantify turbulence and dissipation in frontal zones to address the question of what physical mechanism counteracts the intensification of temperature and velocity gradients across a developing front. Frank (1994) examines the turbulence structure of two fronts that passed a 200m instrumented tower near Karlsruhe, Germany. In addition to showing the mean vertical structure of the fronts as they pass the tower, Frank demonstrates that there is an order of magnitude or more increase in turbulent kinetic energy across the frontal zone. Blumen and Piper (1999) reported turbulence statistics, including dissipation rate measurements, from themore » MICROFRONTS field experiment, where high-frequency turbulence data were collected from tower-mounted hotwire and sonic anemometers in a cold front and in a density current. Chapman and Browning (2001) measured dissipation rate in a precipitating frontal zone with high-resolution Doppler radar. Their measurements were conducted above the surface layer, to heights of 5km. The dissipation rate values they found are comparable to those measured in Kennedy and Shapiro (1975) in an upper-level front. Here, we expand on these recent studies by depicting the behavior of the fine scales of turbulence near the surface in a frontal zone. The primary objective of this study is to quantify the levels of turbulence and dissipation occurring in a frontal zone through the calculation of kinetic energy spectra and dissipation rates. The high-resolution turbulence data used in this study are taken during the cold front that passed the MICROFRONTS site in the early evening hours of 20 March 1995. These new measurements can be used as a basis for parameterizing the effects of surface-layer turbulence in numerical models of frontogenesis. We present three techniques for calculating the dissipation rate: direct dissipation technique, inertial dissipation technique and Kolmogorov's four-fifths law. Dissipation rate calculations using these techniques are employed using data from both the sonic and hotwire anemometers, when possible. Unfortunately, direct calculations of {var_epsilon} were not possible during a part of the frontal passage because the high wind speeds concurrent with the frontal passage demand very high frequency resolution, beyond that possible with the hotwire anemometer, for direct {var_epsilon} calculations. The calculations resulting from these three techniques are presented for the cold front as a time series. Quantitative comparisons of the direct and indirect calculation techniques are also given. More detail, as well as a discussion of energy spectra, can be found in Piper & Lundquist(2004).« less

  16. Disturbance and rehabilitation of cold to warm desert transitional shrublands in southwestern Utah

    Treesearch

    Chad Reid; James Bowns

    2008-01-01

    Extensive drought during the years of 2002, 2003, and 2004 removed most plant cover. On May 10, 2004, a cold front to the north resulted in weather stations in the area recording 600+ miles of wind travel (comparable to 60 mile hour winds for 10 hours). The effect of these two climatic events was to bury the Mile Square subdivision in wind-blown sand. Sand filled homes...

  17. Numerical simulation of idealized front motion in neutral and stratified atmosphere with a hyperbolic system of equations

    NASA Astrophysics Data System (ADS)

    Yudin, M. S.

    2017-11-01

    In the present paper, stratification effects on surface pressure in the propagation of an atmospheric gravity current (cold front) over flat terrain are estimated with a non-hydrostatic finite-difference model of atmospheric dynamics. Artificial compressibility is introduced into the model in order to make its equations hyperbolic. For comparison with available simulation data, the physical processes under study are assumed to be adiabatic. The influence of orography is also eliminated. The front surface is explicitly described by a special equation. A time filter is used to suppress the non-physical oscillations. The results of simulations of surface pressure under neutral and stable stratification are presented. Under stable stratification the front moves faster and shows an abrupt pressure jump at the point of observation. This fact is in accordance with observations and the present-day theory of atmospheric fronts.

  18. Southern elephant seal trajectories, fronts and eddies in the Brazil/Malvinas Confluence

    NASA Astrophysics Data System (ADS)

    Campagna, Claudio; Piola, Alberto R.; Rosa Marin, Maria; Lewis, Mirtha; Fernández, Teresita

    2006-12-01

    This study describes the association between transient, mesoscale hydrographic features along the axis of the Brazil-Malvinas Confluence, in the SW Atlantic, and the foraging behavior of 2-3-year-old (focal) juvenile southern elephant seals, Mirounga leonina, from Península Valdés, Argentina. Departing from the dominant pattern of foraging on predictable bathymetric fronts on the Patagonian shelf and slope, three females out of 12 satellite-tracked juveniles remained at the edge of young warm-core eddies and near the outer core of cold-core eddies, coinciding with the most productive areas of these temperature fronts. Seal trajectories along high-temperature gradients were always consistent with the speed and direction of surface currents inferred from the temperature distribution and confirmed by surface drifters. Movements of foraging seals were compared with those of surface drifters, coinciding in time and space and yielding independent and consistent data on regional water circulation parameters. The diving pattern recorded for one focal seal yielded shallower dives and a loose diel pattern in the eddy, and a marked diurnal cycle compatible with foraging on vertically migrating prey in the cold waters of the Malvinas Current. Pre-reproductive females that use the mesoscale fronts of the Argentine Basin as an alternative foraging area would benefit from lower competition with more experienced seals and with other top predators that reproduce along the coast of Patagonia.

  19. The University of Utah Urban Undertaking (U4)

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Mitchell, L.; Bares, R.; Mendoza, D. L.; Fasoli, B.; Bowling, D. R.; Garcia, M. A.; Buchert, M.; Pataki, D. E.; Crosman, E.; Horel, J.; Catharine, D.; Strong, C.; Ehleringer, J. R.

    2015-12-01

    The University of Utah is leading efforts to understand the spatiotemporal patterns in both emissions and concentrations of greenhouse gases (GHG) and criteria pollutants within urban systems. The urbanized corridor in northern Utah along the Wasatch Front, anchored by Salt Lake City, is undergoing rapid population growth that is projected to double in the next few decades. The Wasatch Front offers multiple advantages as an unique "urban laboratory": urban regions in multiple valleys spanning numerous orders of magnitude in population, each with unique airsheds, well-defined boundary conditions along deserts and tall mountains, strong signals during cold air pool events, seasonal contrasts in pollution, and a legacy of productive partnerships with local stakeholders and governments. We will show results from GHG measurements from the Wasatch Front, including one of the longest running continuous CO2 records in urban areas. Complementing this record are comprehensive meteorological observations and GHG/pollutant concentrations on mobile platforms: light rail, helicopter, and research vans. Variations in the GHG and pollutant observations illustrate human behavior and the resulting "urban metabolism" taking place on hourly, weekly, and seasonal cycles, resulting in a coupling between GHG and criteria pollutants. Moreover, these observations illustrate systematic spatial gradients in GHG and pollutant distributions between and within urban areas, traced to underlying gradients in population, energy use, terrain, and land use. Over decadal time scales the observations reveal growth of the "urban dome" due to expanding urban development. Using numerical models of the atmosphere, we further link concentrations of GHG and air quality-relevant pollutants to underlying emissions at the neighborhood scale as well as urban planning considerations.

  20. Automated Detection of Fronts using a Deep Learning Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Biard, J. C.; Kunkel, K.; Racah, E.

    2017-12-01

    A deeper understanding of climate model simulations and the future effects of global warming on extreme weather can be attained through direct analyses of the phenomena that produce weather. Such analyses require these phenomena to be identified in automatic, unbiased, and comprehensive ways. Atmospheric fronts are centrally important weather phenomena because of the variety of significant weather events, such as thunderstorms, directly associated with them. In current operational meteorology, fronts are identified and drawn visually based on the approximate spatial coincidence of a number of quasi-linear localized features - a trough (relative minimum) in air pressure in combination with gradients in air temperature and/or humidity and a shift in wind, and are categorized as cold, warm, stationary, or occluded, with each type exhibiting somewhat different characteristics. Fronts are extended in space with one dimension much larger than the other (often represented by complex curved lines), which poses a significant challenge for automated approaches. We addressed this challenge by using a Deep Learning Convolutional Neural Network (CNN) to automatically identify and classify fronts. The CNN was trained using a "truth" dataset of front locations identified by National Weather Service meteorologists as part of operational 3-hourly surface analyses. The input to the CNN is a set of 5 gridded fields of surface atmospheric variables, including 2m temperature, 2m specific humidity, surface pressure, and the two components of the 10m horizontal wind velocity vector at 3-hr resolution. The output is a set of feature maps containing the per - grid cell probabilities for the presence of the 4 front types. The CNN was trained on a subset of the data and then used to produce front probabilities for each 3-hr time snapshot over a 14-year period covering the continental United States and some adjacent areas. The total frequencies of fronts derived from the CNN outputs matches very well with the truth dataset. There is a slight underestimate in total numbers in the CNN results but the spatial pattern is a close match. The categorization of front types by CNN is best for cold and occluded and worst for warm. These initial results from our ongoing development highlight the great promise of this technology.

  1. Combustion Synthesis Reaction Behavior of Cold-Rolled Ni/Al and Ti/Al Multilayers

    DTIC Science & Technology

    2011-04-01

    6   Figure 4 . Combustion synthesis process of the cold-rolled Ni/Al multilayer foils: (a) reaction front of the displacement of the reaction...Reactive Nanostructured Foil Used as a Heat Source for Joining Titanium . J. Appl. Phys. 2004, 96 ( 4 ), 2336–2342. 16. Wang, J.; Besnoin, E...2011 2. REPORT TYPE Final 3. DATES COVERED (From - To) January 2006–January 2008 4 . TITLE AND SUBTITLE Combustion Synthesis Reaction Behavior of

  2. The 14 July 2001 hailstorm in northeastern Spain: diagnosis of the meteorological situation

    NASA Astrophysics Data System (ADS)

    Tudurí, E.; Romero, R.; López, L.; García, E.; Sánchez, J. L.; Ramis, C.

    Hail producing thunderstorms developed over the Ebro valley (NE Spain) during the evening of 14 July 2001, affecting mainly the Lerida province. Hail stones as large as 3 cm in diameter produced damage on 2979 ha of fruit trees, vineyard and cornfields. The thunderstorms developed ahead of a cold front, which was moving from the Gulf of Biscay towards inland Spain. Meteosat images and radar data demonstrate that the storms formed over the central part of the Ebro valley and moved towards the east attaining their maximum development in Lerida province. A diagnosis, using data from ECMWF, shows that at surface there was a cyclonic circulation over northeastern Spain and at medium levels (500 hPa) a trough with cold air located towards northwestern Spain. The Q vector diagnosis demonstrates that the forcing for upward vertical motions was rather weak at both low and medium levels over the area where the thunderstorms developed. However, a significant frontogenesis contribution is identified over the Ebro valley. A more detailed handmade analysis shows that over the Ebro valley there was a thermal mesolow, which favoured the inland entrance of humid air from the Mediterranean. Frontogenesis and the humid air intrusion coexisted where remote-sensing observations indicated that the storms developed. A numerical study of the event using the MM5 model has been carried out. In a control experiment, the model is able to develop the thermal mesolow and reproduce, quite well, the convergence produced by the front as well as the timing of the event. In order to study the genesis and influence of the thermal mesolow, another simulation has been performed without consideration of solar radiation. The results indicate that the thermal mesolow does not develop, the convergence ahead of the cold front is significantly weakened and the front itself becomes increasingly progressive. As a result, thunderstorms do not develop and very little precipitation falls in the area.

  3. Interaction of Shallow Cold Surges with Topography on Scales of 100-1000 Kilometers.

    NASA Astrophysics Data System (ADS)

    Toth, James John

    1987-09-01

    A shallow cold air mass is defined as one not extending to the top of the mountain ridge with which it interacts. The structure of such an airmass is examined using both observational data and a hydrostatic version of the Colorado State University Regional Atmospheric Modeling System. The prime constraint on a shallow cold surge is that the flow must ultimately be parallel to the mountain ridge. It is found that the effects of this constraint are altered significantly by surface sensible heat flux. Cold surges are slowed during the daylight hours, a result consistent with previous observational studies in Colorado east of the Continental Divide. Two case studies are described in detail, and several other events are cited. Since observations alone do not provide a complete description of diversion of the cold air by the mountain range, numerical model simulations provide additional insight into important mechanisms. A case study on 14 June 1985 is described using observational and model data. The model development of a deep boundary layer within the frontal baroclinic zone is consistent with the observations for this and other cases. This development is due to strong surface heating. Turning off the model shortwave radiation is seen to produce a rapid southward acceleration of the surface front, with very shallow cold air behind the front. Model simulations with specified surface temperature differences confirm the importance of upward heat flux from the surface in slowing the southward movement of the cold surge. It is concluded that the slowing is not due simply to the thermal wind developing in response to the heating of higher terrain to the west. Since surface heating is distributed over a deeper layer on the warm side of the temperature discontinuity, there is frontolysis at the surface. But this modification would develop even over flat terrain. Sloping terrain introduces additional effects. Heating at the western, upslope side of the cold surge inhibits the development of pressure gradients favorable to northerly flow. A second contribution comes from westerly winds at ridgetop level. These winds are heated over the higher terrain and flow downslope, further retarding the progression of the cold air at the surface.

  4. Climate extremes drive changes in functional community structure.

    PubMed

    Boucek, Ross E; Rehage, Jennifer S

    2014-06-01

    The response of communities to climate extremes can be quite variable. Much of this variation has been attributed to differences in community-specific functional trait diversity, as well as community composition. Yet, few if any studies have explicitly tested the response of the functional trait structure of communities following climate extremes (CEs). Recently in South Florida, two independent, but sequential potential CEs took place, a 2010 cold front, followed by a 2011 drought, both of which had profound impacts on a subtropical estuarine fish community. These CEs provided an opportunity to test whether the structure of South Florida fish communities following each extreme was a result of species-specific differences in functional traits. From historical temperature (1927-2012) and freshwater inflows records into the estuary (1955-2012), we determined that the cold front was a statistically extreme disturbance, while the drought was not, but rather a decadal rare disturbance. The two disturbances predictably affected different parts of functional community structure and thus different component species. The cold front virtually eliminated tropical species, including large-bodied snook, mojarra species, nonnative cichlids, and striped mullet, while having little affect on temperate fishes. Likewise, the drought severely impacted freshwater fishes including Florida gar, bowfin, and two centrarchids, with little effect on euryhaline species. Our findings illustrate the ability of this approach to predict and detect both the filtering effects of different types of disturbances and the implications of the resulting changes in community structure. Further, we highlight the value of this approach to developing predictive frameworks for better understanding community responses to global change. © 2014 John Wiley & Sons Ltd.

  5. Effects of sudden air pressure changes on hospital admissions for cardiovascular diseases in Prague

    NASA Astrophysics Data System (ADS)

    Kysely, Jan; Plavcova, Eva

    2013-04-01

    Sudden weather changes have long been supposed to be associated with negative impacts on human health. However, relatively few studies attempted to quantify these relationships. In this study, we use large 6-hour changes of atmospheric sea level pressure as proxy for sudden weather changes, and evaluate their association with hospital admissions for cardiovascular diseases. Winter and summer seasons and positive and negative pressure changes are analyzed separately, using data for the city of Prague (population of 1.2 million) over 16-year period (1994-2009). We find that sudden pressure drops in winter are associated with significant increases in the number of hospital admissions. Increases in morbidity are not observed for pressure drops in summer, nor pressure increases in any season. Analysis of synoptic weather maps shows that the large pressure drops in winter are associated with strong zonal (westerly) flow and rapidly moving low pressure systems with centres over Northern Europe and atmospheric fronts affecting the area of Western and Central Europe. Several of the largest pressure decreases were associated with infamous winter storms (such as Lothar on December 25, 1999 and Kyrill on January 18, 2007). Analysis of links between passages of strong atmospheric fronts and hospital admissions shows that the links are much weaker if weather changes are characterized by frontal passages. Since climate models project strengthening of the zonal circulation in winter and increased frequency of winter storms, the negative effects of such weather phenomena and their possible changes in a warmer climate of the 21st century need to be better understood, particularly as their importance in inducing excess morbidity and mortality in winter may increase compared to cold spells.

  6. Ruggedizing vibration sensitive components of electro-optical module using wideband dynamic absorber

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Openhaim, Yaki; Babitsky, Vladimir; Tuito, Avi

    2018-05-01

    In the modern design approach, the cold portion of Integrated Dewar-Detector-Cooler-Assembly (substrate, infrared focal plane array, cold shield and cold filter) is directly mounted upon the distal end of a cold finger of a cryogenic cooler with no mechanical contact with the warm Dewar shroud. This concept allows for essential reduction of parasitic (conductive) heat load. The penalty, however, is that resulting tip-mass cantilever is lightly damped and, therefore, prone to vibrational extremes typical of the modern battlefield. Without sufficient ruggedizing, vibration induced structural resonances may affect image quality and even may cause mechanical failures due to material fatigue. Use of additional front supports or thickening the cold finger walls results in increased parasitic conductive heat load, power consumption and mechanical complexity. The authors explore the concept of wideband dynamic absorber in application to ruggedizing the Integrated Dewar-Detector-Cooler Assembly.

  7. 2-qubit quantum state transfer in spin chains and cold atoms with weak links

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Apollaro, Tony J. G.; Trombettoni, Andrea; Paganelli, Simone

    In this paper we discuss the implementation of 2-qubit quantum state transfer (QST) in inhomogeneous spin chains where the sender and the receiver blocks are coupled through the bulk channel via weak links. The fidelity and the typical timescale of the QST are discussed as a function of the parameters of the weak links. Given the possibility of implementing with cold atoms in optical lattices a variety of condensed matter systems, including spin systems, we also discuss the possible implementation of the discussed 2-qubit QST with cold gases with weak links, together with a discussion of the applications and limitations of the presented results.

  8. Epidermal growth factor induction of front-rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2.

    PubMed

    Ho, Ernest; Dagnino, Lina

    2012-02-01

    Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front-rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front-rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front-rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front-rear polarity and forward movement.

  9. Impacts of storms on coastal circulation in Long Bay, South Carolina

    NASA Astrophysics Data System (ADS)

    Kim, H.; Warner, J. C.; Voulgaris, G.; Work, P.

    2006-12-01

    We investigate the effects of coastal storms on the regional circulation in Long Bay, South Carolina, using a coupled ROMS (Regional Ocean Modeling System)- SWAN (Simulating WAves Nearshore) model. Meteorological observations during the South Carolina Coastal Erosion Study (October 2003 April 2004) reveal three dominant types of storms in the region warm fronts, cold fronts, and tropical storms. Each storm has a characteristic progression of wind patterns: (1) Warm fronts start with southwestward winds and change to northeastward after the front passes; (2) Cold fronts begin with northeastward winds and shift to southeastward when the front moves out; and (3) Tropical storms change wind directions from the southwest to the southeast during the storm. It is observed the coastal circulation distinctly responds to such atmospheric disturbances in either a upwelling-favorable condition to the northeastward winds or a downwelling-favorable condition to the southwestward winds. The study domain encompasses 300-km of gently arcing shoreline between Cape Romain to Cape Fear, and approximately 100-km offshore to the shelf edge. The model domain is resolved by a 300×130 mesh at 1-km intervals in the horizontal and twenty terrain-following layers in the vertical. The ROMS model is driven by tides and wind stress, and it includes wave-current interactions via dynamic coupling to the surface wave model SWAN. Salinity and temperature along the open boundaries are included by nudging to climatological values. A time period of six months is simulated from October 2003 to April 2004, concurrent with the observation study. Model results are compared to an extensive set of measurements collected at eight sites in the inner part of Long Bay, and are used to identify varying circulation response to each storm type. In addition, we investigate the significance of the Capes on the development of the alongshore pressure gradients, and examine the importance of wave-current interactions in the study region.

  10. Summertime sea surface temperature fronts associated with upwelling around the Taiwan Bank

    NASA Astrophysics Data System (ADS)

    Lan, Kuo-Wei; Kawamura, Hiroshi; Lee, Ming-An; Chang, Yi; Chan, Jui-Wen; Liao, Cheng-Hsin

    2009-04-01

    It is well known that upwelling of subsurface water is dominant around the Taiwan Bank (TB) and the Penghu (PH) Islands in the southern Taiwan Strait in summertime. Sea surface temperature (SST) frontal features and related phenomena around the TB upwelling and the PH upwelling were investigated using long-term AVHRR (1996-2005) and SeaWiFS (1998-2005) data received at the station of National Taiwan Ocean University. SST and chlorophyll-a (Chl-a) images with a spatial resolution of 0.01° were generated and used for the monthly SST and Chl-a maps. SST fronts were extracted from each SST images and gradient magnitudes (GMs); the orientations were derived for the SST fronts. Monthly maps of cold fronts where the cooler SSTs were over a shallower bottom were produced from the orientation. Areas with high GMs (0.1-0.2 °C/km) with characteristic shapes appeared at geographically fixed positions around the TB/PH upwelling region where SSTs were lower than the surrounding waters. The well-shaped high GMs corresponded to cold fronts. Two areas with high Chl-a were found around the TB and PH Islands. The southern border of the high-Chl-a area in the TB upwelling area was outlined by the high-GM area. Shipboard measurements of snapshot vertical sections of temperature (T) and salinity (S) along the PH Channel showed a dome structure east of PH Islands, over which low SST and high GM in the maps of the corresponding month were present. Clear evidence of upwelling (vertically uniform distributions of T and S) was indicated at the TB edge in the T and S sections close to TB upwelling. This case of upwelling may be caused by bottom currents ascending the TB slope as pointed out by previous studies. The position of low SSTs in the monthly maps matched the upwelling area, and the high GMs corresponded to the area of eastern surface fronts in the T/S sections.

  11. The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data

    NASA Technical Reports Server (NTRS)

    Wakimoto, R. M.

    1982-01-01

    This paper presents the time-dependent analysis of the thunderstorm gust front with the use of Project NIMROD data. RHI cross sections of reflectivity and Doppler velocity are constructed to determine the entire vertical structure. The life cycle of the gust front is divided into four stages: (1) the formative stage; (2) the early mature stage; (3) the late mature stage; and (4) the dissipation stage. A new finding is a horizontal roll detected in the reflectivity pattern resulting from airflow that is deflected upward by the ground, while carrying some of the smaller precipitation ahead of the main echo core of the squall line. This feature is called a 'precipitation roll'. As determined from rawinsonde data, the cold air behind the gust front accounts for the observed surface pressure rise. Calculations confirm that the collision of two fluids produce a nonhydrostatic pressure at the leading edge of the outflow. The equation governing the propagation speed of a density current accurately predicts the movement of the gust front.

  12. Improving the health forecasting alert system for cold weather and heat-waves in England: a case-study approach using temperature-mortality relationships

    NASA Astrophysics Data System (ADS)

    Masato, Giacomo; Cavany, Sean; Charlton-Perez, Andrew; Dacre, Helen; Bone, Angie; Carmicheal, Katie; Murray, Virginia; Danker, Rutger; Neal, Rob; Sarran, Christophe

    2015-04-01

    The health forecasting alert system for cold weather and heatwaves currently in use in the Cold Weather and Heatwave plans for England is based on 5 alert levels, with levels 2 and 3 dependent on a forecast or actual single temperature action trigger. Epidemiological evidence indicates that for both heat and cold, the impact on human health is gradual, with worsening impact for more extreme temperatures. The 60% risk of heat and cold forecasts used by the alerts is a rather crude probabilistic measure, which could be substantially improved thanks to the state-of-the-art forecast techniques. In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

  13. Thermal Management of a Nitrogen Cryogenic Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, Ph.; Yan, T.

    2010-04-01

    Efficient thermal links are needed to ease the distribution of the cold power in satellites. Loop heat pipes are widely used at room temperature as passive thermal links based on a two-phase flow generated by capillary forces. Transportation of the cold power at cryogenic temperatures requires a specific design. In addition to the main loop, the cryogenic loop heat pipe (CLHP) features a hot reservoir and a secondary loop with a cold reservoir and a secondary evaporator which allows the cool down and the thermal management of the thermal link in normal cold operation. We have studied the influence of a heated cold reservoir and investigated the effect of parasitic heat loads on the performance of a nitrogen CLHP at around 80 K. It is shown that heating of the cold reservoir with a small amount of power (0.1 W) allows controlling the system temperature difference, which can be kept constant at a very low level (1 K) regardless of the transferred cold power (0-10 W). Parasitic heat loads have a significant effect on the thermal resistance, and the power applied on the secondary evaporator has to be increased up to 4 W to get stable operation.

  14. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    NASA Astrophysics Data System (ADS)

    Cox, S. L.; Miller, P. I.; Embling, C. B.; Scales, K. L.; Bicknell, A. W. J.; Hosegood, P. J.; Morgan, G.; Ingram, S. N.; Votier, S. C.

    2016-09-01

    Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS (global positioning system) tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, Northeast Atlantic. We (i) used a habitat-use availability analysis to determine whether gannets preferentially dived at fronts, and (ii) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. While both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives) and deeper U-shaped dives with an active pursuit phase of at least 3 s (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasizes the importance of cross-disciplinary research when attempting to understand marine ecosystems.

  15. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulationmore » results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.« less

  16. Aerial Observations of Symmetric Instability at the North Wall of the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Savelyev, I.; Thomas, L. N.; Smith, G. B.; Wang, Q.; Shearman, R. K.; Haack, T.; Christman, A. J.; Blomquist, B.; Sletten, M.; Miller, W. D.; Fernando, H. J. S.

    2018-01-01

    An unusual spatial pattern on the ocean surface was captured by thermal airborne swaths taken across a strong sea surface temperature front at the North Wall of the Gulf Stream. The thermal pattern on the cold side of the front resembles a staircase consisting of tens of steps, each up to ˜200 m wide and up to ˜0.3°C warm. The steps are well organized, clearly separated by sharp temperature gradients, mostly parallel and aligned with the primary front. The interpretation of the airborne imagery is aided by oceanographic measurements from two research vessels. Analysis of the in situ observations indicates that the front was unstable to symmetric instability, a type of overturning instability that can generate coherent structures with similar dimensions to the temperature steps seen in the airborne imagery. It is concluded that the images capture, for the first time, the surface temperature field of symmetric instability turbulence.

  17. Climate fluctuations during the Holocene in NW Iberia: high and low latitude linkages

    NASA Astrophysics Data System (ADS)

    Pena, L. D.; Francés, G.; Diz, P.; Nombela, M. A.; Alejo, I.

    2007-12-01

    High resolution benthic foraminiferal oxygen and carbon stable isotopes (δ18O, δ13C) from core EUGC-3B are used here to infer rapid climatic changes for the last 8500 yr in the Ría de Muros (NW Iberian Margin). Benthic foraminiferal δ18O and δ13C potentially register migrations in the position of the hydrographic front formed between two different intermediate water masses: Eastern North Atlantic Central Water of subpolar origin (ENACWsp), and subtropical origin (ENACWsp). The isotopic records have been compared with two well established North Atlantic marine Holocene paleoceanographic records from low (Sea Surface Temperatures anomalies off Cape Blanc, NW Africa) and high latitudes (Hematite Stained Grains percentage, subpolar North Atlantic). This comparison clearly demonstrates that there is a strong link between high- and low-latitude climatic perturbations at centennial-millennial time scales during the Holocene. Spectral analyses also points at a pole-to-equator propagation of the so-called 1500 yr cycles. Our results demonstrate that during the Holocene, the NW Iberian Margin has undergone a series of cold episodes which are likely triggered at high latitudes in the North Atlantic and are rapidly propagated towards lower latitudes. Conceivably, the propagation of these rapid climatic changes involves a shift of atmospheric and oceanic circulatory systems and so a migration of the hydrographical fronts and water masses all along the North Atlantic area.

  18. Nitrogen and phosphorus transport between Fourleague Bay, LA, and the Gulf of Mexico: The role of winter cold fronts and Atchafalaya River discharge

    USGS Publications Warehouse

    Perez, B.C.; Day, J.W.; Justic, D.; Twilley, R.R.

    2003-01-01

    Nutrient fluxes were measured between Fourleague Bay, a shallow Louisiana estuary, and the Gulf of Mexico every 3 h between February 1 and April 30, 1994 to determine how high velocity winds associated with cold fronts and peak Atchafalaya River discharge influenced transport. Net water fluxes were ebb-dominated throughout the study because of wind forcing and high volumes of water entering the northern Bay from the Atchafalaya River. Flushing time of the Bay averaged <8 days; however, more rapid flushing occurred in response to northerly winds with approximately 56% of the volume of the Bay exported to the Gulf in 1 day during the strongest flushing event. Higher nitrate + nitrite (NO2+ NO3), total nitrogen (TN), and total phosphorus (TP) concentrations were indicative of Atchafalaya River input and fluxes were greater when influenced by high velocity northerly winds associated with frontal passage. Net exports of NO2 + NO3, TN, and TP were 43.5, 98.5, and 13.6 g s-1, respectively, for the 89-day study. An average of 10.6 g s-1 of ammonium (NH4) was exported to the Gulf over the study; however, concentrations were lower when associated with riverine influence and wind-driven exports suggesting the importance of biological processes. Phosphate (PO4) fluxes were nearly balanced over the study with fairly stable concentrations indicating a well-buffered system. The results indicate that the high energy subsidy provided by natural pulsing events such as atmospheric cold fronts and seasonal river discharge are efficient mechanisms of nutrient delivery to adjacent wetlands and nearshore coastal ecosystems and are important in maintaining coastal sustainability. ?? 2003 Elsevier Ltd. All rights reserved.

  19. Weather and childbirth: a further search for relationships.

    PubMed

    Driscoll, D M

    1995-03-01

    Previous attempts to find relationships between weather and parturition (childbirth) and its onset (the beginning of labor pains) have revealed, firstly, limited but statistically significant relationships between weather conditions much colder than the day before, with high winds and low pressure, and increased onsets; and secondly, increased numbers of childbirths during periods of atmospheric pressure rise (highly statistically significant). To test these findings, this study examined weather data coincident childbirth data from a hospital at Bryan-College Station, Texas (for a period of 30 cool months from 1987 to 1992). Tests for (1) days of cold fronts, (2) a day before and a day after the cold front, (3) days with large temperature increases, and (4) decreases from the day before revealed no relationship with mean daily rate of onset. Cold days with high winds and low pressure had significantly fewer onsets, a result that is the opposite of previous findings. The postulated relationship between periods of pressure rise and increased birth frequency was negative, i.e., significantly fewer births occurred at those times--again, the opposite of the apparent occurrence in an earlier study. The coincidence of diurnal variations in both atmospheric pressure and frequency of childbirths, was shown to account for fairly strong negative associations between the two variables.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Nutter, Paul

    1997-01-01

    The Applied Meteorology Unit (AMU) conducted a year-long evaluation of NCEP's 29-km mesoscale Eta (meso-eta) weather prediction model in order to identify added value to forecast operations in support of the United States space program. The evaluation was stratified over warm and cool seasons and considered both objective and subjective verification methodologies. Objective verification results generally indicate that meso-eta model point forecasts at selected stations exhibit minimal error growth in terms of RMS errors and are reasonably unbiased. Conversely, results from the subjective verification demonstrate that model forecasts of developing weather events such as thunderstorms, sea breezes, and cold fronts, are not always as accurate as implied by the seasonal error statistics. Sea-breeze case studies reveal that the model generates a dynamically-consistent thermally direct circulation over the Florida peninsula, although at a larger scale than observed. Thunderstorm verification reveals that the meso-eta model is capable of predicting areas of organized convection, particularly during the late afternoon hours but is not capable of forecasting individual thunderstorms. Verification of cold fronts during the cool season reveals that the model is capable of forecasting a majority of cold frontal passages through east central Florida to within +1-h of observed frontal passage.

  1. Derecho-like event in Bulgaria on 20 July 2011

    NASA Astrophysics Data System (ADS)

    Gospodinov, Ilian; Dimitrova, Tsvetelina; Bocheva, Lilia; Simeonov, Petio; Dimitrov, Rumen

    2015-05-01

    In this work we analyze the development of a severe-convective-storm system in northwestern Bulgaria on 20 July 2011 which exhibited derecho-like characteristics. Prior to this event, a derecho had never been documented in Bulgaria. The convective system was associated with a cold front. We present a synoptic-scale analysis of the evolution of the cold front and an overview of the wind and the damage that has occurred in the region with the strongest impact. The convective system consisted of two multi-cell thunderstorms that are analyzed in some detail, based on radar data. The two storms merged and the convective system evolved into a bow-shape reflectivity structure with two rear inflow notches. The analysis of the radar data revealed cloud top heights of 17 km, with the formation of а bounded weak echo region, a maximum radar reflectivity factor of 63 dBZ, and wind speeds above 30 m/s. The field investigation revealed patterns in the damaged crops typical of strong wind gusts.

  2. On the use of colour reflectivity plots to monitor the structure of the troposphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Rottger, J.; Fu, I. J.; Kuo, F. S.; Liu, C. H.; Chao, J. K.

    1986-01-01

    The radar reflectivity, defined as the range squared corrected power of VHF radar echoes, can be used to monitor and study the temporal development of inversion layer, frontal boundaries and convective turbulence. From typical featurs of upward or downward motion of reflectivity structures, the advection/convection of cold and warm air can be predicted. High resolution color plots appear to be useful to trace and to study the life history of these structures, particularly their persistency, descent and ascent. These displays allow an immediate determination of the tropopause height as well as the determination of the tropopause structure. The life history of warm fronts, cold fronts, and occlusions can be traced, and these reflectivity plots allow detection of even very weak events which cannot be seen in the traditional meteorological data sets. The life history of convective turbulence, particular evolving from the planetary boundary layer, can be tracked quite easily. Its development into strong convection reaching the middle troposphere can be followed and predicted.

  3. Simulating the moderating effect of a lake on downwind temperatures

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Chen, E.; Sutherland, R. A.; Bartholic, J. F.

    1979-01-01

    A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.

  4. 75 FR 3150 - Airworthiness Directives; The Boeing Company Model 747-100, 747-100B, 747-100B SUD, 747-200B, 747...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... fractured front spar assembly for strut No. 3, which resulted in the loss of the strut upper link load path... of a fractured front spar assembly for strut No. 3, which resulted in the loss of the strut upper... loss of the strut upper link load path and consequent fracture of the diagonal brace, which could...

  5. Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern Versus Southern Hemisphere Warm Fronts

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2012-01-01

    Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report.

  6. Sea surface temperature anomalies driven by oceanic local forcing in the Brazil-Malvinas Confluence

    NASA Astrophysics Data System (ADS)

    da Silveira, Isabel Porto; Pezzi, Luciano Ponzi

    2014-03-01

    Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8-12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.

  7. Improving the Health Forecasting Alert System for Cold Weather and Heat-Waves In England: A Proof-of-Concept Using Temperature-Mortality Relationships

    PubMed Central

    Masato, Giacomo; Bone, Angie; Charlton-Perez, Andrew; Cavany, Sean; Neal, Robert; Dankers, Rutger; Dacre, Helen; Carmichael, Katie; Murray, Virginia

    2015-01-01

    Objectives In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office’s (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. Method The prototype health forecasting alert system introduces an “impact vs likelihood matrix” for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. Conclusions The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use. PMID:26431427

  8. Improving the Health Forecasting Alert System for Cold Weather and Heat-Waves In England: A Proof-of-Concept Using Temperature-Mortality Relationships.

    PubMed

    Masato, Giacomo; Bone, Angie; Charlton-Perez, Andrew; Cavany, Sean; Neal, Robert; Dankers, Rutger; Dacre, Helen; Carmichael, Katie; Murray, Virginia

    2015-01-01

    In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

  9. On the unseasonal flooding over the Central United States during December 2015 and January 2016

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Villarini, Gabriele

    2017-11-01

    The unseasonal winter heavy rainfall and flooding that occurred during December 2015-January 2016 had large socio-economic impacts for the central United States. Here we examine the climatic conditions that led to the observed extreme precipitation, and compare and contrast them with the 1982/1983 and 2011/2012 winters. The large precipitation amounts associated with the 1982/1983 and 2015/2016 winter flooding were linked to the strongly positive North Atlantic Oscillation (NAO), with large moisture transported from the Gulf of Mexico. The anomalous upper-level trough in the 1982- and 2015- Decembers over the western United States was also favorable for strong precipitation by leading the cold front over the central United States. In contrast, the extremely positive NAO in December 2011 did not lead to heavy rainfall and flooding because the Azores High center shifted too far westward (like a blocking high) preventing moisture from moving towards the central and southeastern United States.

  10. The Impact of Sea Surface Temperature Front on Stratus-Sea Fog over the Yellow and East China Seas

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Li, M.; Liu, F.

    2013-12-01

    A stratus-sea fog event occurred on 3 June 2011 over the Yellow and East China Seas (as shown in figure) is investigated observationally and numerically. Emphasis is put on the influences of the sea surface temperature front (SSTF) and of the synoptic circulations on the transition of stratus to sea fog. The southerly winds from a synoptic high pressure transport water vapor from the East China Sea to the Yellow Sea, while the subsidence induced by the high contributes to the formation of the temperature inversion on the top of the stratus or stratocumulus that appears mainly over the warm flank of a sea surface temperature front in the East China Sea. Forced by the SSTF, there is a secondary cell within the atmospheric boundary layer (ABL), with a sinking branch on the cold flank and a rising one on the warm flank of the SSTF. This sinking branch, in phase with the synoptic subsidence, forces the stratus or stratocumulus to lower in the elevation getting close to the sea surface as these clouds move northward driven by the southerly winds. The cloud droplets can either reach to the sea surface directly or evaporate into water vapor that may condense again when coming close to the cold sea surface to form fog. In this later case, the stratus and fog may separate. The cooling effect of cold sea surface counteracts the adiabatic heating induced by the subsidence and thus helps the transition of stratus to sea fog in the southern Yellow Sea. By smoothing the SSTF in the numerical experiment, the secondary cell weakens and the sea fog patches shrink obviously over the cold flank of the SSTF though the synoptic subsidence and moist advection still exist. A conceptual model is suggested for the transition of stratus to sea fog in the Yellow and East China Seas, which is helpful for the forecast of sea fog over these areas. The satellite visible image of the stratus-fog event. The fog appears in the Yellow Sea and the stratocumulus in the East China Sea.

  11. Application of Satellite Frost Forecast Technology to Other Parts of the United States Phase II: Introduction

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The history and status of University of Michigan and University of Pennsylvania involvement in determining if P-model for front prediction used in Florida is applicable to those geographic locations is reviewed. The possibility of using the S-model to develop a satellite front forecast system that can recall the distribution of temperatures during previous freezes from a particular area and bring that cold climate climatology to bear on present forecasts is discussed as well as a proposed GOES satellite downlink system to sectionalize the data used in Florida.

  12. Influence of synoptic processes on fibrinolysis and fibrinogenolysis in healthy persons. [meteorological effects on blood coagulation

    NASA Technical Reports Server (NTRS)

    Marchenko, V. I.

    1974-01-01

    It is shown that on days with frontal activity in the atmosphere the levels of fibrinolysis and fibrinogenolysis are increased. The reactions of fibrinolysis and fibrinogenolysis to the passage of warm and cold fronts varies with the season of the year.

  13. Highly Anomalous Energetics of Protein Cold Denaturation Linked to Folding-Unfolding Kinetics

    PubMed Central

    Romero-Romero, M. Luisa; Inglés-Prieto, Alvaro; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2011-01-01

    Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a “mirror image” of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction) occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions. PMID:21829584

  14. IRREGULAR SLOSHING COLD FRONTS IN THE NEARBY MERGING GROUPS NGC 7618 AND UGC 12491: EVIDENCE FOR KELVIN-HELMHOLTZ INSTABILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roediger, E.; Kraft, R. P.; Machacek, M. E.

    2012-08-01

    We present results from two {approx}30 ks Chandra observations of the hot atmospheres of the merging galaxy groups centered around NGC 7618 and UGC 12491. Our images show the presence of arc-like sloshing cold fronts (CFs) wrapped around each group center and {approx}100 kpc long spiral tails in both groups. Most interestingly, the CFs are highly distorted in both groups, exhibiting 'wings' along the fronts. These features resemble the structures predicted from non-viscous hydrodynamic simulations of gas sloshing, where Kelvin-Helmholtz instabilities (KHIs) distort the CFs. This is in contrast to the structure seen in many other sloshing and merger CFs,more » which are smooth and featureless at the current observational resolution. Both magnetic fields and viscosity have been invoked to explain the absence of KHIs in these smooth CFs, but the NGC 7618/UGC 12491 pair are two in a growing number of both sloshing and merger CFs that appear distorted. Magnetic fields and/or viscosity may be able to suppress the growth of KHIs at the CFs in some clusters and groups, but clearly not in all. We propose that the presence or absence of KHI distortions in CFs can be used as a measure of the effective viscosity and/or magnetic field strengths in the intracluster medium.« less

  15. Ship Observations and Numerical Simulation of the Marine Atmosphericboundary Layer over the Spring Oceanic Front in the Northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, D.; Shi, R.; Chen, J.; Guo, X.; Zeng, L.; Li, J.; Xie, Q.; Wang, X.

    2017-12-01

    The response of the marine atmospheric boundary layer (MABL) structure to an oceanic front is analyzed using Global Positioning System (GPS) sounding data obtained during a survey in the northwestern South China Sea (NSCS) over a period of about one week in April 2013. The Weather Research and Forecasting (WRF) model is used to further examine the thermodynamical mechanisms of the MABL's response to the front. The WRF model successfully simulates the change in the MABL structure across the front, which agrees well with the observations. The spatially high-pass-filtered fields of sea surface temperature (SST) and 10-m neutral equivalent wind from the WRF model simulation show a tight, positive coupling between the SST and surface winds near the front. Meanwhile, the SST front works as a damping zone to reduce the enhancement of wind blowing from the warm to the cold side of the front in the lower boundary layer. Analysis of the momentum budget shows that the most active and significant term affecting horizontal momentum over the frontal zone is the adjustment of the pressure gradient. It is found that the front in the NSCS is wide enough for slowly moving air parcels to be affected by the change in underlying SST. The different thermal structure upwind and downwind of the front causes a baroclinic adjustment of the perturbation pressure from the surface to the mid-layer of the MABL, which dominates the change in the wind profile across the front.

  16. Implementation of a level 1 trigger system using high speed serial (VXS) techniques for the 12GeV high luminosity experimental programs at Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott

    We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receivesmore » these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.« less

  17. Population-level thermal performance of a cold-water ectotherm is linked to ontogeny and local environmental heterogeneity

    USGS Publications Warehouse

    Hossack, Blake R.; Corn, P. Stephen; , Winsor H. Lowe; , Molly A. H. Webb; , Mariah J. Talbott; , Kevin M. Kappenman

    2013-01-01

    5. Our experiments with a cold-water species show that population-level performance varies across small geographic scales and is linked to local environmental heterogeneity. This variation could influence the rate and mode of species-level responses to climate change, both by facilitating local persistence in the face of change

  18. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

    Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.

    Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.

    These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.

  19. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  20. Distribution patterns of the mesozooplankton, principally siphonophores and medusae, in the vicinity of the Antarctic Slope Front (eastern Weddell Sea)

    NASA Astrophysics Data System (ADS)

    Pagès, Francesc; Schnack-Schiel, Sigrid B.

    1996-12-01

    The composition, abundance and vertical distribution of mesozooplankton, particularly siphonophores and medusae (27 species), collected along two transects in the eastern Weddell Sea have been analysed. Both transects were characterized by a steep thermocline that on approaching the coastline defined the Antarctic Slope Front. The front acted as a strong boundary in the shelf-slope and caused a pronounced cross frontal gradient in the populations of cnidarians. Few species and low abundances were found in the upper cold waters and most of the populations concentrated in and below the thermocline. The analysis of the gastrozooids of the physonect siphonophore Pyrostephos vanhoeffeni showed a wide variety of prey but the relatively high contribution of krill larvae reveals a substantial trophic impact when both organisms co-occur.

  1. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Bauer, K.; Borga, A.; Boterenbrood, H.; Chen, H.; Chen, K.; Drake, G.; Dönszelmann, M.; Francis, D.; Guest, D.; Gorini, B.; Joos, M.; Lanni, F.; Lehmann Miotto, G.; Levinson, L.; Narevicius, J.; Panduro Vazquez, W.; Roich, A.; Ryu, S.; Schreuder, F.; Schumacher, J.; Vandelli, W.; Vermeulen, J.; Whiteson, D.; Wu, W.; Zhang, J.

    2016-12-01

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. The Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. The FELIX system, the design of the PCIe prototype card and the integration test results are presented in this paper.

  2. How cold pool triggers deep convection?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2014-05-01

    The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed by Moncrieff and Liu (1999). As a whole, in attempting a statistical description of boundary-layer processes, the cold pool is essentially nothing other than an additional contribution to a TKE (turbulent kinetic energy) budget. Significance of trigger of convection by cold pool in context of convection parameterization must also be seen with much caution. Against a common misunderstanding, current convection parameterization is not designed to describe a trigger process of individual convection. In this respect, process studies on cold pool do not contribute to improvements of convection parameterization until a well-defined parameterization formulation for individual convection processes is developed. Even before then a question should also be posed whether such a development is necessary. Under a current mass-flux convection parameterization, a more important process to consider is re-evaporative cooling of detrained cloudy air, which may also be associated with downdraft, possibly further leading to a generation of a cold pool. Yano and Plant (2012) suggest, from a point of view of the convective-energy cycle, what follows would be far less important than the fact the re-evaporation induces a generation of convective kinetic energy (though it may initially be considered TKE). Both well-focused convective process studies as well as convection parameterization formulation would be much needed.

  3. Scratching the Surface

    ERIC Educational Resources Information Center

    Bartholomeo, Linda

    2011-01-01

    The drab, cold days of winter were not helping to motivate the author's painting students. Still-life work appeared forced, tight, and overworked. A downed white birch in her front yard provided the author a resource and inspiration. In this article, students do some timed gestural drawings of still life using sticks as paintbrushes. (Contains 1…

  4. FRONTIER FIELDS CLUSTERS: DEEP CHANDRA OBSERVATIONS OF THE COMPLEX MERGER MACS J1149.6+2223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.

    2016-03-10

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z  =  0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight.more » The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.« less

  5. Frontier Fields Clusters: Deep Chandra Observations of the Complex Merger MACS J1149.6+2223

    DOE PAGES

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.; ...

    2016-03-04

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. Here, we present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z = 0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the linemore » of sight. The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. Lastly, if the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.« less

  6. Synoptic climatological analysis of persistent cold air pools over the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Szabóné André, Karolina; Bartholy, Judit; Pongrácz, Rita

    2016-04-01

    A persistent cold air pool (PCAP) is a winter-time, anticyclone-related weather event over a relatively large basin. During this time the air is colder near the surface than aloft. This inversion near the surface can last even for weeks. As the cold air cools down, relative humidity increases and fog forms. The entire life cycle of a PCAP depends on the large scale circulation pattern. PCAP usually appears when an anticyclone builds up after a cold front passed over the examined basin, and it is usually destructed by a coming strong cold front of another midlatitude cyclone. Moreover, the intensity of the anticyclone affects the intensity of the PCAP. PCAP may result in different hazards for the population: (1) Temperature inversion in the surface layers together with weak wind may lead to severe air pollution causing health problems for many people, especially, elderly and children. (2) The fog and/or smog during chilly weather conditions often results in freezing rain. Both fog and freezing rain can distract transportation and electricity supply. Unfortunately, the numerical weather prediction models have difficulties to predict PCAP formation and destruction. One of the reasons is that PCAP is not defined objectively with a simple formula, which could be easily applied to the numerical output data. However, according to some recommendations from the synoptic literature, the shallow convective potential energy (SCPE) can be used to mathematically describe PCAP. In this study, we used the ERA-Interim reanalysis datasets to examine this very specific weather event (i.e., PCAP) over the Carpathian Basin. The connection between the mean sea level pressure and some PCAP measures (e.g., SCPE, energy deficit, etc.) is evaluated. For instance, we used logistic regression to identify PCAP periods over the Carpathian Basin. Then, further statistical analysis includes the evaluation of the length and intensity of these PCAP periods.

  7. Relating precipitation to fronts at a sub-daily basis

    NASA Astrophysics Data System (ADS)

    Hénin, Riccardo; Ramos, Alexandre M.; Liberato, Margarida L. R.; Gouveia, Célia

    2017-04-01

    High impact events over Western Iberia include precipitation extremes that are cause for concern as they lead to flooding, landslides, extensive property damage and human casualties. These events are usually associated with low pressure systems over the North Atlantic moving eastward towards the European western coasts (Liberato and Trigo, 2014). A method to detect fronts and to associate amounts of precipitation to each front is tested, distinguishing between warm and cold fronts. The 6-hourly ERA-interim 1979-2012 reanalysis with 1°x1° horizontal resolution is used for the purpose. An objective front identification method (the Thermal Method described in Shemm et al., 2014) is applied to locate fronts all over the Northern Hemisphere considering the equivalent potential temperature as thermal parameter to use in the model. On the other hand, we settled a squared search box of tuneable dimension (from 2 to 10 degrees long) to look for a front in the neighbourhood of a grid point affected by precipitation. A sensitivity analysis is performed and the optimal dimension of the box is assessed in order to avoid over(under) estimation of precipitation. This is performed in the light of the variability and typical dynamics of warm/cold frontal systems in the Western Europe region. Afterwards, using the extreme event ranking over Iberia proposed by Ramos et al. (2014) the first ranked extreme events are selected in order to validate the method with specific case studies. Finally, climatological and trend maps of frontal activity are produced both on annual and seasonal scales. Trend maps show a decrease of frontal precipitation over north-western Europe and a slight increase over south-western Europe, mainly due to warm fronts. REFERENCES Liberato M.L.R. and R.M. Trigo (2014) Extreme precipitation events and related impacts in Western Iberia. Hydrology in a Changing World: Environmental and Human Dimensions. IAHS Red Book No 363, 171-176. ISSN: 0144-7815. Ramos A.M., R.M. Trigo and M.L.R. Liberato (2014) A ranking of high-resolution daily precipitation extreme events for the Iberian Peninsula, Atmospheric Science Letters 15, 328 - 334. doi: 10.1002/asl2.507. Shemm S., I. Rudeva and I. Simmonds (2014) Extratropical fronts in the lower troposphere - global perspectives obtained from two automated methods. Quarterly Journal of the Royal Meteorological Society, 141: 1686-1698, doi: 10.1002/qj.2471. ACKNOWLEDGEMENTS This work is supported by FCT - project UID/GEO/50019/2013 - Instituto Dom Luiz. Fundação para a Ciência e a Tecnologia, Portugal (FCT) is also providing for R. Hénin doctoral grant (PD/BD/114479/2016) and A.M. Ramos postdoctoral grant (FCT/DFRH/SFRH/BPD/84328/2012).

  8. Earth Observations taken by the Expedition 27 Crew

    NASA Image and Video Library

    2011-03-20

    ISS027-E-006501 (20 March 2011) --- A low pressure system in the eastern North Pacific Ocean is featured in this image photographed by an Expedition 27 crew member in the Cupola of the International Space Station. This vigorous low pressure system has started to occlude?a process associated with separation of warm air from the cyclone?s center at the Earth?s surface. This view shows the arc of strong convection beyond the center of the low pressure, formed as the low occludes when the cold front overtakes the warm front. This occurs around more mature low pressure areas, later in the process of the system?s life-cycle.

  9. Comment on "Eliminating the major tornado threat in Tornado Alley"

    NASA Astrophysics Data System (ADS)

    Dahl, Johannes M. L.; Markowski, Paul M.

    2014-11-01

    The authors draw from half a century of meteorological research to expose flaws in a recent proposal to build 300-m-tall tornado-prevention walls across the U.S. Great Plains. The idea behind the walls is that they would prevent cold and warm air masses from clashing and would therefore suppress tornadoes. The problem with this proposal, however, is that atmospheric fronts ("airmass clashes") are neither a necessary nor a sufficient condition for tornadoes and that the proposed walls would not prevent the formation of fronts in the first place. Additional misconceptions about supercells thunderstorms and tornado formation also are identified.

  10. Chandra and XMM observations of cluster mergers and what we can learn from them

    NASA Astrophysics Data System (ADS)

    Markevitch, M.

    Chandra and XMM are now routinely producing high-resolution maps of the density and temperature of the intracluster gas. These maps tell us a lot about the hydrodynamical and other processes occurring during cluster mergers. While most mergers are complicated and their interpretation requires the help of simulations, there is a number of interesting things we can learn directly from the data. I will review such results, including cold fronts and shock fronts, limits on thermal conductivity of the intracluster plasma, limits on the dark matter self-interaction cross-section, and insights into the origin of the cluster synchrotron radio halos.

  11. Satellite Shows Powerful Cold Front Moving Off U.S. East Coast

    NASA Image and Video Library

    2014-05-16

    NOAA's GOES-East satellite captured an image of a powerful cold front that triggered flash flood watches and warnings along the U.S. East Coast on May 16. NOAA's National Weather Service noted flash flooding was possible from New England into eastern North Carolina today, May 16. The clouds associated with the long cold front was captured using visible data from NOAA's GOES-East or GOES-13 satellite on at 1900 UTC (3:00 p.m. EDT) and was made into an image by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. The clouds stretched from Maine south through the Mid-Atlantic down to southern Florida with a tail of clouds extending into the western Caribbean Sea. South of Lake Michigan the rounded swirl of clouds indicates another low pressure system. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's National Weather Service website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. The influence of seagrass on shell layers and Florida Bay mudbanks

    USGS Publications Warehouse

    Prager, E.J.; Halley, R.B.

    1999-01-01

    Aerial photography indicates that sometime since the early 1970's, an emergent ridge of shell debris developed on a mudbank north of Calusa Key in Florida Bay. Coarse shell deposits on and within the Bay's shallow mudbanks are believed to be the product of transport during major storm events and subsequent winnowing. However, shell material from the ridge contains nuclear bomb 14C, supporting formation within the past 30 years and the last major hurricanes to influence Florida Bay were Donna and Betsy (1960 and 1965). Results from this study suggest that the Calusa ridge and other coarse shell deposits in Florida Bay can result from, 1) periodic seagrass mortality and wave-induced transport during frequent winter cold fronts and/or 2) mollusc blooms and subsequent burial. A survey of bottom types indicates that dense to intermediate beds of seagrass, mainly Thalassia testudinum (turtle grass), occur within the shallow basins of western Florida Bay and along the margins of Bay mudbanks. Wave measurements and modeling indicate that Thalassia along mudbank margins can reduce incoming wave-energy by over 80%. Seagrass beds also host particularly dense populations of molluscs from periodic 'blooms' and are believed to be the major source of coarse sediments in the Bay. Thus, if bank-edge seagrass dies, sediments, including shell debris, become exposed and subject to greatly increased wave energy. Modeling indicates that winds typical of winter cold fronts in South Florida can produce near-bottom velocities and shear stress at a grass-free bank edge which are sufficient to transport coarse carbonate grains. Shell layers found at depth in mudbank cores can also be explained by previous episodes of sediment accretion over mollusc-rich seagrass beds or grass bed mortality at the edge of a mudbank and shell transport during cold front passage. The latter implies that mortality of marginal seagrass beds has occurred throughout the history of Florida Bay and that the historical influence of hurricanes on sedimentation in the Bay may have been overestimated.

  13. Long-range transport of Asian pollution to the northeast Pacific: Seasonal variations and transport pathways of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Liang, Qing; Jaeglé, Lyatt; Jaffe, Daniel A.; Weiss-Penzias, Peter; Heckman, Anna; Snow, Julie A.

    2004-12-01

    Continuous CO measurements were obtained at Cheeka Peak Observatory (CPO, 48.3°N, 124.6°W, 480 m), a coastal site in Washington state, between 9 March 2001 and 31 May 2002. We analyze these observations as well as CO observations at ground sites throughout the North Pacific using the GEOS-CHEM global tropospheric chemistry model to examine the seasonal variations of Asian long-range transport. The model reproduces the observed CO levels, their seasonal cycle and day-to-day variability, with a 5-20 ppbv negative bias in winter/spring and 5-10 ppbv positive bias during summer. Asian influence on CO levels in the North Pacific troposphere maximizes during spring and minimizes during summer, ranging from 91 ppbv (44% of total CO) to 52 ppbv (39%) along the Asian Pacific Rim and from 44 ppbv (30%) to 24 ppbv (23%) at CPO. Maximum export of Asian pollution to the western Pacific occurs at 20°-50°N during spring throughout the tropospheric column, shifting to 30°-60°N during summer, mostly in the upper troposphere. The model captures five particularly strong transpacific transport events reaching CPO (four in spring, one in winter) resulting in 20-40 ppbv increases in observed CO levels. Episodic long-range transport of pollutants from Asia to the NE Pacific occurs throughout the year every 10, 15, and 30 days in the upper, middle, and lower troposphere, respectively. Lifting ahead of cold fronts followed by transport in midlatitude westerlies accounts for 78% of long-range transport events reaching the NE Pacific middle and upper troposphere. During summer, convective injection into the upper troposphere competes with frontal mechanisms in this export. Most events reaching the NE Pacific lower troposphere below 2 km altitude result from boundary layer outflow behind cold fronts (for spring) or ahead of cold fronts (for other seasons) followed by low-level transpacific transport.

  14. Observational and numerical studies of extreme frontal scale contraction

    NASA Technical Reports Server (NTRS)

    Koch, Steven E.

    1995-01-01

    The general objective of this effort is to increase understanding of how frontal scale contraction processes may create and sustain intense mesoscale precipitation along intensifying cold fronts. The five-part project (an expansion of the originally proposed two-part project) employed conventional meteorological data, special mesoscale data, remote sensing measurements, and various numerical models. First an idealized hydrostatic modeling study of the scale contraction effects of differential cloud cover on low-level frontal structure and dynamics was completed and published in a peer-reviewed journal. The second objective was to complete and publish the results from a three dimensional numerical model simulation of a cold front in which differential sensible heating related to cloud coverage patterns was apparently crucial in the formation of a severe frontal squall line. The third objective was to use a nonhydrostatic model to examine the nonlinear interactions between the transverse circulation arising from inhomogeneous cloud cover, the adiabatic frontal circulation related to semi-geostrophic forcing, and diabatic effects related to precipitation processes, in the development of a density current-like microstructure at the leading edge of cold fronts. Although the development of a frontal model that could be used to initialize such a primitive equation model was begun, we decided to focus our efforts instead on a project that could be successfully completed in this short time, due to the lack of prospects for continued NASA funding beyond this first year (our proposal was not accepted for future funding). Thus, a fourth task was added, which was to use the nonhydrostatic model to test tentative hypotheses developed from the most detailed observations ever obtained on a density current (primarily sodar and wind profiler data). These simulations were successfully completed, the findings were reported at a scientific conference, and the results have recently been submitted to a peer-reviewed journal. The fifth objective was to complete the analysis of data collected during the Cooperative Oklahoma Profiler Studies (COPS-91) field project, which was supported by NASA. The analysis of the mesoscale surface and sounding data, Doppler radar imagery, and other remote sensing data from multi frequency wind profiler, microwave radiometer, and the Radio Acoustic Sounding System has been completed. This study is a unique investigation of processes that caused the contraction of a cold front to a microscale zone exhibiting an undular bore-like structure. Results were reported at a scientific conference and are being prepared for publication. In summary, considerable progress has been achieved under NASA funding in furthering our understanding of frontal scale contraction and density current - gravity wave interaction processes, and in utilizing models and remotely sensed data in such studies.

  15. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization.

    PubMed

    Ellis, J Michael; Altman, Michael D; Cash, Brandon; Haidle, Andrew M; Kubiak, Rachel L; Maddess, Matthew L; Yan, Youwei; Northrup, Alan B

    2016-12-08

    Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain.

  16. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization

    PubMed Central

    2016-01-01

    Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain. PMID:27994755

  17. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Bauer, K.; Borga, A.

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less

  18. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    DOE PAGES

    Anderson, J.; Bauer, K.; Borga, A.; ...

    2016-12-13

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less

  19. Gas Dynamics in the Fornax Cluster: Viscosity, turbulence, and sloshing

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph; Su, Yuanyuan; Sheardown, Alexander; Roediger, Elke; Nulsen, Paul; Forman, William; Jones, Christine; Churazov, Eugene

    2018-01-01

    We present results from deep Chandra and XMM-Newton observations of the ICM in the Fornax cluster, and combine these data with specifically-tailored hydrodynamic simulations for an unprecedented view of the gas dynamics in this nearby cluster. We report the detection of four sloshing fronts (Su+2017). Based on our simulations, all four of these fronts can plausibly be attributed to the infall of the early-type galaxy NGC 1404 into the cluster potential. We argue that the presence of these sloshing cold fronts, the lack of its own extended gas halo, and the approximately transonic infall velocity indicate that this must be at least the second core passage for NGC 1404. Additionally, there is virtually no stripped tail of cool gas behind NGC 1404, conclusively demonstrating that the stripped gas is efficiently mixed with the cluster ICM. This mixing most likely occurs via small-scale Kelvin-Helmholtz instabilities formed in the high Reynolds number flow.

  20. Small-scale zooplankton aggregations at the front of a Kuroshio warm-core ring

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tamiji; Nishizawa, Satoshi

    1986-11-01

    A Longhurst-Hardy Plankton Recorder was used to study the small-scale zooplankton distribution across the front of a Kuroshio warm-core ring in June 1979. Zooplankton were strongly aggregated in the frontal region; patches of zooplankton and phytoplankton were spatially separated. A major part of the zooplankton assemblage consisted of neritic forms such as cladocerans and indicator species of the cold Oyashio water. This implies that lateral entrainment of coastal waters, which is directly influenced by the Oyashio, was an important factor in the formation of the aggregations at the Kuroshio warm-core ring front. Variation in the distribution of abundance peaks of individual zooplankton species was also observed. Futhermore, zooplankton showed more intensive non-randomness (aggregation) than phytoplankton and non-motile euphausiid's eggs. Thus, biological processes, such as motility and prey-predator interaction, also appeared to be regulating the patchiness.

  1. To the non-local theory of cold nuclear fusion.

    PubMed

    Alexeev, Boris V

    2014-10-01

    In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics.

  2. Receptor model source attributions for Utah’s Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol.

    EPA Science Inventory

    Communities along Utah’s Wasatch Front are currently developing strategies to reduce daily average PM2.5 levels to below National Ambient Air Quality Standards during wintertime, persistent, multi-day stable atmospheric conditions or cold-air pools. Speciated PM2.5 data from the ...

  3. Topographic Controls on Rainfall and Runoff.

    DTIC Science & Technology

    1986-03-01

    pattern seems likely to he most predictaible for pa~irc’ eirlhriCierrt and least for thunderstorms, with convectionaily-triqLgered raircr’lts sia in between...Cold front or occr.osrun svreed GEOSTROP-r r SCALLS for s(,toars rt 2mb nleroalS ,DATE 25 EC983- W ~TIME _2j400.GMT- Hebride Redrawn rom MetoliCkalOfc

  4. 7. View into Building 802, front entry hall to "U" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View into Building 802, front entry hall to "U" turn. Light and shower spigot seen through chain-link fence, facing east. - Naval Air Station Fallon, 100-man Fallout Shelter, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  5. FELIX: The new detector readout system for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Ryu, Soo; ATLAS TDAQ Collaboration

    2017-10-01

    After the Phase-I upgrades (2019) of the ATLAS experiment, the Front-End Link eXchange (FELIX) system will be the interface between the data acquisition system and the detector front-end and trigger electronics. FELIX will function as a router between custom serial links and a commodity switch network using standard technologies (Ethernet or Infiniband) to communicate with commercial data collecting and processing components. The system architecture of FELIX will be described and the status of the firmware implementation and hardware development currently in progress will be presented.

  6. Heavy precipitation in the southwest of Iran: association with the Madden-Julian Oscillation and synoptic scale analysis

    NASA Astrophysics Data System (ADS)

    Jafar Nazemosadat, M.; Shahgholian, K.

    2017-11-01

    Some important characteristics of the November-April heavy precipitation in southwestern parts of Iran and their linkages to the Madden-Julian Oscillation (MJO) were assessed for the period of 1975-2011. Daily precipitation data in nine meteorological stations spread in various parts of the study area and the corresponding MJO indices were analyzed. For each station, precipitation data were sorted in descending order and those values that fell within 5% of the highest records were categorized as the heavy precipitation. Besides this, the 10% threshold was also analyzed as an axillary assessment. The considered heavy precipitation data (5% threshold) accounted from about 26-35% of total annual precipitation. About half of the heavy precipitation occurred during December-January period and the other half distributed within the months of March, February, November and April by about 17, 14, 13and 6%, respectively. The highest frequency of heavy precipitation was related to the MJO phase 8. After this, the more frequent precipitation events were respectively associated to the phases 2, 7, 1, 6, 5 and 4 of the MJO. For the phases 1, 2, 7 and 8 frequency of the heavy precipitation statistically increased when the MJO amplitude was greater than unity. In contrast, for phases 4 and 5, heavy precipitation was generally linked to the spells that the amplitude size was lower than unity. Formation of a strong north-south oriented cold front mainly in Saudi Arabia and west-east oriented warm fronts in the southwest of Iran were realized as the key elements for initiating heavy precipitation over the study area. Although development of the Mediterranean-based cyclonic circulation is essential for the formation of these fronts, moisture transport mostly originates from northern parts of the Arabian Sea, southern parts of the Red Sea and the Persian Gulf.

  7. A downslope propagating thermal front over the continental slope

    NASA Astrophysics Data System (ADS)

    van Haren, Hans; Hosegood, Phil J.

    2017-04-01

    In the ocean, internal frontal bores above sloping topography have many appearances, depending on the local density stratification, and on the angle and source of generation of the carrier wave. However, their common characteristics are a backward breaking wave, strong sediment resuspension, and relatively cool (denser) water moving more or less upslope underneath warm (less dense) water. In this paper, we present a rare example of a downslope moving front of cold water moving over near-bottom warm water. Large backscatter is observed in the downslope moving front's trailing edge, rather than the leading edge as is common in upslope moving fronts. Time series observations have been made during a fortnight in summer, using a 101 m long array of high-resolution temperature sensors moored with an acoustic Doppler current profiler at 396 m depth in near-homogeneous waters, near a small canyon in the continental slope off the Malin shelf (West-Scotland, UK). Occurring between fronts that propagate upslope with tidal periodicity, the rare downslope propagating one resembles a gravity current and includes strong convective turbulence coming from the interior rather than the more usual frictionally generated turbulence arising from interaction with the seabed. Its turbulence is 3-10 times larger than that of more common upslope propagating fronts. As the main turbulence is in the interior with a thin stratified layer close to the bottom, little sediment is resuspended by a downslope propagating front. The downslope propagating front is suggested to be generated by oblique propagation of internal (tidal) waves and flow over a nearby upstream promontory.

  8. Weather and childbirth: A further search for relationships

    NASA Astrophysics Data System (ADS)

    Driscoll, Dennis M.

    1995-09-01

    Previous attempts to find relationships between weather and parturition (childbirth) and its onset (the beginning of labor pains) have revealed, firstly, limited but statistically significant relationships between weather conditions much colder than the day before, with high winds and low pressure, and increased onsets; and secondly, increased numbers of childbirths during periods of atmospheric pressure rise (highly statistically significant). To test these findings, this study examined weather data coincident childbirth data from a hospital at Bryan-College Station, Texas (for a period of 30 cool months from 1987 to 1992). Tests for (1) days of cold fronts, (2) a day before and a day after the cold front, (3) days with large temperature increases, and (4) decreases from the day before revealed no relationship with mean daily rate of onset. Cold days with high winds and low pressure had significantly fewer onsets, a result that is the opposite of previous findings. The postulated relationship between periods of pressure rise and increased birth frequency was negative, i.e., significantly fewer births occurred at those times — again, the opposite of the apparent occurrence in an earlier study. The coincidence of diurnal variations in both atmospheric pressure and frequency of childbirths, was shown to account for fairly strong negative associations between the two variables. This same reasoning might explain the positive association found in an earlier study. A comparison has been made between childbirth and onset as the response variable, and the advantage is emphasized of using data from women whose labor is not induced.

  9. The scope and nature of injuries to rear seat passengers in NSW using linked hospital admission and police data.

    PubMed

    Brown, Julie; Bilston, Lynne E

    2014-01-01

    To compare the pattern of injuries to front and rear seat occupants and test the hypothesis that rear seat passengers of different ages sustain different patterns of injury. Patients admitted to a hospital following involvement in a crash in New South Wales (NSW) Australia between 2005 and 2007 were identified using International Classification of Diseases (10th edition [ICD10]) codes. Hospital admissions data were linked with NSW police crash data using probabilistic techniques. The profiles and patterns of injury of front and rear seat passengers were compared. Logistic regression was used to examine how age influenced the pattern of injury among rear seat passengers. Sixty-three percent of hospital admissions were linked with police records. One in 5 passengers were rear seat passengers. There were more unrestrained occupants in the rear (7%) compared to drivers (3%) and front seat passengers (2%). Younger (9-15 years) injured passengers were seated in the rear more often than in the front passenger position and older injured passengers (>50 years) were seated more often in the front passenger position than in the rear (15% rear compared to 5% front aged 9-15 years; 22% rear compared to 37% front aged >50 years; χ(2), P < .001). There were proportionally more fatal injuries among rear seat passengers (10%) than among drivers (5%) and front seat passengers (6%), and the pattern of injury between front and rear passengers also varied. Rear seat passengers had more head and abdominal injuries and fewer thoracic and knee/lower leg injuries than front seat passengers. After adjusting for vehicle age, restraint status, travel speed, and whether or not a fatality occurred in the crash, older (>50 years) rear passengers had 6.3 times the odds of sustaining thoracic injuries (95% confidence interval [CI], 2.6-15.0) and lower odds (odds ratio [OR] = 0.4, 95% CI, 0.2-0.9) of sustaining abdominal/lumbar injuries than the youngest occupants (9-15 years).The odds of sustaining a head injury did not vary with age, and the odds of sustaining thoracic, abdominal, or lower extremity injuries did not differ significantly between rear seat passengers aged 16-50 years and 9-15 years. The findings suggest that there is a need for enhanced protection for rear seat passengers, because they have proportionally more fatal injuries than front-seated occupants. The frequency of abdominal injury and the differences between injury patterns observed in front seat passengers suggests a potential benefit from adding abdominal injury risk assessment to rear seat occupant protection test protocols. There is also scope to improve chest protection for older rear seat passengers.

  10. Study of a Wind Front over the Northern South China Sea Generated by the Freshening of the North-East Monsoon

    NASA Astrophysics Data System (ADS)

    Alpers, Werner; Wong, Wai Kin; Dagestad, Knut-Frode; Chan, Pak Wai

    2015-10-01

    Wind fronts associated with cold-air outbreaks from the Chinese continent in the winter are often observed over the northern South China Sea and are well studied. However, wind fronts caused by another type of synoptic setting, the sudden increase or freshening of the north-east monsoon, which is caused by the merging of two anticyclonic regions over the Chinese continent, are also frequently encountered over the northern South China Sea. For the first time, such an event is investigated using multi-sensor satellite data, weather radar images, and a high-resolution atmospheric numerical model. It is shown that the wind front generated by the freshening of the north-east monsoon is quite similar to wind fronts generated by cold-air outbreaks. Furthermore, we investigate fine-scale features of the wind front that are visible on synthetic aperture radar (SAR) images through variations of the small-scale sea-surface roughness. The SAR image was acquired by the Advanced SAR of the European Envisat satellite over the South China Sea off the coast of Hong Kong and has a resolution of 150 m. It shows notches (dents) in the frontal line and also radar signatures of embedded rain cells. This (rare) SAR image, together with a quasi-simultaneously acquired weather radar image, provide excellent data with which to test the performance of the pre-operational version of the Atmospheric Integrated Rapid-cycle (AIR) forecast model system of the Hong Kong Observatory with respect to modelling rain cells at frontal boundaries. The calculations using a horizontal resolution with 3-km resolution show that the model reproduces quite well the position of the notches where rain cells are generated. The model shows further that at the position of the notches the vorticity of the airflow is increased leading to the uplift of warmer, moister air from the sea-surface to higher levels. With respect to the 10-km resolution model, the comparison of model data with the near-surface wind field derived from the SAR image shows that the AIR model overestimates the wind speed in the lee of the coastal mountains east of Hong Kong, probably due to the incorrect inclusion of the coastal topography.

  11. Submesoscale CO2 variability across an upwelling front off Peru

    NASA Astrophysics Data System (ADS)

    Köhn, Eike E.; Thomsen, Sören; Arévalo-Martínez, Damian L.; Kanzow, Torsten

    2017-12-01

    As a major source for atmospheric CO2, the Peruvian upwelling region exhibits strong variability in surface fCO2 on short spatial and temporal scales. Understanding the physical processes driving the strong variability is of fundamental importance for constraining the effect of marine emissions from upwelling regions on the global CO2 budget. In this study, a frontal decay on length scales of 𝒪(10 km) was observed off the Peruvian coast following a pronounced decrease in down-frontal (equatorward) wind speed with a time lag of 9 h. Simultaneously, the sea-to-air flux of CO2 on the inshore (cold) side of the front dropped from up to 80 to 10 mmol m-2 day-1, while the offshore (warm) side of the front was constantly outgassing at a rate of 10-20 mmol m-2 day-1. Based on repeated ship transects the decay of the front was observed to occur in two phases. The first phase was characterized by a development of coherent surface temperature anomalies which gained in amplitude over 6-9 h. The second phase was characterized by a disappearance of the surface temperature front within 6 h. Submesoscale mixed-layer instabilities were present but seem too slow to completely remove the temperature gradient in this short time period. Dynamics such as a pressure-driven gravity current appear to be a likely mechanism behind the evolution of the front.

  12. Ship Shoal as a prospective borrow site for barrier island restoration, coastal south-central Louisiana, Usa: Numerical wave modeling and field measurements of hydrodynamics and sediment transport

    USGS Publications Warehouse

    Stone, G.W.; Pepper, D.A.; Xu, Jie; Zhang, X.

    2004-01-01

    Ship Shoal, a transgressive sand body located at the 10 m isobath off south-central Louisiana, is deemed a potential sand source for restoration along the rapidly eroding Isles Dernieres barrier chain and possibly other sites in Louisiana. Through numerical wave modeling we evaluate the potential response of mining Ship Shoal on the wave field. During severe and strong storms, waves break seaward of the western flank of Ship Shoal. Therefore, removal of Ship Shoal (approximately 1.1 billion m3) causes a maximum increase of the significant wave height by 90%-100% and 40%-50% over the shoal and directly adjacent to the lee of the complex for two strong storm scenarios. During weak storms and fair weather conditions, waves do not break over Ship Shoal. The degree of increase in significant wave height due to shoal removal is considerably smaller, only 10%-20% on the west part of the shoal. Within the context of increasing nearshore wave energy levels, removal of the shoal is not significant enough to cause increased erosion along the Isles Dernieres. Wave approach direction exerts significant control on the wave climate leeward of Ship Shoal for stronger storms, but not weak storms or fairweather. Instrumentation deployed at the shoal allowed comparison of measured wave heights with numerically derived wave heights using STWAVE. Correlation coefficients are high in virtually all comparisons indicating the capability of the model to simulate wave behavior satisfactorily at the shoal. Directional waves, currents and sediment transport were measured during winter storms associated with frontal passages using three bottom-mounted arrays deployed on the seaward and landward sides of Ship Shoal (November, 1998-January, 1999). Episodic increases in wave height, mean and oscillatory current speed, shear velocity, and sediment transport rates, associated with recurrent cold front passages, were measured. Dissipation mechanisms included both breaking and bottom friction due to variable depths across the shoal crest and variable wave amplitudes during storms and fair-weather. Arctic surge fronts were associated with southerly storm waves, and southwesterly to westerly currents and sediment transport. Migrating cyclonic fronts generated northerly swell that transformed into southerly sea, and currents and sediment transport that were southeasterly overall. Waves were 36% higher and 9% longer on the seaward side of the shoal, whereas mean currents were 10% stronger landward, where they were directed onshore, in contrast to the offshore site, where seaward currents predominated. Sediment transport initiated by cold fronts was generally directed southeasterly to southwesterly at the offshore site, and southerly to westerly at the nearshore site. The data suggest that both cold fronts and the shoal, exert significant influences on regional hydrodynamics and sediment transport.

  13. GOES Satellite Sees Strong Front Bringing Blizzard Conditions to U.S. Southwest

    NASA Image and Video Library

    2017-12-08

    Image acquired December 19, 2011 A strong low pressure area in the southwestern U.S. today is bringing snowfall there as NOAA's GOES-13 satellite captured its associated clouds. Blizzard warnings are already posted for some areas. The image was created on Dec. 19 at 19:10 UTC (2:10 p.m. EST) from the Geostationary Operational Environmental Satellite called GOES-13. GOES-13 is operated by the National Oceanic and Atmospheric Administration. Images and animations are created by NASA's GOES Project, located at NASA's Goddard Space Flight Center, Greenbelt, Md. The low is forecast to move northeast across southeastern New Mexico today and reach southwest the Texas panhandle by early evening. The plains states including portions of Kansas, New Mexico and the Texas and Oklahoma panhandles could all have blizzard warnings later in the day on Dec. 19. Wind gusts to 60mph were recorded in northeastern New Mexico during the afternoon hours today. Kansas City may have a mix of rain, sleet and snow as the front moves past and temperatures fall. At 3 p.m. EST, the National Weather Service forecast indicated that moderate to heavy snow and strong north winds to impact the Texas and Oklahoma panhandles today into Tuesday morning. The low and associated cold front are expected to bring heavy snow to the Oklahoma panhandle and all but the far southeast Texas Panhandle. Behind the cold front, the strong winds will blow snow and lead to poor visibilities and blizzard conditions. The GOES image shows the large bank of clouds along the front stretching from the four corners states east-northeast through the Ohio Valley and into upstate New York. The rounded comma shape of clouds over Texas and stretching into Colorado indicate where the low pressure center is located. Image: NASA/NOAA GOES Project Text: NASA, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Induced nanoparticle aggregation for short nucleic acid quantification by depletion isotachophoresis.

    PubMed

    Marczak, Steven; Senapati, Satyajyoti; Slouka, Zdenek; Chang, Hsueh-Chia

    2016-12-15

    A rapid (<20min) gel-membrane biochip platform for the detection and quantification of short nucleic acids is presented based on a sandwich assay with probe-functionalized gold nanoparticles and their separation into concentrated bands by depletion-generated gel isotachophoresis. The platform sequentially exploits the enrichment and depletion phenomena of an ion-selective cation-exchange membrane created under an applied electric field. Enrichment is used to concentrate the nanoparticles and targets at a localized position at the gel-membrane interface for rapid hybridization. The depletion generates an isotachophoretic zone without the need for different conductivity buffers, and is used to separate linked nanoparticles from isolated ones in the gel medium and then by field-enhanced aggregation of only the linked particles at the depletion front. The selective field-induced aggregation of the linked nanoparticles during the subsequent depletion step produces two lateral-flow like bands within 1cm for easy visualization and quantification as the aggregates have negligible electrophoretic mobility in the gel and the isolated nanoparticles are isotachophoretically packed against the migrating depletion front. The detection limit for 69-base single-stranded DNA targets is 10 pM (about 10 million copies for our sample volume) with high selectivity against nontargets and a three decade linear range for quantification. The selectivity and signal intensity are maintained in heterogeneous mixtures where the nontargets outnumber the targets 10,000 to 1. The selective field-induced aggregation of DNA-linked nanoparticles at the ion depletion front is attributed to their trailing position at the isotachophoretic front with a large field gradient. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 77 FR 63268 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... link bolts, center sway link bolts, and thrust link bolts on the forward engine mounts. This proposed... forward engine mounts. This condition, if left uncorrected, could result in a deterioration of the structural integrity of the front engine mount bolts [and possible damage to an engine or wing]. For the...

  16. Articulated suspension system

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B. (Inventor)

    1989-01-01

    The invention provides a rough terrain vehicle which maintains a substantially constant weight, and therefore traction, on all wheels, despite one wheel moving considerably higher or lower than the others, while avoiding a very soft spring suspension. The vehicle includes a chassis or body to be supported and a pair of side suspensions at either side of the body. In a six wheel vehicle, each side suspension includes a middle wheel, and front and rear linkages respectively coupling the front and rear wheels to the middle wheel. A body link pivotally connects the front and rear linkages together, with the middle of the body link rising or falling by only a fraction of the rise or fall of any of the three wheels. The body link pivotally supports the middle of the length of the body. A transverse suspension for suspending the end of the body on the side suspensions includes a middle part pivotally connected to the body about a longitudinal axis and opposite ends each pivotally connected to one of the side suspensions along at least a longitudinal axis.

  17. Shock Heating of the Merging Galaxy Cluster A521

    NASA Technical Reports Server (NTRS)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  18. 40 CFR 1066.710 - Cold temperature testing procedures for measuring CO and NMHC emissions and determining fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... climate control system with the heat on and set to primarily defrost the front window. Turn air.... (i) Prior to the first acceleration, 20 seconds after the start of the UDDS, set the climate control... climate control system): (A) Temperature. Set controls to maximum heat. (B) Fan speed. Set the fan speed...

  19. MPF Top-Mast Measured Temperature

    NASA Image and Video Library

    1997-10-14

    This temperature figure shows the change in the mean and variance of the temperature fluctuations at the Pathfinder landing site. Sol 79 and 80 are very similar, with a significant reduction of the mean and variance on Sol 81. The science team suspects that a cold front has past of the landing sight between Sols 80 and 81. http://photojournal.jpl.nasa.gov/catalog/PIA00978

  20. Severe Weather Guide Mediterranean Ports - 33. Tangier

    DTIC Science & Technology

    1990-11-01

    building tctt, eas. : .u’.d r.i f on l’ues. b. North to northwest wrrds usually accompany cold frontal passages. .2 or vato :an rayoe Strongest fronts...principal A-S-Nao2.s A. , 0 Rue Du Clateii-Lor, B.P. 426 irect-or, Tec!!. Info~at-,cn A-aPo11 x 292075 - Brost Cadex, Franc. Defense Adv. Rach. projects

  1. Gravity wave characteristics in the middle atmosphere during the CESAR campaign at Palma de Mallorca in 2011/2012: Impact of extratropical cyclones and cold fronts

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Wüst, S.; Schmidt, C.; Bittner, M.

    2015-06-01

    Based on a measuring campaign which was carried out at Mallorca (39.6°N, 2.7°E) as cooperation between Agència Estatal de Meteorologia (AEMET) and Deutsches Zentrum für Luft- und Raumfahrt, engl. 'German Aerospace Center' (DLR) in 2011/2012 (September-January), 143 radiosondes (day and night) providing vertical temperature and wind profiles were released. Additionally, nocturnal mesopause temperature measurements with a temporal resolution of about 1 min were conducted by the infrared (IR) - Ground-based Infrared P-branch Spectrometer (GRIPS) during the campaign period. Strongly enhanced gravity wave activity in the lower stratosphere is observed which can be attributed to a hurricane-like storm (so-called Medicane) and to passing by cold fronts. Statistical features of gravity wave parameters including energy densitiy and momentum fluxes are calculated. Gravity wave momentum fluxes turned out being up to five times larger during severe weather. Moreover, gravity wave horizontal propagation characteristics are derived applying hodograph and Stokes parameter analysis. Preferred directions are of southeast and northwest due to prevailing wind directions at Mallorca.

  2. Physical Activity and the Common Cold in Undergraduate University Students: Implications for Health Professionals

    ERIC Educational Resources Information Center

    Vossen, Deborah P.; McArel, Heather; Vossen, Jeffery F.; Thompson, Angela M.

    2004-01-01

    Objective: The common cold, known as upper respiratory tract infection (URTI), is the world's most prevalent illness. The purpose of this study was to determine if physical activity is linked to the incidence and/or duration of the common cold. Method: Undergraduate university students (n=200) were asked to complete two questionnaires. The…

  3. Considerations for Expanding, Eliminating, and Maintaining Community College Athletic Teams and Programs

    ERIC Educational Resources Information Center

    Lawrence, Heather J.; Mullin, Christopher M.; Horton, David, Jr.

    2009-01-01

    Collegiate athletic programs have often been referred to as the "front porch" of an institution. Coaches, athletic teams, student athletes, and athletic department staff serve as a "link between the immediate campus family and the larger community. It is this front-porch principle that makes managing intercollegiate athletics a unique and…

  4. Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study

    NASA Astrophysics Data System (ADS)

    Abdi Vishkaee, Farhad; Flamant, Cyrille; Cuesta, Juan; Oolman, Larry; Flamant, Pierre; Khalesifard, Hamid R.

    2012-02-01

    Dynamical processes leading to dust emission over Syria and Iraq, in response to a strong winter Shamal event as well as the subsequent transport of dust over Iraq and northwest Iran, are analyzed on the basis of a case study (22-23 February 2010) using a suite of ground-based and spaceborne remote sensing platforms together with modeling tools. Surface measurements on 22 February show a sharp reduction in horizontal visibility over Iraq occurring shortly after the passage of a cold front (behind which the northwesterly Shamal winds were blowing) and that visibilities could be as low as 1 km on average for 1-2 days in the wake of the front. The impact of the southwesterly Kaus winds blowing ahead (east) of the Shamal winds on dust emission over Iraq is also highlighted. Unlike what is observed over Iraq, low near-surface horizontal visibilities (<1 km) over northwest Iran are observed well after the passage of the cold front on 23 February, generally in the hours following sunrise. Ground-based lidar measurements acquired in Zanjan show that, in the wake of the front, dust from Syria/Iraq was transported in an elevated 1 to 1.5 km thick plume separated from the surface during the night/morning of 23 February. After sunrise, strong turbulence in the developing convective boundary layer led to mixing of the dust into the boundary layer and in turn to a sharp reduction of the horizontal visibility in Zanjan. The timing of the reduction of surface horizontal visibility in other stations over northwest Iran (Tabriz, Qom, and Tehran) is consistent with the downward mixing of dust in the planetary boundary layer just after sunset, as evidenced in Zanjan. This study sheds new light on the processes responsible for dust emission and transport over Iraq and northwest Iran in connection with winter Shamal events. Enhanced knowledge of these processes is key for improving dust forecasts in this region.

  5. Observation of dust emission and transport over Iraq and northwest Iran associated with winter Shamal

    NASA Astrophysics Data System (ADS)

    Flamant, C.; Abdi Vishkaee, F.; Cuesta, J.; Khalesifard, H.; Oolman, L.; Flamant, P.

    2012-04-01

    Dynamical processes leading to dust emission over Syria and Iraq, in response to a strong winter Shamal event as well as the subsequent transport of dust over Iraq and northwest Iran, are analyzed on the basis of a case study (22-23 February 2010) using a suite of ground-based and space-borne remote sensing platforms together with modeling tools. Surface measurements on 22 February show a sharp reduction in horizontal visibility over Iraq occurring shortly after the passage of a cold front (behind which the northwesterly Shamal winds were blowing) and that visibilities could be as low as 1 km on average for one to two days in the wake of the front. The impact of the southwesterly Kaus winds blowing ahead (east) of the Shamal winds on dust emission over Iraq is also highlighted. Unlike what is observed over Iraq, low near-surface horizontal visibilities (less than 1 km) over northwest Iran are observed well after the passage of the cold front on 23 February, generally in the hours following sunrise. Ground-based lidar measurements acquired in Zanjan show that, in the wake of the front, dust from Syria/Iraq was transported in an elevated 1 to 1.5 km thick plume separated from the surface during the night/morning of February. After sunrise, strong turbulence in the developing convective boundary layer led to mixing of the dust into the boundary layer and in turn to a sharp reduction of the horizontal visibility in Zanjan. The timing of the reduction of surface horizontal visibility in other stations over northwest Iran (Tabriz, Qom and Tehran) is consistent with the downward mixing of dust in the PBL just after sunset, as evidenced in Zanjan. This study shades new light on the processes responsible for dust emission and transport over Iraq and northwest Iran in connection with winter Shamal events. Enhanced knowledge of these processes is key for improving dust forecasts in this region.

  6. A numerical investigation of the President's Day storm of February 18-19, 1979

    NASA Technical Reports Server (NTRS)

    Nappi, A. J.; Warner, T. T.

    1983-01-01

    The reported investigation is based on the use of a three-dimensional, primitive equation model. The President's Day storm, formed in the Gulf of Mexico as a massive anticyclone, affected the northern states with record-breaking cold temperatures. Attention is given to the physical processes relevant to storm formation, the forecast model, a description of experiments and model forecasts, and model results. An attempt is made to determine the important dynamic processes at work during the evolution of the storm. The jet streak interactions which occurred in the cyclogenetic environment, the effects of cold air damming, and the formation of a strong mesoscale coastal front are found to be of particular interest.

  7. MACS J0553.4-3342: a young merging galaxy cluster caught through the eyes of Chandra and HST

    NASA Astrophysics Data System (ADS)

    Pandge, M. B.; Bagchi, Joydeep; Sonkamble, S. S.; Parekh, Viral; Patil, M. K.; Dabhade, Pratik; Navale, Nilam R.; Raychaudhury, Somak; Jacob, Joe

    2017-12-01

    We present a detailed analysis of a young merging galaxy cluster MACS J0553.4-3342 (z=0.43) from Chandra X-ray and Hubble Space Telescope archival data. X-ray observations confirm that the X-ray emitting intra-cluster medium (ICM) in this system is among the hottest (average T = 12.1 ± 0.6 keV) and most luminous known. Comparison of X-ray and optical images confirms that this system hosts two merging subclusters SC1 and SC2, separated by a projected distance of about 650 kpc. The subcluster SC2 is newly identified in this work, while another subcluster (SC0), previously thought to be a part of this merging system, is shown to be possibly a foreground object. Apart from two subclusters, we find a tail-like structure in the X-ray image, extending to a projected distance of ∼1 Mpc, along the north-east direction of the eastern subcluster (SC1). From a surface brightness analysis, we detect two sharp surface brightness edges at ∼40 (∼320 kpc) and ∼80 arcsec (∼640 kpc) to the east of SC1. The inner edge appears to be associated with a merger-driven cold front, while the outer one is likely to be due to a shock front, the presence of which, ahead of the cold front, makes this dynamically disturbed cluster interesting. Nearly all the early-type galaxies belonging to the two subclusters, including their brightest cluster galaxies, are part of a well-defined red sequence.

  8. Sidewall crystallization and saturation front formation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, E. T.

    2012-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.

  9. Convective structure of the planetary boundary layer of the ocean during gale

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Boers, R.

    1986-01-01

    The structure of the Planetary Boundary Layer (PBL) was measured, using an airborne lidar, over the Atlantic Ocean during several intensive observation periods of the Genesis of Atlantic Lows Experiment (GALE). Primary emphasis is on the understanding of the convective structure within the PBL during cold air outbreaks. Cold outbreaks generally occur in between the development of coastal storms; and behind a cold front sweeping down from Canada out across the Atlantic. As the cold dry air moves over the relatively warm ocean, it is heated and moistened. The transfer of latent and sensible heat during these events accounts for most of the heat transfer between the ocean and atmosphere during winter. Moistening of the PBL during these eventsis believed to be an important factor in determining the strength of development of the storm system which follows. In general, the more PBL moisture available as latent heat the higher the probability the storm will intensify. The major mechanism for vertical mixing of heat and mositure within the PBL is cellular convection. Knowlede of the organization and structure of the convection is important for understanding the process.

  10. Design and Analysis of the Warm-To Suspension Links for Jefferson Lab's 11 Gev/c Super High Momentum Spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, E.; Brindza, P.; Lassiter, S.; Fowler, M.

    2010-04-01

    This paper describes design and analysis performed for the warm-to-cold suspension links of the warm iron yoke superconducting quadrupole magnets, and superconducting dipole magnet. The results of investigation of titanium Ti-6Al-4V and Nitronic 50 stainless steel for the suspension links to support the cold mass, preloads, forces due to cryogenic temperature, and imbalanced magnetic forces from misalignments are presented. Allowable stresses at normal-case scenarios and worst-case scenarios, space constraints, and heat leak considerations are discussed. Principles of the ASME Pressure Vessel Code were used to determine allowable stresses. Optimal angles of the suspension links were obtained by calculation and finite element methods. The stress levels of suspension links at multiple scenarios are presented, discussed, and compared with the allowable stresses.

  11. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects

    PubMed Central

    Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2017-01-01

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  12. An Israeli haboob: Sea breeze activating local anthropogenic dust sources in the Negev loess

    NASA Astrophysics Data System (ADS)

    Crouvi, Onn; Dayan, Uri; Amit, Rivka; Enzel, Yehouda

    2017-02-01

    Meso-scale weather systems, such as convective haboobs, are considered to be an important dust generation mechanism. In Israel, however, rather than of meso-scale weather systems, most dust storms are generated by synoptic-scale systems, originating from Sahara and Arabia. Consequently, only distal sources of suspended and deposited dust in Israel are currently reported. Here we report the first detailed study on the merging of synoptic- and meso-scale weather systems leading to a prominent dust outbreak over the Negev, Israel. During the afternoon of May 2nd, 2007, a massive dust storm covered the northern Negev, forming a one kilometer high wall of dust. The haboob was associated with PM10 concentrations of 1000-1500 μg m-3 that advanced at a speed of 10-15 m s-1 and caused temporary closure of local airports. In contrast to most reported haboobs, this one was generated by a sea breeze front acting as a weak cold front enhanced by a cold core cyclone positioned over Libya and Egypt. The sea breeze that brought cold and moist marine air acted as a gravity current with strong surface winds. The sources for the haboob were the loessial soils of the northwestern Negev, especially agricultural fields that were highly disturbed in late spring to early summer. Such surface disturbance is caused by agricultural and/or intensive grazing practices. Our study emphasizes the importance of local dust sources in the Negev and stresses loess recycling as an important process in contemporary dust storms over Israel.

  13. Ecohydrodynamics of cold-water coral reefs: a case study of the Mingulay Reef Complex (western Scotland).

    PubMed

    Moreno Navas, Juan; Miller, Peter I; Miller, Peter L; Henry, Lea-Anne; Hennige, Sebastian J; Roberts, J Murray

    2014-01-01

    Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

  14. Ecohydrodynamics of Cold-Water Coral Reefs: A Case Study of the Mingulay Reef Complex (Western Scotland)

    PubMed Central

    Navas, Juan Moreno; Miller, Peter L.; Henry, Lea-Anne; Hennige, Sebastian J.; Roberts, J. Murray

    2014-01-01

    Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications. PMID:24873971

  15. The effect of cold priming on the fitness of Arabidopsis thaliana accessions under natural and controlled conditions.

    PubMed

    Cvetkovic, Jelena; Müller, Klaus; Baier, Margarete

    2017-03-09

    Priming improves an organism's performance upon a future stress. To test whether cold priming supports protection in spring and how it is affected by cold acclimation, we compared seven Arabidopsis accessions with different cold acclimation potentials in the field and in the greenhouse for growth, photosynthetic performance and reproductive fitness in March and May after a 14 day long cold-pretreatment at 4 °C. In the plants transferred to the field in May, the effect of the cold pretreatment on the seed yield correlated with the cold acclimation potential of the accessions. In the March transferred plants, the reproductive fitness was most supported by the cold pretreatment in the accessions with the weakest cold acclimation potential. The fitness effect was linked to long-term effects of the cold pretreatment on photosystem II activity stabilization and leaf blade expansion. The study demonstrated that cold priming stronger impacts on plant fitness than cold acclimation in spring in accessions with intermediate and low cold acclimation potential.

  16. Frontal Polymerization of Dicyclopentadiene: A Numerical Study.

    PubMed

    Goli, Elyas; Robertson, Ian D; Geubelle, Philippe H; Moore, Jeffrey S

    2018-04-26

    As frontal polymerization is being considered as a faster and more energy efficient manufacturing technique for polymer-matrix fiber-reinforced composites, we perform a finite-element-based numerical study of the initiation and propagation of a polymerization front in dicyclopentadiene (DCPD). The transient thermochemical simulations are complemented by an analytical study of the steady-state propagation of the polymerization front, allowing to draw a direct link between the cure kinetics model and the key characteristics of the front, i.e., front velocity and characteristic length scales. The second part of this study focuses on the prediction of the temperature spike associated with the merger of two polymerization fronts. The thermal peak, which might be detrimental to the properties of the polymerized material, is due to the inability of the heat associated with the highly exothermic reaction to be dissipated when the two fronts merge. The analysis investigates how the amplitude of the thermal spike is affected by the degree of cure at the time of the front merger.

  17. Advanced Metalworking Solutions For Naval Systems That Go In Harm’s Way

    DTIC Science & Technology

    2015-01-01

    destroyers USS Momsen (DDG 92) and USS Preble (DDG 88) are underway in formation. U.S. Navy photo Front cover: Ingalls Shipbuilding welding photo...applies a variety of innovative welding technologies to address the challenges associated with joining weapon system components. Joining Technologies...friction stir welding process to manufacture edge-cooled naval electronic cold plate assemblies. The modular, high- performance, and scalable

  18. Enhancement in secondary particulate matter production due to mountain trapping

    NASA Astrophysics Data System (ADS)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be originated from the PRD and transported back resulting in significant increase of secondary PM concentration, and provides new insight into PM production and transport mechanism in the PRD.

  19. An Investigation into the Gravity Current Aspects of a Cold Air Outbreak Using Variational Analysis Techniques

    DTIC Science & Technology

    1988-01-01

    the motiorn of the front- Behind the front betwueen Peorias (PIA) and Salem (510) 0 is directly in phase with Ca uwhich enhmwves the deuealapment omf...4ower coi ij. 77 (A.k, 1 -A~k)/Zp A PFA PC - (*A-)/pAPAP +(4)cOk.1 4 ) Ok...4j)llAPC -. kk,/2 Mc-Tok = 0 For k=3,7 uphicmh simplifies tv, Futr k=3,7...EQN 7), RAk+A𔃼rA PFA Ptc*-~k-’PA PB&~ PC4(+ oyk*17+ k.1>.OA PC-Ta-k] 112- A PFA PC + 114P A pi-APC + 1/2c- Fcr k=Z EQN 8), Xk=[Xk+./2PAPFAPC

  20. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Higginson, D. P.; Wilks, S. C.; Haberberger, D.; Katz, J.; Froula, D. H.; Hoffman, N. M.; Kagan, G.; Keenan, B. D.; Vold, E. L.

    2018-03-01

    The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M ˜11 ) propagating through a low-density (ρ ˜0.01 mg /cc ) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.

  1. Numerical simulation of the hydrodynamical combustion to strange quark matter

    NASA Astrophysics Data System (ADS)

    Niebergal, Brian; Ouyed, Rachid; Jaikumar, Prashanth

    2010-12-01

    We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable u,d,s quark matter. Our method solves hydrodynamical flow equations in one dimension with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change from heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature-dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below ≈2 times saturation density). In a two-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.

  2. Shock isolator for operating a diode laser on a closed-cycle refrigerator

    NASA Technical Reports Server (NTRS)

    Jennings, D. E. (Inventor)

    1979-01-01

    A diode laser mounted within a helium refrigerator is mounted using a braided copper ground strap which provides good impact shock isolation from the refrigerator cold-tip while also providing a good thermal link to the cold-tip. The diode mount also contains a rigid stand-off assembly consisting of alternate sections of nylon and copper which serve as cold stations to improve thermal isolation from the vaccum housing mounting structure. Included in the mount is a Pb-In alloy wafer inserted between the cold-tip and the diode to damp temperature fluctuations occurring at the cold-tip.

  3. Seasonal Snow Cold Content Dynamics in the Alpine and Sub-Alpine, Niwot Ridge, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Jennings, K. S.; Molotch, N. P.

    2015-12-01

    Cold content represents the energy required to warm a sub-freezing snowpack to an isothermal 0°C. Across daily and seasonal time scales it is a dynamic interplay between the forces of snowpack accumulation/cooling and warming. Cold content determines snowmelt timing and is an important component of the annual energy budget of mountain sites with seasonal snowpacks. However, little is understood about seasonal snowpack cold content dynamics as calculating cold content requires depth-weighted snowpack temperature and snow water equivalent (SWE) measurements, which are scarce. A spatially distributed network of snow pits has been sampled since 1993 at the Niwot Ridge Long Term Ecological Research site on the eastern slope of the Continental Divide in Colorado's Front Range mountains. This study uses data from 3 pit sites that have at least 8 years of observations and represent alpine and sub-alpine environments. For these pits, cold content is strongly related to SWE during the cold content accumulation phase, here defined as December, January, and February. Average peak cold content ranges between -2.5 MJ m-2 and -9.2 MJ m-2 for the three sites and is strongly related to peak SWE. On average, cold content reaches its maximum on February 26, which is 61 days before the average date of peak SWE (i.e., the snowpack's cold content is satisfied over an average of 61 days). At the alpine site, later peak cold content and SWE was observed relative to the lower elevation sub-alpine sites. Interestingly, the alpine site had a smaller gap between peak cold content and SWE (55 days versus 67 days for the alpine and sub-alpine sites, respectively). The gap between peak cold content and peak SWE is primarily a function of the increase in SWE between the two dates. Hence, persistent snowfall after the date of peak cold content can delay the onset of snowmelt even if peak cold content was relatively low. Improving our understanding of seasonal cold content dynamics in mountain environments will enable us to better model the future effects of climate change on snowmelt timing and associated hydrologic response.

  4. Cold-spotting: linking primary care and public health to create communities of solution.

    PubMed

    Westfall, John M

    2013-01-01

    By providing enhanced primary care and social services to patients with high utilization of expensive emergency and hospital care, there is evidence that their health can improve and their costs can be lowered. This type of "hot-spotting" improves the care of individual patients. It may be that these patients live in communities with disintegrated social determinants of health, little community support, and poor access to primary care. These "cold spots" in the community may be amenable to interventions targeted at linking primary care and public health at broader community and population levels. Building local communities of solution that address the individual and population may help decrease these cold spots, thereby eliminating the hot spots as well.

  5. Proteomic Characterization of Inbreeding-Related Cold Sensitivity in Drosophila melanogaster

    PubMed Central

    Beck, Hans C.; Petersen, Jørgen; Gagalova, Kristina Kirilova; Loeschcke, Volker

    2013-01-01

    Inbreeding depression is a widespread phenomenon of central importance to agriculture, medicine, conservation biology and evolutionary biology. Although the population genetic principles of inbreeding depression are well understood, we know little about its functional genomic causes. To provide insight into the molecular interplay between intrinsic stress responses, inbreeding depression and temperature tolerance, we performed a proteomic characterization of a well-defined conditional inbreeding effect in a single line of Drosophila melanogaster, which suffers from extreme cold sensitivity and lethality. We identified 48 differentially expressed proteins in a conditional lethal line as compared to two control lines. These proteins were enriched for proteins involved in hexose metabolism, in particular pyruvate metabolism, and many were found to be associated with lipid particles. These processes can be linked to known cold tolerance mechanisms, such as the production of cryoprotectants, membrane remodeling and the build-up of energy reserves. We checked mRNA-expression of seven genes with large differential protein expression. Although protein expression poorly correlated with gene expression, we found a single gene (CG18067) that, after cold shock, was upregulated in the conditional lethal line both at the mRNA and protein level. Expression of CG18067 also increased in control flies after cold shock, and has previously been linked to cold exposure and chill coma recovery time. Many differentially expressed proteins in our study appear to be involved in cold tolerance in non-inbred individuals. This suggest the conditional inbreeding effect to be caused by misregulation of physiological cold tolerance mechanisms. PMID:23658762

  6. Environmental friendly cold-mechanical/sonic enzymatic assisted extraction of genipin from genipap (Genipa americana).

    PubMed

    Ramos-de-la-Peña, Ana Mayela; Renard, Catherine M G C; Wicker, Louise; Montañez, Julio C; García-Cerda, Luis Alfonso; Contreras-Esquivel, Juan Carlos

    2014-01-01

    An efficient cold-mechanical/sonic-assisted extraction technique was developed for extraction of genipin from genipap (Genipa americana) peel. Ultrasound assisted extraction (285 W, 24 kHz) was performed at 5, 10 and 15 °C for 5, 10 and 15 min. After cold-extraction, genipin was separated from pectin and proteins by aid of fungal pectinesterase. The maximum yield of non-cross-linked genipin was 7.85±0.33 mg/g, at 10 °C for 15 min by means of ultrasound extraction. The protein amount in extracts decreased in all samples. If mechanical process is combined with ultrasound assisted extraction the yield is increased by 8 times after the pectinesterase-assisted polyelectrolyte complex formation between pectic polysaccharides and proteins, avoiding the typical cross-linking of genipin. This novel process is viable to obtain non-cross-linked genipin, to be used as a natural colorant and cross-linker in the food and biotechnological industries. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The Front-End System For MARE In Milano

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Claudio; Pessina, Gianluigi

    2009-12-01

    The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.

  8. Improvement of Janus Using Pegasus 1-Meter Resolution Database With a Transputer Network

    DTIC Science & Technology

    1994-03-01

    Figure 4.9 shows the six jacks on the end of the HSI-card. Facing the back of the SPARC Station LINKO LINKI LINK2 LINK3 DOWN UP Figure 4.9: HSI-Card Link...shown in Figure 4.22. Facing the back of the Sun SPARC Station LINK0 LINKI LINK2 LINK3 DOWN UP "b Telephone Cable Facing the front of the Remote Tram...Holder LINKO LINKI LINK2 LINK3 DOWN UPI Figure 4.20: The Connection Between Sun SPARC Station and Remote Tram Holder 58 (3) Se.inu Up t• Link Speed

  9. Carbonate-periplatform sedimentation by density flows: A mechanism for rapid off-bank and vertical transport of shallow-water fines

    USGS Publications Warehouse

    Wilson, P.A.; Roberts, Harry H.

    1993-01-01

    Existing theories of off-bank sediment transport cannot account for rapid rates of sedimentation observed in Bahama bank and Florida shelf periplatform environments. Analysis of the physical processes operating during winter cold fronts suggests that accelerated off-bank transport of shallow-water mud may be achieved by sinking off-bank flows of sediment-charged hyperpycnal (super-dense) platform waters.

  10. Development of BPM Electronics at the JLAB FEL

    NASA Astrophysics Data System (ADS)

    Sexton, D.; Evtushenko, P.; Jordan, K.; Yan, J.; Dutton, S.; Moore, W.; Evans, R.; Coleman, J.

    2006-11-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reduced to 1.17 MHz, which corresponds to about 160 μA of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 μm is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.

  11. Development of BPM Electronics at the JLAB FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, D.; Evtushenko, P.; Jordan, K.

    2006-11-20

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reducedmore » to 1.17 MHz, which corresponds to about 160 {mu}A of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 {mu}m is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.« less

  12. Development of BPM Electronics at the JLAB FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Sexton; Pavel Evtushenko; Kevin Jordan

    2006-05-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with the micropulse up to 74.85 MHz. For diagnostic reasons and for the machine tune up, the micropulse frequency canmore » be reduced to 1.17 MHz, which corresponds to about 160 ?A of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 ?m is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.« less

  13. Large area thermal target board: An improvement to environmental effects and system parameters characterization

    NASA Astrophysics Data System (ADS)

    Watkins, Wendell R.; Bean, Brent L.; Munding, Peter D.

    1994-06-01

    Recent field tests have provided excellent opportunities to use a new characterization tool associated with the Mobile Imaging Spectroscopy Laboratory (MISL) of the Battlefield Environment Directorate, formerly the U.S. Army Atmospheric Sciences Laboratory. The MISL large area (1.8 by 1.8 m, uniform temperature, thermal target) was used for characterization and isolation of phenomena which impact target contrast. By viewing the target board from closeup and distant ranges simultaneously with the MISL thermal imagers, the inherent scene content could be calibrated and the degrading effects of atmospheric propagation could be isolated. The target board is equipped with several spatial frequency bar patterns, but only the largest 3.5-cycle full area bar pattern was used for the distant range of 1.6 km. The quantities measured with the target board include the inherent background change, the contrast transmission, and the atmospheric modulation transfer function. The MISL target board has a unique design which makes it lightweight with near perfect transition between the hot and cold portions of the bar pattern. The heated portion of the target is an elongated rectangular even which is tilted back at a 30 deg angle to form a 1.8 by 1.8 m square when viewed from the front. The cold bars we positioned in front of the heated oven surface and can be oriented in either the vertical or horizontal direction. The oven is mounted on a lightweight trailer for one- or two-man positioning. An attached metal and canvas structure is used to shield the entire target from both solar loading and cooling winds. The target board has a thin aluminum sheet front surface which is insulated from the oven's heating structure.

  14. Front-Eddy Influence on Water Column Properties, Phytoplankton Community Structure, and Cross-Shelf Exchange of Diatom Taxa in the Shelf-Slope Area off Concepción (˜36-37°S)

    NASA Astrophysics Data System (ADS)

    Morales, Carmen E.; Anabalón, Valeria; Bento, Joaquim P.; Hormazabal, Samuel; Cornejo, Marcela; Correa-Ramírez, Marco A.; Silva, Nelson

    2017-11-01

    In eastern boundary current systems (EBCSs), submesoscale to mesocale variability contributes to cross-shore exchanges of water properties, nutrients, and plankton. Data from a short-term summer survey and satellite time series (January-February 2014) were used to characterize submesoscale variability in oceanographic conditions and phytoplankton distribution across the coastal upwelling and coastal transition zones north of Punta Lavapié, and to explore cross-shelf exchanges of diatom taxa. A thermohaline front (FRN-1) flanked by a mesoscale anticyclonic intrathermocline eddy (ITE-1), or mode-water eddy, persisted during the time series and the survey was undertaken during a wind relaxation event. At the survey time, ITE-1 contributed to an onshore intrusion of warm oceanic waters (southern section) and an offshore advection of cold coastal waters (northern section), with the latter forming a cold, high chlorophyll-a filament. In situ phytoplankton and diatom biomasses were highest at the surface in FRN-1 and at the subsurface in ITE-1, whereas values in the coastal zone were lower and dominated by smaller cells. Diatom species typical of the coastal zone and species dominant in oceanic waters were both found in the FRN-1 and ITE-1 interaction area, suggesting that this mixture was the result of both offshore and onshore advection. Overall, front-eddy interactions in EBCSs could enhance cross-shelf exchanges of coastal and oceanic plankton, as well as sustain phytoplankton growth in the slope area through localized upward injections of nutrients in the frontal zone, combined with ITE-induced advection and vertical nutrient inputs to the surface layer.

  15. Characteristics of radar-derived hailstreaks across Central Europe

    NASA Astrophysics Data System (ADS)

    Kunz, Michael; Fluck, Elody; Schmidberger, Manuel; Jürgen Punge, Heinz; Baumstark, Sven

    2017-04-01

    Hailstorms are among the most damaging natural disasters in various parts of Europe. For example, two supercells in Germany, on 27 and 28 July 2013, bearing hailstones with a diameter of up to 10 cm, caused economic losses of around 4.0 billion EUR. Despite the large damage potential of severe hailstorms, knowledge about the probability and severity of hail events and hailstorm-favoring conditions in Europe still is limited. A large event set of past severe thunderstorms that occurred between 2004 and 2014 was identified for Germany, France, Belgium, and Luxembourg from radar data considering a lower threshold of 55 dBZ of the maximum Constant Altitude Plan Position Indicator (maxCAPPI). Additional filtering with lightning data and applying a cell tracking algorithm improves the reliability of the detected severe thunderstorm tracks. The obtained statistics show a gradual increase of the track density with increasing distance to the Atlantic and several local-scale maxima, mostly around the mountains. Both the seasonal and daily cycle of severe thunderstorms show large differences across the investigation area. For example, while in Southern France most events occur in June, the peak month in Northern Germany is August, which can be plausibly explained by differences in convective energy due to the large-scale circulation. Furthermore, ambient conditions in terms of convection-related quantities (e.g., CAPE, wind shear, lapse rate) and prevailing synoptic scale fronts were studied both for the entire event set and a subset, where radar-derived storm tracks were combined with hail observations provided by the European Severe Weather Database ESWD. Over Northern Germany, for example, up to 40% of all radar-derived thunderstorm tracks were associated with cold fronts, while in Southern Germany the ratio is only around 20%. Overall, around 25% of all hail streaks were associated with cold fronts.

  16. Synchoronous inter-hemispheric alpine glacier advances during the Late Glacial?

    NASA Astrophysics Data System (ADS)

    Bakke, Jostein; Paasche, Øyvind

    2016-04-01

    The termination of the last glaciation in both hemispheres was a period of rapid climate swings superimposed on the overall warming trend, resulting from large-scale reorganizations of the atmospheric and oceanic circulation patterns in both hemispheres. Environmental changes during the deglaciation have been inferred from proxy records, as well as by model simulations. Several oscillations took place both in northern and southern hemispheres caused by melt water releases such as during the Younger Dryas in north and the Antarctic Cold Reversal in south. However, a consensus on the hemispheric linkages through ocean and atmosphere are yet to be reached. Here we present a new multi-proxy reconstruction from a sub-annually resolved lake sediment record from Lake Lusvatnet in Arctic Norway compared with a new reconstruction from the same time interval at South Georgia, Southern Ocean, suggesting inter-hemispheric climate linkages during the Bølling/Allerød time period. Our reconstruction of the alpine glacier in the lake Lusvatnet catchment show a synchronous glacier advance with the Birch-hill moraine complex in the Southern Alps, New Zealand during the Intra Allerød Cooling period. We propose these inter hemispheric climate swings to be forced by the northward migration of the southern Subtropical Front during the Antarctic Cold Reversal. Such a northward migration of the Subtropical Front is shown in model simulation and in palaeorecords to reduce the Agulhas leakage impacting the strength of the Atlantic meridional overturning circulation. We simply ask if this can be the carrier of rapid climate swings from one hemisphere to another? Our high-resolution reconstructions provide the basis for an enhanced understanding of the tiny balance between migration of the Subtropical Front in the Southern Ocean and the teleconnection to northern hemisphere.

  17. Ultraviolet-B radiation induced cross-linking improves physical properties of cold- and warm-water fish gelatin gels and films.

    PubMed

    Otoni, Caio G; Avena-Bustillos, Roberto J; Chiou, Bor-Sen; Bilbao-Sainz, Cristina; Bechtel, Peter J; McHugh, Tara H

    2012-09-01

    Cold- and warm-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm(2). Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rheological properties of the solutions as well as the tensile and water vapor barrier properties of the films were characterized. SDS-PAGE and refractive index results indicated cross-linking of gelatin chains after exposure to radiation. Interestingly, UV-B treated samples displayed higher gel strengths, with cold- and warm-water fish gelatin having gel strength increases from 1.39 to 2.11 N and from 7.15 to 8.34 N, respectively. In addition, both gelatin samples exhibited an increase in viscosity for higher UV doses. For gelatin films, the cold-water fish gelatin samples made from irradiated granules showed greater tensile strength. In comparison, the warm-water gelatin films made from irradiated granules had lower tensile strength, but better water vapor barrier properties. This might be due to the UV induced cross-linking in warm-water gelatin that disrupted helical structures. Journal of Food Science copy; 2012 Institute of Food Technologists® No claim to original US government works.

  18. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    DOE PAGES

    Rinderknecht, Hans G.; Park, H. -S.; Ross, J. S.; ...

    2018-03-02

    In this paper, the structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (more » $$M{\\sim}11$$) propagating through a low-density ($${\\rho}{\\sim}0.01\\text{ }\\text{ }\\mathrm{mg}/\\mathrm{cc}$$) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Finally, instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.« less

  19. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, Hans G.; Park, H. -S.; Ross, J. S.

    In this paper, the structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (more » $$M{\\sim}11$$) propagating through a low-density ($${\\rho}{\\sim}0.01\\text{ }\\text{ }\\mathrm{mg}/\\mathrm{cc}$$) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Finally, instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.« less

  20. Contributions of regional and intercontinental transport to surface ozone in the Tokyo area

    NASA Astrophysics Data System (ADS)

    Yoshitomi, M.; Wild, O.; Akimoto, H.

    2011-08-01

    Japan lies downwind of the Asian continent and for much of the year air quality is directly influenced by emissions of ozone precursors over these heavily-populated and rapidly-industrializing regions. This study examines the extent to which oxidant transport from regional and distant anthropogenic sources influences air quality in Japan in springtime, when these contributions are largest. We find that European and North American contributions to surface ozone over Japan in spring are persistent, averaging 3.5±1.1 ppb and 2.8±0.5 ppb respectively, and are greatest in cold continental outflow conditions following the passage of cold fronts. Contributions from China are larger, 4.0±2.8 ppb, and more variable, as expected for a closer source region, and are generally highest near cold fronts preceding the influence of more distant sources. The stratosphere provides a varying but ever-present background of ozone of about 11.2±2.5 ppb during spring. Local sources over Japan and Korea have a relatively small impact on mean ozone, 2.4±7.6 ppb, but this masks a strong diurnal signal, and local sources clearly dominate during episodes of high daytime ozone. By examining the meteorological mechanisms that favour transport from different source regions, we demonstrate that while maximum foreign influence generally does not occur at the same time as the greatest buildup of oxidants from local sources, it retains a significant influence under these conditions. It is thus clear that while meteorological boundaries provide some protection from foreign influence during oxidant outbreaks in Tokyo, these distant sources still make a substantial contribution to exceedance of the Japanese ozone air quality standard in springtime.

  1. Contributions of regional and intercontinental transport to surface ozone in Tokyo

    NASA Astrophysics Data System (ADS)

    Yoshitomi, M.; Wild, O.; Akimoto, H.

    2011-04-01

    Japan lies downwind of the Asian continent and for much of the year air quality is directly influenced by emissions of ozone precursors over these heavily-populated and rapidly-industrializing regions. This study examines the extent to which oxidant transport from regional and distant anthropogenic sources influences air quality in Japan in springtime, when these contributions are largest. We find that European and North American contributions to surface ozone over Japan in spring are persistent, averaging 3.5±1.1 ppb and 2.8±0.5 ppb respectively, and are greatest in cold continental outflow conditions following the passage of cold fronts. Contributions from China are larger, 4.0±2.8 ppb, and more variable, as expected for a closer source region, and are generally highest near cold fronts preceding the influence of more distant sources. The stratosphere provides a varying but ever-present background of ozone of about 11.2±2.5 ppb during spring. Local sources over Japan and Korea have a relatively small impact on mean ozone, 2.4±7.6 ppb, but this masks a strong diurnal signal, and local sources clearly dominate during episodes of high daytime ozone. By examining the meteorological mechanisms that favour transport from different source regions, we demonstrate that while maximum foreign influence generally does not occur at the same time as the greatest buildup of oxidants from local sources, it retains a significant influence under these conditions. It is thus clear that while meteorological boundaries provide some protection from foreign influence during oxidant outbreaks in Tokyo, these distant sources still make a substantial contribution to exceedance of the Japanese ozone air quality standard in springtime.

  2. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  3. The phase 1 upgrade of the CMS Pixel Front-End Driver

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Pernicka, M.; Steininger, H.

    2010-12-01

    The pixel detector of the CMS experiment at the LHC is read out by analog optical links, sending the data to 9U VME Front-End Driver (FED) boards located in the electronics cavern. There are plans for the phase 1 upgrade of the pixel detector (2016) to add one more layer, while significantly cutting down the overall material budget. At the same time, the optical data transmission will be replaced by a serialized digital scheme. A plug-in board solution with a high-speed digital optical receiver has been developed for the Pixel-FED readout boards and will be presented along with first tests of the future optical link.

  4. Influence of wave-front sampling in adaptive optics retinal imaging

    PubMed Central

    Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K.; Pircher, Michael

    2017-01-01

    A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. PMID:28271004

  5. Temporal and spatial distributions of cold-water corals in the Drake Passage: insights from the last 35,000 years

    USGS Publications Warehouse

    Margolin, Andrew R.; Robinson, Laura F.; Burke, Andrea; Waller, Rhian G.; Scanlon, Kathryn M.; Roberts, Mark L.; Auro, Maureen E.; van de Flierdt, Tina

    2014-01-01

    Scleractinian corals have a global distribution ranging from shallow tropical seas to the depths of the Southern Ocean. Although this distribution is indicative of the corals having a tolerance to a wide spectrum of environmental conditions, individual species seem to be restricted to a much narrower range of ecosystem variables. One way to ascertain the tolerances of corals, with particular focus on the potential impacts of changing climate, is to reconstruct their growth history across a range of environmental regimes. This study examines the spatial and temporal distribution of the solitary scleractinian corals Desmophyllum dianthus, Gardineria antarctica, Balanophyllia malouinensis, Caryophyllia spp. and Flabellum spp. from five sites in the Drake Passage which cross the major frontal zones. A rapid reconnaissance radiocarbon method was used to date more than 850 individual corals. Coupled with U-Th dating, an age range of present day back to more than 100 thousand years was established for corals in the region. Within this age range there are distinct changes in the temporal and spatial distributions of these corals, both with depth and latitude, and on millennial timescales. Two major patterns that emerge are: (1) D. dianthus populations show clear variability in their occurrence through time depending on the latitudinal position within the Drake Passage. North of the Subantarctic Front, D. dianthus first appears in the late deglaciation (~17,000 years ago) and persists to today. South of the Polar Front, in contrast, early deglacial periods, with a few modern occurrences. A seamount site between the two fronts exhibits characteristics similar to both the northern and southern sites. This shift across the frontal zones within one species cannot yet be fully explained, but it is likely to be linked to changes in surface productivity, subsurface oxygen concentrations, and carbonate saturation state. (2) at locations where multiple genera were dated, differences in age and depth distribution of the populations provide clear evidence that each genus has unique environmental requirements to sustain its population.

  6. Temporal and spatial distributions of cold-water corals in the Drake Passage: Insights from the last 35,000 years

    NASA Astrophysics Data System (ADS)

    Margolin, Andrew R.; Robinson, Laura F.; Burke, Andrea; Waller, Rhian G.; Scanlon, Kathryn M.; Roberts, Mark L.; Auro, Maureen E.; van de Flierdt, Tina

    2014-01-01

    Scleractinian corals have a global distribution ranging from shallow tropical seas to the depths of the Southern Ocean. Although this distribution is indicative of the corals having a tolerance to a wide spectrum of environmental conditions, individual species seem to be restricted to a much narrower range of ecosystem variables. One way to ascertain the tolerances of corals, with particular focus on the potential impacts of changing climate, is to reconstruct their growth history across a range of environmental regimes. This study examines the spatial and temporal distribution of the solitary scleractinian corals Desmophyllum dianthus, Gardineria antarctica, Balanophyllia malouinensis, Caryophyllia spp. and Flabellum spp. from five sites in the Drake Passage which cross the major frontal zones. A rapid reconnaissance radiocarbon method was used to date more than 850 individual corals. Coupled with U-Th dating, an age range of present day back to more than 100 thousand years was established for corals in the region. Within this age range there are distinct changes in the temporal and spatial distributions of these corals, both with depth and latitude, and on millennial timescales. Two major patterns that emerge are: (1) D. dianthus populations show clear variability in their occurrence through time depending on the latitudinal position within the Drake Passage. North of the Subantarctic Front, D. dianthus first appears in the late deglaciation (~17,000 years ago) and persists to today. South of the Polar Front, in contrast, early deglacial periods, with a few modern occurrences. A seamount site between the two fronts exhibits characteristics similar to both the northern and southern sites. This shift across the frontal zones within one species cannot yet be fully explained, but it is likely to be linked to changes in surface productivity, subsurface oxygen concentrations, and carbonate saturation state. (2) at locations where multiple genera were dated, differences in age and depth distribution of the populations provide clear evidence that each genus has unique environmental requirements to sustain its population.

  7. Shelf sea tidal currents and mixing fronts determined from ocean glider observations

    NASA Astrophysics Data System (ADS)

    Sheehan, Peter M. F.; Berx, Barbara; Gallego, Alejandro; Hall, Rob A.; Heywood, Karen J.; Hughes, Sarah L.; Queste, Bastien Y.

    2018-03-01

    Tides and tidal mixing fronts are of fundamental importance to understanding shelf sea dynamics and ecosystems. Ocean gliders enable the observation of fronts and tide-dominated flows at high resolution. We use dive-average currents from a 2-month (12 October-2 December 2013) glider deployment along a zonal hydrographic section in the north-western North Sea to accurately determine M2 and S2 tidal velocities. The results of the glider-based method agree well with tidal velocities measured by current meters and with velocities extracted from the TPXO tide model. The method enhances the utility of gliders as an ocean-observing platform, particularly in regions where tide models are known to be limited. We then use the glider-derived tidal velocities to investigate tidal controls on the location of a front repeatedly observed by the glider. The front moves offshore at a rate of 0.51 km day-1. During the first part of the deployment (from mid-October until mid-November), results of a one-dimensional model suggest that the balance between surface heat fluxes and tidal stirring is the primary control on frontal location: as heat is lost to the atmosphere, full-depth mixing is able to occur in progressively deeper water. In the latter half of the deployment (mid-November to early December), a front controlled solely by heat fluxes and tidal stirring is not predicted to exist, yet a front persists in the observations. We analyse hydrographic observations collected by the glider to attribute the persistence of the front to the boundary between different water masses, in particular to the presence of cold, saline, Atlantic-origin water in the deeper portion of the section. We combine these results to propose that the front is a hybrid front: one controlled in summer by the local balance between heat fluxes and mixing and which in winter exists as the boundary between water masses advected to the north-western North Sea from diverse source regions. The glider observations capture the period when the front makes the transition from its summertime to wintertime state. Fronts in other shelf sea regions with oceanic influence may exhibit similar behaviour, with controlling processes and locations changing over an annual cycle. These results have implications for the thermohaline circulation of shelf seas.

  8. US vaccine refrigeration guidelines: loose links in the cold chain.

    PubMed

    McColloster, Patrick J

    2011-05-01

    This commentary compares Centers for Disease Control (CDC) guidelines for vaccine storage with international cold chain standards. Problems related to the use of domestic refrigerators in clinical settings are discussed. Optimal vaccine refrigerator design characteristics are summarized. The adoption of World Health Organization storage recommendations is advised.

  9. Pore invasion dynamics during fluid front displacement in porous media determine functional pore size distribution and phase entrapment

    NASA Astrophysics Data System (ADS)

    Moebius, F.; Or, D.

    2012-12-01

    Dynamics of fluid fronts in porous media shape transport properties of the unsaturated zone and affect management of petroleum reservoirs and their storage properties. What appears macroscopically as smooth and continuous motion of a displacement fluid front may involve numerous rapid interfacial jumps often resembling avalanches of invasion events. Direct observations using high-speed camera and pressure sensors in sintered glass micro-models provide new insights on the influence of flow rates, pore size, and gravity on invasion events and on burst size distribution. Fundamental differences emerge between geometrically-defined pores and "functional" pores invaded during a single burst (invasion event). The waiting times distribution of individual invasion events and decay times of inertial oscillations (following a rapid interfacial jump) are characteristics of different displacement regimes. An invasion percolation model with gradients and including the role of inertia provide a framework for linking flow regimes with invasion sequences and phase entrapment. Model results were compared with measurements and with early studies on invasion burst sizes and waiting times distribution during slow drainage processes by Måløy et al. [1992]. The study provides new insights into the discrete invasion events and their weak links with geometrically-deduced pore geometry. Results highlight factors controlling pore invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment shaping hydraulic properties after the passage of a fluid front.

  10. Modeling the Circulation of the Atchafalaya Bay System. Part 2. River Plume Dynamics during Cold Fronts

    DTIC Science & Technology

    2008-07-01

    seaward. The in- Journal of Coastal Research, Vol. 24, No. 4, 2008 1066 Cobb, Keen, and Walker AB Seftfty, OBW 5O..176:7 Lsd 12 s ,Cb MOssiWSO SLI1T...Oceanography, 23, 164-171. along the Eastern Chenier Plain coast: down drift impact of a delta PEREZ, B.C.; DAY, J.W., JE.; RouE, L.J.; SHAw . R.F., and

  11. Navy Tactical Applications Guide. Volume 2. Environmental Phenomena and Effects

    DTIC Science & Technology

    1979-01-01

    usually distinguished: the polar-front jet stream, associated with extratropical frontal systems; and the subtropical jet stream, overlying the poleward...patterns have formed in the cold air behind a frontal cloud band which extends from North Africa into Southern Europe . Note that the cellular cloud field...but because of the future potential of such areas for rapid storm " , development. (See Case 3 for the further development of these vorticity centers

  12. Bibliography on Cold Regions Science and Technology. Volume 40, Part 1, 1986

    DTIC Science & Technology

    1986-12-01

    witer migration in an unaaturated frozen soil, morin clay, waa determined in horizontally cloaed »oil columns under linear temperature gradients...Peninsula At both ice fronts there is signiPcant tidal height energy in the first seven tidal species, indicating strong non- linear interaction, not all...dry soil weight, and increases with the increase in the molality linearly because of the linear freezing point depression. The curves of the

  13. Investigations of greenhouse gas variability across frontal structures in the lower troposphere during winter: Findings from the ACT - America Winter 2017 Campaign

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Pal, S.; Baier, B.; Browell, E. V.; Choi, Y.; DiGangi, J. P.; Dobler, J. T.; Erxleben, W. H.; Feng, S.; Gaudet, B. J.; Kooi, S. A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Hoffman, K.; Obland, M. D.; Pauly, R.; Sweeney, C.

    2017-12-01

    Synoptic scale weather events like cold front passages play an important role in distributing greenhouse gases (GHG, e.g., CO2, CH4) in the atmosphere. However, our knowledge and observational evidence on the GHG structures across frontal boundaries are limited. The second airborne field campaign of the Atmospheric Carbon and Transport - America (ACT-America) project in winter (January 30 - March 10 2017) documented gradients in GHGs across 9 frontal systems in three regions of the US, namely, Mid-Atlantic, Upper Mid-West, and South. High-resolution remote and in-situ airborne observations were collected with two aircraft: NASA C-130 and B-200. Using both active remote sensing and in-situ observations, we will discuss the magnitude of GHG frontal gradients in the atmospheric boundary layer (ABL) and free troposphere (FT) and how they vary among cases during winter. Three mechanisms for creating these gradients will be investigated: 1) local ecosystem or anthropogenic GHG sources; 2) horizontal transport of planetary scale, seasonal gradients; and 3) vertical mixing, especially associated with clouds and boundary layer depth depths. Preliminary analyses indicate higher front-related CO2 gradients in the boundary layer compared to the upper and lower FT as well as larger case-to-case variability in front-related CO2 gradients in the ABL compared to the FT. GHG gradients across fronts were smaller than in the summer, but still present. Tentatively, the signs of the CO2 gradients (vertical and frontal) in winter appear to have switched compared to the summer with higher CO2 concentrations in the cold sector of the frontal region than in the warm sector during the wintertime, but the CH4 gradients were similar in the two seasons. Using observations and simulations for both summer and winter, we will build toward a conceptual framework of the CO2 and CH4 gradients across frontal boundaries and provide insights into how boundary layer-regimes and synoptic-scale transport redistributes CO2 and CH4 across the midlatitudes.

  14. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  15. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress.

    PubMed

    Jha, Uday Chand; Bohra, Abhishek; Jha, Rintu

    2017-01-01

    Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.

  16. Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation

    NASA Astrophysics Data System (ADS)

    Boss, A. P.; Durisen, R. H.

    2005-03-01

    Chondrules are millimeter-sized spherules found throughout primitive chondritic meteorites. Flash heating by a shock front is the leading explanation of their formation. However, identifying a mechanism for creating shock fronts inside the solar nebula has been difficult. In a gaseous disk capable of forming Jupiter, the disk must have been marginally gravitationally unstable at and beyond Jupiter's orbit. We show that this instability can drive inward spiral shock fronts with shock speeds of up to ~10 km s-1 at asteroidal orbits, sufficient to account for chondrule formation. The mixing and transport of solids in such a disk, combined with the planet-forming tendencies of gravitational instabilities, results in a unified scenario linking chondrite production with gas giant planet formation.

  17. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    NASA Astrophysics Data System (ADS)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated compounds in aerosol chemistry and physics. By reference to tracers for the major organic aerosol sources, it is deduced that the oxygenated compounds are mainly of secondary origin and direct/indirect contribution from biomass burning could also be important. The chemical composition of these oxygenated species in PM2.5 samples in Hong Kong provide useful information to further ambient and model study in the aspects of chemical formation pathways and speciated organic mass distribution. (2) Source apportionment of PM2.5 organic aerosols in Hong Kong were carried out in two studies. In the first study, chemical characterization and source analysis involved samples collected on high particulate matter (PM) days (avg. PM 2.5 >84 mug m-3) at six general stations and one roadside station from October to December in 2003. Analysis of synoptic weather conditions identified three types of high PM episodes: local, regional transport (RT) and long-range transport (LRT). Roadside samples were discussed separately. Using chemical mass balance (CMB) model, contributions of major primary sources (vehicle exhaust, cooking, biomass burning, cigarette smoke, vegetative detritus, and coal combustion) were estimated, which indicate that vehicle exhaust was the most important primary source, followed by cooking and biomass burning. All primary sources except vegetative detritus had the highest contributions at roadside station, in line with its site characteristics. Primary sources dominated roadside and local samples (>64% of fine OC), while un-apportioned OC (i.e., the difference between measured OC and apportioned primary OC) dominated RT and LRT episodes (>60% of fine OC) and un-apportioned OC had characteristics of secondary OC. In the second study, cold front episodes during winter 2004 and 2005 were targeted to investigate the effect of cold front-related LRT on chemical characteristics and organic aerosol sources of PM2.5 in Hong Kong. In comparison with days under influences of mainly local emissions or RT, cold front LRT brought more organic aerosols attributable to coal combustion and biomass burning. Both cold front episodes and RT brought in significant amount of secondary OC to Hong Kong. The relative abundances of major aerosol constituents (sulfate, nitrate, ammonium, organic matter, and elemental carbon) were similar in cold front periods and RT-dominated periods.

  18. Improving Explicit Congestion Notification with the Mark-Front Strategy

    NASA Technical Reports Server (NTRS)

    Liu, Chunlei; Jain, Raj

    2001-01-01

    Delivering congestion signals is essential to the performance of networks. Current TCP/IP networks use packet losses to signal congestion. Packet losses not only reduces TCP performance, but also adds large delay. Explicit Congestion Notification (ECN) delivers a faster indication of congestion and has better performance. However, current ECN implementations mark the packet from the tail of the queue. In this paper, we propose the mark-front strategy to send an even faster congestion signal. We show that mark-front strategy reduces buffer size requirement, improves link efficiency and provides better fairness among users. Simulation results that verify our analysis are also presented.

  19. Cold air drainage flows subsidize montane valley ecosystem productivity

    Treesearch

    Kimberly A. Novick; Andrew C. Oishi; Chelcy Ford Miniat

    2016-01-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate...

  20. Confronting Common Folklore: Catching a Cold

    ERIC Educational Resources Information Center

    Keeley, Page

    2012-01-01

    Almost every child has experienced the sniffly, stuffy, and achy congestion of the common cold. In addition, many have encountered the "old wives tales" that forge a link between personal actions and coming down with this common respiratory infection. Much of this health folklore has been passed down from generation to generation (e.g., getting a…

  1. Magnetic Reconnection Dynamics in the Presence of Low-energy Ion Component: PIC Simulations of Hidden Particle Population

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Y. V.; Divin, A. V.; Toledo Redondo, S.; Andre, M.; Vaivads, A.; Markidis, S.; Lapenta, G.

    2015-12-01

    Magnetospheric and astrophysical plasmas are rarely in the state of thermal equilibrium. Plasma distribution functions may contain beams, supra-thermal tails, multiple ion and electron populations which are not thermalized over long time scales due to the lack of collisions between particles. In particular, the equatorial region of the dayside Earth's magnetosphere is often populated by plasma containing hot and cold ion components of comparable densities [Andre and Cully, 2012], and such ion distribution alters properties of the magnetic reconnection regions at the magnetopause [Toledo-Redondo et. al., 2015]. Motivated by these recent findings and also by fact that this region is one of the targets of the recently launched MMS mission, we performed 2D PIC simulations of magnetic reconnection in collisionless plasma with hot and cold ion components. We used a standard Harris current sheet, to which a uniform cold ion background is added. We found that introduction of the cold component modifies the structure of reconnection diffusion region. Diffusion region displays three-scale structure, with the cold Ion Diffusion Region (cIDR) scale appearing in-between the Electron Diffusion Region (EDR) and Ion Diffusion Region (IDR) scales. Structure and strength of the Hall magnetic field depends weakly on cold ion temperature or density, and is rather controlled by the conditions (B, n) upstream the reconnection region. The cold ions are accelerated predominantly transverse to the magnetic field by the Hall electric fields inside the IDR, leading to a large ion pressure anisotropy, which is unstable to ion Weibel-type or mirror-type mode. On the opposite, acceleration of cold ions is mostly field-aligned at the reconnection jet fronts downstream the X-line, producing intense ion phase-space holes there. Despite comparable reconnection rates produced , we find that the overall evolution of reconnection in presence of cold ion population is more dynamic compared to the case with a single hot ion component.

  2. The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.

    PubMed

    Worthington, Peter; King, Mark; Ranson, Craig

    2013-01-01

    High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.

  3. Cold-fusion television show angers APS

    NASA Astrophysics Data System (ADS)

    Cartwright, Jon

    2009-06-01

    Cold fusion has been controversial since its inception on 23 March 1989, when chemists Martin Fleischmann and Stanley Pons at the University of Utah in the US announced that they had achieved a sustained nuclear-fusion reaction at room temperature. Two decades on, a US television documentary about the field has stirred up fresh debate after it linked the American Physical Society (APS) to an evaluation of some cold-fusion results by Robert Duncan, a physicist and vice chancellor of the University of Missouri.

  4. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction

    NASA Astrophysics Data System (ADS)

    Stukel, Michael R.; Aluwihare, Lihini I.; Barbeau, Katherine A.; Chekalyuk, Alexander M.; Goericke, Ralf; Miller, Arthur J.; Ohman, Mark D.; Ruacho, Angel; Song, Hajoon; Stephens, Brandon M.; Landry, Michael R.

    2017-02-01

    Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg Cṡm-2ṡd-1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ˜225 mg Cṡm-2ṡd-1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

  5. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction

    PubMed Central

    Stukel, Michael R.; Aluwihare, Lihini I.; Barbeau, Katherine A.; Chekalyuk, Alexander M.; Goericke, Ralf; Miller, Arthur J.; Ohman, Mark D.; Ruacho, Angel; Song, Hajoon; Stephens, Brandon M.; Landry, Michael R.

    2017-01-01

    Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C⋅m−2⋅d−1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C⋅m−2⋅d−1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems. PMID:28115723

  6. Studies on chemical modification of cold agglutinin from the snail Achatina fulica.

    PubMed Central

    Sarkar, M; Mitra, D; Sen, A K

    1987-01-01

    The cold agglutinin isolated from the albumin gland of the snail Achatina fulica was modified with various chemical reagents in order to detect the amino acids and/or carbohydrate residues present in its carbohydrate-binding sites. Treatment with reagents considered specific for modification of lysine, arginine and tryptophan residues of the cold agglutinin did not affect the carbohydrate-binding activity of the agglutinin. Modification of tyrosine residues showed some change. However, modification with carbodiimide followed by alpha-aminobutyric acid methyl ester causes almost complete loss of its binding activity, indicating the involvement of aspartic acid and glutamic acid in its carbohydrate-binding activity. The carbohydrate residues of the cold agglutinin were removed by beta-elimination reaction, indicating that the sugars are O-glycosidically linked to protein part of the molecule. Removal of galactose residues from the cold agglutinin by the action of beta-galactosidase indicated that the galactose molecules are beta-linked. These carbohydrate-modified glycoproteins showed a marked change in agglutination property, i.e. they agglutinated rabbit erythrocytes at both 10 degrees C and 25 degrees C, indicating that the galactose residues of the glycoprotein play an important role in the cold-agglutination property of the glycoprotein. The c.d. data showed the presence of an almost identical type of random-coil conformation in the native cold agglutinin at 10 degrees C and in the carbohydrate-modified glycoprotein at 10 degrees C and 25 degrees C. This particular random-coil conformation is essential for carbohydrate-binding property of the agglutinin. Images Fig. 1. PMID:3118867

  7. Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes

    NASA Astrophysics Data System (ADS)

    Banerjee, Kumkum

    2016-04-01

    Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.

  8. Mesoscale Frontogenesis: An Analysis of Two Cold Front Case Studies

    DTIC Science & Technology

    1993-01-01

    marked the boundary of warm air or the "warm sector". Further development of this cyclone model by Bjerknes and Solberg (1922) and Bergeron (1928) provided...represent 25 mn s -1 Relative humidity of greater than 80% indicated by the shaded region in gray. Frontal zones marked with solid black lines. 24 two... Zuckerberg , J.T. Schaefer, and G.E. Rasch, 1986: Forecast problems: The meteorological and operational factors, In: Mesoscale Meteorology and Forecasting

  9. Measurements of selected C2-C5 hydrocarbons in the troposphere - Latitudinal, vertical, and temporal variations

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Viezee, William; Salas, Louis J.

    1988-01-01

    The tropospheric distribution of 1077 C2-C5 hydrocarbon samples was determined. Shipboard measurements obtained over the eastern Pacific Ocean reveal large north-to-south gradients for most nonmethane hydrocarbons (NMHCs). The results show that NMHC concentrations can decrease by a factor of two or more during the passage of cold fronts in winter and spring, and that upper tropospheric concentrations were lower than those in the lower troposphere.

  10. Traveling waves in a spring-block chain sliding down a slope

    NASA Astrophysics Data System (ADS)

    Morales, J. E.; James, G.; Tonnelier, A.

    2017-07-01

    Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.

  11. Traveling waves in a spring-block chain sliding down a slope.

    PubMed

    Morales, J E; James, G; Tonnelier, A

    2017-07-01

    Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.

  12. Erosional patterns of the Isles Dernieres, Louisiana, in relation to meteorological influences

    USGS Publications Warehouse

    Dingler, J.R.; Reiss, T.E.; Plant, N.G.

    1993-01-01

    Over the past 100 years, the Isles Dernieres, a low-lying barrier-island chain along the central Louisiana coast, has eroded extensively. This erosion has resulted in more than 1 km of northward beach-face retreat and the loss of 71% of the total island area. The primary causes for the erosion are wind and wave attack, diminished sand supply, and relative sea-level rise. Five years of detailed topographic surveys show that a beach on the central Isles Dernieres changed significantly in both shape and sediment volume; however, the pattern of change was not the same each year. In contrast to the relatively slow erosion caused by cold fronts, hurricane Gilbert, a category 5 hurricane that passed about 800 km south of the Isles Dernieres in September 1988, produced differential beach-face retreat of about 9 m at mean sea level and 40 m at an elevation of 0.5 m. Most of the sediment eroded from the beach face was deposited on the backshore, which resulted in only a small loss of sediment from the beach and a noteworthy decrease in beach-face slope. During the two years following hurricane Gilbert, the mean-sea-level contour remained stationary while the beach face slowly returned to its pre-Gilbert shape. "Cold-front' magnitude of retreat is expected to continue until another large hurricane alters the erosional pattern. -from Authors

  13. Spatio-Temporal Reasoning and Context Awareness

    NASA Astrophysics Data System (ADS)

    Guesgen, Hans W.; Marsland, Stephen

    Smart homes provide many research challenges, but some of the most interesting ones are in dealing with data that monitors human behaviour and that is inherently both spatial and temporal in nature. This means that context becomes all important: a person lying down in front of the fireplace could be perfectly normal behaviour if it was cold and the fire was on, but otherwise it is unusual. In this example, the context can include temporal resolution on various scales (it is winter and therefore probably cold, it is not nighttime when the person would be expected to be in bed rather than the living room) as well as spatial (the person is lying in front of the fireplace) and extra information such as whether or not the fire is lit. It could also include information about how they reached their current situation: if they went from standing to lying very suddenly there would be rather more cause for concern than if they first knelt down and then lowered themselves onto the floor. Representing all of these different temporal and spatial aspects together is a major challenge for smart home research. In this chapter we will provide an overview of some of the methodologies that can be used to deal with these problems. We will also outline our own research agenda in the Massey University Smart Environments (MUSE) group.

  14. Spiral Flows in Cool-core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Keshet, Uri

    2012-07-01

    We argue that bulk spiral flows are ubiquitous in the cool cores (CCs) of clusters and groups of galaxies. Such flows are gauged by spiral features in the thermal and chemical properties of the intracluster medium, by the multiphase properties of CCs, and by X-ray edges known as cold fronts. We analytically show that observations of piecewise-spiral fronts impose strong constraints on the CC, implying the presence of a cold, fast flow, which propagates below a hot, slow inflow, separated by a slowly rotating, trailing, quasi-spiral, tangential discontinuity surface. This leads to the nearly logarithmic spiral pattern, two-phase plasma, ρ ~ r -1 density (or T ~ r 0.4 temperature) radial profile, and ~100 kpc size, characteristic of CCs. By advecting heat and mixing the gas, such flows can eliminate the cooling problem, provided that a feedback mechanism regulates the flow. In particular, we present a quasi-steady-state model for an accretion-quenched, composite flow, in which the fast phase is an outflow, regulated by active galactic nucleus bubbles, reproducing the observed low star formation rates and explaining some features of bubbles such as their Rb vpropr size. The simplest two-component model reproduces several key properties of CCs, so we propose that all such cores harbor a spiral flow. Our results can be tested directly in the next few years, for example by ASTRO-H.

  15. Cold-sensing regulates Drosophila growth through insulin-producing cells

    PubMed Central

    Li, Qiaoran; Gong, Zhefeng

    2015-01-01

    Across phyla, body size is linked to climate. For example, rearing fruit flies at lower temperatures results in bigger body sizes than those observed at higher temperatures. The underlying molecular basis of this effect is poorly understood. Here we provide evidence that the temperature-dependent regulation of Drosophila body size depends on a group of cold-sensing neurons and insulin-producing cells (IPCs). Electrically silencing IPCs completely abolishes the body size increase induced by cold temperature. IPCs are directly innervated by cold-sensing neurons. Stimulation of these cold-sensing neurons activates IPCs, promotes synthesis and secretion of Drosophila insulin-like peptides and induces a larger body size, mimicking the effects of rearing the flies in cold temperature. Taken together, these findings reveal a neuronal circuit that mediates the effects of low temperature on fly growth. PMID:26648410

  16. Assessing the Climate Sensitivity of Cold Content and Snowmelt in Seasonal Alpine and Subalpine Snowpacks

    NASA Astrophysics Data System (ADS)

    Jennings, K. S.; Molotch, N. P.

    2016-12-01

    In cold, high-elevation sites, snowpack cold content acts as a buffer against climate warming by resisting snowmelt during periods of positive energy fluxes. To test the climate sensitivity of cold content and snowmelt, we employed the physical SNOWPACK snow model, forced with a 23-year, hourly, quality-controlled, gap-filled meteorological dataset from the Niwot Ridge Long Term Ecological Research (LTER) site in the Front Range mountains of Colorado. SNOWPACK was run at two points with seasonal snowpacks within the LTER, one in the alpine (3528 m) and one in the subalpine (3022 m). Model output was validated using snow water equivalent (SWE), snowpack temperature, and cold content data from snow pits dug near the met stations and automated SWE data from nearby SNOTEL snow pillows. Cold content accumulates primarily through additions of new snow, while negative energy fluxes—cooling through longwave emission and sublimation—play a lesser role, particularly in the deeper snowpack of the alpine. On average, the snowpack energy balance becomes positive on April 1 in the alpine and March 8 in the subalpine. Peak SWE occurs after these dates and its timing is primarily determined by the amount of precipitation received after peak cold content, with persistent snowfall delaying the main snowmelt pulse. Years with lower cold content, due to reduced precipitation and/or increased air temperature, experience an earlier positive energy balance with more melt events occurring before the date of peak SWE, which has implications for soil moisture, streamflow volume and timing, water uptake by vegetation, and microbial respiration. Synthetic warming experiments show significant cold content reductions and increased late-winter/early-spring melt as positive energy balances occur earlier in the snow season (a forward shift between 5.1 and 21.0 days per °C of warming). These results indicate cold, high-elevation sites, which are critical for water resources in the western United States, may lose their cold content buffering capacity and begin to experience stronger negative trends in SWE with increased climate warming, even as the majority of winter precipitation continues to fall as snow.

  17. Salivary Cortisol and Cold Pain Sensitivity in Female Twins

    PubMed Central

    Godfrey, Kathryn M; Strachan, Eric; Dansie, Elizabeth; Crofford, Leslie J; Buchwald, Dedra; Goldberg, Jack; Poeschla, Brian; Succop, Annemarie; Noonan, Carolyn; Afari, Niloofar

    2013-01-01

    Background There is a dearth of knowledge about the link between cortisol and pain sensitivity. Purpose We examined the association of salivary cortisol with indices of cold pain sensitivity in 198 female twins and explored the role of familial confounding. Methods Three-day saliva samples were collected for cortisol levels and a cold pressor test was used to collect pain ratings and time to threshold and tolerance. Linear regression modeling with generalized estimating equations examined the overall and within-pair associations. Results Lower diurnal variation of cortisol was associated with higher pain ratings at threshold (p = 0.02) and tolerance (p < 0.01). The relationship of diurnal variation with pain ratings at threshold and tolerance was minimally influenced by familial factors (i.e., genetics and common environment). Conclusions Understanding the genetic and non-genetic mechanisms underlying the link between HPA axis dysregulation and pain sensitivity may help to prevent chronic pain development and maintenance. PMID:23955075

  18. Analyzing and Post-modelling the High Speed Images of a Wavy Laser Induced Boiling Front

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Kaplan, A. F. H.

    The boiling front in laser materials processing like remote fusion cutting, keyhole welding or drilling can nowadays be recorded by high speed imaging. It was recently observed that bright waves flow down the front. Several complex physical mechanisms are associated with a stable laser-induced boiling front, like beam absorption, shadowing, heating, ablation pressure, fluid flow, etc. The evidence of dynamic phenomena from high speed imaging is closely linked to these phenomena. As a first step, the directly visible phenomena were classified and analyzed. This has led to the insight that the appearance of steady flow of the bright front peaks is a composition of many short flashing events of 20-50 μs duration, though composing a rather constant melt film flow downwards. Five geometrical front shapes of bright and dark domains were categorized, for example long inclined dark valleys. In addition, the special top and bottom regions of the front are distinguished. As a second step, a new method of post-modelling based on the greyscale variation of the images was applied, to approximately reconstruct the topology of the wavy front and subsequently to calculate the absorption across the front. Despite certain simplifications this kind of analysis provides a variety of additional information, including statistical analysis. In particular, the model could show the sensitivity of front waves to the formation of shadow domains and the robustness of fiber lasers to keep most of an irradiated steel surface in an absorptivity window between 35 to 43%.

  19. Impacts of hot and cold temperature extremes on hospital admissions for cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Davídkovová, H.; Kyselý, J.; Kříž, B.

    2010-09-01

    Elevated mortality associated with high ambient temperatures in summer represents one of the main impacts of weather extremes on human society. Increases in mortality during heat waves were examined in many European countries; much less is known about the effects of heat waves on morbidity, measured for example by the number of hospital admissions. Relatively less understood is also cold-related mortality and morbidity in winter, when the relationships between weather and human health are more complex, less direct, and confounded by other factors such as epidemics of influenza/acute respiratory infections. The present study examines links between hot and cold temperature extremes and daily hospital admissions for cardiovascular diseases in the population of the Czech Republic over 1994-2007. We make use of a recently completed database of all admissions for cardiovascular diseases to hospitals in the area of the Czech Republic since 1994, with a detailed classification of diseases and detailed information concerning each patient (in total 1,467,675 hospital admissions over 1994-2007). The main goals of the study are (i) to identify excess/deficit morbidity during and after periods of heat waves in summer and cold spells in winter, (ii) to compare the links for individual diseases (e.g. acute myocardial infarction, I21; angina pectoris, I20; cerebral infarction, I63; brain ischemia, I64) and to identify those diagnoses that are most closely linked to weather, (iii) to identify population groups most vulnerable to temperature extremes, and (iv) to compare the links to temperature extremes for morbidity and mortality. Periods when morbidity data were affected by epidemics of influenza and acute respiratory infections in winter were excluded from the analysis.

  20. Linking atmospheric blocking to European temperature extremes in spring

    NASA Astrophysics Data System (ADS)

    Brunner, Lukas; Hegerl, Gabriele; Steiner, Andrea

    2017-04-01

    The weather in Europe is influenced by a range of dynamical features such as the Atlantic storm tracks, the jet stream, and atmospheric blocking. Blocking describes an atmospheric situation in which a stationary and persistent high pressure system interrupts the climatological flow for several days to weeks. It can trigger cold and warm spells which is of special relevance during the spring season because vegetation is particularly vulnerable to extreme temperatures in the early greening phase. We investigate European cold and warm spells in the 36 springs from 1979 to 2014 in temperature data from the European daily high-resolution gridded dataset (E-OBS) and connect them to blocking derived from geopotential height fields from ERA-Interim. A highly significant link between blocking and both, cold and warm spells is found that changes during spring. Resolving monthly frequencies, we find a shift in the preferred locations of blocking throughout spring. The maximum blocking frequency during cold spells shifts from Scandinavia to the British Isles in March and April. During warm spells it continuously shifts further northward during the spring season. The location of the block is found to be essential for the sign of the relationship. Blocking over the north-eastern Atlantic and over northern Europe is strongly linked to cold conditions, while blocking over central Europe is associated with warm conditions. Consistently the spatial distribution of temperature extremes across Europe is highly sensitive to the occurrence of blocking. More than 80 % of cold spells in south-eastern Europe occur during blocking, compared to less than 30 % in northern Europe. Warm spells show the opposite pattern and more than 70 % co-occur with blocking in northern Europe, compared to less than 30 % in parts of southern Europe. We find considerable interannual variability over the analysis period from 1979 to 2014 but also a decrease in cold spells and an increase in warm spells, especially in the last 15 years, indicating the influence of global warming. The change to a warmer environment holds the potential for even higher vulnerability to cold extremes, which can be triggered by blocking in late spring. Brunner, L., G. Hegerl, and A. Steiner, 2017: Connecting Atmospheric Blocking to European Temperature Extremes in Spring. J. Climate, 30, 585-594, doi: 10.1175/JCLI-D-16-0518.1.

  1. Tropical Storm Kyle (2002) and cold-air damming: their interactions and impacts on heavy rainfall in the Carolinas

    NASA Astrophysics Data System (ADS)

    Garcia-Rivera, Jose M.; Lin, Yuh-Lang; Rastigejev, Yevgenii

    2016-06-01

    The interactions between an Appalachian cold-air damming event and the near passage of Tropical Storm Kyle (2002) along the coastal Carolinas are assessed by using a numerical weather prediction model. As the storm moved along the coastline, it began extra-tropical transition, bringing heavy rains to both the coastal region and inland towards the Piedmont of North Carolina. Our goal is to quantify the effects of both interacting weather systems on heavy precipitation to improve the dynamical understanding of such effects, as well as precipitation forecasts in the study region. A series of sensitivity tests were performed to isolate and quantify the effects of both systems on the total accumulated precipitation. It was found that (a) for this type of along-coast track, the pre-existing cold-air damming played only a minor role on the total accumulated precipitation, (b) the outer circulation of Kyle weakened the cold-air damming due to a redirection of the mean flow away from the east side of the Appalachian Mountains, and (c) the combination of Kyle with a shortwave mid- to upper-level trough and a surface coastal front were responsible for the heavy precipitation experienced in the study area through the advection of moisture, vorticity, and the forcing of upward motion.

  2. Influence of different frequencies of transcutaneous electrical nerve stimulation on the threshold and pain intensity in young subjects

    PubMed Central

    Gomes, Adriana de Oliveira; Silvestre, Ana Caroline; da Silva, Cristina Ferreira; Gomes, Mariany Ribeiro; Bonfleur, Maria Lúcia; Bertolini, Gladson Ricardo Flor

    2014-01-01

    Objective To investigate the effects of different transcutaneous electrical nerve stimulation frequencies in nociception front of a pressure pain threshold and cold in healthy individuals. Methods Twenty healthy subjects were divided into four groups, all of which have gone through all forms of electrical stimulation at different weeks. Assessments were pre and post-therapy, 20 and 60 minutes after stimulation. To evaluate the pressure pain threshold, an algometer was used with one tapered tip, pressing the hypothenar region until voluntary report the word “pain”. Cold pain intensity was assessed by immersion in water at 5°C for 30 seconds; at the end, the subject was asked to quantify the pain intensity on a Visual Analog Scale for Pain. For electrical stimulation, two electrodes were used near the elbow, for 20 minutes, with an intensity strong, but not painful. The frequency was in accordance with the group: 0Hz (placebo); 7Hz; 100Hz; and 255Hz. Results Both for the assessment of pressure pain threshold as the cold pain intensity, there was no significant difference (p>0.05). Conclusion We conclude that the use of transcutaneous electrical nerve stimulation on dermatomes C6 to C8 produced no significant change in pressure pain threshold or cold discomfort. PMID:25295453

  3. Spatial distribution of cold-season lightning frequency in the coastal areas of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Tsurushima, Daiki; Sakaida, Kiyotaka; Honma, Noriyasu

    2017-12-01

    The coastal areas of the Sea of Japan are a well-known hotspot of winter lightning activity. This study distinguishes between three common types of winter lightning in that region (types A-C), based on their frequency distributions and the meteorological conditions under which they occur. Type A lightning occurs with high frequency in the Tohoku district. It is mainly caused by cold fronts that accompany cyclones passing north of the Japanese islands. Type B, which occurs most frequently in the coastal areas of the Hokuriku district, is mainly caused by topographically induced wind convergence and convective instability, both of which are associated with cyclones having multiple centers. Type C's lightning frequency distribution pattern is similar to that of type B, but its principal cause is a topographically induced wind convergence generated by cold air advection from the Siberian continent. Type A is most frequently observed from October to November, while types B and C tend to appear from November to January, consistent with seasonal changes in lightning frequency distribution in Japan's Tohoku and Hokuriku districts.

  4. Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole

    NASA Technical Reports Server (NTRS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2017-01-01

    The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.

  5. Subsynoptic-scale features associated with extreme surface gusts in UK extratropical cyclone events

    NASA Astrophysics Data System (ADS)

    Earl, N.; Dorling, S.; Starks, M.; Finch, R.

    2017-04-01

    Numerous studies have addressed the mesoscale features within extratropical cyclones (ETCs) that are responsible for the most destructive winds, though few have utilized surface observation data, and most are based on case studies. By using a 39-station UK surface observation network, coupled with in-depth analysis of the causes of extreme gusts during the period 2008-2014, we show that larger-scale features (warm and cold conveyer belts) are most commonly associated with the top 1% of UK gusts but smaller-scale features generate the most extreme winds. The cold conveyor belt is far more destructive when joining the momentum of the ETC, rather than earlier in its trajectory, ahead of the approaching warm front. Sting jets and convective lines account for two thirds of severe surface gusts in the UK.

  6. Recent Monitoring of Suspended Sediment Patterns along Louisiana's Coastal Zone using ER-2 based MAS Data and Terra Based MODIS Data

    NASA Technical Reports Server (NTRS)

    Moeller, Christopher C.; Gunshor, M. M.; Menzel, W. P.; Huh, O. K.; Walker, N. D.; Rouse, L. J.

    2001-01-01

    The University nf Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to model coastal circulation and resuspend sediments along the micro tidal Louisiana coast (Roberts et at. 1987, Moeller et al. 1993). Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Suspended sediment is a building material for coastal progradation and wetlands renewal, but also restricts access to marine nursery environments and impacts oyster bed health. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODerate resolution Imaging Spectroradiometer (MODIS; Barnes et al. 1998) observations may enable estimates of SSC globally.

  7. Hydrostatic temperature calculations. [in synoptic meteorology

    NASA Technical Reports Server (NTRS)

    Raymond, William H.

    1987-01-01

    Comparisons are made between hydrostatically computed temperatures and ambient temperatures associated with nine different data sources, including analyses, forecasts and conventional observations. Five-day averages and the day-to-day variations in the root-mean-square temperature differences are presented. Several different numerical and interpolation procedures are examined. Error correction and a constrained optimum procedure that minimizes ambient minus calculated hydrostatic temperature differences are introduced. Systematic differences between ambient and hydrostatic temperatures are found to be associated with the sinoptic situation. When compared with ambient temperatures, hydrostatic temperatures at 500 mb tend to be too warm at or in front of a trough and too cold behind the trough. In the vertical direction, for the eight-level configuration tested, the average hydrostatic temperatures are too cold at low levels (850, 700 mb) and too warm at upper levels, (300, 250 mb).

  8. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  9. Validation of linked QTL for bacterial cold water disease resistance and spleen size on rainbow trout chromosome Omy19

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) is caused by infection with Flavobacterium psychrophilum, and results in significant economic losses in salmonid aquaculture. Previously, we identified a major QTL for BCWD resistance and a QTL for spleen size (SPLW = spleen weight and SPLI = spleen index) in naï...

  10. Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX)

    Treesearch

    Glen E. Liston; Christopher A. Hiemstra; Kelly Elder; Donald W. Cline

    2008-01-01

    The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can...

  11. Investigation on the variability of East Asia Boreal Summer Front Frequency and Linkage between Tropical Air Temperature

    NASA Astrophysics Data System (ADS)

    Choi, Eunho; Lim, Gyu-Ho

    2016-04-01

    Summer time front is one of the most significant phenomena over East Asia including China, Korea and Japan. Many efforts have been established to understand the nature of front. However, there was no research conducting identifying East Asia summer time fronts objectively. We have established objective front recognition method. The method follows next procedures : 1) We calculate vorticity on 850-hPa surface. 2) Any grid point that have horizontal gradient of equivalent potential temperature (EPT hereafter) on 850-hPa surface less than 4 'c / 100km set to zero. 3) Next, we smooth this field using 9-point smoothing technique. 4) Finally we extract the main axis of closed contour correspond to vorticity of 1.5 10-5s-5. Voronoi diagram used to extract this axis. We define this axis as front on 850-hPa pressure surface. We have applied the method on 1981-2010 ERA-Interim dataset. From the result, front frequency maximums are in around of East China Sea (34N, 122E), north (38N, 136E) and south (34N, 140E) of main island of Japan. Below 30N and above 40N, front frequency tends to decrease maybe due to decrease in the magnitude of gradient of EPT and the frequency of cyclonic weather disturbance. Two main regions affect the variability of East Asia Front Frequency. One is equatorial positive region especially over Taiwan (25N, 120E). The other one is East Sea next to Korea (40N, 135E). Humid warm air transported from southern China (20N-30N, 100E-110E) and dry cold air transported from northern China (30N-40N, 100E-110E) compressed by clockwise high system over Taiwan and counter-clockwise low system over East Sea). This compressed precipitation-making system or front moves by extratropical westerly and transported out to north-western Pacific. It looks like geopotential over Taiwan affected by tropical activity, especially vertical integration of temperature (VIT hereafter) over tropical region (30S-30N). When VIT is higher than normal, geopotential over Taiwan also higher than normal with correlation coefficient of 0.5 (1981-2010). Therefore, we can conclude that when VIT is higher than normal, front frequency is higher than normal. VIT is significantly related with ENSO variability. We will investigate how the tropical region activity affects the front frequency over East Asia.

  12. How Strongly Linked Are Mental Time and Space along the Left-Right Axis?

    ERIC Educational Resources Information Center

    Eikmeier, Verena; Alex-Ruf, Simone; Maienborn, Claudia; Ulrich, Rolf

    2015-01-01

    Different lines of research suggest that our mental representations of time and space are linked, though the strength of this linkage has only recently been addressed for the front-back mental timeline (Eikmeier, Schröter, Maienborn, Alex-Ruf, & Ulrich, 2013). The present study extends this investigation to the left-right mental timeline. In…

  13. DefenseLink Special: Operation Enduring Freedom Marks 4 Years

    Science.gov Websites

    DefenseLink.mil Aug. 04, 2015 War on Terror Transformation News Products Press Resources Images Websites Contact Afghanistan and ushering in Operation Enduring Freedom and the global war on terror. That volley, launched Oct action represented just one front in an ongoing U.S. effort against terror networks. "Today, we

  14. 75 FR 3660 - Airworthiness Directives; The Boeing Company Model 757 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ... airplanes. This proposed AD would require repetitive inspections for corrosion and cracking in the front... side link support fitting at WS 292. We are proposing this AD to detect and correct such corrosion and... fastener locations common to the side link support fitting at WS 292. This area is not covered by the...

  15. Why Does Attention to Web Articles Fall With Time?

    PubMed

    Simkin, Mikhail V; Roychowdhury, Vwani P

    2015-09-01

    We analyze access statistics of 150 blog entries and news articles for periods of up to 3 years. Access rate falls as an inverse power of time passed since publication. The power law holds for periods of up to 1,000 days. The exponents are different for different blogs and are distributed between 0.6 and 3.2. We argue that the decay of attention to a web article is caused by the link to it first dropping down the list of links on the website's front page and then disappearing from the front page and its subsequent movement further into background. The other proposed explanations that use a decaying with time novelty factor, or some intricate theory of human dynamics, cannot explain all of the experimental observations.

  16. The Cape Ghir filament system in August 2009 (NW Africa)

    NASA Astrophysics Data System (ADS)

    Sangrà, Pablo; Troupin, Charles; Barreiro-González, Beatriz; Desmond Barton, Eric; Orbi, Abdellatif; Arístegui, Javier

    2015-06-01

    In the framework of the Canaries-Iberian marine ecosystem Exchanges (CAIBEX) experiment, an interdisciplinary high-resolution survey was conducted in the NW African region of Cape Ghir (30°38'N) during August 2009. The anatomy of a major filament is investigated on scales down to the submesoscale using in situ and remotely sensed data. The filament may be viewed as a system composed of three intimately connected structures: a small, shallow, and cold filament embedded within a larger, deeper, and cool filament and an intrathermocline anticyclonic eddy (ITE). The cold filament, which stretches 110 km offshore, is a shallow feature 60 m deep and 25 km wide, identified by minimal surface temperatures and rich in chlorophyll a. This structure comprises two asymmetrical submesoscale (˜18 km) fronts with jets flowing in opposite directions. The cold filament is embedded near the equatorward boundary of a much broader region of approximately 120 km width and 150 m depth that forms the cool filament and stretches at least 200 km offshore. This cool region, partly resulting from the influence of cold filament, is limited by two asymmetrical mesoscale (˜50 km) frontal boundaries. At the ITE, located north of the cold filament, we observe evidence of downwelling as indicated by a relatively high concentration of particles extending from the surface to more than 200 m depth. We hypothesize that this ITE may act as a sink of carbon and thus the filament system may serve dual roles of offshore carbon export and carbon sink.

  17. Earth Observations taken by the STS-109 crew

    NASA Image and Video Library

    2002-03-05

    STS109-719-076 (1-12 March 2002) --- The astronauts on board the Space Shuttle Columbia took this 70mm picture featuring part of the eastern sea board. The oblique view looks northward from South Florida to the southern Appalachians. Most of the southeastern United States appears in crisp, clear air in the wake of a cold front that has pushed well off the mainland. Only a few jet stream and low-level clouds remain over South Florida and Gulf Stream.

  18. A Human Factors Evaluation of Cold Weather Headgear

    DTIC Science & Technology

    1975-10-01

    done in which the hood was replaced by a balaclava-type helmet and the parka was modified by the addition of a standup collar with alpaca facing...checked. Whl ern h il ake ihlnradete f h aswt afasdw 2and fastened in front of the chin, the subject was asked to drink water from a glass and was...permitted to smoke. The subject was asked if he experienced any difficulty drinking the water and if he would find it difficult to blow his nose or eat

  19. Satellite and Synoptic Studies of Chemical Fronts in the California Current and Coastal Upwelling Zone

    DTIC Science & Technology

    1987-05-31

    phoosphor- ou%. The shoru~iard sigde i-. cold. %clI mixed. and relanttocl rich in theseu elcmcno (7 if 1. 19NI). 19,S)). The nutrient-rich Aater which io...Union, 62(36), 1981, September 8. Master’s Theses Nestor, D.A., M.S. Thesis , A Study of the Relationship Between Oceanic Chemical Mesoscale and Sea...Surface Temperature as Detected by Satellite IR Imagery; Naval Postgraduate School, Monterey, California, 1979. Conrad, J.C., M.S. Thesis , Relationship

  20. The Low-Level Wind Shear Alert System (LLWSAS)

    DTIC Science & Technology

    1980-05-01

    ALERT SYSTEM (LLWSAS). (May R.. a.-ol - 8..’P" Imng Organization Report No, 9, Perfo~ring Or~ni-otlon Ro-r. -andAddress 10. Work Unit No. (TRAIS) Federal...rather than electronic approach. The 2-minute average adheres to recommended International Civil Aviation Organization (ICAO) standards (referernce 14...speed of 140 knots. **Cold front. 80 ’ # 90 0 STRONG CASES: COFF , 1975 80 9STRONG CASES: UNPU1BLISHED 70 60 A STRONG CASES: COFF , et al., 1978 50 \\ 50 -0

  1. Numerical simulation of cloud and precipitation structure during GALE IOP-2

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Perkey, D. J.; Seablom, M. S.

    1988-01-01

    A regional scale model, LAMPS (Limited Area Mesoscale Prediction System), is used to investigate cloud and precipitation structure that accompanied a short wave system during a portion of GALE IOP-2. A comparison of satellite imagery and model fields indicates that much of the large mesoscale organization of condensation has been captured by the simulation. In addition to reproducing a realistic phasing of two baroclinic zones associated with a split cold front, a reasonable simulation of the gross mesoscale cloud distribution has been achieved.

  2. Coastal Frontogenesis and Associated Severe Weather on 13 March 1986 (GALE IOP 13)

    DTIC Science & Technology

    1989-01-01

    facilities used in this research are described as follows: a) Sounding operations The GALE sounding operations were designed to provide three-dimensional...airplanes were developed for a variety of weather scenarios. These tracks were designed to provide, but were not limited to, in situ measurements of...NU PA NJ Figur 2.. TpgahMfIh otesen ntdSae D ikea .,18) 32 3. CASE STUDY 3.1 Synoptic Overview On 12 March 1986 a back-door cold front (Carr, 1951

  3. Characteristics of Thermal Finestructure in the Southern Yellow Sea and the East China Sea from Airborne Expendable Bathythermograph Measurements

    DTIC Science & Technology

    2008-01-01

    Master Oceanographic Observation Data Set 2 ( MOODS ) maintained by the Naval Oceanographic Office (NAVOCEANO), Stennis Space 3 Center, Mississippi...of the CYF. The 17 SYBG also shows a thermal front induced by the Taiwan Warm Current and/or the uplifted 18 Kuroshio northeast of Taiwan merging...c. Generation mechanism 8 Since the cold Kuroshio subsurface water is uplifted at Stn-A, temperature of Stn-9 A is colder than that of Stn-C at

  4. Cold-water coral carbonate mounds as unique palaeo-archives: the Plio-Pleistocene Challenger Mound record (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Thierens, M.; Browning, E.; Pirlet, H.; Loutre, M.-F.; Dorschel, B.; Huvenne, V. A. I.; Titschack, J.; Colin, C.; Foubert, A.; Wheeler, A. J.

    2013-08-01

    Through the interplay of a stabilising cold-water coral framework and a dynamic sedimentary environment, cold-water coral carbonate mounds create distinctive centres of bio-geological accumulation in often complex (continental margin) settings. The IODP Expedition 307 drilling of the Challenger Mound (eastern Porcupine Seabight; NE Atlantic) not only retrieved the first complete developmental history of a coral carbonate mound, it also exposed a unique, Early-Pleistocene sedimentary sequence of exceptional resolution along the mid-latitudinal NE Atlantic margin. In this study, a comprehensive assessment of the Challenger Mound as an archive of Quaternary palaeo-environmental change and long-term coral carbonate mound development is presented. New and existing environmental proxy records, including clay mineralogy, planktonic foraminifer and calcareous nannofossil biostratigraphy and assemblage counts, planktonic foraminifer oxygen isotopes and siliciclastic particle-size, are thereby discussed within a refined chronostratigraphic and climatic context. Overall, the development of the Challenger Mound shows a strong affinity to the Plio-Pleistocene evolution of the Northern Hemisphere climate system, albeit not being completely in phase with it. The two major oceanographic and climatic transitions of the Plio-Pleistocene - the Late Pliocene/Early Pleistocene intensification of continental ice-sheet development and the mid-Pleistocene transition to the more extremely variable and more extensively glaciated late Quaternary - mark two major thresholds in Challenger Mound development: its Late Pliocene (>2.74 Ma) origin and its Middle-Late Pleistocene to recent decline. Distinct surface-water perturbations (i.e. water-mass/polar front migrations, productivity changes, melt-water pulses) are identified throughout the sequence, which can be linked to the intensity and extent of ice development on the nearby British-Irish Isles since the earliest Pleistocene. Glaciation-induced shifts in surface-water primary productivity are thereby proposed to fundamentally control cold-water coral growth, which in turn influences on-mound sediment accumulation and, hence, coral carbonate mound development throughout the Pleistocene. As local factors, such as proximal ice-sheet dynamics and on-mound changes in cold-water coral density, significantly affected the development of the Challenger Mound, they can potentially explain the nature of its palaeo-record and its offsets with the periodicities of global climate variability. On the other hand, owing to this unique setting, a regionally exceptional, high-resolution palaeo-record of Early Pleistocene (ca 2.6 to 2.1 Ma) environmental change (including early British-Irish ice-sheet development), broadly in phase with the 41 ka-paced global climate system, is preserved in the lower Challenger Mound. All in all, the Challenger Mound record highlights the wider relevance of coral carbonate mound archives and their potential to capture unique records from dynamic (continental margin) environments.

  5. Reconstruction of the Mesoscale Velocity Shear Seaward of Coastal Upwelling Regions from the Refraction of the Surface Wave Field

    NASA Technical Reports Server (NTRS)

    Flament, Pierre; Graber, Hans C.; Halpern, D.; Holt, B.

    1996-01-01

    The objective of this project is to study fronts that develop at the boundary between cold water recently upwelled to the surface through Ekman divergence, and warmer surrounding waters. This specific objective was suggested by studying the small scale structure of upwelling fronts (coastal, island, and equatorial) through shipboard surveys and infrared satellite images. Constraints on the shuttle equator crossing imposed by other land sites precluded a coverage of the area targeted in the initial SIR-C proposal, the California Current. The site was then relocated to the Equatorial Pacific upwelling tongue, that can be satisfactorily imaged for a wide range of longitudes of the equator crossing. Some limited data was nevertheless obtained over coastal upwelling off California in 1989, using the JPL AIRSAR in multifrequency mode, and over island upwelling off Hawaii in 1990, using the radar in along-track interferometric mode.

  6. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; hide

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  7. What We Have Learned About Clusters From a Decade of Arcsecond Resolution X-ray Observations

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    This talk will briefly review the main findings from Chandra high angular resolution observations of galaxy clusters, emphasizing results on cluster astrophysics. Chandra has discovered shock fronts in merging systems, providing information on the shock Mach number and velocity, and for best-observed shocks, constraining the microphysical properties of the intracluster medium (ICM). Cold fronts, a Chandra discovery, are ubiquitous both in merging clusters and in the cool ccres of relaxed systems. They reveal the structure and strength of the intracluster magnetic fields and constrain the ICM viscosity a combined with radio data, these observations also shed light on the production of ultra-relativistic particles that are known to coexist with thermal plasma. Finally, in nearly all cool cores, Chandra observes cavities in the ICM that are produced by the central AGN. All these phenomena will be extremely interesting for high-resolution SZ studies.

  8. Comparison of Cell Regeneration Mechanisms Between Isolated Cb Clouds Moving Along A Valley and Over Flat Terrain

    NASA Astrophysics Data System (ADS)

    Curic, M.; Janc, D.; Vuckovic, V.; Vujovic, D.

    Cell regeneration mechanism within air-mass Cb cloud moving along the river valley is investigated by three-dimensional mesoscale ARPS model with improved micro- physics. Simulated cloud characteristics are then compared with those performed for the flat terrain conditions. The Western Morava valley area (Serbia) has selected as an important place for formation of such clouds in agreement with observations. Ana- lyzed results suggest that the river valley plays an important role for the cell regenera- tion mechanism in front of the mother cloud. Futher, it contributes to the fast Cb cloud propagation along the valley. In contrast, the front-side cell regeneration mechanism is absent for the flat terrain conditions since the cold air below cloud base deverges in all directions without any restrictions. This investigation gives us more complete insight in cell regeneration mechanisms than classic approach.

  9. High expression of A-type lamin in the leading front is required for Drosophila thorax closure.

    PubMed

    Kosakamoto, Hina; Fujisawa, Yuya; Obata, Fumiaki; Miura, Masayuki

    2018-05-05

    Tissue closure involves the coordinated unidirectional movement of a group of cells without loss of cell-cell contact. However, the molecular mechanisms controlling the tissue closure are not fully understood. Here, we demonstrate that Lamin C, the sole A-type lamin in Drosophila, contributes to the process of thorax closure in pupa. High expression of Lamin C was observed at the leading front of the migrating wing imaginal discs. Live imaging analysis revealed that knockdown of Lamin C in the thorax region affected the coordinated movement of the leading front, resulting in incomplete tissue fusion required for formation of the adult thorax. The closure defect due to knockdown of Lamin C correlated with insufficient accumulation of F-actin at the front. Our study indicates a link between A-type lamin and the cell migration behavior during tissue closure. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The DIRC front-end electronics chain for BaBar

    NASA Astrophysics Data System (ADS)

    Bailly, P.; Beigbeder, C.; Bernier, R.; Breton, D.; Bonneaud, G.; Caceres, T.; Chase, R.; Chauveau, J.; Del Buono, L.; Dohou, F.; Ducorps, A.; Gastaldi, F.; Genat, J. F.; Hrisoho, A.; Imbert, P.; Lebbolo, H.; Matricon, P.; Oxoby, G.; Renard, C.; Roos, L.; Sen, S.; Thiebaux, C.; Truong, K.; Tocut, V.; Vasileiadis, G.; Va'Vra, J.; Verderi, M.; Warner, D.; Wilson, R. J.; Wormser, G.; Zhang, B.; Zomer, F.

    2000-12-01

    Recent results from the Front-End electronics of the Detector of Internally Reflected Cerenkov light (DIRC) for the BaBar experiment at SLAC (Stanford, USA) are presented. It measures to better than 1 ns the arrival time of Cerenkov photoelectrons detected in a 11000 phototubes array and their amplitude spectra. It mainly comprises 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom digital time to digital chips (TDC) for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected front up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test results of the pre-production chips are presented, as well as system tests.

  11. A Theoretical Study of Cold Air Damming.

    NASA Astrophysics Data System (ADS)

    Xu, Qin

    1990-12-01

    The dynamics of cold air damming are examined analytically with a two-layer steady state model. The upper layer is a warm and saturated cross-mountain (easterly or southeasterly onshore) flow. The lower layer is a cold mountain-parallel (northerly) jet trapped on the windward (eastern) side of the mountain. The interface between the two layers represents a coastal front-a sloping inversion layer coupling the trapped cold dome with the warm onshore flow above through pressure continuity.An analytical expression is obtained for the inviscid upper-layer flow with hydrostatic and moist adiabatic approximations. Blackadar's PBL parameterization of eddy viscosity is used in the lower-layer equations. Solutions for the mountain-parallel jet and its associated secondary transverse circulation are obtained by expanding asymptotically upon a small parameter proportional to the square root of the inertial aspect ratio-the ratio between the mountain height and the radius of inertial oscillation. The geometric shape of the sloping interface is solved numerically from a differential-integral equation derived from the pressure continuity condition imposed at the interface.The observed flow structures and force balances of cold air damming events are produced qualitatively by the model. In the cold dome the mountain-parallel jet is controlled by the competition between the mountain-parallel pressure gradient and friction: the jet is stronger with smoother surfaces, higher mountains, and faster mountain-normal geostrophic winds. In the mountain-normal direction the vertically averaged force balance in the cold dome is nearly geostrophic and controls the geometric shape of the cold dome. The basic mountain-normal pressure gradient generated in the cold dome by the negative buoyancy distribution tends to flatten the sloping interface and expand the cold dome upstream against the mountain-normal pressure gradient (produced by the upper-layer onshore wind) and Coriolis force (induced by the lower-layer mountain-parallel jet). It is found that the interface slope increases and the cold dome shrinks as the Froude number and/or upstream mountain-parallel geostrophic wind increase, or as the Rossby number, upper-layer depth, and/or surface roughness length decrease, and vice versa. The cold dome will either vanish or not be in a steady state if the Froude number is large enough or the roughness length gets too small. The theoretical findings are explained physically based on detailed analyses of the force balance along the inversion interface.

  12. Comics, Crowdsourcing and Up-Votes: EFL on the Front Page of the Internet

    ERIC Educational Resources Information Center

    York, James; Stiller, Scott

    2013-01-01

    The social-media news website "Reddit" boasts a huge readership with over 35 million unique visitors for December 2011 alone. Content is generated by users, who submit links from other websites to the various sub-forums. Users also have the ability to comment on links, providing the means for a community to be developed. Both content and…

  13. Cold resistance depends on acclimation and behavioral caste in a temperate ant

    NASA Astrophysics Data System (ADS)

    Modlmeier, Andreas P.; Pamminger, Tobias; Foitzik, Susanne; Scharf, Inon

    2012-10-01

    Adjusting to low temperatures is important for animals living in cold environments. We studied the chill-coma recovery time in temperate ant workers ( Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill-coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.

  14. Sleep Habits and Susceptibility to Upper Respiratory Illness: the Moderating Role of Subjective Socioeconomic Status

    PubMed Central

    Prather, Aric A.; Janicki-Deverts, Denise; Adler, Nancy E.; Hall, Martica; Cohen, Sheldon

    2016-01-01

    Background Sleep is a predictor of infectious illness that may depend on one’s socioeconomic status (SES). Purpose This study aimed to investigate the moderating effects of objective and subjective SES on sleep-clinical cold risk link and test whether nasal inflammation serves as a plausible biological pathway. Methods This study combined data (n = 732) from three viral challenge studies. Measures of self-reported sleep and objective and subjective measures of SES were obtained. Participants were quarantined and administrated rhinovirus (RV) or influenza virus and monitored over 5 (RV) or 6 (influenza) days for the development of a cold. Symptom severity, including mucus production and nasal clearance time, and levels of nasal cytokines (interleukin (IL)-6 and IL-1β) were measured prior to administration and each day during the quarantined period. Results Subjective SES, but not objective SES, moderated associations between shorter sleep duration and increased likelihood of a clinical cold. Compared to ≥8-hour sleepers, ≤6-hour sleepers with low subjective SES were at increased risk for developing a cold (OR = 2.57, 95% CI 1.10–6.02). There was no association between sleep duration and colds in high subjective SES participants. Among infected individuals who reported low subjective SES, shorter sleep duration was associated with greater mucus production. There was no evidence that markers of nasal inflammation mediated the link between sleep duration and cold susceptibility among those reporting low subjective SES. Conclusion Subjective SES may reflect an important social factor for understanding vulnerability to and protection against infectious illness among short sleepers. PMID:27679462

  15. Fasting increases survival to cold in FOXO, DIF, autophagy mutants and in other genotypes of Drosophila melanogaster.

    PubMed

    Le Bourg, Éric; Massou, Isabelle

    2015-08-01

    Fasting increases survival to a severe cold stress in young and middle-aged wild-type flies, this effect being lowered or absent at old age. As an attempt to determine the mechanisms of this effect, genes involved in metabolism (dFOXO), autophagy (Atg7), innate immunity (Dif (1) ), and resistance to cold (Frost) were studied. The 12 mutant, RNAi and control lines tested in this study displayed an increased survival to cold after fasting. This shows that fasting has a robust effect on survival to cold in many genotypes, but the mechanism of this effect remains unknown. This mechanism does not seem to be linked to metabolic pathways often considered to play a critical role in ageing and longevity determinations (insulin/insulin-like growth factor-1 pathway and autophagy).

  16. CBM First-level Event Selector Input Interface Demonstrator

    NASA Astrophysics Data System (ADS)

    Hutter, Dirk; de Cuveland, Jan; Lindenstruth, Volker

    2017-10-01

    CBM is a heavy-ion experiment at the future FAIR facility in Darmstadt, Germany. Featuring self-triggered front-end electronics and free-streaming read-out, event selection will exclusively be done by the First Level Event Selector (FLES). Designed as an HPC cluster with several hundred nodes its task is an online analysis and selection of the physics data at a total input data rate exceeding 1 TByte/s. To allow efficient event selection, the FLES performs timeslice building, which combines the data from all given input links to self-contained, potentially overlapping processing intervals and distributes them to compute nodes. Partitioning the input data streams into specialized containers allows performing this task very efficiently. The FLES Input Interface defines the linkage between the FEE and the FLES data transport framework. A custom FPGA PCIe board, the FLES Interface Board (FLIB), is used to receive data via optical links and transfer them via DMA to the host’s memory. The current prototype of the FLIB features a Kintex-7 FPGA and provides up to eight 10 GBit/s optical links. A custom FPGA design has been developed for this board. DMA transfers and data structures are optimized for subsequent timeslice building. Index tables generated by the FPGA enable fast random access to the written data containers. In addition the DMA target buffers can directly serve as InfiniBand RDMA source buffers without copying the data. The usage of POSIX shared memory for these buffers allows data access from multiple processes. An accompanying HDL module has been developed to integrate the FLES link into the front-end FPGA designs. It implements the front-end logic interface as well as the link protocol. Prototypes of all Input Interface components have been implemented and integrated into the FLES test framework. This allows the implementation and evaluation of the foreseen CBM read-out chain.

  17. The Teton-Yellowstone Tornado of 21 July 1987

    NASA Technical Reports Server (NTRS)

    Fujita, T. Theodore

    1989-01-01

    The Teton-Yellowstone Tornado, rated F4, crossed the Continental Divide at 3070 m, leaving behind a damage swath 39.2-km long and 2.5-km wide. A detailed damage analysis by using stereo-pair and color photos revealed the existence of four spinup swirl marks and 72 microburst outflows inside the damage area. The tornado was spawned by a mesocyclone that formed at the intersection of a mesohigh boundary and a warm front. The parent cloud of the tornado, tracked on eight infrared-temperature maps from GOES East and West, moved at 25 m s-1 and the number of cold temperature pixels below -60 C reached a distinct peak during the tornado time. Identified and tracked also are two warm spots enclosed inside the cold anvil cloud. On the basis of their identity and movement, an attempt was made to explain the cause of these spots as being the stratospheric cirrus clouds.

  18. An evaluation of in situ ozone sensor performance during a cold frontal passage

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.

    1978-01-01

    The capabilities of the electrochemical concentration cell ozonesonde for measuring the vertical profile of atmospheric ozone were studied during a three day experiment at Wallops Island, Virginia, and Norfolk, Virginia. Using ancillary measurements at the surface and the spectrophotometer, it was concluded that the ozonesonde measures the total ozone overburden to within 10% of the real value. By releasing the balloon-borne instruments at a rate of four per day at each of the two sites, an indication was obtained of the temporal and spatial scales of atmospheric ozone variability. No significant effects of a weak cold front passage or of the loss of insolation at night were seen. An isolated incident of anomalously high ozone concentration at the peak of the profile was attributed to sporadic instrument performance effects. The data base currently available is not adequate for determining an exact cause of the anomaly.

  19. Delivering Faster Congestion Feedback with the Mark-Front Strategy

    NASA Technical Reports Server (NTRS)

    Liu, Chunlei; Jain, Raj

    2001-01-01

    Computer networks use congestion feedback from the routers and destinations to control the transmission load. Delivering timely congestion feedback is essential to the performance of networks. Reaction to the congestion can be more effective if faster feedback is provided. Current TCP/IP networks use timeout, duplicate Acknowledgement Packets (ACKs) and explicit congestion notification (ECN) to deliver the congestion feedback, each provides a faster feedback than the previous method. In this paper, we propose a markfront strategy that delivers an even faster congestion feedback. With analytical and simulation results, we show that mark-front strategy reduces buffer size requirement, improves link efficiency and provides better fairness among users. Keywords: Explicit Congestion Notification, mark-front, congestion control, buffer size requirement, fairness.

  20. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes.

    PubMed

    Zolotarov, Yevgen; Strömvik, Martina

    2015-01-01

    Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved.

  1. Ecological invasion, roughened fronts, and a competitor's extreme advance: integrating stochastic spatial-growth models.

    PubMed

    O'Malley, Lauren; Korniss, G; Caraco, Thomas

    2009-07-01

    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibits universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.

  2. Front-end electronics development for TPC detector in the MPD/NICA project

    NASA Astrophysics Data System (ADS)

    Cheremukhina, G.; Movchan, S.; Vereschagin, S.; Zaporozhets, S.

    2017-06-01

    The article is aimed at describing the development status, measuring results and design changes of the TPC front-end electronics. The TPC is placed in the middle of Multi-Purpose Detector (MPD) and provides tracing and identifying of charged particles in the pseudorapidity range |η| < 1.2. The readout system is one of the most complex parts of the TPC. The electronics of each readout chamber is an independent system. The whole system contains 95232 channels, 1488 64-channel—front-end cards (FEC), 24 readout control units (RCU). The front-end electronics (FEE) is based on ASICs, FPGAs and high-speed serial links. The concept of the TPC front-end electronics has been motivated from one side—by the requirements concerning the NICA accelerator complex which will operate at the luminosity up to 1027 cm-2 s-1 for Au79+ ions over the energy range of 4 < √SNN < 11 GeV with the trigger rate up to 7 kHz and from the other side—by the requirements of the 4-π geometry to minimize the substance on the end-caps of the TPC.

  3. Self-Rated Health in Healthy Adults and Susceptibility to the Common Cold.

    PubMed

    Cohen, Sheldon; Janicki-Deverts, Denise; Doyle, William J

    2015-01-01

    To explore the association of self-rated health (SRH) with host resistance to illness after exposure to a common cold virus and identify mechanisms linking SRH to future health status. We analyzed archival data from 360 healthy adults (mean [standard deviation] age = 33.07 [10.69] years, 45.6% women). Each person completed validated questionnaires that assessed SRH (excellent, very good, good, fair, poor), socioemotional factors, and health practices and was subsequently exposed to a common cold virus and monitored for 5 days for clinical illness (infection and objective signs of illness). Poorer SRH was associated in a graded fashion with greater susceptibility to developing clinical illness (good/fair versus excellent: odds ratio = 3.21, 95% confidence interval = 1.47-6.99; very good versus excellent: odds ratio = 2.60, 95% confidence interval = 1.27-5.32), independent of age, sex, race, prechallenge immunity (specific antibody), body mass, season, education, and income. Greater illness risk was not attributable to infection, but to increased likelihood of developing objective signs of illness once infected. Poorer SRH also correlated with poorer health practices, increased stress, lower positive emotions, and other socioemotional factors. However, none of these (alone or together) accounted for the association between SRH and host resistance. Additional data (separate study) indicated that history of having colds was unrelated to susceptibility and hence also did not account for the SRH link with immunocompetence. Poorer SRH is associated with poorer immunocompetence, possibly reflecting sensitivity to sensations associated with premorbid immune dysfunction. In turn, poorer immune function may be a major contributing mechanism linking SRH to future health.

  4. Geomatic methods applied to the study of the front position changes of Johnsons and Hurd Glaciers, Livingston Island, Antarctica, between 1957 and 2013

    NASA Astrophysics Data System (ADS)

    Rodríguez Cielos, Ricardo; Aguirre de Mata, Julián; Díez Galilea, Andrés; Álvarez Alonso, Marina; Rodríguez Cielos, Pedro; Navarro Valero, Francisco

    2016-08-01

    Various geomatic measurement techniques can be efficiently combined for surveying glacier fronts. Aerial photographs and satellite images can be used to determine the position of the glacier terminus. If the glacier front is easily accessible, the classic surveys using theodolite or total station, GNSS (Global Navigation Satellite System) techniques, laser-scanner or close-range photogrammetry are possible. When the accessibility to the glacier front is difficult or impossible, close-range photogrammetry proves to be useful, inexpensive and fast. In this paper, a methodology combining photogrammetric methods and other techniques is applied to determine the calving front position of Johnsons Glacier. Images taken in 2013 with an inexpensive nonmetric digital camera are georeferenced to a global coordinate system by measuring, using GNSS techniques, support points in accessible areas close to the glacier front, from which control points in inaccessible points on the glacier surface near its calving front are determined with theodolite using the direct intersection method. The front position changes of Johnsons Glacier during the period 1957-2013, as well as those of the land-terminating fronts of Argentina, Las Palmas and Sally Rocks lobes of Hurd glacier, are determined from different geomatic techniques such as surface-based GNSS measurements, aerial photogrammetry and satellite optical imagery. This provides a set of frontal positions useful, e.g., for glacier dynamics modeling and mass balance studies.Link to the data repository: https://doi.pangaea.de/10.1594/PANGAEA.845379.

  5. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobsmore » escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.« less

  6. Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf

    NASA Astrophysics Data System (ADS)

    Rivas, Andrés L.; Pisoni, Juan Pablo

    2010-01-01

    The location and seasonal variability of surface thermal fronts along the Argentinean Continental Shelf (38-55°S) were studied using 18 years (1985-2002) of sea surface temperature (SST) satellite data. Monthly SST gradients were calculated and a threshold was used to identify frontal pixels. Frontal areas were classified into 4 zones according to their seasonal evolution and the main forcings leading to the front's formation were identified for each group. The shelf break front was easily detected due to the large number of frontal pixels in the region and its high mean gradient values. This front showed a marked annual cycle and relatively constant position associated to the bottom slope; it tended to be located where the core of the Malvinas current is closest to the shelf. Tidal fronts also showed a strong annual cycle, being detected in three well-defined regions during spring and summer. Along the coasts of Tierra del Fuego and Santa Cruz, the combination of strong tidal mixing and low-salinity coastal plumes led to semi-annual seasonal cycles of frontal intensity and persistence that showed a relative maximum in winter. A similar behavior (semi-annual) was found at the coast off the Buenos Aires Province. There, the coastal dilution and the bathymetric gradient generated near-coastal fronts that changed direction seasonally. In the northern mid-shelf, a front linked to the intrusion of warm waters formed in the San Matías Gulf was identified during the winter.

  7. A study of formation and development of one kind of cyclone on the mei-yu (Baiu) front

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Zhao, Sixiong

    2004-10-01

    The paper presents one diagnosis of baroclinity and the coupling of jets during the developing process of a cyclone that occurred on the mei-yu (Baiu) front around the end of the second stage of the mei-yu (Baiu) in 1998. Results have shown that: (1) The advantageous changes of upper-level large-scale circulation caused the appearance and maintenance of the coupling between the upper-level jet (ULJ) and lower-level jet (LLJ) over the cyclone’s area. The coupling of jets in this case possesses some different characteristics from previous cases. Moreover, the coupling between the ULJ and LLJ caused the intensification of both lower-level convergence and upper-level divergence, which was favorable for the development of this cyclone. (2) From the analysis of the voricity budget, the role of lower-level convergence in the development of the cyclone was emphasized. Divergent wind in the lower troposphere was a direct contributor to the development of the cyclone. (3) During the development of the cyclone, cold air and warm air were active over the cyclone’s domain. Although this cyclone occurred at the mei-yu (Baiu) front, its development assumed baroclinity to a certain extent, which was just the main difference between this kind of cyclone and the first kind of low which is usually barotropic (or quasi-barotropic). (4) In recent years, studies on mei-yu front lows have paid more attention to the lower troposphere. In this paper, the analysis of the energy budget further supports this point: the certain effect of baroclinity forcing in the upper troposphere on mei-yu front lows cannot be ignored.

  8. Instability of evaporation fronts in the interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeong-Gyu; Kim, Woong-Tae, E-mail: jgkim@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr

    2013-12-10

    The neutral component of the interstellar medium is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that a plane-parallel CNM-WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) of terrestrial flames. We perform a full linear stability analysis as well as nonlinear hydrodynamic simulations of the DLI of such evaporation fronts in the presence of thermal conduction. We find that the DLI is suppressed at short length scales by conduction. The lengthmore » and time scales of the fastest growing mode are inversely proportional to the evaporation flow speed of the CNM and its square, respectively. In the nonlinear stage, the DLI saturates to a steady state where the front deforms to a finger-like shape protruding toward the WNM, without generating turbulence. The evaporation rate at nonlinear saturation is larger than the initial plane-parallel value by a factor of ∼2.4 when the equilibrium thermal pressure is 1800 k {sub B} cm{sup –3} K. The degrees of front deformation and evaporation-rate enhancement at nonlinear saturation are determined primarily by the density ratio between the CNM and WNM. We demonstrate that the Field length in the thermally unstable medium should be resolved by at least four grid points to obtain reliable numerical outcomes involving thermal instability.« less

  9. Old age potentiates cold-induced tau phosphorylation: linking thermoregulatory deficit with Alzheimer's disease.

    PubMed

    Tournissac, Marine; Vandal, Milène; François, Arnaud; Planel, Emmanuel; Calon, Frédéric

    2017-02-01

    Thermoregulatory deficits coincide with a rise in the incidence of Alzheimer's disease (AD) in old age. Lower body temperature increases tau phosphorylation, a neuropathological hallmark of AD. To determine whether old age potentiates cold-induced tau phosphorylation, we compared the effects of cold exposure (4 °C, 24 hours) in 6- and 18-month-old mice. Cold-induced changes in body temperature, brown adipose tissue activity, and phosphorylation of tau at Ser202 were not different between 6- and 18-month-old mice. However, following cold exposure, only old mice displayed a significant rise in soluble tau pThr181 and pThr231, which was correlated with body temperature. Inactivation of glycogen synthase kinase 3β was more prominent in young mice, suggesting a protective mechanism against cold-induced tau phosphorylation. These results suggest that old age confers higher susceptibility to tau hyperphosphorylation following a change in body temperature, thereby contributing to an enhanced risk of developing AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Genetics Home Reference: Emanuel syndrome

    MedlinePlus

    ... skin just in front of the ears ( preauricular pits or sinuses). About half of all affected infants ... MedlinePlus Encyclopedia: Microcephaly MedlinePlus Encyclopedia: Preauricular Tag or Pit General Information from MedlinePlus (5 links) Diagnostic Tests ...

  11. OHD - Additional Links

    Science.gov Websites

    Site Map News Organization Search NWS All NOAA Go Local forecast by "City, St" Search by city or zip code. Press enter or select the go button to submit request City, St Go Front Office OWP

  12. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants.

    PubMed

    Byun, Mi Young; Lee, Jungeun; Cui, Li Hua; Kang, Yoonjee; Oh, Tae Kyung; Park, Hyun; Lee, Hyoungseok; Kim, Woo Taek

    2015-07-01

    Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Documentary evidence of climate variability during cold seasons in Lesotho, southern Africa, 1833-1900

    NASA Astrophysics Data System (ADS)

    Grab, Stefan W.; Nash, David J.

    2010-03-01

    This study presents the first 19th century cold season climate chronology for the Kingdom of Lesotho in southern Africa. The chronology is constructed using a variety of documentary sources including letters, diaries, reports, monographs and newspaper articles obtained from southern African and British archives. Information relating to cold season weather phenomena during the austral autumn, winter and early spring months were recorded verbatim. Each of the cold seasons from 1833 to 1900 was then classified as “very severe”, “severe” or “normal/mild”, with a confidence rating ranging from low (1) to high (3) awarded against each annual classification. The accuracy of the document-derived chronology was verified against temperature data for Maseru for the period 1893-1900. Excellent correspondence of the document-derived chronology with the Maseru instrumental data and also with other global proxy temperature records for the 19th century is achieved. The results indicate 12 (18% of the total) very severe, 16 (23%) severe and 40 (59%) normal/mild cold seasons between 1833 and 1900. The overall trend is for more severe and snow-rich cold seasons during the early part of the study period (1833-1854) compared with the latter half of the 19th century (with the exception of the 1880s). A reduction in the duration of the frost season by over 20 days during the 19th century is also tentatively identified. Several severe to very severe cold seasons in Lesotho follow after major tropical and SH volcanic eruptions; such years are usually characterized by early frosts, and frequent and heavy snowfalls. The blocking of solar radiation and the enhanced northward displacement of polar fronts that are directly or indirectly associated with volcanic events, may account for many of the most severe Lesotho winters during the 19th century.

  14. Reliability of the method of levels for determining cutaneous temperature sensitivity

    NASA Astrophysics Data System (ADS)

    Jakovljević, Miroljub; Mekjavić, Igor B.

    2012-09-01

    Determination of the thermal thresholds is used clinically for evaluation of peripheral nervous system function. The aim of this study was to evaluate reliability of the method of levels performed with a new, low cost device for determining cutaneous temperature sensitivity. Nineteen male subjects were included in the study. Thermal thresholds were tested on the right side at the volar surface of mid-forearm, lateral surface of mid-upper arm and front area of mid-thigh. Thermal testing was carried out by the method of levels with an initial temperature step of 2°C. Variability of thermal thresholds was expressed by means of the ratio between the second and the first testing, coefficient of variation (CV), coefficient of repeatability (CR), intraclass correlation coefficient (ICC), mean difference between sessions (S1-S2diff), standard error of measurement (SEM) and minimally detectable change (MDC). There were no statistically significant changes between sessions for warm or cold thresholds, or between warm and cold thresholds. Within-subject CVs were acceptable. The CR estimates for warm thresholds ranged from 0.74°C to 1.06°C and from 0.67°C to 1.07°C for cold thresholds. The ICC values for intra-rater reliability ranged from 0.41 to 0.72 for warm thresholds and from 0.67 to 0.84 for cold thresholds. S1-S2diff ranged from -0.15°C to 0.07°C for warm thresholds, and from -0.08°C to 0.07°C for cold thresholds. SEM ranged from 0.26°C to 0.38°C for warm thresholds, and from 0.23°C to 0.38°C for cold thresholds. Estimated MDC values were between 0.60°C and 0.88°C for warm thresholds, and 0.53°C and 0.88°C for cold thresholds. The method of levels for determining cutaneous temperature sensitivity has acceptable reliability.

  15. The impacts of repeated cold exposure on insects.

    PubMed

    Marshall, Katie E; Sinclair, Brent J

    2012-05-15

    Insects experience repeated cold exposure (RCE) on multiple time scales in natural environments, yet the majority of studies of the effects of cold on insects involve only a single exposure. Three broad groups of experimental designs have been employed to examine the effects of RCE on insect physiology and fitness, defined by the control treatments: 'RCE vs cold', which compares RCE with constant cold conditions; 'RCE vs warm', which compares RCE with constant warm conditions; and 'RCE vs matched cold' which compares RCE with a prolonged period of cold matched by time to the RCE condition. RCE are generally beneficial to immediate survival, and increase cold hardiness relative to insects receiving a single prolonged cold exposure. However, the effects of RCE depend on the study design, and RCE vs warm studies cannot differentiate between the effects of cold exposure in general vs RCE in particular. Recent studies of gene transcription, immune function, feeding and reproductive output show that the responses of insects to RCE are distinct from the responses to single cold exposures. We suggest that future research should attempt to elucidate the mechanistic link between physiological responses and fitness parameters. We also recommend that future RCE experiments match the time spent at the stressful low temperature in all experimental groups, include age controls where appropriate, incorporate a pilot study to determine time and intensity of exposure, and measure sub-lethal impacts on fitness.

  16. A perspective on the history of health and human rights: from the Cold War to the Gold War.

    PubMed

    Tarantola, Daniel

    2008-04-01

    Through the end of the Cold War, public health policies were predominantly shaped and implemented by governments and these same governments committed themselves to meet their obligations for health under international and national laws. The post-Cold War era has witnessed the entry of new actors in public health and the sharing of power and influences with non-state actors, in particular the private sector and interest groups. This article examines the emergence of human rights and the rise of health on the international development agenda as the Cold War was ending. It highlights the convergence of health and human rights in academic and public discourse since the end of the Cold War in a context of political and economic shifts linked to the ongoing economic globalization. It describes opportunities and challenges for greater synergy between health and rights and proposes a role for health practitioners.

  17. Analysis of the synoptic winter mortality climatology in five regions of England: Searching for evidence of weather signals.

    PubMed

    Paschalidou, A K; Kassomenos, P A; McGregor, G R

    2017-11-15

    Although heat-related mortality has received considerable research attention, the impact of cold weather on public health is less well-developed, probably due to the fact that physiological responses to cold weather can vary substantially among individuals, age groups, diseases etc., depending on a number of behavioral and physiological factors. In the current work we use the classification techniques provided by the COST-733 software to link synoptic circulation patterns with excess cold-related mortality in 5 regions of England. We conclude that, regardless of the classification scheme used, the most hazardous conditions for public health in England are associated with the prevalence of the Easterly type of weather, favoring advection of cold air from continental Europe. It is noteworthy that there has been observed little-to-no regional variation with regards to the classification results among the 5 regions, suggestive of a spatially homogenous response of mortality to the atmospheric patterns identified. In general, the 10 different groupings of days used reveal that excess winter mortality is linked with the lowest daily minimum/maximum temperatures in the area. However it is not uncommon to observe high mortality rates during days with higher, in relative terms, temperatures, when rapidly changing weather results in an increase of mortality. Such a finding confirms the complexity of cold-related mortality and highlights the importance of synoptic climatology in understanding of the phenomenon. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Novel isolation of water-soluble polysaccharides from the fruiting bodies of Pleurotus ostreatus mushrooms.

    PubMed

    Palacios, Irene; García-Lafuente, Ana; Guillamón, Eva; Villares, Ana

    2012-09-01

    Novel water-soluble polysaccharides have been isolated from the fruiting bodies of the edible mushroom Pleurotus ostreatus. Three polysaccharide fractions were obtained by ethanol precipitation from cold water, hot water and hot aqueous NaOH extracts. The fractions were purified by size exclusion chromatography showing a unique carbohydrate occurring in each fraction: PC from the cold fraction, PH from the hot fraction and PB from the hot aqueous NaOH fraction. The analysis of the methylated alditol acetates and the NMR studies revealed that all the polysaccharides displayed a linear backbone. PC was formed by α-(1→3),(1→6)-linked galactopyranosyl residues whereas PH and PB consisted of glucose-linked units. PH was exclusively composed of glucopyranosyl units bound by α-(1→4) linkages whereas PB was a β-linked glucan showing (1→3) and (1→6) glycosidic bonds. The analysis of molecular arrangement by complexation with Congo red showed that only the β-linked polysaccharide (PB) displayed a triple helix conformation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Thunderstorm intensity as determined from satellite data

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Fenn, D. D.

    1979-01-01

    Digital infrared data from SMS 2 obtained on May 6, 1975 are used to study thunderstorm vertical growth rates and cloud top structure in relation to the occurrence of severe weather (tornadoes, hail, and high wind) on the ground. All thunderstorms from South Dakota to Texas along a N-S oriented cold front were monitored for a 4 h period with 5 min interval data. Thunderstorm growth rate, as determined by the rate of blackbody temperature isotherm expansion and minimum cloud top temperature, are shown to be correlated with reports of severe weather on the ground.

  20. Performance of the TGT liquid argon calorimeter and trigger system

    NASA Astrophysics Data System (ADS)

    Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Ban, J.; Bruncko, D.; Jusko, A.; Kocper, B.; Aderholz, M.; Brettel, H.; Dulny, B.; Dydak, F.; Fent, J.; Huber, J.; Jakobs, K.; Oberlack, H.; Schacht, P.; Bogolyubsky, M. Y.; Chekulaev, S. V.; Kiryunin, A. E.; Kurchaninov, L. L.; Levitsky, M. S.; Maksimov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.

    1996-02-01

    A novel concept of a liquid argon calorimeter, the "Thin Gap Turbine" (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a "circular data store" and standalone readout and play-back capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given.

  1. Investigating connections between local-remote atmospheric variability and Greenland outlet glacier behavior

    NASA Astrophysics Data System (ADS)

    Sobolowski, Stefan; Chen, Linling; Miles, Victoria

    2016-04-01

    The outlet glaciers along the margins of the Greenland Ice Sheet (GrIS) exhibit a range of behaviors, which are crucial for understanding GrIS mass changes from a dynamical point of view. However, the drivers of this behavior are still poorly understood. Arguments (counter-arguments) have been made for a strong (weak) local oceanic influence on marine terminating outlet glaciers while decadal-scale drivers linked to fluctuations in the Ice sheet itself and the North Atlantic ocean (e.g. Atlantic Multidecadal Variability) have also been posited as drivers. Recently there have also been studies linking (e.g. seasonal to interannual) atmospheric variability, synoptic activity and the Ice Sheet variability. But these studies typically investigate atmospheric links to the large-scale behavior of the Ice Sheet itself and do not go down to the scale of the outlet glaciers. Conversely, investigations of the outlet glaciers often do not include potential links to non-local atmospheric dynamics. Here the authors attempt to bridge the gap and investigate the relationship between atmospheric variability across a range of scales and the behavior of three outlet glaciers on Greenland's southeast coast over a 33-year period (1980-2012). The glaciers - Helheim, Midgard and Fenris - are near Tasiilaq, are marine terminating and exhibit varying degree of connection to the GrIS. ERA-Interim reanalysis, sea-ice data and glacier observations are used for the investigation. Long records of mass balance are unavailable for these glaciers and front position is employed as a measure of glacier atmosphere interactions across multiple scales, as it exhibits robust relationships to atmospheric variability on time scales of seasons to many years, with the strongest relationships seen at seasonal - interannual time scales. The authors do not make the argument that front position is a suitable proxy for mass balance, only that it is indicative of the role of local and remote atmospheric/climate dynamics in glacier behavior. Our study suggests a strong relationship between large-scale tropospheric circulation patterns, such as the so-called Greenland Blocking Index (GBI), and glacier front position. This relationship is seen in the wintertime (summertime) circulation influence on spring (fall) front position. Dynamically, a physical pathway is illustrated via canonical correlation analyses and composites of low-mid level winds, which show strong southerly advection into the region when the GBI is positive. There are also potential links between local and remote diabatic heating in the atmospheric column, SSTs, sea-ice concentration and front position. Whether there are physical pathways connecting remote surface processes, such as heating along western Greenland is not yet clear. Causality is always difficult to infer in reanalysis-based studies but physical intuition and theory provide multiple lines of evidence, which suggest a substantial influence of large-scale atmospheric dynamics at the margins of the GrIS. Improving our understanding of these physical connections will be crucial, as we know the outlet glaciers will respond under rapidly changing climate conditions.

  2. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    NASA Technical Reports Server (NTRS)

    Machida, S.; Goertz, C. K.; Lu, G.

    1988-01-01

    The simulation of the critical ionization velocity for a neutral gas cloud moving across the static magnetic field is presented. A low-beta plasma is studied, using a two and a half-dimensional electrostatic code linked with the Plasma and Neutral Interaction Code (Goertz and Machida, 1987). The physics of the ionizing front and the instabilities which occur there are discussed. Results are presented from four numerical runs designed so that the effects of the charge separation field can be distinguished from the wave heating.

  3. A multitasking, multisinked, multiprocessor data acquisition front end

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, R.; Au, R.; Molen, A.V.

    1989-10-01

    The authors have developed a generalized data acquisition front end system which is based on MC68020 processors running a commercial real time kernel (rhoSOS), and implemented primarily in a high level language (C). This system has been attached to the back end on-line computing system at NSCL via our high performance ETHERNET protocol. Data may be simultaneously sent to any number of back end systems. Fixed fraction sampling along links to back end computing is also supported. A nonprocedural program generator simplifies the development of experiment specific code.

  4. Cutting the Cord

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting off the front lander petal. Before this crucial turn could take place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  5. Optical communication noise rejection using corelated photons

    NASA Technical Reports Server (NTRS)

    Jackson, D.; Hockney, G. M.; Dowling, J. P.

    2002-01-01

    This paper describes a completely new way to perform noise rejection using photons correlated through quantum entanglement to improve an optical communications link in the presence of uncorrelated noise. In particular, a detailed analysis is made of the case where a classical link would be saturated by an intense background, such as when a satellite is in front of the sun, and identifies where the quantum correlating system has superior performance.

  6. Nitric Acid Particles in Cold Thick Ice Clouds Observed at Global Scale: Link with Lightning, Temperature, and Upper Tropospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; Riviere, E. D.

    2007-01-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the Tropics (9 to 20% of clouds with T less than 202.5 K). Higher occurrences were found in the rare mid-latitudes very cold clouds. NAP occurrence increases as cloud temperature decreases and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning is the main source of the NOx, which forms NAP in cold clouds. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP play a role in the dehydration of the upper troposphere when the tropopause is colder than 195K.

  7. Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; RivièRe, E. D.

    2007-03-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx, which forms NAP in cold clouds over continents. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP may play a role in the dehydration of the upper troposphere when the tropopause is colder than 195 K.

  8. Dependence of present and future European heat waves and cold spells on the location of atmospheric blocking

    NASA Astrophysics Data System (ADS)

    Brunner, L.; Schaller, N.; Sillmann, J.; Steiner, A. K.

    2017-12-01

    Atmospheric blocking describes stationary anti-cyclones, which weaken or reverse the climatological flow at mid-latitudes. In the northern hemisphere one of the main blocking regions is located over the North Atlantic and Northern Europe. The link between blocking and European temperature extremes, such as heat waves and cold spells, strongly depends on several aspects like season, longitudinal location of the block, and location of the extremes (particularly Northern Europe versus Southern Europe). We use a 50-member ensemble of the Canadian CanESM2 model to investigate historical (1981-2010) and future (2070-2099) blocking cases and their relationship with European temperature extremes. For the historical period the model results are also compared to those from the ERA-Interim reanalysis. Atmospheric blocking is detected on a daily basis in different 30° longitude windows between 60°W and 60°E, using a standard geopotential height-based detection index. Temperature extremes are defined by the daily Heat/Cold Wave Magnitude Index (HWMId/CWMId). The role of cold advection is found particularly important in winter conditions leading to a more than threefold increase in cold wave occurrence during blocking between 60°W and 0°. During blocking over Northern Europe (0° to 60°E) a split relationship is found with cold wave occurrence being strongly increased in Southern Europe, while it is decreased in Northern Europe. Direct, radiative effects dominate in summer, therefore blocking westward of Europe has a weaker effect, while blocking over Northern Europe leads to an increase of heat waves by at least a factor three at the location of the block and a decrease in cold wave occurrence in almost all of Europe. Comparing the historical and future period we find the link between blocking and temperature extremes in Europe to be robust, even though blocking frequency and temperatures are changing.

  9. Multi-scale Salinity Fronts Observed by Saildrones During the SPURS-2 Field Campaign

    NASA Astrophysics Data System (ADS)

    Cronin, M. F.; Zhang, D.; Sutton, A. J.; Meinig, C.; Jenkins, R.; Keene, J.

    2017-12-01

    As part of the Tropical Pacific Observing System (TPOS)-2020 project, two Saildrone Inc. "Saildrones" will be deployed to test the ability of these new autonomous sailing vessel drones for making climate quality meteorological, oceanic and biogeochemical measurements. During the first part of the 6-month mission, in October 2017, the two Saildrones will participate in the Salinity Processes in the Upper Ocean Regional Study-2 (SPURS-2) final field campaign in the eastern tropical Pacific. In this presentation we will show early results from the mission, including intercomparisons of Saildrone measurements against similar measurements from moorings and a research vessel, and Saildrone observations of multi-scale fronts in the eastern Pacific Intertropical Convergence Zone (ITCZ). With its ability to transit at speeds of up to 3-5 knots (for 10-20 knot winds) and to adapt its course and sampling scheme upon demand, Saildrones offer a powerful new tool for oceanographic research. If the measurements are shown to be climate quality, this exciting new platform could play a major new role in the TPOS, either as stationary pseudo-moorings, and/or for making repeat sections (e.g., across cold tongue front, or ITCZ), and/or monitoring evolving conditions, such as the eastern edge of the warm pool as it shifts eastward during an El Niño.

  10. Does the Australasian "Health Star Rating" Front of Pack Nutritional Label System Work?

    PubMed

    Hamlin, Robert; McNeill, Lisa

    2016-06-01

    This article describes an experiment to measure the impact of the Australasian "Health Star Rating" front of pack nutritional label system on consumer choice behaviour. This system presents a one-half to five star rating of nutritional quality via the front facings of food product packages. While this system has been recently rolled out across Australasia, no test of its impact on food choice has been conducted. A sample of 1200 consumers was recruited on exit from supermarkets in New Zealand. A 2 × 2 factorial design was used with two levels of cold cereal product nutritional status (high, five star/low, two star) and two levels of the Health Star Rating label (present/absent). The dependent variable was revealed choice behaviour. The results indicated that the presence of the label had a significant depressive effect on consumer preference, but that this impact was not moderated in any way by the nutritional status expressed by the label. The result represents a significant functional failure of the Health Star Rating label in this research environment. The nature of the failure is consistent with the consumers processing the label in much the same way as the nominal brand cues that dominate the retail food packaging.

  11. Does the Australasian “Health Star Rating” Front of Pack Nutritional Label System Work?

    PubMed Central

    Hamlin, Robert; McNeill, Lisa

    2016-01-01

    This article describes an experiment to measure the impact of the Australasian “Health Star Rating” front of pack nutritional label system on consumer choice behaviour. This system presents a one-half to five star rating of nutritional quality via the front facings of food product packages. While this system has been recently rolled out across Australasia, no test of its impact on food choice has been conducted. A sample of 1200 consumers was recruited on exit from supermarkets in New Zealand. A 2 × 2 factorial design was used with two levels of cold cereal product nutritional status (high, five star/low, two star) and two levels of the Health Star Rating label (present/absent). The dependent variable was revealed choice behaviour. The results indicated that the presence of the label had a significant depressive effect on consumer preference, but that this impact was not moderated in any way by the nutritional status expressed by the label. The result represents a significant functional failure of the Health Star Rating label in this research environment. The nature of the failure is consistent with the consumers processing the label in much the same way as the nominal brand cues that dominate the retail food packaging. PMID:27258305

  12. A new `bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen

    NASA Astrophysics Data System (ADS)

    Jacobs, Stephanie J.; Pezza, Alexandre B.; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor `bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.

  13. Mesoscale cyclogenesis dynamics over the southwestern Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Carrasco, Jorge F.; Bromwich, David H.

    1993-07-01

    Previous work has shown that frequent mesoscale cyclogenesis adjacent to Franklin Island is linked to the strong and persistent katabatic winds from East Antarctica which funnel into Terra Nova Bay and then blow out over the southwestern Ross Sea. Four mesoscale cyclones that formed near Terra Nova Bay between February 16 and 20, 1988 are examined to more clearly define the governing mechanisms. These events are investigated using all available observations, including automatic weather station data, high-resolution satellite images, satellite soundings, and hemispheric synoptic analyses. The first two cyclones formed on low-level baroclinic zones established by the synoptic scale advection of warm moist air toward the cold continental air blowing gently from East Antarctica. In the second case, baroclinic instability of this small-scale cold front was apparently triggered by the enhanced upward vertical motion associated with the approach of a midtropospheric trough. The third mesocyclone formed shortly after on a baroclinic zone over the polar plateau; the second vortex completely disrupted the usual katabatic drainage over the plateau and forced warm moist air over the coastal slopes. All three cyclones moved to the north in the prevailing cyclonic flow, but the plateau vortex lasted for only 6 hours. The fourth mesoscale low formed in conjunction with an abrupt and intense surge of katabatic air from Terra Nova Bay which resharpened the coastal baroclinic zone. At the same time a transiting midtropospheric trough probably associated with lower tropospheric upward vertical motion apparently accelerated the katabatic winds and triggered the vortex formation. A similar katabatic wind-forced mesocyclone formed near Byrd Glacier. The two vortices moved to the east-southeast and northeast, respectively, apparently being steered by the generating katabatic airstreams, and merged just to the north of the Ross Ice Shelf. The combined vortex reintensified as another trough passed overhead and moved eastward to West Antarctica where it dissipated two days later.

  14. A new 'bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen.

    PubMed

    Jacobs, Stephanie J; Pezza, Alexandre B; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor 'bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.

  15. The Use of Pre-Storm Boundary-Layer Baroclinicity in Determining and Operationally Implementing the Atlantic Surface Cyclone Intensification Index

    NASA Astrophysics Data System (ADS)

    Cione, Joseph; Pietrafes, Leonard J.

    The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24-48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982-April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by the NWS at the Raleigh-Durham (RAH) forecast office for 10 winter storms. Analysis of these ASCII forecasts will be presented.

  16. Three-dimensional instabilities of mantle convection with multiple phase transitions

    NASA Technical Reports Server (NTRS)

    Honda, S.; Yuen, D. A.; Balachandar, S.; Reuteler, D.

    1993-01-01

    The effects of multiple phase transitions on mantle convection are investigated by numerical simulations that are based on three-dimensional models. These simulations show that cold sheets of mantle material collide at junctions, merge, and form a strong downflow that is stopped temporarily by the transition zone. The accumulated cold material gives rise to a strong gravitational instability that causes the cold mass to sink rapidly into the lower mantle. This process promotes a massive exchange between the lower and upper mantles and triggers a global instability in the adjacent plume system. This mechanism may be cyclic in nature and may be linked to the generation of superplumes.

  17. Revealing the timing of ocean stratification using remotely-sensed ocean fronts: links with marine predators

    NASA Astrophysics Data System (ADS)

    Miller, P. I.; Loveday, B. R.

    2016-02-01

    Stratification is of critical importance to the mixing and productivity of the ocean, though currently it can only be measured using in situ sampling, profiling buoys or underwater autonomous vehicles. Stratification is understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Satellite Earth observation sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This presentation describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and in certain regions can reveal the timing of the seasonal onset and breakdown of stratification. Initial comparisons will be made with seabird locations acquired through GPS tagging. If successful, a remotely-sensed stratification timing index would augment the ocean front metrics already developed at PML, that have been applied in over 20 journal articles relating marine predators to ocean fronts. The figure below shows a preliminary remotely-sensed 'stratification' index, for 25-31 Jul. 2010, where red indicates water with stronger evidence for stratification.

  18. Parental Bonds, Anxious Attachment, Media Internalization, and Body Image Dissatisfaction: Exploring a Mediation Model

    ERIC Educational Resources Information Center

    Cheng, Hsiu-Lan; Mallinckrodt, Brent

    2009-01-01

    The first purpose of this study was to investigate direct links between body image dissatisfaction (BID) in college women and their memories of either parent as cold and emotionally aloof. Theory, clinical case evidence, and a small (but growing) number of studies support these links. After estimating the strength of the associations between…

  19. Crossing the front: contrasting storm-forced dispersal dynamics revealed by biological, geological and genetic analysis of beach-cast kelp.

    PubMed

    Waters, Jonathan M; King, Tania M; Fraser, Ceridwen I; Craw, Dave

    2018-03-01

    The subtropical front (STF) generally represents a substantial oceanographic barrier to dispersal between cold-sub-Antarctic and warm-temperate water masses. Recent studies have suggested that storm events can drastically influence marine dispersal and patterns. Here we analyse biological and geological dispersal driven by two major, contrasting storm events in southern New Zealand, 2017. We integrate biological and physical data to show that a severe southerly system in July 2017 disrupted this barrier by promoting movement of substantial numbers of southern sub-Antarctic Durvillaea kelp rafts across the STF, to make landfall in mainland NZ. By contrast, a less intense easterly storm (Cyclone Cook, April 2017) resulted in more moderate dispersal distances, with minimal dispersal between the sub-Antarctic and mainland New Zealand. These quantitative analyses of approximately 200 freshly beach-cast kelp specimens indicate that storm intensity and wind direction can strongly influence marine dispersal and landfall outcomes. © 2018 The Author(s).

  20. Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Fenty, I.; Xu, Y.; Cai, C.; Velicogna, I.; Cofaigh, C. Ó.; Dowdeswell, J. A.; Weinrebe, W.; Catania, G.; Duncan, D.

    2016-03-01

    Marine-terminating glaciers play a critical role in controlling Greenland's ice sheet mass balance. Their frontal margins interact vigorously with the ocean, but our understanding of this interaction is limited, in part, by a lack of bathymetry data. Here we present a multibeam echo sounding survey of 14 glacial fjords in the Uummannaq and Vaigat fjords, west Greenland, which extends from the continental shelf to the glacier fronts. The data reveal valleys with shallow sills, overdeepenings (>1300 m) from glacial erosion, and seafloor depths 100-1000 m deeper than in existing charts. Where fjords are deep enough, we detect the pervasive presence of warm, salty Atlantic Water (AW) (>2.5°C) with high melt potential, but we also find numerous glaciers grounded on shallow (<200 m) sills, standing in cold (<1°C) waters in otherwise deep fjords, i.e., with reduced melt potential. Bathymetric observations extending to the glacier fronts are critical to understand the glacier evolution.

  1. `Blame' Hawaii for Extreme Cold Air Outbreaks on the US West Coast?

    NASA Astrophysics Data System (ADS)

    Grotjahn, R.; Zhang, R.

    2017-12-01

    Short term extreme cold events punctuate the climate record. Though not always captured by monthly or seasonal means, they can have impacts lasting months. Extreme cold air outbreaks affecting the US West Coast are associated with a specific large scale meteorological pattern (LSMP). The LSMP has large meridional displacements of warm and cold air that create a ridge over and south of western Alaska, then a trough downstream moving with the cold air of the CAO, and finally another ridge over the southeastern US. These three features form in that order over several days leading up to the CAO onset. The warm advection creating the Alaskan ridge displaces cold air which is then advected southward along the North American west coast. Our recent work shows that both advections are driven by a lower level highly unusual high pressure center near the Gulf of Alaska. The cold air advection includes a continental interior portion (which sets up an offshore pressure gradient) and a portion off the west coast (air parcels high enough to be little modified before sinking over the US West Coast). In the mid to upper troposphere there are additional cyclonic centers to the south of the Alaskan ridge. Depending on the region compared, the LSMP has notable pattern correlation (up to 0.7) with the Pacific-North American teleconnection (PNA) negative phase pattern. (Others have shown a link between the PNA negative phase and unusual cold over northwestern North America on longer time scales. Here we find a higher frequency LSMP having centers offset from corresponding centers in the negative phase PNA loading pattern.) Even earlier before onset, we find a connection to a stream function structure straddling the equator that shares properties with slow moving equatorial Rossby waves; this pattern includes a trough near Hawaii that appears linked to the Alaskan ridge building that initiates the CAO. Hence, we arrive at our provocative title. All these features in the geopotential and stream function fields are highly significant from bootstrap statistics. The presentation will emphasize the time evolution of these significant features.

  2. Links between sediment consolidation and Cascadia megathrust slip behaviour

    NASA Astrophysics Data System (ADS)

    Han, Shuoshuo; Bangs, Nathan L.; Carbotte, Suzanne M.; Saffer, Demian M.; Gibson, James C.

    2017-12-01

    At sediment-rich subduction zones, megathrust slip behaviour and forearc deformation are tightly linked to the physical properties and in situ stresses within underthrust and accreted sediments. Yet the role of sediment consolidation at the onset of subduction in controlling the downdip evolution and along-strike variation in megathrust fault properties and accretionary wedge structure is poorly known. Here we use controlled-source seismic data combined with ocean drilling data to constrain the sediment consolidation and in situ stress state near the deformation front of the Cascadia subduction zone. Offshore Washington where the megathrust is inferred to be strongly locked, we find over-consolidated sediments near the deformation front that are incorporated into a strong outer wedge, with little sediment subducted. These conditions are favourable for strain accumulation on the megathrust and potential earthquake rupture close to the trench. In contrast, offshore Central Oregon, a thick under-consolidated sediment sequence is subducting, and is probably associated with elevated pore fluid pressures on the megathrust in a region where reduced locking is inferred. Our results suggest that the consolidation state of the sediments near the deformation front is a key factor contributing to megathrust slip behaviour and its along-strike variation, and it may also have a significant role in the deformation style of the accretionary wedge.

  3. Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.

    PubMed

    Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin

    2017-05-10

    Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.

  4. Linking Low-Frequency Large-Scale Circulation Patterns to Cold Air Outbreak Formation in the Northeastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Papritz, L.; Grams, C. M.

    2018-03-01

    The regional variability of wintertime marine cold air outbreaks (CAOs) in the northeastern North Atlantic is studied focusing on the role of weather regimes in modulating the large-scale circulation. Each regime is characterized by a typical CAO frequency anomaly pattern and a corresponding imprint in air-sea heat fluxes. Cyclonically dominated regimes, Greenland blocking and the Atlantic ridge regime are found to provide favorable conditions for CAO formation in at least one major sea of the study region; CAO occurrence is suppressed, however, by blocked regimes whose associated anticyclones are centered over northern Europe (European / Scandinavian blocking). Kinematic trajectories reveal that strength and location of the storm tracks are closely linked to the pathways of CAO air masses and, thus, CAO occurrence. Finally, CAO frequencies are also linked to the strength of the stratospheric polar vortex, which is understood in terms of associated variations in the frequency of weather regimes.

  5. mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold

    PubMed Central

    Labbé, Sébastien M.; Mouchiroud, Mathilde; Caron, Alexandre; Secco, Blandine; Freinkman, Elizaveta; Lamoureux, Guillaume; Gélinas, Yves; Lecomte, Roger; Bossé, Yohan; Chimin, Patricia; Festuccia, William T.; Richard, Denis; Laplante, Mathieu

    2016-01-01

    In response to cold, brown adipose tissue (BAT) increases its metabolic rate and expands its mass to produce heat required for survival, a process known as BAT recruitment. The mechanistic target of rapamycin complex 1 (mTORC1) controls metabolism, cell growth and proliferation, but its role in regulating BAT recruitment in response to chronic cold stimulation is unknown. Here, we show that cold activates mTORC1 in BAT, an effect that depends on the sympathetic nervous system. Adipocyte-specific mTORC1 loss in mice completely blocks cold-induced BAT expansion and severely impairs mitochondrial biogenesis. Accordingly, mTORC1 loss reduces oxygen consumption and causes a severe defect in BAT oxidative metabolism upon cold exposure. Using in vivo metabolic imaging, metabolomics and transcriptomics, we show that mTORC1 deletion impairs glucose and lipid oxidation, an effect linked to a defect in tricarboxylic acid (TCA) cycle activity. These analyses also reveal a severe defect in nucleotide synthesis in the absence of mTORC1. Overall, these findings demonstrate an essential role for mTORC1 in the regulation of BAT recruitment and metabolism in response to cold. PMID:27876792

  6. Fiber-linked telescope array: description and laboratory tests of a two-channel prototype

    NASA Astrophysics Data System (ADS)

    Alleman, J. J.; Reynaud, F.; Connes, P.

    1995-05-01

    We present a complete two-telescope version of a fiber-linked coherent array that is meant to be used for mounting on the dish of a radio telescope. This was built with 20-cm amateur telescopes and includes three different servo subsystems for guiding, nulling of the air path difference, and fiber length control. Laboratory tests of the fully integrated system in front of a star simulator are described.

  7. Bahrain: Reform, Security, and U.S. Policy

    DTIC Science & Technology

    2014-02-14

    outlawed because of its calls for outright change of regime and has boycotted all the COR elections. However, it is smaller in membership than Wifaq...faction, also is an outlawed faction. It is a successor to the Islamic Front for the Liberation of Bahrain (IFLB), a party purportedly linked Iran...clerics in Iran linked to Ayatollah Shirazi. Amal’s leader, Shaykh Muhammad Ali al-Mafoodh, has been in prison since 2011 and Amal was outlawed in

  8. Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold Rolled Alloy 690 in PWR Primary Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.

    2012-10-01

    Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. Formore » the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.« less

  9. Open-cell cloud formation over the Bahamas

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What atmospheric scientists refer to as open cell cloud formation is a regular occurrence on the back side of a low-pressure system or cyclone in the mid-latitudes. In the Northern Hemisphere, a low-pressure system will draw in surrounding air and spin it counterclockwise. That means that on the back side of the low-pressure center, cold air will be drawn in from the north, and on the front side, warm air will be drawn up from latitudes closer to the equator. This movement of an air mass is called advection, and when cold air advection occurs over warmer waters, open cell cloud formations often result. This MODIS image shows open cell cloud formation over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002. This particular formation is the result of a low-pressure system sitting out in the North Atlantic Ocean a few hundred miles east of Massachusetts. (The low can be seen as the comma-shaped figure in the GOES-8 Infrared image from February 19, 2002.) Cold air is being drawn down from the north on the western side of the low and the open cell cumulus clouds begin to form as the cold air passes over the warmer Caribbean waters. For another look at the scene, check out the MODIS Direct Broadcast Image from the University of Wisconsin. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  10. Protecting the public or setting the bar too high? Understanding the causes and consequences of regulatory actions of front-line regulators and specialized drug shop operators in Kenya.

    PubMed

    Wafula, Francis; Molyneux, Catherine; Mackintosh, Maureen; Goodman, Catherine

    2013-11-01

    The problem of poor regulatory compliance has been widely reported across private health providers in developing countries. Less known are the underlying reasons for poor compliance, especially with regards to the roles played by front-line regulatory staff, and the regulatory institution as a whole. We designed a qualitative study to address this gap, with the study questions and tools drawing on a conceptual framework informed by theoretical literature on regulation. Data were collected from specialized drug shops (SDSs) in two rural districts in Western Kenya in 2011 through eight focus group discussions, and from regulatory staff from organizations governing the pharmaceutical sector through a total of 24 in-depth interviews. We found that relationships between front-line regulators and SDS operators were a strong influence on regulatory behaviour, often resulting in non-compliance and perverse outcomes such as corruption. It emerged that separate regulatory streams operated in urban and rural locations, based mainly on differing relationships between the front-line regulators and SDS operators, and on broader factors such as the competition environment and community expectations. Effective incentive structures for regulatory staff were either absent, or poorly linked to performance in regulatory organizations, resulting in divergences between the purposes of the regulatory organization and activities of front-line staff. Given the rural-urban differences in the practice environment, the introduction of lower retail practice requirements for rural SDSs could be considered. This would allow illegally operated shops to be brought within the regulatory framework, facilitating good quality provision of essential commodities to marginalized areas, without lowering the practice requirements for the better complying urban SDSs. In addition, regulatory organizations need to devise incentives that better link the level of effort to rewards such as professional advancement of regulatory staff. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Interaction between Meso-scale Eddies and Sub-polar Front in the East (Japan) Sea based on ARGO, AVHRR, and Numerical Model

    NASA Astrophysics Data System (ADS)

    Ro, Y.; Kim, E.

    2008-12-01

    The East (Japan) Sea is drawing keen international attentions from broad spectrum of groups such as scientists, diplomats, and defense officers for its geopolitical situation, peculiar scientific assets recognized as miniature ocean. From physical oceanographic aspect, it is very rich with many features such as basin-wide circulation pattern, boundary currents, sub-polar front, meso-scale eddy activities and deep water formation. The circulation pattern in the East (Japan) Sea has been of major interests for its peculiar gyre, a western boundary current and its separation that resembles the currents such as Kuroshio and Gulf Stream. In relation to the gyre system in the East Sea, the formation of the East Korea Warm Current (EKWC) has brought up with many numerical experiments. Numerical experiments suggested a new idea to explain the formation of the EKWC in that the potential energy supply into the Ulleung Basin (UB) from the meso-scale eddy is a key process. This is closely linked with the baroclinic instability and the meandering of offshore component of Tsushima Warm Current. The UB has drawn attentions for its role of the formation of two major boundary currents, EKWC, North Korea Warm Current (NKCC), their interaction with the mesoscale UWE, watermass exchange between the Northern Japan Basin and UB. Numerical experiments along with hydrographic and other satellite datasets such as AVHRR, altimeter and ARGO profiles have been analyzed to understand the formation of the UWE. We found that the influence of the bottom topography and frictional forcing against lateral boundary are all closely associated with the sub-polar front. Meandering of the axis of the sub-polar front is closely linked with the separation point of the EKWC, Ulleung Warm Eddy, and other small and meso-scale eddies on the sub-polar front. These will be demonstrated with results of the numerical modeling experiments and animation movie will be presented.

  12. Protecting the public or setting the bar too high? Understanding the causes and consequences of regulatory actions of front-line regulators and specialized drug shop operators in Kenya

    PubMed Central

    Wafula, Francis; Molyneux, Catherine; Mackintosh, Maureen; Goodman, Catherine

    2013-01-01

    The problem of poor regulatory compliance has been widely reported across private health providers in developing countries. Less known are the underlying reasons for poor compliance, especially with regards to the roles played by front-line regulatory staff, and the regulatory institution as a whole. We designed a qualitative study to address this gap, with the study questions and tools drawing on a conceptual framework informed by theoretical literature on regulation. Data were collected from specialized drug shops (SDSs) in two rural districts in Western Kenya in 2011 through eight focus group discussions, and from regulatory staff from organizations governing the pharmaceutical sector through a total of 24 in-depth interviews. We found that relationships between front-line regulators and SDS operators were a strong influence on regulatory behaviour, often resulting in non-compliance and perverse outcomes such as corruption. It emerged that separate regulatory streams operated in urban and rural locations, based mainly on differing relationships between the front-line regulators and SDS operators, and on broader factors such as the competition environment and community expectations. Effective incentive structures for regulatory staff were either absent, or poorly linked to performance in regulatory organizations, resulting in divergences between the purposes of the regulatory organization and activities of front-line staff. Given the rural-urban differences in the practice environment, the introduction of lower retail practice requirements for rural SDSs could be considered. This would allow illegally operated shops to be brought within the regulatory framework, facilitating good quality provision of essential commodities to marginalized areas, without lowering the practice requirements for the better complying urban SDSs. In addition, regulatory organizations need to devise incentives that better link the level of effort to rewards such as professional advancement of regulatory staff. PMID:24016728

  13. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.

    PubMed

    Rambhatla, S; Tchessalov, S; Pikal, Michael J

    2006-04-21

    The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. "Hot" and "cold" spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of -25 degrees C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scale-up issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.

  14. View of Zero-G training for astronauts and payload specialists

    NASA Image and Video Library

    1984-08-27

    Paul Scully-Power, 41-G payload specialist, links arms with two others as they experience weightlessness in the KC-135 training aircraft. The trio appears to be flying toward the front of the aircraft while others take photos.

  15. The Arabidopsis 14-3-3 Protein RARE COLD INDUCIBLE 1A Links Low-Temperature Response and Ethylene Biosynthesis to Regulate Freezing Tolerance and Cold Acclimation[C][W

    PubMed Central

    Catalá, Rafael; López-Cobollo, Rosa; Mar Castellano, M.; Angosto, Trinidad; Alonso, José M.; Ecker, Joseph R.; Salinas, Julio

    2014-01-01

    In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis. PMID:25122152

  16. Inner-shelf circulation and sediment dynamics on a series of shoreface connected ridges offshore of Fire Island, NY

    USGS Publications Warehouse

    Warner, John C.; List, Jeffrey H.; Schwab, William C.; Voulgaris, George; Armstrong, Brandy N.; Marshall, N

    2014-01-01

    Locations along the inner-continental shelf offshore of Fire Island, NY, are characterized by a series of shoreface connected ridges (SFCRs). These sand ridges have approximate dimensions of 10 km in length, 3 km spacing, up to ~8 m ridge to trough relief, and are oriented obliquely at approximately 30 degrees clockwise from the coastline. Stability analysis from previous studies explains how sand ridges such as these could be formed and maintained by storm-driven flows directed alongshore with a key maintenance mechanism of offshore deflected flows over ridge crests and onshore in the troughs. We examine these processes both with a limited set of idealized numerical simulations and analysis of observational data. Model results confirm that along-shore flows over the SFCRs exhibit offshore veering of currents over the ridge crests and onshore-directed flows in the troughs, and demonstrate the opposite circulation pattern for a reverse wind. To further investigate these maintenance processes, oceanographic instruments were deployed at seven sites on the SFCRs offshore of Fire Island to measure water levels, ocean currents, waves, suspended-sediment concentrations, and bottom stresses from January to April 2012. Data analysis reveals that during storms with winds from the northeast the processes of offshore deflection of currents over ridge crests and onshore in the troughs were observed, and during storm events with winds from the southwest a reverse flow pattern over the ridges occurred. Computations of suspended-sediment fluxes identify periods that are consistent with SFCR maintenance mechanisms. Alongshore winds from the northeast drove fluxes offshore on the ridge crest and onshore in the trough that would tend to promote ridge maintenance. However, alongshore winds from the southwest drove opposite circulations. The wind fields are related to different storm types that occur in the region (low pressure systems, cold fronts, and warm fronts). From the limited data set we identify that low pressure systems drive sediment fluxes that tend to promote stability and maintain the SFCRs, while cold front type storms appear to drive circulations that are in the opposite sense and may not be a supporting mechanism for ridge maintenance.

  17. Warm ocean surface led to ice margin retreat in central-eastern Baffin Bay during the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Oksman, Mimmi; Weckström, Kaarina; Miettinen, Arto; Juggins, Stephen; Divine, Dmitry; Jackson, Rebecca; Korsgaard, Niels J.; Telford, Richard; Kucera, Michal

    2017-04-01

    The Greenland ice sheet stability is linked to fast-flowing ice streams that are influenced by sea surface temperatures (SSTs) at their front. One of the largest ice streams in West Greenland is the Jakobshavn Isbræ, which has been shown to have collapsed at ca. 12.2 kyr BP in the middle of the Younger Dryas (YD) cold period (12.9-11.7 kyr BP). The cause for this collapse is still unknown yet hypotheses, such as warm Atlantic water inflow, have been put forward to explain it. Here we present the first diatom-based high-resolution reconstruction of sea surface conditions in the central-eastern Baffin Bay between 14.0 and 10.2 kyr BP. The sea surface temperatures reveal warmer conditions beginning at ca. 13.4 kyr BP and leading to intensive calving and iceberg discharge from Jakobshavn Isbræ visible as increased sedimentation rates and deposition of coarse-grained material in our sediment stratigraphy. The warm YD ocean surface conditions in Baffin Bay are out of phase with the δ18O record from the North Greenland Ice Core Project (NGRIP) and other SST records from northern North-Atlantic. We show that the ocean has had significant interactions with the Greenland ice sheet in the past and emphasize its importance under the current warming of the North Atlantic.

  18. A structural and kinetic study on myofibrils prevented from shortening by chemical cross-linking.

    PubMed

    Herrmann, C; Sleep, J; Chaussepied, P; Travers, F; Barman, T

    1993-07-20

    In previous work, we studied the early steps of the Mg(2+)-ATPase activity of Ca(2+)-activated myofibrils [Houadjeto, M., Travers, F., & Barman, T. (1992) Biochemistry 31, 1564-1569]. The myofibrils were free to contract, and the results obtained refer to the ATPase cycle of myofibrils contracting with no external load. Here we studied the ATPase of myofibrils contracting isometrically. To prevent shortening, we cross-linked them with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). SDS-PAGE and Western blot analyses showed that the myosin rods were extensively cross-linked and that 8% of the myosin heads were cross-linked to the thin filament. The transient kinetics of the cross-linked myofibrils were studied in 0.1 M potassium acetate, pH 7.4 and 4 degrees C, by the rapid-flow quench method. The ATP binding steps were studied by the cold ATP chase and the cleavage and release of products steps by the Pi burst method. In Pi burst experiments, the sizes of the bursts were equal within experimental error to the ATPase site concentrations (as determined by the cold ATP chase methods) for both cross-linked (isometric) and un-cross-linked (isotonic) myofibrils. This shows that in both cases the rate-limiting step is after the cleavage of ATP. When cross-linked, the kcat of Ca(2+)-activated myofibrils was reduced from 1.7 to 0.8 s-1. This is consistent with the observation that fibers shortening at moderate velocity have a higher ATPase activity than isometric fibers.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. You Turn Me Cold: Evidence for Temperature Contagion

    PubMed Central

    Featherstone, Eric; Voon, Valerie; Singer, Tania; Critchley, Hugo D.; Harrison, Neil A.

    2014-01-01

    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p<0.001. Participants' own hands also showed a significant temperature-dependent effect: hands were significantly colder when observing cold vs. warm videos F(1,34) = 13.83, p = 0.001 with post-hoc t-test demonstrating a significant reduction in participants' own left (t(35) = −3.54, p = 0.001) and right (t(35) = −2.33, p = 0.026) hand temperature during observation of cold videos but no change to warm videos (p>0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation. PMID:25551826

  20. Parental misinterpretations of over-the-counter pediatric cough and cold medication labels.

    PubMed

    Lokker, Nicole; Sanders, Lee; Perrin, Eliana M; Kumar, Disha; Finkle, Joanne; Franco, Vivian; Choi, Leena; Johnston, Philip E; Rothman, Russell L

    2009-06-01

    Concerns about the safety and efficacy of over-the-counter cold medications have led to a recent US Food and Drug Administration public health advisory against their use in children <2 years of age. Our goal was to examine caregiver understanding of the age indication of over-the-counter cold medication labels and identify factors, associated with caregiver understanding. Caregivers of infant children (< or =1 year old) were recruited from clinics at 3 institutions. Questions were administered regarding the use of 4 previously common "infant" over-the-counter cold and cough medicines labeled to consult a physician if used in children <2 years of age. Literacy and numeracy skills were assessed with validated instruments. A total of 182 caregivers were recruited; 87% were the infants' mothers. Mean education level was 12.5 years, and 99% had adequate literacy skills, but only 17% had >9th-grade numeracy skills. When examining the front of the product label, 86% of the time parents thought these products were appropriate for use in children <2 years of age. More than 50% of the time, parents stated they would give these over-the-counter products to a 13-month-old child with cold symptoms. Common factors that influenced parental decisions included label saying "infant," graphics (eg, infants, teddy bears, droppers), and dosing directions. Caregivers were influenced by the dosing directions only 47% of the time. Caregivers with lower numeracy skills were more likely to provide inappropriate reasons for giving an over-the-counter medication. Misunderstanding of over-the-counter cold products is common and could result in harm if medications are given inappropriately. Label language and graphics seem to influence inappropriate interpretation of over-the-counter product age indications. Poorer parental numeracy skills may increase the misinterpretation of these products. Opportunities exist for the Food and Drug Administration and manufacturers to revise existing labels to improve parental comprehension and enhance child safety.

  1. Temporal and spatial variations of sea surface temperature in the East China Sea

    NASA Astrophysics Data System (ADS)

    Tseng, Chente; Lin, Chiyuan; Chen, Shihchin; Shyu, Chungzen

    2000-03-01

    Sea surface temperature of the East China Sea (ECS) were analyzed using the NOAA/AVHRR SST images. These satellite images reveal surface features of ECS including mainly the Kuroshio Current, Kuroshio Branch Current, Taiwan Warm Current, China coastal water, Changjiang diluted water and Yellow Sea mixed cold water. The SST of ECS ranges from 27 to 29°C in summer; some cold eddies were found off northeast Taiwan and to the south of Changjiang mouth. SST anomalies at the center of these eddies were about 2-5°C. The strongest front usually occurs in May each year and its temperature gradient is about 5-6°C over a cross-shelf distance of 30 nautical miles. The Yellow Sea mixed cold water also provides a contrast from China Coastal waters shoreward of the 50 m isobath; cross-shore temperature gradient is about 6-8°C over 30 nautical miles. The Kuroshio intrudes into ECS preferably at two locations. The first is off northeast Taiwan; the subsurface water of Kuroshio is upwelled onto the shelf while the main current is deflected seaward. The second site is located at 31°N and 128°E, which is generally considered as the origin of the Tsushima Warm Current. More quantitatively, a 2-year time series of monthly SST images is examined using EOF analysis to determine the spatial and temporal variations in the northwestern portion of ECS. The first spatial EOF mode accounts for 47.4% of total spatial variance and reveals the Changjiang plume and coastal cold waters off China. The second and third EOF modes account for 16.4 and 9.6% of total variance, respectively, and their eigenvector images show the intrusion of Yellow Sea mixed cold waters and the China coastal water. The fourth EOF mode accounts for 5.4% of total variance and reveals cold eddies around Chusan Islands. The temporal variance EOF analysis is less revealing in this study area.

  2. View From Camera Not Used During Curiosity's First Six Months on Mars

    NASA Image and Video Library

    2017-12-08

    This view of Curiosity's left-front and left-center wheels and of marks made by wheels on the ground in the "Yellowknife Bay" area comes from one of six cameras used on Mars for the first time more than six months after the rover landed. The left Navigation Camera (Navcam) linked to Curiosity's B-side computer took this image during the 223rd Martian day, or sol, of Curiosity's work on Mars (March 22, 2013). The wheels are 20 inches (50 centimeters) in diameter. Curiosity carries a pair of main computers, redundant to each other, in order to have a backup available if one fails. Each of the computers, A-side and B-side, also has other redundant subsystems linked to just that computer. Curiosity operated on its A-side from before the August 2012 landing until Feb. 28, when engineers commanded a switch to the B-side in response to a memory glitch on the A-side. One set of activities after switching to the B-side computer has been to check the six engineering cameras that are hard-linked to that computer. The rover's science instruments, including five science cameras, can each be operated by either the A-side or B-side computer, whichever is active. However, each of Curiosity's 12 engineering cameras is linked to just one of the computers. The engineering cameras are the Navigation Camera (Navcam), the Front Hazard-Avoidance Camera (Front Hazcam) and Rear Hazard-Avoidance Camera (Rear Hazcam). Each of those three named cameras has four cameras as part of it: two stereo pairs of cameras, with one pair linked to each computer. Only the pairs linked to the active computer can be used, and the A-side computer was active from before landing, in August, until Feb. 28. All six of the B-side engineering cameras have been used during March 2013 and checked out OK. Image Credit: NASA/JPL-Caltech NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  4. The effect of cold acclimation on active ion transport in cricket ionoregulatory tissues.

    PubMed

    Des Marteaux, Lauren E; Khazraeenia, Soheila; Yerushalmi, Gil Y; Donini, Andrew; Li, Natalia G; Sinclair, Brent J

    2018-02-01

    Cold-acclimated insects defend ion and water transport function during cold exposure. We hypothesized that this is achieved via enhanced active transport. The Malpighian tubules and rectum are likely targets for such transport modifications, and recent transcriptomic studies indicate shifts in Na + -K + ATPase (NKA) and V-ATPase expression in these tissues following cold acclimation. Here we quantify the effect of cold acclimation (one week at 12°C) on active transport in the ionoregulatory organs of adult Gryllus pennsylvanicus field crickets. We compared primary urine production of warm- and cold-acclimated crickets in excised Malpighian tubules via Ramsay assay at a range of temperatures between 4 and 25°C. We then compared NKA and V-ATPase activities in Malpighian tubule and rectal homogenates from warm- and cold-acclimated crickets via NADH-linked photometric assays. Malpighian tubules of cold-acclimated crickets excreted fluid at lower rates at all temperatures compared to warm-acclimated crickets. This reduction in Malpighian tubule excretion rates may be attributed to increased NKA activity that we observed for cold-acclimated crickets, but V-ATPase activity was unchanged. Cold acclimation had no effect on rectal NKA activity at either 21°C or 6°C, and did not modify rectal V-ATPase activity. Our results suggest that an overall reduction, rather than enhancement of active transport in the Malpighian tubules allows crickets to maintain hemolymph water balance during cold exposure, and increased Malpighian tubule NKA activity may help to defend and/or re-establish ion homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. ASYMPTOTIC STEADY-STATE SOLUTION TO A BOW SHOCK WITH AN INFINITE MACH NUMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalinewich, Almog; Sari, Re’em

    2016-08-01

    The problem of a cold gas flowing past a stationary obstacle is considered. We study the bow shock that forms around the obstacle and show that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The profiles of the hydrodynamic variables in the interior of the shock are obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force on the obstacle is also calculated. Finally, we use these results to model the bow shock around an isolated neutron star.

  6. A-Train Based Observational Metrics for Model Evaluation in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.; van den Heever, Susan C.; Posselt, Derek J.

    2015-01-01

    Extratropical cyclones contribute most of the precipitation in the midlatitudes, i.e. up to 70 during winter in the northern hemisphere, and can generate flooding, extreme winds, blizzards and have large socio-economic impacts. As such, it is important that general circulation models (GCMs) accurately represent these systems so their evolution in a warming climate can be understood. However, there are still uncertainties on whether warming will increase their frequency of occurrence, their intensity and how much rain or snow they bring. Part of the issue is that models have trouble representing their strength, but models also have biases in the amount of clouds and precipitation they produce. This is caused by potential issues in various aspects of the models: convection, boundary layer, and cloud scheme to only mention a few. In order to pinpoint which aspects of the models need improvement for a better representation of extratropical cyclone precipitation and cloudiness, we will present A-train based observational metrics: cyclone-centered, warm and cold frontal composites of cloud amount and type, precipitation rate and frequency of occurrence. Using the same method to extract similar fields from the model, we will present an evaluation of the GISS-ModelE2 and the IPSL-LMDZ-5B models, based on their AR5 and more recent versions. The AR5 version of the GISS model underestimates cloud cover in extratropical cyclones while the IPSL AR5 version overestimates it. In addition, we will show how the observed CloudSat-CALIPSO cloud vertical distribution across cold fronts changes with moisture amount and cyclone strength, and test if the two models successfully represent these changes. We will also show how CloudSat-CALIPSO derived cloud type (i.e. convective vs. stratiform) evolves across warm fronts as cyclones age, and again how this is represented in the models. Our third process-based analysis concerns cumulus clouds in the post-cold frontal region and how their amount relates to the stability of the boundary layer. This test uses Aqua cloud and vertical atmospheric profiles and when applied to the model output can help assess the accuracy of the convection, boundary layer and cloud scheme.

  7. On the subduction of oxygenated surface water in submesoscale cold filaments off Peru.

    NASA Astrophysics Data System (ADS)

    Thomsen, Soeren; Kanzow, Torsten; Colas, Francois; Echevin, Vincent; Krahmann, Gerd

    2015-04-01

    The Peruvian upwelling regime is characterized by pronounced submesoscale variability including filaments and sharp density fronts. Submesoscale frontal processes can drive large vertical velocities and enhance vertical tracer fluxes in the upper ocean. The associated high temporal and spatial variability poses a large challenge to observational approaches targeting submesoscale processes. In this study the role of submesoscale processes for both the ventilation of the near-coastal oxygen minimum zone off Peru and the physical-biogeochemical coupling at these scales is investigated. For our study we use satellite based sea surface temperature measurements in combination with multiple high-resolution glider observations of temperature, salinity, oxygen and chlorophyll fluorescence carried out in January and February 2013 off Peru near 14°S during active upwelling. Additionally, high-resolution regional ocean circulation model outputs (ROMS) are analysed. At the beginning of our observations a previously upwelled, productive and highly oxygenated body of water is found within the mixed layer. Subsequently, a cold filament forms and the waters are moved offshore. After the decay of the filament and the relaxation of the upwelling front, the oxygen enriched surface water is found within the previously less oxygenated thermocline suggesting the occurrence of frontal subduction. A numerical model simulation is used to analyse the evolution of passive tracers and Lagrangian floats within several upwelling filaments, whose vertical structure and hydrographic properties agree well with the observations. The simulated temporal evolution of the tracers and floats support our interpretation that the subduction of previously upwelled water indeed occurs within cold filaments off Peru. Filaments are common features within eastern boundary upwelling systems, which all encompass large oxygen minimum zones. However, most state of-the-art large and regional scale physical-biogeochemical ocean models do not resolve submesoscale filaments and the associated downward transport of oxygen and other solutes. Even if the observed subduction event only reaches into the still oxygenated thermocline the associated ventilation mechanism likely influences the shape and depth of the upper boundary of oxygen minimum zones, which would probably be even shallower without this process.

  8. The Mobile Internet -The Next Big Thing. Electrons & Photons: You Need Both! (BRIEFING CHARTS)

    DTIC Science & Technology

    2007-03-05

    Links Network Centric Warfighting Comms Wired & Wireless Links 20th Century 21th Century The Military Comms Problem Network Centric Operationst t i ti...Small Unit Operations TEL Underwater Vehicles & Towed Arrays RC-135V Rivet Joint Tier II+ UAV Global Hawk E-2C Hawkeye Networked Manned and Unmanned...RF Front-End Solutions ● >20 DARPA/MTO RF Programs across the spectrum - RF & Mixed Signal Electronics - Analog & Digital Photonics Enables Network

  9. Fast wire per wire X-ray data acquisition system for time-resolved small angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Epstein, A.; Briquet-Laugier, F.; Sheldon, S.; Boulin, C.

    2000-04-01

    Most of the X-ray multi-wire gas detectors used at the EMBL Hamburg outstation for time-resolved studies of biological samples are readout, using the delay line method. The main disadvantage of such readout systems is their event rate limitation introduced by the delay line and the required time to digital conversion step. They also lack the possibility to deal with multiple events. To overcome these limitations, a new approach for the complete readout system was introduced. The new linear detection system is based on the wire per wire approach where each individual wire is associated to preamplifier/discriminator/counter electronics channel. High-density, front-end electronics were designed around a fast current sensitive preamplifier. An eight-channel board was designed to include the preamplifiers-discriminators and the differential ECL drivers output stages. The detector front-end consists of 25 boards directly mounted inside the detector assembly. To achieve a time framing resolution as short as 10 /spl mu/s, very fast histogramming is required. The only way to implement this for a high number of channels (200 in our case) is by using a distributed system. The digital part of the system consists of a crate controller, up to 16 acquisition boards (capable of handling fast histogramming for up to 32-channels each) and an optical-link board (based on the Cypress "Hot-Link" chip set). Both the crate controller and the acquisition boards are based on a standard RISC microcontroller (IDT R3081) plug-in board. At present, a dedicated CAMAC module which we developed is used to interface the digital front-end acquisition crate to the host via the optical link.

  10. Heterogeneous porous media: Fronts and noise

    NASA Astrophysics Data System (ADS)

    Chaouchel, M.; Rakotomalala, N.; Salin, D.; Xu, B.; Yortsos, Y. C.

    Capillary effects can be important in immiscible flows in heterogeneous media, particularly at low capillary numbers (Ca). We present experiments and simulations of slow drainage in 3-D porous media, either homogeneous and in the presence of buoyancy or heterogeneous and in its absence. An acoustic technique allows for an accurate study of the 3-D fronts and the cross-over region. Our results suggest that both cases can be described by invasion percolation in a gradient. Both front tails scale with the corresponding Bond numbers as σft≈B-47 in agreement with the theory. An analogous scaling for viscous effects is also given. The noise of these fronts are found correlated in the form of a fractional Brownian motion (fBm) of a Hurst exponent H≈.5. At higher Ca, experiments performed in 3-D porous media with sharp changes in permeability, exhibit a saturation profile response closely linked to the permeability variations. This viscous response to heterogeneity provides an opportunity to investigate and determine correlated (even at all scales, i.e. fBm), permeability fields.

  11. Forcing, properties, structure, and antecedent synoptic climatology of the Snake River Plain Convergence Zone of eastern Idaho: Analyses of observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Andretta, Thomas A.

    The Snake River Plain Convergence Zone (SPCZ) is a convergent shear zone generated by synoptic-scale post cold-frontal winds in the planetary boundary layer (PBL) interacting with the complex topography of eastern Idaho. The SPCZ produces clouds and occasional precipitation over time scales of 6--12 hours in a significant area of mesoscale dimensions (10--50 x 10 3 km2). This meso-beta-scale feature also contributes to the precipitation climatology in a semi-arid plain. The SPCZ is climatologically linked to the passage of synoptic-scale cold fronts and typically occurs in the fall and winter months with the highest frequencies in October, November, and January. The Snake River Plain of eastern Idaho is covered by a dense surface mesonetwork of towers with sensible weather measurements, single Doppler weather radar, regional soundings, and operational model sources. The ability of numerical weather prediction models to simulate the SPCZ depends on several factors: the accuracy of the large scale flow upstream of the zone, terrain resolution, grid scale, boundary layer parameterizations of stability, cumulus parameterizations, and microphysics schemes. This dissertation explores several of these issues with the aforementioned observations and with the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model simulations of selected SPCZ events. This dissertation first explains the conceptual models of the flow patterns related to the genesis of the SPCZ in light of other well-documented topographically-generated zones. The study then explores the links between the theoretical models and observations of the SPCZ in several episodes. With this foundation, the dissertation then tests several hypotheses relating to the horizontal and vertical zone structure, topographic sensitivity on the zone structure, and boundary layer evolution of the zone through the use of high resolution nested grid numerical simulations. The SPCZ consists of windward and leeward flow regimes in Idaho which form under low Froude number (stable blocked flow) in a post cold-frontal environment. The SPCZ is a weak baroclinic feature. The formation of the zone is independent of the vertical wind shear in the middle to upper troposphere. With a grid scale of 4 km, the WRF-ARW model adequately reproduces the post cold-frontal environment, windward and leeward convergence zones, relative vertical vorticity belts, and precipitation bands in several SPCZ cases. The vertical structure of the SPCZ reveals upright reflectivity towers with circulations that tilt slightly with height into the colder air aloft. Topographic sensitivity analyses of the SPCZ indicate that the terrain-driven circulations and resulting snow bands are more defined at the finer terrain scales. The ambient horizontal wind shear in the tributary valleys of the Central Mountains creates potential vorticity (PV) banners. The PV banner maintenance and strength are directly tied to the terrain resolution. An environment of convective instability sometimes occurs as a layer of air is lifted along the gentle elevation rise of the eastern Magic Valley and lower plain. An environment of inertial instability forms within the anticyclonic (negative) vorticity belts in the upper plain. Potential symmetric instability (PSI) may be released in a moist environment near the vorticity banners. The planetary boundary layer perturbed by the SPCZ inside the Snake River Plain is characterized by a deeper mixed layer with stronger vertical motions relative to a PBL in a sheltered valley outside the plain. Finally, a 10-year antecedent synoptic climatology of 78 SPCZ events reveals two pattern types: Type N (wet and warm) and Type S (dry and cold). The 40° N parallel divides these two synoptic patterns.

  12. Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Xie, Chengliang; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Zhang, Letian; Dong, Hao; Yin, Yaotian

    2017-10-01

    In the southern Tibetan plateau, which is considered to be the ongoing India-Eurasia continental collision zone, tracing of the Indian crustal front beneath Tibet is still controversial. We conducted deep subsurface electrical modeling in southern Tibet and discuss the geometry of the front of the Indian crust. Three areas along the Yarlung-Zangbo river zone for which previous magnetotelluric (MT) data are available were inverted independently using a three-dimensional MT inversion algorithm ModEM. Electrical horizontal slices at different depths and north-south oriented cross sections at different longitudes were obtained to provide a geoelectrical perspective for deep processes beneath the Tethyan Himalaya and Lhasa terrane. Horizontal slices at depths greater than - 15 km show that the upper crust is covered with resistive layers. Below a depth of - 20 km, discontinuous conductive distributions are primarily concentrated north of the Yarlung-Zangbo sutures (YZS) and could be imaged from mid- to lower crust. The results show that the maximum depth to which the resistive layers extend is over - 20 km, while the mid- to lower crustal conductive zones extend to depths greater than - 50 km. The results indicate that the conductive region in the mid- to lower crust can be imaged primarily from the YZS to south of the Bangong-Nujiang sutures in western Tibet and to 31°N in eastern Tibet. The northern front of the conductive zones appears as an irregular barrier to the Indian crust from west to east. We suggest that a relatively less conductive subsurface in the northern portion of the barrier indicates a relatively cold and strong crust and that the front of the Indian crust might be halted in the south of the barrier. We suggest that the Indian crustal front varies from west to east and has at least reached: 33.5°N at 80°E, 31°N at 85°E, and 30.5°N at 87°E and 92°E.[Figure not available: see fulltext.

  13. Local curvature measurements of a lean, partially premixed swirl-stabilised flame

    NASA Astrophysics Data System (ADS)

    Bayley, Alan E.; Hardalupas, Yannis; Taylor, Alex M. K. P.

    2012-04-01

    A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is concluded that additional fuel mixture fraction and velocimetry studies are required to examine whether processes such as the degree of partial-premixedness close to the burner exit plane, the velocity field and the turbulence field have a strong correlation with the curvature characteristics of the investigated flames.

  14. Impacts of initial convective structure on subsequent squall line evolution

    NASA Astrophysics Data System (ADS)

    Varble, A.; Morrison, H.; Zipser, E. J.

    2017-12-01

    A Weather Research and Forecasting simulation of the 20 May 2011 MC3E squall line using 750-m horizontal grid spacing produces wide convective regions with strongly upshear tilted convective updrafts and mesoscale bowing segments that are not produced in radar observations. Similar features occur across several different bulk microphysics schemes, despite surface observations exhibiting cold pool equivalent potential temperature drops that are similar to and pressure rises that are greater than those in the simulation. Observed rear inflow remains more elevated than simulated, partly counteracting the cold pool circulation, whereas the simulated rear inflow descends to low levels, maintaining its strength and reinforcing the cold pool circulation that overpowers the pre-squall line low level vertical wind shear. The descent and strength of the simulated rear inflow is fueled by strong latent cooling caused by large ice water contents detrained from upshear tilted convective cores that accumulate at the rear of the stratiform region. This simulated squall evolution is sensitive to model resolution, which is too coarse to resolve individual convective drafts. Nesting a 250-m horizontal grid spacing domain into the 750-m domain substantially alters the initial convective cells with reduced latent cooling, weaker convective downdrafts, and a weaker initial cold pool. As the initial convective cells develop into a squall line, the rear inflow remains more elevated in the 250-m domain with a cold pool that eventually develops to be just as strong and deeper than the one in the 750-m run. Despite this, the convective cores remain more upright in the 250-m run with the rear inflow partly counteracting the cold pool circulation, whereas the 750-m rear inflow near the surface reinforces the shallower cold pool and causes bowing in the squall line. The different structure in the 750-m run produces excessive mid-level front-to-rear detrainment that widens the convective region relative to the 250-m run and observations while continuing the cycle of excessive latent cooling and rear inflow descent at the rear of the stratiform region in a positive feedback. The causes of initial convective structure differences that produce the divergence in simulated squall line evolutions are explored.

  15. Is this car looking at you? How anthropomorphism predicts fusiform face area activation when seeing cars.

    PubMed

    Kühn, Simone; Brick, Timothy R; Müller, Barbara C N; Gallinat, Jürgen

    2014-01-01

    Anthropomorphism encompasses the attribution of human characteristics to non-living objects. In particular the human tendency to see faces in cars has long been noticed, yet its neural correlates are unknown. We set out to investigate whether the fusiform face area (FFA) is associated with seeing human features in car fronts, or whether, the higher-level theory of mind network (ToM), namely temporoparietal junction (TPJ) and medial prefrontal cortex (MPFC) show a link to anthropomorphism. Twenty participants underwent fMRI scanning during a passive car-front viewing task. We extracted brain activity from FFA, TPJ and MPFC. After the fMRI session participants were asked to spontaneously list adjectives that characterize each car front. Five raters judged the degree to which each adjective can be applied as a characteristic of human beings. By means of linear mixed models we found that the implicit tendency to anthropomorphize individual car fronts predicts FFA, but not TPJ or MPFC activity. The results point to an important role of FFA in the phenomenon of ascribing human attributes to non-living objects. Interestingly, brain regions that have been associated with thinking about beliefs and mental states of others (TPJ, MPFC) do not seem to be related to anthropomorphism of car fronts.

  16. Is This Car Looking at You? How Anthropomorphism Predicts Fusiform Face Area Activation when Seeing Cars

    PubMed Central

    Kühn, Simone; Brick, Timothy R.; Müller, Barbara C. N.; Gallinat, Jürgen

    2014-01-01

    Anthropomorphism encompasses the attribution of human characteristics to non-living objects. In particular the human tendency to see faces in cars has long been noticed, yet its neural correlates are unknown. We set out to investigate whether the fusiform face area (FFA) is associated with seeing human features in car fronts, or whether, the higher-level theory of mind network (ToM), namely temporoparietal junction (TPJ) and medial prefrontal cortex (MPFC) show a link to anthropomorphism. Twenty participants underwent fMRI scanning during a passive car-front viewing task. We extracted brain activity from FFA, TPJ and MPFC. After the fMRI session participants were asked to spontaneously list adjectives that characterize each car front. Five raters judged the degree to which each adjective can be applied as a characteristic of human beings. By means of linear mixed models we found that the implicit tendency to anthropomorphize individual car fronts predicts FFA, but not TPJ or MPFC activity. The results point to an important role of FFA in the phenomenon of ascribing human attributes to non-living objects. Interestingly, brain regions that have been associated with thinking about beliefs and mental states of others (TPJ, MPFC) do not seem to be related to anthropomorphism of car fronts. PMID:25517511

  17. Magmatically Greedy Reararc Volcanoes of the N. Tofua Segment of the Tonga Arc

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Embley, R. W.; Arculus, R. J.; Lupton, J. E.

    2013-12-01

    Volcanism along the northernmost Tofua Arc is enigmatic because edifices of the arc's volcanic front are mostly, magmatically relatively anemic, despite the very high convergence rate of the Pacific Plate with this section of Tonga Arc. However, just westward of the arc front, in terrain generally thought of as part of the adjacent NE Lau Backarc Basin, lie a series of very active volcanoes and volcanic features, including the large submarine caldera Niuatahi (aka volcano 'O'), a large composite dacite lava flow terrain not obviously associated with any particular volcanic edifice, and the Mata volcano group, a series of 9 small elongate volcanoes in an extensional basin at the extreme NE corner of the Lau Basin. These three volcanic terrains do not sit on arc-perpendicular cross chains. Collectively, these volcanic features appear to be receiving a large proportion of the magma flux from the sub-Tonga/Lau mantle wedge, in effect 'stealing' this magma flux from the arc front. A second occurrence of such magma 'capture' from the arc front occurs in an area just to the south, on southernmost portion of the Fonualei Spreading Center. Erupted compositions at these 'magmatically greedy' volcanoes are consistent with high slab-derived fluid input into the wedge (particularly trace element abundances and volatile contents, e.g., see Lupton abstract this session). It is unclear how long-lived a feature this is, but the very presence of such hyperactive and areally-dispersed volcanism behind the arc front implies these volcanoes are not in fact part of any focused spreading/rifting in the Lau Backarc Basin, and should be thought of as 'reararc volcanoes'. Possible tectonic factors contributing to this unusually productive reararc environment are the high rate of convergence, the cold slab, the highly disorganized extension in the adjacent backarc, and the tear in the subducting plate just north of the Tofua Arc.

  18. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements

    NASA Astrophysics Data System (ADS)

    Darny, T.; Pouvesle, J.-M.; Puech, V.; Douat, C.; Dozias, S.; Robert, Eric

    2017-04-01

    The use of cold atmospheric pressure plasma jets for in vivo treatments implies most of the time plasma interaction with conductive targets. The effect of conductive target contact on the discharge behavior is studied here for a grounded metallic target and compared to the free jet configuration. In this work, realized with a plasma gun, we measured helium metastable HeM (23S1) concentration (by laser absorption spectroscopy) and electric field (EF) longitudinal and radial components (by electro-optic probe). Both diagnostics were temporally and spatially resolved. Mechanisms after ionization front impact on the target surface have been identified. The remnant conductive ionized channel behind the ionization front electrically transiently connects the inner high voltage electrode to the target. Due to impedance mismatching between the ionized channel and the target, a secondary ionization front is initiated and rapidly propagates from the target surface to the inner electrode through this ionized channel. This leads to a greatly enhanced HeM production inside the plasma plume and the capillary. Forward and reverse dynamics occur with further multi reflections of more or less damped ionization fronts between the inner electrode and the target as long as the ionized channel is persisting. This phenomenon is very sensitive to parameters such as target distance and ionized channel conductivity affecting electrical coupling between these two and evidenced using positive or negative voltage polarity and nitrogen admixture. In typical operating conditions for the plasma gun used in this work, it has been found that after the secondary ionization front propagation, when the ionized channel is conductive enough, a glow like discharge occurs with strong conduction current. HeM production and all species excitation, especially reactive ones, are then driven by high voltage pulse evolution. The control of forward and reverse dynamics, impacting on the production of the glow like discharge, will be useful for biomedical applications on living tissues.

  19. Nutrient pumping by submesoscale circulations in the mauritanian upwelling system

    NASA Astrophysics Data System (ADS)

    Hosegood, P. J.; Nightingale, P. D.; Rees, A. P.; Widdicombe, C. E.; Woodward, E. M. S.; Clark, D. R.; Torres, R. J.

    2017-12-01

    Observations made within a cold filament in the Mauritanian upwelling system demonstrate that intense submesoscale circulations at the peripheral edges of the filament are likely responsible for anomalously high levels of observed primary productivity by resupplying nutrients to the euphotic zone. Measurements made on the shelf within the recently upwelled water reveal that primary production (PP) of 8.2 gC/m-2 day-1 was supported by nitrate concentrations (NC) of 8 mmol m-3. Towards the front that defined the edge of the filament containing the upwelled water as it was transported offshore, PP dropped to 1.6 gC m-2 day-1 whilst NC dropped to 5.5 mmol m-3. Thus, whilst the observed nutrients on the shelf accounted for 90% of new production, this value dropped to ∼60% near the filament's front after accounting for vertical turbulent fluxes and Ekman pumping. We demonstrate that the N15 was likely to have been supplied at the front by submesoscale circulations that were directly measured as intense vertical velocities ⩾100 m day-1 by a drifting acoustic Doppler current profiler that crossed a submesoscale surface temperature front. At the same time, a recently released tracer was subducted out of the mixed layer within 24 h of release, providing direct evidence that the frontal circulations were capable of accessing the reservoir of nutrients beneath the pycnocline. The susceptibility of the filament edge to submesoscale instabilities was demonstrated by O(1) Rossby numbers at horizontal scales of 1-10 km. The frontal circulations are consistent with instabilities arising from a wind-driven nonlinear Ekman buoyancy flux generated by the persistent northerly wind stress that has a down-front component at the northern edge of the inshore section of the filament. The prevalence of submesoscale instabilities and their associated vertical circulations are proposed to be a key mechanism operating at sub-grid scales and sustaining new production throughout the upwelling system.

  20. Identifying Lagrangian fronts with favourable fishery conditions

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2014-08-01

    Lagrangian fronts (LFs) in the ocean are defined as boundaries between surface waters with strongly different Lagrangian properties. They can be accurately detected in a given velocity field by computing synoptic maps for displacements of synthetic tracers and other Lagrangian indicators. We use Pacific saury catch and location data for a number of commercial fishery seasons in the region of the northwest Pacific with one of the richest fishery in the world. It is shown statistically that the saury fishing grounds with maximal catches are not randomly distributed over the region but located mainly along the sharp LFs where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio rings converge. Computation of those fronts in altimetric geostrophic velocity fields both in the years with the First and Second Oyashio Intrusions shows that in spite of different oceanographic conditions LF locations may serve as good indicators of potential fishing grounds. Possible biophysical reasons for saury aggregation near sharp LFs are discussed. We propose a mechanism for effective export of nutrient rich waters based on stretching of material lines in the vicinity of hyperbolic objects in the ocean. The developed method, based on identifying LFs in any velocity fields, is quite general and may be applied to find potential fishing grounds for the other pelagic fish.

  1. Living in "Cold Spot" Communities Is Associated with Poor Health and Health Quality.

    PubMed

    Liaw, Winston; Krist, Alex H; Tong, Sebastian T; Sabo, Roy; Hochheimer, Camille; Rankin, Jennifer; Grolling, David; Grandmont, Jene; Bazemore, Andrew W

    2018-01-01

    Little is known about incorporating community data into clinical care. This study sought to understand the clinical associations of cold spots (census tracts with worse income, education, and composite deprivation). Across 12 practices, we assessed the relationship between cold spots and clinical outcomes (obesity, uncontrolled diabetes, pneumonia vaccination, cancer screening-colon, cervical, and prostate-and aspirin chemoprophylaxis) for 152,962 patients. We geocoded and linked addresses to census tracts and assessed, at the census tract level, the percentage earning less than 200% of the Federal Poverty Level, without high school diplomas, and the social deprivation index (SDI). We labeled those census tracts in the worst quartiles as cold spots and conducted bivariate and logistic regression. There was a 10-fold difference in the proportion of patients in cold spots between the highest (29.1%) and lowest practices (2.6%). Except for aspirin, all outcomes were influenced by cold spots. Fifteen percent of low-education cold-spot patients had uncontrolled diabetes compared with 13% of noncold-spot patients ( P < .05). In regression, those in poverty, low education, and SDI cold spots were less likely to receive colon cancer screening (odds ratio [CI], 0.88 [0.83-0.93], 0.87 [0.82-0.92], and 0.89 [0.83-0.95], respectively) although cold-spot patients were more likely to receive cervical cancer screening. Living in cold spots is associated with worse chronic conditions and quality for some screening tests. Practices can use neighborhood data to allocate resources and identify those at risk for poor outcomes. © Copyright 2018 by the American Board of Family Medicine.

  2. Effect-directed analysis of cold-pressed hemp, flax and canola seed oils by planar chromatography linked with (bio)assays and mass spectrometry.

    PubMed

    Teh, Sue-Siang; Morlock, Gertrud E

    2015-11-15

    Cold-pressed hemp, flax and canola seed oils are healthy oils for human consumption as these are rich in polyunsaturated fatty acids and bioactive phytochemicals. However, bioactive information on the food intake side is mainly focused on target analysis. For more comprehensive information with regard to effects, single bioactive compounds present in the seed oil extracts were detected by effect-directed assays, like bioassays or an enzymatic assay, directly linked with chromatography and further characterized by mass spectrometry. This effect-directed analysis is a streamlined method for the analysis of bioactive compounds in the seed oil extracts. All effective compounds with regard to the five assays or bioassays applied were detected in the samples, meaning also bioactive breakdown products caused during oil processing, residues or contaminants, aside the naturally present bioactive phytochemicals. The investigated cold-pressed oils contained compounds that exert antioxidative, antimicrobial, acetylcholinesterase inhibitory and estrogenic activities. This effect-directed analysis can be recommended for bioactivity profiling of food to obtain profound effect-directed information on the food intake side. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas

    In this paper, we define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, andmore » high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. Finally, we find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.« less

  4. KELVIN-HELMHOLTZ INSTABILITIES AT THE SLOSHING COLD FRONTS IN THE VIRGO CLUSTER AS A MEASURE FOR THE EFFECTIVE INTRACLUSTER MEDIUM VISCOSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roediger, E.; Kraft, R. P.; Forman, W. R.

    2013-02-10

    Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intracluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusionsmore » about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo Cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here, we focus on a Spitzer-like temperature-dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and northeast of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities {approx}> 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e., in the presence or the absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.« less

  5. Effect of wet-cold weather transportation conditions on thermoregulation and the development of accidental hypothermia in pullets under tropical conditions

    NASA Astrophysics Data System (ADS)

    Minka, Ndazo S.; Ayo, Joseph O.

    2016-03-01

    The present study examines onboard thermal microclimatic conditions and thermoregulation of pullets exposed to accidental hypothermia during wet-cold weather transportation conditions, and the effect of rewarming on colonic temperature (CT) of the birds immediately after transportation. A total of 2200 pullets were transportation for 5 h in two separate vehicles during the nighttime. The last 3 h of the transportation period was characterized by heavy rainfall. During the precipitation period, each vehicle was covered one fourth way from the top-roof with a tarpaulin. The onboard thermal conditions inside the vehicles during transportation, which comprised ambient temperature and relative humidity were recorded, while humidity ratio and specific enthalpy were calculated. The CT of the birds was recorded before and after transportation. During transportation, onboard thermal heterogeneity was observed inside the vehicles with higher ( p < 0.05) values in the front and center, and lower values recorded at the air inlets at the sides and rear planes. The CT values recorded in birds at the front and center planes were between 42.2 and 42.5 °C, indicative of mild hypothermia; while lower CT values between 28 and 38 °C were recorded at the sides and rear planes, indicative of mild to severe hypothermia. Several hours of gradual rewarming returned the CT to normal range. The result, for the first time, demonstrated the occurrence of accidental hypothermia in transported pullets under tropical conditions and a successful rewarming outcome. In conclusion, transportation of pullets during wet weather at onboard temperature of 18-20 °C induced hypothermia on birds located at the air inlets, which recovered fully after several hours of gradual rewarming.

  6. Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Zhurbas, Victor; Laanemets, Jaan; Vahtera, Emil

    2008-05-01

    A high resolution numerical study is undertaken to simulate an upwelling event along the northern coast of the Gulf of Finland, 21-29 July 1999, which was documented well by in situ and remote measurements. The simulated sequence of SST maps shows a reasonably good resemblance to that of satellite infrared imagery, including both mesoscale coherent structures (filaments or squirts) and the whole process of post-upwelling relaxation of the temperature field. Upwelling along the northern coast of the Gulf is accompanied by downwelling along the southern coast so that two longshore baroclinic jets and related fronts are developed simultaneously. When the strong westerly winds producing the upwelling/downwelling weaken, the longshore jets become unstable and produce transverse jets, cold/warm water squirts. Using pseudo-random simulated fields of temperature and velocity of currents, the apparent lateral diffusivity due to squirts is directly estimated at 500 m2 s-1. The model is also applied to estimate nutrient transport. Simulated phosphate concentration in the surface layer at the cold side of upwelling front is found to be about 0.3 mmol m-3 which is consistent with observations. The total content of phosphorus and nitrogen in the upper 10 m layer of the Gulf introduced by the upwelling event is estimated to be 387 and 36 tons, respectively. It follows, that the upwelling event transports nutrients into the upper layer with clear excess of phosphorus (N:P = 36:387 = 0.093) compared to the Redfield ratio of 7.2. Therefore phosphorus input caused by upwelling during summer most likely promotes nitrogen-fixing cyanobacteria blooms.

  7. Strong Effects of a Shelfbreak Jet on Microbial Enzyme Activities

    NASA Astrophysics Data System (ADS)

    Hoarfrost, A.; Balmonte, J. P.; Ziervogel, K.; Ghobrial, S.; Gawarkiewicz, G.; Arnosti, C.

    2016-02-01

    The activities of extracellular enzymes are critical in initiating microbial cycling of organic carbon, yet the dynamics of heterotrophic enzyme activities in marine environments are still poorly understood. Variations at a given site in rates of activity and the spectrum of organic substrates hydrolyzed may depend upon environmental context. We measured the extracellular enzymatic hydrolysis of 13 high- and low-molecular-weight organic substrates in surface and bottom waters along a closely spaced 4-station transect at 71 W on the North Atlantic continental shelf, in the vicinity of the shelfbreak front. This transect intersects a robust upwelling cell that typically shows high biologic productivity, and is locatable by changes in T/S profiles and chl a concentrations along sharp spatial gradients. At the time of sampling, cold pool waters over the continental shelf were relatively cold, 3.5 Deg. C, compared to 12 Deg. C over the upper continental slope. Satellite thermal imagery indicated that shelf water extended offshore and interacted with a large crest of the Gulf Stream. The surface and bottom waters associated with the upwelling jet were characterized by enzyme activities a factor of 20 more rapid than closer inshore waters, and surface water chl a concentrations that were two to three times higher than the inshore waters. The spectrum of enzyme activities also differed markedly between surface and bottom waters both within the jet and at near-shore stations. Microbial extracellular enzymatic activities were strongly influenced by differences in their environmental context along the continental slope and shelfbreak front. Constraining the factors controlling heterotrophic activity across the diverse marine environment is an important step in understanding microbial controls on carbon cycling.

  8. The role of vegetation-microclimate feedback in promoting shrub encroachment in the northern Chihuahuan desert.

    PubMed

    He, Yufei; D'Odorico, Paolo; De Wekker, Stephan F J

    2015-06-01

    Many arid and semi-arid landscapes around the world are affected by a shift from grassland to shrubland vegetation, presumably induced by climate warming, increasing atmospheric CO2 concentrations, and/or changing land use. This major change in vegetation cover is likely sustained by positive feedbacks with the physical environment. Recent research has focused on a feedback with microclimate, whereby cold intolerant shrubs increase the minimum nocturnal temperatures in their surroundings. Despite the rich literature on the impact of land cover change on local climate conditions, changes in microclimate resulting from shrub expansion into desert grasslands have remained poorly investigated. It is unclear to what extent such a feedback can affect the maximum extent of shrub expansion and the configuration of a stable encroachment front. Here, we focus on the case of the northern Chihuahuan desert, where creosotebush (Larrea tridentata) has been replacing grasslands over the past 100-150 years. We use a process-based coupled atmosphere-vegetation model to investigate the role of this feedback in sustaining shrub encroachment in the region. Simulations indicate that the feedback allows juvenile shrubs to establish in the grassland during average years and, once established, reduce their vulnerability to freeze-induced mortality by creating a warmer microclimate. Such a feedback is crucial in extreme cold winters as it may reduce shrub mortality. We identify the existence of a critical zone in the surroundings of the encroachment front, in which vegetation dynamics are bistable: in this zone, vegetation can be stable both as grassland and as shrubland. The existence of these alternative stable states explains why in most cases the shift from grass to shrub cover is found to be abrupt and often difficult to revert. © 2015 John Wiley & Sons Ltd.

  9. Bio-Optical Properties and Ocean Color Algorithms for Coastal Waters Influenced by the Mississippi River During a Cold Front Passage

    NASA Technical Reports Server (NTRS)

    D'Sa Eurico J.; Miller, Richard L.; DelCastillo, Carlos

    2006-01-01

    During the passage of a cold front in March 2002, bio-optical properties examined in coastal waters impacted by the Mississippi River indicated westward advective flows and increasing river discharge containing a larger nonalgal particle content contributed significantly to surface optical variability. A comparison of seasonal data from three cruises indicated spectral models of absorption and scattering to be generally consistent with other coastal environments, while their parameterization in terms of chlorophyll a concentration (Chl) showed seasonal variability. The exponential slope of the colored dissolved organic matter (CDOM) averaged 0.0161 plus or minus 0.00054 per nanometer, and for nonalgal absorption it averaged 0.011 per nanometer with deviations from general trends observed due to anomalous water properties. Although the phytoplankton specific absorption coefficients varied over a wide range (0.02 to 0.1 square meters (mg Chl) sup -1)) being higher in offshore surface waters, values of phytoplankton absorption spectra at the SeaWiFS wavebands were highly correlated to modeled values. The normalized scattering spectral shapes and the mean spectrum were in agreement to observations in other coastal waters, while the backscattering ratios were on average lower in phytoplankton dominated surface waters (0.0101 plus or minus 0.002) and higher in near-bottom waters (0.0191 plus or minus 0.0045) with low Chl. Average percent differences in remote sensing reflectance R (sub rs) derived form modeled and in-eater radiometric measurements were highest in the blue wavebands (52%) and at sampling stations with a ore stratified water column. Estimates of Chl and CDOM absorption derived from SeaWiFS images generated using regional empirical algorithms were highly correlated to in situ data.

  10. Effect of wet-cold weather transportation conditions on thermoregulation and the development of accidental hypothermia in pullets under tropical conditions.

    PubMed

    Minka, Ndazo S; Ayo, Joseph O

    2016-03-01

    The present study examines onboard thermal microclimatic conditions and thermoregulation of pullets exposed to accidental hypothermia during wet-cold weather transportation conditions, and the effect of rewarming on colonic temperature (CT) of the birds immediately after transportation. A total of 2200 pullets were transportation for 5 h in two separate vehicles during the nighttime. The last 3 h of the transportation period was characterized by heavy rainfall. During the precipitation period, each vehicle was covered one fourth way from the top-roof with a tarpaulin. The onboard thermal conditions inside the vehicles during transportation, which comprised ambient temperature and relative humidity were recorded, while humidity ratio and specific enthalpy were calculated. The CT of the birds was recorded before and after transportation. During transportation, onboard thermal heterogeneity was observed inside the vehicles with higher (p < 0.05) values in the front and center, and lower values recorded at the air inlets at the sides and rear planes. The CT values recorded in birds at the front and center planes were between 42.2 and 42.5 °C, indicative of mild hypothermia; while lower CT values between 28 and 38 °C were recorded at the sides and rear planes, indicative of mild to severe hypothermia. Several hours of gradual rewarming returned the CT to normal range. The result, for the first time, demonstrated the occurrence of accidental hypothermia in transported pullets under tropical conditions and a successful rewarming outcome. In conclusion, transportation of pullets during wet weather at onboard temperature of 18-20 °C induced hypothermia on birds located at the air inlets, which recovered fully after several hours of gradual rewarming.

  11. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    NASA Astrophysics Data System (ADS)

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas; Donner, Leo; Golaz, Jean-Christophe; Seman, Charles

    2017-12-01

    We define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, and high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. We find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.

  12. Diagnosing Cloud Biases in the GFDL AM3 Model With Atmospheric Classification

    DOE PAGES

    Evans, Stuart; Marchand, Roger; Ackerman, Thomas; ...

    2017-11-16

    In this paper, we define a set of 21 atmospheric states, or recurring weather patterns, for a region surrounding the Atmospheric Radiation Measurement Program's Southern Great Plains site using an iterative clustering technique. The states are defined using dynamic and thermodynamic variables from reanalysis, tested for statistical significance with cloud radar data from the Southern Great Plains site, and are determined every 6 h for 14 years, creating a time series of atmospheric state. The states represent the various stages of the progression of synoptic systems through the region (e.g., warm fronts, warm sectors, cold fronts, cold northerly advection, andmore » high-pressure anticyclones) with a subset of states representing summertime conditions with varying degrees of convective activity. We use the states to classify output from the NOAA/Geophysical Fluid Dynamics Laboratory AM3 model to test the model's simulation of the frequency of occurrence of the states and of the cloud occurrence during each state. The model roughly simulates the frequency of occurrence of the states but exhibits systematic cloud occurrence biases. Comparison of observed and model-simulated International Satellite Cloud Climatology Project histograms of cloud top pressure and optical thickness shows that the model lacks high thin cloud under all conditions, but biases in thick cloud are state-dependent. Frontal conditions in the model do not produce enough thick cloud, while fair-weather conditions produce too much. Finally, we find that increasing the horizontal resolution of the model improves the representation of thick clouds under all conditions but has little effect on high thin clouds. However, increasing resolution also changes the distribution of states, causing an increase in total cloud occurrence bias.« less

  13. Distribution of Different Biogeographical Tintinnids in Yellow Sea and Bohai Sea

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Li, Haibo; Zhao, Yuan; Zhao, Li; Dong, Yi; Zhang, Wuchang; Xiao, Tian

    2018-04-01

    There were different biogeographical tintinnids in the oceans. Knowledge of their distribution pattern and mixing was important to the understanding of ecosystem functions. Yellow Sea (YS) and Bohai Sea (BS) were semi-enclosed seas influenced by warm water intrusion and YS cold bottom water. The occurrence of tintinnids in YS and BS during two cruises (summer and winter) were investigated to find out: i) whether warm-water tintinnids appeared in YS and BS; ii) whether boreal tintinnids appeared in high summer; iii) the core area of neritic tintinnids and iv) how these different biogeographical tintinnids mixed. Our results showed that tintinnid community was dominated by neritic tintinnid. We confirmed the occurrence of warm-water tintinnids in summer and winter. In summer, they intruded into BS and mainly distributed in the upper 20 m where Yellow Sea Surface Warm Water (YSSWW) developed. In winter, they were limited in the surface water of central deep region (bottom depth >50 m) of YS where were affected by Yellow Sea Warm Water (YSWW). Boreal tintinnids occurred in YS in high summer (August) and in winter, while they were not observed in BS. In summer, the highest abundance of boreal tintinnids occurred in Yellow Sea Bottom Cold Water, indicating the presence of an oversummering stock. In winter, they were concentrated in the north of YSWW. Vertically, neritic tintinnids abundance was high in the bottom layers. Horizontally, high neritic tintinnids abundance in bottom layers occurred along the 50 m isobath coinciding with the position of front systems. Front systems were the core distribution area of neritic tintinnids. High abundance areas of warm-water and boreal tintinnids were clearly separated vertically in summer, and horizontally in winter. High abundance of neritic tintinnids rarely overlapped with that of warm-water or boreal tintinnids.

  14. Future changes in atmospheric condition for the baiu under RCP scenarios

    NASA Astrophysics Data System (ADS)

    Okada, Y.; Takemi, T.; Ishikawa, H.

    2015-12-01

    This study focuses on atmospheric circulation fields during the baiu in Japan with global warming projection experimental data conducted using a 20-km mesh global atmospheric model (MRI-AGCM3.2) under Representative Concentration Pathways (RCP) scenarios. This model also used 4 different sea surface temperature (SST) initial conditions. Support of this dataset is provided by the Meteorological Research Institute (MRI). The baiu front indicated by the north-south gradient of moist static energy moves northward in present-day climate, whereas this northward shift in future climate simulations is very slow during May and June. In future late baiu season, the baiu front stays in the northern part of Japan even in August. As a result, the rich water vapor is transported around western Japan and the daily precipitation amount will increase in August. This northward shift of baiu front is associated with the westward expansion of the enhanced the North Pacific subtropical high (NPSH) into Japan region. However, the convective activity around northwest Pacific Ocean is inactive and is unlikely to occur convective jump (CJ). These models show that the weak trough exists in upper troposphere around Japan. Therefore, the cold advection stays in the northern part of Japan during June. In July, the front due to the strengthening of the NPSH moves northward, and then it stays until August. This feature is often found between the clustered SSTs, Cluster 2 and 3. The mean field of future August also show the inflow of rich water vapor content to Japan islands. In this model, the extreme rainfall suggested tends to almost increase over the Japan islands during future summer. This work was conducted under the Program for Risk Information on Climate Change supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT).

  15. The ecosystem of the Mid-Atlantic Ridge at the sub-polar front and Charlie-Gibbs Fracture Zone; ECO-MAR project strategy and description of the sampling programme 2007-2010

    NASA Astrophysics Data System (ADS)

    Priede, Imants G.; Billett, David S. M.; Brierley, Andrew S.; Hoelzel, A. Rus; Inall, Mark; Miller, Peter I.; Cousins, Nicola J.; Shields, Mark A.; Fujii, Toyonobu

    2013-12-01

    The ECOMAR project investigated photosynthetically-supported life on the North Mid-Atlantic Ridge (MAR) between the Azores and Iceland focussing on the Charlie-Gibbs Fracture Zone area in the vicinity of the sub-polar front where the North Atlantic Current crosses the MAR. Repeat visits were made to four stations at 2500 m depth on the flanks of the MAR in the years 2007-2010; a pair of northern stations at 54°N in cold water north of the sub-polar front and southern stations at 49°N in warmer water influenced by eddies from the North Atlantic Current. At each station an instrumented mooring was deployed with current meters and sediment traps (100 and 1000 m above the sea floor) to sample downward flux of particulate matter. The patterns of water flow, fronts, primary production and export flux in the region were studied by a combination of remote sensing and in situ measurements. Sonar, tow nets and profilers sampled pelagic fauna over the MAR. Swath bathymetry surveys across the ridge revealed sediment-covered flat terraces parallel to the axis of the MAR with intervening steep rocky slopes. Otter trawls, megacores, baited traps and a suite of tools carried by the R.O.V. Isis including push cores, grabs and a suction device collected benthic fauna. Video and photo surveys were also conducted using the SHRIMP towed vehicle and the R.O.V. Isis. Additional surveying and sampling by landers and R.O.V. focussed on the summit of a seamount (48°44‧N, 28°10‧W) on the western crest of the MAR between the two southern stations.

  16. 75 FR 44042 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... submit order execution reports to the Exchange's Front End Systemic Capture (``FESC'') database linking... that would apply across their respective marketplaces, including a harmonized approach to riskless... approach to customer order protection rules, including how riskless principal transactions should be...

  17. EFFECTS OF HOT HALO GAS ON STAR FORMATION AND MASS TRANSFER DURING DISTANT GALAXY–GALAXY ENCOUNTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jeong-Sun; Park, Changbom, E-mail: jshwang@kias.re.kr, E-mail: cbp@kias.re.kr

    2015-06-01

    We use N-body/smoothed particle hydrodynamics simulations of encounters between an early-type galaxy (ETG) and a late-type galaxy (LTG) to study the effects of hot halo gas on the evolution for a case with the mass ratio of the ETG to LTG of 2:1 and the closest approach distance of ∼100 kpc. We find that the dynamics of the cold disk gas in the tidal bridge and the amount of the newly formed stars depend strongly on the existence of a gas halo. In the run of interacting galaxies not having a hot gas halo, the gas and stars accreted into themore » ETG do not include newly formed stars. However, in the run using the ETG with a gas halo and the LTG without a gas halo, a shock forms along the disk gas tidal bridge and induces star formation near the closest approach. The shock front is parallel to a channel along which the cold gas flows toward the center of the ETG. As a result, the ETG can accrete star-forming cold gas and newly born stars at and near its center. When both galaxies have hot gas halos, a shock is formed between the two gas halos somewhat before the closest approach. The shock hinders the growth of the cold gas bridge to the ETG and also ionizes it. Only some of the disk stars transfer through the stellar bridge. We conclude that the hot halo gas can give significant hydrodynamic effects during distant encounters.« less

  18. Temporal Associations between Weather and Headache: Analysis by Empirical Mode Decomposition

    PubMed Central

    Yang, Albert C.; Fuh, Jong-Ling; Huang, Norden E.; Shia, Ben-Chang; Peng, Chung-Kang; Wang, Shuu-Jiun

    2011-01-01

    Background Patients frequently report that weather changes trigger headache or worsen existing headache symptoms. Recently, the method of empirical mode decomposition (EMD) has been used to delineate temporal relationships in certain diseases, and we applied this technique to identify intrinsic weather components associated with headache incidence data derived from a large-scale epidemiological survey of headache in the Greater Taipei area. Methodology/Principal Findings The study sample consisted of 52 randomly selected headache patients. The weather time-series parameters were detrended by the EMD method into a set of embedded oscillatory components, i.e. intrinsic mode functions (IMFs). Multiple linear regression models with forward stepwise methods were used to analyze the temporal associations between weather and headaches. We found no associations between the raw time series of weather variables and headache incidence. For decomposed intrinsic weather IMFs, temperature, sunshine duration, humidity, pressure, and maximal wind speed were associated with headache incidence during the cold period, whereas only maximal wind speed was associated during the warm period. In analyses examining all significant weather variables, IMFs derived from temperature and sunshine duration data accounted for up to 33.3% of the variance in headache incidence during the cold period. The association of headache incidence and weather IMFs in the cold period coincided with the cold fronts. Conclusions/Significance Using EMD analysis, we found a significant association between headache and intrinsic weather components, which was not detected by direct comparisons of raw weather data. Contributing weather parameters may vary in different geographic regions and different seasons. PMID:21297940

  19. Meteorological factors and the time of onset of chest pain in acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; Pohl, Jurgen E.; Tse, Yiu-Yu S.; Hiorns, Robert W.

    1996-09-01

    Analysis of the time of onset of chest pain in 2254 patients with a myocardial infarction admitted to a coronary care unit in Leicester during a 10-year period shows an association with temperature and humidity. During both the most cold and humid times of the year, the relationship is a strong one. A generalized linear model with a log link was used to fit the data and the backward elimination selection procedure suggested a humid, cold day might help to trigger the occurrence of myocardial infarction. In addition, cold weather was found to have a stronger effect on the male population while those men aged between 50 and 70 years were more sensitive to the effect of high humidity.

  20. Injury risk for matched front and rear seat car passengers by injury severity and crash type: An exploratory study.

    PubMed

    Mitchell, R J; Bambach, M R; Toson, Barbara

    2015-09-01

    The risk of serious injury or death has been found to be reduced for some front compared to rear seat car passengers in newer vehicles. However, differences in injury severity between car occupants by seating position has not been examined. This study examines the injury severity risk for rear compared to front seat car passengers. A retrospective matched-cohort analysis was conducted of vehicle crashes involving injured rear vs front seat car passengers identified in linked police-reported, hospitalisation and emergency department (ED) presentation records during 2001-2011 in New South Wales (NSW), Australia. Odds ratios were estimated using an ordinal logistic mixed model and logistic mixed models. There were 5419 front and 4588 rear seat passengers in 3681 vehicles. There was a higher odds of sustaining a higher injury severity as a rear-compared to a front seat car passenger, with a higher odds of rear seat passengers sustaining serious injuries compared to minimal injuries. Where the vehicle occupant was older, travelling in a vehicle manufactured between 1990 and 1996 or after 1997, where the airbag deployed, and where the vehicle was driven where the speed limit was ≥70km/h there was a higher odds of the rear passenger sustaining a higher injury severity then a front seated occupant. Rear seat car passengers are sustaining injuries of a higher severity compared to front seat passengers travelling in the same vehicle, as well as when travelling in newer vehicles and where the front seat occupant is shielded by an airbag deployed in the crash. Rear seat occupant protective mechanisms should be examined. Pre-hospital trauma management policies could influence whether an individual is transported to a hospital ED, thus it would be beneficial to have an objective measure of injury severity routinely available in ED records. Further examination of injury severity between rear and front seat passengers is warranted to examine less severe non-fatal injuries by car seating position and vehicle intrusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Burnett-Cattaneo continuum theory for shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2011-02-01

    We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution. ©2011 American Physical Society

  2. Revisiting the University Front

    ERIC Educational Resources Information Center

    Lock, Grahame; Lorenz, Chris

    2007-01-01

    The article argues that the most important trends in the recent metamorphosis of higher education, especially of university teaching and research, cannot be understood without placing them in the context of general developments in political life. Both processes reveal alarming features and there is a link between them. In recent decades a religion…

  3. Link between the Barents Oscillation and recent boreal winter cooling over the Asian midlatitudes

    NASA Astrophysics Data System (ADS)

    Shu, Qi; Qiao, Fangli; Song, Zhenya; Song, Yajuan

    2018-01-01

    The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation (BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scale boreal winter cooling during 1990-2015 over the Asian midlatitudes, and that it is a part of the decadal oscillations of long-term surface air temperature (SAT) anomalies. The SAT anomalies over the Asian midlatitudes are significantly correlated with the BO in boreal winter. When the BO is in its positive phase, anomalously high sea level pressure over the Barents region, with a clockwise wind anomaly, causes cold air from the high latitudes to move over the midlatitudes of Asia, resulting in anomalous cold conditions in that region. Therefore, the recent increasing trend of the BO has contributed to recent winter cooling over the Asian midlatitudes.

  4. Cold and desiccation stress induced changes in the accumulation and utilization of proline and trehalose in seasonal populations of Drosophila immigrans.

    PubMed

    Tamang, Aditya Moktan; Kalra, Bhawna; Parkash, Ravi

    2017-01-01

    Changes in the levels of energy metabolites can limit survival ability of Drosophila species under stressful conditions but this aspect has received less attention in wild populations collected in different seasons. We tested cold or desiccation triggered changes in the accumulation or utilization of two energy metabolites (trehalose and proline) in Drosophila immigrans flies reared under season specific environmental conditions. Such D.immigrans populations were subjected to different durations of cold (0°C) or desiccation stress (5% RH) or dual stress. We found stress induced effects of cold vs desiccation on the levels of trehalose as well as for proline. Different durations of cold stress led to accumulation of trehalose while desiccation stress durations revealed utilization of trehalose. In contrast, there was accumulation of proline under desiccation and utilization of proline with cold stress. Since accumulation levels were higher than utilization of each energy metabolite, the effects of dual stress showed additive effect. However, there was no utilization of total body lipids under cold or desiccation stress. We observed significant season specific differences in the amount of energy metabolites but the rate of metabolism did not vary across seasons. Stress triggered changes in trehalose and proline suggest possible link between desiccation and cold tolerance. Finally, stress specific (cold or desiccation) compensatory changes in the levels of trehalose and proline suggest possible energetic homeostasis in D.immigrans living under harsh climatic conditions of montane localities. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation between primary and metastatic nodal lesion in colorectal cancer.

    PubMed

    Jang, Tae Jung

    2016-02-01

    O-GlcNAcylation is an O-linked β-N-acetylglucosamine (O-GlcNAc) moiety linked to the side chain hydroxyl of a serine or threonine residue. The E-cadherin/β-catenin system, an integral component of epithelial to mesenchymal transition (EMT)/mesenchymal to epithelial transition (MET), is affected through O-GlcNAcylation. The current study examined the status of EMT/MET in both the tumor center and invasive front of the primary colorectal carcinoma (CRC) and metastatic nodal lesions, which were compared to O-GlcNAcylation expression levels in those areas. In addition, the cliniopathological significance of O-GlcNAcylation was studied Immunohistochemical staining for E-cadherin, β-catenin, Snail, O-GlcNAc and Ki67 was performed in 40 primary CRC tissues, 40 nonneoplastic colons, and 17 nodal metastatic lesions. Western blot was also conducted in primary CRC tissue Membranous E-cadherin expression was lowest in the invasive front, but showed greater increases in metastatic nodal lesions. Moreover, its expression level was negatively correlated with that of nuclear β-catenin and Snail. The Ki67 labeling index (LI) was lowest in the invasive front, and increased in metastatic nodal lesions. Primary CRC showed higher expression of O-GlcNAcylation and O-GlcNAc-transferase (OGT) than nonneoplastic colons. O-GlcNAcylation expression decreased in metastatic nodal lesions compared to the invasive front and tumor center, and was inversely correlated with Ki67 LI. However, O-GlcNAcylation expression was only slightly changed between tumor center and invasive front. In addition, there was no correlation between its expression and the level of nuclear β-catenin, membranous E-cadherin and Snail. No significant relationship was observed between O-GlcNAcylation level and cliniopathological parameters. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation in metastatic nodal lesion compared to primary CRC may play role in establishing its lesions; however, these findings are not sufficient to show the role of O-GlcNAcylation in the EMT/MET of CRC. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Surfing Jupiter

    NASA Image and Video Library

    2017-05-25

    Waves of clouds at 37.8 degrees latitude dominate this three-dimensional Jovian cloudscape, courtesy of NASA's Juno spacecraft. JunoCam obtained this enhanced-color picture on May 19, 2017, at 5:50 UTC from an altitude of 5,500 miles (8,900 kilometers). Details as small as 4 miles (6 kilometers) across can be identified in this image. The small bright high clouds are about 16 miles (25 kilometers) across and in some areas appear to form "squall lines" (a narrow band of high winds and storms associated with a cold front). On Jupiter, clouds this high are almost certainly composed of water and/or ammonia ice. https://photojournal.jpl.nasa.gov/catalog/PIA21646

  7. The mysterious wolves of Belarus

    USGS Publications Warehouse

    Barber-Meyer, Shannon

    2015-01-01

    It was just after 3 a.m. as we very quietly exited the van, making sure our water-resistant clothes didn’t make too much noise. A wolf researcher howled into the cold and murky mist. We waited in darkness, hoping for an answer. A single wolf howl from about 300 meters in front of us broke the silence. We peered into the agricultural and forested expanse, straining to get a glimpse of the wolf in the faint star-light. Suddenly, from behind, another howl countered. The expedition’s leader explained that we were standing between two female wolves and their pups—both being tended to by the same male!

  8. Evidence for atmospheric carbon dioxide variability over the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.

    1984-01-01

    Two airborne surveys of atmospheric carbon dioxide concentration have been conducted over the Gulf Stream off the east coast of Virginia and North Carolina on September 7-8, 1983. In situ CO2 data were acquired at an aircraft altitude of 300 m on trajectories that transcected the Gulf Stream near 36 deg N 73 deg W. Data show evidence of a CO2 concentration increase by 4 ppm to 15 ppm above the nominal atmospheric background value of 345 ppm. These enhanced values were associated with the physical location of the Gulf Stream prior to the passage of a weak cold front.

  9. Spalled, aerodynamically modified moldavite from Slavice, Moravia, Czechoslovakia

    USGS Publications Warehouse

    Chao, E.C.T.

    1964-01-01

    A Czechoslovakian tektite or moldavite shows clear, indirect evidence of aerodynamic ablation. This large tektite has the shape of a teardrop, with a strongly convex, deeply corroded, but clearly identifiable front and a planoconvex, relatively smooth, posterior surface. In spite of much erosion and corrosion, demarcation of the posterior and the anterior part of the specimen (the keel) is clearly preserved locally. This specimen provides the first tangible evidence that moldavites entered the atmosphere cold, probably at a velocity exceeding 5 kilometers per second; the result was selective heating of the anterior face and perhaps ablation during the second melting. This provides evidence of the extraterrestial origin of moldavites.

  10. Present opto-mechanical design status of NFIRAOS

    NASA Astrophysics Data System (ADS)

    Byrnes, Peter W. G.; Atwood, Jenny; Boucher, Marc-André; Fitzsimmons, Joeleff; Hill, Alexis; Herriot, Glen; Spanò, Paolo; Szeto, Kei; Wevers, Ivan

    2014-07-01

    This paper describes the current opto-mechanical design of NFIRAOS (Narrow Field InfraRed Adaptive Optics System) for the Thirty Meter Telescope (TMT). The preliminary design update review for NFIRAOS was successfully held in December 2011, and incremental design progress has since occurred on several fronts. The majority of NFIRAOS is housed within an insulated and cooled enclosure, and operates at -30 C to reduce background emissivity. The cold optomechanics are attached to a space-frame structure, kinematically supported by bipods that penetrate the insulated enclosure. The bipods are attached to an exo-structure at ambient temperature, which also supports up to three client science instruments and a science calibration unit.

  11. Turbulence production due to secondary vortex cutting in a turbine rotor

    NASA Astrophysics Data System (ADS)

    Binder, A.

    1985-10-01

    Measurements of the unsteady flow field near and within a turbine rotor were made by means of a Laser-2-Focus velocimeter. The testing was performed in a single-stage cold-air turbine at part-load and near-design conditions. Random unsteadiness and flow angle results indicate that the secondary vortices of the stator break down after being cut and deformed by the rotor blades. A quantitative comparison shows that some of the energy contained in these secondary vortices is thereby converted into turbulence energy in the front part of the rotor. An attempt is made to explain this turbulence energy production as caused by the vortex breakdown.

  12. Application of Peterson's stray light model to complex optical instruments

    NASA Astrophysics Data System (ADS)

    Fray, S.; Goepel, M.; Kroneberger, M.

    2016-07-01

    Gary L. Peterson (Breault Research Organization) presented a simple analytical model for in- field stray light evaluation of axial optical systems. We exploited this idea for more complex optical instruments of the Meteosat Third Generation (MTG) mission. For the Flexible Combined Imager (FCI) we evaluated the in-field stray light of its three-mirroranastigmat telescope, while for the Infrared Sounder (IRS) we performed an end-to-end analysis including the front telescope, interferometer and back telescope assembly and the cold optics. A comparison to simulations will be presented. The authors acknowledge the support by ESA and Thales Alenia Space through the MTG satellites program.

  13. Acoustic sounding in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Kelly, E. H.

    1974-01-01

    Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.

  14. North Atlantic storm driving of extreme wave heights in the North Sea

    NASA Astrophysics Data System (ADS)

    Bell, R. J.; Gray, S. L.; Jones, O. P.

    2017-04-01

    The relationship between storms and extreme ocean waves in the North Sea is assessed using a long-period wave data set and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to intense extratropical cyclone winds from either the cold conveyor belt (northerly-wind events) or the warm conveyor belt (southerly-wind events). The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearward round the cyclone to the cold side of the warm front. The northerly-wind events provide a larger fetch to the central North Sea to aid wave growth. Southerly-wind events are associated with the warm conveyor belts of intense extratropical cyclones that develop in the left upper tropospheric jet exit region. Ensemble sensitivity analysis can provide early warning of extreme wave events by demonstrating a relationship between wave height and high pressure to the west of the British Isles for northerly-wind events 48 h prior. Southerly-wind extreme events demonstrate sensitivity to low pressure to the west of the British Isles 36 h prior.

  15. North Sea Storm Driving of Extreme Wave Heights

    NASA Astrophysics Data System (ADS)

    Bell, Ray; Gray, Suzanne; Jones, Oliver

    2017-04-01

    The relationship between storms and extreme ocean waves in the North sea is assessed using a long-period wave dataset and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to either the winds in the cold conveyor belt (northerly-wind events) or winds in the warm conveyor belt (southerly-wind events) of extratropical cyclones. The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearwards round the cyclone to the cold side of the warm front. The northerly-wind events also provide a larger fetch to the central North Sea. Southerly-wind events are associated with the warm conveyor belts of intense extratropical storms developing in the right upper-tropospheric jet exit region. There is predictability in the extreme ocean wave events up to two days before the event associated with a strengthening of a high pressure system to the west (northerly-wind events) and south-west (southerly-wind events) of the British Isles. This acts to increase the pressure gradient over the British Isles and therefore drive stronger wind speeds in the central North sea.

  16. The relationship of parental control to youth adjustment: do youths' feelings about their parents play a role?

    PubMed

    Kakihara, Fumiko; Tilton-Weaver, Lauree; Kerr, Margaret; Stattin, Håkan

    2010-12-01

    Recent research suggests that youths interpret parental control and that this may have implications for how control affects youths' adjustment. In this study, we propose that youths' feelings about being over-controlled by parents and feeling connected to parents are intermediary processes linking parental control and youths' adjustment. We used three years of longitudinal data sampled from 1,022 Swedish youths in 7th, 8th, and 9th grade (47.3% girls; 12-17 years old, M age = 14.28 years, SD = .98) who were mainly Swedish in ethnic origin. We tested models linking parental control (i.e., rules, restriction of freedom, and coldness-rejection) to adjustment (i.e., norm-breaking, depressive symptoms, and self-esteem) through youths feeling over-controlled by and connected to parents. The overall model incorporating youths' feelings showed that restrictions and coldness-rejection were both indirectly linked to increases in norm-breaking and depressive symptoms through increases in youths feeling over-controlled. Parental rules still independently predicted decreases in norm-breaking and in self-esteem, and coldness-rejection predicted increases in norm-breaking. In addition, some paths (e.g., feeling over-controlled to self-esteem) depended on the youths' age, whereas others depended on their gender. These results suggest that when youths' feelings are taken into account, all behavioral control is not the same, and the line between behavioral control and psychological control is blurred. We conclude that it is important to consider youths' feelings of being controlled and suggest that future research focus more on exploring this idea.

  17. Amplification and quantification of cold-associated microRNAs in the Colorado potato beetle (Leptinotarsa decemlineata) agricultural pest.

    PubMed

    Morin, M D; Frigault, J J; Lyons, P J; Crapoulet, N; Boquel, S; Storey, K B; Morin, P Jr

    2017-10-01

    The Colorado potato beetle [Leptinotarsa decemlineata (Say)] is an important insect pest that can inflict considerable damage to potato plants. This insect can survive extended periods of cold exposure, and yet the molecular switches underlying this phenomenon have not been fully elucidated. A better characterization of this process would highlight novel vulnerabilities associated with L. decemlineata that could serve as targets for the management of this devastating pest. Using high-throughput sequencing, the current work reveals a cold-associated signature group of microRNAs (miRNAs) in control (15 °C) and -5 °C-exposed L. decemlineata. The results show 42 differentially expressed miRNAs following cold exposure including miR-9a-3p, miR-210-3p, miR-276-5p and miR-277-3p. Functional analysis of predicted targets associated with these cold-responsive miRNAs notably linked these changes with vital metabolic and cellular processes. Overall, this study highlights the miRNAs probably responsible for facilitating cold adaptation in L. decemlineata and implicates miRNAs as a key molecular target to consider in the development of novel pest management strategies against these insects. © 2017 The Royal Entomological Society.

  18. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.

    PubMed

    MacMillan, Heath A; Schou, Mads F; Kristensen, Torsten N; Overgaard, Johannes

    2016-05-01

    There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K(+) in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling. © 2016 The Author(s).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yan; Fan, Jiwen; Leung, L. Ruby

    Significant reduction in precipitation in the past decades has been documented over many mountain ranges such as those in central and eastern China. Consistent with the increase of air pollution in these regions, it has been argued that the precipitation trend is linked to aerosol microphysical effect on suppressing warm rain. Rigorous quantitative investigations on the reasons responsible for the precipitation reduction are lacking. Here in this study, we employed an improved Weather Research and Forecasting (WRF) model with online coupled chemistry (WRF-Chem) and conducted simulations at the convection-permitting scale to explore the major mechanisms governing changes in precipitation frommore » orographic clouds in the Mountain (Mt.) Hua area in Central China. We find that anthropogenic pollution contributes to a ~ 40% reduction of precipitation over Mt. Hua during the one-month summer time period. The reduction is mainly associated with precipitation events associated with valleymountain circulation and a mesoscale cold front event. In this Part I paper, we scrutinize the mechanism leading to significant reduction for the cases associated with valley-mountain circulation. We find that the valley breeze is weakened by aerosols due to absorbing aerosol induced warming aloft and cooling near the surface as a result of aerosol-radiation interaction (ARI). The weakened valley breeze along with reduced water vapor in the valley due to reduced evapotranspiration as a result of surface cooling significantly reduce the transport of water vapor from the valley to mountain and the relative humidity over the mountain, thus suppressing convection and precipitation in the mountain.« less

  20. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over themore » Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Forrest; Incandela, Joseph

    This project was slated to design and develop Rad-Hard IP components for 1Gb/s links and supporting hardware designs such as PLL, SER/DES, pad drivers and receivers and custom protocol hardware for the 1Gb/s channel. Also included in the proposal was a study of a hardened memory to be used as a packet buffer for channel and data concentrator components to meet the 1 Gb/s specification. Over the course of the proposal, technology change and innovation of hardware designs lead us away from the 1 Gb/s goal to contemplate much higher performance link IP which, we believed better met the goalsmore » of physics experiments. Note that CERN microelectronics had managed to create a 4.7 Gb/s link designed to drive optical fibers and containing infrastructure for connecting much lower bandwidth front-end devices. Our own work to that point had shown the possibility of constructing a link with much lower power, lower physical overhead but of equivalent performance that could be designed to integrate directly onto the front-end ASIC (ADC and data encoding) designs. Substantial overall power savings and experimental simplicity could be achieved by eliminating data transmission to data concentrators and data concentrators and related hardened buffering themselves, with conversion to optical media at a removed distance from the experiment core. We had already developed and tested Rad-Hard SER/DES components (1Gb in 130nm standard cells) and redundant Pad Drivers/Receivers (3+ Gb/s designed and measured performance), and had a viable 1Gb/s link design based on redundant a stuttered clock receiver and classical PLL, so the basic goals of the proposal had been achieved. Below, in chronological order, are the products and tools we constructed, as well as our tests and publications.« less

  2. Quantum heat waves in a one-dimensional condensate

    NASA Astrophysics Data System (ADS)

    Agarwal, Kartiek; Dalla Torre, Emanuele G.; Schmiedmayer, Jörg; Demler, Eugene

    2017-05-01

    We study the dynamics of phase relaxation between a pair of one-dimensional condensates created by a bi-directional, supersonic `unzipping' of a finite single condensate. We find that the system fractures into different extensive chunks of space-time, within which correlations appear thermal but correspond to different effective temperatures. Coherences between different eigen-modes are crucial for understanding the development of such thermal correlations; at no point in time can our system be described by a generalized Gibbs' ensemble despite nearly always appearing locally thermal. We rationalize a picture of propagating fronts of hot and cold sound waves, populated at effective, relativistically red- and blue-shifted temperatures to intuitively explain our findings. The disparity between these hot and cold temperatures vanishes for the case of instantaneous splitting but diverges in the limit where the splitting velocity approaches the speed of sound; in this limit, a sonic boom occurs wherein the system is excited only along an infinitely narrow, and infinitely hot beam. We expect our findings to apply generally to the study of superluminal perturbations in systems with emergent Lorentz symmetry.

  3. The Structure of A Pacific Narrow Cold Frontal Rainband

    NASA Technical Reports Server (NTRS)

    Jorgensen, David P.; Pu, Zhaoxia; Persson, Ola; Tao, Wei-Kuo; Starr, David OC. (Technical Monitor)

    2002-01-01

    A NOAA P-3 instrumented aircraft observed an intense, fast-moving narrow cold frontal Farmhand as it approached the Pacific Northwest coast on 19 February 2001 during the Pacific Coastal Jets Experiment. Pseudo-dual-Doppler analyses performed on the airborne Doppler radar data while the frontal system was well offshore indicated that a narrow ribbon of very high radar reflectively convective cores characterized the Farmhand at low levels with echo tops to approximately 4-5 km. The NCFR exhibited gaps in its narrow ribbon of high reflectively, probably as a result of hydrodynamic instability all no its advancing cold pool leading edge. In contrast to some earlier studies of cold frontal rainbands, density current theory described well the motion of the overall front. The character of the updraft structure associated with the heavy rainfall at its leading edge varied across the gap region. The vertical shear of the cross-frontal low-level ambient flow exerted a strong influence on the updraft character, consistent with theoretical arguments developed for squall lines describing the balance of vorticity at the leading edge. In short regions south of the gaps the vertical wind shear was strongest with the updrafts and rain shafts more intense, narrower, and more erect or even downshear tilted. North of the gaps the wind shear weakened with less intense Dihedrals which tilted upshear with a broader band of rainfall. Simulations using a nonhydrostatic mesoscale nested grid model are used to investigate the gap regions, particularly the balance of cold pool induced to pre-frontal ambient shears at the leading edge. Observations confirm the model results that the updraft character depends on the balance of vorticity at the leading edge. Downshear-tilted updrafts imply that convection south of the gap regions would weaken with time relative to the frontal segments north of the gaps since inflow air would be affected by passage through the heavy rain region before ascent, suggesting a mechanism for gap filling.

  4. Evaluating the value proposition for improving vaccine thermostability to increase vaccine impact in low and middle-income countries.

    PubMed

    Karp, Christopher L; Lans, Deborah; Esparza, José; Edson, Eleanore B; Owen, Katey E; Wilson, Christopher B; Heaton, Penny M; Levine, Orin S; Rao, Raja

    2015-07-09

    The need to keep vaccines cold in the face of high ambient temperatures and unreliable access to electricity is a challenge that limits vaccine coverage in low and middle-income countries (LMICs). Greater vaccine thermostability is generally touted as the obvious solution. Despite conventional wisdom, comprehensive analysis of the value proposition for increasing vaccine thermostability has been lacking. Further, while significant investments have been made in increasing vaccine thermostability in recent years, no vaccine products have been commercialized as a result. We analyzed the value proposition for increasing vaccine thermostability, grounding the analysis in specific vaccine use cases (e.g., use in routine immunization [RI] programs, or in campaigns) and in the broader context of cold chain technology and country level supply chain system design. The results were often surprising. For example, cold chain costs actually represent a relatively small fraction of total vaccine delivery system costs. Further, there are critical, vaccine use case-specific temporal thresholds that need to be overcome for significant benefits to be reaped from increasing vaccine thermostability. We present a number of recommendations deriving from this analysis that suggest a rational path toward unlocking the value (maximizing coverage, minimizing total system costs) of increased vaccine thermostability, including: (1) the full range of thermostability of existing vaccines should be defined and included in their labels; (2) for new vaccines, thermostability goals should be addressed up-front at the level of the target product profile; (3) improving cold chain infrastructure and supply chain system design is likely to have the largest impact on total system costs and coverage in the short term-and will influence the degree of thermostability required in the future; (4) in the long term, there remains value in monitoring the emergence of disruptive technologies that could remove the entire RI portfolio out of the cold chain. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Performance of synchronous optical receivers using atmospheric compensation techniques.

    PubMed

    Belmonte, Aniceto; Khan, Joseph

    2008-09-01

    We model the impact of atmospheric turbulence-induced phase and amplitude fluctuations on free-space optical links using synchronous detection. We derive exact expressions for the probability density function of the signal-to-noise ratio in the presence of turbulence. We consider the effects of log-normal amplitude fluctuations and Gaussian phase fluctuations, in addition to local oscillator shot noise, for both passive receivers and those employing active modal compensation of wave-front phase distortion. We compute error probabilities for M-ary phase-shift keying, and evaluate the impact of various parameters, including the ratio of receiver aperture diameter to the wave-front coherence diameter, and the number of modes compensated.

  6. New Insights into the 8.2 ka Cold Event and Subsequent Climate Recovery in Central Europe Provided by a Precisely Dated Ostracod δ18O Record from Mondsee (Austria)

    NASA Astrophysics Data System (ADS)

    Lauterbach, S.; Andersen, N.; Brauer, A.; Erlenkeuser, H.; Danielopol, D. L.; Namiotko, T.; Huels, M.; Belmecheri, S.; Nantke, C.; Meyer, H.; Chapligin, B.; von Grafenstein, U.

    2015-12-01

    As evidenced by numerous palaeoclimate records worldwide, the Holocene warm period has been interrupted by several short, low-amplitude cold episodes. Among these, the so-called 8.2 ka cold event is the most prominent Holocene climate perturbation but despite extensive studies, knowledge about its synchrony in different areas and particularly about the dynamics of subsequent climate recovery is still limited. As this is of crucial importance for understanding the complex mechanisms that trigger rapid climate fluctuations and for testing the performance of climate models, new data on the 8.2 ka cold event are needed. Here we present a new sub-decadally resolved, precisely dated oxygen isotope (δ18O) record for the interval 7.7-8.7 ka BP obtained from benthic ostracods preserved in the varved lake sediments of Mondsee (Austria), providing new insights into climate development around the 8.2 ka cold event in Central Europe. The new high-resolution δ18O data set reveals the occurrence of a pronounced cold spell around 8.2 ka BP, whose amplitude (~1.0 ‰, equivalent to a 1.5-2.0 °C cooling), total duration (151 a) and absolute dating (8231-8080 a BP, i.e. calendar years before AD 1950) perfectly agree with results from other Northern Hemisphere palaeoclimate archives, e.g. the precisely dated Greenland ice cores. In addition, the Mondsee δ18O record also indicates a 75-year-long air temperature overshoot of ~0.7 °C directly after the 8.2 ka event (between 8080 and 8005 a BP), which is so far only poorly documented in the mid-latitudes. However, this observation is consistent with results from coupled climate models and high-latitude proxy records, thus likely reflecting a hemispheric-scale climate signal driven by enhanced resumption of the Atlantic meridional overturning circulation (AMOC), which apparently also caused synchronous migrations of atmospheric and oceanic front systems in the North Atlantic realm.

  7. Home is where the hearth is: grant recipients' views of England's home energy efficiency scheme (Warm Front).

    PubMed

    Gilbertson, Jan; Stevens, Maryjane; Stiell, Bernadette; Thorogood, Nicki

    2006-08-01

    This paper reports the results of research carried out as part of the national health impact evaluation of the Warm Front Scheme, a government initiative aimed at alleviating fuel poverty in England. Semi-structured interviews were carried out in a purposive sample of 49 households which received home energy improvements under the Scheme from five urban areas (Birmingham, Liverpool, Manchester, Newcastle, Southampton). Each household had received installation, replacement or refurbishment of the heating system and, in some cases, also insulation of the cavity wall or loft or both, and draught-proofing measures. Most householders reported improved and more controllable warmth and hot water. Many also reported perceptions of improved physical health and comfort, especially of mental health and emotional well-being and, in several cases, the easing of symptoms of chronic illness. There were reports of improved family relations, an expansion of the domestic space used during cold months, greater use of kitchens and improved nutrition, increased privacy, improved social interaction, and an increase in comfort and atmosphere within the home. Greater warmth and comfort also enhanced emotional security, and recipients were more content and at ease in their homes. However there was little evidence of substantially lower heating bills. These results provide evidence that Warm Front home energy improvements are accompanied by appreciable benefits in terms of use of living space, comfort and quality of life, physical and mental well-being, although there is only limited evidence of change in health behaviour.

  8. A climatology based on reanalysis of baroclinic developmental regions in the extratropical northern hemisphere.

    PubMed

    de la Torre, Laura; Nieto, Raquel; Noguerol, Marta; Añel, Juan Antonio; Gimeno, Luis

    2008-12-01

    Regions of the occurrence of different phenomena related to the development of baroclinic disturbances are reviewed for the Northern Hemisphere extratropics, using National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. The occurrence of height lows appears to be related to the orography near the earth's surface and with surface- and upper-air cyclogenesis in the upper troposphere. Over the cyclone tracks, the surface maxima appear to be trapped by land masses, whereas over the Mediterranean Sea they are located on the lee side of mountain ranges. The forcing terms of the geopotential tendency and omega equations mark the genesis (and, by the vorticity advection terms, the path) of the extratropical cyclones on the storm track. They occur mostly over the western coast of the oceans, beginning and having maxima on the lee side of the Rocky Mountains and the Tibetan Plateau. Their associated fronts form from the cold air coming from the continents and converging with the warm air over the Gulf and Kuroshio currents. Evident trends are found only for the Atlantic cyclone track (positive) and the Pacific cyclone track (negative) until the last decade when the tendency reverses. Over the southern Pacific, the number of fronts is lower during 1978-1997, coinciding with a period of strong El Niño Southern Oscillation episodes. This information is important for validating numerical models in order to predict changes associated with climate change and to study the behavior of extratropical cyclones and fronts.

  9. A Software Defined Radio Based Architecture for the Reagan Test Site Telemetry Modernization (RTM) Program

    DTIC Science & Technology

    2015-10-26

    platforms and are quickly using up available spectrum. The national need in the commercial sector with emerging technologies such as 5G is pushing for...recovered and post processed later. The Front End Server also sends selected data stream across a high speed network link to the centralized

  10. Design and demonstration of ultra-fast W-band photonic transmitter-mixer and detectors for 25 Gbits/sec error-free wireless linking.

    PubMed

    Chen, Nan-Wei; Shi, Jin-Wei; Tsai, Hsuan-Ju; Wun, Jhih-Min; Kuo, Fong-Ming; Hesler, Jeffery; Crowe, Thomas W; Bowers, John E

    2012-09-10

    A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication.

  11. The GBT-SCA, a radiation tolerant ASIC for detector control and monitoring applications in HEP experiments

    NASA Astrophysics Data System (ADS)

    Caratelli, A.; Bonacini, S.; Kloukinas, K.; Marchioro, A.; Moreira, P.; De Oliveira, R.; Paillard, C.

    2015-03-01

    The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the simultaneous transfer of readout data, timing and trigger signals as well as slow control and monitoring data. The GBT-SCA ASIC, part of the GBT chip-set, has the purpose to distribute control and monitoring signals to the on-detector front-end electronics and perform monitoring operations of detector environmental parameters. In order to meet the requirements of different front-end ASICs used in the experiments, it provides various user-configurable interfaces capable to perform simultaneous operations. It is designed employing radiation tolerant design techniques to ensure robustness against SEUs and TID radiation effects and is implemented in a commercial 130 nm CMOS technology. This work presents the GBT-SCA architecture, the ASIC interfaces, the data transfer protocol, and its integration with the GBT optical link.

  12. Predicting visual attention to nutrition information on food products: the influence of motivation and ability.

    PubMed

    Turner, Monique Mitchell; Skubisz, Christine; Pandya, Sejal Patel; Silverman, Meryl; Austin, Lucinda L

    2014-09-01

    Obesity is linked to numerous diseases including heart disease, diabetes, and cancer. To address this issue, food and beverage manufacturers as well as health organizations have developed nutrition symbols and logos to be placed on the front of food packages to guide consumers to more healthful food choices. In 2010, the U.S. Food and Drug Administration requested information on the extent to which consumers notice, use, and understand front-of-package nutrition symbols. In response, this study used eye-tracking technology to explore the degree to which people pay visual attention to the information contained in food nutrition labels and front-of-package nutrition symbols. Results indicate that people with motivation to shop for healthful foods spent significantly more time looking at all available nutrition information compared to people with motivation to shop for products on the basis of taste. Implications of these results for message design, food labeling, and public policy are discussed.

  13. The role of professionals in promoting independent living: Perspectives of self-advocates and front-line managers.

    PubMed

    Pallisera, Maria; Vilà, Montserrat; Fullana, Judit; Díaz-Garolera, Gemma; Puyalto, Carolina; Valls, Maria-Josep

    2018-05-15

    Support from professionals plays an important role in helping people with intellectual disabilities to live an independent life. This research aims to analyse the role played by support professionals based on the perceptions of the professionals and self-advocates with intellectual disabilities. The research was conducted in Catalonia (Spain). A total of 33 interviews were conducted with front-line managers and 10 focus groups with 72 self-advocates. These were recorded and transcribed, and then analysed using thematic content analysis. Self-advocates particularly value professionals' interpersonal skills and emotional support. Front-line managers and self-advocates highlight training actions aimed at enhancing autonomy in the home and propose fostering natural supports and increasing the involvement of people with disabilities. Making progress in the rights of people with intellectual disabilities to an independent life requires requires transforming the support model, promoting decision making among people with intellectual disabilities, and strengthening interpersonal skills linked to emotional support in the training of professionals. © 2018 John Wiley & Sons Ltd.

  14. Amplitude of travelling front as inferred from 14C predicts levels of genetic admixture among European early farmers.

    PubMed

    Silva, Fabio; Vander Linden, Marc

    2017-09-20

    Large radiocarbon datasets have been analysed statistically to identify, on the one hand, the dynamics and tempo of dispersal processes and, on the other, demographic change. This is particularly true for the spread of farming practices in Neolithic Europe. Here we combine the two approaches and apply them to a new, extensive dataset of 14,535 radiocarbon dates for the Mesolithic and Neolithic periods across the Near East and Europe. The results indicate three distinct demographic regimes: one observed in or around the centre of farming innovation and involving a boost in carrying capacity; a second appearing in regions where Mesolithic populations were well established; and a third corresponding to large-scale migrations into previously essentially unoccupied territories, where the travelling front is readily identified. This spatio-temporal patterning linking demographic change with dispersal dynamics, as displayed in the amplitude of the travelling front, correlates and predicts levels of genetic admixture among European early farmers.

  15. Modeling impacts of cold climates on vehicle emissions : final report.

    DOT National Transportation Integrated Search

    2017-01-20

    Vehicle emissions include carbon monoxide (CO), nitrogen oxides (NOx = NO + NO2), volatile organic compounds (VOCs), and air toxics such as benzene. Each of these pollutants is linked to adverse human health effects. To evaluate the contributions of ...

  16. Millennial-scale variability in south-east Australian hydroclimate between 30,000 and 10,000 years ago

    NASA Astrophysics Data System (ADS)

    Falster, Georgina; Tyler, Jonathan; Grant, Katharine; Tibby, John; Turney, Chris; Löhr, Stefan; Jacobsen, Geraldine; Kershaw, A. Peter

    2018-07-01

    Global climate variability during the late Quaternary is commonly investigated within the framework of the 'bipolar seesaw' pattern of asynchronous temperature variations in the northern and southern polar latitudes. The terrestrial hydrological response to this pattern in south-eastern Australia is not fully understood, as continuous, high-resolution, well-dated proxy records for the hydrological cycle in the region are sparse. Here we present a well-dated, highly resolved record of moisture balance spanning 30000-10000 calendar years before present (30-10 ka BP), based on x-ray fluorescence and organic carbon isotope (δ13COM) measurements of a sedimentary sequence from Lake Surprise in south-eastern Australia. The data provide a locally coherent record of the hydrological cycle. Elevated Si (reflecting windblown quartz and clays), and relatively high δ13COM, indicate an extended period of relative aridity between 28 and 18.5 ka BP, interrupted by millennial-scale episodes of decreased Si and δ13COM, suggesting increased moisture balance. This was followed by a rapid deglacial shift to low Si and δ13COM at 18.5 ka BP, indicative of wetter conditions. We find that these changes are coeval with other records from south-eastern Australia and New Zealand, and use a Monte Carlo Empirical Orthogonal Function approach to extract a common trend from three high-resolution records. Our analyses suggest that drivers of the regional hydrological cycle have varied on multi-millennial time scales, in response to major shifts in global atmosphere-ocean dynamics during the last glacial-interglacial transition. Southern Ocean processes were the dominant control on hydroclimate during glacial times, via a strong influence of cold sea surface temperatures on moisture uptake and delivery onshore. Following the last deglaciation (around 18 ka BP), the southward migration of cold Southern Ocean fronts likely resulted in the establishment of conditions more like those of the present day. Millennial-scale variability in records from the region is dominated by a persistent ca. 2300-year periodicity, consistent with other records across the Southern Hemisphere mid-latitudes; however, this pervasive periodicity is not obviously linked to the 'bipolar seesaw' and the mechanism remains equivocal.

  17. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming

    DOE PAGES

    Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong; ...

    2017-07-10

    Warming temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the warming trend, North America has experienced more frequent and more intense cold weather events during winters and springs. These events have been linked to anomalous Arctic warming since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe cold conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous warming in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic warming anomalies in the past decades has remotely reduced productivity over North America.« less

  18. The influence of weather on health-related help-seeking behavior of senior citizens in Hong Kong.

    PubMed

    Wong, Ho Ting; Chiu, Marcus Yu Lung; Wu, Cynthia Sau Ting; Lee, Tsz Cheung

    2015-03-01

    It is believed that extreme hot and cold weather has a negative impact on general health conditions. Much research focuses on mortality, but there is relatively little community health research. This study is aimed at identifying high-risk groups who are sensitive to extreme weather conditions, in particular, very hot and cold days, through an analysis of the health-related help-seeking patterns of over 60,000 Personal Emergency Link (PE-link) users in Hong Kong relative to weather conditions. In the study, 1,659,716 PE-link calls to the help center were analyzed. Results showed that females, older elderly, people who did not live alone, non-subsidized (relatively high-income) users, and those without medical histories of heart disease, hypertension, stroke, and diabetes were more sensitive to extreme weather condition. The results suggest that using official government weather forecast reports to predict health-related help-seeking behavior is feasible. An evidence-based strategic plan could be formulated by using a method similar to that used in this study to identify high-risk groups. Preventive measures could be established for protecting the target groups when extreme weather conditions are forecasted.

  19. The influence of weather on health-related help-seeking behavior of senior citizens in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wong, Ho Ting; Chiu, Marcus Yu Lung; Wu, Cynthia Sau Ting; Lee, Tsz Cheung

    2015-03-01

    It is believed that extreme hot and cold weather has a negative impact on general health conditions. Much research focuses on mortality, but there is relatively little community health research. This study is aimed at identifying high-risk groups who are sensitive to extreme weather conditions, in particular, very hot and cold days, through an analysis of the health-related help-seeking patterns of over 60,000 Personal Emergency Link (PE-link) users in Hong Kong relative to weather conditions. In the study, 1,659,716 PE-link calls to the help center were analyzed. Results showed that females, older elderly, people who did not live alone, non-subsidized (relatively high-income) users, and those without medical histories of heart disease, hypertension, stroke, and diabetes were more sensitive to extreme weather condition. The results suggest that using official government weather forecast reports to predict health-related help-seeking behavior is feasible. An evidence-based strategic plan could be formulated by using a method similar to that used in this study to identify high-risk groups. Preventive measures could be established for protecting the target groups when extreme weather conditions are forecasted.

  20. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong

    Warming temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the warming trend, North America has experienced more frequent and more intense cold weather events during winters and springs. These events have been linked to anomalous Arctic warming since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe cold conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous warming in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic warming anomalies in the past decades has remotely reduced productivity over North America.« less

  1. Insect capa neuropeptides impact desiccation and cold tolerance

    PubMed Central

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  2. More Frequent Weak Stratospheric Polar Vortex States Linked to Cold Extremes

    NASA Astrophysics Data System (ADS)

    Kretschmer, M.; Coumou, D.; Agel, L. A.; Barlow, M. A.; Tziperman, E.; Cohen, J. L.

    2016-12-01

    The extra-tropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, referred to as the stratospheric polar vortex (SPV) which confines cold temperatures at high latitudes. Previous studies showed that a weak SPV can lead to cold-air outbreaks in the mid-latitudes but the exact relationships and mechanisms are still unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in Central and eastern Asia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid to late winter (January and February) has increased significantly accompanied by subsequent cold surface temperatures in the mid-latitudes. Furthermore, we show that stratospheric and El Niño/Southern Oscillation (ENSO) variability can explain most of the observed spatially heterogenic winter temperature trends in the era of Arctic amplification but the contribution of ENSO is less important. We show that the weakening of the SPV was related to a strengthening Siberian high and poleward heat flux. These findings support the hypothesis that a warming Arctic has weakened the SPV and thereby increased the frequency of cold-air outbreaks.

  3. Loneliness Predicts Self-reported Cold Symptoms after a Viral Challenge

    PubMed Central

    LeRoy, Angie S.; Murdock, Kyle W.; Jaremka, Lisa M.; Loya, Asad; Fagundes, Christopher P.

    2017-01-01

    Objective Loneliness is a well-established risk factor for poor physical health. Much less is known about how loneliness affects patient-reported outcomes (PROs), such as somatic symptoms, which are increasingly important for guiding symptom management and assessing quality of patient care. The current study investigates whether (a) loneliness and social isolation predict cold symptoms independent of each other, and (b) whether loneliness is a more robust risk factor than objective social isolation for experiencing cold symptoms. Methods As part of a larger parent study, 213 healthy participants completed the Short Loneliness Scale (LON) and the Social Network Index (SNI) at baseline. They were given nasal drops containing rhinovirus 39 (RV39; i.e., a common cold virus), then quarantined for 5 days during which they reported on subjective cold symptoms in addition to being monitored for objective indicators of infection. Data from 160 of the participants (who were infected with the virus) were used in the present analyses. Results A hierarchical multiple regression revealed that baseline loneliness predicted self-reported cold symptoms over time (assessed via area under the curve), over and above demographic variables, season of participation, and depressive affect. Interestingly, social network size and diversity did not predict cold symptoms. Conclusions These findings suggest that the perception of loneliness is more closely linked to self-reported illness symptoms than objectively measured social isolation. Assessing psychosocial factors such as loneliness when treating and evaluating the common cold could contribute to health care practitioners’ understanding of their patients’ experiences with acute illness. PMID:28358524

  4. Contribution of Tropical Cyclones to the Interannual Variability of Baiu Precipitation

    NASA Astrophysics Data System (ADS)

    Yamaura, T.; Tomita, T.

    2011-12-01

    This work examines the contribution of tropical cyclones to the interannual variability of Baiu precipitation with the large-scale interannual variations in the tropics, that is, the El Niño/Southern Oscillation (ENSO) and the Tropospheric Biennial Oscillation (TBO) in the Asian monsoon. The data used are the Global Precipitation Climatology Project, the Japanese 25-year Reanalysis Project/Japan Meteorological Agency Climate Data Assimilation System, and the Joint Typhoon Warning Center. The diagnosed months and the time period are June and July, and 30 years from 1979 to 2008. When the negative precipitation anomalies appear in the entire Baiu front with the cold ENSO phase, the number of tropical cyclones increases around the northern part of the Philippines, and a larger-scale anomalous cyclone is formed there. Tropical cyclones contribute to strengthening the anomalous cyclone. Anomalous convective activity in the anomalous cyclone excites Rossby waves that propagate northward within the low-level jet and form an anomalous anticyclone around Japan. The anomalous anticyclone decreases the Baiu precipitation. On the other hand, the number of tropical cyclones decreases, and an anomalous anticyclone is set around the northern part of the Philippines, when the positive precipitation anomalies are observed in the Baiu front with the warm ENSO phase. The contribution of tropical cyclones is insignificant in this phase. The warm and cold TBO phases are judged from sea surface temperature (SST) anomalies in the equatorial central Pacific that is different from the region for ENSO. In the cold TBO phase with the negative SST anomalies, there appear the negative precipitation anomalies around Kyushu and the positive ones to the southeast of Japan. Concurrently, an anomalous cyclone appears, and the accumulated cyclone energy estimated from the tropical cyclones increases to the southeast of Japan. Tropical cyclones contribute to forming the anomalous cyclone, which shifts the axis of monsoon southwesterlies southward. Thus, the negative precipitation anomalies and the positive ones appear in Kyushu and to the southeast of Japan. In the opposite TBO phase, an anomalous anticyclone is set to the southeast of Japan and suppresses tropical cyclones there. The contribution of tropical cyclones is small in this case. As such, local tropical cyclones contribute to the interannual variation of the Baiu precipitation with larger atmospheric circulations in the western North Pacific.

  5. Sea surface temperatures in the North Atlantic Ocean from 30ka to 10ka

    NASA Astrophysics Data System (ADS)

    Barrack, Kerr; Greenop, Rosanna; Burke, Andrea; Barker, Stephen; Chalk, Thomas; Crocker, Anya

    2016-04-01

    Some of the most striking features of the Late Pleistocene interval are the rapid changes in climate between warmer interstadial and cold stadial periods which, when coupled, are termed Dansgaard-Oeschger (D-O) events. This shift between warm and cold climates has been interpreted to result from changes in the thermohaline circulation (Broecker et al., 1985) triggered by, for instance, freshwater input from the collapse of the Laurentide ice sheet (Zahn et al., 1997). However, a recent study suggests that major ice rafting events cannot be the 'trigger' for the centennial to millennial scale cooling events identified over the past 500kyr (Barker at al., 2015). Polar planktic foraminiferal and lithogenic/terrigenous grain counts reveal that the southward migration of the polar front occurs before the deposition of ice rafted debris and therefore the rafting of ice during stadial periods. Based upon this evidence, Barker et al. suggest that the transition to a stadial state is a non-linear response to gradual cooling in the region. In order to test this hypothesis, our study reconstructs sea surface temperature across D-O events and the deglaciation in the North Atlantic between 30ka and 10ka using Mg/ Ca paleothermometry in Globigerina bulloides at ODP Sites 980 and 983 (the same sites as used in Barker et al., 2015) with an average sampling resolution of 300 years. With our new record we evaluate the timing of surface ocean temperature change, frontal shift movement, and ice rafting to investigate variations in the temperature gradient across the polar front over D-O events. References: Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., Thornalley, D., 2015. Icebergs not the trigger for North Atlantic cold events. Nature, 520(7547), pp.333-336. Broecker, W.S., Peteer, D.M., Rind, D., 1985. Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315 (6014), pp.21-26. Zahn, R., Schönfeld, J., Kudrass, H.-R., Park, M.-H., Erlenkeuser, H., Grootes, P, 1997. Thermohaline instability in the North Atlantic during meltwater events: Stable isotope and ice-rafted detritus records from Core SO75-26KL, Portuguese Margin. Paleoceanography, 12(5), pp.696-710.

  6. Role of the Excitability Brake Potassium Current IKD in Cold Allodynia Induced by Chronic Peripheral Nerve Injury.

    PubMed

    González, Alejandro; Ugarte, Gonzalo; Restrepo, Carlos; Herrera, Gaspar; Piña, Ricardo; Gómez-Sánchez, José Antonio; Pertusa, María; Orio, Patricio; Madrid, Rodolfo

    2017-03-22

    Cold allodynia is a common symptom of neuropathic and inflammatory pain following peripheral nerve injury. The mechanisms underlying this disabling sensory alteration are not entirely understood. In primary somatosensory neurons, cold sensitivity is mainly determined by a functional counterbalance between cold-activated TRPM8 channels and Shaker-like Kv1.1-1.2 channels underlying the excitability brake current I KD Here we studied the role of I KD in damage-triggered painful hypersensitivity to innocuous cold. We found that cold allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in mice, was related to both an increase in the proportion of cold-sensitive neurons (CSNs) in DRGs contributing to the sciatic nerve, and a decrease in their cold temperature threshold. I KD density was reduced in high-threshold CSNs from CCI mice compared with sham animals, with no differences in cold-induced TRPM8-dependent current density. The electrophysiological properties and neurochemical profile of CSNs revealed an increase of nociceptive-like phenotype among neurons from CCI animals compared with sham mice. These results were validated using a mathematical model of CSNs, including I KD and TRPM8, showing that a reduction in I KD current density shifts the thermal threshold to higher temperatures and that the reduction of this current induces cold sensitivity in former cold-insensitive neurons expressing low levels of TRPM8-like current. Together, our results suggest that cold allodynia is largely due to a functional downregulation of I KD in both high-threshold CSNs and in a subpopulation of polymodal nociceptors expressing TRPM8, providing a general molecular and neural mechanism for this sensory alteration. SIGNIFICANCE STATEMENT This paper unveils the critical role of the brake potassium current I KD in damage-triggered cold allodynia. Using a well-known form of nerve injury and combining behavioral analysis, calcium imaging, patch clamping, and pharmacological tools, validated by mathematical modeling, we determined that the functional expression of I KD is reduced in sensory neurons in response to peripheral nerve damage. This downregulation not only enhances cold sensitivity of high-threshold cold thermoreceptors signaling cold discomfort, but it also transforms a subpopulation of polymodal nociceptors signaling pain into neurons activated by mild temperature drops. Our results suggest that cold allodynia is linked to a reduction of I KD in both high-threshold cold thermoreceptors and nociceptors expressing TRPM8, providing a general model for this form of cold-induced pain. Copyright © 2017 the authors 0270-6474/17/373109-18$15.00/0.

  7. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.

    1998-01-01

    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  8. Time Transfer by Laser Link T2L2: First Results of the 2010 Campaign

    DTIC Science & Technology

    2010-11-01

    stations are also equipped by GPS and TWSTFT devices, this campaign should allow the performance comparisons between these systems operating with...Europe and Asia, GPS and TWSTFT links, and cold atomic fountains. Objectives of this second international campaign go from the comparison between T2L2...configuration in the ground setup (the time and frequency distribution has been changed, such as the two laser stations, the GPS receiver, the TWSTFT station

  9. Adaptation to seasonality and the winter freeze

    PubMed Central

    Preston, Jill C.; Sandve, Simen R.

    2013-01-01

    Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve. PMID:23761798

  10. An important role of the moisture supply from the Kuroshio Current/Kuroshio Extension in the rapid development of an explosive cyclone

    NASA Astrophysics Data System (ADS)

    Hirata, H.; Kawamura, R.; Kato, M.; Shinoda, T.

    2014-12-01

    We investigated how the moisture supply from the Kuroshio Current/Kuroshio Extension affects the rapid intensification of an explosive cyclone using a couple atmosphere-ocean non-hydrostatic model, CReSS-NHOES. The Cloud-Resolving Storm Simulator (CReSS) and the Non-Hydrostatic Ocean model for the Earth Simulator (NHOES) have been developed by the Hydrospheric Atmospheric Research Center of Nagoya University and the Japan Agency for Marine-Earth Science and Technology, respectively. We performed a numerical simulation of an extratropical cyclone migrating along the southern periphery of the Kuroshio Current on January 14, 2013, that developed most rapidly in recent years in the vicinity of Japan. The evolutions of surface fronts related to the cyclone simulated by the CReSS-NHOES closely resemble Shapiro-Keyser model. In the lower troposphere, the cyclone's bent-back front and the associated frontal T-bone structure become evident with the cyclone development. Cold Conveyor Belt (CCB) is also well organized over the northern part of the cyclone. During its developing stage, since the CCB dominates just over the Kuroshio Current/Kuroshio Extension, a large amount of moisture is efficiently supplied from the warm current into the CCB. The vapor evaporated from the underlying warm current is transported into the bent-back front by the CCB and converges horizontally in the vicinity of the front. As a result, strong diabatic heating arises over the corresponding moisture convergence area in that vicinity, indicating that the abundant moisture due to the warm current plays a vital role in rapid development of the cyclone through latent heat release processes. Both processes of the moisture transport from the warm current into the cyclone system via the CCB and of the latent heat release around the bent-back front are also confirmed by trajectory analyses. The rapid SLP decrease of the cyclone center can in turn increase the moisture supply from the warm current through enhancement of the CCB. We anticipate that such a feedback process plays a key role in the rapid intensification of the cyclone highlighted in this study.

  11. Flows in the Tasman Front south of Norfolk Island

    NASA Astrophysics Data System (ADS)

    Sutton, Philip J. H.; Bowen, Melissa

    2014-05-01

    The Tasman Front is a narrow band of eastward flowing subtropical water crossing the Tasman Sea from Australia to North Cape, New Zealand. It is the link between the two subtropical western boundary currents of the South Pacific, the East Australian Current (EAC) off eastern Australia, and the East Auckland Current (EAUC) off northeastern New Zealand. Here we report the first direct measurements of flow in the Tasman Front from a moored array deployed across gaps in the submarine ridges south of Norfolk Island and hydrographic and ADCP measurements during the deployment and recovery voyages. The mean flow through the array over July 2003 to August 2004 was found to be eastward only in the upper 800 m with a transport of ˜6 Sv. Below 800 m a weak westward mean flow (˜1.5 Sv) was measured, associated with Antarctic Intermediate Water (AAIW). Using sea surface height to account for additional transport south of the moored array results in a total mean eastward transport between Norfolk Island and North Cape, New Zealand of ˜8 Sv, varying between -4 and 18 Sv. The measurements show that the Tasman Front is much shallower than either the EAC or EAUC, both of which extend below 2000 m depth, has less transport than either the EAC or EAUC and has instances of flow reversal. Thus, the Tasman Front is a weaker connection between the EAC and EAUC than the paradigm of a contiguous South Pacific western boundary current system would suggest.

  12. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  13. Electricity unplugged

    NASA Astrophysics Data System (ADS)

    Karalis, Aristeidis

    2009-02-01

    The judge was driving back late one cold winter night. Entering the garage, the battery-charging indicator in his wirelessly powered electric car came on. "Home at last," crossed his mind. He swiped his personal smartcard on the front-door detector to be let in. He heard a "charging" beep from his mobile phone. The blinking cursor on the half-finished e-mail on the laptop had been waiting all day on the side table. He picked the computer up and walked towards his desk. "Good evening, your honour. Your wirelessly heated robe," said the butler-robot as it approached from the kitchen. Putting on the electric garment, he sat on the medical desk chair. His artificial heart was now beating faster.

  14. EFFECTS OF LASER RADIATION ON MATTER: Fast holographic cinematography of a laser plasma

    NASA Astrophysics Data System (ADS)

    Barikhin, B. A.; Ivanov, A. Yu; Nedolugov, V. I.

    1990-11-01

    A fast holographic cinematography method was used in an investigation of a laser plasma initiated at the surfaces of metal samples by pulses from a rhodamine laser. The time evolution of the electron densities and heavy-particle concentrations was determined and a study was made of the nature of motion of a shock wave front. A weak dependence of the evolution of the shock wave velocity on the target materials (aluminum, copper, zinc) was observed in the average power density range 10-25 MW/cm2. A faster increase in the dimensions of a refracting plasma region, compared with a luminous region, and strong expulsion of cold air by an erosion plasma were recorded.

  15. Flood regime as a driver of the distribution of mangrove and salt marsh species in a subtropical estuary

    NASA Astrophysics Data System (ADS)

    Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.

    2016-09-01

    Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.

  16. A circular polarization converter based on in-linked loop antenna frequency selective surface

    NASA Astrophysics Data System (ADS)

    Wang, Shen-Yun; Liu, Wei; Geyi, Wen

    2018-06-01

    In this paper, we report the design, fabrication and measurement of a circular polarization converter based on an in-linked loop-antenna frequency selective surface. The building unit cell is the in-linked loop-antenna module, which consists of same front and back planar loop antennas in-linked by a pair of through-via holes passing through a sandwiched perforated metal ground plane. The proposed device can achieve transmission polarization conversions from right- or left-handed circularly polarized waves to left- or right-handed ones, respectively, or vice versa. Simulation and experimental results show that it has relative conversion ratio of near unity at resonant frequency and very low Joule insertion loss in the operating frequency band. The proposed circular polarization converter may be applied to wireless systems where circular polarization diversity is needed.

  17. ARL Eye Safer Fiber Laser Testbed Lab View Automation and Control

    DTIC Science & Technology

    2013-09-01

    output voltage value in volts. gpc n Program the output current value in amperes. grst Reset and bring the power supplies to safe state. gout n...Turn the output on/off: gout 1 = turn on, gout 0 = turn off Figure 4 shows the front panel of power supplies and back panel RS 485 link. 4

  18. U.S. Department of Defense Official Website

    Science.gov Websites

    DefenseLink.mil Aug. 04, 2015 War on Terror Transformation News Products Press Resources Images Websites Contact . "With you on the front lines in this global struggle against extremists, this global war on terror Remembers Victims, Vows to Continue Fight . No Retreat, No Return to Past in War on Terror, Rumsfeld Says

  19. Preparing Students for College and Career: Linked Learning in California. Issue Brief

    ERIC Educational Resources Information Center

    Richmond, Eric

    2010-01-01

    To prepare students for success in life, the twenty-first-century American high school needs to shift its focus from preparing for college "or" career to achieving college "and" career readiness for every student. In some areas of the country, progress is being made on this front. One of the most comprehensive efforts is the…

  20. The 'warm' side of coldness: Cold promotes interpersonal warmth in negative contexts.

    PubMed

    Wei, Wenqi; Ma, Jingjing; Wang, Lei

    2015-12-01

    The concrete experience of physical warmth has been demonstrated to promote interpersonal warmth. This well-documented link, however, tells only half of the story. In the current study, we thus examined whether physical coldness can also increase interpersonal warmth under certain circumstances. We conducted three experiments to demonstrate that the relationship between the experience of physical temperature and interpersonal outcomes is context dependent. Experiment 1 showed that participants touching cold (vs. warm) objects were more willing to forgive a peer's dishonest behaviour. Experiment 2 demonstrated the fully interactive effect of temperature and context on interpersonal warmth: Participants touching cold (vs. warm) objects were less likely to assist an individual who had provided them with good service (positive social context), but more likely to assist an individual who had provided them with poor service (negative social context). Experiment 3 replicated the results of Experiment 2 using the likelihood to complain, a hostility-related indicator, as the dependent variable: In a pleasant queue (positive social context), participants touching cold objects were more likely to complain and those touching warm objects were less likely to complain compared with the control group. This pattern was reversed in an annoying queue (negative social context). © 2015 The Authors. British Journal of Social Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  1. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

    NASA Astrophysics Data System (ADS)

    Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.

    2018-03-01

    Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.

  2. HUBBLE SPACE TELESCOPE AND HI IMAGING OF STRONG RAM PRESSURE STRIPPING IN THE COMA SPIRAL NGC 4921: DENSE CLOUD DECOUPLING AND EVIDENCE FOR MAGNETIC BINDING IN THE ISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Jeffrey D. P.; Abramson, Anne; Bravo-Alfaro, Hector, E-mail: jeff.kenney@yale.edu

    Remarkable dust extinction features in the deep Hubble Space Telescope (HST) V and I images of the face-on Coma cluster spiral galaxy NGC 4921 show in unprecedented ways how ram pressure strips the ISM from the disk of a spiral galaxy. New VLA HI maps show a truncated and highly asymmetric HI disk with a compressed HI distribution in the NW, providing evidence for ram pressure acting from the NW. Where the HI distribution is truncated in the NW region, HST images show a well-defined, continuous front of dust that extends over 90° and 20 kpc. This dust front separatesmore » the dusty from dust-free regions of the galaxy, and we interpret it as galaxy ISM swept up near the leading side of the ICM–ISM interaction. We identify and characterize 100 pc–1 kpc scale substructure within this dust front caused by ram pressure, including head–tail filaments, C-shaped filaments, and long smooth dust fronts. The morphology of these features strongly suggests that dense gas clouds partially decouple from surrounding lower density gas during stripping, but decoupling is inhibited, possibly by magnetic fields that link and bind distant parts of the ISM.« less

  3. In Situ Visualization of the Growth and Fluctuations of Nanoparticle Superlattice in Liquids

    NASA Astrophysics Data System (ADS)

    Ou, Zihao; Shen, Bonan; Chen, Qian

    We use liquid phase transmission electron microscopy to image and understand the crystal growth front and interfacial fluctuation of a nanoparticle superlattice. With single particle resolution and hundreds of nanoscale building blocks in view, we are able to identify the interface between ordered lattice and disordered structure and visualize the kinetics of single building block attachment at the lattice growth front. The spatial interfacial fluctuation profiles support the capillary wave theory, from which we derive a surface stiffness value consistent with scaling analysis. Our experiments demonstrate the potential of extending model study on collective systems to nanoscale with single particle resolution and testing fundamental theories of condensed matter at a length scale linking atoms and micron-sized colloids.

  4. Time Transfer by Laser Link - T2L2: An Opportunity to Calibrate RF Links

    DTIC Science & Technology

    2008-12-01

    GNSS and TWSTFT , with an improvement of at least one order of magnitude as compared to the best calibrations performed so far (about 1 ns exactitude...frequency transfer systems like GPS or TWSTFT , and comparisons of cold atomic clocks at a level never reached before. Continuous comparison of T2L2 and...Station reattachment to local UTC Ground to Space Transfer : 30 Ground to Ground Transfer : 43 Common view TWSTFT GPS Laser ranging

  5. Relationship between glacier melting and atmospheric circulation in the southeast Siberia

    NASA Astrophysics Data System (ADS)

    Osipova, O. P.; Osipov, E. Y.

    2018-01-01

    The interaction between climate and cryosphere is a key issue in recent years. Changes in surface mass balance of mountain glaciers closely correspond to differential changes in atmospheric circulation. Mountain glaciers in southeast Siberia located on East Sayan, Baikalsky and Kodar ridges have been continuously shrinking since the end of the Little Ice Age. In this study we used daily synoptic weather maps (Irkutsk Center of Hydrometeorology and Environmental Monitoring), 500 hPa, 700 hPa and 850 hPa geopotential height and air temperature data of NCEP/NCAR reanalysis to assess relationships between atmospheric circulation patterns and the sum of positive temperature (SPT), a predictor of summer ice/snow ablation. Results show that increased SPT (ablation) is generally associated with anticyclones and anticyclonic pressure fields (with cloudless weather conditions) and warm atmospheric fronts. Decreased SPT (ablation) is strongly correlated with cyclones and cyclonic type pressure fields, cold atmospheric fronts and air advections. Significant correlations have been found between ablation and cyclonic/anticyclonic activity. Revealed decreasing trends in the SPT in three glaciarized ridges at the beginning of the 21st century led to changes of air temperature and snow/ice melt climates.

  6. A lazy way to design infrared lens

    NASA Astrophysics Data System (ADS)

    Qiu, RongSheng; Wu, JianDong; Chen, LongJiang; Yu, Kun; Pang, HaoJun; Hu, BaiZhen

    2017-08-01

    We designed a compact middle-wave infrared (MWIR) lens with a large focal length ratio (about 1.5:1), used in the 3.7 to 4.8 μm range. The lens is consisted of a compact front group and a re-imaging group. Thanks to the compact front group configuration, it is possible to install a filter wheel mechanism in such a tight space. The total track length of the lens is about 50mm, which includes a 2mm thick protective window and a cold shield of 12mm. The full field of view of the lens is about 3.6°, and F number is less than 1.6, the image circle is about 4.6mm in diameter. The design performance of the lens reaches diffraction limitation, and doesn't change a lot during a temperature range of -40°C +60°C. This essay proposed a stepwise design method of infrared optical system guided by the qualitative approach. The method fully utilize the powerful global optimization ability, with a little effort to write code snippet in optical design software, frees optical engineer from tedious calculation of the original structure.

  7. Numerical study on the effect of temperature oscillations on the crystallization front shape during Czochralski growth of gadolinium gallium garnet crystal

    NASA Astrophysics Data System (ADS)

    Faiez, Reza; Rezaei, Yazdan

    2017-10-01

    Time-dependent, finite volume method calculations of momentum and heat transfer were carried out to investigate the correlation between oscillatory convection and the crystallization front dynamics during the Czochralski (Cz) growth of an oxide material. The present modeling allows us to illustrate the modification of the interface shape during the time period of oscillation of the flow manifesting as the formation of a cold plume beneath the phase boundary. It was shown that the instability mechanism is associated with an irreversible dramatic change in the interface shape, which occurs at a critical Reynolds number significantly lower than that is predicted by the quasi-stationary global model analysis of the Cz growth system. The baroclinic term which appears in the vorticity equation in a rotating stratified fluid is used to describe the numerical results of the model. The properties of the thermal waves were studied in the monitoring points located nearby the interface. The waves are regular but not in fact vertically correlated as observed in the case of baroclinic waves. The Rayleigh-Benard dynamics is suggested to be the predominant mechanism even though the instability is primarily baroclinic.

  8. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part 1. Mathematical models

    NASA Astrophysics Data System (ADS)

    Latypov, A. F.

    2008-12-01

    Fuel economy at boost trajectory of the aerospace plane was estimated during energy supply to the free stream. Initial and final flight velocities were specified. The model of a gliding flight above cold air in an infinite isobaric thermal wake was used. The fuel consumption rates were compared at optimal trajectory. The calculations were carried out using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was built in the first part of the paper to estimate the ramjet thrust and specific impulse. A quadratic dependence on aerodynamic lift was used to estimate the aerodynamic drag of aircraft. The energy for flow heating was obtained at the expense of an equivalent reduction of the exergy of combustion products. The dependencies were obtained for increasing the range coefficient of cruise flight for different Mach numbers. The second part of the paper presents a mathematical model for the boost interval of the aircraft flight trajectory and the computational results for the reduction of fuel consumption at the boost trajectory for a given value of the energy supplied in front of the aircraft.

  9. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part II. Mathematical model of the trajectory boost part and computational results

    NASA Astrophysics Data System (ADS)

    Latypov, A. F.

    2009-03-01

    The fuel economy was estimated at boost trajectory of aerospace plane during energy supply to the free stream. Initial and final velocities of the flight were given. A model of planning flight above cold air in infinite isobaric thermal wake was used. The comparison of fuel consumption was done at optimal trajectories. The calculations were done using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was constructed in the first part of the paper for estimating the ramjet thrust and specific impulse. To estimate the aerodynamic drag of aircraft a quadratic dependence on aerodynamic lift is used. The energy for flow heating is obtained at the sacrifice of an equivalent decrease of exergy of combustion products. The dependencies are obtained for increasing the range coefficient of cruise flight at different Mach numbers. In the second part of the paper, a mathematical model is presented for the boost part of the flight trajectory of the flying vehicle and computational results for reducing the fuel expenses at the boost trajectory at a given value of the energy supplied in front of the aircraft.

  10. Numerical Simulation of Atmospheric Response to Pacific Tropical Instability Waves(.

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Xie, Shang-Ping; Wang, Yuqing

    2003-11-01

    Tropical instability waves (TIWs) are 1000-km-long waves that appear along the sea surface temperature (SST) front of the equatorial cold tongue in the eastern Pacific. The study investigates the atmospheric planetary boundary layer (PBL) response to TIW-induced SST variations using a high-resolution regional climate model. An investigation is made of the importance of pressure gradients induced by changes in air temperature and moisture, and vertical mixing, which is parameterized in the model by a 1.5-level turbulence closure scheme. Significant turbulent flux anomalies of sensible and latent heat are caused by changes in the air sea temperature and moisture differences induced by the TIWs. Horizontal advection leads to the occurrence of the air temperature and moisture extrema downwind of the SST extrema. High and low hydrostatic surface pressures are then located downwind of the cold and warm SST patches, respectively. The maximum and minimum wind speeds occur in phase with SST, and a thermally direct circulation is created. The momentum budget indicates that pressure gradient, vertical mixing, and horizontal advection dominate. In the PBL the vertical mixing acts as a frictional drag on the pressure-gradient-driven winds. Over warm SST the mixed layer deepens relative to over cold SST. The model simulations of the phase and amplitude of wind velocity, wind convergence, and column-integrated water vapor perturbations due to TIWs are similar to those observed from satellite and in situ data.

  11. Stand-off molecular composition analysis

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Meinhold, Peter; O'Neill, Hugh; Brashears, Travis; Zhang, Qicheng; Griswold, Janelle; Riley, Jordan; Motta, Caio

    2015-09-01

    Molecular composition of distant stars is explored by observing absorption spectra. The star produces blackbody radiation that passes through the molecular cloud of vaporized material surrounding the star. Characteristic absorption lines are discernible with a spectrometer, and molecular composition is investigated by comparing spectral observations with known material profiles. Most objects in the solar system—asteroids, comets, planets, moons—are too cold to be interrogated in this manner. Molecular clouds around cold objects consist primarily of volatiles, so bulk composition cannot be probed. Additionally, low volatile density does not produce discernible absorption lines in the faint signal generated by low blackbody temperatures. This paper describes a system for probing the molecular composition of cold solar system targets from a distant vantage. The concept utilizes a directed energy beam to melt and vaporize a spot on a distant target, such as from a spacecraft orbiting the object. With sufficient flux (~10 MW/m2), the spot temperature rises rapidly (to ~2 500 K), and evaporation of all materials on the target surface occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a molecular plume in front of the spot. Bulk composition is investigated by using a spectrometer to view the heated spot through the ejected material. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole, and shallow sub-surface composition profiling is also possible. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis.

  12. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.

  13. Fronts, meanders and eddies in Drake Passage during the ANT-XXIII/3 cruise in January-February 2006: A satellite perspective

    NASA Astrophysics Data System (ADS)

    Barré, Nicolas; Provost, Christine; Renault, Alice; Sennéchael, Nathalie

    2011-12-01

    We used satellite altimetric data to provide a context for the results of the ANT-XXIII/3 cruise in January-February 2006 both in time (16 years) and space (the whole of Drake Passage). The repeat of the hydrographical section within 3 weeks permitted different comparisons between the in-situ datasets and the satellite data products. Comparisons suggested that the multi-satellite product improved the temporal resolution on a Jason-1 track. A detailed analysis of the four absolute dynamic topography maps contemporaneous with the ANT-XXIII/3 cruise permitted identification of the location of the frontal branches of the Antarctic Circumpolar Current, of the major meanders and eddies. This spatial context proved particularly valuable for the interpretation of the in-situ data (see companion papers of Provost et al., 2011; Renault et al., 2011; Sudre et al., 2011). The altimetric time-series documented the long-term trends in sea-surface height, the recurrence of major frontal meanders and eddies and the statistical links between them. Negative trends in the Yaghan Basin indicated that both the Subantarctic Front and the Polar Front have shifted to the north of their climatological location. This northward shift in the Yaghan Basin contrasts with the large-scale southward shift in the Polar Front current core described in the literature, and is probably related to the local bottom topography in Drake Passage. Sea-level anomaly patterns observed during the cruise were related to statistical modes of the corresponding variations in Drake Passage. For example, the southward meander of the Subantarctic Front at the entrance to Drake Passage was part of a dipole comprising an adjacent Polar Front meander and occurred with a close to annual periodicity. A census of eddies in the Ona Basin revealed that the spatial distribution of anticyclonic eddies was consistent with generation from a meander of the Polar and Southern ACC Fronts over the Ona Seafloor Depression, while cyclonic eddies mostly originated from meanders of southern fronts associated with two rises on the continental slope: the Ona Rise and the Terror Rise.

  14. Transcriptomic Insights into Phenological Development and Cold Tolerance of Wheat Grown in the Field1[OPEN

    PubMed Central

    Li, Qiang; Byrns, Brook; Badawi, Mohamed A.; Diallo, Abdoulaye Banire; Danyluk, Jean; Sarhan, Fathey; Zou, Jitao

    2018-01-01

    Cold acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex cold responses are mostly conducted in controlled environments that only consider the responses to single environmental variables. In this study, we have comprehensively profiled global transcriptional responses in crowns of field-grown spring and winter wheat (Triticum aestivum) genotypes and their near-isogenic lines with the VRN-A1 alleles swapped. This in-depth analysis revealed multiple signaling, interactive pathways that influence cold tolerance and phenological development to optimize plant growth and development in preparation for a wide range of over-winter stresses. Investigation of genetic differences at the VRN-A1 locus revealed that a vernalization requirement maintained a higher level of cold response pathways while VRN-A1 genetically promoted floral development. Our results also demonstrated the influence of genetic background on the expression of cold and flowering pathways. The link between delayed shoot apex development and the induction of cold tolerance was reflected by the gradual up-regulation of abscisic acid-dependent and C-REPEAT-BINDING FACTOR pathways. This was accompanied by the down-regulation of key genes involved in meristem development as the autumn progressed. The chromosome location of differentially expressed genes between the winter and spring wheat genetic backgrounds showed a striking pattern of biased gene expression on chromosomes 6A and 6D, indicating a transcriptional regulation at the genome level. This finding adds to the complexity of the genetic cascades and gene interactions that determine the evolutionary patterns of both phenological development and cold tolerance traits in wheat. PMID:29259104

  15. [Vaccine cold chain interruption in a primary care center and economic evaluation].

    PubMed

    Larena Fernández, Israel; Vara Callau, Marta; Peña Blasco, Guillermo; Atance Melendo, Esther; Gay Gasanz, Blanca; Pérez-Aramendía, María Jesús Blasco

    Cold chain control is one of the most important facts to ensure the effectiveness of vaccines links, which requires specific material and human resources for management. The principal objective is to evaluate the interruptions in cold chain of the last 6 years and the possible cost savings that would result in further improvements. A retrospective and descriptive study based on a review of all cold chain interruptions during the last 6 years, at Valdefierro Primary Health Center. We had 5 interruptions, the maximum temperature reached was 23.1±3.4°C and the longest interruption lasted 25.2±20.7hours. 1611 vaccines were affected and 165 discarded. Total economic loss was 2.098,10 € and 33.611,64 € were savings. The electrical failure was the disruption cause in 5 cases. Equipment and staff are essential. The center did some corrective actions, such as minimizing refrigerator time control, minimum stock control, considering population changes, and the center has requested a electrical supply system. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  16. A giant protogalactic disk linked to the cosmic web

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J. Xavier; Chang, Daphne

    2015-08-01

    The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that `cold accretion flows'--relatively cool (temperatures of the order of 104 kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 1013 solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

  17. A giant protogalactic disk linked to the cosmic web.

    PubMed

    Martin, D Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J Xavier; Chang, Daphne

    2015-08-13

    The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that 'cold accretion flows'--relatively cool (temperatures of the order of 10(4) kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 10(13) solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

  18. Warm summers during the Younger Dryas cold reversal.

    PubMed

    Schenk, Frederik; Väliranta, Minna; Muschitiello, Francesco; Tarasov, Lev; Heikkilä, Maija; Björck, Svante; Brandefelt, Jenny; Johansson, Arne V; Näslund, Jens-Ove; Wohlfarth, Barbara

    2018-04-24

    The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.

  19. A new look for the Southern Hemisphere jet stream

    NASA Astrophysics Data System (ADS)

    Gallego, David; Ribera, Pedro; Garcia-Herrera, Ricardo; Hernandez, Emiliano; Gimeno, Luis

    2005-05-01

    A new jet stream description, defined as the geostrophic streamline of maximum average velocity is proposed. An objective algorithm for detecting and tracking the jet has been developed, tested and applied to the NCEP/NCAR 200-hPa geopotential height in the Southern Hemisphere for the period 1958 2002. The results show the variability of the double character of the Southern Hemisphere jet, with a marked seasonality. During the warm season, a single jet can be found around 40°S, while autumn and winter are characterized by a clear double jet structure, with a strong and dominant subtropical jet located around 30°S and a polar front jet, progressively displaced toward southern latitudes and reaching 60°S by the end of the cold season. In general, a trend toward slower subtropical jets and stronger polar front jets has been detected during the study period. The Southern Annular Mode appears as a main modulator of the latitude and strength of the polar front jet, influencing to a minor extent its subtropical counterpart. The ENSO cycle strongly modifies the latitude and specially the strength of the subtropical jet, affecting its preferred wavenumber as well. Nevertheless, the effect of this oscillation seems fairly restricted in the Pacific, thus limiting the ability of this jet to drive the El Niño teleconnections along the Southern Hemisphere. The consistency of the results, when compared with previous jet climatologies, suggests that the new approach is a reliable jet-tracking method, thus providing a new tool to analyze climatic variability at hemispheric scales.

  20. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  1. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  2. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    NASA Astrophysics Data System (ADS)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  3. Concentrations and Origins of Atmospheric Lead and Other Trace Species at a Rural Site in Northern China

    NASA Technical Reports Server (NTRS)

    Li, Can; Wen, Tianxue; Li, Zhanqing; Dickerson, Russell R.; Yang, Yongjie; Zhao, Yanan; Wang, Yuesi; Tsay, Si-Chee

    2010-01-01

    In this study we analyze the ambient levels of lead and other trace species in the bulk aerosol samples from a rural site approx.70 km ESE of Beijing in spring 2005. Lead (0.28+/-0.24 micro-g/cu m, average +/- standard deviation), along with several pollution \\related trace elements, was enriched by over 100 fold relative to the Earth's crust. The ambient lead levels showing large synoptic variations were well-correlated with other anthropogenic pollutants (e.g., CO and SO2). The Unmix receptor model resolved four factors in the aerosol composition data: a biomass burning source, an industrial and coal combustion source, a secondary aerosol source, and a dust source. The first three sources were strongest in weak southerly winds ahead of cold fronts, while the dust source peaked in strong northerly winds behind cold fronts. The second source, primarily representing emissions from industrial processes and relatively small \\scale coal burning such as in home and institutional heating, was identified as the main source of ambient lead in this study. Mobile sources might also contribute to this factor, but there was no distinct evidence of emissions due to combustion of leaded gasoline, despite a correlation between lead and CO. Potential source contribution function, calculated from backward trajectories and aerosol composition, further reveals that lead observed in this study was predominantly from the populated and industrialized areas to the south and SW of Xianghe, rather than Beijing to the west. Our results and several recent studies show that the lead levels in suburban areas near big cities in China, although generally lower than those in industrial districts and urban areas, are substantial (near or above 0.15 micro-g/cu m). More extensive studies on airborne lead and its emission sources in China are called for.

  4. The Influence of the North Atlantic Oscillation on Tropospheric Distributions of Ozone and Carbon Monoxide.

    NASA Astrophysics Data System (ADS)

    Knowland, K. E.; Doherty, R. M.; Hodges, K.

    2015-12-01

    The influence of the North Atlantic Oscillation (NAO) on the tropospheric distributions of ozone (O3) and carbon monoxide (CO) has been quantified. The Monitoring Atmospheric Composition and Climate (MACC) Reanalysis, a combined meteorology and composition dataset for the period 2003-2012 (Innes et al., 2013), is used to investigate the composition of the troposphere and lower stratosphere in relation to the location of the storm track as well as other meteorological parameters over the North Atlantic associated with the different NAO phases. Cyclone tracks in the MACC Reanalysis compare well to the cyclone tracks in the widely-used ERA-Interim Reanalysis for the same 10-year period (cyclone tracking performed using the tracking algorithm of Hodges (1995, 1999)), as both are based on the European Centre for Medium-Range Weather Forecasts' (ECMWF) Integrated Forecast System (IFS). A seasonal analysis is performed whereby the MACC reanalysis meteorological fields, O3 and CO mixing ratios are weighted by the monthly NAO index values. The location of the main storm track, which tilts towards high latitudes (toward the Arctic) during positive NAO phases to a more zonal location in the mid-latitudes (toward Europe) during negative NAO phases, impacts the location of both horizontal and vertical transport across the North Atlantic and into the Arctic. During positive NAO seasons, the persistence of cyclones over the North Atlantic coupled with a stronger Azores High promotes strong horizontal transport across the North Atlantic throughout the troposphere. In all seasons, significantly more intense cyclones occur at higher latitudes (north of ~50°C) during the positive phase of the NAO and in the southern mid-latitudes during the negative NAO phase. This impacts the location of stratospheric intrusions within the descending dry airstream behind the associated cold front of the extratropical cyclone and the venting of low-level pollution up into the free troposphere within the warm conveyor belt airstream which rises ahead of the cold front.

  5. Dust Episodes in Hong Kong (South China) and their Relationship with the Sharav and Mongolian Cyclones and Jet Streams

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Wenig, Mark; Zhang, Zhenxi; Sugimoto, Nobuo; Larko, Dave; Diehl, Thomas

    2012-01-01

    The study presented in this paper analyses two dust episodes in Hong Kong, one occurring in March 2006 and the other on 22 March 2010. The latter is the worst dust episode on Hong Kong record. The focus is on the relationship between the dust episodes and the Sharav/Mongolian cyclones and jet streams. The 16 March 2006 episode is traceable to a continental-scale Saharan dust outbreak of 5-9 March 2006 caused by the cold front of an East Mediterranean Sharav cyclone arriving at north-west Africa on 5 March 2006. The eastward movement of the cyclone along the North African coast is clearly illustrated in the geopotential height contours. Simulations by the chemistry transport model GOCART provide a visible evidence of the transport as well as an estimate of contributions from the Sahara to the aerosol concentration levels in Hong Kong. The transport simulations suggest that the dust is injected to the polar jet north of the Caspian Sea, while it is transported eastward simultaneously by the more southerly subtropical jet. The major source of dust for Hong Kong is usually the Gobi desert. Despite the effect of remote sources, the 16 March 2006 dust episode was still mainly under the influence of the Mongolian cyclone cold fronts. In the recent episode of 22 March 2010, the influence of the Mongolian cyclone predominated as well. It appears that the concurrent influence of the Sharav and Mongolian cyclones on Hong Kong and East Asia is not a common occurrence. Besides transporting dusts from non-East Asian sources to Hong Kong and East Asia, the strong subtropical jet on 21 March 2010 (i.e. 1 day prior to the major dust episode) is believed to have strengthened an easterly monsoon surge to South China causing the transport of voluminous dusts to Taiwan and Hong Kong the following day.

  6. Intratheater Airlift Functional Needs Analysis (FNA)

    DTIC Science & Technology

    2011-01-01

    information on reprint and linking permissions, please see RAND Permissions. Skip all front matter: Jump to Page 16 The RAND Corporation is a nonprofit...facing the public and private sectors. All RAND mono- graphs undergo rigorous peer review to ensure high standards for research quality and...personnel. xii Intratheater Airlift Functional Needs Analysis all operating environments. The FNA assesses the ability of current assets to

  7. Stand-Damage Model with Java (Version 3.0)

    Treesearch

    George Racin; J.J. Colbert

    2004-01-01

    NOTE: Instructions for ordering the cd-rom with the software are included on the front cover of the linked publication. The Stand-Damage Model with Java is a distance-independent tree-growth simulator. The model follows the life of a forest stand represented by species and diameter-class widths. The user supplies the initial state of the stand along with management...

  8. REACH: a high-performance wireless base station front end

    NASA Astrophysics Data System (ADS)

    Nettleton, Ray W.

    1996-01-01

    The link budget determines the relationships between range, capacity and transmitted power for any wireless technology. In every case it is a key determinant of the system's performance from both an engineering and an economic point of view. Unfortunately, the new 1.9 GHz PCS systems will begin life with an inherent 7 dB disadvantage over the 800 MHz cellular due to propagation differences. Additionally, system wiring and electronics often degrade performance by a further 5 to 10 dB due to long coaxial runs and noisy front end amplification, both of which are harder issues to deal with at 1.9 GHz than at 800 MHz. SCT's REACHTM products address these shortcomings by packaging critical components--front end amplification, filtering, etc.--in a compact cryoelectronic package intended for mounting near the antennas of the base station. In a recent trial with Qualcomm in San Diego, this package improved the CDMA uplink budget by 6 dB--enough to halve the number of base stations that are needed in most areas. This paper examines the technical and economic ramifications of the REACHTM product.

  9. Neotectonics in the foothills of the southernmost central Andes (37°-38°S): Evidence of strike-slip displacement along the Antiñir-Copahue fault zone

    NASA Astrophysics Data System (ADS)

    Folguera, AndréS.; Ramos, VíCtor A.; Hermanns, Reginald L.; Naranjo, José

    2004-10-01

    The Antiñir-Copahue fault zone (ACFZ) is the eastern orogenic front of the Andes between 38° and 37°S. It is formed by an east vergent fan of high-angle dextral transpressive and transtensive faults, which invert a Paleogene intra-arc rift system in an out of sequence order with respect to the Cretaceous to Miocene fold and thrust belt. 3.1-1.7 Ma volcanic rocks are folded and fractured through this belt, and recent indicators of fault activity in unconsolidated deposits suggest an ongoing deformation. In spite of the absence of substantial shallow seismicity associated with the orogenic front, neotectonic studies show the existence of active faults in the present mountain front. The low shallow seismicity could be linked to the high volumes of retroarc-derived volcanic rocks erupted through this fault system during Pliocene and Quaternary times. This thermally weakened basement accommodates the strain of the Antiñir-Copahue fault zone, absorbing the present convergence between the South America and Nazca plates.

  10. Ultrasonic monitoring of spontaneous imbibition experiments: Precursory moisture diffusion effects ahead of water front

    NASA Astrophysics Data System (ADS)

    David, Christian; Sarout, Joël.; Dautriat, Jérémie; Pimienta, Lucas; Michée, Marie; Desrues, Mathilde; Barnes, Christophe

    2017-07-01

    Fluid substitution processes have been investigated in the laboratory on 14 carbonate and siliciclastic reservoir rock analogues through spontaneous imbibition experiments on vertical cylindrical specimens with simultaneous ultrasonic monitoring and imaging. The motivation of our study was to identify the seismic attributes of fluid substitution in reservoir rocks and to link them to physical processes. It is shown that (i) the P wave velocity either decreases or increases when the capillary front reaches the Fresnel clearance zone, (ii) the P wave amplitude is systematically impacted earlier than the velocity is, (iii) this precursory amplitude decrease occurs when the imbibition front is located outside of the Fresnel zone, and (iv) the relative variation of the P wave amplitude is always much larger than that of the P wave velocity. These results suggest that moisture diffuses into the pore space ahead of the water front. This postulate is further supported by a quantitative analysis of the time evolution of the observed P wave amplitudes. In a sense, P wave amplitude acts as a precursor of the arrival of the capillary front. This phenomenon is used to estimate the effective diffusivity of moisture in the tested rocks. The effective moisture diffusivity estimated from the ultrasonic data is strongly correlated with permeability: a power law with exponent 0.96 predicts permeability from ultrasonic monitoring within a factor 3 without noticeable bias. When the effective diffusivity is high, moisture diffusion affects ultrasonic P wave attributes even before the imbibition starts and impacts the P wave reflectivity as evidenced by the variations recorded in the waveform coda.

  11. Diluting the founder effect: cryptic invasions expand a marine invader's range

    PubMed Central

    Roman, Joe

    2006-01-01

    Most invasion histories include an estimated arrival time, followed by range expansion. Yet, such linear progression may not tell the entire story. The European green crab (Carcinus maenas) was first recorded in the US in 1817, followed by an episodic expansion of range to the north. Its population has recently exploded in the Canadian Maritimes. Although it has been suggested that this northern expansion is the result of warming sea temperatures or cold-water adaptation, Canadian populations have higher genetic diversity than southern populations, indicating that multiple introductions have occurred in the Maritimes since the 1980s. These new genetic lineages, probably from the northern end of the green crab's native range in Europe, persist in areas that were once thought to be too cold for the original southern invasion front. It is well established that ballast water can contain a wide array of nonindigenous species. Ballast discharge can also deliver genetic variation on a level comparable to that of native populations. Such gene flow not only increases the likelihood of persistence of invasive species, but it can also rapidly expand the range of long-established nonindigenous species. PMID:16959635

  12. Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans

    USDA-ARS?s Scientific Manuscript database

    Recent studies suggest that brown adipose tissue (BAT) plays a role in energy and glucose metabolism in humans. However, the physiological significance of human BAT in lipid metabolism remains unknown. We studied 16 overweight/obese men during prolonged, non-shivering cold and thermoneutral conditio...

  13. The use of an atmospheric cold plasma jet to inactivate Cryptosporidium parvum oocysts on cilantro

    USDA-ARS?s Scientific Manuscript database

    Introduction: In 2015, the CDC reported a rise in outbreaks linked to parasites like Cryptosporidium. Outbreaks of Cryptosporidium parvum have been associated with contaminated drinking or recreational water; however, there is growing concern that oocysts may become a more common contaminant in food...

  14. Forest communities in the third millennium: linking research, business, and policy toward a sustainable non-timber forest product sector.

    Treesearch

    Iain Davidson-Hunt; Luc C. Duchesne; John C., eds. Zasada

    2001-01-01

    Contains a wide variety of papers given at the first international conference on non-timber forest products (NTFP) in cold temperate and boreal forests. Focuses on many facets of NTFPs: economics, society, biology, resource management, business development, and others.

  15. NASA Tech Briefs, March 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics covered include: Remote Data Access with IDL Data Compression Algorithm Architecture for Large Depth-of-Field Particle Image Velocimeters Vectorized Rebinning Algorithm for Fast Data Down-Sampling Display Provides Pilots with Real-Time Sonic-Boom Information Onboard Algorithms for Data Prioritization and Summarization of Aerial Imagery Monitoring and Acquisition Real-time System (MARS) Analog Signal Correlating Using an Analog-Based Signal Conditioning Front End Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array Robust Multivariable Optimization and Performance Simulation for ASIC Design; Castable Amorphous Metal Mirrors and Mirror Assemblies; Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems; Apparatus for Pumping a Fluid; Cobra Fiber-Optic Positioner Upgrade; Improved Wide Operating Temperature Range of Li-Ion Cells; Non-Toxic, Non-Flammable, -80 C Phase Change Materials; Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization; Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models; Hand-Based Biometric Analysis; The Next Generation of Cold Immersion Dry Suit Design Evolution for Hypothermia Prevention; Integrated Lunar Information Architecture for Decision Support Version 3.0 (ILIADS 3.0); Relay Forward-Link File Management Services (MaROS Phase 2); Two Mechanisms to Avoid Control Conflicts Resulting from Uncoordinated Intent; XTCE GOVSAT Tool Suite 1.0; Determining Temperature Differential to Prevent Hardware Cross-Contamination in a Vacuum Chamber; SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws; Remote Data Exploration with the Interactive Data Language (IDL); Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals; Partitioned-Interval Quantum Optical Communications Receiver; and Practical UAV Optical Sensor Bench with Minimal Adjustability.

  16. Proteome profiling reveals insights into cold-tolerant growth in sea buckthorn.

    PubMed

    He, Caiyun; Gao, Guori; Zhang, Jianguo; Duan, Aiguo; Luo, Hongmei

    2016-01-01

    Low temperature is one of the crucial environmental factors limiting the productivity and distribution of plants. Sea buckthorn ( Hippophae rhamnoides L.), a well recognized multipurpose plant species, live successfully in in cold desert regions. But their molecular mechanisms underlying cold tolerance are not well understood. Physiological and biochemical responses to low-temperature stress were studied in seedlings of sea buckthorn. Differentially expressed protein spots were analyzed using multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry (MS), the concentration of phytohormone was measured using enzyme-linked immunosorbent assay, and a spectrophotometric assay was used to measure enzymatic reactions. With the increase of cold stress intensity, the photosynthesis rate, transpiration rate, stomatal conductance in leaves and contents of abscisic acid (ABA) and indole acetic acid (IAA) in roots decreased significantly; however, water-use efficiency, ABA and zeatin riboside in leaves increased significantly, while cell membrane permeability, malondialdehyde and IAA in leaves increased at 7 d and then decreased at 14 d. DIGE and MS/MS analysis identified 32 of 39 differentially expressed protein spots under low-temperature stress, and their functions were mainly involved in metabolism, photosynthesis, signal transduction, antioxidative systems and post-translational modification. The changed protein abundance and corresponding physiological-biochemical response shed light on the molecular mechanisms related to cold tolerance in cold-tolerant plants and provide key candidate proteins for genetic improvement of plants.

  17. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Cometti, S.

    2018-03-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with a 13 bits resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring a fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  18. The DIRC front-end electronics chain for BaBar

    NASA Astrophysics Data System (ADS)

    Bailly, P.; Chauveau, J.; Del Buono, L.; Genat, J. F.; Lebbolo, H.; Roos, L.; Zhang, B.; Beigbeder, C.; Bernier, R.; Breton, D.; Caceres, T.; Chase, R.; Ducorps, A.; Hrisoho, A.; Imbert, P.; Sen, S.; Tocut, V.; Truong, K.; Wormser, G.; Zomer, F.; Bonneaud, G.; Dohou, F.; Gastaldi, F.; Matricon, P.; Renard, C.; Thiebaux, C.; Vasileiadis, G.; Verderi, M.; Oxoby, G.; Va'Vra, J.; Warner, D.; Wilson, R. J.

    1999-08-01

    The detector of Internally Reflected Cherenkov light (DIRC) of the BaBar detector (SLAC Stanford, USA) measures better than 1 ns the arrival time of Cherenkov photoelectrons, detected in a 11 000 phototubes array and their amplitude spectra. It mainly comprises of 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom Analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom Digital TDC chips for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected from up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test of the pre-production chips have been performed as well as system tests.

  19. Timescale dependent deformation of orogenic belts?

    NASA Astrophysics Data System (ADS)

    Hoth, S.; Friedrich, A. M.; Vietor, T.; Hoffmann-Rothe, A.; Kukowski, N.; Oncken, O.

    2004-12-01

    The principle aim to link geodetic, paleoseismologic and geologic estimates of fault slip is to extrapolate the respective rates from one timescale to the other to finally predict the recurrence interval of large earthquakes, which threat human habitats. This approach however, is based on two often implicitly made assumptions: a uniform slip distribution through time and space and no changes of the boundary conditions during the time interval of interest. Both assumptions are often hard to verify. A recent study, which analysed an exceptionally complete record of seismic slip for the Wasatch and related faults (Basin and Range province), ranging from 10 yr to 10 Myr suggests that such a link between geodetic and geologic rates might not exist, i.e., that our records of fault displacement may depend on the timescale over which they were measured. This view derives support from results of scaled 2D sandbox experiments, as well as numerical simulations with distinct elements, both of which investigated the effect of boundary conditions such as flexure, mechanic stratigraphy and erosion on the spatio-temporal distribution of deformation within bivergent wedges. We identified three types of processes based on their distinct spatio-temporal distribution of deformation. First, incremental strain and local strain rates are very short-lived are broadly distributed within the bivergent wedge and no temporal pattern could be established. Second, footwall shortcuts and the re-activation of either internal thrusts or of the retro shear-zone are irregularly distributed in time and are thus not predictable either, but last for a longer time interval. Third, the stepwise initiation and propagation of the deformation front is very regular in time, since it depends on the thickness of the incoming layer and on its internal and basal material properties. We consider the propagation of the deformation front as an internal clock of a thrust belt, which is therefore predictable. A deformation front advance cycle requires the longest timescale. Thus, despite known and constant boundary conditions during the simulations, we found only one regular temporal pattern of deformation in a steady active bivergent-wedge. We therefore propose that the structural inventory of an orogenic belt is hierarchically ordered with respect to accumulated slip, in analogy to the discharge pattern in a drainage network. The deformation front would have the highest, a branching splay the lowest order. Since kinematic boundary conditions control deformation front advance, its timing and the related maximum magnitude of finite strain, i.e. throw on the frontal thrust are predictable. However, the number of controlling factors, such as the degree of strain softening, the orientation of faults or fluid flow and resulting cementation of faults, responsible for the reactivation of faults increases with increasing distance from the deformation front. Since it is rarely possible to determine the complete network of forces within a wedge, the reactivation of lower order structures is not predictable in time and space. Two implications for field studies may emerge: A change of the propagation of deformation can only be determined, if at least two accretion cycles are sampled. The link between geodetic, paleoseismologic and geologic fault slip estimates can only be successfully derived if the position of the investigated fault within the hierarchical order has not changed over the time interval of interest.

  20. Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.

    2017-10-01

    A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.

Top