The CGM of Massive Galaxies: Where Cold Gas Goes to Die?
NASA Astrophysics Data System (ADS)
Howk, Jay
2017-08-01
We propose to survey the cold HI content and metallicity of the circumgalactic medium (CGM) around 50 (45 new, 5 archival) z 0.5 Luminous Red Galaxies (LRGs) to directly test a fundamental prediction of galaxy assembly models: that cold, metal-poor accretion does not survive to the inner halos of very massive galaxies. Accretion and feedback through the CGM play key roles in our models of the star formation dichotomy in galaxies. Low mass galaxies are thought to accrete gas in cold streams, while high mass galaxies host hot, dense halos that heat incoming gas and prevent its cooling, thereby quenching star formation. HST/COS has provided evidence for cold, metal-poor streams in the halos of star-forming galaxies (consistent with cold accretion). Observations have also demonstrated the presence of cool gas in the halos of passive galaxies, a potential challenge to the cold/hot accretion model. Our proposed observations will target the most massive galaxies and address the origin of the cool CGM gas by measuring the metallicity. This experiment is enabled by our novel approach to deriving metallicities, allowing the use of much fainter QSOs. It cannot be done with archival data, as these rare systems are not often probed along random sight lines. The H I column density (and metallicity) measurements require access to the UV. The large size of our survey is crucial to robustly assess whether the CGM in these galaxies is unique from that of star-forming systems, a comparison that provides the most stringent test of cold-mode accretion/quenching models to date. Conversely, widespread detections of metal-poor gas in these halos will seriously challenge the prevailing theory.
Methods of Testing Thermal Insulation and Associated Test Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2004-01-01
The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.
Cold cathodes for sealed off CO2 lasers
NASA Technical Reports Server (NTRS)
Hochuli, U. E.; Sciacca, T. P.; Hurt, C. R.
1973-01-01
Experimental results of a group of theoretically selected cold cathode materials are presented. These tests indicate Ag-CuO, Cu, and Pt-Cu as three new cold cathode materials for sealed-off CO2 lasers. The power output of a test laser with an Ag-CuO cathode and a gas volume of only 50 cu cm varied from 0.72 W to 1.1 W at 3000 hours and still yields 0.88 W after 8000 hours. Gas discharge tubes with Cu cathodes and a volume of 25 cu cm yield lifetimes in excess of 10,000 hours. Gas analysis results, obtained from a similar tube over a period of 3000 hours, look most promising. A Pt-Cu alloy cathode shows an extremely promising V-I characteristic over a period of 2800 hours.
Reactor Simulator Testing Overview
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.
2013-01-01
OBJECTIVE: Integrated testing of the TDU components TESTING SUMMARY: a) Verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. b) Thermal test heat regeneration design aspect of a cold trap purification filter. c) Pump performance test at pump voltages up to 150 V (targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V). TESTING HIGHLIGHTS: a) Gas and vacuum ground support test equipment performed effectively for NaK fill, loop pressurization, and NaK drain operations. b) Instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.
Gifford-McMahon refrigerator with split cold head
NASA Technical Reports Server (NTRS)
Forth, H. J.; Heisig, R.; Klein, H. H.
1983-01-01
Leybold-Heraeus Co. have developed, built and successfully tested a Gifford-McMahon cryocooler with splitted cold head for cooling a cryopump. The refrigerating part of the cold head and the gas flow control device have been separated (splitted cold head) and the distance between them is bridged by only two thin lines for carrying the working gas. Due to this separation the size of the refrigerating part is virtually defined only by the size of the displacers whilst the gas flow control device can be of any desired design. It has been shown that dimensioning of the connecting lines and the corresponding losses became less critical with increasing size of the expander, but additional cooling in proportion to the refrigerating capacity is required.
Study of thermite mixture consolidated by the cold gas dynamic spray process
NASA Astrophysics Data System (ADS)
Bacciochini, A.; Maines, G.; Poupart, C.; Akbarnejad, H.; Radulescu, M.; Jodoin, B.; Zhang, F.; Lee, J. J.
2014-05-01
The present study focused on the cold gas dynamic spray process for manufacturing porosity free, finely structured energetic materials with high reactivity and structural integrity. The experiments have focused the reaction between the aluminium and metal oxide, such as Al-CuO system. The consolidation of the materials used the cold gas dynamic spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact. Reactive composites are formed in arbitrary shapes with close to zero porosity and without any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.
Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.
2017-01-01
To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, G.J.; Germano, S.
Tests were undertaken with a Renault Express 1.4 litre converted to natural gas operation. The effect of cold starts at cold temperatures and vehicle weight on tail pipe emissions were investigated with petrol and natural gas operation over the FTP75 and the 91/441/EEC drive cycles. The results show that the emissions with natural gas are unaffected by cold temperature, unlike petrol emissions which are several times higher at -15{degree}-C than at 25{degree}-C. A crude simulation, accounting for the actual temperature, shows that the conversion of a significant quantity of light duty vehicles to natural gas operation could reduce the emissionsmore » of CO and HC by more than 90% in Switzerland. 15 refs., 17 figs., 8 tabs.« less
Toxicity of Cold Lake Blend and Western Canadian Select dilbits to standard aquatic test species
Dilbits are blends of bitumen and natural gas condensates or crude oils with only limited toxicity data. Two dilbits, Cold Lake Blend and Western Canadian Select, were tested as either unweathered or weathered oils for acute and chronic toxicity to standard freshwater and estuari...
Gas-Centered Swirl Coaxial Liquid Injector Evaluations
NASA Technical Reports Server (NTRS)
Cohn, A. K.; Strakey, P. A.; Talley, D. G.
2005-01-01
Development of Liquid Rocket Engines is expensive. Extensive testing at large scales usually required. In order to verify engine lifetime, large number of tests required. Limited Resources available for development. Sub-scale cold-flow and hot-fire testing is extremely cost effective. Could be a necessary (but not sufficient) condition for long engine lifetime. Reduces overall costs and risk of large scale testing. Goal: Determine knowledge that can be gained from sub-scale cold-flow and hot-fire evaluations of LRE injectors. Determine relationships between cold-flow and hot-fire data.
Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors
NASA Astrophysics Data System (ADS)
Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei
2016-09-01
In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1982-01-01
Topics covered include the AGT 101 engine test; compressor design modification; cold air turbine testing; Mod 1 alloy turbine rotor fabrication; combustion aspects; regenerator development; and thermal screening tests for ceramic materials. The foil gas bearings, rotor dynamics, and AGT controls and accessories are also considered.
Advanced development receiver thermal vacuum tests with cold wall
NASA Technical Reports Server (NTRS)
Sedgwick, Leigh M.
1991-01-01
The first ever testing of a full size solar dynamic heat receiver using high temperature thermal energy storage was completed. The heat receiver was designed to meet the requirements for operation on the Space Station Freedom. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partially simulate a low Earth orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to produce flux distributions typical of candidate concentrators. A closed Brayton cycle engine simulator conditioned a helium xenon gas mixture to specific interface conditions to simulate various operational modes of the solar dynamic power module. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles were completed during the test conduct period. The test hardware, execution of testing, test data, and post test inspections are described.
The Origin and Survival of Cold Gas in Hot Halos
NASA Astrophysics Data System (ADS)
Oh, Siang Peng
Modern theories of structure formation unequivocally predict that density perturbations seeded in the big bang collapse to produce``halos'' of dark matter filled with hot, virialized gas. The physics of this hot halo gas fundamentally determines the mass-scale of galaxies, and likely plays a critical role in their subsequent evolution. Since this virialized halo gas is typically invisible, however, cosmological simulations have largely overlooked it, understandably focusing on more observable properties of galaxies such as their ISM content and star formation histories. However, as new observational techniques begin to probe the diffuse gas in galaxy halos, they are finding results inconsistent with predictions from cosmological simulations. Though halo gas is fundamental to galaxy formation, it cannot be explained with current models; halo gas thus represents the new frontier in testing and advancing our models of galaxy formation. One particularly surprising development has been the near-ubiquitous finding that galaxy halos are full of tiny, dense clouds of neutral gas. In a recent paper (McCourt et al 2016), we show that these unexpected observations imply that galaxies contain an enormous number of tiny cloudlets, dispersed throughout the halo like the water droplets in a fog. We detail a new hydrodynamical process, which we call ``shattering,'' that explains the tiny characteristic size for these cloudlets. While we can explain many observable properties of this cold gas (such as its broad line-width and tiny volume-filling fraction), we treated the amount of cold gas as a free parameter; this is fundamentally determined by galaxy formation rather than gas dynamics. This proposal extends the work of McCourt et al (2016) by focusing on the origin of the cold gas in galaxy halos. Since cold gas represents the fuel for star formation and feedback in galaxies, this question is crucial for studies of galaxy evolution. We consider two possibilities: 1) that cool CGM gas is expelled from the galaxy disk in large-scale outflows, or 2) that it is produced in-situ by thermal instability. In both cases, we focus on observational tests of our model, and on methods to incorporate our results into future cosmological simulations via a sub-grid model. Additional science results will include understanding the unexplained entrainment of cold gas in galactic winds, as well as understanding the surprisingly strong magnetic fields seen in galaxy halos at low redshift, which likely dominate over thermal pressure in halo gas. To our knowledge, no models currently exist for either of these results. The work outlined in this proposal focuses on recent observations which cannot yet be reproduced in cosmological simulations. As part of our proposed work, we will produce a sub-grid model for unresolved cold clouds in hydrodynamics, and will determine the resolution needed to reproduce these effects in future cosmological simulations. Our work is timely and represents the necessary next step in advancing our theories of the CGM.
Study of thermite mixtures consolidated by cold gas dynamic spray process
NASA Astrophysics Data System (ADS)
Bacciochini, Antoine; Maines, Geoffrey; Poupart, Christian; Radulescu, Matei; Jodoin, Bertrand; Lee, Julian
2013-06-01
The present study focused on the cold gas dynamic spray process for manufacturing finely structured energetic materials with high reactivity, vanishing porosity, as well as structural integrity and arbitrary shape. The experiments have focused the reaction between the aluminum and metal oxides, such as Al-CuO and Al-MoO3 systems. To increase the reactivity, an initial mechanical activation was achieved through interrupted ball milling. The consolidation of the materials used the supersonic cold gas spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact, forming activated nano-composites in arbitrary shapes with close to zero porosity. This technique permits to retain the feedstock powder micro-structure and prevents any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.
NASA Technical Reports Server (NTRS)
Hardin, R. B.; Burrows, R. R.
1975-01-01
The purpose of the test was to determine the effects of cold jet gas plumes on (1) the integrated vehicle longitudinal and lateral-directional force data, (2) exposed wing hinge moment, (3) wing pressure distributions, (4) orbiter MPS external pressure distributions, and (5) model base pressures. An investigation was undertaken to determine the similarity between solid and gaseous plumes; fluorescent oil flow visualization studies were also conducted. Plotted wing pressure data is tabulated.
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.
2013-01-01
As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.
Reactor Simulator Integration and Testing
NASA Technical Reports Server (NTRS)
Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.
2013-01-01
As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.
VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. II. SEARCH FOR COLD GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe, E-mail: wreach@sofia.usra.edu
2017-01-01
The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M {sub ⊙} in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that theremore » is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...
The study on a gas-coupled two-stage stirling-type pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Wu, X. L.; Chen, L. B.; Zhu, X. S.; Pan, C. Z.; Guo, J.; Wang, J. J.; Zhou, Y.
2017-12-01
A two-stage gas-coupled Stirling-type pulse tube cryocooler (SPTC) driven by a linear dual-opposed compressor has been designed, manufactured and tested. Both of the stages adopted coaxial structure for compactness. The effect of a cold double-inlet at the second stage on the cooling performance was investigated. The test results show that the cold double-inlet will help to achieve a lower cooling temperature, but it is not conducive to achieving a higher cooling capacity. At present, without the cold double-inlet, the second stage has achieved a no-load temperature of 11.28 K and a cooling capacity of 620 mW/20 K with an input electric power of 450 W. With the cold double-inlet, the no-load temperature is lowered to 9.4 K, but the cooling capacity is reduced to 400 mW/20 K. The structure of the developed cryocooler and the influences of charge pressure, operating frequency and hot end temperature will also be introduced in this paper.
A characteristic scale for cold gas
NASA Astrophysics Data System (ADS)
McCourt, Michael; Oh, S. Peng; O'Leary, Ryan; Madigan, Ann-Marie
2018-02-01
We find that clouds of optically thin, pressure-confined gas are prone to fragmentation as they cool below ∼106 K. This fragmentation follows the lengthscale ∼cstcool, ultimately reaching very small scales (∼0.1 pc/n), as they reach the temperature ∼104 K at which hydrogen recombines. While this lengthscale depends on the ambient pressure confining the clouds, we find that the column density through an individual fragment Ncloudlet ∼ 1017 cm-2 is essentially independent of environment; this column density represents a characteristic scale for atomic gas at 104 K. We therefore suggest that 'clouds' of cold, atomic gas may, in fact, have the structure of a mist or a fog, composed of tiny fragments dispersed throughout the ambient medium. We show that this scale emerges in hydrodynamic simulations, and that the corresponding increase in the surface area may imply rapid entrainment of cold gas. We also apply it to a number of observational puzzles, including the large covering fraction of diffuse gas in galaxy haloes, the broad-line widths seen in quasar and AGN spectra and the entrainment of cold gas in galactic winds. While our simulations make a number of assumptions and thus have associated uncertainties, we show that this characteristic scale is consistent with a number of observations, across a wide range of astrophysical environments. We discuss future steps for testing, improving and extending our model.
Argon used as dry suit insulation gas for cold-water diving.
Vrijdag, Xavier Ce; van Ooij, Pieter-Jan Am; van Hulst, Robert A
2013-06-03
Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13 degrees C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1h in water at 13 degrees C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives.
NASA Astrophysics Data System (ADS)
Sabard, A.; de Villiers Lovelock, H. L.; Hussain, T.
2018-01-01
Cold gas dynamic spray is being explored as a repair technique for high-value metallic components, given its potential to produce pore and oxide-free deposits of between several micrometers and several millimeters thick with good levels of adhesion and mechanical strength. However, feedstock powders for cold spray experience rapid solidification if manufactured by gas atomization and hence can exhibit non-equilibrium microstructures and localized segregation of alloying elements. Here, we used sealed quartz tube solution heat treatment of a precipitation hardenable 7075 aluminum alloy feedstock to yield a consistent and homogeneous powder phase composition and microstructure prior to cold spraying, aiming for a more controllable heat treatment response of the cold spray deposits. It was shown that the dendritic microstructure and solute segregation in the gas-atomized powders were altered, such that the heat-treated powder exhibits a homogeneous distribution of solute atoms. Micro-indentation testing revealed that the heat-treated powder exhibited a mean hardness decrease of nearly 25% compared to the as-received powder. Deformation of the powder particles was enhanced by heat treatment, resulting in an improved coating with higher thickness ( 300 μm compared to 40 μm for untreated feedstock). Improved particle-substrate bonding was evidenced by formation of jets at the particle boundaries.
Robotic Lunar Lander Development Status
NASA Technical Reports Server (NTRS)
Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl
2012-01-01
NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.
NASA's Robotic Lunar Lander Development Program
NASA Technical Reports Server (NTRS)
Ballard, Benjamin W.; Reed, Cheryl L. B.; Artis, David; Cole, Tim; Eng, Doug S.; Kubota, Sanae; Lafferty, Paul; McGee, Timothy; Morese, Brian J.; Chavers, Gregory;
2012-01-01
NASA Marshall Space Flight Center and the Johns Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise Jon
2013-01-01
As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz. Keywords: fission, space power, nuclear, liquid metal, NaK.
Insulation Test Cryostat with Lift Mechanism
NASA Technical Reports Server (NTRS)
Dokos, Adam G. (Inventor); Fesmire, James E. (Inventor)
2014-01-01
A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.
Insulation Test Cryostat with Lift Mechanism
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)
2016-01-01
A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.
Reactor Simulator Testing Overview
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.
2013-01-01
Test Objectives Summary: a) Verify operation of the core simulator, the instrumentation & control system, and the ground support gas and vacuum test equipment. b) Examine cooling & heat regeneration performance of the cold trap purification. c) Test the ALIP pump at voltages beyond 120V to see if the targeted mass flow rate of 1.75 kg/s can be obtained in the RxSim. Testing Highlights: a) Gas and vacuum ground support test equipment performed effectively for operations (NaK fill, loop pressurization, and NaK drain). b) Instrumentation & Control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings and ramped within prescribed constraints. It effectively interacted with reactor simulator control model and defaulted back to temperature control mode if the transient fluctuations didn't dampen. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the minimum temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.
NASA Astrophysics Data System (ADS)
Jakupi, P.; Keech, P. G.; Barker, I.; Ramamurthy, S.; Jacklin, R. L.; Shoesmith, D. W.; Moser, D. E.
2015-11-01
Copper coated steel containers are being developed for the disposal of high level nuclear waste using processes such as cold spray and electrodeposition. Electron Back-Scatter Diffraction has been used to determine the microstructural properties and the quality of the steel-copper coating interface. The influence of the nature of the cold-spray carrier gas as well as its temperature and pressure (velocity) on the coating's plastic strain and recrystallization behaviour have been investigated, and one commercially-produced electrodeposited coating characterized. The quality of the coatings was assessed using the coincident site lattice model to analyse the properties of the grain boundaries. For cold spray coatings the grain size and number of coincident site lattice grain boundaries increased, and plastic strain decreased, with carrier gas velocity. In all cases annealing improved the quality of the coatings by increasing texture and coincidence site-lattices, but also increased the number of physical voids, especially when a low temperature cold spray carrier gas was used. Comparatively, the average grain size and number of coincident site-lattices was considerably larger for the strongly textured electrodeposited coating. Tensile testing showed the electrodeposited coating was much more strongly adherent to the steel substrate.
NASA Technical Reports Server (NTRS)
Silsbee, F B; Loeb, L B; Sawyer, L G; Fonseca, E L; Dickinson, H C; Agnew, P G
1920-01-01
The successful operation of the spark plug depends to a large extent on the gas tightness of the plug. Part 1 of this report describes the method used for measuring the gas tightness of aviation spark plugs. Part 2 describes the methods used in testing the electrical conductivity of the insulation material when hot. Part 3 describes the testing of the cold dielectric strength of the insulation material, the resistance to mechanical shock, and the final engine test.
NASA Astrophysics Data System (ADS)
Wantha, Channarong
2018-02-01
This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.
The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats
NASA Astrophysics Data System (ADS)
Goldbaum, Dina; Shockley, J. Michael; Chromik, Richard R.; Rezaeian, Ahmad; Yue, Stephen; Legoux, Jean-Gabriel; Irissou, Eric
2012-03-01
Cold spray is a complex process where many parameters have to be considered in order to achieve optimized material deposition and properties. In the cold spray process, deposition velocity influences the degree of material deformation and material adhesion. While most materials can be easily deposited at relatively low deposition velocity (<700 m/s), this is not the case for high yield strength materials like Ti and its alloys. In the present study, we evaluate the effects of deposition velocity, powder size, particle position in the gas jet, gas temperature, and substrate temperature on the adhesion strength of cold spayed Ti and Ti6Al4V splats. A micromechanical test technique was used to shear individual splats of Ti or Ti6Al4V and measure their adhesion strength. The splats were deposited onto Ti or Ti6Al4V substrates over a range of deposition conditions with either nitrogen or helium as the propelling gas. The splat adhesion testing coupled with microstructural characterization was used to define the strength, the type and the continuity of the bonded interface between splat and substrate material. The results demonstrated that optimization of spray conditions makes it possible to obtain splats with continuous bonding along the splat/substrate interface and measured adhesion strengths approaching the shear strength of bulk material. The parameters shown to improve the splat adhesion included the increase of the splat deposition velocity well above the critical deposition velocity of the tested material, increase in the temperature of both powder and the substrate material, decrease in the powder size, and optimization of the flow dynamics for the cold spray gun nozzle. Through comparisons to the literature, the adhesion strength of Ti splats measured with the splat adhesion technique correlated well with the cohesion strength of Ti coatings deposited under similar conditions and measured with tubular coating tensile (TCT) test.
Simulation of a Cold Gas Thruster System and Test Data Correlation
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.; Quinn, Frank D.
2012-01-01
During developmental testing of the Ascent Abort 1 (AA-1) cold gas thruster system, unexpected behavior was detected. Upon further review the design as it existed may not have met the requirements. To determine the best approach for modifying the design, the system was modeled with a dynamic fluid analysis tool (EASY5). The system model consisted of the nitrogen storage tank, pressure regulator, thruster valve, nozzle, and the associated interconnecting line lengths. The regulator and thruster valves were modeled using a combination of the fluid and mechanical modules available in EASY5. The simulation results were then compared against actual system test data. The simulation results exhibited behaviors similar to the test results, such as the pressure regulators response to thruster firings. Potential design solutions were investigated using the analytical model parameters, including increasing the volume downstream of the regulator and increasing the orifice area. Both were shown to improve the regulator response.
40 CFR 86.211-94 - Exhaust gas analytical system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.211-94 Exhaust gas...
NASA Technical Reports Server (NTRS)
Yim, John T.; Burt, Jonathan M.
2015-01-01
The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.
NASA Technical Reports Server (NTRS)
Bregman, Joel N.; Hogg, David E.; Roberts, Morton S.
1992-01-01
Interstellar components of early-type galaxies are established by galactic type and luminosity in order to search for relationships between the different interstellar components and to test the predictions of theoretical models. Some of the data include observations of neutral hydrogen, carbon monoxide, and radio continuum emission. An alternative distance model which yields LX varies as LB sup 2.45, a relation which is in conflict with simple cooling flow models, is discussed. The dispersion of the X-ray luminosity about this regression line is unlikely to result from stripping. The striking lack of clear correlations between hot and cold interstellar components, taken together with their morphologies, suggests that the cold gas is a disk phenomenon while the hot gas is a bulge phenomenon, with little interaction between the two. The progression of galaxy type from E to Sa is not only a sequence of decreasing stellar bulge-to-disk ratio, but also of hot-to-cold-gas ratio.
Full-size solar dynamic heat receiver thermal-vacuum tests
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, Thomas W.
1991-01-01
The testing of a full-size, 120 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test conduct period.
Full-size solar dynamic heat receiver thermal-vacuum tests
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.
Full-size solar dynamic heat receiver thermal-vacuum tests
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.
Real-time neutron imaging of gas turbines
NASA Astrophysics Data System (ADS)
Stewart, P. A. E.
1987-06-01
The current status of real-time neutron radiography imaging is briefly reviewed, and results of tests carried out on cold neutron sources are reported. In particular, attention is given to demonstrations of neutron radiography on a running gas turbine engine. The future role of real-time neutron imaging in engineering diagnostics is briefly discussed.
Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, F. C.; Stone, M. E.; Miller, D. H.
2014-09-03
Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) tomore » address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12 th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.« less
Saliba, Georges; Saleh, Rawad; Zhao, Yunliang; Presto, Albert A; Lambe, Andrew T; Frodin, Bruce; Sardar, Satya; Maldonado, Hector; Maddox, Christine; May, Andrew A; Drozd, Greg T; Goldstein, Allen H; Russell, Lynn M; Hagen, Fabian; Robinson, Allen L
2017-06-06
Recent increases in the Corporate Average Fuel Economy standards have led to widespread adoption of vehicles equipped with gasoline direct-injection (GDI) engines. Changes in engine technologies can alter emissions. To quantify these effects, we measured gas- and particle-phase emissions from 82 light-duty gasoline vehicles recruited from the California in-use fleet tested on a chassis dynamometer using the cold-start unified cycle. The fleet included 15 GDI vehicles, including 8 GDIs certified to the most-stringent emissions standard, superultra-low-emission vehicles (SULEV). We quantified the effects of engine technology, emission certification standards, and cold-start on emissions. For vehicles certified to the same emissions standard, there is no statistical difference of regulated gas-phase pollutant emissions between PFIs and GDIs. However, GDIs had, on average, a factor of 2 higher particulate matter (PM) mass emissions than PFIs due to higher elemental carbon (EC) emissions. SULEV certified GDIs have a factor of 2 lower PM mass emissions than GDIs certified as ultralow-emission vehicles (3.0 ± 1.1 versus 6.3 ± 1.1 mg/mi), suggesting improvements in engine design and calibration. Comprehensive organic speciation revealed no statistically significant differences in the composition of the volatile organic compounds emissions between PFI and GDIs, including benzene, toluene, ethylbenzene, and xylenes (BTEX). Therefore, the secondary organic aerosol and ozone formation potential of the exhaust does not depend on engine technology. Cold-start contributes a larger fraction of the total unified cycle emissions for vehicles meeting more-stringent emission standards. Organic gas emissions were the most sensitive to cold-start compared to the other pollutants tested here. There were no statistically significant differences in the effects of cold-start on GDIs and PFIs. For our test fleet, the measured 14.5% decrease in CO 2 emissions from GDIs was much greater than the potential climate forcing associated with higher black carbon emissions. Thus, switching from PFI to GDI vehicles will likely lead to a reduction in net global warming.
Study of thermal insulation for airborne liquid hydrogen fuel tanks
NASA Technical Reports Server (NTRS)
Ruccia, F. E.; Lindstrom, R. S.; Lucas, R. M.
1978-01-01
A concept for a fail-safe thermal protection system was developed. From screening tests, approximately 30 foams, adhesives, and reinforcing fibers using 0.3-meter square liquid nitrogen cold plate, CPR 452 and Stafoam AA1602, both reinforced with 10 percent by weight of 1/16 inch milled OCF Style 701 Fiberglas, were selected for further tests. Cyclic tests with these materials in 2-inch thicknesses bonded on a 0.6-meter square cold plate with Crest 7410 adhesive systems, were successful. Zero permeability gas barriers were identified and found to be compatible with the insulating concept.
Fast Simulations of Gas Sloshing and Cold Front Formation
NASA Technical Reports Server (NTRS)
Roediger, E.; ZuHone, J. A.
2011-01-01
We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artefacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artefacts.
Fast Simulations of Gas Sloshing and Cold Front Formation
NASA Technical Reports Server (NTRS)
Roediger, E.; ZuHone, J. A.
2012-01-01
We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artifacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artifacts.
AGT101 automotive gas turbine system development
NASA Technical Reports Server (NTRS)
Rackley, R. A.; Kidwell, J. R.
1982-01-01
The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.
Lurking systematics in dust-based estimates of galaxy ISM masses
NASA Astrophysics Data System (ADS)
Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle
2018-01-01
We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. With observations of cold neutral atomic and molecular gas, we calibrate predictive relationships using infrared dust emission and gas depletion time methods. We derive a set of self-consistent predictions of cold gas masses with ~20% scatter, and the greatest accuracy for total cold gas mass. However, significant systematic residuals are found in all calibrations which depend strongly on the molecular-to-atomic hydrogen mass ratio, and they can over/under-predict gas masses by >0.5 dex. Extending these types of indirect predictions to high-z galaxies (e.g., using ALMA observations of dust continuum to determine gas masses) requires implicit assumptions about the conditions in their interstellar medium. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.
System and method for crystalline sheet growth using a cold block and gas jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellerman, Peter L.; Mackintosh, Brian; Carlson, Frederick M.
A crystallizer for growing a crystalline sheet from a melt may include a cold block having a cold block surface that faces an exposed surface of the melt, the cold block configured to generate a cold block temperature at the cold block surface that is lower than a melt temperature of the melt at the exposed surface. The system may also include a nozzle disposed within the cold block and configured to deliver a gas jet to the exposed surface, wherein the gas jet and the cold block are interoperative to generate a process zone that removes heat from themore » exposed surface at a first heat removal rate that is greater than a second heat removal rate from the exposed surface in outer regions outside of the process zone.« less
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
Ground test program for a full-size solar dynamic heat receiver
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.
2016-06-01
Novosibirsk during the 1980s [14]. In this process, particles of the coating material are accelerated by entrainment in a supersonic jet of gas ...THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC STAINLESS STEEL COATINGS by John A Luhn June 2016 Thesis Advisor: Sarath...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CORROSION AND THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC
Limited Range Sesame EOS for Ta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greeff, Carl William; Crockett, Scott; Rudin, Sven Peter
2017-03-30
A new Sesame EOS table for Ta has been released for testing. It is a limited range table covering T ≤ 26, 000 K and ρ ≤ 37.53 g/cc. The EOS is based on earlier analysis using DFT phonon calculations to infer the cold pressure from the Hugoniot. The cold curve has been extended into compression using new DFT calculations. The present EOS covers expansion into the gas phase. It is a multi-phase EOS with distinct liquid and solid phases. A cold shear modulus table (431) is included. This is based on an analytic interpolation of DFT calculations.
NASA Astrophysics Data System (ADS)
Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle J.
2018-05-01
We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. We calibrate predictions for cold neutral atomic and molecular gas using infrared dust emission and gas depletion time methods that are self-consistent and have ˜20 per cent accuracy (with the highest accuracy in the prediction of total cold gas mass). However, modest systematic residual dependences are found in all calibrations that depend on the partition between molecular and atomic gas, and can over/underpredict gas masses by up to 0.3 dex. As expected, dust-based estimates are best at predicting the total gas mass while depletion time-based estimates are only able to predict the (star-forming) molecular gas mass. Additionally, we advise caution when applying these predictions to high-z galaxies, as significant (0.5 dex or more) errors can arise when incorrect assumptions are made about the dominant gas phase. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.
An unusual etiology in cold injury: Liquefied petroleum gas.
Kapı, Emin; Bozkurt, Mehmet; Taylan Filinte, Gaye; Kuvat, Samet Vasfi; Alioğlu, Celal
2017-05-01
Cold injury is a condition that causes reversible and irreversible damage when tissues are exposed to cold. This injury occurs due to various etiologies, and the most commonly observed ones include contact with liquefied petroleum gas (LPG) used in households, vehicles, and industry. LPG is a type of gas stored in liquid state under high pressure within cylinders. LPG contains a mixture of propane and butane gases. Direct contact of these gases with the tissues has the potential to cause metabolic, toxic, and respiratory damage. In this study, we present the cases of four patients with cold injury in the face and upper extremity caused by a pressurized jet stream of liquid gas that escaped out of the valves of the LPG cylinders. The patients had bullous lesions in the upper extremities and the face and second- and third-degree cold injuries with fibrotic and necrotic areas. The superficial defects secondarily healed with minimal scarring, while the necrotic finger had to be amputated. Cold injury on the skin caused by high-pressure jet streams of liquid gas as in our study is a rare occurrence. Our patients are important cases due to the rare etiology of cold injury.
Chip based MEMS Ion Thruster to significantly enhance Cold Gas Thruster Lifetime for LISA
NASA Astrophysics Data System (ADS)
Tajmar, M.; Laufer, P.; Bock, D.
2017-05-01
Micropropulsion is a key component for ultraprecise attitude and orbit control required by the eLISA mission. LISA pathfinder uses cold gas micro thrusters that are accurate but require large tanks due to their very low specific impulse, which in turn limits the possible mission duration of the follow up eLISA mission. Recently, we developed a compact MEMS ion thruster on the chip with a size of only 1cm2 that can be simply attached to a gas feeding line like the one used for cold gas thrusters. It provides a specific impulse greater than 1000 s and only requires a single DC voltage. Since the operating principle is based on field emission, very low thrust noises similar to FEEP thrusters are expected but with gas propellants. The MEMS ion thruster chip could be mounted in parallel to the existing gold gas system providing high Isp and therefore long mission durations while leaving the cold gas system in place. To enable a possible mission extension, the MEMS ion thruster could take over from the cold gas system as a backup while maintaining the existing micropropulsion thruster system with its heritage therefore minimum risk.
Munsch-Alatossava, Patricia; Jääskeläinen, Susanna; Alatossava, Tapani; Gauchi, Jean-Pierrre
2017-01-01
Antibiotic resistance has been noted to be a major and increasing human health issue. Cold storage of raw milk promotes the thriving of psychrotrophic/psychrotolerant bacteria, which are well known for their ability to produce enzymes that are frequently heat stable. However, these bacteria also carry antibiotic resistance (AR) features. In places, where no cold chain facilities are available and despite existing recommendations numerous adulterants, including antibiotics, are added to raw milk. Previously, N2 gas flushing showed real potential for hindering bacterial growth in raw milk at a storage temperature ranging from 6 to 25°C. Here, the ability of N2 gas (N) to tackle antibiotic- resistant bacteria was tested and compared to that of the activated lactoperoxidase system (HT) for three raw milk samples that were stored at 6°C for 7 days. To that end, the mesophiles and psychrotrophs that were resistant to gentamycin (G), ceftazidime (Ce), levofloxacin (L), and trimethoprim-sulfamethoxazole (TS) were enumerated. For the log10 ratio (which is defined as the bacterial counts from a certain condition divided by the counts on the corresponding control), classical Analyses of Variance (ANOVA) was performed, followed by a mean comparison with the Ryan-Einot-Gabriel-Welsch multiple range test (REGWQ). If the storage “time” factor was the major determinant of the recorded effects, cold storage alone or in combination with HT or with N promoted a sample-dependent response in consideration of the AR levels. The efficiency of N in limiting the increase in AR was highest for fresh raw milk and was judged to be equivalent to that of HT for one sample and superior to that of HT for the two other samples; moreover, compared to HT, N seemed to favor a more diverse community at 6°C that was less heavily loaded with antibiotic multi-resistance features. Our results imply that N2 gas flushing could strengthen cold storage of raw milk by tackling the bacterial spoilage potential while simultaneously hindering the increase of bacteria carrying antibiotic resistance/multi-resistance features. PMID:28469611
Advanced Gas Turbine (AGT) powertrain system
NASA Technical Reports Server (NTRS)
Helms, H. E.; Kaufeld, J.; Kordes, R.
1981-01-01
A 74.5 kW(100 hp) advanced automotive gas turbine engine is described. A design iteration to improve the weight and production cost associated with the original concept is discussed. Major rig tests included 15 hours of compressor testing to 80% design speed and the results are presented. Approximately 150 hours of cold flow testing showed duct loss to be less than the design goal. Combustor test results are presented for initial checkout tests. Turbine design and rig fabrication is discussed. From a materials study of six methods to fabricate rotors, two have been selected for further effort. A discussion of all six methods is given.
Cold Gas Content and Morphology: Scaling Relationships and Gas Deficiencies
NASA Astrophysics Data System (ADS)
Zhang, Helen; Crocker, Alison
2018-01-01
Spiral arms are a key feature of spiral galaxies. They are areas of higher gas density, and thus more stars are actively being formed in these regions. Two armed spirals are commonly referred to as ‘grand design’ spirals. In constrast, many armed spirals have three or more arms that are often less distinct. Here we present the cold gas mass per unit of stellar mass (cold gas fraction) in grand design spirals versus many armed spiral galaxies using Galaxy Zoo 2 for our morphological classifications. The masses of HI and H2 gas are taken from the COLDGASS survey, which included nondetections in the form of upper limits. Through our analysis, we found that grand design galaxies have a lower cold gas fraction of both HI and H2. This is a surprising result, given that earlier studies have shown that they have comparable rates of star formation. Combined with our result, this means that grand design galaxies must be more efficient at converting H2 gas to stars.
NASA Astrophysics Data System (ADS)
Verma, S. B.; Stark, R.; Nuerenberger-Genin, C.; Haidn, O.
2010-06-01
An experimental investigation has been carried out to study the effect of test environment on transition characteristics and the flow unsteadiness associated with the transition modes of a dual-bell nozzle. Cold-gas tests using gaseous nitrogen were carried out in (i) a horizontal test-rig with nozzle exhausting into atmospheric conditions and, (ii) a high altitude simulation chamber with nozzle operation under self-evacuation mode. Transient tests indicate that increasing δP 0/ δt (the rate of stagnation chamber pressure change) reduces the amplitude of pressure fluctuations of the separation shock at the wall inflection point. This is preferable from the viewpoint of lowering the possible risk of any structural failure during the transition mode. Sea-level tests show 15-17% decrease in the transition nozzle pressure ratio (NPR) during subsequent tests in a single run primarily due to frost formation in the nozzle extension up to the wall inflection location. Frost reduces the wall inflection angle and hence, the transition NPR. However, tests inside the altitude chamber show nearly constant NPR value during subsequent runs primarily due to decrease in back temperature with decrease in back pressure that prevents any frost formation.
A Contaminant Ice Visualization Experiment in a Glass Pulse Tube
NASA Technical Reports Server (NTRS)
Hall, J. L.; Ross, R. G., Jr.; Le, A. K.
2000-01-01
Results are presented from pulse tube experiments designed to investigate the effect of 400 parts per million water vapor contamination of the helium working gas. The experiments were conducted in a glass pulse tube to enable visualization of ice formation on internal surfaces. Photographs of this ice formation were taken along with simultaneous coldtip temperature and compressor power measurements. Four types of regenerator elements were tested in various combinations: 200- and 400-mesh stainless steel screens, 1.6 mm diameter glass beads, and 1.6 mm thick perforated plastic plates. Internal spacers were also used to provide clear fields of view into the regenerator stack. Substantial water-ice formation was observed at the cold end of the regenerator and on the inside wall of pulse tube; it appeared to be highly porous, like snow, and was seen to accumulate only in a very localized region at the coldest end, despite changing the cold tip temperature across a range of 150 to 235 K. Ice formation degraded pulse tube thermal performance only in cases where screen regenerators were used at the regenerator cold end. It was concluded that flow blockage was the mechanism by which contaminants affected performance; coarse regenerator elements were largely immune over the tested time scale of a few days. Substantially reduced ice formation and minimal performance loss were also observed in repeated tests where the contaminated gas was reused after warming up and melting of the accumulated internal ice. Significant adsorption of the liquid water onto the regenerator was inferred, a process that depleted the gas phase concentration of water.
Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase
NASA Astrophysics Data System (ADS)
Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.
2018-05-01
Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.
Revealing the origin of the cold ISM in massive early-type galaxies
NASA Astrophysics Data System (ADS)
Davis, T. A.; Alatalo, K.; Bureau, M.; Young, L.; Blitz, L.; Crocker, A.; Bayet, E.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; Duc, P.-A.; de Zeeuw, P. T.; Emsellem, E.; Falcon-Barroso, J.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.
2013-07-01
Recently, massive early-type galaxies have shed their red-and-dead moniker, thanks to the discovery that many host residual star formation. As part of the ATLAS-3D project, we have conducted a complete, volume-limited survey of the molecular gas in 260 local early-type galaxies with the IRAM-30m telescope and the CARMA interferometer, in an attempt to understand the fuel powering this star formation. We find that around 22% of early-type galaxies in the local volume host molecular gas reservoirs. This detection rate is independent of galaxy luminosity and environment. Here we focus on how kinematic misalignment measurements and gas-to-dust ratios can be used to put constraints on the origin of the cold ISM in these systems. The origin of the cold ISM seems to depend strongly on environment, with misaligned, dust poor gas (indicative of externally acquired material) being common in the field but completely absent in rich groups and in the Virgo cluster. Very massive galaxies also appear to be devoid of accreted gas. This suggests that in the field mergers and/or cold gas accretion dominate the gas supply, while in clusters internal secular processes become more important. This implies that environment has a strong impact on the cold gas properties of ETGs.
Cold Test Operation of the German VEK Vitrification Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleisch, J.; Schwaab, E.; Weishaupt, M.
2008-07-01
In 2007 the German High-Level Liquid Waste (HLLW) Vitrification plant VEK (Verglasungseinrichtung Karlsruhe) has passed a three months integral cold test operation as final step before entering the hot phase. The overall performance of the vitrification process equipment with a liquid-fed ceramic glass melter as main component proved to be completely in line with the requirements of the regulatory body. The retention efficiency of main radioactive-bearing elements across melter and wet off-gas treatment system exceeded the design values distinctly. The strategy to produce a specified waste glass could be successfully demonstrated. The results of the cold test operation allow enteringmore » the next step of hot commissioning, i.e. processing of approximately 2 m{sup 3} of diluted HLLW. In summary: An important step of the VEK vitrification plant towards hot operation has been the performance of the cold test operation from April to July 2007. This first integral operation was carried out under boundary conditions and rules established for radioactive operation. Operation and process control were carried out following the procedure as documented in the licensed operational manuals. The function of the process technology and the safe operation could be demonstrated. No severe problems were encountered. Based on the positive results of the cold test, application of the license for hot operation has been initiated and is expected in the near future. (authors)« less
Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets
NASA Astrophysics Data System (ADS)
Gaspari, M.; Ruszkowski, M.; Sharma, P.
2012-02-01
Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff <~ 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.
Thermal insulation testing method and apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2004-01-01
A test apparatus and method of its use for evaluating various performance aspects of a test specimen is disclosed. A chamber within a housing contains a cold mass tank with a contact surface in contact with a first surface of a test specimen. The first surface of the test specimen is spaced from the second surface of the test specimen by a thickness. The second surface of the test specimen is maintained at a desired warm temperature. The first surface is maintained at a constant temperature by a liquid disposed within the cold mass tank. A boil-off flow rate of the gas is monitored and provided to a processor along with the temperature of the first and second surfaces of the test specimen. The processor calculates thermal insulation values of the test specimen including comparative values for heat flux and apparent thermal conductivity (k-value). The test specimen may be placed in any vacuum pressure level ranging from about 0.01 millitorr to 1,000,000 millitorr with different residual gases as desired. The test specimen may be placed under a mechanical load with the cold mass tank and another factors may be imposed upon the test specimen so as to simulate the actual use conditions.
Thermal Insulation Testing Method and Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2004-01-01
A test apparatus and method of its use for evaluating various performance aspects of a test specimen is disclosed. A chamber within a housing contains a cold mass tank with a contact surface in contact with a first surface of a test specimen. The first surface of the test specimen is spaced from the second surface of the test specimen by a thickness. The second surface of the test specimen is maintained at a a constant temperature by a liquid disposed within the cold mass tank. A boil-off flow rate of the gas is monitored and provided to a processor along with the temperature of the first and second surfaces of the test specimen. The processor calculates thermal insulation values of the test specimen including comparative values for heat flux and apparent thermal conductivity k-value). The test specimen may be placed in any vacuum pressure level ranging from about 0.01 millitorr to 1,000,000 millitorr with different residual gases as desired. The test specimen may be placed under a mechanical load with the cold mass tank and another factors may be imposed upon the test specimen so as to simulate the actual use conditions.
2012-12-01
cold gas-dynamic spray process are well understood, the effects of feedstock powder microstructure and composition on the deposition process remain...The Relationship between Powder Zinc Content and Porosity .....74 5. Compositional Variability as a Side Effect of the Cold Spray Deposition Process ...to expect in cold spray deposited copper coatings based on common spray parameters. Ning et
Fluorescence Imaging of Rotational and Vibrational Temperature in a Shock Tunnel Nozzle Flow
NASA Technical Reports Server (NTRS)
Palma, Philip C.; Danehy, Paul M.; Houwing, A. F. P.
2003-01-01
Two-dimensional rotational and vibrational temperature measurements were made at the nozzle exit of a free-piston shock tunnel using planar laser-induced fluorescence. The Mach 7 flow consisted predominantly of nitrogen with a trace quantity of nitric oxide. Nitric oxide was employed as the probe species and was excited at 225 nm. Nonuniformities in the distribution of nitric oxide in the test gas were observed and were concluded to be due to contamination of the test gas by driver gas or cold test gas.The nozzle-exit rotational temperature was measured and is in reasonable agreement with computational modeling. Nonlinearities in the detection system were responsible for systematic errors in the measurements. The vibrational temperature was measured to be constant with distance from the nozzle exit, indicating it had frozen during the nozzle expansion.
NASA Astrophysics Data System (ADS)
Takeuchi, M.; Arai, Y.; Kase, T.; Nakajima, Y.
2013-01-01
The application of the cold crucible technique to a pyrochemical electrolyzer used in the oxide-electrowinning method, which is a method for the pyrochemical reprocessing of spent nuclear oxide fuel, is proposed as a means for improving corrosion resistance. The electrolyzer suffers from a severe corrosion environment consisting of molten salt and corrosive gas. In this study, corrosion tests for several metals in molten 2CsCl-NaCl at 923 K with purging chlorine gas were conducted under controlled material temperature conditions. The results revealed that the corrosion rates of several materials were significantly decreased by the material cooling effect. In particular, Hastelloy C-22 showed excellent corrosion resistance with a corrosion rate of just under 0.01 mm/y in both molten salt and vapor phases by controlling the material surface at 473 K. Finally, an engineering-scale crucible composed of Hastelloy C-22 was manufactured to demonstrate the basic function of the cold crucible. The cold crucible induction melting system with the new concept Hastelloy crucible showed good compatibility with respect to its heating and cooling performances.
On the possibility of generation of cold and additional electric energy at thermal power stations
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.
2017-06-01
A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.
Range of plasma ions in cold cluster gases near the critical point
NASA Astrophysics Data System (ADS)
Zhang, G.; Quevedo, H. J.; Bonasera, A.; Donovan, M.; Dyer, G.; Gaul, E.; Guardo, G. L.; Gulino, M.; La Cognata, M.; Lattuada, D.; Palmerini, S.; Pizzone, R. G.; Romano, S.; Smith, H.; Trippella, O.; Anzalone, A.; Spitaleri, C.; Ditmire, T.
2017-05-01
We measure the range of plasma ions in cold cluster gases by using the Petawatt laser at the University of Texas-Austin. The produced plasma propagated in all directions some hitting the cold cluster gas not illuminated by the laser. From the ratio of the measured ion distributions at different angles we can estimate the range of the ions in the cold cluster gas. It is much smaller than estimated using popular models, which take only into account the slowing down of charged particles in uniform matter. We discuss the ion range in systems prepared near a liquid-gas phase transition.
Development of an IVE/EVA Compatible Prototype Cold-Gas Cubesat Propulsion System at NASA/JSC
NASA Technical Reports Server (NTRS)
Radke, Christopher; Studak, Joseph
2017-01-01
Cold-gas propulsion systems are well suited for some applications because they are simple to design and build, have low operating costs, and are non-toxic. The inherent tradeoff, however, is their relatively low impulse density. Nevertheless, a modest propulsion system, sized for Cubesats and designed for affordability, presents an attractive system solution for some missions, such as an on-orbit inspection free-flyer. NASA has a long-standing effort to develop propulsion systems appropriate for very high delta-V cubesat missions, such as geo transfer orbits, and there are commercially available Cubesat propulsion systems with considerably more impulse capability, but, these are both prohibitively expensive for some development customers and face compatibility constraints for crewed applications, such as operation within ISS. A relatively conventional cold-gas system has been developed at NASA/JSC taking advantage of existing miniature industrial components, additive manufacturing techniques and in-house qualification of the system. The result is a nearly modular system with a 1U form factor. Compressed nitrogen is stored in a small high-pressure tank, then regulated and distributed to 12 thrusters. Maneuvering thrust can be adjusted, with a typical value of 40 mN, and the delta-V delivered to a 3U Cubesat would be approximately 7 m/s. These values correspond to the performance parameters for an inspection mission previously established at JSC for inspection of the orbiter prior to reentry. Environmental testing was performed to meet ISS launch and workmanship standards, along with the expected thermal environment for an inspection mission. Functionality has been demonstrated, and performance in both vacuum and relevant blow down scenarios was completed. Several avenues for further improvement are also explored. Details of the system, components, integration, tests, and test data are presented in this paper.
NASA Technical Reports Server (NTRS)
Hair, L. M.
1975-01-01
The aerodynamic effects of plumes from hot combustion gases in the presence of a transonic external flow field were measured to advance plumes simulation technology, extend a previously acquired data base, and provide data to compare with the effects observed using cold gas plumes. A variety of underexpanded plumes issuing from the base of a strut-mounted ogive-cylinder body were produced by combusting solid propellant gas generators. The gas generator fired in a short-duration mode (200 to 300 msec). Propellants containing 16 percent and 2 percent A1 were used, with chamber pressures from 400 to 1800 psia. Conical nozzles of 15 deg half-angle were tested with area ratios of 4 and 8. Pressures were measured in the gas generator combustion chamber, along the nozzle wall, on the base, and along the body rear exterior. Schlieren photographs were taken for all tests. Test data are presented along with a description of the test setup and procedures.
AGN jet-driven stochastic cold accretion in cluster cores
NASA Astrophysics Data System (ADS)
Prasad, Deovrat; Sharma, Prateek; Babul, Arif
2017-10-01
Several arguments suggest that stochastic condensation of cold gas and its accretion on to the central supermassive black hole (SMBH) is essential for active galactic nuclei (AGNs) feedback to work in the most massive galaxies that lie at the centres of galaxy clusters. Our 3-D hydrodynamic AGN jet-ICM (intracluster medium) simulations, looking at the detailed angular momentum distribution of cold gas and its time variability for the first time, show that the angular momentum of the cold gas crossing ≲1 kpc is essentially isotropic. With almost equal mass in clockwise and counterclockwise orientations, we expect a cancellation of the angular momentum on roughly the dynamical time. This means that a compact accretion flow with a short viscous time ought to form, through which enough accretion power can be channeled into jet mechanical energy sufficiently quickly to prevent a cooling flow. The inherent stochasticity, expected in feedback cycles driven by cold gas condensation, gives rise to a large variation in the cold gas mass at the centres of galaxy clusters, for similar cluster and SMBH masses, in agreement with the observations. Such correlations are expected to be much tighter for the smoother hot/Bondi accretion. The weak correlation between cavity power and Bondi power obtained from our simulations also matches observations.
High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM
NASA Astrophysics Data System (ADS)
Stewart, Kyle R.; Maller, Ariyeh H.; Oñorbe, Jose; Bullock, James S.; Joung, M. Ryan; Devriendt, Julien; Ceverino, Daniel; Kereš, Dušan; Hopkins, Philip F.; Faucher-Giguère, Claude-André
2017-07-01
We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ˜4 times more specific angular momentum in cold halo gas (λ cold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.
Simulator test to study hot-flow problems related to a gas cooled reactor
NASA Technical Reports Server (NTRS)
Poole, J. W.; Freeman, M. P.; Doak, K. W.; Thorpe, M. L.
1973-01-01
An advance study of materials, fuel injection, and hot flow problems related to the gas core nuclear rocket is reported. The first task was to test a previously constructed induction heated plasma GCNR simulator above 300 kW. A number of tests are reported operating in the range of 300 kW at 10,000 cps. A second simulator was designed but not constructed for cold-hot visualization studies using louvered walls. A third task was a paper investigation of practical uranium feed systems, including a detailed discussion of related problems. The last assignment resulted in two designs for plasma nozzle test devices that could be operated at 200 atm on hydrogen.
Advanced radial inflow turbine rotor program: Design and dynamic testing
NASA Technical Reports Server (NTRS)
Rodgers, C.
1976-01-01
The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).
CO 2 Capture by Cold Membrane Operation with Actual Power Plant Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaubey, Trapti; Kulkarni, Sudhir; Hasse, David
The main objective of the project was to develop a post-combustion CO 2 capture process based on the hybrid cold temperature membrane operation. The CO 2 in the flue gas from coal fired power plant is pre-concentrated to >60% CO 2 in the first stage membrane operation followed by further liquefaction of permeate stream to achieve >99% CO 2 purity. The aim of the project was based on DOE program goal of 90% CO 2 capture with >95% CO 2 purity from Pulverized Coal (PC) fired power plants with $40/tonne of carbon capture cost by 2025. The project moves themore » technology from TRL 4 to TRL 5. The project involved optimization of Air Liquide commercial 12” PI-1 bundle to improve the bundle productivity by >30% compared to the previous baseline (DE-FE0004278) using computational fluid dynamics (CFD) modeling and bundle testing with synthetic flue gas at 0.1 MWe bench scale skid located at Delaware Research and Technology Center (DRTC). In parallel, the next generation polyimide based novel PI-2 membrane was developed with 10 times CO 2 permeance compared to the commercial PI-1 membrane. The novel PI-2 membrane was scaled from mini-permeator to 1” permeator and 1” bundle for testing. Bundle development was conducted with a Development Spin Unit (DSU) installed at MEDAL. Air Liquide’s cold membrane technology was demonstrated with real coal fired flue gas at the National Carbon Capture Center (NCCC) with a 0.3 MWe field-test unit (FTU). The FTU was designed to incorporate testing of two PI-1 commercial membrane bundles (12” or 6” diameter) in parallel or series. A slip stream was sent to the next generation PI-2 membrane for testing with real flue gas. The system exceeded performance targets with stable PI-1 membrane operation for over 500 hours of single bundle, steady state testing. The 12” PI-1 bundle exceeded the productivity target by achieving ~600 Nm3/hr, where the target was set at ~455 Nm3/hr at 90% capture rate. The cost of 90% CO 2 capture from a 550 MWe net coal power plant was estimated between 40 and $45/tonne. A 6” PI-1 bundle exhibited superior bundle performance compared to the 12” PI-1 bundle. However, the carbon capture cost was not lower with the 6” PI-1 bundle due to the higher bundle installed cost. A 1” PI-1 bundle was tested to compare bundles with different length / diameter ratios. This bundle exhibited the lowest performance due to the different fiber winding pattern and increased bundle non-ideality. Several long-term and parametric tests were conducted with 3,200 hours of total run-time at NCCC. Finally, the new PI-2 membrane fiber was tested at a small scale (1” modules) in real flue gas and exhibited up to 10 times the CO 2 permeance and slightly lower CO 2/N 2 selectivity as the commercial PI-1 fiber. This corresponded to a projected 4 - 5 times increase in the productivity per bundle and a potential cost reduction of $3/tonne for CO2 capture, as compared with PI-1. An analytical campaign was conducted to trace different impurities such as NOx, mercury, Arsenic, Selenium in gas and liquid samples through the carbon capture system. An Environmental, Health and Safety (EH&S) analysis was completed to estimate emissions from a 550 MWe net power plant with carbon capture using cold membrane. A preliminary design and cost analysis was completed for 550 tpd (~25 MWe) plant to assess the capital investment and carbon capture cost for PI-1 and PI-2 membrane solutions from coal fired flue gas. A comparison was made with an amine based solution with significant cost advantage for the membrane at this scale. Additional preliminary design and cost analysis was completed between coal, natural gas and SMR flue gas for carbon capture at 550 tpd (~25 MWe) plant.« less
NASA Technical Reports Server (NTRS)
Wang, Q.; Ewing, M. E.; Mathias, E. C.; Heman, J.; Smith, C.; McCool, Alex (Technical Monitor)
2001-01-01
Methodologies have been developed for modeling both gas dynamics and heat transfer inside the carbon fiber rope (CFR) for applications in the space shuttle reusable solid rocket motor joints. Specifically, the CFR is modeled using an equivalent rectangular duct with a cross-section area, friction factor and heat transfer coefficient such that this duct has the same amount of mass flow rate, pressure drop, and heat transfer rate as the CFR. An equation for the friction factor is derived based on the Darcy-Forschheimer law and the heat transfer coefficient is obtained from pipe flow correlations. The pressure, temperature and velocity of the gas inside the CFR are calculated using the one-dimensional Navier-Stokes equations. Various subscale tests, both cold flow and hot flow, have been carried out to validate and refine this CFR model. In particular, the following three types of testing were used: (1) cold flow in a RSRM nozzle-to-case joint geometry, (2) cold flow in a RSRM nozzle joint No. 2 geometry, and (3) hot flow in a RSRM nozzle joint environment simulator. The predicted pressure and temperature history are compared with experimental measurements. The effects of various input parameters for the model are discussed in detail.
Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1
NASA Technical Reports Server (NTRS)
Rebells, Clarence A.
1988-01-01
This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.
Temperature Controller System for Gas Gun Targets
NASA Astrophysics Data System (ADS)
Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.
2006-07-01
A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.
Gas Accretion onto a Supermassive Black Hole: A Step to Model AGN Feedback
NASA Astrophysics Data System (ADS)
Nagamine, K.; Barai, P.; Proga, D.
2012-08-01
We study gas accretion onto a supermassive black hole (SMBH) using the 3D SPH code GADGET-3 on scales of 0.1-200 pc. First we test our code with the spherically symmetric, adiabatic Bondi accretion problem. We find that our simulation can reproduce the expected Bondi accretion flow very well for a limited amount of time until the effect of the outer boundary starts to be visible. We also find artificial heating of gas near the inner accretion boundary due to the artificial viscosity of SPH. Second, we implement radiative cooling and heating due to X-rays, and examine the impact of thermal feedback by the central X-ray source. The accretion flow roughly follows the Bondi solution for low central X-ray luminosities; however, the flow starts to exhibit non-spherical fragmentation due to the thermal instability for a certain range of central LX, and a strong overall outflow develops for greater LX. The cold gas develops filamentary structures that fall into the central SMBH, whereas the hot gas tries to escape through the channels in between the cold filaments. Such fragmentation of accreting gas can assist in the formation of clouds around AGN, induce star-formation, and contribute to the observed variability of narrow-line regions.
A permanent magnet trap for buffer gas cooled atoms and molecules
NASA Astrophysics Data System (ADS)
Nohlmans, D.; Skoff, S. M.; Hendricks, R. J.; Segal, D. M.; Sauer, B. E.; Hinds, E. A.; Tarbutt, M. R.
2013-05-01
Cold molecules are set to provide a wealth of new science compared to their atomic counterparts. Here we want to present preliminary results for cooling and trapping atoms/molecules in a permanent magnetic trap. By replacing the conventional buffer gas cell with an arrangement of permanent magnets, we will be able to trap a fraction of the molecules right where they are cooled. For this purpose we have designed a quadrupole trap using NdFeB magnets, which has a trap depth of 0.4 K for molecules with a magnetic moment of 1 μB. Cold helium gas is pulsed into the trap region by a solenoid valve and the atoms/molecules are subsequently ablated into this and cooled via elastic collisions, leaving a fraction of them trapped. This new set-up is currently being tested with lithium atoms as they are easier to make. After having optimised the trapping and detection processes, we will use the same trap for YbF molecules.
Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing
NASA Astrophysics Data System (ADS)
MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.
2017-04-01
Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.
NASA Astrophysics Data System (ADS)
Vaca, Christian; Bruinsma, Robijn; Levine, Alex J.
2014-03-01
Understanding the stochastic motion of a heavy particle in a gas of lighter ones is a classic problem in statistical mechanics. Alkemade, MacDonald, and Van Kampen (AMvK) analyzed this problem in one dimension, computing the velocity distribution function of the heavy particle in a perturbation expansion using the ratio of mass of the light to the heavy particle as a small parameter. Novel tests of this theory are now being provided by modern molecular ion traps [arXiv:1310.5190]. In such experiments, the heavy molecular ion interacts with a cold gas used for sympathetic cooling and low density hot gasses that leak into the system. Thus, the heavy ion is maintained in a complex nonequilibrium state due to its interactions with the hot and cold gasses. In this talk, we present an extension of the AMvK model appropriate to these experiments. Using new analytic and computational techniques, we explore the time-dependent velocity distribution function of the molecular ion interacting with the gasses including higher order perturbative corrections necessary to discuss the case in which the ion's mass is not significantly larger than that of the other two species. Using this analysis we address the experimental observation of non-Gaussian velocity distributions of the heavy ions.
EFFECTS OF HOT HALO GAS ON STAR FORMATION AND MASS TRANSFER DURING DISTANT GALAXY–GALAXY ENCOUNTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Jeong-Sun; Park, Changbom, E-mail: jshwang@kias.re.kr, E-mail: cbp@kias.re.kr
2015-06-01
We use N-body/smoothed particle hydrodynamics simulations of encounters between an early-type galaxy (ETG) and a late-type galaxy (LTG) to study the effects of hot halo gas on the evolution for a case with the mass ratio of the ETG to LTG of 2:1 and the closest approach distance of ∼100 kpc. We find that the dynamics of the cold disk gas in the tidal bridge and the amount of the newly formed stars depend strongly on the existence of a gas halo. In the run of interacting galaxies not having a hot gas halo, the gas and stars accreted into themore » ETG do not include newly formed stars. However, in the run using the ETG with a gas halo and the LTG without a gas halo, a shock forms along the disk gas tidal bridge and induces star formation near the closest approach. The shock front is parallel to a channel along which the cold gas flows toward the center of the ETG. As a result, the ETG can accrete star-forming cold gas and newly born stars at and near its center. When both galaxies have hot gas halos, a shock is formed between the two gas halos somewhat before the closest approach. The shock hinders the growth of the cold gas bridge to the ETG and also ionizes it. Only some of the disk stars transfer through the stellar bridge. We conclude that the hot halo gas can give significant hydrodynamic effects during distant encounters.« less
The co-existence of hot and cold gas in debris discs
NASA Astrophysics Data System (ADS)
Rebollido, I.; Eiroa, C.; Montesinos, B.; Maldonado, J.; Villaver, E.; Absil, O.; Bayo, A.; Canovas, H.; Carmona, A.; Chen, Ch.; Ertel, S.; Garufi, A.; Henning, Th.; Iglesias, D. P.; Launhardt, R.; Liseau, R.; Meeus, G.; Moór, A.; Mora, A.; Olofsson, J.; Rauw, G.; Riviere-Marichalar, P.
2018-06-01
Context. Debris discs have often been described as gas-poor discs as the gas-to-dust ratio is expected to be considerably lower than in primordial, protoplanetary discs. However, recent observations have confirmed the presence of a non-negligible amount of cold gas in the circumstellar (CS) debris discs around young main-sequence stars. This cold gas has been suggested to be related to the outgassing of planetesimals and cometary-like objects. Aims: The goal of this paper is to investigate the presence of hot gas in the immediate surroundings of the cold-gas-bearing debris-disc central stars. Methods: High-resolution optical spectra of all currently known cold-gas-bearing debris-disc systems, with the exception of β Pic and Fomalhaut, have been obtained from La Palma (Spain), La Silla (Chile), and La Luz (Mexico) observatories. To verify the presence of hot gas around the sample of stars, we have analysed the Ca II H&K and the Na I D lines searching for non-photospheric absorptions of CS origin, usually attributed to cometary-like activity. Results: Narrow, stable Ca II and/or Na I absorption features have been detected superimposed to the photospheric lines in 10 out of the 15 observed cold-gas-bearing debris-disc stars. Features are found at the radial velocity of the stars, or slightly blue- or red-shifted, and/or at the velocity of the local interstellar medium (ISM). Some stars also present transient variable events or absorptions extended towards red wavelengths (red wings). These are the first detections of such Ca II features in 7 out of the 15 observed stars. Although an ISM origin cannot categorically be excluded, the results suggest that the stable and variable absorptions arise from relatively hot gas located in the CS close-in environment of the stars. This hot gas is detected in at least 80%, of edge-on cold-gas-bearing debris discs, while in only 10% of the discs seen close to face-on. We interpret this result as a geometrical effect, and suggest that the non-detection of hot gas absorptions in some face-on systems is due to the disc inclination and likely not to the absence of the hot-gas component. This gas is likely released in physical processes related in some way to the evaporation of exocomets, evaporation of dust grains, or grain-grain collisions close to the central star. The reduced spectra are only available at the CDS (ascii files) and at the FEROS archive (FITS files) via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A3
High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Kyle R.; Maller, Ariyeh H.; Oñorbe, Jose
We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas (more » λ {sub cold} ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.« less
Dual throat thruster cold flow analysis
NASA Technical Reports Server (NTRS)
Lundgreen, R. B.; Nickerson, G. R.; Obrien, C. J.
1978-01-01
The concept was evaluated with cold flow (nitrogen gas) testing and through analysis for application as a tripropellant engine for single-stage-to-orbit type missions. Three modes of operation were tested and analyzed: (1) Mode 1 Series Burn, (2) Mode 1 Parallel Burn, and (3) Mode 2. Primary emphasis was placed on the Mode 2 plume attachment aerodynamics and performance. The conclusions from the test data analysis are as follows: (1) the concept is aerodynamically feasible, (2) the performance loss is as low as 0.5 percent, (3) the loss is minimized by an optimum nozzle spacing corresponding to an AF-ATS ratio of about 1.5 or an Le/Rtp ratio of 3.0 for the dual throat hardware tested, requiring only 4% bleed flow, (4) the Mode 1 and Mode 2 geometry requirements are compatible and pose no significant design problems.
NASA Technical Reports Server (NTRS)
Roelke, R. J.; Haas, J. E.
1982-01-01
The aerodynamic performance of the compressor-drive turbine of the DOE upgraded gas turbine engine was determined in low temperature air. The as-received cast rotor blading had a significantly thicker profile than design and a fairly rough surface finish. Because of these blading imperfections a series of stage tests with modified rotors were made. These included the as-cast rotor, a reduced-roughness rotor, and a rotor with blades thinned to near design. Significant performance changes were measured. Tests were also made to determine the effect of Reynolds number on the turbine performance. Comparisons are made between this turbine and the compressor-drive turbine of the DOE baseline gas turbine engine.
Formation of complex organic molecules in cold objects: the role of gas-phase reactions
NASA Astrophysics Data System (ADS)
Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney
2015-04-01
While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( ≳ 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.
Gschwendtner, Silvia; Alatossava, Tapani; Kublik, Susanne; Fuka, Mirna Mrkonjić; Schloter, Michael; Munsch-Alatossava, Patricia
2016-01-01
The quality and safety of raw milk still remains a worldwide challenge. Culture-dependent methods indicated that the continuous N2 gas-flushing of raw milk reduced the bacterial growth during cold storage by up to four orders of magnitude, compared to cold storage alone. This study investigated the influence of N2 gas-flushing on bacterial diversity in bovine raw-milk samples, that were either cold stored at 6°C or additionally flushed with pure N2 for up to one week. Next-generation sequencing (NGS) of the V1-V2 hypervariable regions of 16S rRNA genes, derived from amplified cDNA, which was obtained from RNA directly isolated from raw-milk samples, was performed. The reads, which were clustered into 2448 operational taxonomic units (OTUs), were phylogenetically classified. Our data revealed a drastic reduction in the diversity of OTUs in raw milk during cold storage at 6°C at 97% similarity level; but, the N2-flushing treatment alleviated this reduction and substantially limited the loss of bacterial diversity during the same cold-storage period. Compared to cold-stored milk, the initial raw-milk samples contained less Proteobacteria (mainly Pseudomonadaceae, Moraxellaceae and Enterobacteriaceae) but more Firmicutes (mainly Ruminococcaceaea, Lachnospiraceae and Oscillospiraceaea) and Bacteroidetes (mainly Bacteroidales). Significant differences between cold-stored and additionally N2-flushed milk were mainly related to higher levels of Pseudomononadaceae (including the genera Pseudomonas and Acinetobacter) in cold-stored milk samples; furthermore, rare taxa were better preserved by the N2 gas flushing compared to the cold storage alone. No major changes in bacterial composition with time were found regarding the distribution of the major 9 OTUs, that dominated the Pseudomonas genus in N2-flushed or non-flushed milk samples, other than an intriguing predominance of bacteria related to P. veronii. Overall, this study established that neither bacteria causing milk spoilage nor any well-known human pathogen or anaerobe benefited from the N2 gas flushing even though the N2-flushed and non-flushed cold-stored milk differed in bacterial counts by up to 104-fold.
Kublik, Susanne; Fuka, Mirna Mrkonjić; Schloter, Michael; Munsch-Alatossava, Patricia
2016-01-01
The quality and safety of raw milk still remains a worldwide challenge. Culture-dependent methods indicated that the continuous N2 gas-flushing of raw milk reduced the bacterial growth during cold storage by up to four orders of magnitude, compared to cold storage alone. This study investigated the influence of N2 gas-flushing on bacterial diversity in bovine raw-milk samples, that were either cold stored at 6°C or additionally flushed with pure N2 for up to one week. Next-generation sequencing (NGS) of the V1-V2 hypervariable regions of 16S rRNA genes, derived from amplified cDNA, which was obtained from RNA directly isolated from raw-milk samples, was performed. The reads, which were clustered into 2448 operational taxonomic units (OTUs), were phylogenetically classified. Our data revealed a drastic reduction in the diversity of OTUs in raw milk during cold storage at 6°C at 97% similarity level; but, the N2-flushing treatment alleviated this reduction and substantially limited the loss of bacterial diversity during the same cold-storage period. Compared to cold-stored milk, the initial raw-milk samples contained less Proteobacteria (mainly Pseudomonadaceae, Moraxellaceae and Enterobacteriaceae) but more Firmicutes (mainly Ruminococcaceaea, Lachnospiraceae and Oscillospiraceaea) and Bacteroidetes (mainly Bacteroidales). Significant differences between cold-stored and additionally N2-flushed milk were mainly related to higher levels of Pseudomononadaceae (including the genera Pseudomonas and Acinetobacter) in cold-stored milk samples; furthermore, rare taxa were better preserved by the N2 gas flushing compared to the cold storage alone. No major changes in bacterial composition with time were found regarding the distribution of the major 9 OTUs, that dominated the Pseudomonas genus in N2-flushed or non-flushed milk samples, other than an intriguing predominance of bacteria related to P. veronii. Overall, this study established that neither bacteria causing milk spoilage nor any well-known human pathogen or anaerobe benefited from the N2 gas flushing even though the N2-flushed and non-flushed cold-stored milk differed in bacterial counts by up to 104-fold. PMID:26730711
Robotic Lunar Lander Development Project Status
NASA Technical Reports Server (NTRS)
Hammond, Monica; Bassler, Julie; Morse, Brian
2010-01-01
This slide presentation reviews the status of the development of a robotic lunar lander. The goal of the project is to perform engineering tests and risk reduction activities to support the development of a small lunar lander for lunar surface science. This includes: (1) risk reduction for the flight of the robotic lander, (i.e., testing and analyzing various phase of the project); (2) the incremental development for the design of the robotic lander, which is to demonstrate autonomous, controlled descent and landing on airless bodies, and design of thruster configuration for 1/6th of the gravity of earth; (3) cold gas test article in flight demonstration testing; (4) warm gas testing of the robotic lander design; (5) develop and test landing algorithms; (6) validate the algorithms through analysis and test; and (7) tests of the flight propulsion system.
A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick
How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentarymore » intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10{sup 12} M {sub ⊙} halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.« less
Insulation-Testing Cryostat With Lifting Mechanism
NASA Technical Reports Server (NTRS)
Fesmire, James; Dokos, Adam; Scholtens, Brekke; Nagy, Zoltan; Augustynowicz, Stanislaw
2010-01-01
The figure depicts selected aspects of an apparatus for testing thermal-insulation materials for cryogenic systems at temperatures and under vacuum or atmospheric conditions representative of those encountered in use. This apparatus, called "Cryostat-100," is based on the established cryogen-boil-off calorimeter method, according to which the amount of heat that passes through an insulation specimen to a cryogenic fluid in a container, and thus the effective thermal conductance of the specimen, is taken to be proportional to the amount of the cryogenic fluid that boils off from the container. The design of Cryostat-100 is based partly on, and incorporates improvements over, the design of a similar prior apparatus called "Cryostat-1" described in "Improved Methods of Testing Cryogenic Insulation Materials" (KSC-12107 & KSC- 12108), NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 46. The design of Cryostat-100 also incorporates the best features of two other similar prior apparatuses called "Cryostat-2" (also described in the cited prior article) and "Cryostat- 4." Notable among the improvements in Cryostat-100 is the addition of a lifting mechanism that enables safe, rapid, reliable insertion and removal of insulation specimens and facilitates maintenance operations that involve lifting. As in Cryostat-1, the cold mass is a vertical stainless-steel cylindrical vessel subdivided into a larger measurement vessel with smaller thermal-guard vessels at both ends. During operation, all three vessels are kept filled with liquid nitrogen near saturation at ambient pressure (temperature .77.4 K). The cold mass of Cryostat-100 has a length of 1 m and diameter of 168 mm. Each specimen has a corresponding nominal length and inner diameter and a nominal thickness of 25.4 mm. Specimens that are shorter and have thicknesses between 0 and 50 mm are also acceptable. Bulk-fill, foam, clam-shell, multilayer insulation, and layered materials can be tested over a very wide range of thermal transmission: apparent thermal conductivity from 0.01 to 60 mW/m-K and heat flux from 0.1 to 500 W/sq m. A test in Cryostat-100 can be conducted at any desired gas pressure between ambient atmospheric pressure at one extreme and a vacuum with residual pressure <10(exp -5) torr (<1.33 10(exp -3) Pa) at the other extreme. The residual gas (and purge gas) is typically nitrogen, but can be any suitable purge gas (e.g., helium, argon, or carbon dioxide). Usually, the temperature on the warm boundary of the insulation specimen is maintained near the ambient value (approximately 293 K), while the boiling of liquid nitrogen at atmospheric pressure in the cold mass maintains the temperature on the cold boundary of the specimen at approximately 77 K.
Feasibility of SiC composite structures for 1644 deg gas turbine seal applications
NASA Technical Reports Server (NTRS)
Darolia, R.
1979-01-01
The feasibility of silicon carbide composite structures was evaluated for 1644 K gas turbine seal applications. The silicon carbide composites evaluated consisted of Si/SiC Silcomp (Trademark) - and sintered silicon carbide as substrates, both with attached surface layers containing BN as an additive. A total of twenty-eight candidates with variations in substrate type and density, and layer chemistry, density, microstructure, and thickness were evaluated for abradability, cold particle erosion resistance, static oxidation resistance, ballistic impact resistance, and fabricability. The BN-free layers with variations in density and pore size were later added for evaluation. The most promising candidates were evaluated for Mach 1.0 gas oxidation/erosion resistance from 1477 K to 1644 K. The as-fabricated rub layers did not perform satisfactorily in the gas oxidation/erosion tests. However, preoxidation was found to be beneficial in improving the hot gas erosion resistance. Overall, the laboratory and rig test evaluations show that material properties are suitable for 1477 K gas turbine seal applications.
Study of atmospheric plasma spray process with the emphasis on gas-shrouded nozzles
NASA Astrophysics Data System (ADS)
Jankovic, Miodrag M.
An atmospheric plasma spraying process is investigated in this work by using experimental approach and mathematical modelling. Emphasis was put on the gas shrouded nozzles, their design, and the protection against the mixing with the surrounding air, which they give to the plasma jet. First part of the thesis is dedicated to the analysis of enthalpy probe method, as a major diagnostic tool in this work. Systematic error in measuring the stagnation pressure, due to a big temperature difference between the plasma and the water-cooled probe, is investigated here. Parallel measurements with the enthalpy probe and an uncooled ceramic probe were performed. Also, numerical experiments were conducted, using the k-ɛ model of turbulence. Based on the obtained results, a compensating algorithm for the above error is suggested. Major objective of the thesis was to study the plasma spraying process, and potential benefits from using the gas shrouded nozzles. Mathematical modelling was used to perform the parametric study on the flow pattern inside these nozzles. Two nozzles were used: a commercial conical nozzle, and a custom-made curvilinear nozzle. The later is aimed towards elimination of the cold air entrainment, recorded for the conical nozzle. Also, parametric study on the shrouding gas and its interaction with the plasma jet was carried out. Two modes of the shrouding gas injection were tested: through sixteen injection ports, and through a continuous slot, surrounding the plasma jet. Both nozzles and both injection modes were thoroughly tested, experimentally and numerically. The curvilinear nozzle completely eliminates the cold air entrainment and yields significantly higher plasma temperature. Also, injection through the continuous slot resulted in a much better protection of the plasma jet. Both nozzles were used to perform the spraying tests. Obtained coatings were tested on porosity, adhesion strength, and micro- structure. These tests indicated better micro-structure of the coatings sprayed by the curvilinear nozzle. Also, their porosity was significantly lower, and the adhesion strength was higher for more than 25%. The overall results suggest that the curvilinear nozzles represent a much better solution for the gas shrouded plasma spraying.
Demonstration and evaluation of gas turbine transit buses
NASA Technical Reports Server (NTRS)
1983-01-01
The Gas Turbine Transit Bus Demonstration Program was designed to demonstrate and evaluate the operation of gas turbine engines in transit coaches in revenue service compared with diesel powered coaches. The main objective of the program was to accelerate development and commercialization of automotive gas turbines. The benefits from the installation of this engine in a transit coach were expected to be reduced weight, cleaner exhaust emissions, lower noise levels, reduced engine vibration and maintenance requirements, improved reliability and vehicle performance, greater engine braking capability, and superior cold weather starting. Four RTS-II advanced design transit coaches were converted to gas turbine power using engines and transmissions. Development, acceptance, performance and systems tests were performed on the coaches prior to the revenue service demonstration.
Single element injector cold flow testing for STME swirl coaxial injector element design
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.
1993-01-01
An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.
NASA Astrophysics Data System (ADS)
Ho, Teck Seng; Charles, Christine; Boswell, Roderick W.
2016-12-01
This paper presents computational fluid dynamics simulations of the cold gas operation of Pocket Rocket and Mini Pocket Rocket radiofrequency electrothermal microthrusters, replicating experiments performed in both sub-Torr and vacuum environments. This work takes advantage of flow velocity choking to circumvent the invalidity of modelling vacuum regions within a CFD simulation, while still preserving the accuracy of the desired results in the internal regions of the microthrusters. Simulated results of the plenum stagnation pressure is in precise agreement with experimental measurements when slip boundary conditions with the correct tangential momentum accommodation coefficients for each gas are used. Thrust and specific impulse is calculated by integrating the flow profiles at the exit of the microthrusters, and are in good agreement with experimental pendulum thrust balance measurements and theoretical expectations. For low thrust conditions where experimental instruments are not sufficiently sensitive, these cold gas simulations provide additional data points against which experimental results can be verified and extrapolated. The cold gas simulations presented in this paper will be used as a benchmark to compare with future plasma simulations of the Pocket Rocket microthruster.
Annular arc accelerator shock tube
NASA Technical Reports Server (NTRS)
Leibowitz, L. P. (Inventor)
1976-01-01
An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.
Ionization impact on molecular clouds and star formation. Numerical simulations and observations
NASA Astrophysics Data System (ADS)
Tremblin, P.
2012-11-01
At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H ii regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of the molecular cloud, the velocity spectrum of these globules is shifted at different velocities than the velocity of the shell, pillars and clumps that follow the global expansion of the H ii region. An other diagnostic is the impact of the compression on the probability density function (PDF) of the cold gas. The distribution is double peaked when the turbulent ram pressure is low compared to the ionized-gas pressure. This is the signature of the compression caused by the expansion of the ionized bubble. When the turbulence is high, the two peaks merge and the compression can still be identified although the signature is less clear. We have used Herschel column density maps and molecular-line data to characterize the density and velocity structures of the interface between the ionized and the cold gas in several regions: RCW 120, RCW 36, Cygnus X, the Rosette and Eagle Nebulae. In addition to the diagnostics derived from the simulations, analytical predictions of the shell and pillar parameters was tested and confronted to the observations. In all the regions, we have seen that there is a good agreement with the analytical models and with the simulation diagnostics. The velocity structure of a nascent pillar in the Rosette Nebula suggests that it has been formed by the collapse of the shell on itself and the bulk velocity of cometary globules in Cygnus X and in the Rosette Nebula tends to confirm their turbulent origin. The compression caused by the ionized gas can be seen on the PDF of the cold gas in most of the regions studied. This result is important for the link between the IMF and the global prop! erties of the cloud. If the IMF can be derived from the PDF of a cloud, the impact of the massive stars on the PDF has to be taken in account. Furthermore, we present dedicated simulations of RCW 36 that suggest that the dense clumps at the edge of the ionized gas are not pre-existing, it is likely that their formation was triggered by the compression caused by the ionization. Therefore the ionization from the massive stars is a key process that has to be taken into account for the understanding of the IMF. We also present in appendix other works that have been done in parallel of this thesis: the charge exchange in colliding planetary and stellar winds in collaboration with Prof. E. Chiang during the ISIMA summer school 2011 in Beijing; and the sub-millimeter site testing at the Concordia station in Antarctica with the CAMISTIC team.
Space shuttle orbiter reaction control system jet interaction study
NASA Technical Reports Server (NTRS)
Rausch, J. R.
1975-01-01
The space shuttle orbiter has forward mounted and rear mounted Reaction Control Systems (RCS) which are used for orbital maneuvering and also provide control during entry and abort maneuvers in the atmosphere. The effects of interaction between the RCS jets and the flow over the vehicle in the atmosphere are studied. Test data obtained in the NASA Langley Research Center 31 inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 is analyzed. The data were obtained with a 0.01 scale force model with aft mounted RCS nozzles mounted on the sting off of the force model balance. The plume simulations were accomplished primarily using air in a cold gas simulation through scaled nozzles, however, various cold gas mixtures of Helium and Argon were also tested. The effect of number of nozzles was tested as were limited tests of combined controls. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter where the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.
Methanation process utilizing split cold gas recycle
Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.
1976-07-06
In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.
NASA Astrophysics Data System (ADS)
Wong, Wilson
The cold gas dynamic spraying of commercially pure titanium coatings was investigated. Specifically, the relationship between several key cold spray parameters on the quality of the resulting coatings was studied in order to gain a more thorough understanding of the cold spray process. To achieve this goal, three distinct investigations were performed. The first part of the investigation focussed on the effect of propelling gas, particularly helium and nitrogen, during the cold spraying of titanium coatings. Coatings were characterised by SEM and were evaluated for their deposition efficiency (DE), microhardness, and porosity. In selected conditions, three particle velocities were investigated such that for each condition, the propelling gasses temperature and pressure were attuned to attain similar particle velocities for each gas. In addition, a thick and fully dense cold sprayed titanium coating was achieved with optimised spray parameters and nozzle using helium. The corresponding average particle velocity was 1173 m/s. The second part of the investigation studied the effect of particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20, 29, and 36 mum) of commercially pure titanium on the mechanical properties of the resulting cold sprayed coatings. Numerous powder and coating characterisations were performed. From these data, semi-empirical flow (stress-strain) curves were generated based on the Johnson-Cook plasticity model which could be used as a measure of cold sprayability. Cold sprayability can be defined as the ease with which a powder can be cold sprayed. It was found that the sponge and irregular commercially pure titanium powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities compared to the spherical powders. XRD results showed no new phases present when comparing the various feedstock powders to their corresponding coatings. For all feedstock powder morphologies, it was observed that the larger the particle size, the higher the temperature generated on impact. For the spherical powders, the higher the temperature generated on impact, the lower the stress needed to deform the particle. In addition, as the kinetic energy of the impacting particle increased, the flow peak stress decreased while the final strain increased. Furthermore, higher final flow strains were associated with higher coating DeltaHV 10 (between the coatings and the feedstock powders). Similar relationships are expected to exist for the sponge and irregular feedstock powders. Based on porosity, the spherical medium powder was found to have the best cold sprayability. The final part of the investigation focussed on the effect of substrate surface roughness and coating thickness on the adhesion strength of commercially pure titanium cold sprayed coatings onto Steel 1020, Al 6061, and Ti substrates. Adhesion strength was measured by tensile/pull tests according to ASTM C-633-01 standard. Through-thickness residual stresses of selected coatings were measured using the modified layer removal method (MLRM). In addition, mean coating residual stresses were calculated from MLRM results. It was found that adhesion strength increases with increasing substrate surface roughness and decreases with increasing coating thickness. Furthermore, mean coating residual stresses were correlated with adhesion strength and it was suggested that higher adhesion strengths are associated with higher mean compressive stresses and a higher probability for adiabatic shear instability to occur due to the higher particle impact velocities. In general, it was found that under similar cold spray conditions and substrate surface preparation method, adhesion strength was strongest for commercially pure titanium coatings deposited onto Al 6061, followed by Ti, then Steel 1020.
The ATLAS3D project - XXVII. Cold gas and the colours and ages of early-type galaxies
NASA Astrophysics Data System (ADS)
Young, Lisa M.; Scott, Nicholas; Serra, Paolo; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Weijmans, Anne-Marie
2014-11-01
We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ˜ 0.06 and H2 masses up to M(H2)/M* ˜ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ˜50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.
NASA Astrophysics Data System (ADS)
Zhang, Lefu; Chen, Kai; Du, Donghai; Gao, Wenhua; Andresen, Peter L.; Guo, Xianglong
2017-08-01
The effect of creep on stress corrosion cracking (SCC) was studied by measuring crack growth rates (CGRs) of 30% cold worked (CW) Alloy 690 in supercritical water (SCW) and inert gas environments at temperatures ranging from 450 °C to 550 °C. The SCC crack growth rate under SCW environments can be regarded as the cracking induced by the combined effect of corrosion and creep, while the CGR in inert gas environment can be taken as the portion of creep induced cracking. Results showed that the CW Alloy 690 sustained high susceptibility to intergranular (IG) cracking, and creep played a dominant role in the SCC crack growth behavior, contributing more than 80% of the total crack growth rate at each testing temperature. The temperature dependence of creep induced CGRs follows an Arrhenius dependency, with an apparent activation energy (QE) of about 225 kJ/mol.
Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs
NASA Technical Reports Server (NTRS)
Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.
2014-01-01
This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.
Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point
NASA Technical Reports Server (NTRS)
Hartwig, Jason W.; McQuillen, John B.; Chato, David J.
2013-01-01
This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.
NASA Astrophysics Data System (ADS)
E Fesmire, J.; Ancipink, J. B.; Swanger, A. M.; White, S.; Yarbrough, D.
2017-12-01
Thermal conductivity of low-density materials in thermal insulation systems varies dramatically with the environment: cold vacuum pressure, residual gas composition, and boundary temperatures. Using a reference material of aerogel composite blanket (reinforcement fibers surrounded by silica aerogel), an experimental basis for the physical heat transmission model of aerogel composites and other low-density, porous materials is suggested. Cryogenic-vacuum testing between the boundary temperatures of 78 K and 293 K is performed using a one meter cylindrical, absolute heat flow calorimeter with an aerogel blanket specimen exposed to different gas environments of nitrogen, helium, argon, or CO2. Cold vacuum pressures include the full range from 1×10-5 torr to 760 torr. The soft vacuum region, from about 0.1 torr to 10 torr, is complex and difficult to model because all modes of heat transfer - solid conduction, radiation, gas conduction, and convection - are significant contributors to the total heat flow. Therefore, the soft vacuum tests are emphasized for both heat transfer analysis and practical thermal data. Results for the aerogel composite blanket are analyzed and compared to data for its component materials. With the new thermal conductivity data, future applications of aerogel-based insulation systems are also surveyed. These include Mars exploration and surface systems in the 5 torr CO2 environment, field joints for vacuum-jacketed cryogenic piping systems, common bulkhead panels for cryogenic tanks on space launch vehicles, and liquid hydrogen cryofuel systems with helium purged conduits or enclosures.
Evolution of the Radial Abundance Gradient and Cold Gas along the Milky Way Disk
NASA Astrophysics Data System (ADS)
Chen, Q. S.; Chang, R. X.; Yin, J.
2014-03-01
We have constructed a phenomenological model of the chemical evolution of the Milky Way disk, and treated the molecular and atomic gas separately. Using this model, we explore the radial profiles of oxygen abundance, the surface density of cold gas, and their time evolutions. It is shown that the model predictions are very sensitive to the adopted infall time-scale. By comparing the model predictions with the observations, we find that the model adopting the star formation law based on H_2 can properly predict the observed radial distributions of cold gas and oxygen abundance gradient along the disk. We also compare the model results with the predictions of the model which adopts the instantaneous recycling approximation (IRA), and find that the IRA assumption has little influence on the model results, especially in the low-density gas region.
Temperature Controller System for Gas Gun Targets
NASA Astrophysics Data System (ADS)
Bucholtz, Scott; Sheffield, Stephen
2005-07-01
A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.
NASA Astrophysics Data System (ADS)
Sharon, Chelsea E.; Riechers, Dominik A.; Carilli, Chris Luke; Hodge, Jacqueline; Walter, Fabian
2016-01-01
Theoretical work has suggested that active galactic nuclei (AGN) play an important role in quenching star formation in massive galaxies. Direct evidence for AGN affecting the molecular ISM has so far been limited to detections of molecular outflows in low-redshift systems and extreme excitation regions which represent a tiny fraction of the total gas. Indirect evidence for AGN's impact on their host galaxies' cold gas phase may be provided by measurements of the gas excitation and dynamics. At z~2-3, the peak epoch of star formation and AGN activity, previous observations of the CO(1-0) line revealed that submillimeter galaxies (SMGs) have multi-phase molecular gas, including substantial reservoirs of cold-phase gas. However, the entirety of the molecular gas in AGN-host galaxies appears highly excited, potentially supporting an evolutionary connection between these two populations. I will present a new VLA sample that nearly doubles the number of CO(1-0) detections in z~2-3 SMGs and AGN-host galaxies that allows us to better compare the cold gas properties of these systems and further investigate evidence for the effects of AGN on the star-forming molecular gas.
21 CFR 1020.20 - Cold-cathode gas discharge tubes.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.20 Cold-cathode gas... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... cathode. Exit beam means that portion of the radiation which passes through the aperture resulting from...
Armendariz, Alfredo; Leith, David; Boundy, Maryanne; Goodman, Randall; Smith, Les; Carlton, Gary
2003-01-01
Aircraft engines emit an aerosol plume during startup in extremely cold weather that can drift into areas occupied by flightline ground crews. This study tested a personal sampler used to assess exposure to particles in the plume under challenging field conditions. Area and personal samples were taken at two U.S. Air Force (USAF) flightlines during the winter months. Small tube-and-wire electrostatic precipitators (ESPs) were mounted on a stationary stand positioned behind the engines to sample the exhaust. Other ESPs were worn by ground crews to sample breathing zone concentrations. In addition, an aerodynamic particle sizer 3320 (APS) was used to determine the size distribution of the particles. Samples collected with the ESP were solvent extracted and analyzed with gas chromatography-mass spectrometry. Results indicated that the plume consisted of up to 75 mg/m(3) of unburned jet fuel particles. The APS showed that nearly the entire particle mass was respirable, because the plumes had mass median diameters less than 2 micro m. These tests demonstrated that the ESP could be used at cold USAF flightlines to perform exposure assessments to the cold start particles.
Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma
NASA Astrophysics Data System (ADS)
Connor, Mairéad; Flynn, Padrig B.; Fairley, Derek J.; Marks, Nikki; Manesiotis, Panagiotis; Graham, William G.; Gilmore, Brendan F.; McGrath, John W.
2017-02-01
Clostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Spores produced by C. difficile are robust and can remain viable for months, leading to prolonged healthcare-associated outbreaks with high mortality. Exposure of C. difficile spores to a novel, non-thermal atmospheric pressure gas plasma was assessed. Factors affecting sporicidal efficacy, including percentage of oxygen in the helium carrier gas admixture, and the effect on spores from different strains representing the five evolutionary C. difficile clades was investigated. Strains from different clades displayed varying resistance to cold plasma. Strain R20291, representing the globally epidemic ribotype 027 type, was the most resistant. However all tested strains displayed a ~3 log reduction in viable spore counts after plasma treatment for 5 minutes. Inactivation of a ribotype 078 strain, the most prevalent clinical type seen in Northern Ireland, was further assessed with respect to surface decontamination, pH, and hydrogen peroxide concentration. Environmental factors affected plasma activity, with dry spores without the presence of organic matter being most susceptible. This study demonstrates that cold atmospheric plasma can effectively inactivate C. difficile spores, and highlights factors that can affect sporicidal activity.
Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides
NASA Technical Reports Server (NTRS)
Collins, J.; Rosner, D. E.; Castillo, J.
1992-01-01
A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.
Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes
Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.
2009-01-01
Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.
Vision-Based 3D Motion Estimation for On-Orbit Proximity Satellite Tracking and Navigation
2015-06-01
Multiple-Purpose Crew Vehicle (MPVC), which will be provided with a LIDAR sensor as primary relative navigation system [26, 33, 34]. A drawback of LIDAR...328–352, 2009. [63] C. Luigini and M. Romano, “A ballistic- pendulum test stand to characterize small cold-gas thruster nozzles,” Acta
Cholinergic mechanisms of analgesia produced by physostigmine, morphine and cold water swimming.
Romano, J A; Shih, T M
1983-07-01
This study concerns the cholinergic involvement in three experimental procedures which produce analgesia. Rats were given one of seven treatments: saline (1.0 ml/kg, i.p.); morphine sulfate (3.5, 6.0 or 9.0 mg/kg, i.p.); physostigmine salicylate (0.65 mg/kg, i.p.); warm water swim (3.5 min at 28 degrees C); and cold water swim (3.5 min at 2 degrees C). Each rat was tested on a hot plate (59.1 degrees C) once prior to and 30 min after treatment. Immediately after the last test the rats were killed with focussed microwave radiation. Levels of acetylcholine (ACh) and choline (Ch) in six brain areas (brain stem, cerebral cortex, hippocampus, midbrain, cerebellum and striatum) were analyzed by gas chromatograph-mass spectrometer. Morphine (9.0 mg/kg), physostigmine and cold water swimming caused significant analgesia. Morphine elevated the levels of ACh in the cerebellum and striatum, cold water swimming--in the cerebellum, striatum and cortex, and physostigmine--in the striatum and hippocampus. Levels of choline were elevated by morphine in the cerebellum, cortex and hippocampus, while cold water swimming elevated levels of choline in the cerebellum, cortex, striatum and hippocampus. Physostigmine did not change levels of choline in any of the brain areas studied. These data suggest that the analgetic effects of morphine or cold water swimming may be mediated by components of the cholinergic system that differ from those involved in the analgetic effects of physostigmine.
High-pressure gas quenching in cold chambers for increased cooling capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segerberg, S.; Troell, E.
1996-12-31
Gas quenching for the hardening of steel parts is a lower-pollution alternative to quenching in quenchants such as oil or salt. As the surfaces of the cooled parts remain clean after gas quenching, there is no need to wash them after heat treatment, which reduces the consumption of oils and detergents. The fire risk and ventilation requirements of oil quenching are eliminated. In addition, some trials have shown that gas quenching has a positive effect on distortion, representing a saving in finishing work and thus a reduction in costs. Today, gas quenching is used almost solely in vacuum furnaces. Quenchingmore » is normally performed in the same chamber as heating, which means that besides quenching the batch, the quenching system must also remove heat from the heating elements and insulation of the furnace. Previous trials performed by IVF have shown that gas quenching with helium of ball bearing and carburizing steels (and other steels) in sizes up to 25 mm at pressures up to 20 bar in a vacuum furnace can achieve quenching rates and hardnesses similar to those achieved by hot quenching oils. This quenching performance is not, however, capable of dealing with larger sizes or lower-alloy steels. At IVF`s request, ALD Vacuum Technologies GmbH has developed a cold high-pressure gas quenching chamber that is independent of the furnace. As a result, there is no need to cool insulation or heating elements. Quenching can be carried out in the chamber at pressures of up to 40 bar for helium or up to 10 bar for nitrogen. The quenching chamber has been supplied to IVF, and has been used for experimental quenching of steel test pieces and components. Temperatures have been recorded by using some Inconel 600 test probes, {phi} 12,5 x 60 mm, with thermocouples in their centers.« less
Pulsed Discharge Nozzle Cavity Ring Down Spectroscopy of Cold PAH Ions
NASA Technical Reports Server (NTRS)
Biennier, Ludovic; Salama, Farid; Allamandola, Louis J.; Scherer, James J.; DeVincenzi, Donald (Technical Monitor)
2002-01-01
The gas-phase electronic absorption spectra of the naphthalene (C10H8(+)) and acenaphthene (C12H10(+)) cations have been measured in the visible range in a free 10 jet planar expansion in an attempt to collect data in an astrophysically relevant environment. The direct absorption spectra of two out of four bands measured of the gas-phase cold naphthalene cation along with the gas-phase vibronic absorption spectrum of the cold acenaphthene cation are reported for the first time. The study has been carried out using the ultrasensitive and versatile technique of cavity ringdown spectroscopy (CRDS) coupled to a pulsed discharge slit nozzle (PDN). The new CRDS-PDN set up is described and its characteristics are evaluated. The direct-absorption spectra of the PAH ions are discussed and compared to the gas-phase and solid-phase data available in the literature. The analysis of the results show that cold, free flying PAH ions are generated in the argon discharge primarily through soft Penning ionization. This enables the intrinsic band profiles to be measured, a key requirement for astrophysical applications.
Laboratory plasma with cold electron temperature of the lower ionosphere
NASA Astrophysics Data System (ADS)
Dickson, Shannon; Robertson, Scott
2009-10-01
For the first time, plasma with cold electron temperatures less than 300K has been created continuously in the laboratory. The plasma is created in a cylindrical double-walled vacuum chamber in which the inner chamber (18cm in diameter and 30cm long) is wrapped in copper tubing through which vapor from liquid nitrogen flows, providing a cooling mechanism for the neutral gas. The inner chamber has two negatively-biased filaments for plasma generation and a platinum wire Langmuir probe for diagnostic measurements. Neutral gas pressures of 1.6mTorr and a total filament emission current of 2mA are used to obtain plasma densities near 4 x 10^8 cm-3. When carbon monoxide is used as the working gas, decreasing the neutral gas temperature also decreases the cold electron temperatures, yielding cold electrons with 21meV (240K) when the neutral CO is at 150K. The same experiment conducted with H2, He, or Ar results in a doubling of the cold electron temperatures, yielding 80meV (930K) when the neutral gas is at 150K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a nonzero electric dipole moment which increases the cross section for electron energy exchange. Nitric oxide, a dominant constituent of the ionosphere, has a similar dipole moment and collision cross section as carbon monoxide and is likely to be equally effective at cooling electrons.
Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors
NASA Astrophysics Data System (ADS)
Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar
2018-02-01
The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.
AGN feedback compared: jets versus radiation
NASA Astrophysics Data System (ADS)
Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan
2018-06-01
Feedback by active galactic nuclei (AGNs) is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM (interstellar medium) interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGNs of 1043 and 1046 erg s-1, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarefies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20 {per cent} in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01-0.1 M⊙ yr-1, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGNs modulate their own duty cycle in a feedback/feeding cycle.
Cold Flow Testing of a Modified Subscale Model Exhaust System for a Space Based Laser
2004-06-01
Abstract The aim of this research was a continued study of gas-dynamic phenomena that occurred in a set of stacked nozzles as reported by Captains...join the vacuum and test sections. The goals of this research were two fold; first, modify the original scale-model of the stacked cylindrical...Defense Advanced Research Projects Agency (DARPA), in conjunction with the Airborne Laser Laboratory, have studied the use of an Airborne Laser (ABL
Bimodal gas accretion in the Horizon-MareNostrum galaxy formation simulation
NASA Astrophysics Data System (ADS)
Ocvirk, P.; Pichon, C.; Teyssier, R.
2008-11-01
The physics of diffuse gas accretion and the properties of the cold and hot modes of accretion on to proto-galaxies between z = 2 and 5.4 is investigated using the large cosmological simulation performed with the RAMSES code on the MareNostrum supercomputing facility. Galactic winds, chemical enrichment, ultraviolet background heating and radiative cooling are taken into account in this very high resolution simulation. Using accretion-weighted temperature histograms, we have performed two different measurements of the thermal state of the gas accreted towards the central galaxy. The first measurement, performed using accretion-weighted histograms on a spherical surface of radius 0.2Rvir centred on the densest gas structure near the halo centre of mass, is a good indicator of the presence of an accretion shock in the vicinity of the galactic disc. We define the hot shock mass, Mshock, as the typical halo mass separating cold dominated from hot dominated accretion in the vicinity of the galaxy. The second measurement is performed by radially averaging histograms between 0.2Rvir and Rvir, in order to detect radially extended structures such as gas filaments: this is a good proxy for detecting cold streams feeding the central galaxy. We define Mstream as the transition mass separating cold dominated from hot dominated accretion in the outer halo, marking the disappearance of these cold streams. We find a hot shock transition mass of Mshock = 1011.6Msolar (dark matter), with no significant evolution with redshift. Conversely, we find that Mstream increases sharply with z. Our measurements are in agreement with the analytical predictions of Birnboim & Dekel and Dekel & Birnboim, if we correct their model by assuming low metallicity (<=10-3Zsolar) for the filaments, correspondingly to our measurements. Metal enrichment of the intergalactic medium is therefore a key ingredient in determining the transition mass from cold to hot dominated diffuse gas accretion. We find that the diffuse cold gas supply at the inner halo stops at z = 2 for objects with stellar masses of about 1011.1Msolar, which is close to the quenching mass determined observationally by Bundy et al. However, its evolution with z is not well constrained, making it difficult to rule out or confirm the need for an additional feedback process such as active galactic nuclei.
Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas (Author’s Manuscript)
2017-01-27
Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas Yong Xu,∗ Sheng-Tao Wang, and L.-M. Duan Department of Physics, University...atomic gas trapped in an optical lattice. Recently, condensed matter systems have proven to be a powerful platform to study low energy gapless...possess a nonzero quantized Chern number. This leads to a natural question of whether there exists a topological ring exhibiting both a quantized Chern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.
2013-12-03
For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less
Novel test of modified Newtonian dynamics with gas rich galaxies.
McGaugh, Stacy S
2011-03-25
The current cosmological paradigm, the cold dark matter model with a cosmological constant, requires that the mass-energy of the Universe be dominated by invisible components: dark matter and dark energy. An alternative to these dark components is that the law of gravity be modified on the relevant scales. A test of these ideas is provided by the baryonic Tully-Fisher relation (BTFR), an empirical relation between the observed mass of a galaxy and its rotation velocity. Here, I report a test using gas rich galaxies for which both axes of the BTFR can be measured independently of the theories being tested and without the systematic uncertainty in stellar mass that affects the same test with star dominated spirals. The data fall precisely where predicted a priori by the modified Newtonian dynamics. The scatter in the BTFR is attributable entirely to observational uncertainty, consistent with a single effective force law.
NASA Technical Reports Server (NTRS)
Hartman, A. S.; Nutt, K. W.
1982-01-01
Tests of the space shuttle external tank foam insulation were conducted in the von Karman Gas Dynamics Facility Tunnel C. For these tests, Tunnel C was run at Mach 4 with a total temperature of 1440 F and a total pressure which varied from 30-100 psia. Cold wall heating rates were changed by varying the test article support wedge angle and by adding and removing a shock generator or a cylindrical protuberance. Selected results are presented to illustrate the test techniques and typical data obtained.
DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, A. S.
2016-07-11
The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less
Young Galaxy Surrounded by Material Needed to Make Stars, VLA Reveals
NASA Astrophysics Data System (ADS)
2001-01-01
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered a massive reservoir of cold gas from which a primeval galaxy formed its first stars. Looking more than 12 billion years into the past, the scientists found that the young galaxy experiencing a "burst" of star formation was surrounded by enough cold molecular gas to make 100 billion suns. Optical and Radio Images of APM 08279+5255 at About the Same Scale "This is the first time anyone has seen the massive reservoir of cold gas required for these incredible 'starbursts' to produce a galaxy," said Chris Carilli, an astronomer at the NSF's National Radio Astronomy Observatory (NRAO) in Socorro, NM. "There is much more gas here than we anticipated," Carilli added. The research team was led by Padeli Papadoupoulos of Leiden Observatory in the Netherlands and also included Rob Ivison of University College London and Geraint Lewis of the Anglo-Australian Observatory in Australia. The scientists reported their findings in the January 4 edition of the journal Nature. The astronomers found the gas when studying a quasar called APM 08279+5255, discovered in 1998. Observations with optical and infrared telescopes revealed that the quasar, a young galaxy with a voracious black hole at its center, was forming new stars rapidly in a starburst. At a distance of more than 12 billion light-years, the quasar is seen as it was more than 12 billion years ago, just a billion or so years after the Big Bang. "This thing is at the edge of the dark ages," before the first stars in the universe were born, said Carilli. The year after its discovery, APM 08279+5255 was found to have warm carbon monoxide (CO) gas near its center, heated by the energy released as the galaxy's black hole devours material. The VLA observations revealed cold CO gas much more widely distributed than its warmer counterpart. Based on observations of closer objects, the astronomers presume the CO gas is accompanied by large amounts of molecular hydrogen gas (H2). Cold CO gas never has been detected before in such a distant object. Though APM 08279+5255 is a young galaxy undergoing its first massive burst of star formation, the CO gas indicates that very massive stars formed quickly, lived through their short lifetimes, and exploded as supernovae. Carbon and Oxygen, the component elements of CO, are formed in the cores of stars, so their presence in the cold gas tells the astronomers that massive, short-lived stars had to have exploded already, spreading these elements throughout the galaxy's interstellar gas. "The original discovery of this quasar was quite a surprise, as observations revealed it is among the most luminous objects known in the universe. The discovery of this massive reservoir of cold gas is equally surprising. It provides vital clues to the birth of galaxies, such as our own Milky Way," Lewis said. Discovery of the gas was made possible by the galaxy's great distance. The expansion of the universe "stretches" light and radio waves to longer wavelengths -- the more distant the object, the more stretching is seen. Radio waves emitted by the cold CO gas originally had wavelengths of about 1.3 and 2.6 millimeters, but were "redshifted" to wavelengths of 7 and 13 millimeters -- wavelengths the VLA can receive. "It took eight years to refine this technique, but the effort has been worthwhile. This is the golden age of cosmology. We are learning more and more about our universe, from the smallest planets to the largest galaxy clusters. This new result is a crucial piece in the jigsaw and may help resolve many misconceptions about how galaxies form and evolve" Ivison said. "Because of its sensitivity and its ability to make detailed images, the VLA is the only telescope able to unveil these large reservoirs of cold molecular gas in the distant universe," Carilli said. "In addition, as we expand the technical capabilities of the VLA in the coming years, making it even more sensitive and able to show more detail, it will become the world's premier tool for studying this vital aspect of the young universe." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Highlights of Nanosatellite Development Program at NASA-Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rhee, Michael S.; Zakrzwski, Chuck M.; Thomas, Mike A.; Bauer, Frank H. (Technical Monitor)
2000-01-01
Currently the GN&C's Propulsion Branch of the NASA's Goddard Space Flight Center (GSFC) is conducting a broad technology development program for propulsion devices that are ideally suited for nanosatellite missions. The goal of our program is to develop nanosatellite propulsion systems that can be flight qualified in a few years and flown in support of nanosatellite missions. The miniature cold gas thruster technology, the first product from the GSFC's propulsion component technology development program, will be flown on the upcoming ST-5 mission in 2003. The ST-5 mission is designed to validate various nanosatellite technologies in all major subsystem areas. It is a precursor mission to more ambitious nanosatellite missions such as the Magnetospheric Constellation mission. By teaming with the industry and government partners, the GSFC propulsion component technology development program is aimed at pursuing a multitude of nanosatellite propulsion options simultaneously, ranging from miniaturized thrusters based on traditional chemical engines to MEMS based thruster systems. After a conceptual study phase to determine the feasibility and the applicability to nanosatellite missions, flight like prototypes of selected technology are fabricated for testing. The development program will further narrow down the effort to those technologies that are considered "mission-enabling" for future nanosatellite missions. These technologies will be flight qualified to be flown on upcoming nanosatellite missions. This paper will report on the status of our development program and provide details on the following technologies: Low power miniature cold gas thruster Nanosatellite solid rocket motor. Solid propellant gas generator system for cold gas thruster. Low temperature hydrazine blends for miniature hydrazine thruster. MEMS mono propellant thruster using hydrogen peroxide.
Hot and cold gas toward young stellar objects
NASA Technical Reports Server (NTRS)
Mitchell, George F.; Maillard, Jean-Pierre; Allen, Mark; Beer, Reinhard; Belcourt, Kenneth
1990-01-01
High-resolution M band spectra are presented for the seven embedded IR sources W3 IRS 5, S140 IRS1, NGC 7538 IRS 1, NGC 7538 IRS 9, GL 2136, LkH-alpha 101, and MWC 349A, and the data are combined with previously published work for W33A and GL 2591. Cold CO is seen toward all nine sources, with temperatures from 11 K to 66 K. Column densities of cold CO are presented. Hot gas is seen toward eight of the nine objects with temperatures from 120 K to 1010 K. New lower limits to the hot gas density are obtained. The hot gas toward GL 2591, GL 2136, W3 IRS 5, and S140 IRS 1 is probably very near the central source and heated via gas-grain collisions. The optical depth in the silicate feature is strongly correlated with the (C-13)O column density, confirming that silicate optical depth is a useful measure of gas column density. The ratio of solid-to-gaseous CO is obtained for seven sources.
The Mercury-Drag Effect, a Demonstration of Transport Phenomena
ERIC Educational Resources Information Center
Martin, D. H.; Teese, R. B
1969-01-01
The mercury-drag effect is demonstrated when mercury vapor diffuses through nitrogen gas at low pressure, passing through tubes of different radii to liquid nitrogen-cooled cold traps. The pressure changes of the nitrogen gas on the mercury-deficient side of the cold traps are observed and compared with theoretical and experimental valves from the…
Liquefied petroleum gas cold burn sustained while refueling a car.
Scarr, Bronwyn; Mitra, Biswadev; Maini, Amit; Cleland, Heather
2010-02-01
There have been few cases of cold burn related to the exposure of liquid petroleum gas (LPG). We present the case of a young woman exposed to LPG while refueling her car who sustained partial thickness burns to the dorsum of her hand. Contact with LPG leaking from a pressurized system causes tissue damage because of cold injury. Immediate management of LPG is extrapolated from the management of frostbite. The increasing use of LPG mandates an awareness of prevention strategies and management principles in the setting of adverse events.
NASA Technical Reports Server (NTRS)
Roffe, G.; Raman, R. S. V.
1981-01-01
Tests were run using a perforated plate flameholder with a relatively short attached recirculation zone and a vee gutter flameholder with a relatively long attached recirculation zone. Combustor streamlines were traced in cold flow tests at ambient pressure. The amount of secondary air entrainment in the recirculation zones of the flameholders was determined by tracer gas testing at cold flow ambient pressure conditions. Combustion tests were caried out at entrance conditions of 0.5 MPa/630K and emission of NOx, CO and unburned hydrocarbons were measured along with lean stability and flashback limits. The degree of entrainment increases as dilution air injection decreases. Flashback appears to be a function of overall equivalence ratio and resistance to flashback increases with increasing combustor entrance velocity. Lean stability limit appears to be a function of both primary zone and flameholder recirculation zone equivalence ratios and resistance to lean blowout increases with increasing combustor entrance velocity.
Chemical Microthruster Options
NASA Technical Reports Server (NTRS)
DeGroot, Wim; Oleson, Steve
1996-01-01
Chemical propulsion systems with potential application to microsatellites are classified by propellant phase, i.e. gas, liquid, or solid. Four promising concepts are selected based on performance, weight, size, cost, and reliability. The selected concepts, in varying stages of development, are advanced monopropellants, tridyne(TM), electrolysis, and solid gas generator propulsion. Tridyne(TM) and electrolysis propulsion are compared vs. existing cold gas and monopropellant systems for selected microsatellite missions. Electrolysis is shown to provide a significant weight advantage over monopropellant propulsion for an orbit transfer and plane change mission. Tridyne(TM) is shown to provide a significant advantage over cold gas thrusters for orbit trimming and spacecraft separation.
The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process
NASA Astrophysics Data System (ADS)
Rahmati, Saeed; Ghaei, Abbas
2014-02-01
Cold spray is a coating deposition method in which the solid particles are accelerated to the substrate using a low temperature supersonic gas flow. Many numerical studies have been carried out in the literature in order to study this process in more depth. Despite the inability of Johnson-Cook plasticity model in prediction of material behavior at high strain rates, it is the model that has been frequently used in simulation of cold spray. Therefore, this research was devoted to compare the performance of different material models in the simulation of cold spray process. Six different material models, appropriate for high strain-rate plasticity, were employed in finite element simulation of cold spray process for copper. The results showed that the material model had a considerable effect on the predicted deformed shapes.
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
Quasar Probing Galaxies: New Constraints on Cold Gas Accretion at Z=0.2
NASA Astrophysics Data System (ADS)
Ho, Stephanie H.
2017-07-01
Galactic disks grow by accreting cooling gas from the circumgalactic medium, and yet direct observations of inflowing gas remain sparse. We observed quasars behind star-forming galaxies and measured the kinematics of circumgalactic absorption. Near the galaxy plane, the Mg II Doppler shifts share the same sign as the galactic rotation, which implies the gas co-rotates with the galaxy disk. However, a rotating disk model fails to explain the observed broad velocity range. Gas spiraling inward near the disk plane offers a plausible explanation for the lower velocity gas. We will discuss the sizes of these circumgalactic disks, the properties of their host galaxies, and predictions for the spiral arms. Our results provide direct evidence for cold gas accretion at redshift z=0.2.
Cold and warm electrons at comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Eriksson, A. I.; Engelhardt, I. A. D.; André, M.; Boström, R.; Edberg, N. J. T.; Johansson, F. L.; Odelstad, E.; Vigren, E.; Wahlund, J.-E.; Henri, P.; Lebreton, J.-P.; Miloch, W. J.; Paulsson, J. J. P.; Simon Wedlund, C.; Yang, L.; Karlsson, T.; Jarvinen, R.; Broiles, T.; Mandt, K.; Carr, C. M.; Galand, M.; Nilsson, H.; Norberg, C.
2017-09-01
Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims: Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma. Methods: In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas. Results: LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5-10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order - 10 V. Conclusions: The warm (5-10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that we observe as pulses.
A solenoid failure detection system for cold gas attitude control jet valves
NASA Technical Reports Server (NTRS)
Johnston, P. A.
1970-01-01
The development of a solenoid valve failure detection system is described. The technique requires the addition of a radioactive gas to the propellant of a cold gas jet attitude control system. Solenoid failure is detected with an avalanche radiation detector located in the jet nozzle which senses the radiation emitted by the leaking radioactive gas. Measurements of carbon monoxide leakage rates through a Mariner type solenoid valve are presented as a function of gas activity and detector configuration. A cylindrical avalanche detector with a factor of 40 improvement in leak sensitivity is proposed for flight systems because it allows the quantity of radioactive gas that must be added to the propellant to be reduced to a practical level.
Pumping Performance or RBCC Engine under Sea Level Static Condition
NASA Astrophysics Data System (ADS)
Kouchi, Toshinori; Tomioka, Sadatake; Kanda, Takeshi
Numerical simulations were conducted to predict the ejector pumping performance of a rocket-ramjet combined-cycle engine under a take-off condition. The numerical simulations revealed that the suction airflow was chocked at the exit of the engine throat when the ejector rocket was driven by cold N2 gas at the chamber pressure of 3MPa. When the ejector-driving gas was changed from cold N2 gas to hot combustion gas, the suction performance decreased remarkably. Mach contours in the engine revealed that the rocket plume constricted when the driving gas was the hot combustion gas. The change of the area of the stream tube area seemed to induce the pressure rise in the duct and decreasing in the pumping performance.
Leal, L O; Elsholz, O; Forteza, R; Cerdà, V
2006-07-28
A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L(-1). The detection limit (3sigma(b)/S) achieved is 5 ng L(-1). The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L(-1) Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.
NASA Astrophysics Data System (ADS)
Delavault, Stéphanie; Prieur, Pascal; Liénart, Thomas; Robert, Alain; Guidotti, Pierre-Yves
2018-04-01
Microscope is a CNES-ESA-ONERA-CNRS-OCA-DLR-ZARM mission dedicated to the test of the Equivalence Principle with an improved accuracy of 10-15. The 300 kg drag-free microsatellite was launched on April 25th 2016 into a 710 km dawndusk sun-synchronous orbit for a 2-year mission. To comply with stringent requirements, the drag-free and attitude control system (DFACS) involves the scientific accelerometer as main sensor and a set of 8 cold gas proportional thrusters. Once in mission mode, within the CNES drag-free expertise center (CECT) the DFACS team provides several services to the system and to the scientific mission center: cold gas monitoring and management, `Attitude' ancillary data, DFACS expertise ancillary data. For this purpose, expertise tools have been implemented in the CECT, using the flexibility and efficiency of Matlab™ utilities. This paper presents the role of the CECT within the mission and details the expertise activities of the DFACS team illustrated with some typical in flight results.
Heat Treatment of Cold-Sprayed C355 Al for Repair: Microstructure and Mechanical Properties
NASA Astrophysics Data System (ADS)
Murray, J. W.; Zuccoli, M. V.; Hussain, T.
2018-01-01
Cold gas dynamic spraying of commercially pure aluminum is widely used for dimensional repair in the aerospace sector as it is capable of producing oxide-free deposits of hundreds of micrometer thickness with strong bonding to the substrate, based on adhesive pull-off tests, and often with enhanced hardness compared to the powder prior to spraying. There is significant interest in extending this application to structural, load-bearing repairs. Particularly, in the case of high-strength aluminum alloys, cold spray deposits can exhibit high levels of porosity and microcracks, leading to mechanical properties that are inadequate for most load-bearing applications. Here, heat treatment was investigated as a potential means of improving the properties of cold-sprayed coatings from Al alloy C355. Coatings produced with process conditions of 500 °C and 60 bar were heat-treated at 175, 200, 225, 250 °C for 4 h in air, and the evolution of the microstructure and microhardness was analyzed. Heat treatment at 225 and 250 °C revealed a decreased porosity ( 0.14% and 0.02%, respectively) with the former yielding slightly reduced hardness (105 versus 130 HV0.05 as-sprayed). Compressive residual stress levels were approximately halved at all depths into the coating after heat treatment, and tensile testing showed an improvement in ductility.
NASA Astrophysics Data System (ADS)
Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.
2017-10-01
As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.
1973-06-01
approximately 4. Use of a cold gas for determining was determined and presented in Figure 3. This analysis was unsteady flow characteristics and...driven by a hydraulic motor. shown experimentally that drawbar force re- Roller motion develops a high rotating force , ductions greater than one part in...of doors, a water table flow bient pressure. The interest in determining this decay time is analogy was used. With this analogy, a two-dimensional
Bi-directional thruster development and test report
NASA Technical Reports Server (NTRS)
Jacot, A. D.; Bushnell, G. S.; Anderson, T. M.
1990-01-01
The design, calibration and testing of a cold gas, bi-directional throttlable thruster are discussed. The thruster consists of an electro-pneumatic servovalve exhausting through opposite nozzles with a high gain pressure feedback loop to optimize performance. The thruster force was measured to determine hysteresis and linearity. Integral gain was used to maximize performance for linearity, hysteresis, and minimum thrust requirements. Proportional gain provided high dynamic response (bandwidth and phase lag). Thruster performance is very important since the thrusters are intended to be used for active control.
Cold Gas in High-z Galaxies: The CO Gas Excitation Ladder and the need for the ngVLA
NASA Astrophysics Data System (ADS)
Casey, Caitlin M.; Champagne, Jaclyn; Narayanan, Desika; Davé, Romeel; Hung, Chao-Ling; Carilli, Chris; Murphy, Eric Joseph; Decarli, Roberto; Popping, Gergo; Riechers, Dominik A.; Somerville, Rachel; Walter, Fabian
2018-01-01
We will present updated results on a community study led to understand the observable molecular gas properties of high-z galaxies. This work uses a series of high-resolution, hydrodynamic, cosmological zoom-in simulations from MUFASA, the Despotic radiative transfer code that uses simultaneous thermal and statistical equilibrium in calculating molecular and atomic level populations, and a CASA simulator which generates mock ngVLA and ALMA observations. Our work reveals a stark contrast in gas characteristics (geometry and kinematics) as measured from low-J transitions of CO to high-J transitions, demonstrating the need for the ngVLA in probing the cold gas reservoir in the highest-redshift galaxies.
Possible Imprints of Cold-mode Accretion on the Present-day Properties of Disk Galaxies
NASA Astrophysics Data System (ADS)
Noguchi, Masafumi
2018-01-01
Recent theoretical studies suggest that a significant part of the primordial gas accretes onto forming galaxies as narrow filaments of cold gas without building a shock and experiencing heating. Using a simple model of disk galaxy evolution that combines the growth of dark matter halos predicted by cosmological simulations with a hypothetical form of cold-mode accretion, we investigate how this cold-accretion mode affects the formation process of disk galaxies. It is found that the shock-heating and cold-accretion models produce compatible results for low-mass galaxies owing to the short cooling timescale in such galaxies. However, cold accretion significantly alters the evolution of disk galaxies more massive than the Milky Way and puts observable fingerprints on their present properties. For a galaxy with a virial mass {M}{vir}=2.5× {10}12 {M}ȯ , the scale length of the stellar disk is larger by 41% in the cold-accretion model than in the shock-heating model, with the former model reproducing the steep rise in the size–mass relation observed at the high-mass end. Furthermore, the stellar component of massive galaxies becomes significantly redder (0.66 in u ‑ r at {M}{vir}=2.5× {10}12 {M}ȯ ), and the observed color–mass relation in nearby galaxies is qualitatively reproduced. These results suggest that large disk galaxies with red optical colors may be the product of cold-mode accretion. The essential role of cold accretion is to promote disk formation in the intermediate-evolution phase (0.5< z< 1.5) by providing the primordial gas having large angular momentum and to terminate late-epoch accretion, quenching star formation and making massive galaxies red.
Influence of hot and cold neutrals on scrape-off layer tokamak plasma turbulence
NASA Astrophysics Data System (ADS)
Bisai, N.; Kaw, P. K.
2018-01-01
The modification of interchange plasma turbulence in the scrape-off layer (SOL) region by the presence of hot and cold neutral gas molecules has been studied. The nonlinear equations have been solved numerically using two different simulations ("uniform-Te" and "varying-Te"), and the results obtained from both of the models have been compared. The hot neutrals, responsible for the increase in the electron density in the SOL, also account for more ionization of the cold molecules. The effect of hot and cold neutrals on the interchange turbulence is almost similar in the "uniform-Te" model, but in the "varying-Te" model, the influence of the hot neutrals is very small, specifically in the far SOL region. The neutral gas in the "varying Te" model decreases the heat load on the material walls by about 7%. A reduction in the radial velocity by about 25% and effective diffusion coefficient of the plasma particles has been found by the influence of the neutral gas.
OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying
NASA Astrophysics Data System (ADS)
Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.
2018-01-01
In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.
NASA Technical Reports Server (NTRS)
Cooper, Morton; Mayo, Edward E.; Julius, Jerome D.
1960-01-01
Measurements of the location of boundary-layer transition and the local heat transfer have been made on 2-inch-diameter hemispheres in the Langley gas dynamics laboratory at a Mach number of 4.95, a Reynolds number per foot of 73.2 x 10(exp 6), and a stagnation temperature of approximately 400 F. The transient-heating thin-skin calorimeter technique was used, and the initial values of the wall-to-stream stagnation- temperature ratios were 0.16 (cold-model tests) and 0.65 (hot-model test). During two of the four cold tests, the boundary-layer flow changed from turbulent to laminar over large regions of the hemisphere as the model heated. On the basis of a detailed consideration of the magnitude of roughness possibly present during these two cold tests, it appears that this destabilizing effect of low wall temperatures (cooling) was not caused by roughness as a dominant influence. This idea of a decrease in boundary-layer stability with cooling has been previously suggested. (See, for example, NASA Memorandum 10-8-58E.) For the laminar data obtained during the early part of the hot test, the correlation of the local-heating data with laminar theory was excellent.
2-D and 3-D mixing flow analyses of a scramjet-afterbody configuration
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Eleshaky, Mohamed E.; Engelund, Walter C.
1989-01-01
A cold simulant gas study of propulsion/airframe integration for a hypersonic vehicle powered by a scramjet engine is presented. The specific heat ratio of the hot exhaust gases are matched by utilizing a cold mixture of argon and Freon-12. Solutions are obtained for a hypersonic corner flow and a supersonic rectangular flow in order to provide the upstream boundary conditions. The computational test examples also provide a comparison of this flow with that of air as the expanding supersonic jet, where the specific heats are assumed to be constant. It is shown that the three-dimensional computational fluid capabilities developed for these types of flow may be utilized to augment the conventional wind tunnel studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can help in the design of a scramjet internal-external nozzle.
Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto
2001-01-01
The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.
Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto
1999-01-01
The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.
NASA Astrophysics Data System (ADS)
Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.
2014-12-01
The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.
Zhao, Yunliang; Lambe, Andrew T; Saleh, Rawad; Saliba, Georges; Robinson, Allen L
2018-02-06
Secondary organic aerosol (SOA) formation from dilute exhaust from 16 gasoline vehicles was investigated using a potential aerosol mass (PAM) oxidation flow reactor during chassis dynamometer testing using the cold-start unified cycle (UC). Ten vehicles were equipped with gasoline direct injection engines (GDI vehicles) and six with port fuel injection engines (PFI vehicles) certified to a wide range of emissions standards. We measured similar SOA production from GDI and PFI vehicles certified to the same emissions standard; less SOA production from vehicles certified to stricter emissions standards; and, after accounting for differences in gas-particle partitioning, similar effective SOA yields across different engine technologies and certification standards. Therefore the ongoing, dramatic shift from PFI to GDI vehicles in the United States should not alter the contribution of gasoline vehicles to ambient SOA and the natural replacement of older vehicles with newer ones certified to stricter emissions standards should reduce atmospheric SOA levels. Compared to hot operations, cold-start exhaust had lower effective SOA yields, but still contributed more SOA overall because of substantially higher organic gas emissions. We demonstrate that the PAM reactor can be used as a screening tool for vehicle SOA production by carefully accounting for the effects of the large variations in emission rates.
Cold Water Vapor in the Barnard 5 Molecular Cloud
NASA Technical Reports Server (NTRS)
Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.
2014-01-01
After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.
Cryogenic target formation using cold gas jets
Hendricks, Charles D.
1981-01-01
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.
Cryogenic target formation using cold gas jets
Hendricks, Charles D. [Livermore, CA
1980-02-26
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.
NASA Technical Reports Server (NTRS)
Rayner, J. T.; Chuter, T. C.; Mclean, I. S.; Radostitz, J. V.; Nolt, I. G.
1988-01-01
A technique for establishing a stable intermediate temperature stage in liquid He/liquid N2 double vessel cryostats is described. The tertiary cold stage, which can be tuned to any temperature between 10 and 60 K, is ideal for cooling IR sensors for use in astronomy and physics applications. The device is called a variable-conductance gas switch. It is essentially a small chamber, located between the cold stage and liquid helium cold-face, whose thermal conductance may be controlled by varying the pressure of helium gas within the chamber. A key feature of this device is the large range of temperature control achieved with a very small (less than 10 mW) heat input from the cryogenic temperature control switch.
Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Lee, Eve J.
2018-06-01
The majority of gas giants (planets of masses ≳102 M ⊕) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M ⊕. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet’s orbit slows down and eventually halts migration. A pressure bump outside the planet’s orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.
An Investigation of Transonic Flow Fields Surrounding Hot and Cold Sonic Jets
NASA Technical Reports Server (NTRS)
Lee, George
1961-01-01
An investigation at free-stream Mach numbers of 0.90 t o 1.10 was made to determine (1) the jet boundaries and the flow fields around hot and cold jets, and (2) whether a cold-gas jet could adequately simulate the boundary and flow field of hot-gas jet. Schlieren photographs and static-pressure surveys were taken in the vacinity of a sonic jet which was operated over a range of jet pressure ratios of 1 to 6, specific heat ratios at the nozzle exit of 1.29 and 1.40, and jet temperatures up to 2600 R.
Cold fronts and shocks formed by gas streams in galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A. V.
2018-05-01
Cold fronts (CFs) and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and CFs in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyr and it could generate a particular pattern of multiple CFs and shocks.
Improved outcomes for lap-banding using the Insuflow device compared with heated-only gas.
Benavides, Richard; Wong, Alvin; Nguyen, Hoang
2009-01-01
Preconditioning gas by humidification and warming the pneumoperitoneum improves laparoscopic outcomes. This prevents peritoneal desiccation and detrimental events related to traditional cold-dry gas. Few comparisons have been done comparing traditional cold-dry, heated-only, and humidified-warmed carbon dioxide. A prospective, controlled, randomized, double-blind study of laparoscopic gastric banding included 113 patients and compared traditional dry-cold (n=35) versus dry-heated (n=40), versus humidified-warm gas (n=38). Pain medications were standardized for all groups. Endpoints were recovery room length of stay, pain location, pain intensity, and total pain medications used postoperatively for up to 10 days. The humidified-warmed group had statistically significant differences from the other 2 groups with improvement in all end points. The dry-heated group had significantly more pain medication use and increased shoulder and chest pain than the other 2 groups had. Using warm-humidified gas for laparoscopic gastric banding reduces shoulder pain, shortens recovery room length of stay, and decreases pain medication requirements for up to 10 days postoperatively. Dry-heated gas may cause additional complications as is indicated by the increase in pain medication use and pain intensity.
Cold plasma processing technology makes advances
USDA-ARS?s Scientific Manuscript database
Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...
The Gonzaga desulfurization flue gas process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelleher, R.L.; O'Leary, T.J.; Shirk, I.A.
1984-01-01
The Gonzaga desulfurization flue gas process removes sulfur dioxide from a flue by cold water scrubbing. Sulfur dioxide is significantly more soluable in cold water (35/sup 0/F to 60/sup 0/F) than in warm water (100/sup 0/F). Sulfur dioxide reacts in water similarly as carbon dioxide reacts in water, in that both gasses are released from the water as the temperature of the water increases. The researchers at the Gonzaga University developed this process from the observations and techniques used in studying the acid and aldehyde concentrations in flue gasses with varying of fuel to air ratios. The apparatus was fixedmore » to a stationary engine and a gas/oil fired boiler. The flue gas was cooled to the dew point temperature of the air entering the combustion chamber on the pre-air heater. The system is described in two parts: the energies required for cooling in the scrubbing section and the energies required in the treatment section. The cold flue gas is utilized in cooling the scrubber section.« less
Anderson, B.J.; Kurihara, M.; White, M.D.; Moridis, G.J.; Wilson, S.J.; Pooladi-Darvish, M.; Gaddipati, M.; Masuda, Y.; Collett, T.S.; Hunter, R.B.; Narita, H.; Rose, K.; Boswell, R.
2011-01-01
Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3-3.9 ??C). This paper presents the approach and results of extrapolating regional forward production modeling from history-matching efforts on the results from a single well test. ?? 2010 Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Brian J.; Kurihara, Masanori; White, Mark D.
2011-02-01
Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. Allmore » of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3–3.9 °C). Finally, this paper presents the approach and results of extrapolating regional forward production modeling from history-matching efforts on the results from a single well test.« less
NASA Technical Reports Server (NTRS)
Makel, Darby B.; Rosenberg, Sanders D.
1990-01-01
The formation and deposition of carbon (soot) was studied in the Carbon Deposition Model for Oxygen-Hydrocarbon Combustion Program. An empirical, 1-D model for predicting soot formation and deposition in LO2/hydrocarbon gas generators/preburners was derived. The experimental data required to anchor the model were identified and a test program to obtain the data was defined. In support of the model development, cold flow mixing experiments using a high injection density injector were performed. The purpose of this investigation was to advance the state-of-the-art in LO2/hydrocarbon gas generator design by developing a reliable engineering model of gas generator operation. The model was formulated to account for the influences of fluid dynamics, chemical kinetics, and gas generator hardware design on soot formation and deposition.
Buffer gas cooling and mixture analysis
Patterson, David S.; Doyle, John M.
2018-03-06
An apparatus for spectroscopy of a gas mixture is described. Such an apparatus includes a gas mixing system configured to mix a hot analyte gas that includes at least one analyte species in a gas phase into a cold buffer gas, thereby forming a supersaturated mixture to be provided for spectroscopic analysis.
Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass
NASA Astrophysics Data System (ADS)
Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru
In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.
Self-actuating heat switches for redundant refrigeration systems
NASA Technical Reports Server (NTRS)
Chan, Chung K. (Inventor)
1988-01-01
A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.
Star formation in early-type galaxies: the role of stellar winds and kinematics.
NASA Astrophysics Data System (ADS)
Pellegrini, Silvia; Negri, Andrea; Ciotti, Luca
2015-08-01
Early-Type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae (SNIa) and the thermalization of stellar motions. Recent high resolution 2D hydrodynamical simulations (Negri et al. 2014) showed that ordered rotation in the stellar component alters significantly the evolution of the hot ISM, and results in the formation of a centrifugally supported cold equatorial disc. This agrees well with the recent evidence that approximately 50% of massive ETGs host significant quantities of cold gas (Morganti et al. 2006; Young et al. 2014), often in settled configurations, sharing the same kinematics of the stars. In particular, in a systematic investigation of the ATLAS3D sample, the most massive fast-rotating ETGs always have kinematically aligned gas, which suggests an internal origin for it, and molecular gas is detected only in fast rotators (Davis et al. 2011). The observed cold gas seems also to provide material for low level star formation (SF) activity (Combes et al. 2007, Davis et al. 2014). Interestingly, in the ATLAS3D sample, SF and young stellar populations are detected only in fast rotators (Sarzi et al. 2013). In a recent work we investigated whether and how SF takes place in the cold gas disc typically produced in rotating ETGs by our previous 2D simulations, by adding to them the possibility for the gas to form stars (Negri et al. 2015). We also inserted the injection of mass, momentum and energy appropriate for the newly (and continuously) forming stellar population. We found that subsequent generations of stars are formed, and that most of the extended and massive cold disc is consumed by this process, leaving at the present epoch cold gas masses that compare well with those observed. The mass in secondary generations of stars resides mostly in a disc, and could be related to a younger, more metal rich disky stellar component indeed observed in fast rotator ETGs (Cappellari et al. 2013). Most of the mass in newly formed stars formed a few Gyr ago; the SF rate at the present epoch is low (≤0.1 M⊙/yr) and agrees well with that observed, at least for ETGs of stellar mass <1011 M⊙.
LOX/Hydrogen Coaxial Injector Atomization Test Program
NASA Technical Reports Server (NTRS)
Zaller, M.
1990-01-01
Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.
10 K high frequency pulse tube cryocooler with precooling
NASA Astrophysics Data System (ADS)
Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie
2016-07-01
A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.
Cryogenic target formation using cold gas jets
Hendricks, C.D.
1980-02-26
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.
Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Perna; Anant Upadhyayula; Mark Scotto
2012-11-05
Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides,more » and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.« less
Emad, Ali; Emad, Yasaman
2007-01-01
The objective of this article was to evaluate the relationship between the bronchial reactivity to methacholine and distilled cold water and inflammatory bronchial alveolar lavage (BAL) cells in mustard gas-induced asthma. This was a randomized, crossover clinical study set in a university hospital. The patients were 17 veterans with mustard gas-induced asthma and 17 normal veterans as a control group. Inhalation challenges with ultrasonically nebulized distilled water and methacholine and BAL via bronchoscopy and were performed in all patients and subjects. All patients did sustain a 20% fall in FEV(1) after methacholine, whereas two of them did not with distilled cold water. The patients were sensitive to distilled cold water with a median PD20 of 8.44 +/- 6.55 mL and sensitive to methacholine with the median PC20 of 4.88 +/- 4.22 mg/mL. Significant correlation was found between PC20 of methacholine and PD20 of distilled cold water (r = -0.74, p = 0.005). The proportion of BAL macrophages was significantly lower in patients with asthma than in the control group (p = 0.001). The proportions of lymphocytes and neutrophils were similar in the two groups. The percentage of eosinophils was higher in BAL fluid from the asthmatics compared with that in BAL fluid from the control group (p < 0.001). The percentage of the BAL eosinophils significantly correlated with both PC20 of methacholine (r = - 0.58, p = 0.01) and PD20 of distilled cold water (r = -0.81, p = 0.002). No relationship between PC20 of methacholine or PD20 of distilled cold water was found for other inflammatory BAL cells. This study showed that in patients with mustard gas-induced asthma, the degree of airway responsiveness to both methacholine and distilled water was associated with the percentage of BAL eosinophils.
High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels
NASA Technical Reports Server (NTRS)
Canada, G. S.
1974-01-01
Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRUGER AA; MATLACK KS; GONG W
2011-12-29
This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on themore » results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was achieved, which was used as an indicator of a maximized feed rate for each test. The first day of each test was used to build the cold cap and decrease the plenum temperature. The remainder of each test was split into two- to six-day segments, each with a different bubbling rate, bubbler orientation, or feed concentration of chloride and sulfur.« less
Hollow - cathode electrode for high-power, high-pressure discharge devices
Chang, Jim J.; Alger, Terry W.
1995-01-01
Several different cold cathode configurations for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures.
NASA Technical Reports Server (NTRS)
Jones, J. A.
1983-01-01
In the Space Telescope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.
Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII-1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J C
1998-07-13
As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable benchtop propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.
Unsupported palladium alloy membranes and methods of making same
Way, J. Douglas; Thoen, Paul; Gade, Sabina K.
2015-06-02
The invention provides support-free palladium membranes and methods of making these membranes. Single-gas testing of the unsupported foils produced hydrogen permeabilities equivalent to thicker membranes produced by cold-rolling. Defect-free films as thin as 7.2 microns can be fabricated, with ideal H.sub.2/N.sub.2 selectivities as high as 40,000. Homogeneous membrane compositions may also be produced using these methods.
Gas loss in simulated galaxies as they fall into clusters
Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.
2014-01-01
We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167
Gas loss in simulated galaxies as they fall into clusters.
Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A
2014-06-03
We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.
NASA Technical Reports Server (NTRS)
Mchale, R. M.
1974-01-01
Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.
An unusual cause of cold injury: liquified petroleum gas leakage.
Seyhan, Nevra; Jasharllari, Lorenc; Kayapınar, Muhammed; Savacı, Nedim
2011-11-01
Liquefied petroleum gas (LPG) is an odorless and colorless gas that is a mixture of hydrocarbons (propane and butane). It is now more commonly preferred among drivers as an auto-gas throughout the world because it is cheaper than petrol or diesel and produces the same amount of energy. Because of its rapid vaporization and consequent lowering of temperature, it may cause severe cold injuries. A 33-year-old male who suffered from hand burn due to LPG is presented in this article. In LPG-converted cars, if the conversion has not been done properly, LPG may leak. Thus, the public must be informed of this potential danger while undertaking repairs of their vehicles.
New class of microminiature Joule — Thomson refrigerator and vacuum package
NASA Astrophysics Data System (ADS)
Paugh, Robert L.
1990-12-01
Progress is reported on the development of a two-stage, fast cooldown Joule — Thomson refrigerator using nitrogen gas and a nitrogen — hydrocarbon gas mixture as the refrigerants. The refrigerator incorporates a microminiature Venturi pump to reduce the pressure of the exhaust of the main boiler to bring the operating temperature of the cold stage to < 70 K in as little as 10 s. The vacuum package for the refrigerator contains no organic materials and is designed to provide a ten year shelf life. Special glass strengthening techniques are being used to achieve cooler survival of acceleration tests of up to 100 000g.
Winter Storms and Extreme Cold
... your home to keep out the cold with insulation, caulking, and weather stripping. Learn how to keep ... and grills outdoors and away from windows. Never heat your home with a gas stovetop or oven. ...
NASA Technical Reports Server (NTRS)
Hardin, R. B.; Burrows, R. R.
1975-01-01
A test is presented which was performed to determine the effect of cold jet gas plumes generated from main propulsion system and solid rocket motor nozzles on: (1) six-component force and moment data, (2) wing static pressures, (3) wing hinge moment, (4) elevon hinge moment, (5) rudder hinge moment, and (6) orbiter MPS nozzle pressure loads. The effects of rudder deflection, nozzle gimbal angle, and plume size were also obtained.
Real-time radiography support for Titan LAM
NASA Astrophysics Data System (ADS)
Anderson, M. G.
1992-07-01
This paper discusses real-time radiography (RTR) support for the Titan Lightweight Analog Motor (LAM) cold gas tests. RTR was used as a diagnostic technique to measure propellant deformation within the motors as gaseous nitrogen, at various pressures, was flowed over the propellant grain. The data consisted of video images that correlated the propellant deformation to time and to chamber pressure. Measurements were made on three propellant configurations in 17 tests. Specific issues addressed include the approach taken to gather the data, the system layout, and image processing techniques used to interpret the data.
Enkin, R.; Esteban, L.; Haacke, R.; Hamilton, T.S.; Hogg, M.; Lapham, L.; Middleton, G.; Neelands, P.; Pohlman, John W.; Riedel, M; Rose, K.; Schlesinger, A.; Standen, G.; Stephenson, A.; Taylor, S.; Waite, W.; Wang, X.
2008-01-01
During August 2008, a research expedition (2008-007-PGC) was carried out offshore Vancouver Island on the northern Cascadia Margin (Figure 1) to study the role of gas hydrate in slope stability and cold seep biogeochemistry. The cruise was organized by the Geological Survey of Canada (GSC) as part of the Earth Science Sector, Natural Gas Hydrate Program, Natural Resources Canada (NRCan). This international collaboration included McGill University, University of Victoria, the U.S. Geological Survey, Florida State University, and the U.S. Department of Energy.
Gas ion laser construction for electrically isolating the pressure gauge thereof
NASA Technical Reports Server (NTRS)
Wood, C. E.; Witte, R. S. (Inventor)
1975-01-01
The valve and the pressure gauge of a gas ion laser were electrically insulated from the laser discharge path by connecting them in series with the cathode of the laser. The laser cathode can be grounded and preferably is a cold cathode although a hot cathode may be used instead. The cold cathode was provided with a central aperture to which was connected both the pressure gauge and the gas pressure reservoir through the valve. This will effectively prevent electric discharges from passing either to the pressure gauge or the valve which would otherwise destroy the pressure gauge.
Substellar fragmentation in self-gravitating fluids with a major phase transition
NASA Astrophysics Data System (ADS)
Füglistaler, A.; Pfenniger, D.
2015-06-01
Context. The observation of various ices in cold molecular clouds, the existence of ubiquitous substellar, cold H2 globules in planetary nebulae and supernova remnants, or the mere existence of comets suggest that the physics of very cold interstellar gas might be much richer than usually envisioned. At the extreme of low temperatures (≲10 K), H2 itself is subject to a phase transition crossing the entire cosmic gas density scale. Aims: This well-known, laboratory-based fact motivates us to study the ideal case of a cold neutral gaseous medium in interstellar conditions for which the bulk of the mass, instead of trace elements, is subject to a gas-liquid or gas-solid phase transition. Methods: On the one hand, the equilibrium of general non-ideal fluids is studied using the virial theorem and linear stability analysis. On the other hand, the non-linear dynamics is studied using computer simulations to characterize the expected formation of solid bodies analogous to comets. The simulations are run with a state-of-the-art molecular dynamics code (LAMMPS) using the Lennard-Jones inter-molecular potential. The long-range gravitational forces can be taken into account together with short-range molecular forces with finite limited computational resources, using super-molecules, provided the right scaling is followed. Results: The concept of super-molecule, where the phase transition conditions are preserved by the proper choice of the particle parameters, is tested with computer simulations, allowing us to correctly satisfy the Jeans instability criterion for one-phase fluids. The simulations show that fluids presenting a phase transition are gravitationally unstable as well, independent of the strength of the gravitational potential, producing two distinct kinds of substellar bodies, those dominated by gravity (planetoids) and those dominated by molecular attractive force (comets). Conclusions: Observations, formal analysis, and computer simulations suggest the possibility of the formation of substellar H2 clumps in cold molecular clouds due to the combination of phase transition and gravity. Fluids presenting a phase transition are gravitationally unstable, independent of the strength of the gravitational potential. Arbitrarily small H2 clumps may form even at relatively high temperatures up to 400-600 K, according to virial analysis. The combination of phase transition and gravity may be relevant for a wider range of astrophysical situations, such as proto-planetary disks. Figures 33-44 are available in electronic form at http://www.aanda.org
Multipurpose Thermal Insulation Test Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2002-01-01
A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.
Struempler, R E; Nelson, G; Urry, F M
1997-01-01
A commercially available health food product of cold-pressed hemp seed oil ingested by one volunteer twice a day for 4 1/2 days (135 mL total). Urine specimens collected from the volunteer were subjected to standard workplace urine drug testing procedures, and the following concentrations of 11-nor-delta9- tetrahydrocannabinol carboxylic acid (9-THCA) were detected: 41 ng/mL 9-THCA at 45 h, 49 ng/mL at 69 h, and 55 ng/mL at 93 h. Ingestion was discontinued after 93 h, and the following concentrations were detected: 68 ng/mL at 108 h, 57 ng/mL at 117 h, 31 ng/mL at 126 h, and 20 ng/mL at 142 h. The first specimen that tested negative (50 ng/mL initial immunoassay test, 15 ng/mL confirmatory gas chromatographic-mass spectrometric test) was at 146 h, which was 53 h after the last hemp seed oil ingestion. Four subsequent specimens taken to 177 h were also negative. This study indicates that a workplace urine drug test positive for cannabinoids may arise from the consumption of commercially available cold-pressed hemp seed oil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twyman, Kathryn S.; Bell, Martin T.; Heazlewood, Brianna R.
2014-07-14
The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND{sub 3} is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND{sub 3} beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90° bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND{sub 3} can be produced with rotational state populations corresponding to approximately T{sub rot} = 9–18 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K),more » the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND{sub 3}. The translational temperature of the guided ND{sub 3} is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, H. R.; McDonald, M.; McNamara, B. R.
We report new ALMA observations of the CO(3-2) line emission from themore » $$2.1\\pm0.3\\times10^{10}\\rm\\thinspace M_{\\odot}$$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $$500-800\\rm\\thinspace M_{\\odot}\\rm\\; yr^{-1}$$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $$10-20\\rm\\; kpc$$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. As a result, the very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.« less
Drozd, Greg T; Zhao, Yunliang; Saliba, Georges; Frodin, Bruce; Maddox, Christine; Weber, Robert J; Chang, M-C Oliver; Maldonado, Hector; Sardar, Satya; Robinson, Allen L; Goldstein, Allen H
2016-12-20
Experiments were conducted at the California Air Resources Board Haagen-Smit Laboratory to understand changes in vehicle emissions in response to stricter emissions standards over the past 25 years. Measurements included a wide range of volatile organic compounds (VOCs) for a wide range of spark ignition gasoline vehicles meeting varying levels of emissions standards, including all certifications from Tier 0 up to Partial Zero Emission Vehicle. Standard gas chromatography (GC) and high performance liquid chromatography (HLPC) analyses were employed for drive-cycle phase emissions. A proton-transfer-reaction mass spectrometer measured time-resolved emissions for a wide range of VOCs. Cold-start emissions occur almost entirely in the first 30-60 s for newer vehicles. Cold-start emissions have compositions that are not significantly different across all vehicles tested and are markedly different from neat fuel. Hot-stabilized emissions have varying importance depending on species and may require a driving distance of 200 miles to equal the emissions from a single cold start. Average commute distances in the U.S. suggest the majority of in-use vehicles have emissions dominated by cold starts. The distribution of vehicle ages in the U.S. suggests that within several years only a few percent of vehicles will have significant driving emissions compared to cold-start emissions.
Crack Initiation and Growth Behavior of Cold-Sprayed Ni Particles on IN718 Alloy
NASA Astrophysics Data System (ADS)
Cavaliere, P.; Silvello, A.
2017-04-01
Cold spray processing parameters, governing particle velocity and impact energy, are analyzed in the present paper for pure Ni sprayed on IN718 substrates. Finite element modeling (FEM) was used to calculate the particle impact velocity and temperature as a function of gas temperature and pressure and particle density and dimensions. Experimental evidence underlines the possibility of performing repairing through cold spray thanks to the good level of adhesion achievable by employing optimal combinations of materials and spray processing parameters. In the present paper, the potential repairing of cracked superalloys sheets, by employing cold spray technology, is presented. 30° surface V-notched IN718 panels have been repaired by using pure Ni cold-sprayed powders. The bending behavior of the repaired sheets was analyzed by FEM and mechanical testing in order to compare the properties with those belonging to the unrepaired panels. Simulations and mechanical results showed a reduction in the stress intensity factor, a modification of the crack initiation site and a crack retardation in the repaired structures if compared with the unrepaired ones. The K factor was quantified; the resistance of repaired panels was increased of more than eight times in the case of repairing with Ni cold spray particles. Geometrical and mechanical properties of the coating-substrate interfaces, such as adhesion strength and residual stresses influencing the coatings behavior, were largely analyzed.
2009-03-31
8. This range encompasses diesel , HCCI and gas turbine engines , including cold ignition; and NOx , CO and soot pollutant formation in the lean and...equivalence ratios from 0.125 to 8. This range encompasses diesel , HCCI and gas turbine engines , including cold ignition; and NOx , CO and soot pollutant...California Institute of Technology Mechanical Engineering Department Pasadena CA 91125 i Abstract This report describes a study
Hollow-cathode electrode for high-power, high-pressure discharge devices
Chang, J.J.; Alger, T.W.
1995-08-22
Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.
Ice Segregation and Frost Heaving.
1984-01-01
to a buried chilled gas pipeline by continual frost ’. ’- heave during the service life or to a buried liquefied gas tank is a more _ recent concern...M). Lule en: Uiversity of Lulea. Pehner, E., 1982. Aspects of ice lens fornmation. P ing of the Third International Syvosium on Ground Freezi, Hanover...Soils. Lalea, Sweden: Uiversity ofLulea. . Berg, R. L., G. Guymon and J. Ingersoll, 1979. Conference on soil-water . problems in cold regions. Cold
The Cold Gas History of the Universe as seen by the ngVLA
NASA Astrophysics Data System (ADS)
Riechers, Dominik A.; Carilli, Chris Luke; Casey, Caitlin; da Cunha, Elisabete; Hodge, Jacqueline; Ivison, Rob; Murphy, Eric J.; Narayanan, Desika; Sargent, Mark T.; Scoville, Nicholas; Walter, Fabian
2017-01-01
The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Informed by the first efforts with the Karl G. Jansky Very Large Array (COLDz survey) and the Atacama Large (sub)Millimeter Array (ASPECS survey), we here present initial predictions and possible survey strategies for such "molecular deep field" observations with the ngVLA. These investigations will provide a detailed measurement of the volume density of molecular gas in galaxies as a function of redshift, the "cold gas history of the universe". This will crucially complement studies of the neutral gas, star formation and stellar mass histories with large low-frequency arrays, the Large UV/Optical/Infrared Surveyor, and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.
Hydrodynamics of a cold one-dimensional fluid: the problem of strong shock waves
NASA Astrophysics Data System (ADS)
Hurtado, Pablo I.
2005-03-01
We study a shock wave induced by an infinitely massive piston propagating into a one-dimensional cold gas. The cold gas is modelled as a collection of hard rods which are initially at rest, so the temperature is zero. Most of our results are based on simulations of a gas of rods with binary mass distribution, and we partcularly focus on the case of spatially alternating masses. We find that the properties of the resulting shock wave are in striking contrast with those predicted by hydrodynamic and kinetic approaches, e.g., the flow-field profiles relax algebraically toward their equilibrium values. In addition, most relevant observables characterizing local thermodynamic equilibrium and equipartition decay as a power law of the distance to the shock layer. The exponents of these power laws depend non-monotonously on the mass ratio. Similar interesting dependences on the mass ratio also characterize the shock width, density and temperature overshoots, etc.
Moisture contamination and welding parameter effects on flux cored arc welding diffusible hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiefer, J.J.
1994-12-31
Gas metal arc (GMAW) and flux cored arc (FCAW) welding are gas shielded semiautomatic processes widely used for achieving high productivity in steel fabrication. Contamination of the shielding has can occur due to poorly maintained gas distribution systems. Moisture entering as a gas contaminant is a source of hydrogen that can cause delayed cold cracking in welds. Limiting heat-affected zone hardness is one method of controlling cracking. Even this is based on some assumptions about the hydrogen levels in the weld. A study was conducted to investigate the effect of shielding gas moisture contamination and welding parameters on the diffusiblemore » hydrogen content of gas shielded flux cored arc welding. The total wire hydrogen of various electrodes was also tested and compared to the diffusible weld hydrogen. An empirical equation has been developed that estimates the diffusible hydrogen in weld metal for gas shielded flux cored arc welding. The equation is suitable for small diameter electrodes and welding parameter ranges commonly used for out-of-position welding. by combining this with the results from the total wire hydrogen tests, it is possible to estimate diffusible hydrogen directly from measured welding parameters, shielding gas dew point, and total hydrogen of the consumable. These equations are also useful for evaluating the effect of welding procedure variations from known baseline conditions.« less
Separation of polychlorinated biphenyls by fast gas chromatography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarado, J. S.; Silzer, J.; Lemley, F.
1997-12-01
The separation of commercially available polychlorinated biphenyls (PCBs) by fast gas chromatography (fast GC) has been studied. Aroclor 1254 was separated by using two column types: DB-1 and SPB-608. The fast GC used a split-splitless injector to introduce the sample, followed by a cold trap at -90 C to focus the sample. Rapid heating was used to introduce the sample into the short chromatographic column to decrease band broadening. Hydrogen was the carrier gas at velocities of 100 to 125 cm s-1. Analyses were performed by using an electron capture detector (ECD). Separation was achieved with both columns in lessmore » than 6 min. With the greatly shortened run times, reproducibility can be tested quickly and consequently with low cost.« less
The electrothermal feasibility of carbon microcoil heaters for cold/hot gas microthrusters
NASA Astrophysics Data System (ADS)
Williams, K. L.; Eriksson, A. B.; Thorslund, R.; Köhler, J.; Boman, M.; Stenmark, L.
2006-07-01
With the miniaturization of spacecraft the need for efficient, accurate and low-weight attitude control systems is becoming evident. To this end, the cold/hot gas microthruster system of this paper incorporates carbon microcoils—deposited via laser-induced chemical vapor deposition—for heating the propellant gas (nitrogen) before the nozzle inlet. By increasing the temperature of the propellant gas for such a system, the specific impulse (Isp) of the microthruster will increase. The benefits of a higher Isp are lower propellant mass, higher thrust and shorter burning times. Therefore, the feasibility of achieving this increase with the carbon microcoils is investigated. The carbon microcoils have been characterized experimentally with respect to their electrothermal performance, i.e. resistance, temperature, parasitic heat losses and degradation in ambient. The resulting heat losses from the heater and the heated gas have been estimated through a combination of experiments, numerical simulation and approximate analytical expressions. At high powers, degradation of the carbon material leads to coil failure in ambient where trace oxygen was present. Thus, the next generation of carbon microcoils to be tested will have a protective coating to extend their lifetime. Theoretical modeling showed that an increase in the propellant gas temperature from 300 to 1200 K and a corresponding two-fold increase in the Isp can be achieved if 1.0 W of power is supplied to each coil in a three-coil thruster. These simulation results show that if the coils are capable of dissipating 1 W of heat at 1700 K coil temperature, the doubling of the Isp may be achieved. Comparing to the electrothermal characterization results we find that the carbon coils can survive at 1700 K if protected, and that they can be expected to reach 1700 K at power below 1 W.
Gasification of agricultural residues in a demonstrative plant: corn cobs.
Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo
2014-12-01
Biomass gasification couples the high power efficiency with the possibility of valuably using the byproducts heat and biochar. The use of agricultural wastes instead of woody feedstock extends the seasonal availability of biomasses. The downdraft type is the most used reactor but has narrow ranges of feedstock specifications (above all on moisture and particle size distribution), so tests on a demonstrative scale are conducted to prove the versatility of the gasifier. Measurements on pressure drops, syngas flow rate and composition are studied to assess the feasibility of such operations with corn cobs. Material and energy balances, and performance indexes are compared for the four tests carried out under different biomass loads (66-85 kg/h). A good operability of the plant and interesting results are obtained (gas specific production of 2 m3/kg, gas heating value 5.6-5.8 MJ/m3, cold gas efficiency in the range 66-68%, potential net power efficiency 21.1-21.6%). Copyright © 2014 Elsevier Ltd. All rights reserved.
Space Storable Propellant Performance Gas/Liquid Like-Doublet Injector Characterization
NASA Technical Reports Server (NTRS)
Falk, A. Y.
1972-01-01
A 30-month applied research program was conducted, encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space-storable propellants. The gas/liquid propellant combination selected for study was FLOX (82.6% F2)/ambient temperature gaseous methane. The injector pattern characterized was the like-(self)-impinging doublet. Program effort was apportioned into four basic technical tasks: injector and thrust chamber design, injector and thrust chamber fabrication, performance evaluation testing, and data evaluation and reporting. Analytical parametric combustion analyses and cold flow distribution and atomization experiments were conducted with injector segment models to support design of injector/thrust chamber combinations for hot fire evaluation. Hot fire tests were conducted to: (1) optimize performance of the injector core elements, and (2) provide design criteria for the outer zone elements so that injector/thrust chamber compatibility could be achieved with only minimal performance losses.
Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster
Russell, H. R.; McDonald, M.; McNamara, B. R.; ...
2017-02-14
We report new ALMA observations of the CO(3-2) line emission from themore » $$2.1\\pm0.3\\times10^{10}\\rm\\thinspace M_{\\odot}$$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $$500-800\\rm\\thinspace M_{\\odot}\\rm\\; yr^{-1}$$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $$10-20\\rm\\; kpc$$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. As a result, the very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.« less
Gas Sloshing Regulates and Records the Evolution of the Fornax Cluster
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Nulsen, Paul E. J.; Kraft, Ralph P.; Roediger, Elke; ZuHone, John A.; Jones, Christine; Forman, William R.; Sheardown, Alex; Irwin, Jimmy A.; Randall, Scott W.
2017-12-01
We present results of a joint Chandra and XMM-Newton analysis of the Fornax Cluster, the nearest galaxy cluster in the southern sky. Signatures of merger-induced gas sloshing can be seen in the X-ray image. We identify four sloshing cold fronts in the intracluster medium, residing at radii of 3 kpc (west), 10 kpc (northeast), 30 kpc (southwest), and 200 kpc (east). Despite spanning over two orders of magnitude in radius, all four cold fronts fall onto the same spiral pattern that wraps around the BCG NGC 1399, likely all initiated by the infall of NGC 1404. The most evident front is to the northeast, 10 kpc from the cluster center, which separates low-entropy high-metallicity gas and high-entropy low-metallicity gas. The metallicity map suggests that gas sloshing, rather than an AGN outburst, is the driving force behind the redistribution of the enriched gas in this cluster. The innermost cold front resides within the radius of the strong cool core. The sloshing timescale within the cooling radius, calculated from the Brunt–Väsälä frequency, is an order of magnitude shorter than the cooling time. It is plausible that gas sloshing is contributing to the heating of the cool core, provided that gas of different entropies can be mixed effectively via Kelvin–Helmholtz instability. The estimated age of the outermost front suggests that this is not the first infall of NGC 1404.
Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process
NASA Astrophysics Data System (ADS)
Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh
2016-07-01
Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.
NASA Astrophysics Data System (ADS)
Catinella, Barbara; Saintonge, Amélie; Janowiecki, Steven; Cortese, Luca; Davé, Romeel; Lemonias, Jenna J.; Cooper, Andrew P.; Schiminovich, David; Hummels, Cameron B.; Fabello, Silvia; Geréb, Katinka; Kilborn, Virginia; Wang, Jing
2018-05-01
We present the extended GALEX Arecibo SDSS Survey (xGASS), a gas fraction-limited census of the atomic hydrogen (H I) gas content of 1179 galaxies selected only by stellar mass (M⋆ = 109-1011.5 M⊙) and redshift (0.01 < z < 0.05). This includes new Arecibo observations of 208 galaxies, for which we release catalogues and H I spectra. In addition to extending the GASS H I scaling relations by one decade in stellar mass, we quantify total (atomic+molecular) cold gas fractions and molecular-to-atomic gas mass ratios, Rmol, for the subset of 477 galaxies observed with the IRAM 30 m telescope. We find that atomic gas fractions keep increasing with decreasing stellar mass, with no sign of a plateau down to log M⋆/M⊙ = 9. Total gas reservoirs remain H I-dominated across our full stellar mass range, hence total gas fraction scaling relations closely resemble atomic ones, but with a scatter that strongly correlates with Rmol, especially at fixed specific star formation rate. On average, Rmol weakly increases with stellar mass and stellar surface density μ⋆, but individual values vary by almost two orders of magnitude at fixed M⋆ or μ⋆. We show that, for galaxies on the star-forming sequence, variations of Rmol are mostly driven by changes of the H I reservoirs, with a clear dependence on μ⋆. Establishing if galaxy mass or structure plays the most important role in regulating the cold gas content of galaxies requires an accurate separation of bulge and disc components for the study of gas scaling relations.
Occurrence of near-seafloor gas hydrates and associated cold vents in the Ulleung Basin, East Sea
NASA Astrophysics Data System (ADS)
Bahk, J.-J.; Kong, G.-S.; Park, Y.; Kim, J.-H.; Lee, H.; Park, Y.; Park, K.-P.
2009-04-01
During the site survey cruise for proposed drill sites of the Ulleung Basin Gas Hydrate Expedition 01, near-seafloor gas hydrates were discovered in core sediments from both regions of basin plain (2066-2012 m water depth) and southern slope (898 m) of the Ulleung Basin. The gas hydrate-bearing cores were exclusively retrieved from high backscatter intensity areas in processed 13 kHz multi-beam data, implying high seafloor reflectivity. In high-resolution (2-7 kHz) sub-bottom profiles, the coring sites are also characterized by narrow (< about 500 m wide) acoustic blank zones reaching seafloor, where they have surface expressions of low-relief (< about 5 m high) mound. In the data from a 38 kHz split-beam echosounder, which was deployed for acoustic characterization of gas bubbles, there are no apparent gas flares associated with the blank zones. The recovered gas hydrates mainly consist of disseminated nodules or veins in clayey mud, which normally occur from 5-6 m below the seafloor to the maximum penetration depth (<8 m) of the cores. In some cases, they were associated with abundant scattered authigenic carbonate nodules. Compositional and structural analyses of selected gas hydrate samples revealed that they consist of structure I hydrates which contain more than 99% methane with carbon isotope values ranging from -64 to -80 per mil (PDB). The preliminary results of the site survey cruise collectively suggest that the near-seafloor gas hydrates are related to cold vents, where high seafloor reflectivity is caused by presence of gas hydrates and authigenic carbonates. Gas seeping activity in the cold vents appears to be currently dormant.
NASA Astrophysics Data System (ADS)
Stevens, Adam R. H.; Lagos, Claudia del P.; Contreras, Sergio; Croton, Darren J.; Padilla, Nelson D.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom
2017-05-01
We use the hydrodynamic, cosmological EAGLE simulations to investigate how the hot gas in haloes condenses to form and grow galaxies. We select haloes from the simulations that are actively cooling and study the temperature, distribution and metallicity of their hot, cold and transitioning 'cooling' gas, placing these in the context of semi-analytic models. Our selection criteria lead us to focus on Milky Way-like haloes. We find that the hot-gas density profiles of the haloes form a progressively stronger core over time, the nature of which can be captured by a β profile that has a simple dependence on redshift. In contrast, the hot gas that will cool over a time-step is broadly consistent with a singular isothermal sphere. We find that cooling gas carries a few times the specific angular momentum of the halo and is offset in spin direction from the rest of the hot gas. The gas loses ˜60 per cent of its specific angular momentum during the cooling process, generally remaining greater than that of the halo, and it precesses to become aligned with the cold gas already in the disc. We find tentative evidence that angular-momentum losses are slightly larger when gas cools on to dispersion-supported galaxies. We show that an exponential surface density profile for gas arriving on a disc remains a reasonable approximation, but a cusp containing ˜20 per cent of the mass is always present, and disc scale radii are larger than predicted by a vanilla Fall & Efstathiou model. These scale radii are still closely correlated with the halo spin parameter, for which we suggest an updated prescription for galaxy formation models.
The census of complex organic molecules in the solar-type protostar IRAS16293-2422
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaber, Ali A.; Ceccarelli, C.; Kahane, C.
2014-08-10
Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (≳30-40 K) and released in the gas phase at dust temperatures of ≳100 K. However, recent detections of COMs in ≲20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we presentmore » a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (≲30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10{sup –10}. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.« less
The Census of Complex Organic Molecules in the Solar-type Protostar IRAS16293-2422
NASA Astrophysics Data System (ADS)
Jaber, Ali A.; Ceccarelli, C.; Kahane, C.; Caux, E.
2014-08-01
Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (gsim30-40 K) and released in the gas phase at dust temperatures of gsim100 K. However, recent detections of COMs in lsim20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we present a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (lsim30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10-10. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.
Study on the Influence of the Cold-End Cooling Water Thickness on the Generative Performance of TEG
NASA Astrophysics Data System (ADS)
Zhou, Li; Guo, Xuexun; Tan, Gangfeng; Ji, Kangping; Xiao, Longjie
2017-05-01
At present, about 40% of the fuel energy is discharged into air with the exhaust gas when an automobile is working, which is a big waste of energy. A thermoelectric generator (TEG) has the ability to harvest the waste heat energy in the exhaust gas. The traditional TEG cold-end is cooled by the engine cooling system, and although its structure is compact, the TEG weight and the space occupied are important factors restricting its application. In this paper, under the premise of ensuring the TEG maximum net output power and reducing the TEG water consumption as much as possible, the optimization of the TEG water thickness in the normal direction of the cold-end surface (WTNCS) is studied, which results in lighter weight, less space occupied and better automobile fuel economy. First, the thermal characteristics of the target diesel vehicle exhaust gas are evaluated based on the experimental data. Then, according to the thermoelectric generation model and the cold-end heat transfer model, the effect of the WTNCS on the cold-end temperature control stability and the system flow resistance are studied. The results show that the WTNCS influences the TEG cold-end temperature. When the engine works in a stable condition, the cold-end temperature decreases with the decrease of the WTNCS. The optimal value of the WTNCS is 0.02 m and the TEG water consumption is 8.8 L. Comparin it with the traditional vehicle exhaust TEG structure, the power generation increased slightly, but the water consumption decreased by about 39.5%, which can save fuel at0.18 L/h when the vehicle works at the speed of 60 km/h.
Cold spray NDE for porosity and other process anomalies
NASA Astrophysics Data System (ADS)
Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.
2018-04-01
This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar surface profile information plus attenuation measurements trended with porosity. The ultrasound measurements, however, may be limited to geometries where the substrate back-wall is normal to the cold spray surface and not too thick. Eddy current showed a strong correlation with porosity. Eddy currents can also be sensitive to cracks and do not need fluid coupling to make measurements, but are not sensitive to coating thicknesses in most cases. Vickers hardness measurements also tracked well with porosity; however, these types of hardness measurements are also not sensitive to coating thickness. An NDE program may include multiple measurements.
Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang
2013-09-01
We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.
Effect of melter feed foaming on heat flux to the cold cap
NASA Astrophysics Data System (ADS)
Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.
2017-12-01
The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.
NASA Technical Reports Server (NTRS)
Kniskern, Marc W.
1990-01-01
The thermal effects of simulant gas injection and aerodynamic heating at the model's surface on the measurements of a non-watercooled, flow through balance were investigated. A stainless steel model of a hypersonic air breathing propulsion cruise missile concept (HAPCM-50) was used to evaluate this balance. The tests were conducted in the 20-inch Mach 6 wind tunnel at NASA-Langley. The balance thermal effects were evaluated at freestream Reynolds numbers ranging from .5 to 7 x 10(exp 6) ft and angles of attack between -3.5 to 5 deg at Mach 6. The injection gases considered included cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon-12. The stagnation temperatures of the cold air, hot air, and Ar-Fr(12) reached 111, 214, and 283 F, respectively within the balance. A bakelite sleeve was inserted into the inner tube of the balance to minimize the thermal effects of these injection gases. Throughout the tests, the normal force, side force, yaw moment, roll moment, and pitching moment balance measurements were unaffected by the balance thermal effects of the injection gases and the wind tunnel flow. However, the axial force (AF) measurement was significantly affected by balance heating. The average zero shifts in the AF measurements were 1.9, 3.8, and 5.9 percent for cold air, hot air, and Ar-Fr(12) injection, respectively. The AF measurements decreased throughout these tests which lasted from 70 to 110 seconds. During the cold air injection tests, the AF measurements were accurate up to at least ten seconds after the model was injected into the wind tunnel test section. For the hot air and Ar-Fr(12) tests, the AF measurements were accurate up to at least five seconds after model injection.
Shimada, Shingo; Wakayama, Kenji; Fukai, Moto; Shimamura, Tsuyoshi; Ishikawa, Takahisa; Fukumori, Daisuke; Shibata, Maki; Yamashita, Kenichiro; Kimura, Taichi; Todo, Satoru; Ohsawa, Ikuroh; Taketomi, Akinobu
2016-12-01
Hydrogen gas reduces ischemia and reperfusion injury (IRI) in the liver and other organs. However, the precise mechanism remains elusive. We investigated whether hydrogen gas ameliorated hepatic I/R injury after cold preservation. Rat liver was subjected to 48-h cold storage in University of Wisconsin solution. The graft was reperfused with oxygenated buffer with or without hydrogen at 37° for 90 min on an isolated perfusion apparatus, comprising the H 2 (+) and H 2 (-) groups, respectively. In the control group (CT), grafts were reperfused immediately without preservation. Graft function, injury, and circulatory status were assessed throughout the perfusion. Tissue samples at the end of perfusion were collected to determine histopathology, oxidative stress, and apoptosis. In the H 2 (-) group, IRI was indicated by a higher aspartate aminotransferase (AST), alanine aminotransferase (ALT) leakage, portal resistance, 8-hydroxy-2-deoxyguanosine-positive cell rate, apoptotic index, and endothelial endothelin-1 expression, together with reduced bile production, oxygen consumption, and GSH/GSSG ratio (vs. CT). In the H 2 (+) group, these harmful changes were significantly suppressed [vs. H 2 (-)]. Hydrogen gas reduced hepatic reperfusion injury after prolonged cold preservation via the maintenance of portal flow, by protecting mitochondrial function during the early phase of reperfusion, and via the suppression of oxidative stress and inflammatory cascades thereafter. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goettler, H.J.; Vidger, L.J.
The effect of exhaust-to-coolant heat exchange on fuel economy and cab heater performance during cold start was studied using a 1981 Ford Granada automobile and a 1977 Buick V-6 engine on a test stand. The ambient soaking temperatures ranged from 35 to -15 degrees Fahrenheit. It was found that fuel used in a 7 minute warm up run of the test stand engine was less by 2.1 to 4.6% when the heat exchanger replaced the muffler in the system. Likewise for the Granada, fuel consumption was less by 2.8 to 3.8% over an in town test route and less bymore » 1.5 to 1.8% on a highway test route, when the heat exchanger replaced the muffler. Similarly, the time required for the coolant at the inlet of the cab heater to reach a temperature of 180 Fahrenheit was 27.5 to 28.8% shorter for the test stand engine, 6.3 to 7.0% shorter for the Granada in town route and 16.6 to 16.9% shorter for the Granada highway route, when the heat exchanger replaced the muffler.« less
NASA Astrophysics Data System (ADS)
Hotzel, Stephan; Lemke, Dietrich; Krause, Oliver; Stickel, Manfred; Toth, L. Viktor
ISOPHOT Serendipity Survey (ISOSS) observations of the nearby interstellar medium towards Chamaeleon have revealed a number of cold cloud cores. Far-infrared colours have been studied using ISOSS and IRAS data. 10 very cold cores with colour temperatures Tdust 13 K have been found in an 11° × 8° sized region. Comparing the FIR data with radio measurements, all of the very cold cores have high gas column densities, N(H2) > 1021 cm-2, and 7 out of 10 have low gas temperatures as indicated by Tex(C18O) ~~ 8 K.Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA. Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) are MPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena, Imperial College London.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard
At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surfacemore » of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative properties for the cold cap region is more difficult, as this region is not a true liquid, but rather a multilayer region consisting of a porous and a foamy layer. Physical properties affecting heat transfer, namely the thermal conductivity and heat capacity, have been fit to closely match data and observations from laboratory experiments. Data from xray tomography and quenching of laboratory-scale cold caps provide insight into the topology of bubble distribution within the cold cap at various temperatures. Heat transfer within the melter was validated by comparison with VSL data for the pilot-scale melter.« less
NASA Astrophysics Data System (ADS)
Chang, Qiang; Herbst, Eric
2016-03-01
The recent discovery of methyl formate and dimethyl ether in the gas phase of cold cores with temperatures as cold as 10 K challenges our previous astrochemical models concerning the formation of complex organic molecules (COMs). The strong correlation between the abundances and distributions of methyl formate and dimethyl ether further shows that current astrochemical models may be missing important chemical processes in cold astronomical sources. We investigate a scenario in which COMs and the methoxy radical can be formed on dust grains via a so-called chain reaction mechanism, in a similar manner to CO2. A unified gas-grain microscopic-macroscopic Monte Carlo approach with both normal and interstitial sites for icy grain mantles is used to perform the chemical simulations. Reactive desorption with varying degrees of efficiency is included to enhance the nonthermal desorption of species formed on cold dust grains. In addition, varying degrees of efficiency for the surface formation of methoxy are also included. The observed abundances of a variety of organic molecules in cold cores can be reproduced in our models. The strong correlation between the abundances of methyl formate and dimethyl ether in cold cores can also be explained. Nondiffusive chemical reactions on dust grain surfaces may play a key role in the formation of some COMs.
Bianchini, Gregory M.; McRae, Thomas G.
1985-01-01
Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.
Thompson, W.I.
1958-09-30
A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.
NASA Astrophysics Data System (ADS)
Rebolledo, David; Green, Anne J.; Burton, Michael; Brooks, Kate; Breen, Shari L.; Gaensler, B. M.; Contreras, Yanett; Braiding, Catherine; Purcell, Cormac
2017-12-01
We report high spatial resolution observations of the H I 21cm line in the Carina Nebula and the Gum 31 region obtained with the Australia Telescope Compact Array. The observations covered ∼12 °^2 centred on l = 287.5°, b = -1°, achieving an angular resolution of ∼35 arcsec. The H I map revealed complex filamentary structures across a wide range of velocities. Several 'bubbles' are clearly identified in the Carina Nebula complex, produced by the impact of the massive star clusters located in this region. An H I absorption profile obtained towards the strong extragalactic radio source PMN J1032-5917 showed the distribution of the cold component of the atomic gas along the Galactic disc, with the Sagittarius-Carina and Perseus spiral arms clearly distinguishable. Preliminary calculations of the optical depth and spin temperatures of the cold atomic gas show that the H I line is opaque (τ ≳ 2) at several velocities in the Sagittarius-Carina spiral arm. The spin temperature is ∼100 K in the regions with the highest optical depth, although this value might be lower for the saturated components. The atomic mass budget of Gum 31 is ∼35 per cent of the total gas mass. H I self-absorption features have molecular counterparts and good spatial correlation with the regions of cold dust as traced by the infrared maps. We suggest that in Gum 31 regions of cold temperature and high density are where the atomic to molecular gas-phase transition is likely to be occurring.
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-01-01
The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-12-31
The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Hundred Thousand Degree Gas in the Virgo Cluster of Galaxies
NASA Astrophysics Data System (ADS)
Sparks, W. B.; Pringle, J. E.; Carswell, R. F.; Donahue, M.; Martin, R.; Voit, M.; Cracraft, M.; Manset, N.; Hough, J. H.
2012-05-01
The physical relationship between low-excitation gas filaments at ~104 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~107 K in the centers of many galaxy clusters is not understood. It is unclear whether the ~104 K filaments have cooled and condensed from the ambient hot (~107 K) medium or have some other origin such as the infall of cold gas in a merger, or the disturbance of an internal cool reservoir of gas by nuclear activity. Observations of gas at intermediate temperatures (~105-106 K) can potentially reveal whether the central massive galaxies are gaining cool gas through condensation or losing it through conductive evaporation and hence identify plausible scenarios for transport processes in galaxy cluster gas. Here we present spectroscopic detection of ~105 K gas spatially associated with the Hα filaments in a central cluster galaxy, M87, in the Virgo Cluster. The measured emission-line fluxes from triply ionized carbon (C IV 1549 Å) and singly ionized helium (He II 1640 Å) are consistent with a model in which thermal conduction determines the interaction between hot and cold phases.
NASA Astrophysics Data System (ADS)
Lee, Sung-rock; Chun, Jong-hwa
2013-04-01
For the baseline study in the monitoring gas hydrate test production in the Ulleung Basin, Korea Institute of Geoscience and Mineral Resources (KIGAM) has developed the KIGAM Seafloor Observation System (KISOS) for seafloor exploration using unmanned remotely operated vehicle connected with a ship by a cable. The KISOS consists of a transponder of an acoustic positioning system (USBL), a bottom finding pinger, still camera, video camera, water sampler, and measuring devices (methane, oxygen, CTD, and turbidity sensors) mounted on the unmanned ROV, and a sediment collecting device collecting sediment on the seafloor. It is very important to monitoring the environmental risks (gas leakage and production water/drilling mud discharge) which may be occurred during the gas hydrate test production drilling. The KISOS will be applied to solely conduct baseline study with the KIGAM seafloor monitoring system (KIMOS) of the Korean gas hydrate program in the future. The large scale of environmental monitoring program includes the environmental impact assessment such as seafloor disturbance and subsidence, detection of methane gas leakage around well and cold seep, methane bubbles and dissolved methane, change of marine environments, chemical factor variation of water column and seabed, diffusion of drilling mud and production water, and biological factors of biodiversity and marine habitats before and after drilling test well and nearby areas. The design of the baseline survey will be determined based on the result of SIMAP simulation in 2013. The baseline survey will be performed to provide the gas leakage and production water/drilling mud discharge before and after gas hydrate test production. The field data of the baseline study will be evaluated by the simulation and verification of SIMAP simulator in 2014. In the presentation, the authors would like introduce the configuration of KISOS and applicability to the seafloor observation for the gas hydrate test production in the Ulleung Basin. This work was financially supported by the the Ministry of Knowledge Economy(MKE) and Gas Hydrate R/D Organization(GHDO)
Moridis, G.J.; Silpngarmlert, S.; Reagan, M.T.; Collett, T.; Zhang, K.
2011-01-01
As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities (?? = 0.4), high intrinsic permeabilities (k = 10-12 m2) and high hydrate saturations (SH = 0.65). It has a low temperature (T = 2.3-2.6 ??C) because of its proximity to the overlying permafrost. The simulation results indicate that vertical wells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is by the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation. Thus, a 1 ??C increase in temperature is sufficient to increase the production rate by a factor of almost 8. Production also increases with a decreasing hydrate saturation (because of a larger effective permeability for a given k), and is favored (to a lesser extent) by anisotropy. ?? 2010.
The Baryonic Collapse Efficiency of Galaxy Groups in the RESOLVE and ECO Surveys
NASA Astrophysics Data System (ADS)
Eckert, Kathleen D.; Kannappan, Sheila J.; Lagos, Claudia del P.; Baker, Ashley D.; Berlind, Andreas A.; Stark, David V.; Moffett, Amanda J.; Nasipak, Zachary; Norris, Mark A.
2017-11-01
We examine the z = 0 group-integrated stellar and cold baryonic (stars + cold atomic gas) mass functions (group SMF and CBMF) and the baryonic collapse efficiency (group cold baryonic to dark matter halo mass ratio) using the RESOLVE and ECO survey galaxy group catalogs and a galform semi-analytic model (SAM) mock catalog. The group SMF and CBMF fall off more steeply at high masses and rise with a shallower low-mass slope than the theoretical halo mass function (HMF). The transition occurs at the group-integrated cold baryonic mass {M}{bary}{cold} ˜ 1011 {M}⊙ . The SAM, however, has significantly fewer groups at the transition mass ˜1011 {M}⊙ and a steeper low-mass slope than the data, suggesting that feedback is too weak in low-mass halos and conversely too strong near the transition mass. Using literature prescriptions to include hot halo gas and potential unobservable galaxy gas produces a group BMF with a slope similar to the HMF even below the transition mass. Its normalization is lower by a factor of ˜2, in agreement with estimates of warm-hot gas making up the remaining difference. We compute baryonic collapse efficiency with the halo mass calculated two ways, via halo abundance matching (HAM) and via dynamics (extended all the way to three-galaxy groups using stacking). Using HAM, we find that baryonic collapse efficiencies reach a flat maximum for groups across the halo mass range of {M}{halo}˜ {10}11.4-12 {M}⊙ , which we label “nascent groups.” Using dynamics, however, we find greater scatter in baryonic collapse efficiencies, likely indicating variation in group hot-to-cold baryon ratios. Similarly, we see higher scatter in baryonic collapse efficiencies in the SAM when using its true groups and their group halo masses as opposed to friends-of-friends groups and HAM masses.
xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies
NASA Astrophysics Data System (ADS)
Saintonge, Amélie; Catinella, Barbara; Tacconi, Linda J.; Kauffmann, Guinevere; Genzel, Reinhard; Cortese, Luca; Davé, Romeel; Fletcher, Thomas J.; Graciá-Carpio, Javier; Kramer, Carsten; Heckman, Timothy M.; Janowiecki, Steven; Lutz, Katharina; Rosario, David; Schiminovich, David; Schuster, Karl; Wang, Jing; Wuyts, Stijn; Borthakur, Sanchayeeta; Lamperti, Isabella; Roberts-Borsani, Guido W.
2017-12-01
We introduce xCOLD GASS, a legacy survey providing a census of molecular gas in the local universe. Building on the original COLD GASS survey, we present here the full sample of 532 galaxies with CO (1–0) measurements from the IRAM 30 m telescope. The sample is mass-selected in the redshift interval 0.01< z< 0.05 from the Sloan Digital Sky Survey (SDSS) and therefore representative of the local galaxy population with {M}* > {10}9 {M}ȯ . The CO (1–0) flux measurements are complemented by observations of the CO (2–1) line with both the IRAM 30 m and APEX telescopes, H I observations from Arecibo, and photometry from SDSS, WISE, and GALEX. Combining the IRAM and APEX data, we find that the ratio of CO (2–1) to CO (1–0) luminosity for integrated measurements is {r}21=0.79+/- 0.03, with no systematic variations across the sample. The CO (1–0) luminosity function is constructed and best fit with a Schechter function with parameters {L}{CO}* =(7.77+/- 2.11)× {10}9 {{K}} {km} {{{s}}}-1 {{pc}}2, {φ }* =(9.84+/- 5.41)× {10}-4 {{Mpc}}-3, and α =-1.19+/- 0.05. With the sample now complete down to stellar masses of 109 {M}ȯ , we are able to extend our study of gas scaling relations and confirm that both molecular gas fractions ({f}{{{H}}2}) and depletion timescale ({t}{dep}({{{H}}}2)) vary with specific star formation rate (or offset from the star formation main sequence) much more strongly than they depend on stellar mass. Comparing the xCOLD GASS results with outputs from hydrodynamic and semianalytic models, we highlight the constraining power of cold gas scaling relations on models of galaxy formation.
The interaction between hot and cold gas in early-type galaxies
NASA Technical Reports Server (NTRS)
Bregman, Joel N.; Hogg, David E.; Roberts, Morton S.
1995-01-01
SO and Sa galaxies have approximately equal masses of H I and X-ray emitting gas and are ideal sites for studying the interaction between hot and cold gas. An X-ray observation of the Sa galaxy NGC 1291 with the ROSAT position sensitive proportional counter (PSPC) shows a striking spatial anticorrelation between hot and cold gas where X-ray emitting material fills the large central black hole in the H I disk. This supports a previous suggestion that hot gas is a bulge phenomenon and neutral hydrogen is a disk phenomenon. The X-ray luminosity (1.5 x 10(exp 40) ergs/s) and radial surface brightness distribution (beta = 0.51) is the same as for elliptical galaxies with optical luminosities and velocity dispersions like that of the bulge of NGC 1291. Modeling of the X-ray spectrum requires a component with a temperature of 0.15 keV, similar to that expected from the velocity dispersion of the stars, and with a hotter component where kT = 1.07 keV. This hotter component is not due to emission from stars and its origin remains unclear. PSPC observations are reported for the SO NGC 4203, where a nuclear point source dominates the emission, preventing a study of the radial distribution of the hot gas relative to the H I.
Detectability of cold streams into high-redshift galaxies by absorption lines
NASA Astrophysics Data System (ADS)
Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel
2012-08-01
Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.
Radio jets clearing the way through galaxies: the view from Hi and molecular gas
NASA Astrophysics Data System (ADS)
Morganti, Raffaella
2015-03-01
Massive gas outflows are considered a key component in the process of galaxy formation and evolution. Because of this, they are the topic of many studies aimed at learning more about their occurrence, location and physical conditions as well as the mechanism(s) at their origin. This contribution presents recent results on two of the best examples of jet-driven outflows traced by cold and molecular gas. Thanks to high-spatial resolution observations, we have been able to locate the region where the outflow occurs. This appears to be coincident with bright radio features and regions where the interaction between radio plasma jet and ISM is known to occur, thus strongly supporting the idea of jet-driven outflows. We have also imaged the distribution of the outflowing gas. The results clearly show the effect that expanding radio jets and lobes have on the ISM. This appears to be in good agreement with what predicted from numerical simulations. Furthermore, the results show that cold gas is associated with these powerful phenomena and can be formed - likely via efficient cooling - even after a strong interaction and fast shocks. The discovery of similar fast outflows of cold gas in weak radio sources is further increasing the relevance that the effect of the radio plasma can have on the surrounding medium and on the host galaxy.
Pankaj, S K; Wan, Zifan; Colonna, William; Keener, Kevin M
2017-07-01
High voltage atmospheric cold plasma (HVACP) is a novel, non-thermal technology which has shown potential for degradation of various toxic components in wastewater. In this study, HVACP was used to examine the degradation kinetics of methyl red, crystal violet and fast green FCF dyes. HVACP discharge was found to be a source of reactive nitrogen and oxygen species. High voltage application completely degraded all dyes tested in less than 5 min treatment time. Plasma from modified gas (∼65% O 2 ) further reduced the treatment time by 50% vs. plasma from dry air. First order and Weibull models were fitted to the degradation data. The Weibull model was found better in explaining the degradation kinetics of all the treated dyes.
Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation.
Mohite, P N; Maunz, O; Popov, A-F; Zych, B; Patil, N P; Simon, A R
2015-11-01
The Organ Care System (OCS) allows perfusion and ventilation of the donor lungs under physiological conditions. Ongoing trials to compare preservation with OCS Lung with standard cold storage do not include donor lungs with suboptimal gas exchange and donor lungs treated with OCS following cold storage transportation. We present a case of a 48-yr-old man who received such lungs after cold storage transportation treated with ex-vivo lung perfusion utilizing OCS. © The Author(s) 2015.
Zhang, Yinyin; Brodusch, Nicolas; Descartes, Sylvie; Chromik, Richard R; Gauvin, Raynald
2014-10-01
The electron channeling contrast imaging technique was used to investigate the microstructure of copper coatings fabricated by cold gas dynamic spray. The high velocity impact characteristics for cold spray led to the formation of many substructures, such as high density dislocation walls, dislocation cells, deformation twins, and ultrafine equiaxed subgrains/grains. A schematic model is proposed to explain structure refinement of Cu during cold spray, where an emphasis is placed on the role of dislocation configurations and twinning.
Analytical methods for toxic gases from thermal degradation of polymers
NASA Technical Reports Server (NTRS)
Hsu, M.-T. S.
1977-01-01
Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.
Tian, Weijun; Liu, Yi; Zhang, Bai; Dai, Xiangchen; Li, Guang; Li, Xiaochun; Zhang, Zhixiang; Du, Caigan; Wang, Hao
2015-02-01
Cold ischemia-reperfusion injury (IRI) is a major cause of graft failure in lung transplantation. Despite therapeutic benefits of mesenchymal stem cells (MSCs) in attenuating acute lung injury, their protection of lung transplants from cold IRI remains elusive. The present study was to test the efficacy of MSCs in the prevention of cold IRI using a novel murine model of orthotopic lung transplantation. Donor lungs from C57BL/6 mice were exposed to 6 h of cold ischemia before transplanted to syngeneic recipients. MSCs were isolated from the bone marrows of C57BL/6 mice for recipient treatment. Gas exchange was determined by the measurement of blood oxygenation, and lung injury and inflammation were assessed by histological analyses. Intravenously delivered MSC migration/trafficking to the lung grafts occurred within 4-hours post-transplantation. As compared to untreated controls, the graft arterial blood oxygenation (PaO2/FiO2) capacity was significantly improved in MSC-treated recipients as early as 4 h post-reperfusion and such improvement continued over time. By 72 h, oxygenation reached normal level that was not seen in controls. MSCs treatment conferred significant protection of the grafts from cold IRI and cell apoptosis, which is correlated with less cellular infiltration, a decrease in proinflammatory cytokines (TNF-α, IL-6) and toll-like receptor 4, and an increase in anti-inflammatory TSG-6 generation. MSCs provide significant protection against cold IRI in lung transplants, and thus may be a promising strategy to improve outcomes after lung transplantation.
Wind tunnel pressurization and recovery system
NASA Technical Reports Server (NTRS)
Pejack, Edwin R.; Meick, Joseph; Ahmad, Adnan; Lateh, Nordin; Sadeq, Omar
1988-01-01
The high density, low toxicity characteristics of refrigerant-12 (dichlorofluoromethane) make it an ideal gas for wind tunnel testing. Present limitations on R-12 emissions, set to slow the rate of ozone deterioration, pose a difficult problem in recovery and handling of large quantities of R-12. This preliminary design is a possible solution to the problem of R-12 handling in wind tunnel testing. The design incorporates cold temperature condensation with secondary purification of the R-12/air mixture by adsorption. Also discussed is the use of Freon-22 as a suitable refrigerant for the 12 foot wind tunnel.
Pereverzev, A Y; Boyarkin, O V
2017-02-01
Linking the intrinsic tertiary structures of biomolecules to their native geometries is a central prerequisite for making gas-phase studies directly relevant to biology. The isolation of molecules in the gas phase eliminates hydrophilic interactions with solvents, to some extent mimicking a hydrophobic environment. Intrinsic structures therefore may resemble native ones for peptides that in vivo reside in a hydrophobic environment (e.g., binding pockets of receptors). In this study, we investigate doubly protonated neurokinin A (NKA) using IR-UV double resonance cold ion spectroscopy and find only five conformers of this decapeptide in the gas phase. In contrast, NMR data show that in aqueous solutions, NKA exhibits high conformational heterogeneity, which reduces to a few well-defined structures in hydrophobic micelles. Do the gas-phase structures of NKA resemble these native structures? The IR spectra reported here allow the validation of future structural calculations that may answer this question.
Binda, Maria Mercedes
2015-11-01
The peritoneum is the serous membrane that covers the abdominal cavity and most of the intra-abdominal organs. It is a very delicate layer highly susceptible to damage and it is not designed to cope with variable conditions such as the dry and cold carbon dioxide (CO2) during laparoscopic surgery. The aim of this review was to evaluate the effects caused by insufflating dry and cold gas into the abdominal cavity after laparoscopic surgery. A literature search using the Pubmed was carried out. Articles identified focused on the key issues of laparoscopy, peritoneum, morphology, pneumoperitoneum, humidity, body temperature, pain, recovery time, post-operative adhesions and lens fogging. Insufflating dry and cold CO2 into the abdomen causes peritoneal damage, post-operative pain, hypothermia and post-operative adhesions. Using humidified and warm gas prevents pain after surgery. With regard to hypothermia due to desiccation, it can be fully prevented using humidified and warm gas. Results relating to the patient recovery are still controversial. The use of humidified and warm insufflation gas offers a significant clinical benefit to the patient, creating a more physiologic peritoneal environment and reducing the post-operative pain and hypothermia. In animal models, although humidified and warm gas reduces post-operative adhesions, humidified gas at 32 °C reduced them even more. It is clear that humidified gas should be used during laparoscopic surgery; however, a question remains unanswered: to achieve even greater clinical benefit to the patient, at what temperature should the humidified gas be when insufflated into the abdomen? More clinical trials should be performed to resolve this query.
Decontamination of foods by cold plasma
USDA-ARS?s Scientific Manuscript database
Cold plasma is a novel nonthermal food processing technology for meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium to inactivate microbes without the use of conventional antimicrobial chemical agents. ...
Cold plasma decontamination of foods
USDA-ARS?s Scientific Manuscript database
Cold plasma is a novel nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. This flexible sanitizing method uses electricity and a carrier gas such as air, oxygen, nitrogen or helium; antimicrobi...
NASA Astrophysics Data System (ADS)
Zhang, L.; Dang, H. Z.; Tan, J.; Bao, D.; Zhao, Y. B.; Qian, G. Z.
2015-12-01
Theoretical and experimental investigations on the dynamic and thermodynamic characteristics of a linear compressor incorporating the thermodynamic characteristics of the inertance tube pulse tube cold finger have been made. Both the compressor and cold finger are assumed as a one-dimensional thermodynamic model. The governing equations of the thermodynamic characteristics of the working gas are summarized, and the effects of the cooling performance on the working gas in the compression space are discussed. Based on the analysis of the working gas, the governing equations of the dynamic and thermodynamic characteristics of the compressor are deduced, and then the principles of achieving the optimal performance of the compressor are discussed in detail. Systematic experimental investigations are conducted on a developed moving-coil linear compressor which drives a pulse tube cold finger, which indicate the general agreement with the simulated results, and thus verify the rationality of the theoretical model and analyses.
A comparative study on NbOx films reactively sputtered from sintered and cold gas sprayed targets
NASA Astrophysics Data System (ADS)
Lorenz, Roland; O'Sullivan, Michael; Fian, Alexander; Sprenger, Dietmar; Lang, Bernhard; Mitterer, Christian
2018-04-01
The aim of this work is to evaluate novel cold gas sprayed Nb targets in a reactive sputter deposition process of thin films with respect to the widely used sintered Nb targets. With the exception of a higher target discharge voltage of ∼100 V for the cold gas sprayed targets and the thus higher film growth rate compared to sintered targets, NbOx films with comparable microstructure and properties were obtained for both target variants. The amorphous films with thicknesses between 2.9 and 4.9 μm present an optical shift from dark and non-transparent towards transparent properties, as the oxygen partial pressure increases. X-ray photoelectron spectroscopy confirms the occurrence of the Nb5+ oxidation state for the highest oxygen partial pressure, while Nb4+ is additionally present at lower oxygen partial pressure settings. With a maximal transparency of ∼80% and a refractive index of ∼2.5, the transparent films show characteristics similar to Nb2O5.
The Impact of Starbursts on the Gaseous Halos of Galaxies
NASA Astrophysics Data System (ADS)
Heckman, Timothy
2009-07-01
Perhaps the most important {yet uncertain} aspects of galaxy evolution are the processes by which galaxies accrete gas and by which the resulting star formation and black hole growth affects this accreting gas. It is believed that both the form of the accretion and the nature of the feedback change as a function of the galaxy mass. At low mass the gas comes in cold and the feedback is provided by massive stars. At high mass, the gas comes in hot, and the feedback is from an AGN. The changeover occurs near the mass where the galaxy population transitions from star-forming galaxies to red and dead ones. The population of red and dead galaxies is building with cosmic time, and it is believed that feedback plays an imporant role in this process: shutting down star formation by heating and/or expelling the reservoir of cold halo gas. To investigate these ideas, we propose to use COS far-UV spectra of background QSOs to measure the properties of the halo gas in a sample of galaxies near the transition mass that have undergone starbursts within the past 100 Myr to 1 Gyr. The galactic wind associated with the starburst is predicted to have affected the properties of the gaseous halo. To test this, we will compare the properties of the halos of the post-starburst galaxies to those of a control sample of galaxies matched in mass and QSO impact parameter. Do the halos of the post-starburst galaxies show a higher incidence rate of Ly-Alpha and metal absorption-lines? Are the kinematics of the halo gas more disturbed in the post-starbursts? Has the wind affected the ionization state and/or the metallicity of the halo? These data will provide fresh new insights into the role of feedback from massive stars on the evolution of galaxies, and may also offer clues about the properties of the QSO metal absorption-line systems at high-redshift.
Liquid hydrogen turbopump ALS advanced development program. Volume 1: Hot fire unit
NASA Technical Reports Server (NTRS)
Lindley, Bruce
1990-01-01
The interface criteria for the Turbopump Test article (TPA) and the Component Test Facility located at NASA, Stennis Space Center is defined by this interface Control Document (ICD). TPA ICD Volume 2 is submitted for the Cold Gas Drive Turbopump Test Article, which is generally similar but incorporates certain changes, particularly in fluid requirements and in instrumentation needs. For the purposes of this ICD, the test article consists of the Hot Fire Drive Turbopump mounted on its test cart, readied for installation in the component test facility. It should be emphasized that the LH2 turbopump program is still in its early concept design phase. Design of the turbopump, test cart, and spools are subject to revisions until successful conclusion of the Detail Design Review (DDR).
The Effects of Ram Pressure on the Cold Clouds in the Centers of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Li, Yuan; Ruszkowski, Mateusz; Tremblay, Grant
2018-02-01
We discuss the effect of ram pressure on the cold clouds in the centers of cool-core galaxy clusters, and in particular, how it reduces cloud velocity and sometimes causes an offset between the cold gas and young stars. The velocities of the molecular gas in both observations and our simulations fall in the range of 100–400 km s‑1, which is much lower than expected if they fall from a few tens of kiloparsecs ballistically. If the intracluster medium (ICM) is at rest, the ram pressure of the ICM only slightly reduces the velocity of the clouds. When we assume that the clouds are actually “fluffier” because they are co-moving with a warm-hot layer, the velocity becomes smaller. If we also consider the active galactic nucleus wind in the cluster center by adding a wind profile measured from the simulation, the clouds are further slowed down at small radii, and the resulting velocities are in general agreement with the observations and simulations. Because ram pressure only affects gas but not stars, it can cause a separation between a filament and young stars that formed in the filament as they move through the ICM together. This separation has been observed in Perseus and also exists in our simulations. We show that the star-filament offset, combined with line-of-sight velocity measurements, can help determine the true motion of the cold gas, and thus distinguish between inflows and outflows.
NASA Astrophysics Data System (ADS)
Izumi, T.; Kohno, K.; Fathi, K.; Hatziminaoglou, E.; Davies, R. I.; Martín, S.; Matsushita, S.; Schinnerer, E.; Espada, D.; Aalto, S.; Onishi, K.; Turner, J. L.; Imanishi, M.; Nakanishi, K.; Meier, D. S.; Wada, K.; Kawakatu, N.; Nakajima, T.
2017-08-01
We used the Atacama Large Millimeter/Submillimeter Array to map the CO(3-2) and the underlying continuum emissions around the type-1 low-luminosity active galactic nucleus (LLAGN; bolometric luminosity ≲ {10}42 erg s-1) of NGC 1097 at ˜10 pc resolution. These observations revealed a detailed cold gas distribution within a ˜100 pc of this LLAGN. In contrast to the luminous Seyfert galaxy NGC 1068, where a ˜7 pc cold molecular torus was recently revealed, a distinctively dense and compact torus is missing in our CO(3-2) integrated intensity map of NGC 1097. Based on the CO(3-2) flux, the gas mass of the torus of NGC 1097 would be a factor of ≳2-3 less than that found for NGC 1068 by using the same CO-to-H2 conversion factor, which implies less active nuclear star formation and/or inflows in NGC 1097. Our dynamical modeling of the CO(3-2) velocity field implies that the cold molecular gas is concentrated in a thin layer as compared to the hot gas traced by the 2.12 μm H2 emission in and around the torus. Furthermore, we suggest that NGC 1097 hosts a geometrically thinner torus than NGC 1068. Although the physical origin of the torus thickness remains unclear, our observations support a theoretical prediction that geometrically thick tori with high opacity will become deficient as AGNs evolve from luminous Seyferts to LLAGNs.
Quasars Probing Galaxies. I. Signatures of Gas Accretion at Redshift z ≈ 0.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Stephanie H.; Martin, Crystal L.; Kacprzak, Glenn G.
2017-02-01
We describe the kinematics of circumgalactic gas near the galactic plane, combining new measurements of galaxy rotation curves and spectroscopy of background quasars. The sightlines pass within 19–93 kpc of the target galaxy and generally detect Mg ii absorption. The Mg ii Doppler shifts have the same sign as the galactic rotation, so the cold gas co-rotates with the galaxy. Because the absorption spans a broader velocity range than disk rotation can explain, we explore simple models for the circumgalactic kinematics. Gas spiraling inwards (near the disk plane) offers a successful description of the observations. An appendix describes the additionmore » of tangential and radial gas flows and illustrates how the sign of the disk inclination produces testable differences in the projected line-of-sight velocity range. This inflow interpretation implies that cold flow disks remain common down to redshift z ≈ 0.2 and prolong star formation by supplying gas to the disk.« less
Hsu, Chia-Hao; Chen, Tai-Cheng; Huang, Rong-Tan; Tsay, Leu-Wen
2017-01-01
304 stainless steels (SS) were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod) 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD) map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC). Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ) was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group. PMID:28772547
Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations
NASA Astrophysics Data System (ADS)
Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.
2018-05-01
Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.
Is Cold Gas Removed from Galaxies in Filaments and Tendrils?
NASA Astrophysics Data System (ADS)
Crone Odekon, Mary; Shah, Ebrahim; Hall, Ryan; Cane, Thomas; Maloney, Erin; Hallenbeck, Gregory; Haynes, Martha P.; Koopmann, Rebecca A.; APPSS Team, Undergraduate ALFALFA Team, ALFALFA Team
2018-01-01
We present results from an ALFALFA HI study to examine whether the cold gas reservoirs of galaxies are inhibited or enhanced in large-scale filaments, and we discuss implications for follow-up work using the new Arecibo Pisces-Perseus Supercluster survey (APPSS). From the ALFALFA survey, we find that the HI deficiency for galaxies in the range 10^8.5-10^10.5 solar masses decreases with distance from the filament spine, suggesting that galaxies are cut off from cold gas, possibly by heating or by dynamical detachment from the smaller-scale cosmic web. This contrasts with previous results for larger galaxies in the HI Parkes All-Sky Survey. We discuss the prospects for elucidating this apparent dependence on galaxy mass with data from the APPSS, which will extend to smaller masses. We also find that the most gas-rich galaxies at fixed local density and stellar mass are those in small, correlated ``tendril” structures within voids: although galaxies in tendrils are in significantly denser environments, on average, than galaxies in voids, they are not redder or more HI deficient. This work has been supported by NSF grants AST-1211005 and AST-1637339.
Simulation and Preliminary Design of a Cold Stream Experiment on Omega EP
NASA Astrophysics Data System (ADS)
Coffing, Shane; Angulo, Adrianna; Trantham, Matt; Malamud, Guy; Kuranz, Carolyn; Drake, R. P.
2017-10-01
Galaxies form within dark matter halos, accreting gas that may clump and eventually form stars. Infalling matter gradually increases the density of the halo, and, if cooling is insufficient, rising pressure forms a shock that slows the infalling gas, reducing star formation. However, galaxies with sufficient cooling become prolific star formers. A recent theory suggests that so called ``stream fed galaxies'' are able to acquire steady streams of cold gas via galactic ``filaments'' that penetrate the halo. The cold, dense filament flowing into a hot, less dense environment is potentially Kelvin-Helmholtz unstable. This instability may hinder the ability of the stream to deliver gas deeply enough into the halo. To study this process, we have begun preliminary design of a well-scaled laser experiment on Omega EP. We present here early simulation results and the physics involved. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and the National Laser User Facility Program, Grant Number DE-NA0002719, and through the Laboratory for Laser Energetics, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0001944.
1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND ...
1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND COLD CALIBRATION BLOCKHOUSE IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
Black Hole Accretion and Feedback Driven by Thermal Instability
NASA Astrophysics Data System (ADS)
Gaspari, M.; Ruszkowski, M.; Oh, S. P.; Churazov, E.; Brighenti, F.; Ettori, S.; Sharma, P.; Temi, P.
2013-03-01
Multiwavelength data indicate that the cores of several galaxy clusters are moderately cooling, though not catastrophically, showing signs of filamentary extended multiphase gas. Through 3D AMR hydrodynamic simulations, we study the impact of thermal instability in the evolution of the intracluster medium. Common moderate turbulence of just over 100 km/s leads to the growth of nonlinear thermal instability within the central few tens kpc. In the presence of a global counterbalancing heating, the condensation of extended filamentary cold gas is violent, occurring when the cooling time falls below 10 times the free-fall time. The frequent stochastic collisions, fragmentations and shearing motions between the cold clouds, filaments and the central torus, efficiently reduce angular momentum. Tracking the accreting gas with a dynamical range of 10 million, we find that the accretion rate is boosted up to 100 times with respect to the Bondi rate. In a commonly turbulent and quasi-stable atmosphere, the mode of black accretion is cold and chaotic, substantially different from the classic idealized scenario. Only in the transonic regime, turbulent dissipation starts to inhibit thermal instability. On sub-parsec scales the cold phase is channeled via a funnel, triggering the black hole feedback likely linked to mechanical jets/outflows. As shown by long-term self-regulated simulations, the interplay of chaotic cold accretion and AGN feedback is crucial in order to avoid the cooling catastrophe and to reproduce the key thermodynamical features of observed clusters.
NASA Technical Reports Server (NTRS)
Roelke, R. J.; Haas, J. E.
1984-01-01
The aerodynamic performance of a redesigned compressor drive turbine of the gas turbine engine is determined in air at nominal inlet conditions of 325 K and 0.8 bar absolute. The turbine is designed with a lower flow factor, higher rotor reaction and a redesigned inlet volute compared to the first turbine. Comparisons between this turbine and the originally designed turbine show about 2.3 percentage points improvement in efficiency at the same rotor tip clearance. Two versions of the same rotor are tested: (1) an as cast rotor, and (2) the same rotor with reduced surface roughness. The effect of reducing surface roughness is about one half percentage point improvement in efficiency. Tests made to determine the effect of Reynolds number on the turbine performance show no effect for the range from 100,000 to 500,000.
Tracing the Fuel for Forming Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-11-01
Huge reservoirs of cold hydrogen gas the raw fuel for star formation lurk in galaxies throughout the universe. A new study examines whether these reservoirs have always been similar, or whether those in distant galaxies are very different from those in local galaxies today.Left: Optical SLOAN images of the five HIGHz galaxies in this study. Right: ALMA images of the molecular gas in these galaxies. Both images are 30 wide. [Adapted from Cortese et al. 2017]Molecular or Atomic?The formation of stars is a crucial process that determines how galaxies are built and evolve over time. Weve observed that star formation takes place in cold clouds of molecular gas, and that star-formation rates increase in galaxies with a larger surface density of molecular hydrogen so we know that molecular hydrogen feeds the star-forming process.But not all cold gas in the interstellar medium of galaxies exists in molecular form. In the local universe, only around 30% of cold gas is found in molecular form (H2) and able to directly feed star formation; the rest is atomic hydrogen (H I). But is this true of galaxies earlier in the universe as well?Studying Distant GalaxiesCosmological simulations have predicted that earlier in our universes history, the ratio of molecular to atomic hydrogen could be larger i.e., more cold hydrogen may be in a form ready to fuel star formation but this prediction is difficult to test observationally. Currently, radio telescopes are not able to measure the atomic hydrogen in very distant galaxies, such as those at the peak of star formation in the universe, 10 billion years ago.Recently, however, we have measured atomic hydrogen in closer galaxies: those at a redshift of about z 0.20.4, a few billion years ago. One recent study of seven galaxies at this distance, usinga sample from a survey known as COOL BUDHIES, showed that the hydrogen reservoirs of these galaxies are dominated by molecular hydrogen, unlike in the local universe. If this is true of most galaxies at this distance, it would suggest that gas reservoirs have drastically changed in the short time between then and now.But a team of scientists from the International Centre for Radio Astronomy Research in Australia, led by Luca Cortese, has now challenged this conclusion.Top: molecular vs. atomic hydrogen gas in galaxies between z = 0 and z = 1.5. Bottom: the evolution of the molecular-to-atomic mass ratio with redshift. [Adapted from Cortese et al. 2017]Adding to the SampleCortese and collaborators combined observations from the Atacama Large Millimeter/submillimeter Array (ALMA) and Arecibo to estimate the ratio of molecular to atomic hydrogen in five HIGHz-survey massive star-forming galaxies at a redshift of z 0.2. They then combine these results with those of the COOL BUDHIES survey; they argue that, since the two surveys use different selection criteria, the combination of the two samples provides a fairer view of the overall population of star-forming galaxies at z 0.2.Intriguingly, the HIGHz galaxies do not show the molecular-gas dominance that the COOL BUDHIES galaxies do. Cortese and collaborators demonstrate that the addition of the HIGHz galaxies to the sample reveals that the gas reservoirs of star-forming disks 3 billion years ago are, in fact, still the same as what we see today, suggesting that star formation in galaxies at z 0.2 is likely fueled in much the same way as it is today.As telescope capabilities increase, we may be able to explore whether this continues to hold true for more distant galaxies. In the meantime, increasing our sample size within the range that we can observe will help us to further explore how galaxies have formed stars over time.CitationLuca Cortese et al 2017 ApJL 848 L7. doi:10.3847/2041-8213/aa8cc3
NASA Astrophysics Data System (ADS)
Rasta, IM; Susila, IDM; Subagia, IWA
2018-01-01
The application of refrigeration technology to postharvest fishery products is an very important. Moreover, Indonesia is a tropical region with relatively high temperatures. Fish storage age can be prolonged with a decrease in temperature. Frozen fish can even be stored for several months. Fish freezing means preparing fish for storage in low-temperature cold storage. The working fluid used in cold storage to cool low-temperature chambers and throw heat into high-temperature environments is refrigerant. So far refrigerant used in cold storage is Hydrochloroflourocarbons (HCFC) that is R-22. Chlor is a gas that causes ODP (Ozone Depleting Potential), while Flour is a gas that causes GWP (Global Warming Potential). Government policy began in 2015 to implement Hydrochloroflourocarbons Phase-Out Management Plan. Hydrocarbon (HC) is an alternative substitute for R-22. HC-22 (propane ≥ 99.5%) has several advantages, among others: environmentally friendly, indicated by a zero ODP value, and GWP = 3 (negligible), thermophysical property and good heat transfer characteristics, vapor phase density Which is low, and good solubility with mineral lubricants. The use of HC-22 in cold storage is less than R-22. From the analysis results obtained, cold storage system using HC-22 has better performance and energy consumption is more efficient than the R-22.
Imaging Cold Gas to 1 kpc scales in high-redshift galaxies with the ngVLA
NASA Astrophysics Data System (ADS)
Casey, Caitlin; Narayanan, Desika; Dave, Romeel; Hung, Chao-Ling; Champagne, Jaclyn; Carilli, Chris Luke; Decarli, Roberto; Murphy, Eric J.; Popping, Gergo; Riechers, Dominik; Somerville, Rachel S.; Walter, Fabian
2017-01-01
The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will provide crucial insight on dominant physical drivers for star-formation in high redshift galaxies, including the exchange of gas from scales of the circumgalactic medium down to resolved clouds on mass scales of ~10^5 M_sun. In this study, we employ a series of high-resolution, cosmological, hydrodynamic zoom simulations from the MUFASA simulation suite and a CASA simulator to generate mock ngVLA observations. Based on a direct comparison between the inferred results from our mock observations and the cosmological simulations, we investigate the capabilities of ngVLA to constrain the mode of star formation, dynamical mass, and molecular gas kinematics in individual high-redshift galaxies using cold gas tracers like CO(1-0) and CO(2-1). Using the Despotic radiative transfer code that encompasses simultaneous thermal and statistical equilibrium in calculating the molecular and atomic level populations, we generate parallel mock observations of high-J transitions of CO and C+ from ALMA for comparison. The factor of 100 times improvement in mapping speed for the ngVLA beyond the Jansky VLA and the proposed ALMA Band 1 will make these detailed, high-resolution imaging and kinematic studies routine at z=2 and beyond.
The behavior of cold gas in spheroidal galactic potentials
NASA Astrophysics Data System (ADS)
Simonson, G. F.
1982-03-01
The motions of cold gas residing in various spheroidal galactic potential wells are investigated, both analytically and through extensive numerical calculations. It is found that a gaseous layer embedded in the potential has a preferred orientation, in which individual gas clouds have orbits which do not precess. The gas will damp to the preferred orbits, through the combined effects of differential precession and radial excursions from circular trajectories, on time scales of less than one to two billion years for orbits of moderate radius. For elliptical galaxies with embedded gas disks this work provides a clear discriminator between prolate and oblate mass distributions. The preferred gas orbits lie in the equatorial planes of both of these potentials, so if a gas disk is seen projected against the minor axis of an elliptical, that galaxy is truly prolate, while if the lane is aligned with the major axis, the system is oblate. Tabulated observations show that both prolate and oblate ellipticals exist, in perhaps equal numbers. True axial ratios and spatial orientations can also be determined for these objects.
Hot gas, cold gas and sub-haloes in a Lyman α blob at redshift 2.38
NASA Astrophysics Data System (ADS)
Francis, Paul. J.; Dopita, Michael A.; Colbert, James W.; Palunas, Povilas; Scarlata, Claudia; Teplitz, Harry; Williger, Gerard M.; Woodgate, Bruce E.
2013-01-01
We present integral field spectroscopy of a Lyman α blob at redshift 2.38, with a spectral resolution three times better than previous published work. As with previous observations, the blob has a chaotic velocity structure, much of which breaks up into multiple components. Our spectroscopy shows, however, that some of these multiple components are extremely narrow: they have velocity widths of less than 100 km s- 1. Combining these new data with previous observations, we argue that this Lyman α blob resides in a dark matter halo of around 1013 M⊙. At the centre of this halo are two compact red massive galaxies. They are surrounded by hot gas, probably a superwind from merger-induced nuclear starbursts. This hot gas has shut down star formation in the non-nuclear region of these galaxies, leading to their red-and-dead colours. A filament or lump of infalling cold gas is colliding with the hot gas phase and being shocked to high temperatures, while still around 30 kpc from the red galaxies. The shock region is self-absorbed in Lyman α but produces C iv emission. Further out still, the cold gas in a number of sub-haloes is being lit up, most likely by a combination of tidally triggered star formation, bow shocks as they plough through the hot halo medium, resonant scattering of Lyman α from the filament collision and tidal stripping of gas which enhances the Lyman α escape fraction. The observed Lyman α emission from the blob is dominated by the sum of the emission from these sub-haloes. On statistical grounds, we argue that Lyman α blobs are not greatly elongated in shape and that most are not powered by ionization or scattering from a central active galactic nucleus or starburst.
The winter gap effect in methane leak detection and repair with optical gas imaging cameras
NASA Astrophysics Data System (ADS)
Fox, T. A.; Barchyn, T.; Hugenholtz, C.
2017-12-01
Implementing effective leak detection and repair (LDAR) programs is essential for mitigating fugitive methane emissions from oil and gas operations. In Canada, newly proposed regulations will require that high-risk facilities be surveyed 3 times/yr for fugitive leaks. Like the United States, Canada promotes the use of Optical Gas Imaging cameras (OGIs) for detecting natural gas leaks during LDAR surveys. However, recent research suggests OGIs may perform poorly under adverse environmental conditions, especially in low temperatures. For regions like Canada that experience cold winters, OGIs may not be reliably used for months at a time, meaning that leaks may accumulate and emit for longer periods before being repaired. While considerable oil and gas activity occurs in high-latitude regions with cold winters, no research has explored how extended cold periods impact OGI-focused LDAR programs. To improve this understanding, we present a simple model exploring relationships among winter gap length, fugitive methane emissions, and investment input for LDAR programs employing OGI instruments in gas producing regions of different latitudes. Preliminary results suggest that longer gaps between LDAR surveys caused by cold temperatures result in either 1) higher total emissions for the year, or 2) greater time and equipment investment in LDAR programs to achieve emissions mitigation equivalent to LDAR programs operating under ideal conditions. When weather constraints are removed and LDAR surveys are evenly spaced throughout the year, emissions mitigation is optimized. However, as the winter gap duration and the size of the implicated area increases, fugitive leaks last longer. Furthermore, a spillover effect is observed as LDAR crews become overwhelmed with the high volume of work required as temperatures increase in the spring. Our model adds weight to the argument that LDAR programs should be tailored to regional needs, and that regulators should be more cognisant of sensor-specific limitations as they develop LDAR protocols.
Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies.
Falgarone, E; Zwaan, M A; Godard, B; Bergin, E; Ivison, R J; Andreani, P M; Bournaud, F; Bussmann, R S; Elbaz, D; Omont, A; Oteo, I; Walter, F
2017-08-24
Starburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH + , is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy or strong ultraviolet irradiation. Here we report the detection of CH + (J = 1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas. We find that the CH + emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH + absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers or cold-stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.
NASA Technical Reports Server (NTRS)
Kofskey, M. G.; Nusbaum, W. J.
1978-01-01
A cold air experimental investigation of a free power turbine designed for a 112-kW automotive gas-turbine was made over a range of speeds from 0 to 130 percent of design equivalent speeds and over a range of pressure ratio from 1.11 to 2.45. Results are presented in terms of equivalent power, torque, mass flow, and efficiency for the design power point setting of the variable stator.
Automotive fuel economy and emissions program
NASA Technical Reports Server (NTRS)
Dowdy, M. W.; Baisley, R. L.
1978-01-01
Experimental data were generated to support an assessment of the relationship between automobile fuel economy and emissions control systems. Tests were made at both the engine and vehicle levels. Detailed investigations were made on cold-start emissions devices, exhaust gas recirculation systems, and air injection reactor systems. Based on the results of engine tests, an alternative emission control system and modified control strategy were implemented and tested in the vehicle. With the same fuel economy and NOx emissions as the stock vehicle, the modified vehicle reduced HC and CO emissions by about 20 percent. By removing the NOx emissions constraint, the modified vehicle demonstrated about 12 percent better fuel economy than the stock vehicle.
Development and testing of a passive check valve for cryogenic applications
NASA Astrophysics Data System (ADS)
Moore, B. D.; Maddocks, J. R.; Miller, F. K.
2014-11-01
Several cryogenic technologies use check valves, such as the Cold Cycle Dilution Refrigerator (CCDR) and the Hybrid Pulse-Tube/Reverse-Brayton Cryocooler. This paper details the development of a reed-style passive check valve with a PTFE seat for cryogenic applications. The experimental results of tests on the valve using helium gas at temperatures from 293 K down to 5.2 K, verify a scaling argument based on fundamental fluid dynamics that allows results from 78 K to be used in predicting valve performance at much lower temperatures. The scaling argument is then applied to a test conducted at the normal boiling point of Nitrogen to examine the results of improved fabrication methods.
Numerical investigation of two interacting parallel thruster-plumes and comparison to experiment
NASA Astrophysics Data System (ADS)
Grabe, Martin; Holz, André; Ziegenhagen, Stefan; Hannemann, Klaus
2014-12-01
Clusters of orbital thrusters are an attractive option to achieve graduated thrust levels and increased redundancy with available hardware, but the heavily under-expanded plumes of chemical attitude control thrusters placed in close proximity will interact, leading to a local amplification of downstream fluxes and of back-flow onto the spacecraft. The interaction of two similar, parallel, axi-symmetric cold-gas model thrusters has recently been studied in the DLR High-Vacuum Plume Test Facility STG under space-like vacuum conditions, employing a Patterson-type impact pressure probe with slot orifice. We reproduce a selection of these experiments numerically, and emphasise that a comparison of numerical results to the measured data is not straight-forward. The signal of the probe used in the experiments must be interpreted according to the degree of rarefaction and local flow Mach number, and both vary dramatically thoughout the flow-field. We present a procedure to reconstruct the probe signal by post-processing the numerically obtained flow-field data and show that agreement to the experimental results is then improved. Features of the investigated cold-gas thruster plume interaction are discussed on the basis of the numerical results.
NASA Astrophysics Data System (ADS)
Schiller, S.; Kortunov, I.; Hernández Vera, M.; Gianturco, F.; da Silva, H.
2017-04-01
Precision vibrational spectroscopy of the molecular hydrogen ions is of significant interest for determining fundamental constants, for searching for new forces, and for testing quantum electrodynamics calculations. Future experiments can profit from the ability of preparing molecular hydrogen ions at ultralow kinetic energy and in preselected internal states, with respect to vibration, rotation, and spin degrees of freedom. For the homonuclear ions (H2+ , D2+ ), direct laser cooling of the rotational degree of freedom is not feasible. We show by quantum calculations that rotational cooling by cold He buffer gas is an effective approach. For this purpose we have computed the energy-dependent cross sections for rotationally elastic and inelastic collisions, h2+ (v =0 ,N ) +He → h2+ (v =0 ,N') +He (where h =H ,D ) , using ab initio coupled-channel calculations. We find that rotational cooling to the lowest rotational state is possible within tens of seconds under experimentally realistic conditions. We furthermore describe possible protocols for the preparation of a single quantum state, where also the spin state is well defined.
Aircraft Survivability: Space Survivability - Time to Get Serious, Summer 2008
2008-01-01
modified to allow a capabil- ity to launch MANPADS with live warheads. Thus, METS was born. METS is a single - stage cold gas gun that uses compressed...30 feet from the target (see Figure 3). API projectiles or frag- ments fired from the gun passed through a sabot catcher (a thick metal plate with a...Body (T=2040K) Fit Water (T=2010K) Detectors Sabot catcher Shot line Gun Test Fixture Target Panel Figure 2 An Instantaneous Temperature Measurement in
Gasification in pulverized coal flames. First annual progress report, July 1975--June 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenzer, R. C.; George, P. E.; Thomas, J. F.
1976-07-01
This project concerns the production of power and synthesis gas from pulverized coal via suspension gasification. Swirling flow in both concentric jet and cyclone gasifiers will separate oxidation and reduction zones. Gasifier performance will be correlated with internally measured temperature and concentration profiles. A literature review of vortex and cyclone reactors is complete. Preliminary reviews of confined jet reactors and pulverized coal reaction models have also been completed. A simple equilibrium model for power gas production is in agreement with literature correlations. Cold gas efficiency is not a suitable performance parameter for combined cycle operation. The coal handling facility, equippedmore » with crusher, pulverizer and sieve shaker, is in working order. Test cell flow and electrical systems have been designed, and most of the equipment has been received. Construction of the cyclone gasifier has begun. A preliminary design for the gas sampling system, which will utilize a UTI Q-30C mass spectrometer, has been developed.« less
Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings
NASA Astrophysics Data System (ADS)
Sova, A.; Kosarev, V. F.; Papyrin, A.; Smurov, I.
2011-01-01
In this paper, metal-ceramic coatings are cold sprayed taking into account the spray parameters of both metal and ceramic particles. The effect of the ceramic particle velocity on the process of metal-ceramic coating formation and the coating properties is analyzed. Copper and aluminum powders are used as metal components. Two fractions of aluminum oxide and silicon carbide are sprayed in the tests. The ceramic particle velocity is varied by the particle injection into different zones of the gas flow: the subsonic and supersonic parts of the nozzle and the free jet after the nozzle exit. The experiments demonstrated the importance of the ceramic particle velocity for the stability of the process: Ceramic particles accelerated to a high enough velocity penetrate into the coating, while low-velocity ceramic particles rebound from its surface.
NASA Astrophysics Data System (ADS)
Tong, Xin; Winney, Alexander H.; Willitsch, Stefan
2010-10-01
We present a new method for the generation of rotationally and vibrationally state-selected, translationally cold molecular ions in ion traps. Our technique is based on the state-selective threshold photoionization of neutral molecules followed by sympathetic cooling of the resulting ions with laser-cooled calcium ions. Using N2+ ions as a test system, we achieve >90% selectivity in the preparation of the ground rovibrational level and state lifetimes on the order of 15 minutes limited by collisions with background-gas molecules. The technique can be employed to produce a wide range of apolar and polar molecular ions in the ground and excited rovibrational states. Our approach opens up new perspectives for cold quantum-controlled ion-molecule-collision studies, frequency-metrology experiments with state-selected molecular ions and molecular-ion qubits.
Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Raj, Sai; Karthikeyan, J.
2009-01-01
The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.
Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells.
Xu, Dehui; Xu, Yujing; Ning, Ning; Cui, Qingjie; Liu, Zhijie; Wang, Xiaohua; Liu, Dingxin; Chen, Hailan; Kong, Michael G
2018-01-01
Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment.
Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels
NASA Astrophysics Data System (ADS)
Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori
1994-09-01
The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement.
... a needle-like applicator called a cryoprobe, and liquid nitrogen or argon gas to create intense cold to freeze and destroy ... of the diseased tissue and then deliver the liquid nitrogen or argon gas. Living tissue, healthy or diseased, cannot withstand extremely ...
NASA Astrophysics Data System (ADS)
Wang, Chaoen; Chang, Lung-Hai; Chang, Mei-Hsia; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Liu, Zong-Kai; Lo, Chih-Hung; Tsai, Chi-Lin; Yeh, Meng-Shu; Yu, Tsung-Chi
2017-11-01
Excitation of multipacting, enhanced by gas condensation on cold surfaces of the high power input coupler in a SRF module poses the highest challenge for reliable SRF operation under high average RF power. This could prevent the light source SRF module from being operated with a desired high beam current. Off-line long-term reliability tests have been conducted for the newly constructed 500-MHz SRF KEKB type modules at an accelerating RF voltage of 1.6-MV to enable prediction of their operational reliability in the 3-GeV Taiwan Photon Source (TPS), since prediction from mere production performance by conventional horizontal test is presently unreliable. As expected, operational difficulties resulting from multipacting, enhanced by gas condensation, have been identified in the course of long-term reliability test. Our present hypothesis is that gas condensation can be slowed down by preserving the vacuum pressure at the power coupler close to that reached just after its cool down to liquid helium temperatures. This is achievable by reduction of the power coupler out-gassing rate through comprehensive warm aging. Its feasibility and effectiveness has been experimentally verified in a second long term reliability test. Our success opens the possibility to operate the SRF module free of multipacting trouble and opens a new direction to improve the operational performance of next generation SRF modules in light sources with high beam currents.
Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature
NASA Astrophysics Data System (ADS)
Liu, X.; Jeffries, J. B.; Hanson, R. K.; Hinckley, K. M.; Woodmansee, M. A.
2006-03-01
A tunable diode laser (TDL) temperature sensor is designed, constructed, tested, and demonstrated in the exhaust of an industrial gas turbine. Temperature is determined from the ratio of the measured absorbance of two water vapor overtone transitions in the near infrared where telecommunication diode lasers are available. Design rules are developed to select the optimal pair of transitions for direct absorption measurements using spectral simulations by systematically examining the absorption strength, spectral isolation, and temperature sensitivity to maximize temperature accuracy in the core flow and minimize sensitivity to water vapor in the cold boundary layer. The contribution to temperature uncertainty from the spectroscopic database is evaluated and precise line-strength data are measured for the selected transitions. Gas-temperature measurements in a heated cell are used to verify the sensor accuracy (over the temperature range of 350 to 1000 K, ΔT˜2 K for the optimal line pair and ΔT˜5 K for an alternative line pair). Field measurements of exhaust-gas temperature in an industrial gas turbine demonstrate the practical utility of TDL sensing in harsh industrial environments.
Metabolic and respiratory status of cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii).
Innis, Charles J; Tlusty, Michael; Merigo, Constance; Weber, E Scott
2007-08-01
"Cold-stunning" of sea turtles has been reported as a naturally occurring stressor for many years; however, the physiologic status of cold-stunned turtles has only been partially described. This study investigated initial and convalescent venous blood gas, acid-base, and critical plasma biochemical data for 26 naturally cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii) from Cape Cod, MA, USA. Samples were analyzed for pH, pCO(2), pO(2), bicarbonate, plasma osmolality, sodium, potassium, chloride, ionized calcium, ionized magnesium, glucose, lactate, and blood urea nitrogen using a clinical point-of-care analyzer. Data were corrected for the patient's body temperature using both species-specific and more general correction methods. In general, venous blood gas, acid-base, and plasma biochemical data obtained for surviving cold-stunned Kemp's ridley sea turtles were consistent with previously documented data for sea turtles exposed to a wide range of temperatures and physiologic stressors. Data indicated that turtles were initially affected by metabolic and respiratory acidosis. Initial pH-corrected ionized calcium concentrations were lower than convalescent concentrations, and initial pH-corrected ionized magnesium concentrations were higher than convalescent concentrations.
Preconcentrator with high volume chiller for high vapor pressure particle detection
Linker, Kevin L
2013-10-22
Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.
Lis, Karolina Anna; Binder, Sylvia; Li, Yangfang; Kehrenberg, Corinna; Zimmermann, Julia Louise; Ahlfeld, Birte
2018-01-01
The application of cold atmospheric pressure plasma (CAP) for decontamination of sliced ready-to-eat (RTE) meat products (in this case, rolled fillets of ham), inoculated with Salmonella (S.) Typhimurium and Listeria (L.) monocytogenes was investigated. Cold atmospheric plasma (CAP) is an ionised gas that includes highly reactive species and ozone, interacting with cell membranes and DNA of bacteria. The mode of action of CAPs includes penetration and disruption of the outer cell membrane or intracellular destruction of DNA located in the cytoplasm. Inoculated ham was treated for 10 and 20 min with CAP generated by a surface-micro-discharge-plasma source using cost-effective ambient air as working gas with different humidity levels of 45–50 and 90%. The chosen plasma modes had a peak-to-peak voltage of 6.4 or 10 kV and a frequency of 2 and 10 kHz. Under the tested conditions, the direct effectiveness of CAP on microbial inactivation was limited. Although all treated samples showed significant reductions in the microbial load subsequent to plasma treatment, the maximum inactivation of S. Typhimurium was 1.14 lg steps after 20 min of CAP-treatment (p<0.05), and L. monocytogenes was reduced by 1.02 lg steps (p<0.05) using high peak-to-peak voltage of 10 kV and a frequency of 2 kHz regardless of moisture content. However, effective inactivation was achieved by a combination of CAP-treatment and cold storage at 8°C ± 0.5°C for 7 and 14 days after packaging under sealed high nitrogen gas flush (70% N2, 30% CO2). Synergistic effects of CAP and cold storage for 14 days led to a clearer decrease in the microbial load of 1.84 lg steps for S. Typhimurium (p<0.05) and 2.55 lg steps for L. monocytogenes (p<0.05). In the case of L. monocytogenes, subsequent to CAP-treatment (10 kV, 2 kHz) and cold storage, microbial counts were predominantly below the detection limit. Measurement showed that after CAP-treatment, surface temperature of ham did not exceed the room temperature of 22°C ± 2°C. With the application of humidity levels of 45–50%, the colour distance ΔE increased in CAP treated samples due to a decrease in L* values. In conclusion, effectiveness of CAP-treatment was limited. However, the combination of CAP-treatment and cold storage of samples under modified-atmospheric-conditions up to 14 days could significantly reduce microorganisms on RTE ham. Further investigations are required to improve effectiveness of CAP-treatment. PMID:29795627
Lis, Karolina Anna; Boulaaba, Annika; Binder, Sylvia; Li, Yangfang; Kehrenberg, Corinna; Zimmermann, Julia Louise; Klein, Günter; Ahlfeld, Birte
2018-01-01
The application of cold atmospheric pressure plasma (CAP) for decontamination of sliced ready-to-eat (RTE) meat products (in this case, rolled fillets of ham), inoculated with Salmonella (S.) Typhimurium and Listeria (L.) monocytogenes was investigated. Cold atmospheric plasma (CAP) is an ionised gas that includes highly reactive species and ozone, interacting with cell membranes and DNA of bacteria. The mode of action of CAPs includes penetration and disruption of the outer cell membrane or intracellular destruction of DNA located in the cytoplasm. Inoculated ham was treated for 10 and 20 min with CAP generated by a surface-micro-discharge-plasma source using cost-effective ambient air as working gas with different humidity levels of 45-50 and 90%. The chosen plasma modes had a peak-to-peak voltage of 6.4 or 10 kV and a frequency of 2 and 10 kHz. Under the tested conditions, the direct effectiveness of CAP on microbial inactivation was limited. Although all treated samples showed significant reductions in the microbial load subsequent to plasma treatment, the maximum inactivation of S. Typhimurium was 1.14 lg steps after 20 min of CAP-treatment (p<0.05), and L. monocytogenes was reduced by 1.02 lg steps (p<0.05) using high peak-to-peak voltage of 10 kV and a frequency of 2 kHz regardless of moisture content. However, effective inactivation was achieved by a combination of CAP-treatment and cold storage at 8°C ± 0.5°C for 7 and 14 days after packaging under sealed high nitrogen gas flush (70% N2, 30% CO2). Synergistic effects of CAP and cold storage for 14 days led to a clearer decrease in the microbial load of 1.84 lg steps for S. Typhimurium (p<0.05) and 2.55 lg steps for L. monocytogenes (p<0.05). In the case of L. monocytogenes, subsequent to CAP-treatment (10 kV, 2 kHz) and cold storage, microbial counts were predominantly below the detection limit. Measurement showed that after CAP-treatment, surface temperature of ham did not exceed the room temperature of 22°C ± 2°C. With the application of humidity levels of 45-50%, the colour distance ΔE increased in CAP treated samples due to a decrease in L* values. In conclusion, effectiveness of CAP-treatment was limited. However, the combination of CAP-treatment and cold storage of samples under modified-atmospheric-conditions up to 14 days could significantly reduce microorganisms on RTE ham. Further investigations are required to improve effectiveness of CAP-treatment.
An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation.
Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor
2016-11-03
Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry.
An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation
Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor
2016-01-01
Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry. PMID:27842375
HIGH-TEMPERATURE SAFETY TESTING OF IRRADIATED AGR-1 TRISO FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stempien, John D.; Demkowicz, Paul A.; Reber, Edward L.
High-Temperature Safety Testing of Irradiated AGR-1 TRISO Fuel John D. Stempien, Paul A. Demkowicz, Edward L. Reber, and Cad L. Christensen Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 83415, USA Corresponding Author: john.stempien@inl.gov, +1-208-526-8410 Two new safety tests of irradiated tristructural isotropic (TRISO) coated particle fuel have been completed in the Fuel Accident Condition Simulator (FACS) furnace at the Idaho National Laboratory (INL). In the first test, three fuel compacts from the first Advanced Gas Reactor irradiation experiment (AGR-1) were simultaneously heated in the FACS furnace. Prior to safety testing, each compact was irradiated in the Advanced Testmore » Reactor to a burnup of approximately 15 % fissions per initial metal atom (FIMA), a fast fluence of 3×1025 n/m2 (E > 0.18 MeV), and a time-average volume-average (TAVA) irradiation temperature of about 1020 °C. In order to simulate a core-conduction cool-down event, a temperature-versus-time profile having a peak temperature of 1700 °C was programmed into the FACS furnace controllers. Gaseous fission products (i.e., Kr-85) were carried to the Fission Gas Monitoring System (FGMS) by a helium sweep gas and captured in cold traps featuring online gamma counting. By the end of the test, a total of 3.9% of an average particle’s inventory of Kr-85 was detected in the FGMS traps. Such a low Kr-85 activity indicates that no TRISO failures (failure of all three TRISO layers) occurred during the test. If released from the compacts, condensable fission products (e.g., Ag-110m, Cs-134, Cs-137, Eu-154, Eu-155, and Sr-90) were collected on condensation plates fitted to the end of the cold finger in the FACS furnace. These condensation plates were then analyzed for fission products. In the second test, five loose UCO fuel kernels, obtained from deconsolidated particles from an irradiated AGR-1 compact, were heated in the FACS furnace to a peak temperature of 1600 °C. This test had two primary goals. First, the test was intended to assess the retention of fission products in loose kernels without the effects of the other TRISO layers (buffer, IPyC, SiC, and OPyC) or the graphitic matrix material comprising the compact. Second, this test served as an evaluation of the FACS fission product condensation plate collection efficiency.« less
Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center
NASA Technical Reports Server (NTRS)
Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III
2001-01-01
After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.
The many routes to AGN feedback
NASA Astrophysics Data System (ADS)
Morganti, Raffaella
2017-11-01
The energy released by Active Galactic Nuclei (AGN) in the form of radiation, winds or radio plasma jets, is known to impact on the surrounding interstellar medium. The result of these processes, known as AGN (negative) feedback, is suggested to prevent gas, in and around galaxies, from cooling, and to remove, or at least redistribute, gas by driving massive and fast outflows, hence playing a key role in galaxy evolution. Given its importance, a large effort is devoted by the astronomical community to trace the effects of AGN on the surrounding gaseous medium and to quantify their impact for different types of AGN. This review briefly summarizes some of the recent observational results obtained in different wavebands, tracing different phases of the gas. I also summarise new insights they have brought, and the constraints they provide to numerical simulations of galaxy formation and evolution. The recent addition of deep observations of cold gas and, in particular, of cold molecular gas, has brought some interesting surprises and has expanded our understanding of AGN and AGN feedback.
Rocket Plume Scaling for Orion Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.
2011-01-01
A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.
Statistical time-dependent model for the interstellar gas
NASA Technical Reports Server (NTRS)
Gerola, H.; Kafatos, M.; Mccray, R.
1974-01-01
We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.
Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers
NASA Astrophysics Data System (ADS)
Arata, Shohei; Yajima, Hidenobu; Nagamine, Kentaro
2018-04-01
Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of ˜3 × 107 M⊙, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of ≲ 0.1 pc and the galactic disc simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with ≳104 M⊙ within ˜ 2 Myr. Only the massive cold clouds with ≳ 103 M⊙ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. We find that the clump formation is more efficient in the prograde-prograde merger than the prograde-retrograde case due to the difference in the degree of shear flow. In addition, we investigate the dependence of cloud mass function on metallicity and H2 abundance, and show that the cases with low metallicities (≲10-2 Z⊙) or high H2 abundance (≳10-3) cannot form massive cold clouds with ≳103 M⊙.
Cold, clumpy accretion onto an active supermassive black hole
NASA Astrophysics Data System (ADS)
Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.
2016-06-01
Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.
Cold, clumpy accretion onto an active supermassive black hole.
Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W
2016-06-09
Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.
Chemistry and Evolution of Interstellar Clouds
NASA Technical Reports Server (NTRS)
Wooden, D. H.; Charnley, S. B.; Ehrenfreund, P.
2003-01-01
In this chapter we describe how elements have been and are still being formed in the galaxy and how they are transformed into the reservoir of materials present at the time of formation of our protosolar nebula. We discuss the global cycle of matter, beginning at its formation site in stars, where it is ejected through winds and explosions into the diffuse interstellar medium. In the next stage of the global cycle occurs in cold, dense molecular clouds, where the complexity of molecules and ices increases relative to the diffuse ISM.. When a protostar forms in a dense core within a molecular cloud, it heats the surrounding infalling matter warms and releases molecules from the solid phase into the gas phase in a warm, dense core, sponsoring a rich gas-phase chemistry. Some material from the cold and warm regions within molecular clouds probably survives as interstellar matter in the protostellar disk. For the diffuse ISM, for cold, dense clouds, and for dense-warm cores, the physio-chemical processes that occur within the gas and solid phases are discussed in detail.
Powerful Radio Galaxies with Simbol-X: the Nuclear Environment
NASA Astrophysics Data System (ADS)
Torresi, E.; Grandi, P.; Malaguti, G.; Palumbo, G. G. C.; Bianchin, V.
2009-05-01
Fanaroff & Riley type II radio galaxies (FRII) are complex objects. In particular FRII Narrow Line Radio Galaxies (NLRG), optically classified as High Excitation Galaxies (HEG) show X-ray spectra very similar to their radio-quiet counterparts, the Seyfert 2 galaxies. They show 2-10 keV continua heavily obscured (NH~1023-24 cm-2) and intense FeKα lines, typical cold matter reprocessing features. Moreover recent Chandra and XMM-Newton observations suggest that the soft X-ray emission of HEG and Seyfert 2 have a common origin from photoionized gas, reinforcing the idea that not only their nuclear engine but also the circumnuclear gas (at least the warm phase) are similar. On the contrary, our knowledge of NLRG HEG above 10 keV is very poor when compared to brighter Seyfert 2. As a consequence, the physical properties of the cold phase of the circumnuclear gas (possibly linked to a dusty torus) are largely unknown. Thanks to its high sensitivity up to 80 keV, Simbol-X will provide very accurate spectra and will allow a direct comparison between the NLRG and Seyfert 2 cold environments.
NASA Astrophysics Data System (ADS)
Doan, Thuc N.; Fujihara, Akimasa
2018-03-01
In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two d-glucose units, such as d-maltose or d-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα-Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+( l-Trp)( d-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+( d-Trp)( d-maltose). For d-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links d-glucose residues to the indole moiety of Trp via a C-C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.
76 FR 78641 - Southwestern Gas Storage Technical Conference; Notice of Public Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... Storage Technical Conference; Notice of Public Conference Take notice that on February 16, 2012 at 9 a.m... technical conference with interested parties to discuss issues related to natural gas storage development in... Cold Weather Event of February 1-5, 2011: Causes and Recommendations, ``[a]dditional gas storage...
Quasars Probing Galaxies. I. Signatures of Gas Accretion at Redshift Approximately 0.2
NASA Astrophysics Data System (ADS)
Ho, Stephanie H.; Martin, Crystal L.; Kacprzak, Glenn G.; Churchill, Christopher W.
2017-02-01
We describe the kinematics of circumgalactic gas near the galactic plane, combining new measurements of galaxy rotation curves and spectroscopy of background quasars. The sightlines pass within 19-93 kpc of the target galaxy and generally detect Mg II absorption. The Mg II Doppler shifts have the same sign as the galactic rotation, so the cold gas co-rotates with the galaxy. Because the absorption spans a broader velocity range than disk rotation can explain, we explore simple models for the circumgalactic kinematics. Gas spiraling inwards (near the disk plane) offers a successful description of the observations. An appendix describes the addition of tangential and radial gas flows and illustrates how the sign of the disk inclination produces testable differences in the projected line-of-sight velocity range. This inflow interpretation implies that cold flow disks remain common down to redshift z ≈ 0.2 and prolong star formation by supplying gas to the disk. Some of the observations were obtained with the Apache Point Observatory 3.5 meter telescope, which is owned and operated by the Astrophysical Research Consortium.
Regulation of star formation in giant galaxies by precipitation, feedback and conduction.
Voit, G M; Donahue, M; Bryan, G L; McDonald, M
2015-03-12
The Universe's largest galaxies reside at the centres of galaxy clusters and are embedded in hot gas that, if left undisturbed, would cool quickly and create many more new stars than are actually observed. Cooling can be regulated by feedback from accretion of cooling gas onto the central black hole, but requires an accretion rate finely tuned to the thermodynamic state of the hot gas. Theoretical models in which cold clouds precipitate out of the hot gas via thermal instability and accrete onto the black hole exhibit the necessary tuning. Recent observational evidence shows that the abundance of cold gas in the centres of clusters increases rapidly near the predicted threshold for instability. Here we report observations showing that this precipitation threshold extends over a large range in cluster radius, cluster mass and cosmic time. We incorporate the precipitation threshold into a framework of theoretical models for the thermodynamic state of hot gas in galaxy clusters. According to that framework, precipitation regulates star formation in some giant galaxies, while thermal conduction prevents star formation in others if it can compensate for radiative cooling and shut off precipitation.
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
NASA Astrophysics Data System (ADS)
Park, Sung Sil; Dyussekenov, Nurzhan; Sohn, H. Y.
2010-02-01
The top-blow injection technique of a gas-solid mixture through a circular lance is used in the Mitsubishi Continuous Smelting Process. One of the inherent problems associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than a circular jet was designed in the laboratory scale. With this new configuration, solid particles leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different than with the circular lance in which the solid particles leave the lance at the same high velocity as the gas. The results of cold model tests using an air-sand jet issuing from a circular lance and an annular lance into a water bath showed that the penetration of the annular jet is much less sensitive to the variations in particle feed rate as well as gas velocity than that of the circular jet. Correlation equations for the penetration depth for both circular and annular jets show agreement among the experimentally obtained values.
Resolving molecular gas to ~500 pc in a unique star forming disk galaxy at z~2
NASA Astrophysics Data System (ADS)
Brisbin, Drew; Aravena, Manuel; Hodge, Jacqueline; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut; Riechers, Dominik; Wagg, Jeff
2018-06-01
We have resolved molecular gas in a 'typical' star forming disk galaxy at z>2 down to the scale of ~500 pc. Previous observations of CO and [CI] lines on larger spatial scales have revealed bulk molecular and atomic gas properties indicating that the target is a massive disk galaxy with large gas reserves. Unlike many galaxies studied at high redshift, it is undergoing modest quiescent star formation rather than bursty centrally concentrated star formation. Therefore this galaxy represents an under-studied, but cosmologically important population in the early universe. Our new observations of CO (4-3) highlight the clumpy molecular gas fuelling star formation throughout the disk. Underlying continuum from cold dust provides a key constraint on star formation rate surface densities, allowing us to examine the star formation rate surface density scaling law in a never-before-tested regime of early universe galaxies.These observations enable an unprecedented view of the obscured star formation that is hidden to optical/UV imaging and trace molecular gas on a fine enough scale to resolve morphological traits and provide a view akin to single dish surveys in the local universe.
Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS
NASA Astrophysics Data System (ADS)
Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason
2018-01-01
Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when modeling the low-J lines alone or using a CO-to-mass conversion factor, the mass should be considered to be uncertain to a factor of at least 0.4 dex, and the vast majority of the CO luminosity will be missed (median, 65 per cent).
Treatment in the healing of burns with a cold plasma source
Betancourt-Ángeles, Mario; Peña-Eguiluz, Rosendo; López-Callejas, Régulo; Domínguez-Cadena, Nicasio Alberto; Mercado-Cabrera, Antonio; Muñoz-Infante, Jorge; Rodríguez-Méndez, Benjamín Gonzalo; Valencia-Alvarado, Raúl; Moreno-Tapia, José Alberto
2017-01-01
A cold plasma produced with helium gas was applied to two second-degree burns produced with boiling oil. These burns were located on a thigh and a shin of a 59-years-old male person. After the first treatment as benefit the patient neither presented itching nor pain and, after the second treatment, the patient presented new tissue. This result opens the possibilities of the application of a cold plasma source to health burns. PMID:29348977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butov, L. V., E-mail: lvbutov@physics.ucsd.edu
Due to their long lifetimes, indirect excitons can cool to below the temperature of quantum degeneracy. This gives an opportunity to experimentally study cold composite bosons. Both theoretically predicted phenomena and phenomena that have not been anticipated were observed in a cold gas of indirect excitons. In this contribution, we overview our studies of cold indirect excitons over the past decade, presenting spontaneous coherence and condensation of excitons, spatially modulated exciton state, long-range spin currents and spin textures, and exciton localization–delocalization transitions.
Layouts of trigeneration plants for centralized power supply
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Agababov, V. S.; Il'ina, I. P.; Rozhnatovskii, V. D.; Burmakina, A. V.
2016-06-01
One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration plants designed to supply electricity, heat, and cold to the users are shown and the principles of their operation are described. The article presents results of qualitative analysis of different engineering solutions applied to select one combination of power- and heat-generating equipment and thermotransformers or another.
13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL ...
13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL TO COLD CALIBRATION TEST STAND BASEMENT, SHOWING HARD WIRE CONNECTION (INSTRUMENTATION AND CONTROL). - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
2. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION BLOCKHOUSE, ...
2. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION BLOCKHOUSE, COLD CALIBRATION TEST STAND FOR FL ENGINE FOR SATURN V. EXHAUST DUCT IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
Evaluation of externally heated pulsed MPD thruster cathodes
NASA Astrophysics Data System (ADS)
Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.
1993-12-01
Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.
Evaluation of externally heated pulsed MPD thruster cathodes
NASA Technical Reports Server (NTRS)
Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.
1993-01-01
Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.
Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier
Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri
2014-01-01
Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
Outflows in low-mass galaxies at z >1
NASA Astrophysics Data System (ADS)
Maseda, Michael V.; MUSE GTO Consortium
2017-03-01
Star formation histories of local dwarf galaxies, derived through resolved stellar populations, appear complex and varied. The general picture derived from hydrodynamical simulations is one of cold gas accretion and bursty star formation, followed by feedback from supernovae and winds that heat and eject the central gas reservoirs. This ejection halts star formation until the material cools and re-accretes, resulting in an episodic SFH, particularly at stellar masses below ~ 109 M⊙. Such feedback has often been cited as the driving force behind the observed slowly-rising rotation curves in local dwarfs, due to an under-density of dark matter compared to theoretical models, which is one of the primary challenges to LCDM cosmology. However, these events have not yet been directly observed at high-redshift. Recently, using HST imaging and grism spectroscopy, we have uncovered an abundant population of low-mass galaxies (M* < 109 M⊙) at z = 1 - 2 that are undergoing strong bursts of star formation, in agreement with the theoretical predictions. These Extreme Emission Line Galaxies, with high specific SFRs and shallow gravitational potential wells, are ideal places to test the theoretical prediction of strong feedback-driven outflows. Here we use deep MUSE spectroscopy to search these galaxies for signatures of outflowing material, namely kinematic offsets between absorption lines (in the restframe optical and UV), which trace cool gas, and the nebular emission lines, which define the systemic redshift of the galaxy. Although the EELGs are intrinsically very faint, stacked spectra reveal blueshifted velocity centroids for Fe II absorption, which is indicative of outflowing cold gas. This represents the first constraint on outflows in M* < 109 M⊙ galaxies at z = 1 - 2. These outflows should regulate the star formation histories of low-mass galaxies at early cosmic times and thus play a crucial role in galaxy growth and evolution.
Numerical analyses of a rocket engine turbine and comparison with air test data
NASA Technical Reports Server (NTRS)
Tran, Ken; Chan, Daniel C.; Hudson, Susan T.; Gaddis, Stephen W.
1992-01-01
The study presents cold air test data on the Space Shuttle Main Engine High Pressure Fuel Turbopump turbine recently collected at the NASA Marshall Space Flight Center. Overall performance data, static pressures on the first- and second-stage nozzles, and static pressures along with the gas path at the hub and tip are gathered and compared with various (1D, quasi-3D, and 3D viscous) analysis procedures. The results of each level of analysis are compared to test data to demonstrate the range of applicability for each step in the design process of a turbine. One-dimensional performance prediction, quasi-3D loading prediction, 3D wall pressure distribution prediction, and 3D viscous wall pressure distribution prediction are illustrated.
Evaluation of Low-Pressure Cold Plasma for Disinfection of ISS Grown Produce and Metal Instruments
NASA Technical Reports Server (NTRS)
Hummerick, Mary E.; Hintze, Paul E.; Maloney, Philip R.; Spencer, Lashelle E.; Coutts, Janelle L.; Franco, Carolina
2016-01-01
Low pressure cold plasma, using breathing air as the plasma gas, has been shown to be effective at precision cleaning aerospace hardware at Kennedy Space Center.Both atmospheric and low pressure plasmas are relatively new technologies being investigated for disinfecting agricultural commodities and medical instruments.
Galaxy Feeds Off Gas Artist Concept
2011-09-13
In this artist conception based on data from ESA Herschel observatory, a galaxy accretes mass from rapid, narrow streams of cold gas. These filaments provide the galaxy with continuous flows of raw material to feed its star-forming at a leisurely pace
Cryosurgery in Cancer Treatment: Questions and Answers
... is the use of extreme cold produced by liquid nitrogen (or argon gas) to destroy abnormal tissue . Cryosurgery is used to ... and tumors in the bone). For internal tumors, liquid nitrogen or argon gas is circulated through a hollow instrument called a ...
Orbit transfer rocket engine technology program enhanced heat transfer combustor technology
NASA Technical Reports Server (NTRS)
Brown, William S.
1991-01-01
In order to increase the performance of a high performance, advanced expander-cycle engine combustor, higher chamber pressures are required. In order to increase chamber pressure, more heat energy is required to be transferred to the combustor coolant circuit fluid which drives the turbomachinery. This requirement was fulfilled by increasing the area exposed to the hot-gas by using combustor ribs. A previous technology task conducted 2-d hot air and cold flow tests to determine an optimum rib height and configuration. In task C.5 a combustor calorimeter was fabricated with the optimum rib configuration, 0.040 in. high ribs, in order to determine their enhancing capability. A secondary objective was to determine the effects of mixture ratio changers on the enhancement during hot-fire testing. The program used the Rocketdyne Integrated Component Evaluator (ICE) reconfigured into a thrust chamber only mode. The test results were extrapolated to give a projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 Klb nominal thrust level. The hot-gas wall ribs resulted in a 58 percent increase in heat transfer. When projected to a full size 15K combustor, it becomes a 46 percent increase. The results of those tests, a comparison with previous 2-d results, the effects of mixture ratio and combustion gas flow on the ribs and the potential ramifications for expander cycle combustors are detailed.
Formaldehyde in Absorption: Tracing Molecular Gas in Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Dollhopf, Niklaus M.; Donovan Meyer, Jennifer
2016-01-01
Early-Type Galaxies (ETGs) have been long-classified as the red, ellipsoidal branch of the classic Hubble tuning fork diagram of galactic structure. In part with this classification, ETGs are thought to be molecular and atomic gas-poor with little to no recent star formation. However, recent efforts have questioned this ingrained classification. Most notably, the ATLAS3D survey of 260 ETGs within ~40 Mpc found 22% contain CO, a common tracer for molecular gas. The presence of cold molecular gas also implies the possibility for current star formation within these galaxies. Simulations do not accurately predict the recent observations and further studies are necessary to understand the mechanisms of ETGs.CO traces molecular gas starting at densities of ~102 cm-3, which makes it a good tracer of bulk molecular gas, but does little to constrain the possible locations of star formation within the cores of dense molecular gas clouds. Formaldehyde (H2CO) traces molecular gas on the order of ~104 cm-3, providing a further constraint on the location of star-forming gas, while being simple enough to possibly be abundant in gas-poor ETGs. In cold molecular clouds at or above ~104 cm-3 densities, the structure of formaldehyde enables a phenomenon in which rotational transitions have excitation temperatures driven below the temperature of the cosmic microwave background (CMB), ~2.7 K. Because the CMB radiates isotropically, formaldehyde can be observed in absorption, independent of distance, as a tracer of moderately-dense molecular clouds and star formation.This novel observation technique of formaldehyde was incorporated for observations of twelve CO-detected ETGs from the ATLAS3D sample, including NGC 4710 and PGC 8815, to investigate the presence of cold molecular gas, and possible star formation, in ETGs. We present images from the Very Large Array, used in its C-array configuration, of the J = 11,0 - 11,1 transition of formaldehyde towards these sources. We report our preliminary results here.Niklaus M. Dollhopf gratefully acknowledges the support of the National Radio Astronomy Observatory Summer Student REU Program sponsored by the National Science Foundation.
FTIR gas chromatographic analysis of perfumes
NASA Astrophysics Data System (ADS)
Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.
1992-03-01
Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.
NASA Astrophysics Data System (ADS)
Sharon, Chelsea; Riechers, Dominik Alexander; Carilli, Christopher; Hodge, Jacqueline; Walter, Fabian
2015-08-01
Theoretical work has suggested that active galactic nuclei (AGN) may play an important role in quenching star formation in massive galaxies. Due to sensitivity demands, direct evidence for AGN affecting the molecular ISM (the gas phase that fuels star formation) has so far been limited to detections of molecular outflows in low-redshift systems. Indirect evidence for an interplay between AGN and their host galaxies' cold gas phase may be provided by measurements of the gas excitation (and dynamics). At z~2-3, the peak epoch of star formation and AGN activity, previous observations of the CO(1-0) line revealed that submillimeter galaxies have substantial reservoirs of cold molecular gas. However, the molecular gas in AGN-host galaxies appears highly excited, potentially supporting an evolutionary connection between these two populations. We will present a new larger Karl G. Jansky Very Large Array sample that nearly doubles the number of CO(1-0) detections in z~2-3 submillimeter galaxies and AGN-host galaxies with existing CO(3-2) detections (from 13 to 23, plus four new upper limits) that allows us to better compare the low-excitation molecular gas properties of these systems and further investigate potential evidence for gas excitation due to active black holes.
Deep Chandra Observation and Numerical Studies of the Nearest Cluster Cold Front in the Sky
NASA Technical Reports Server (NTRS)
Werner, N.; ZuHone, J. A.; Zhuravleva, I.; Ichinohe, Y.; Simionescu, A.; Allen, S. W.; Markevitch, M.; Fabian, A. C.; Keshet, U.; Roediger, E.;
2015-01-01
We present the results of a very deep (500 ks) Chandra observation, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the north-west of M87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. Interestingly, comparison to magnetohydrodynamic simulations indicates that in order to maintain the observed sharp density and temperature discontinuities, conduction must also be suppressed along the magnetic field lines. However, the northwestern part of the cold front is observed to have a non-zero width. While other explanations are possible, the broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length-scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intracluster medium is suppressed by more than an order of magnitude with respect to the isotropic Spitzer-like temperature dependent viscosity. Underneath the cold front, we observe quasi-linear features that are approximately 10 per cent brighter than the surrounding gas and are separated by approximately 15 kpc from each other in projection. Comparison to tailored numerical simulations suggests that the observed phenomena may be due to the amplification of magnetic fields by gas sloshing in wide layers below the cold front, where the magnetic pressure reaches approximately 5-10 per cent of the thermal pressure, reducing the gas density between the bright features.
Gas Density Discontinuities in Merging Clusters
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Markevitch, Maxim
2005-01-01
Chandra has discovered a new phenomenon in galaxy clusters, the sharp gas density edges. Depending on the sign of the temperature jump across the edge, these features may either be bow shocks or cold fronts. While bow shocks obviously are driven by merging sub-clusters, what causes cold fronts is not entirely clear, as they are observed both in mergers and in relaxed clusters. The purpose of the XMM study of A3376, an interesting cluster with density edges, is to understand the origin of cold fronts and to look for possible shocks. The XMM data for A3376 have been mostly analyzed (the X-ray edge turned out to be a cold front). Preliminary results have been shown at a conference and a paper is in preparation. We also have Chandra data for this cluster, and are comparing and combining the two datasets. In the course of analyzing the X-ray data for this cluster as well as several others, it has become apparent that we need the help of hydrodynamic simulations to study the precise mechanism by which cold fronts are formed, the main goal of the present project. A postdoc (Yago Ascasibar) is currently running SPH simulations of an idealized sub- cluster merger. These advanced simulations are nearing completion and two papers with their results are in preparation.
Research of the cold shield in cryogenic liquid storage
NASA Astrophysics Data System (ADS)
Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.
2017-12-01
To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.
Potential of nitrogen gas (n2) flushing to extend the shelf life of cold stored pasteurised milk.
Munsch-Alatossava, Patricia; Ghafar, Abdul; Alatossava, Tapani
2013-03-11
For different reasons, the amount of food loss for developing and developed countries is approximately equivalent. Altogether, these losses represent approximately 1/3 of the global food production. Significant amounts of pasteurised milk are lost due to bad smell and unpleasant taste. Currently, even under the best cold chain conditions, psychrotolerant spore-forming bacteria, some of which also harbour virulent factors, limit the shelf life of pasteurised milk. N2 gas-based flushing has recently been of interest for improving the quality of raw milk. Here, we evaluated the possibility of addressing bacterial growth in pasteurised milk during cold storage at 6 °C and 8 °C. Clearly, the treatments hindered bacterial growth, in a laboratory setting, when N2-treated milk were compared to the corresponding controls, which suggests that N2-flushing treatment constitutes a promising option to extend the shelf life of pasteurised milk.
Potential of Nitrogen Gas (N2) Flushing to Extend the Shelf Life of Cold Stored Pasteurised Milk
Munsch-Alatossava, Patricia; Ghafar, Abdul; Alatossava, Tapani
2013-01-01
For different reasons, the amount of food loss for developing and developed countries is approximately equivalent. Altogether, these losses represent approximately 1/3 of the global food production. Significant amounts of pasteurised milk are lost due to bad smell and unpleasant taste. Currently, even under the best cold chain conditions, psychrotolerant spore-forming bacteria, some of which also harbour virulent factors, limit the shelf life of pasteurised milk. N2 gas-based flushing has recently been of interest for improving the quality of raw milk. Here, we evaluated the possibility of addressing bacterial growth in pasteurised milk during cold storage at 6 °C and 8 °C. Clearly, the treatments hindered bacterial growth, in a laboratory setting, when N2-treated milk were compared to the corresponding controls, which suggests that N2-flushing treatment constitutes a promising option to extend the shelf life of pasteurised milk. PMID:23478439
Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms.
Niemira, Brendan A; Boyd, Glenn; Sites, Joseph
2014-05-01
Cross-contamination of foods from persistent pathogen reservoirs is a known risk factor in processing environments. Industry requires a rapid, waterless, zero-contact, chemical-free method for removing pathogens from food contact surfaces. Cold plasma was tested for its ability to inactivate Salmonella biofilms. A 3-strain Salmonella culture was grown to form adherent biofilms for 24, 48, or 72 h on a test surface (glass slides). These were placed on a conveyor belt and passed at various line speeds to provide exposure times of 5, 10, or 15 s. The test plate was either 5 or 7.5 cm under a plasma jet emitter operating at 1 atm using filtered air as the feed gas. The frequency of high-voltage electricity was varied from 23 to 48 kHz. At the closer spacing (5 cm), cold plasma reduced Salmonella biofilms by up to 1.57 log CFU/mL (5 s), 1.82 log CFU/mL (10 s), and 2.13 log CFU/mL (15 s). Increasing the distance to 7.5 cm generally reduced the efficacy of the 15 s treatment, but had variable effects on the 5 and 10 s treatments. Variation of the high-voltage electricity had a greater effect on 10 and 15 s treatments, particularly at the 7.5 cm spacing. For each combination of time, distance, and frequency, Salmonella biofilms of 24, 48, and 72 h growth responded consistently with each other. The results show that short treatments with cold plasma yielded up to a 2.13 log reduction of a durable form of Salmonella contamination on a model food contact surface. This technology shows promise as a possible tool for rapid disinfection of materials associated with food processing. Pathogens such as Salmonella can form chemical-resistant biofilms, making them difficult to remove from food contact surfaces. A 15 s treatment with cold plasma reduced mature Salmonella biofilms by up to 2.13 log CFU/mL (99.3%). This contact-free, waterless method uses no chemical sanitizers. Cold plasma may therefore have a practical application for conveyor belts, equipment, and other food contact surfaces where a rapid, dry antimicrobial process is required. © 2014 Institute of Food Technologists®
9. COLD CALIBRATION TEST STAND (H1) FROM LEFT TO RIGHT ...
9. COLD CALIBRATION TEST STAND (H-1) FROM LEFT TO RIGHT - WORK BENCH, CONTROL PANEL, CHEMICAL TANK. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
Laminated turbine vane design and fabrication. [utilizing film cooling as a cooling system
NASA Technical Reports Server (NTRS)
Hess, W. G.
1979-01-01
A turbine vane and associated endwalls designed for advanced gas turbine engine conditions are described. The vane design combines the methods of convection cooling and selective areas of full coverage film cooling. The film cooling technique is utilized on the leading edge, pressure side, and endwall regions. The turbine vane involves the fabrication of airfoils from a stack of laminates with cooling passages photoetched on the surface. Cold flow calibration tests, a thermal analysis, and a stress analysis were performed on the turbine vanes.
The Viking parachute qualification test technique.
NASA Technical Reports Server (NTRS)
Raper, J. L.; Lundstrom, R. R.; Michel, F. C.
1973-01-01
The parachute system for NASA's Viking '75 Mars lander was flight qualified in four high-altitude flight tests at the White Sands Missile range (WSMR). A balloon system lifted a full-scale simulated Viking spacecraft to an altitude where a varying number of rocket motors were used to propel the high drag, lifting test vehicle to test conditions which would simulate the range of entry conditions expected at Mars. A ground-commanded cold gas pointing system located on the balloon system provided powered vehicle azimuth control to insure that the flight trajectory remained within the WSMR boundaries. A unique ground-based computer-radar system was employed to monitor inflight performance of the powered vehicle and insure that command ignition of the parachute mortar occurred at the required test conditions of Mach number and dynamic pressure. Performance data were obtained from cameras, telemetry, and radar.
The unusual ISM in Blue and Dusty Gas Rich Galaxies (BADGRS).
NASA Astrophysics Data System (ADS)
Dunne, L.; Zhang, Z.; De Vis, P.; Clark, C. J. R.; Oteo, I.; Maddox, S. J.; Cigan, P.; de Zotti, G.; Gomez, H. L.; Ivison, R. J.; Rowlands, K.; Smith, M. W. L.; van der Werf, P.; Vlahakis, C.; Millard, J. S.
2018-06-01
The Herschel-ATLAS unbiased survey of cold dust in the local Universe is dominated by a surprising population of very blue (FUV - K < 3.5), dust-rich galaxies with high gas fractions ({f_{HI}=M_{HI}/({ M_{\\ast }}+M_{HI})}>0.5). Dubbed `Blue and Dusty Gas Rich Sources' (BADGRS) they have cold diffuse dust temperatures, and the highest dust-to-stellar mass ratios of any galaxies in the local Universe. Here, we explore the molecular ISM in a representative sample of BADGRS, using very deep {CO(J_{up}=1,2,3)} observations across the central and outer disk regions. We find very low CO brightnesses (Tp = 5 - 30 mK), despite the bright far-infrared emission and metallicities in the range 0.5 < Z/Z⊙ < 1.0. The CO line ratios indicate a range of conditions with R_{21}={T_b^{21}/T_b^{10}=0.6-2.1} and R_{31}={T_b^{32}/T_b^{10}=0.2-1.2}. Using a metallicity dependent conversion from CO luminosity to molecular gas mass we find M_{H2}/{M_d}˜ 7-27 and Σ _{H2} = 0.5-6 M_{⊙} {pc^{-2}}, around an order of magnitude lower than expected. The BADGRS have lower molecular gas depletion timescales (τd ˜ 0.5 Gyr) than other local spirals, lying offset from the Kennicutt-Schmidt relation by a similar factor to Blue Compact Dwarf galaxies. The cold diffuse dust temperature in BADGRS (13-16 K) requires an interstellar radiation field 10-20 times lower than that inferred from their observed surface brightness. We speculate that the dust in these sources has either a very clumpy geometry or a very different opacity in order to explain the cold temperatures and lack of CO emission. BADGRS also have low UV attenuation for their UV colour suggestive of an SMC-type dust attenuation curve, different star formation histories or different dust/star geometry. They lie in a similar part of the IRX-β space as z ˜ 5 galaxies and may be useful as local analogues for high gas fraction galaxies in the early Universe.
5. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION OBSERVATION ...
5. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION OBSERVATION BUNKER BACKGROUND, COLD CALIBRATION TOWER. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
Low-Cost Cold-Gas RCS for the Sloshsat Small Satellite
NASA Astrophysics Data System (ADS)
Adler, S.; Warshavsky, A.; Peretz, A.
2002-01-01
Cold gas thrusters usually provide an inexpensive, highly reliable, low-power consuming, non contaminating, and safe auxiliary propulsion means for small spacecraft. A low-cost cold-gas Reaction Control System (RCS) has been designed and developed to provide linear acceleration and rotation control of the SLOSHSAT satellite for liquid-slosh experimentation. This ESA-sponsored mini-spacecraft will be launched by the Space Shuttle and ejected into space from its hitchhiker bay. The RCS was designed and developed according to man rated safety standards, as required by NASA. The RCS comprises four identical spherical carbon/epoxy-wound stainless steel tanks, which store 1.6 kg of nitrogen at 600 bars, corresponding to a maximum rated temperature of 70°C. The relatively high pressure enables economic utilization of the limited space available in small satellites. The tanks are of a "leak before burst" design, which was subjected to a comprehensive finite-element stress analysis. They were developed and tested in accordance with MIL-STD-1522A, with a proof pressure and a minimum burst pressure of 1000 and 1700 bars, respectively. Each tank has an internal volume of 0.97 l, and is equipped with an attached accessories assembly, that includes a pyrovalve and a filter. The RCS was supplied with the tanks prepressurized and sealed to 473 bars (at 20°C). The whole system is pressurized only after the satellite is in its orbit, by activating the tank's pyrovalve. This unique approach enables to supply a sealed RCS system and propellant loading activities are not necessary before launch. Additionally, this approach has safety advantages that were meaningful to meet the NASA safety requirements. The pyrovalve includes a RAFAEL-developed initiator, which complies with MIL-STD-1576, and passed all required testing, including ESD tests with the resistor removed, as demanded by NASA for approval. The pyrovalve is of a "self seal" design, which includes a sealing mechanism, that seals the system from contamination during the pyrovalve actuation. The test port valve allows proof-pressure and leakage testing of the assembled system. The tanks and their accessories were subjected to extensive qualification testing and met the requirements of a stringent acceptance test procedure. The N2 propellant is supplied to twelve 0.8-N thrusters, at a steady regulated pressure of 15.5 bars. Accurate regulated pressure is obtained by a two stage regulating system, which accepts pressure input range of 600 to 40 bar. The thrusters were especially developed to meet the specific program requirements. They will normally be operated in pairs. For safety reasons and redundancy two relief valves are mounted downstream of the regulators. Each valve can handle the total flow with a minimum pressure rise, which defines the Maximum Operating Pressure (MEOP) in the low-pressure section of the system. The pressure surge phenomenon that follows the pyrovalve actuation was precisely analyzed, and tested in simulated conditions. A surge damper is successfully applied to the gas pipeline, significantly lowering the pressure surge. The sensitivity of the regulated pressure to the pulse modulation of the thrusters was examined. Due to the lock pressure of the regulators, and the difference between the static and dynamic regulated pressure levels, the average pressure was found to depend on the pulse duty cycle. This phenomenon was investigated and a model that predicts the pressure level according to the mass flow rate and pulse modulation was established. A breadboard test system, that completely simulates the pneumatic nature of the SLOSHSAT RCS, was constructed and used for ground test evaluation of the RCS performance in various modes of operation (continuous and pulses of various duty cycles). Computerized data acquisition and data reduction was used for pressure, temperature and mass flow measurements at several locations in the system. The breadboard system was also used for development experiments and investigation of various transient and steady state phenomena to enable successful performance prediction for operation in space. In order to establish appropriate assembly procedures for the RCS in the limited space allocated for it in the SLOSHSAT, a mock-up of the final satellite configuration, an Assembly and Testing System (ATS), was constructed. The complete RCS integrated in the ATS was subjected to vibration tests, followed by proof pressure, leakage and performance tests, as a part of the RCS qualification. All RCS components, except for the thrusters, are off-the-shelf items, adapted for space application by meeting stringent NASA/ESA man-rated mission requirements. A cooperative effort between FOKKER-SPACE and NLR of the Netherlands and RAFAEL of Israel enabled a very efficient RCS architecture that satisfies the limiting volume constraints. This approach made it possible to attain a man-rated, space-qualified cold-gas propulsion system with low-cost and safety and high- reliability attributes.
Numerical investigation and experimental development on VM-PT cryocooler operating below 4 K
NASA Astrophysics Data System (ADS)
Zhang, Tong; Pan, Changzhao; Zhou, Yuan; Wang, Junjie
2016-12-01
Vuilleumier coupling pulse tube (VM-PT) cryocooler is a novel kind of cryocooler capable of attaining liquid helium temperature which had been experimentally verified. Depending on different coupling modes and phase shifters, VM-PT cryocooler can be designed in several configurations. This paper presents a numerical investigation on three typical types of VM-PT cryocoolers, which are gas-coupling mode with room temperature phase shifter (GCRP), gas-coupling mode with cold phase shifter (GCCP) and thermal-coupling mode with cold phase shifter (TCCP). Firstly, three configurations are optimized on operating parameters to attain lower no-load temperature. Then, based on the simulation results, distributions of acoustic power, enthalpy flow, pressure wave, and volume flow rate are presented and discussed to better understand the energy flow characteristics and coupling mechanism. Meanwhile, analyses of phase relationship and exergy loss are also performed. Furthermore, a GCCP experimental system with optimal comprehensive performance among three configurations was built and tested. Experimental results showed good consistency with the simulations. Finally, a no-load temperature of 3.39 K and cooling power of 9.75 mW at 4.2 K were obtained with a pressure ratio of 1.7, operating frequency of 1.22 Hz and mean pressure of 1.5 MPa.
In-tank thermodynamics of slush hydrogen for the National Aerospace Plane
NASA Astrophysics Data System (ADS)
Cady, E. C.; Flaska, T. L.; Worrell, P. K.
A series of 14 pressurization and expulsion tests were performed with triple point and slush hydrogen in a horizontally positioned 1.9 cu m (500-gallon) cryogenic tank. The tank was instrumented to determine temperature distribution in the ullage gas and liquid/slush. The pressurization gas was nominally 80 K gaseous helium (GHe) and/or 300 K gaseous hydrogen (GH). The test results showed that there were marked differences in pressurization performance between GHe and GH, and with liquid or slush hydrogen. Pressurization of slush hydrogen with warm GH was much more rapid and efficient than with cold GHe. In addition, GHe pressurization of slush hydrogen took twice as long as pressurization of triple point hydrogen, while GH pressurization of triple point and slush hydrogen took about the same time. Pressurization and expulsion pressurization using GH resulted in substantial ullage pressure collapse at initiation of expulsion (possibly due to surging in the warm outflow line leading to interface disruption and ullage condensation.
Franchini, Michelle Lisidati; Athanazio, Rodrigo; Amato-Lourenço, Luis Fernando; Carreirão-Neto, Waldir; Saldiva, Paulo Hilario Nascimento; Lorenzi-Filho, Geraldo; Rubin, Bruce K; Nakagawa, Naomi Kondo
2016-08-01
Little is known about the effects of long-term nasal low-flow oxygen (NLFO) on mucus and symptoms and how this variable is affected by dry or cold humidified gas. The aim of this study was to investigate the effects of dry-NLFO and cold bubble humidified-NLFO on nasal mucociliary clearance (MCC), mucus properties, inflammation, and symptoms in subjects with chronic hypoxemia requiring long-term domiciliary oxygen therapy. Eighteen subjects (mean age, 68 years; 7 male; 66% with COPD) initiating NLFO were randomized to receive dry-NLFO (n = 10) or humidified-NLFO (n = 8). Subjects were assessed at baseline, 12 h, 7 days, 30 days, 12 months, and 24 months by measuring nasal MCC using the saccharin transit test, mucus contact angle (surface tension), inflammation (cells and cytokine concentration in nasal lavage), and symptoms according to the Sino-Nasal Outcome Test-20. Nasal MCC decreased significantly (40% longer saccharin transit times) and similarly in both groups over the study period. There was a significant association between impaired nasal MCC and decline in lung function. Nasal lavage revealed an increased proportion of macrophages, interleukin-8, and epidermal growth factor concentrations with decreased interleukin-10 during the study. No changes in the proportion of ciliated cells or contact angle were observed. Coughing and sleep symptoms decreased similarly in both groups. There were no outcome differences comparing dry vs cold bubble humidified NLFO. In subjects receiving chronic NLFO, cold bubble humidification does not adequately humidify inspired oxygen to prevent deterioration of MCC, mucus hydration, and pulmonary function. The unheated bubble humidification performed no better than no humidification. ClinicalTrials.gov; No.: NCT02515786; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Analysis of responses of cold pressor tests on pilots and executives
NASA Technical Reports Server (NTRS)
Swaroop, R.
1977-01-01
Statistical analyses were performed to study the relationship between cold pressor test responses and certain medical attributes of a group of 81 pilots and a group of 466 executives. The important results of this study were as follows: There was a significant relationship between a subject's cold pressor test response and his profession (that is, pilot or executive). The executives' diastolic cold pressor test responses were significantly related to their medical conditions, and their families' medical conditions. Significant relationships were observed between executives' diastolic and systolic cold pressor test responses and their history of tranquilizer and cardiac drug use.
Imaging the cold molecular gas in SDSS J1148 + 5251 at z = 6.4
NASA Astrophysics Data System (ADS)
Stefan, Irina I.; Carilli, Chris L.; Wagg, Jeff; Walter, Fabian; Riechers, Dominik A.; Bertoldi, Frank; Green, David A.; Fan, Xiaohui; Menten, Karl; Wang, Ran
2015-08-01
We present Karl G. Jansky Very Large Array (VLA) observations of the CO (J = 2 → 1) line emission towards the z = 6.419 quasar SDSS J114816.64 + 525150.3 (J1148 + 5251). The molecular gas is found to be marginally resolved with a major axis of 0.9 arcsec (consistent with previous size measurements of the CO (J = 7 → 6) emission). We observe tentative evidence for extended line emission towards the south-west on a scale of ˜1.4 arcsec, but this is only detected at 3.3σ significance and should be confirmed. The position of the molecular emission region is in excellent agreement with previous detections of low-frequency radio continuum emission as well as [C II] line and thermal dust continuum emission. These CO (J = 2 → 1) observations provide an anchor for the low-excitation part of the molecular line spectral energy distribution. We find no evidence for extended low-excitation component, neither in the spectral line energy distribution nor the image. We fit a single kinetic gas temperature model of 50 K. We revisit the gas and dynamical masses in light of this new detection of a low-order transition of CO, and confirm previous findings that there is no extended reservoir of cold molecular gas in J1148 + 5251, and that the source departs substantially from the low-z relationship between black hole mass and bulge mass. Hence, the characteristics of J1148 + 5251 at z = 6.419 are very similar to z ˜ 2 quasars, in the lack of a diffuse cold gas reservoir and kpc-size compactness of the star-forming region.
Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying
NASA Astrophysics Data System (ADS)
Henao, John; Concustell, Amadeu; Dosta, Sergi; Cinca, Núria; Cano, Irene G.; Guilemany, Josep M.
2016-06-01
Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s-1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.
A giant protogalactic disk linked to the cosmic web
NASA Astrophysics Data System (ADS)
Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J. Xavier; Chang, Daphne
2015-08-01
The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that `cold accretion flows'--relatively cool (temperatures of the order of 104 kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 1013 solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.
Concept of a Cryogenic System for a Cryogen-Free 25 T Superconducting Magnet
NASA Astrophysics Data System (ADS)
Iwai, Sadanori; Takahashi, Masahiko; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Hanai, Satoshi; Ioka, Shigeru; Watanabe, Kazuo; Awaji, Satoshi; Oguro, Hidetoshi
A cryogen-free 25 T superconducting magnet using a ReBCO insert coil that generates 11.5 T in a 14 T background field of outer low-temperature superconducting (LTS) coils is currently under development. The AC loss of the insert coil during field ramping is approximately 8.8 W, which is difficult to dissipate at the operating temperature of the LTS coils (4 K). However, since a ReBCO coil can operate at a temperature above 4 K, the ReBCO insert coil is cooled to about 10 K by two GM cryocoolers, and the LTS coils are independently cooled by two GM/JT cryocoolers. Two GM cryocoolers cool a circulating helium gas through heat exchangers, and the gas is transported over a long distance to the cold stage located on the ReBCO insert coil, in order to protect the cryocoolers from the leakage field of high magnetic fields. The temperature difference of the 2nd cold stage of the GM cryocoolers and the insert coil can be reduced by increasing the gas flow rate. However, at the same time, the heat loss of the heat exchangers increases, and the temperature of the second cold stage is raised. Therefore, the gas flow rate is optimized to minimize the operating temperature of the ReBCO insert coil by using a flow controller and a bypass circuit connected to a buffer tank.
A giant protogalactic disk linked to the cosmic web.
Martin, D Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J Xavier; Chang, Daphne
2015-08-13
The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that 'cold accretion flows'--relatively cool (temperatures of the order of 10(4) kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 10(13) solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.
USGS leads United States effort in Mallik Well
2002-01-01
This winter, in the extremely cold, far reaches of the upper Northwest Territory of Canada, there is an international consortium of researchers participating in a program to study methane hydrates. The researchers are currently drilling a 1200 m-deep production research well through the permafrost. It is one of three wells located in the Mackenzie Delta, on the shore of the Beaufort Sea. Two observation wells were drilled adjacent to the main production test well earlier this year.Research objectives for the program focus on two themes: (1) the assessment of the production and properties of gas hydrates, and (2) an assessment of the stability of continental gas hydrates given warming trends predicted by climate change models. Of particular interest is the physical response of the gas hydrate to depressurization and thermal production stimulation. Cores are being taken from the well, and scientists hope to retrieve at least 200 m of core, including all the gas hydrate-rich intervals. Once cored, the samples are transported 200 kilometers over ice roads to Inuvik. Nearly 60 researchers are examining the cores for everything from geophysical parameters to microbiological analyses.
2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, A.
2014-05-08
Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas datamore » were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard deviation of the average vapor space temperature during each steady state ranged from 2 to 6°C; however, those of the measured off-gas data were much larger due to the inherent cold cap instabilities in the slurry-fed melters. In order to predict the off-gas composition at the sampling location downstream of the film cooler, the measured feed composition was charge-reconciled and input into the DWPF melter off-gas flammability model, which was then run under the conditions for each of the six Phase 1 steady states. In doing so, it was necessary to perform an overall heat/mass balance calculation from the melter to the Off-Gas Condensate Tank (OGCT) in order to estimate the rate of air inleakage as well as the true gas temperature in the CEF vapor space (T{sub gas}) during each steady state by taking into account the effects of thermal radiation on the measured temperature (T{sub tw}). The results of Phase 1 data analysis and subsequent model runs showed that the predicted concentrations of H{sub 2} and CO by the DWPF model correctly trended and further bounded the respective measured data in the CEF off-gas by over predicting the TOC-to-H{sub 2} and TOC-to-CO conversion ratios by a factor of 2 to 5; an exception was the 7X over prediction of the latter at T{sub gas} = 371°C but the impact of CO on the off-gas flammability potential is only minor compared to that of H{sub 2}. More importantly, the seemingly-excessive over prediction of the TOC-to-H{sub 2} conversion by a factor of 4 or higher at T{sub gas} < ~350°C was attributed to the conservative antifoam decomposition scheme added recently to the model and therefore is considered a modeling issue and not a design issue. At T{sub gas} > ~350°C, the predicted TOC-to-H{sub 2} conversions were closer to but still higher than the measured data by a factor of 2, which may be regarded as adequate from the safety margin standpoint. The heat/mass balance calculations also showed that the correlation between T{sub tw} and T{sub gas} in the CEF vapor space was close to that of the ½ scale SGM, whose data were taken as directly applicable to the DWPF melter and thus used to set all the parameters of the original model. Based on these results of the CEF Phase 1 off-gas and thermal data analyses, it is concluded that: (1) The thermal characteristics of the CEF vapor space are prototypic thanks to its prototypic design; and (2) The CEF off-gas data are scalable in terms of predicting the flammability potential of the DWPF melter off-gas. These results also show that the existing DWPF safety controls on the TOC and antifoam as a function of nitrate are conservative by the same order of magnitude shown by the Phase 1 data at T{sub gas} < ~350°C, since they were set at T{sub gas} = 294°C, which falls into the region of excessive conservatism for the current DWPF model in terms of predicting the TOC-to-H{sub 2} conversion. In order to remedy the overly-conservative antifoam decomposition scheme used in the current DWPF model, the data from two recent tests will be analyzed in detail in order to gain additional insights into the antifoam decomposition chemistry in the cold cap. The first test was run in a temperature-programmed furnace using both normal and spiked feeds with fresh antifoam under inert and slightly oxidizing vapor space conditions. Phase 2 of the CEF test was run with the baseline nitric-glycolic acid flowsheet feeds that contained the “processed antifoam” and those spiked with fresh antifoam in order to study the effects of antifoam concentration as well as processing history on its decomposition chemistry under actual melter conditions. The goal is to develop an improved antifoam decomposition model from the analysis of these test data and incorporate it into a new multistage cold cap model to be developed concurrently for the nitric-glycolic acid flowsheet feeds. These activities will be documented in the Phase 2 report. Finally, it is recommended that some of the conservatism in the existing DWPF safety controls be removed by improving the existing measured-vs.-true gas temperature correlation used in the melter vapor space combustion calculations. The basis for this recommendation comes from the fact that the existing correlation was developed by linearly extrapolating the SGM data taken over a relatively narrow temperature range down to the safety basis minimum of 460°C, thereby under predicting the true gas temperature considerably, as documented in this report. Specifically, the task of improving the current temperature correlation will involve; (1) performing a similar heat/mass balance analysis used in this study on actual DWPF data, (2) validating the measured-vs.-true gas temperature correlation for the CEF developed in this study against the DWPF melter heat/mass balance results, and (3) making adjustments to the CEF correlation, if necessary, before incorporating it into the DWPF safety basis calculations. The steps described here can be completed with relatively minimum efforts.« less
NASA Technical Reports Server (NTRS)
Biaggi-Labiosa, Azlin
2016-01-01
Present an overview of the Nanotechnology Project at NASA's Game Changing Technology Industry Day. Mature and demonstrate flight readiness of CNT reinforced composites for future NASA mission applications?Sounding rocket test in a multiexperiment payload?Integrate into cold gas thruster system as propellant storage?The technology would provide the means for reduced COPV mass and improved damage tolerance and flight qualify CNT reinforced composites. PROBLEM/NEED BEING ADDRESSED:?Reduce weight and enhance the performance and damage tolerance of aerospace structuresGAME-CHANGING SOLUTION:?Improve mechanical properties of CNTs to eventually replace CFRP –lighter and stronger?First flight-testing of a CNT reinforced composite structural component as part of an operational flight systemUNIQUENESS:?CNT manufacturing methods developed?Flight qualify CNT reinforced composites
Preliminary Numerical and Experimental Analysis of the Spallation Phenomenon
NASA Technical Reports Server (NTRS)
Martin, Alexandre; Bailey, Sean C. C.; Panerai, Francesco; Davuluri, Raghava S. C.; Vazsonyi, Alexander R.; Zhang, Huaibao; Lippay, Zachary S.; Mansour, Nagi N.; Inman, Jennifer A.; Bathel, Brett F.;
2015-01-01
The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post shock layer. Preliminary results from a test-campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of high-speed images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30 second test at 100 W/cm2 of cold-wall heat-flux, more than 1300 particles were detected, with an average velocity of 102 m/s, and most frequent observed velocity of 60 m/s.
NASA Astrophysics Data System (ADS)
Du, Zenghui
2018-04-01
At present, the flue gas waste heat utilization projects of coal-fired boilers are often limited by low temperature corrosion problems and conventional PID control. The flue gas temperature cannot be reduced to the best efficiency temperature of wet desulphurization, resulting in the failure of heat recovery to be the maximum. Therefore, this paper analyzes, researches and solves the remaining problems of the cold end system of thermal power station, so as to provide solutions and theoretical support for energy saving and emission reduction and upgrading and the improvement of the comprehensive efficiency of the units.
Cold Stress and the Cold Pressor Test
ERIC Educational Resources Information Center
Silverthorn, Dee U.; Michael, Joel
2013-01-01
Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…
Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases
Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck
2014-01-01
A novel miniaturized calorimeter-type sensor device with a dual-catalyst structure was fabricated by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of the device. The device comprises a calorimeter with a thermoelectric gas sensor (calorimetric-TGS), combining catalytic combustion and thermoelectric technologies. Its response for a model fuel gas of hydrogen and methane was investigated with various combustor catalyst compositions. The calorimetric-TGS devices detected H2, CH4, and a mixture of the two with concentrations ranging between 200 and 2000 ppm at temperatures of 100–400 °C, in terms of the calorie content of the gases. It was necessary to reduce the much higher response voltage of the TGS to H2 compared to CH4. We enhanced the H2 combustion on the cold side so that the temperature differences and response voltages to H2 were reduced. The device response to H2 combustion was reduced by 50% by controlling the Pt concentration in the Pt/α-Al2O3 catalyst on the cold side to 3 wt%. PMID:24818660
Cold-mode Accretion: Driving the Fundamental Mass-Metallicity Relation at z ~ 2
NASA Astrophysics Data System (ADS)
Kacprzak, Glenn G.; van de Voort, Freeke; Glazebrook, Karl; Tran, Kim-Vy H.; Yuan, Tiantian; Nanayakkara, Themiya; Allen, Rebecca J.; Alcorn, Leo; Cowley, Michael; Labbé, Ivo; Spitler, Lee; Straatman, Caroline; Tomczak, Adam
2016-07-01
We investigate the star formation rate (SFR) dependence on the stellar mass and gas-phase metallicity relation at z = 2 with MOSFIRE/Keck as part of the ZFIRE survey. We have identified 117 galaxies (1.98 ≤ z ≤ 2.56), with 8.9 ≤ log(M/M ⊙) ≤ 11.0, for which we can measure gas-phase metallicities. For the first time, we show a discernible difference between the mass-metallicity relation, using individual galaxies, when dividing the sample by low (<10 M ⊙ yr-1) and high (>10 M ⊙ yr-1) SFRs. At fixed mass, low star-forming galaxies tend to have higher metallicity than high star-forming galaxies. Using a few basic assumptions, we further show that the gas masses and metallicities required to produce the fundamental mass-metallicity relation and its intrinsic scatter are consistent with cold-mode accretion predictions obtained from the OWLS hydrodynamical simulations. Our results from both simulations and observations are suggestive that cold-mode accretion is responsible for the fundamental mass-metallicity relation at z = 2 and it demonstrates the direct relationship between cosmological accretion and the fundamental properties of galaxies.
Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I
NASA Astrophysics Data System (ADS)
Sofue, Yoshiaki
2018-05-01
We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.
Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I
NASA Astrophysics Data System (ADS)
Sofue, Yoshiaki
2018-06-01
We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.
Barros, Javier; Becerra, José; González, Carlos; Martínez, Miguel
2013-03-01
The ability of three psychrotrophic Gram-negative bacilli isolated from Chilean Patagonian cold freshwater rivers to produce bioactive metabolites was evaluated. The strains were isolated from cold waters rivers and identified by their biochemical properties and 16S rRNA gene analysis. The metabolites fractions showing antibacterial activity were obtained by solvent extraction and partially characterized by gas-mass chromatography (GC-MS). Antibacterial activity of the fractions was evaluated by an agar-well diffusion test upon 14 bacterial strains, both Gram positive and Gram negative. Thermal and proteolytic resistances of the antibacterial metabolites fractions were also evaluated. Molecular analysis allows the identification of the three Patagonian strains as Pseudomonas sp. RG-6 (Pseudomonas brenneri 99.6 % identity), Pseudomonas sp. RG-8 (Pseudomonas trivialis 99.6 % identity) and Yersinia sp. RP-3 (Yersinia aldovae 99.5 % identity). These extracts were able to inhibit both Gram-positive and Gram-negative bacteria but not Listeria monocytogenes. The antibacterial activity of the filtrated supernatants was lost at temperatures ≥60 °C, and was not affected by proteinase K treatment. The chemical structure of the active molecule remains to be elucidated, although the GC-MS analysis of the filtrates suggests that compounds like sesquiterpenes derivatives from β-maaliene or δ-selinene could be responsible of this antibacterial activity. Pristine cold freshwater streams showed to be interesting sources of metabolites-producing microorganisms with antibacterial activity.
Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M
2014-01-01
One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.
Seismic imaging of the Formosa Ridge cold seep site offshore of southwestern Taiwan
NASA Astrophysics Data System (ADS)
Hsu, Ho-Han; Liu, Char-Shine; Morita, Sumito; Tu, Shu-Lin; Lin, Saulwood; Machiyama, Hideaki; Azuma, Wataru; Ku, Chia-Yen; Chen, Song-Chuen
2017-12-01
Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This "gas reservoir" is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.
Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M
2014-01-01
BACKGROUND One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. METHODS Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer’s lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. RESULTS Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. CONCLUSIONS A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model. PMID:25249764
2018-06-21
Lung Transplant; Lung Resection; Lung Cancer; Asthma; Cystic Fibrosis; Chronic Obstructive Pulmonary Disease; Emphysema; Mesothelioma; Asbestosis; Pulmonary Embolism; Interstitial Lung Disease; Pulmonary Fibrosis; Bronchiectasis; Seasonal Allergies; Cold Virus; Lung Infection; Pulmonary Hypertension; Pulmonary Dysplasia; Obstructive Sleep Apnea
NASA Astrophysics Data System (ADS)
Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi
2018-04-01
Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.
Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling
NASA Technical Reports Server (NTRS)
Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg
2006-01-01
Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.
Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model
NASA Astrophysics Data System (ADS)
Ruaud, Maxime; Wakelam, Valentine; Hersant, Franck
2016-07-01
We present an extended version of the two-phase gas-grain code NAUTILUS to the three-phase modelling of gas and grain chemistry of cold cores. In this model, both the mantle and the surface are considered as chemically active. We also take into account the competition among reaction, diffusion and evaporation. The model predictions are confronted to ice observations in the envelope of low-mass and massive young stellar objects as well as towards background stars. Modelled gas-phase abundances are compared to species observed towards TMC-1 (CP) and L134N dark clouds. We find that our model successfully reproduces the observed ice species. It is found that the reaction-diffusion competition strongly enhances reactions with barriers and more specifically reactions with H2, which is abundant on grains. This finding highlights the importance having a good approach to determine the abundance of H2 on grains. Consequently, it is found that the major N-bearing species on grains go from NH3 to N2 and HCN when the reaction-diffusion competition is taken into account. In the gas phase and before a few 105 yr, we find that the three-phase model does not have a strong impact on the observed species compared to the two-phase model. After this time, the computed abundances dramatically decrease due to the strong accretion on dust, which is not counterbalanced by the desorption less efficient than in the two-phase model. This strongly constrains the chemical age of cold cores to be of the order of few 105 yr.
Shama, Gilbert; Andrew, Peter W.
2016-01-01
Currently there are estimated to be approximately 3.7 million contact lens wearers in the United Kingdom and 39.2 million in North America. Contact lens wear is a major risk factor for developing an infection of the cornea known as keratitis due to poor lens hygiene practices. While there is an international standard for testing disinfection methods against bacteria and fungi (ISO 14729), no such guidelines exist for the protozoan Acanthamoeba, which causes a potentially blinding keratitis most commonly seen in contact lens wearers, and as a result, many commercially available disinfecting solutions show incomplete disinfection after 6 and 24 h of exposure. Challenge test assays based on international standard ISO 14729 were used to determine the antimicrobial activity of cold atmospheric gas plasma (CAP) against Pseudomonas aeruginosa, Candida albicans, and trophozoites and cysts of Acanthamoeba polyphaga and Acanthamoeba castellanii. P. aeruginosa and C. albicans were completely inactivated in 0.5 min and 2 min, respectively, and trophozoites of A. polyphaga and A. castellanii were completely inactivated in 1 min and 2 min, respectively. Furthermore, for the highly resistant cyst stage of both species, complete inactivation was achieved after 4 min of exposure to CAP. This study demonstrates that the CAP technology is highly effective against bacterial, fungal, and protozoan pathogens. The further development of this technology has enormous potential, as this approach is able to deliver the complete inactivation of ocular pathogens in minutes, in contrast to commercial multipurpose disinfecting solutions that require a minimum of 6 h. PMID:26994079
Effect of Surface Nonequilibrium Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kang; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using finite-rate gas/surface interaction model provides time-accurate solutions for multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal Response and Ablation Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas momentum conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of gas/surface interaction chemistry between air and carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was a Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
Fowler, Sara; Fullmer, Spencer; Drum, Melissa; Reader, Al
2014-12-01
The purpose of this prospective randomized, double-blind, placebo-controlled study was to determine the effects of a combination dose of 1000 mg acetaminophen/10 mg hydrocodone on cold pulpal testing in patients experiencing symptomatic irreversible pulpitis. One hundred emergency patients in moderate to severe pain diagnosed with symptomatic irreversible pulpitis of a mandibular posterior tooth randomly received, in a double-blind manner, identical capsules of either a combination of 1000 mg acetaminophen/10 hydrocodone or placebo. Cold testing with Endo-Ice (1,1,1,2 tetrafluoroethane; Hygenic Corp, Akron, OH) was performed at baseline and every 10 minutes for 60 minutes. Pain to cold testing was recorded by the patient using a Heft-Parker visual analog scale. Patients' reaction to the cold application was also rated. Cold testing at baseline and at 10 minutes resulted in severe pain for both the acetaminophen/hydrocodone and placebo groups. Although pain ratings decreased from 20-60 minutes, the ratings still resulted in moderate pain. Patient reaction to cold testing showed that 56%-62% had a severe reaction. Although the reactions decreased in severity over the 60 minutes, 20%-34% still had severe reactions at 60 minutes. Regarding pain and patients' reactions to cold testing, there were no significant differences between the combination acetaminophen/hydrocodone and placebo groups at any time period. A combination dose of 1000 mg of acetaminophen/10 mg of hydrocodone did not statistically affect cold pulpal testing in patients presenting with symptomatic irreversible pulpitis. Patients experienced moderate to severe pain and reactions to cold testing. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miers, S. A.; Carlson, R. W.; McConnell, S. S.
2008-10-01
The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions,more » fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.« less
Low pressure cold spraying on materials with low erosion resistance
NASA Astrophysics Data System (ADS)
Shikalov, V. S.; Klinkov, S. V.; Kosarev, V. F.
2017-10-01
In present work, the erosion-adhesion transition was investigated during cold spraying of aluminum particles on brittle ceramic substrates. Cold spraying was carried out with aid of sonic nozzle, which use allows significantly reducing the gas stagnation pressure without the effect of flow separation inside the nozzle and, accordingly, reducing the velocity of the spraying particles. Two stagnation pressures were chosen. The coating tracks were sprayed at different air temperatures in nozzle pre-chamber under each of regimes. Single sprayed tracks were obtained and their profiles were investigated by optical profilometry.
Salgar, Avinash Ramchandra; Singh, Shishir H; Podar, Rajesh S; Kulkarni, Gaurav P; Babel, Shashank N
2017-01-01
Pulp sensitivity testing, even with its limitations and shortcomings, has been and still remains a very helpful aid in endodontic diagnosis. Pulp sensitivity tests extrapolate pulpal health from the sensory response. The aim of the present study was to identify the sensitivity, specificity, positive and negative predictive values (NPVs) of thermal and electrical tests of pulp sensitivity. Pulp tests studied were two cold and heat tests respectively and electrical test. A total of 330 teeth were tested: 198 teeth with vital pulp and 132 teeth with necrotic pulps (disease prevalence of 40%). The ideal standard was established by observing bleeding within the pulp chamber. Sensitivity values of the diagnostic tests were 0.89 and 0.94 for cold test, 0.84 and 0.87 for the heat tests, and 0.75 for electrical pulp test and the specificity values of the diagnostic tests were 0.91 and 0.93 for the cold tests, 0.86 and 0.84 for the heat tests, and 0.90 for electrical pulp test. The NPVs were 0.91 and 0.96 for the cold tests, 0.89 and 0.91 for the heat tests, and 0.84 for electrical pulp test. The positive predictive values were 0.89 and 0.90 for the cold tests, 0.80 and 0.79 for the heat tests and 0.88 for electrical pulp test. The highest accuracy (0.9393) was observed with cold test (icy spray). The cold test done with icy spray was the most accurate method for sensitivity testing.
Fraser, James P.
1983-01-01
A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.
NASA Astrophysics Data System (ADS)
Kromer, R.; Danlos, Y.; Costil, S.
2018-04-01
Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.
Diagnostics of Cold-Sprayed Particle Velocities Approaching Critical Deposition Conditions
NASA Astrophysics Data System (ADS)
Mauer, G.; Singh, R.; Rauwald, K.-H.; Schrüfer, S.; Wilson, S.; Vaßen, R.
2017-10-01
In cold spraying, the impact particle velocity plays a key role for successful deposition. It is well known that only those particles can achieve successful bonding which have an impact velocity exceeding a particular threshold. This critical velocity depends on the thermomechanical properties of the impacting particles at impacting temperature. The latter depends on the gas temperature in the torch but also on stand-off distance and gas pressure. In the past, some semiempirical approaches have been proposed to estimate particle impact and critical velocities. Besides that, there are a limited number of available studies on particle velocity measurements in cold spraying. In the present work, particle velocity measurements were performed using a cold spray meter, where a laser beam is used to illuminate the particles ensuring sufficiently detectable radiant signal intensities. Measurements were carried out for INCONEL® alloy 718-type powders with different particle sizes. These experimental investigations comprised mainly subcritical spray parameters for this material to have a closer look at the conditions of initial deposition. The critical velocities were identified by evaluating the deposition efficiencies and correlating them to the measured particle velocity distributions. In addition, the experimental results were compared with some values estimated by model calculations.
NASA Astrophysics Data System (ADS)
Husemann, B.; Davis, T. A.; Jahnke, K.; Dannerbauer, H.; Urrutia, T.; Hodge, J.
2017-09-01
We present single-dish 12CO(1-0) and 12CO(2-1) observations for 14 low-redshift quasi-stellar objects (QSOs). In combination with optical integral field spectroscopy, we study how the cold gas content relates to the star formation rate (SFR) and black hole accretion rate. 12CO(1-0) is detected in 8 of 14 targets and 12CO(2-1) is detected in 7 out of 11 cases. The majority of disc-dominated QSOs reveal gas fractions and depletion times matching normal star-forming systems. Two gas-rich major mergers show clear starburst signatures with higher than average gas fractions and shorter depletion times. Bulge-dominated QSO hosts are mainly undetected in 12CO(1-0), which corresponds, on average, to lower gas fractions than in disc-dominated counterparts. Their SFRs, however, imply shorter than average depletion times and higher star formation efficiencies. Negative QSO feedback through removal of cold gas seems to play a negligible role in our sample. We find a trend between black hole accretion rate and total molecular gas content for disc-dominated QSOs when combined with literature samples. We interpret this as an upper envelope for the nuclear activity and it is well represented by a scaling relation between the total and circumnuclear gas reservoir accessible for accretion. Bulge-dominated QSOs significantly differ from that scaling relation and appear uncorrelated with the total molecular gas content. This could be explained either by a more compact gas reservoir, blown out of the gas envelope through outflows, or a different interstellar medium phase composition.
Testing grain-surface chemistry in massive hot-core regions
NASA Astrophysics Data System (ADS)
Bisschop, S. E.; Jørgensen, J. K.; van Dishoeck, E. F.; de Wachter, E. B. M.
2007-04-01
Aims:We study the chemical origin of a set of complex organic molecules thought to be produced by grain surface chemistry in high mass young stellar objects (YSOs). Methods: A partial submillimeter line-survey was performed toward 7 high-mass YSOs aimed at detecting H2CO, CH3OH, CH2CO, CH3CHO, C2H5OH, HCOOH, HNCO and NH2CHO. In addition, lines of CH3CN, C2H5CN, CH3CCH, HCOOCH3, and CH3OCH3 were observed. Rotation temperatures and beam-averaged column densities are determined. To correct for beam dilution and determine abundances for hot gas, the radius and H2 column densities of gas at temperatures >100 K are computed using 850 μm dust continuum data and source luminosity. Results: Based on their rotation diagrams, molecules can be classified as either cold (<100 K) or hot (>100 K). This implies that complex organics are present in at least two distinct regions. Furthermore, the abundances of the hot oxygen-bearing species are correlated, as are those of HNCO and NH2CHO. This is suggestive of chemical relationships within, but not between, those two groups of molecules. Conclusions: .The most likely explanation for the observed correlations of the various hot molecules is that they are "first generation" species that originate from solid-state chemistry. This includes H2CO, CH3OH, C2H5OH, HCOOCH3, CH3OCH3, HNCO, NH2CHO, and possibly CH3CN, and C2H5CN. The correlations between sources implies very similar conditions during their formation or very similar doses of energetic processing. Cold species such as CH2CO, CH3CHO, and HCOOH, some of which are seen as ices along the same lines of sight, are probably formed in the solid state as well, but appear to be destroyed at higher temperatures. A low level of non-thermal desorption by cosmic rays can explain their low rotation temperatures and relatively low abundances in the gas phase compared to the solid state. The CH3CCH abundances can be fully explained by low temperature gas phase chemistry. No cold N-containing molecules are found. Appendices are only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu
2014-10-01
20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.
The chilling truth about the solar chromosphere
NASA Astrophysics Data System (ADS)
Ayres, Thomas R.
The notion that much of the solar gas in the low chromosphere is cool is discussed in terms of its validity. The dark CO absorption cores recorded at the extreme limb of the sun are described, including the 3-2 R14 line with a core-brightness temperature of 3620 K. A bifurcation in the plasma energy balance described to explain the high altitude cold gas is reviewed in terms of recent investigations. Spectral simulations of CO are described which examine the range of thermal profiles allowed by CO observations with low spatial resolution and limb darkening. Weak emission shoulders in the K line demonstrate that a cool chromosphere with Ca II emission is feasible, although the cold gas requires a surface coverage of as little as 20 percent to reproduce the limb darkening. To distinguish between the thermal bifurcation notion and the neophotosphere concept, observations of the high spatial resolution spectra of the CO bands are required.
Startup analysis for a high temperature gas loaded heat pipe
NASA Technical Reports Server (NTRS)
Sockol, P. M.
1973-01-01
A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.
Thermal transistor utilizing gas-liquid transition.
Komatsu, Teruhisa S; Ito, Nobuyasu
2011-01-01
We propose a simple thermal transistor, a device to control heat current. In order to effectively change the current, we utilize the gas-liquid transition of the heat-conducting medium (fluid) because the gas region can act as a good thermal insulator. The three terminals of the transistor are located at both ends and the center of the system, and are put into contact with distinct heat baths. The key idea is a special arrangement of the three terminals. The temperature at one end (the gate temperature) is used as an input signal to control the heat current between the center (source, hot) and another end (drain, cold). Simulating the nanoscale systems of this transistor, control of heat current is demonstrated. The heat current is effectively cut off when the gate temperature is cold and it flows normally when it is hot. By using an extended version of this transistor, we also simulate a primitive application for an inverter.
The Combined Effect of Cold and Moisture on Manual Performance.
Ray, Matthew; Sanli, Elizabeth; Brown, Robert; Ennis, Kerri Ann; Carnahan, Heather
2018-02-01
Objective The aim of this study was to investigate the combined effect of cold and moisture on manual performance and tactile sensitivity. Background People working in the ocean environment often perform manual work in cold and wet conditions. Although the independent effects of cold and moisture on hand function are known, their combined effect has not been investigated. Method Participants completed sensory (Touch-Test, two-point discrimination) and motor (Purdue Pegboard, Grooved Pegboard, reef knot untying) tests in the following conditions: dry hand, wet hand, cold hand, and cold and wet hand. Results For the Purdue Pegboard and knot untying tasks, the greatest decrement in performance was observed in the cold-and-wet-hand condition, whereas the decrements seen in the cold-hand and wet-hand conditions were similar. In the Grooved Pegboard task, the performance decrements exhibited in the cold-and-wet-hand condition and the cold-hand condition were similar, whereas no decrement was observed in the wet-hand condition. Tactile sensitivity was reduced in the cold conditions for the Touch-Test but not the two-point discrimination test. The combined effect of cold and moisture led to the largest performance decrements except when intrinsic object properties helped with grasp maintenance. The independent effects of cold and moisture on manual performance were comparable. Application Tools and equipment for use in the cold ocean environment should be designed to minimize the effects of cold and moisture on manual performance by including object properties that enhance grasp maintenance and minimize the fine-dexterity requirements.
Apparatus for Testing Flat Specimens of Thermal Insulation
NASA Technical Reports Server (NTRS)
Fesmire, James E.; Augustynowicz, Stanislaw D.
2005-01-01
An apparatus has been developed to implement an improved method of testing flat-plate specimens of thermal-insulation materials for cryogenic application. The method includes testing under realistic use conditions that could include vacuum and mechanical loading at a pressure up to 70 psi (=0.48 MPa). The apparatus can accommodate a rigid or flexible specimen having thickness up to 1.25 in. (=3.2 cm) and diameters between 6 and 10 in. (about 15.2 and 25.4 cm, respectively). Typical test conditions include boundary temperatures between 77 K and 373 K and vacuum/interstitial gas filling at a pressure between 10(exp -6) torr (=1.3 x 10(exp -4) Pa) and 760 torr (atmospheric pressure =0.1 MPa). The interstitial gas could be N2, He, CO2, or any other suitable gas to which the insulation is expected to be exposed in use. Relative to prior apparatuses and testing methods, this apparatus and the testing method that it implements offer advantages of relative simplicity and ease of use. The basic principle of operation of the apparatus is that of boil-off calorimetry, using liquid nitrogen or any other suitable liquid that boils at a desired temperature below ambient temperature. Comparative rates of flow of heat through the thicknesses of the specimens (heat-leak rates) and apparent-thermal-conductivity values are obtained from tests of specimens. Absolute values of heat-leak rates and apparent thermal conductivities are computed from a combination of (1) the aforementioned comparative values and (2) calibration factors obtained by testing reference specimens of materials that have known thermal-insulation properties. The apparatus includes a full complement of temperature sensors, a vacuum pump and chamber, a monitoring and control system, and tools and fixtures that enable rapid and reliable installation and removal of specimens. A specimen is installed at the bottom of the vacuum chamber, and a cold-mass assembly that includes a tank is lowered into position above and around the specimen (see figure). A spring-based compensating fixture helps to ensure adequate thermal contact with possibly irregular specimen surfaces. For a high-compression test, the springs can be replaced with spacers. A flat circular load cell at the bottom of the chamber measures the compressive load on the specimen. Once the desired compressive-load, temperature, and vacuum/gas-filling conditions are established, testing begins. During a test, all measurements are recorded by use of a portable data-acquisition system and a computer. The total heat-leak rate is measured and calculated as the boil-off flow rate multiplied by the latent heat of vaporization. The parasitic heat leak (to the side of the specimen and to the top and side of the cold-mass tank) is reduced to a small fraction of the total heat leak by use of a combination of multilayer-insulation (MLI) shield rings, reflective film, a fiberglass/epoxy centering ring, and a bulk fill of aerogel beads. This combination eliminates the need for a cryogenic guard chamber used in a typical prior apparatus to reduce the parasitic heat leak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Andrew Kramer
The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition regionmore » at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.« less
Cold Regions - Environmental Testing of Individual Soldier Clothing
2011-10-17
Individual Soldier Clothing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHORS 5d. PROJECT NUMBER 5e. TASK...This Test Operations Procedure (TOP) provides testing guidelines for individual Soldier cold weather clothing and footwear in a cold regions...Soldier clothing , along with its safety, reliability, durability, and performance when exposed to a cold regions environment. 15. SUBJECT TERMS
Performance evaluation of an automotive thermoelectric generator
NASA Astrophysics Data System (ADS)
Dubitsky, Andrei O.
Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.
Hrma, Pavel
2014-12-18
The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated usingmore » thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agertz, Oscar; Kravtsov, Andrey V., E-mail: o.agertz@surrey.ac.uk
We use cosmological zoom-in simulations of galaxy formation in a Milky-Way-sized halo started from identical initial conditions to investigate the evolution of galaxy sizes, baryon fractions, morphologies, and angular momenta in runs with different parameters of the star formation–feedback cycle. Our fiducial model with a high local star formation efficiency, which results in efficient feedback, produces a realistic late-type galaxy that matches the evolution of basic properties of late-type galaxies: stellar mass, disk size, morphology dominated by a kinematically cold disk, stellar and gas surface density profiles, and specific angular momentum. We argue that feedback’s role in this success ismore » twofold: (1) removal of low angular momentum gas, and (2) maintaining a low disk-to-halo mass fraction, which suppresses disk instabilities that lead to angular momentum redistribution and a central concentration of baryons. However, our model with a low local star formation efficiency, but large energy input per supernova, chosen to produce a galaxy with a similar star formation history as our fiducial model, leads to a highly irregular galaxy with no kinematically cold component, overly extended stellar distribution, and low angular momentum. This indicates that only when feedback is allowed to become vigorous via locally efficient star formation in dense cold gas do resulting galaxy sizes, gas/stellar surface density profiles, and stellar disk angular momenta agree with observed z = 0 galaxies.« less
High molecular gas fractions in normal massive star-forming galaxies in the young Universe.
Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B
2010-02-11
Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts
Shells, holes, worms, high-velocity gas and the z-distribution of gas in galaxies.
NASA Astrophysics Data System (ADS)
Rand, R. J.
The author gives an overview of the current observational understanding of vertically extended gas components in spiral galaxies and the various phenomena which come under such names as shells, holes, worms, and high-velocity gas. For the most part, the focus is on recent high-resolution interferometric studies. The author concentrates on cold gas, and briefly on warm ionized gas, in the Milky Way and a few nearby spirals. Along the way, it is seen how phenomena such as worms and shells may be related to the formation and maintenance of the vertically extended components.
Development of a J-T Micro Compressor
NASA Astrophysics Data System (ADS)
Champagne, P.; Olson, J. R.; Nast, T.; Roth, E.; Collaco, A.; Kaldas, G.; Saito, E.; Loung, V.
2015-12-01
Lockheed Martin has developed and tested a space-quality compressor capable of delivering closed-loop gas flow with a high pressure ratio, suitable for driving a Joule- Thomson cold head. The compressor is based on a traditional “Oxford style” dual-opposed piston compressor with linear drive motors and flexure-bearing clearance-seal technology for high reliability and long life. This J-T compressor retains the approximate size, weight, and cost of the ultra-compact, 200 gram Lockheed Martin Pulse Tube Micro Compressor, despite the addition of a flow-rectifying system to convert the AC pressure wave into a steady flow.
CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma
NASA Astrophysics Data System (ADS)
Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves
2018-03-01
The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.
CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma
NASA Astrophysics Data System (ADS)
Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves
2018-06-01
The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.
2011-09-14
Team members check the progress of a liquid nitrogen cold shock test on the A-1 Test Stand at Stennis Space Center on Sept. 15. The cold shock test is used to confirm the test stand's support system can withstand test conditions, when super-cold rocket engine propellant is piped. The A-1 Test Stand is preparing to conduct tests on the powerpack component of the J-2X rocket engine, beginning in early 2012.
High power gas laser amplifier
Leland, Wallace T.; Stratton, Thomas F.
1981-01-01
A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.
Paschen's law studies in cold gases
NASA Astrophysics Data System (ADS)
Massarczyk, R.; Chu, P.; Dugger, C.; Elliott, S. R.; Rielage, K.; Xu, W.
2017-06-01
The break-through voltage behavior over small gaps has been investigated for differing gap distances, gas pressures, and gas temperatures in nitrogen, neon, argon and xenon gases. A deviation from Paschen's law at micro gap distances has been found. At lower temperatures, a significant shift of the curve relative to the results at room temperature was observed. This behavior can be explained by combining Paschen's law and the ideal gas law.
2003-02-09
This image depicts the formation of multiple whirlpools in a sodium gas cloud. Scientists who cooled the cloud and made it spin created the whirlpools in a Massachusetts Institute of Technology laboratory, as part of NASA-funded research. This process is similar to a phenomenon called starquakes that appear as glitches in the rotation of pulsars in space. MIT's Wolgang Ketterle and his colleagues, who conducted the research under a grant from the Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif., cooled the sodium gas to less than one millionth of a degree above absolute zero (-273 Celsius or -460 Fahrenheit). At such extreme cold, the gas cloud converts to a peculiar form of matter called Bose-Einstein condensate, as predicted by Albert Einstein and Satyendra Bose of India in 1927. No physical container can hold such ultra-cold matter, so Ketterle's team used magnets to keep the cloud in place. They then used a laser beam to make the gas cloud spin, a process Ketterle compares to stroking a ping-pong ball with a feather until it starts spirning. The spinning sodium gas cloud, whose volume was one- millionth of a cubic centimeter, much smaller than a raindrop, developed a regular pattern of more than 100 whirlpools.
Artist's Rendering of Multiple Whirlpools in a Sodium Gas Cloud
NASA Technical Reports Server (NTRS)
2003-01-01
This image depicts the formation of multiple whirlpools in a sodium gas cloud. Scientists who cooled the cloud and made it spin created the whirlpools in a Massachusetts Institute of Technology laboratory, as part of NASA-funded research. This process is similar to a phenomenon called starquakes that appear as glitches in the rotation of pulsars in space. MIT's Wolgang Ketterle and his colleagues, who conducted the research under a grant from the Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif., cooled the sodium gas to less than one millionth of a degree above absolute zero (-273 Celsius or -460 Fahrenheit). At such extreme cold, the gas cloud converts to a peculiar form of matter called Bose-Einstein condensate, as predicted by Albert Einstein and Satyendra Bose of India in 1927. No physical container can hold such ultra-cold matter, so Ketterle's team used magnets to keep the cloud in place. They then used a laser beam to make the gas cloud spin, a process Ketterle compares to stroking a ping-pong ball with a feather until it starts spirning. The spinning sodium gas cloud, whose volume was one- millionth of a cubic centimeter, much smaller than a raindrop, developed a regular pattern of more than 100 whirlpools.
USDA-ARS?s Scientific Manuscript database
The effect of in-package cold plasmas (CP) was studied on microbiological shelf life and surface lightness of fresh chicken fillets (pectoralis major) . chicken fillets were packaged in food trays in air or modified atmosphere (MA) gas (O2:CO2:N2 = 65:30:5) and stored at 4' after exposed to an in-pa...
Bergfeld, D.; Evans, William C.; Lowenstern, J. B.; Hurwitz, S.
2012-01-01
Brimstone Basin, a remote area of intense hydrothermal alteration a few km east of the Yellowstone Caldera, is rarely studied and has long been considered to be a cold remnant of an ancient hydrothermal system. A field campaign in 2008 confirmed that gas emissions from the few small vents were cold and that soil temperatures in the altered area were at background levels. Geochemical and isotopic evidence from gas samples (3He/4He ~ 3RA, δ13C-CO2 ~ − 3‰) however, indicate continuing magmatic gas input to the system. Accumulation chamber measurements revealed a surprisingly large diffuse flux of CO2 (~ 277 t d-1) and H2S (0.6 t d-1). The flux of CO2 reduces the 18O content of the overlying cold groundwater and related stream waters relative to normal meteoric waters. Simple isotopic modeling reveals that the CO2 likely originates from geothermal water at a temperature of 93 ± 19 °C. These results and the presence of thermogenic hydrocarbons (C1:C2 ~ 100 and δ13C-CH4 = − 46.4 to − 42.8‰) in gases require some heat source at depth and refute the assumption that this is a “fossil” hydrothermal system.
Warps and waves in the stellar discs of the Auriga cosmological simulations
NASA Astrophysics Data System (ADS)
Gómez, Facundo A.; White, Simon D. M.; Grand, Robert J. J.; Marinacci, Federico; Springel, Volker; Pakmor, Rüdiger
2017-03-01
Recent studies have revealed an oscillating asymmetry in the vertical structure of the Milky Way's disc. Here, we analyse 16 high-resolution, fully cosmological simulations of the evolution of individual Milky Way-sized galaxies, carried out with the magnetohydrodynamic code AREPO. At redshift zero, about 70 per cent of our galactic discs show strong vertical patterns, with amplitudes that can exceed 2 kpc. Half of these are typical 'integral sign' warps. The rest are oscillations similar to those observed in the Milky Way. Such structures are thus expected to be common. The associated mean vertical motions can be as large as 30 km s-1. Cold disc gas typically follows the vertical patterns seen in the stars. These perturbations have a variety of causes: close encounters with satellites, distant fly-bys of massive objects, accretion of misaligned cold gas from halo infall or from mergers. Tidally induced vertical patterns can be identified in both young and old stellar populations, whereas those originating from cold gas accretion are seen mainly in the younger populations. Galaxies with regular or at most weakly perturbed discs are usually, but not always, free from recent interactions with massive companions, although we have one case where an equilibrium compact disc reforms after a merger.
Spatially Resolved Imaging at 350 Micrometers of Cold Dust in Nearby Elliptical Galaxies
NASA Technical Reports Server (NTRS)
Leeuw, Lerothodi L.; Davidson, Jacqueline; Dowell, C. Darren; Matthews, Henry E.
2008-01-01
Continuum observations at 350 micrometers of seven nearby elliptical galaxies for which CO gas disks have recently been resolved with interferometry mapping are presented. These SHARC II mapping results provide the first clearly resolved far-infrared (FIR)-to-submillimeter continuum emission from cold dust (with temperatures 31 K is approximately greater than T approximately greater than 23 K) of any elliptical galaxy at a distance greater than 40 Mpc. The measured FIR excess shows that the most likely and dominant heating source of this dust is not dilute stellar radiation or cooling flows, but rather star formation that could have been triggered by an accretion or merger event and fueled by dust-rich material that has settled in a dense region cospatial with the central CO gas disks. The dust is detected even in two cluster ellipticals that are deficient in H (sub I), showing that, unlike H (sub I), cold dust and CO in ellipticals can survive in the presence of hot X-ray gas, even in galaxy clusters. No dust cooler than 20 K, either distributed outside the CO disks or cospatial with and heated by the entire dilute stellar optical galaxy (or very extended H (sub I)), is currently evident.
COLD-MODE ACCRETION: DRIVING THE FUNDAMENTAL MASS–METALLICITY RELATION AT z ∼ 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya
2016-07-20
We investigate the star formation rate (SFR) dependence on the stellar mass and gas-phase metallicity relation at z = 2 with MOSFIRE/Keck as part of the ZFIRE survey. We have identified 117 galaxies (1.98 ≤ z ≤ 2.56), with 8.9 ≤ log( M / M {sub ⊙}) ≤ 11.0, for which we can measure gas-phase metallicities. For the first time, we show a discernible difference between the mass–metallicity relation, using individual galaxies, when dividing the sample by low (<10 M {sub ⊙} yr{sup −1}) and high (>10 M {sub ⊙} yr{sup −1}) SFRs. At fixed mass, low star-forming galaxies tendmore » to have higher metallicity than high star-forming galaxies. Using a few basic assumptions, we further show that the gas masses and metallicities required to produce the fundamental mass–metallicity relation and its intrinsic scatter are consistent with cold-mode accretion predictions obtained from the OWLS hydrodynamical simulations. Our results from both simulations and observations are suggestive that cold-mode accretion is responsible for the fundamental mass–metallicity relation at z = 2 and it demonstrates the direct relationship between cosmological accretion and the fundamental properties of galaxies.« less
Water and complex organic chemistry in the cold dark cloud Barnard 5: Observations and Models
NASA Astrophysics Data System (ADS)
Wirström, Eva; Charnley, Steven B.; Taquet, Vianney; Persson, Carina M.
2015-08-01
Studies of complex organic molecule (COM) formation have traditionally been focused on hot cores in regions of massive star formation, where chemistry is driven by the elevated temperatures - evaporating ices and allowing for endothermic reactions in the gas-phase. As more sensitive instruments have become available, the types of objects known to harbour COMs like acetaldehyde (CH3CHO), dimethyl ether (CH3OCH3), methyl formate (CH3OCHO), and ketene (CH2CO) have expanded to include low mass protostars and, recently, even pre-stellar cores. We here report on the first in a new category of objects harbouring COMs: the cold dark cloud Barnard 5 where non-thermal ice desorption induce complex organic chemistry entirely unrelated to local star-formation.Methanol, which only forms efficiently on the surfaces of dust grains, provide evidence of efficient non-thermal desorption of ices in the form of prominent emission peaks offset from protostellar activity and high density tracers in cold molecular clouds. A study with Herschel targeting such methanol emission peaks resulted in the first ever detection of gas-phase water offset from protostellar activity in a dark cloud, at the so called methanol hotspot in Barnard 5.To model the effect a transient injection of ices into the gas-phase has on the chemistry of a cold, dark cloud we have included gas-grain interactions in an existing gas-phase chemical model and connected it to a chemical reaction network updated and expanded to include the formation and destruction paths of the most common COMs. Results from this model will be presented.Ground-based follow-up studies toward the methanol hotspot in B5 have resulted in the detection of a number of COMs, including CH2CO, CH3CHO, CH3OCH3, and CH3OCHO, as well as deuterated methanol (CH2DOH). Observations have also confirmed that COM emission is extended and not localised to a core structure. The implications of these observational and theoretical studies of B5 will be discussed in the context of the gas-grain interaction in dark clouds and its relation to the chemistry of the earliest phases of low-mass star formation.
Investigation of critical burning of fuel droplets
NASA Technical Reports Server (NTRS)
Allison, C. B.; Canada, G. S.
1972-01-01
Fuel droplets were simulated by porous spheres having diameters in the range 0.63 to 1.9 cm and combustion tests were conducted at pressures up to 78 atm in a quiescent cold air environment. Measurements were made of the burning rate and liquid surface temperature during steady combustion. A high pressure flat flame burner apparatus is under development in order to allow testing of high pressure droplet burning in a combustion gas environment. Work was continued on the high pressure strand combustion characteristics of liquid fuels, with the major emphasis on hydrazine. Data was obtained on the burning rate and liquid surface temperatures at pressures in the range 7 to 500 psia. The response of a burning liquid monopropellant to imposed pressure oscillations is being investigated.
Hot and Cold Galactic Gas in the NGC 2563 Galaxy Group
NASA Astrophysics Data System (ADS)
Rasmussen, Jesper; Bai, Xue-Ning; Mulchaey, John S.; van Gorkom, J. H.; Jeltema, Tesla E.; Zabludoff, Ann I.; Wilcots, Eric; Martini, Paul; Lee, Duane; Roberts, Timothy P.
2012-03-01
The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc (~1.4 R vir) of the group center, down to a limiting X-ray luminosity and H I mass of 3 × 1039 erg s-1 and 2 × 108 M ⊙, respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.
Bansal, Sheel; St Clair, J Bradley; Harrington, Constance A; Gould, Peter J
2015-10-01
The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool-temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed-source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool-temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3-fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed-source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed-source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed-source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
The Thermal Pressure in Low Metallicity Galaxies
NASA Astrophysics Data System (ADS)
Wolfire, Mark; McKee, Christopher; Ostriker, Eve C.; Bolatto, Alberto; Jenkins, Edward
2015-08-01
The thermal pressure in the diffuse interstellar medium (ISM) is a relatively small fraction of the total ISM pressure yet it is extremely important for the evolution of the ISM phases. A multi-phase medium can exist between a range of thermal pressures Pmin < Pth < Pmax. The phase separation is driven by thermal instability and produces a cold (T ˜ 100 K) neutral atomic gas and a warm (T ˜ 8000 K) neutral atomic gas separated by thermally unstable gas. At thermal pressures greater than Pmax only the cold phase can exist and at thermal pressures less than Pmin only the warm phase can exist. The ISM is also highly turbulent and turbulence can both initiate the thermal phase transition and be produced in a rapid phase transition. Hydrodynamic modeling also points to a strong two-phase distribution (.e.g., Kim et al. 2011; Audit & Hennebelle 2010) with a median thermal pressure in the cold gas very near the expected two-phase pressure. Global, theoretical models including star-formation feedback have been developed for the molecular fraction in galactic disks using, at their core, the paradigm that thermal pressure determines the phase transitions to warm, cold, or multiphase medium (e.g., Krumholz et al. 2009; Ostriker et al. 2010).Here we present a phase diagram for a low metallicity galaxy using the Small Magellanic Clouds as an example. We find that although the heating rates and metallicities can differ by factors of 5 to 10 from the Milky Way, the resulting two-phase pressure and physical conditions of the phases are not very different from Galactic. We also confirm that a widely used fitting function for Pmin presented in Wolfire et al. 2003 provides an accurate prediction for the new results. We demonstrate how the variation in input parameters determine the final pressures and physical conditions.
NASA Astrophysics Data System (ADS)
Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.
2017-09-01
Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.
New generalized Noh solutions for HEDP hydrocode verification
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.; Tangri, V.
2017-10-01
The classic Noh solution describing stagnation of a cold ideal gas in a strong accretion shock wave has been the workhorse of compressible hydrocode verification for over three decades. We describe a number of its generalizations available for HEDP code verification. First, for an ideal gas, we have obtained self-similar solutions that describe adiabatic convergence either of a finite-pressure gas into an empty cavity or of a finite-amplitude sound wave into a uniform resting gas surrounding the center or axis of symmetry. At the moment of collapse such a flow produces a uniform gas whose velocity at each point is constant and directed towards the axis or the center, i. e. the initial condition similar to the classic solution but with a finite pressure of the converging gas. After that, a constant-velocity accretion shock propagates into the incident gas whose pressure and velocity profiles are not flat, in contrast with the classic solution. Second, for an arbitrary equation of state, we demonstrate the existence of self-similar solutions of the Noh problem in cylindrical and spherical geometry. Examples of such solutions with a three-term equation of state that includes cold, thermal ion/lattice, and thermal electron contributions are presented for aluminum and copper. These analytic solutions are compared to our numerical simulation results as an example of their use for code verification. Work supported by the US DOE/NNSA.
NASA Technical Reports Server (NTRS)
Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.
1989-01-01
A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru a scaling analysis and the results compared well with the 3-D computational fluid dynamics computer model.
NASA Astrophysics Data System (ADS)
Sun, Jiuce; Sanz, Santiago; León, Andrés; Fraser, Jim; Neumann, Holger
2017-12-01
Superconducting generators (SCG) show the potential to reduce the head mass of large offshore wind turbines. By evaluating the availability and required cooling capacity in the temperatures range around 20 K, a Gifford-McMahon (GM) cryocooler among all the candidates was selected. The cold head of GM cryocooler is supposed to rotate together with the rotating superconducting coil. However, the scroll compressor of the GM cryocooler must stay stationary due to lubricating oil. As a consequence, a rotary helium union (RHU) utilizing Ferrofluidic® sealing technology was successfully developed to transfer helium gas between the rotating cold head and stationary helium compressor at ambient temperatures. It contains a high-pressure and low-pressure helium path with multiple ports, respectively. Besides the helium line, slip rings with optical fiber channels are also integrated into this RHU to transfer current and measurement signals. With promising preliminary test results, the RHU will be installed in a demonstrator of SCG and further performance investigation will be performed.
Rabiey, Soghra; Hosseini, Hedayat; Rezaei, Masoud
2014-01-01
This study was conducted to evaluate the antibacterial effect of Carum copticum essential oil (Ajowan EO) against Listeria monocytogenes in fish model system. Ajowan EO chemical composition was determined by gas chromatography/mass spectral analysis and the highest concentration of Carum copticum essential oil without any significant changes on sensory properties of kutum fish (Rutilus frisii kutum) was assigned. Then the inhibitory effect of Ajowan EO at different concentrations in presence of salt and smoke component was tested on L. monocytogenes growth in fish peptone broth (FPB), kutum broth and cold smoked kutum broth at 4 °C for 12 days. Ajowan EO completely decreased the number of L. monocytogenes in FPB after 12 days of storage, however, antimicrobial effect of EO significantly reduced in kutum and cold smoked kutum broth. Addition of 4% NaCl and smoke component improved the anti-listerial activity of Ajowan EO in all fish model broths. PMID:24948918
Effect of melter feed foaming on heat flux to the cold cap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, SeungMin; Hrma, Pavel; Pokorny, Richard
The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolvedmore » gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.« less
Direct Simulation Monte Carlo for astrophysical flows - II. Ram-pressure dynamics
NASA Astrophysics Data System (ADS)
Weinberg, Martin D.
2014-03-01
We use the Direct Simulation Monte Carlo method combined with an N-body code to study the dynamics of the interaction between a gas-rich spiral galaxy and intracluster or intragroup medium, often known as the ram pressure scenario. The advantage of this gas kinetic approach over traditional hydrodynamics is explicit treatment of the interface between the hot and cold, dense and rarefied media typical of astrophysical flows and the explicit conservation of energy and momentum and the interface. This approach yields some new physical insight. Owing to the shock and backward wave that forms at the point intracluster medium (ICM)-interstellar medium (ISM) contact, ICM gas is compressed, heated and slowed. The shock morphology is Mach disc like. In the outer galaxy, the hot turbulent post-shock gas flows around the galaxy disc while heating and ablating the initially cool disc gas. The outer gas and angular momentum are lost to the flow. In the inner galaxy, the hot gas pressurizes the neutral ISM gas causing a strong two-phase instability. As a result, the momentum of the wind is no longer impulsively communicated to the cold gas as assumed in the Gunn-Gott formula, but oozes through the porous disc, transferring its linear momentum to the disc en masse. The escaping gas mixture has a net positive angular momentum and forms a slowly rotating sheath. The shear flow caused by the post-shock ICM flowing through the porous multiphase ISM creates a strong Kelvin-Helmholtz instability in the disc that results in Cartwheel-like ring and spoke morphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Laurence P.; Vrtilek, Jan; O’Sullivan, Ewan
We present the results of a deep Chandra observation of the X-ray bright moderate-cooling flow group NGC 5044 along with the observed correlations between the ionized, atomic, and molecular gas in this system. The Chandra observation shows that the central AGN has undergone two outbursts in the past 10{sup 8} years, based on the presence of two pairs of nearly bipolar X-ray cavities. The molecular gas and dust within the central 2 kpc is aligned with the orientation of the inner pair of bipolar X-ray cavities, suggesting that the most recent AGN outburst had a dynamical impact on the molecularmore » gas. NGC 5044 also hosts many X-ray filaments within the central 8 kpc, but there are no obvious connections between the X-ray and H α filaments and the more extended X-ray cavities that were inflated during the prior AGN outburst. Using the line width of the blended Fe-L line complex as a diagnostic for multiphase gas, we find that the majority of the multiphase thermally unstable gas in NGC 5044 is confined within the X-ray filaments. While the cooling time and entropy of the gas within the X-ray filaments are very similar, not all filaments show evidence of gas cooling or an association with H α emission. We suggest that the various observed properties of the X-ray filaments are suggestive of an evolutionary sequence where thermally unstable gas begins to cool, becomes multiphased, develops H α emitting plasma, and finally produces cold gas.« less
Method and apparatus for regenerating cold traps within liquid-metal systems
McKee, Jr., John M.
1976-01-01
Oxide and hydride impurities of a liquid metal such as sodium are removed from a cold trap by heating to a temperature at which the metal hydroxide is stable in a molten state. The partial pressure of hydrogen within the system is measured to determine if excess hydride or oxide is present. Excess hydride is removed by venting hydrogen gas while excess oxide can be converted to molten hydroxide through the addition of hydrogen. The resulting, molten hydroxide is drained from the trap which is then returned to service at cold trap temperatures within the liquid-metal system.
Method and apparatus for separation of heavy and tritiated water
Lee, Myung W.
2001-01-01
The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.
Sympathetic cooling of nanospheres with cold atoms
NASA Astrophysics Data System (ADS)
Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew
2016-05-01
Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.
Excess depletion of Al, Ca, Ti from interstellar gas
NASA Technical Reports Server (NTRS)
Clayton, D. D.
1986-01-01
Thermal condensation, cold sticking, and sputtering by interstellar shock are combined with a chemical memory of the condensation sequence to account for depletion of aluminum, calcium, and titanium in interstellar gas. The extra depletion of aluminum and calcium becomes an indicator of the structural history of the refractory parts of interstellar grains.
21 CFR 1020.20 - Cold-cathode gas discharge tubes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...
21 CFR 1020.20 - Cold-cathode gas discharge tubes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...
21 CFR 1020.20 - Cold-cathode gas discharge tubes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...
21 CFR 1020.20 - Cold-cathode gas discharge tubes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...
Cold Atmospheric Plasma Technology for Decontamination of Space Equipment
NASA Astrophysics Data System (ADS)
Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor
2016-07-01
Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.
NASA Astrophysics Data System (ADS)
Hellén, Heidi; Schallhart, Simon; Praplan, Arnaud P.; Petäjä, Tuukka; Hakola, Hannele
2017-01-01
An in situ method for studying gas-phase C2-C7 monocarboxylic volatile organic acids (VOAs) in ambient air was developed and evaluated. Samples were collected directly into the cold trap of the thermal desorption unit (TD) and analysed in situ using a gas chromatograph (GC) coupled to a mass spectrometer (MS). A polyethylene glycol column was used for separating the acids. The method was validated in the laboratory and tested on the ambient air of a boreal forest in June 2015. Recoveries of VOAs from fluorinated ethylene propylene (FEP) and heated stainless steel inlets ranged from 83 to 123 %. Different VOAs were fully desorbed from the cold trap and well separated in the chromatograms. Detection limits varied between 1 and 130 pptv and total uncertainty of the method at mean ambient mixing ratios was between 16 and 76 %. All straight chain VOAs except heptanoic acid in the ambient air measurements were found with mixing ratios above the detection limits. The highest mixing ratios were found for acetic acid and the highest relative variations for hexanoic acid. In addition, mixing ratios of acetic and propanoic acids measured by the novel GC-MS method were compared with proton-mass-transfer time-of-flight mass spectrometer (PTR-TOFMS) data. Both instruments showed similar variations, but differences in the mixing ratio levels were significant.
Galaxies and gas in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Katz, Neal; Hernquist, Lars; Weinberg, David H.
1992-01-01
We use a combined gravity/hydrodynamics code to simulate the formation of structure in a random 22 Mpc cube of a cold dark matter universe. Adiabatic compression and shocks heat much of the gas to temperatures of 10 exp 6 - 10 exp 7 K, but a fraction of the gas cools radiatively to about 10 exp 4 K and condenses into discrete, highly overdense lumps. We identify these lumps with galaxies. The high-mass end of their baryonic mass function fits the form of the observed galaxy luminosity function. They retain independent identities after their dark halos merge, so gravitational clustering produces groups of galaxies embedded in relatively smooth envelopes of hot gas and dark matter. The galaxy correlation function is approximately an r exp -2.1 power law from separations of 35 kpc to 7 Mpc. Galaxy fluctuations are biased relative to dark matter fluctuations by a factor b about 1.5. We find no significant 'velocity bias' between galaxies and dark matter particles. However, virial analysis of the simulation's richest group leads to an estimated Omega of about 0.3, even though the simulation adopts Omega = 1.
Singh, Dharminder; Yadav, Sanjeev; Rajesh, V M; Mohanty, Pravakar
2018-05-24
This work was focused on finding the groundnut shell (GNS) gasification performance in a fluidized bed gasifier with bubbling air as gasification medium. GNS in powder form (a mixture of different particle size as given in table 8 in the article) was gasified using naturally available river sand as bed material, top of the bed feeding, conventional charcoal as bed heating medium, and two cyclones for proper cleaning and cooling the product gas. Experiments were performed using different operating conditions such as equivalence ratio (ER) between 0.29 and 0.33, bed temperature between 650°C and 800°C, and feedstock feeding rate between 36 and 31.7 kg/h. Different parameters were evaluated to study the gasifier performance such as gas yield, cold gas efficiency, carbon conversion efficiency (CCE), and high heating value. The most suitable ER value was found to be 0.31, giving the most stable bed temperature profile at 714.4°C with 5-10% fluctuation. Cold gas efficiency and CCE at optimal ER of 0.31 was found to be 71.8% and 91%, respectively.
Thermodynamic and heat transfer analysis of LNG energy recovery for power production
NASA Astrophysics Data System (ADS)
Franco, A.; Casarosa, C.
2014-11-01
An important option to transport the gas is to convert it into liquid natural gas (LNG) and convey it using insulated LNG tankers. At receiving terminals, the LNG is offloaded into storage tanks and then pumped at the required pressure and vaporized for final transmission to the pipeline. The LNG production process consumes a considerable amount of energy, while the cold availability, as also known as cold energy, has been stored in LNG. At a receiving terminal, LNG needs to be evaporated into gas at environmental temperature before fed into the gas distribution system. Seawater is commonly used for the regasification process of the LNG. In the present paper, after a general analysis of the perspectives of the various thermodynamic schemes proposed for power production from the regasification, a detailed analysis of enhanced direct expansion system is carried out in order to identify the upper level of the energy that can be recovered. The analysis outlines that power production typical of optimized ORC plant configurations (120 kJ/kg) can be obtained with direct expansion solutions.
A Herschel [C ii] Galactic plane survey. I. The global distribution of ISM gas components
NASA Astrophysics Data System (ADS)
Pineda, J. L.; Langer, W. D.; Velusamy, T.; Goldsmith, P. F.
2013-06-01
Context. The [C ii] 158 μm line is an important tool for understanding the life cycle of interstellar matter. Ionized carbon is present in a variety of phases of the interstellar medium (ISM), including the diffuse ionized medium, warm and cold atomic clouds, clouds in transition from atomic to molecular, and dense and warm photon dominated regions. Aims: Velocity-resolved observations of [C ii] are the most powerful technique available to disentangle the emission produced by these components. These observations can also be used to trace CO-dark H2 gas and determine the total mass of the ISM. Methods: The Galactic Observations of Terahertz C+ (GOT C+) project surveys the [C ii] 158 μm line over the entire Galactic disk with velocity-resolved observations using the Herschel/HIFI instrument. We present the first longitude-velocity maps of the [C ii] emission for Galactic latitudes b = 0°, ±0.5°, and ±1.0°. We combine these maps with those of H i, 12CO, and 13CO to separate the different phases of the ISM and study their properties and distribution in the Galactic plane. Results: [C ii] emission is mostly associated with spiral arms, mainly emerging from Galactocentric distances between 4 and 10 kpc. It traces the envelopes of evolved clouds as well as clouds that are in the transition between atomic and molecular. We estimate that most of the observed [C ii] emission is produced by dense photon dominated regions (~47%), with smaller contributions from CO-dark H2 gas (~28%), cold atomic gas (~21%), and ionized gas (~4%). Atomic gas inside the Solar radius is mostly in the form of cold neutral medium (CNM), while the warm neutral medium gas dominates the outer galaxy. The average fraction of CNM relative to total atomic gas is ~43%. We find that the warm and diffuse CO-dark H2 is distributed over a larger range of Galactocentric distances (4-11 kpc) than the cold and dense H2 gas traced by 12CO and 13CO (4-8 kpc). The fraction of CO-dark H2 to total H2 increases with Galactocentric distance, ranging from ~20% at 4 kpc to ~80% at 10 kpc. On average, CO-dark H2 accounts for ~30% of the molecular mass of the Milky Way. When the CO-dark H2 component is included, the radial distribution of the CO-to-H2 conversion factor is steeper than that when only molecular gas traced by CO is considered. Most of the observed [C ii] emission emerging from dense photon dominated regions is associated with modest far-ultraviolet fields in the range χ0 ≃ 1 - 30. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org
Experimental Performance Evaluation of a Supersonic Turbine for Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Snellgrove, Lauren M.; Griffin, Lisa W.; Sieja, James P.; Huber, Frank W.
2003-01-01
In order to mitigate the risk of rocket propulsion development, efficient, accurate, detailed fluid dynamics analysis and testing of the turbomachinery is necessary. To support this requirement, a task was developed at NASA Marshall Space Flight Center (MSFC) to improve turbine aerodynamic performance through the application of advanced design and analysis tools. These tools were applied to optimize a supersonic turbine design suitable for a reusable launch vehicle (RLV). The hot gas path and blading were redesigned-to obtain an increased efficiency. The goal of the demonstration was to increase the total-to- static efficiency of the turbine by eight points over the baseline design. A sub-scale, cold flow test article modeling the final optimized turbine was designed, manufactured, and tested in air at MSFC s Turbine Airflow Facility. Extensive on- and off- design point performance data, steady-state data, and unsteady blade loading data were collected during testing.
12. COLD CALIBRATION BLOCKHOUSE BASEMENT VIEW FROM LEFT TO RIGHT, ...
12. COLD CALIBRATION BLOCKHOUSE BASEMENT VIEW FROM LEFT TO RIGHT, CABLE TRAYS, RACKS, CABLE CONNECTION TERMINALS. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
NASA Astrophysics Data System (ADS)
Fudenberg, Daniel; Brunner, Thomas; Varentsov, Victor; Devoe, Ralph; Dilling, Jens; Gratta, Giorgio; nEXO Collaboration
2015-10-01
nEXO is a next-generation experiment designed to search for 0 νββ -decay of Xe-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the neutrino to be a Majorana particle In order to greatly reduce background contributions to this search, the collaboration is developing several ``barium tagging'' techniques to recover and identify the decay daughter, Ba-136. ``Tagging'' may be available for a 2nd phase of nEXO and will push the sensitivity beyond the inverted neutrino-mass hierarchy. Tagging methods in testing for this phase include Ba-ion capture on a probe with identification by resonance ionization laser spectroscopy, and Ba capture in solid xenon on a cold probe with identification by fluorescence. In addition, Ba tagging for a gas-phase detector, appropriate for a later stage, is being tested. Here efficient ion extraction from heavy carrier gases is key. Detailed gas-dynamic and ion transport calculations have been performed to optimize for ion extraction. An apparatus to extract Ba ions from up to 10 bar xenon gas into vacuum using an RF-only funnel has been constructed and demonstrates extraction of ions from noble gases. We will present this system's status along with results of this R&D program.
40 CFR 86.1432 - Vehicle preparation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... cold temperature compliance pathway, the temperature of the fuel prior to its delivery to the fuel tank... is the Cold CO Test Procedure, performed in accordance with subpart C of this part. (ii) Testing by...). (C) Cold CO Test Procedure, in accordance with subpart C of this part. (c) Soak—(1) Manufacturer's...
40 CFR 86.1432 - Vehicle preparation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... cold temperature compliance pathway, the temperature of the fuel prior to its delivery to the fuel tank... is the Cold CO Test Procedure, performed in accordance with subpart C of this part. (ii) Testing by...). (C) Cold CO Test Procedure, in accordance with subpart C of this part. (c) Soak—(1) Manufacturer's...
Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models
Colt, John; Watten, Barnaby; Pfeiffer, Tim
2012-01-01
The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.
Cold Atmospheric Plasma: methods of production and application in dentistry and oncology
2013-01-01
Cold Atmospheric Plasma is an ionized gas that has recently been extensively studied by researchers as a possible therapy in dentistry and oncology. Several different gases can be used to produce Cold Atmospheric Plasma such as Helium, Argon, Nitrogen, Heliox, and air. There are many methods of production by which cold atmospheric plasma is created. Each unique method can be used in different biomedical areas. In dentistry, researchers have mostly investigated the antimicrobial effects produced by plasma as a means to remove dental biofilms and eradicate oral pathogens. It has been shown that reactive oxidative species, charged particles, and UV photons play the main role. Cold Atmospheric Plasma has also found a minor, but important role in tooth whitening and composite restoration. Furthermore, it has been demonstrated that Cold Atmospheric Plasma induces apoptosis, necrosis, cell detachment, and senescence by disrupting the S phase of cell replication in tumor cells. This unique finding opens up its potential therapy in oncology. PMID:24083477
Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi
2016-09-01
Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Active magnetic regenerator method and apparatus
DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.
1993-01-01
In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.
ERIC Educational Resources Information Center
Sanders, James R.; Stufflebeam, Daniel L.
The energy crisis, specifically a shortage of natural gas, caused by the unusually cold winter of 1977, resulted in the Columbus, Ohio, schools being closed for a month. Schools heated with gas were closed, but students met one day a week in school buildings that used coal, oil, or electricity. The educational program continued with school…
Bibliography on Cold Regions Science and Technology. Volume 41. Part 1
1987-12-01
Seismic surveys, (•eophysical surveys, Bering Sea, Beaaforl Sea. 41-2608 Oil and gas fields in the Kast Coast and Arctic basins of Canada...existing design codes is given. 41-646 Spray-ice islands evaluated for Arctic-drilling struc- tures. Juvkam-Wold, H.C., Oil and gas journal, Apr. 21...Models, Instruments. 41-696 Northern Oil and Gas Action Program (NOGAP) bibliography. Volume 1. Canada. Department of Indian and Northern
Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows
NASA Astrophysics Data System (ADS)
Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.
2018-01-01
Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. Hence this findingmore » offers a major hope that large cyclones employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. The separative efficiencies of the Aerodyne cyclone separator were found from both the cold flow and the hot flow tests to be disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones. (LTN)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id; Notonegoro, Hamdan Akbar
The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initialmore » hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.« less
Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems
NASA Astrophysics Data System (ADS)
Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana
2017-12-01
At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.
Novel Online Diagnostic Analysis for In-Flight Particle Properties in Cold Spraying
NASA Astrophysics Data System (ADS)
Koivuluoto, Heli; Matikainen, Ville; Larjo, Jussi; Vuoristo, Petri
2018-02-01
In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.
NASA Technical Reports Server (NTRS)
Owens, L. J. (Inventor)
1978-01-01
A floating energy converter is described which uses large volumes of sea water to produce electrical power. In this plant, a fluid working medium is pumped to an evaporator where is is heated by a flow of warm surface sea water. The fluid in liquid form boils to a pressurized gas vapor which is routed to drive a turbine that, in turn, drives a generator for producing electricity. The gas vapor then enters a condenser immersed in cold sea water pumped from lower depths, condenses to its original liquid form, and then pumped to the evaporator to repeat the cycle. Modular components can be readily interchanged on the ocean thermal unit and inlet pipes for the sea water are provided with means for maintaining the pipes in alignment with the oncoming current. The modular construction allows for the testing of various components to provide a more rapid optimization of a standardized plant.
Mixing characterization of highly underexpanded fluid jets with real gas expansion
NASA Astrophysics Data System (ADS)
Förster, Felix J.; Baab, Steffen; Steinhausen, Christoph; Lamanna, Grazia; Ewart, Paul; Weigand, Bernhard
2018-03-01
We report a comprehensive speed of sound database for multi-component mixing of underexpanded fuel jets with real gas expansion. The paper presents several reference test cases with well-defined experimental conditions providing quantitative data for validation of computational simulations. Two injectant fluids, fundamentally different with respect to their critical properties, are brought to supercritical state and discharged into cold nitrogen at different pressures. The database features a wide range of nozzle pressure ratios covering the regimes that are generally classified as highly and extremely highly underexpanded jets. Further variation is introduced by investigating different injection temperatures. Measurements are obtained along the centerline at different axial positions. In addition, an adiabatic mixing model based on non-ideal thermodynamic mixture properties is used to extract mixture compositions from the experimental speed of sound data. The concentration data obtained are complemented by existing experimental data and represented by an empirical fit.
NASA Astrophysics Data System (ADS)
Bosch, Henry
2016-03-01
A heat exchanger concept for a thermoelectric generator with integrated planar modules for passenger car applications is introduced. The module housings, made of deep drawn stainless steel sheet metal, are brazed onto the exhaust gas channel to achieve an optimal heat transfer on the hot side of the modules. The cooling side consists of winding fluid channels, which are mounted directly onto the cold side of the modules. Only a thin foil separates the cooling media from the modules for an almost direct heat contact on the cooling side. Thermoelectric generators with up to 20 modules made of PbTe and Bi2Te3, respectively, are manufactured and tested on a hot gas generator to investigate electrical power output and performance of the thermoelectric generator. The proof of concept of the light weight heat exchanger design made of sheet metal with integrated modules is positively accomplished.
Stirling Space Engine Program. Volume 1; Final Report
NASA Technical Reports Server (NTRS)
Dhar, Manmohan
1999-01-01
The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.
Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.
Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J
2014-12-04
Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.
Three-dimensional simulation of helix traveling-wave tube cold-test characteristics using MAFIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kory, C.L.
1996-12-31
A critically important step in the traveling-wave tube (TWT) design process is the cold-testing of the slow-wave circuit for dispersion, beam interaction impedance and RF losses. Experimental cold-tests can be very time-consuming and expensive, thus limiting the freedom to examine numerous variations to the test circuit. This makes the need for computational methods crucial as they can lower cost, reduce tube development time and allow the freedom to introduce novel and improved designs. The cold-test parameters have been calculated for a C-Band Northrop-Grumman helix TWT slow-wave circuit using MAFIA, the three-dimensional electromagnetic finite-integration computer code. Measured and simulated cold-test datamore » for the Northrop-Grumman helix TWT including dispersion, impedance and attenuation will be presented. Close agreement between simulated and measured values of the dispersion, impedance and attenuation has been obtained.« less
Effect of gas release in hot molding on flexural strength of composite friction brake
NASA Astrophysics Data System (ADS)
Rusdja, Andy Permana; Surojo, Eko; Muhayat, Nurul; Raharjo, Wijang Wisnu
2018-02-01
Composite friction brake is a vital part of braking system which serves to reduce the speed of vehicle. To fulfill the requirement of brake performance, composite friction brake must have friction and mechanical characteristic as required. The characteristics of composite friction brake are affected by brake material formulation and manufacturing parameter. In the beginning of hot molding, intermittent hot pressing was carried out to release the gases that consist of ammonia gas and water vapor. In composite friction brake, phenolic resin containing hexamethylenetetramine (HMTA) is often used as a binder. During hot molding, the reaction of phenolic resin and HMTA forms ammonia gas. Hot molding also generates water vapor because raw materials absorb moisture from environment when they are placed in storage. The gas release in hot molding is supposed affecting mechanical properties because it avoid entrapped gas in composite, so that this research investigated effect of gas release on flexural strength. Manufacturing of composite specimen was carried out as follow: mixing of raw materials, cold molding, and hot molding. In this research, duration of intermittent hot pressing and number of gas release were varied. The flexural strength of specimen was measured using three point bending test. The results showed that flexural strength specimens that were manufactured without gas release, using 4 times gas release with intermittent hot pressing for 5 and 10 seconds were not remarkably different. Conversely, hot molding using 4 times gas release with intermittent hot pressing for 15 seconds decreased flexural strength of composite. Hot molding using 2, 4, and 8 times gas release with intermittent hot pressing for 10 seconds also had no effect on increasing flexural strength. Increasing of flexural strength of composite was obtained only by using 6 times gas release with intermittent hot pressing for 10 seconds.
Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger
NASA Astrophysics Data System (ADS)
Park, Joonhee; Lee, Joo-Young
2016-04-01
This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P < 0.001), preferred hot thermal stimulation ( P = 0.006), and wore heavier clothing during daily life ( P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures ( T max) ( P = 0.040), smaller amplitude ( P = 0.029), and delayed onset time of CIVD ( P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.
Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger.
Park, Joonhee; Lee, Joo-Young
2016-04-01
This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance (P < 0.001), preferred hot thermal stimulation (P = 0.006), and wore heavier clothing during daily life (P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures (T max) (P = 0.040), smaller amplitude (P = 0.029), and delayed onset time of CIVD (P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude (P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.
APEX reveals glowing stellar nurseries
NASA Astrophysics Data System (ADS)
2008-11-01
Illustrating the power of submillimetre-wavelength astronomy, an APEX image reveals how an expanding bubble of ionised gas about ten light-years across is causing the surrounding material to collapse into dense clumps that are the birthplaces of new stars. Submillimetre light is the key to revealing some of the coldest material in the Universe, such as these cold, dense clouds. Glowing Stellar Nurseries ESO PR Photo 40/08 Glowing Stellar Nurseries The region, called RCW120, is about 4200 light years from Earth, towards the constellation of Scorpius. A hot, massive star in its centre is emitting huge amounts of ultraviolet radiation, which ionises the surrounding gas, stripping the electrons from hydrogen atoms and producing the characteristic red glow of so-called H-alpha emission. As this ionised region expands into space, the associated shock wave sweeps up a layer of the surrounding cold interstellar gas and cosmic dust. This layer becomes unstable and collapses under its own gravity into dense clumps, forming cold, dense clouds of hydrogen where new stars are born. However, as the clouds are still very cold, with temperatures of around -250˚ Celsius, their faint heat glow can only be seen at submillimetre wavelengths. Submillimetre light is therefore vital in studying the earliest stages of the birth and life of stars. The submillimetre-wavelength data were taken with the LABOCA camera on the 12-m Atacama Pathfinder Experiment (APEX) telescope, located on the 5000 m high plateau of Chajnantor in the Chilean Atacama desert. Thanks to LABOCA's high sensitivity, astronomers were able to detect clumps of cold gas four times fainter than previously possible. Since the brightness of the clumps is a measure of their mass, this also means that astronomers can now study the formation of less massive stars than they could before. The plateau of Chajnantor is also where ESO, together with international partners, is building a next generation submillimetre telescope, ALMA, the Atacama Large Millimeter/submillimeter Array. ALMA will use over sixty 12-m antennas, linked together over distances of more than 16 km, to form a single, giant telescope. APEX is a collaboration between the Max-Planck-Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO. The telescope is based on a prototype antenna constructed for the ALMA project. Operation of APEX at Chajnantor is entrusted to ESO.
[Effects of different surface treatments on the zirconia-resin cement bond strength].
Liao, Y; Liu, X Q; Chen, L; Zhou, J F; Tan, J G
2018-02-18
To evaluate the effects of different surface treatments on the shear bond strength between zirconia and resin cement. Forty zirconia discs were randomly divided into four groups (10 discs in each group) for different surface treatments: control, no surface treatment; sandblast, applied air abrasion with aluminum oxide particles; ultraviolet (UV), the zirconia sample was placed in the UV sterilizer at the bottom of the UV lamp at 10 mm, and irradiated for 48 h; cold plasma, the discs were put in the cold plasma cabinet with the cold plasma generated from the gas of He for 30 s. Specimens of all the groups were surface treated prior to cementation with Panavia F 2.0 cement. The surface morphology and contact angle of water were measured. The shear bond strengths were tested and the failure modes were examined with a stereomicroscope. Surface morphology showed no difference between the UV/cold plasma group and the control group. Sandblasted zirconia displayed an overall heterogeneous distribution of micropores. The contact angle of the control group was 64.1°±2.0°. After sandblasting, UV irradiation and cold plasma exposure, the values significantly decreased to 48.8°±2.6°, 27.1°±3.6° and 32.0°±3.3°. The values of shear bond strength of the specimens with sandblasted (14.82±2.01) MPa were higher than those with no treatment (9.41±1.07) MPa with statistically significant difference (P<0.05). The values of shear bond strength of the specimens with UV irradiation (10.02±0.64) MPa were higher than those with no treatment (9.41±1.07) MPa, but without statistically significant difference (P>0.05). The values of cold plasma group (18.34±3.05) MPa were significantly higher than those of control group (9.41±1.07) MPa, even more than those with sandblast(14.82±2.01) MPa (P<0.05). X-ray photoelectron spectroscopy (XPS) showed increase in oxygen (O) and decrease in carbon (C) elements after UV and cold plasma treatment. The surface C/O ratio also decreased after UV and cold plasma treatment. Zirconia specimens treated with UV and cold plasma could significantly improve the hydrophilicity. The surface morphology was unaffected by the UV irradiation and cold plasma treatments. The improvements of ziconia shear bond strength were slight in UV group without statistically significant difference. Cold plasma treatment significantly improved the shear bond strength between zirconia and resin cement.
High-quality eddy-covariance CO2 budgets under cold climate conditions
NASA Astrophysics Data System (ADS)
Kittler, Fanny; Eugster, Werner; Foken, Thomas; Heimann, Martin; Kolle, Olaf; Göckede, Mathias
2017-08-01
This study aimed at quantifying potential negative effects of instrument heating to improve eddy-covariance flux data quality in cold environments. Our overarching objective was to minimize heating-related bias in annual CO2 budgets from an Arctic permafrost system. We used continuous eddy-covariance measurements covering three full years within an Arctic permafrost ecosystem with parallel sonic anemometers operation with activated heating and without heating as well as parallel operation of open- and closed-path gas analyzers, the latter serving as a reference. Our results demonstrate that the sonic anemometer heating has a direct effect on temperature measurements while the turbulent wind field is not affected. As a consequence, fluxes of sensible heat are increased by an average 5 W m-2 with activated heating, while no direct effect on other scalar fluxes was observed. However, the biased measurements in sensible heat fluxes can have an indirect effect on the CO2 fluxes in case they are used as input for a density-flux WPL correction of an open-path gas analyzer. Evaluating the self-heating effect of the open-path gas analyzer by comparing CO2 flux measurements between open- and closed-path gas analyzers, we found systematically higher CO2 uptake recorded with the open-path sensor, leading to a cumulative annual offset of 96 gC m-2, which was not only the result of the cold winter season but also due to substantial self-heating effects during summer. With an inclined sensor mounting, only a fraction of the self-heating correction for vertically mounted instruments is required.
Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber
2002-10-18
try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into...a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison
NASA Astrophysics Data System (ADS)
Gonçalves, Cátia; Alves, Célia; Fernandes, Ana Patrícia; Monteiro, Cristina; Tarelho, Luís; Evtyugina, Margarita; Pio, Casimiro
2011-09-01
The aim of this study is the further characterisation of PM 2.5 emissions from the residential wood combustion of common woods grown in Portugal. This new research extends to eight the number of biomass fuels studied and tries to understand the differences that the burning appliance (fireplace versus woodstove) and the combustion temperature (cold and hot start) have on emissions. Pinus pinaster (Maritime pine), Eucalyptus globulus (eucalypt), Quercus suber (cork oak), Acacia longifolia (Golden wattle), Quercus faginea (Portuguese oak), Olea europea (Olive), Quercus ilex rotundifolia (Holm oak) and briquettes produced from forest biomass waste were used in the combustion tests. Determinations included fine particle emission factors, carbonaceous content (OC and EC) by a thermal-optical transmission technique and detailed identification and quantification of organic compounds by gas chromatography-mass spectrometry. Fine particle emission factors from the woodstove were lower than those from the fireplace. For both combustion appliances, the OC/EC ratio was higher in "cold start" tests (1.56 ± 0.95 for woodstove and 2.03 ± 1.34 for fireplace). These "cold start" OC/EC values were, respectively, for the woodstove and the fireplace, 51% and 69% higher than those obtained in "hot start" experiments. The chromatographically resolved organics included n-alkanes, n-alkenes, PAHs, n-alkanals, ketones, n-alkanols, terpenoids, triterpenoids, phenolic compounds, phytosterols, alcohols, n-alkanoic acids, n-di-acids, unsaturated acids and alkyl esters of acids. The smoke emission rate and composition varied widely depending on fuel type, burning appliance and combustion temperature.
NASA Astrophysics Data System (ADS)
Mahdavi, Amirhossein; McDonald, André
2018-02-01
The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.
METC CFD simulations of hot gas filtration
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Brien, T.J.
1995-06-01
Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of themore » vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...
Baroreflex modulation of muscle sympathetic nerve activity during cold pressor test in humans
NASA Technical Reports Server (NTRS)
Cui, Jian; Wilson, Thad E.; Crandall, Craig G.
2002-01-01
The purpose of this project was to test the hypothesis that baroreceptor modulation of muscle sympathetic nerve activity (MSNA) and heart rate is altered during the cold pressor test. Ten subjects were exposed to a cold pressor test by immersing a hand in ice water for 3 min while arterial blood pressure, heart rate, and MSNA were recorded. During the second and third minute of the cold pressor test, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.005) during the cold pressor test (-244.9 +/- 26.3 units x beat(-1) x mmHg(-1)) when compared with control conditions (-138.8 +/- 18.6 units x beat(-1) x mmHg(-1)), whereas no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that baroreceptors remain capable of modulating MSNA and heart rate during a cold pressor test; however, the sensitivity of baroreflex modulation of MSNA is elevated without altering the sensitivity of baroreflex control of heart rate.
R&D of high reliable refrigeration system for superconducting generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoya, T.; Shindo, S.; Yaguchi, H.
1996-12-31
Super-GM carries out R&D of 70 MW class superconducting generators (model machines), refrigeration system and superconducting wires to apply superconducting technology to electric power apparatuses. The helium refrigeration system for keeping field windings of superconducting generator (SCG) in cryogenic environment must meet the requirement of high reliability for uninterrupted long term operation of the SCG. In FY 1992, a high reliable conventional refrigeration system for the model machines was integrated by combining components such as compressor unit, higher temperature cold box and lower temperature cold box which were manufactured utilizing various fundamental technologies developed in early stage of the projectmore » since 1988. Since FY 1993, its performance tests have been carried out. It has been confirmed that its performance was fulfilled the development target of liquefaction capacity of 100 L/h and impurity removal in the helium gas to < 0.1 ppm. Furthermore, its operation method and performance were clarified to all different modes as how to control liquefaction rate and how to supply liquid helium from a dewar to the model machine. In addition, the authors have made performance tests and system performance analysis of oil free screw type and turbo type compressors which greatly improve reliability of conventional refrigeration systems. The operation performance and operational control method of the compressors has been clarified through the tests and analysis.« less
A Rare Non-Hemolytic Case of Idiopathic Cold Agglutinin Disease.
Erkus, Edip; Kocak, Mehmet Z; Aktas, Gulali; Ozen, Mehmet; Atak, Burcin M; Duman, Tuba T; Tekce, Buket K; Savli, Haluk
2018-06-01
Cold agglutinin disease is a very rare condition associated with agglutination of erythrocytes in cold environment usually due to IgM type antibodies. Other than hemolytic anemias, it may interfere with routine hemogram tests due to miscalculation of red blood cell count (RBC) and other hemogram parameters calculated with involvement of RBC. Awareness of the condition is important to overcome laboratory errors. We studied a peripheral blood smear and repeated the hemogram test at 37°C to establish the diagnosis of cold agglutinin disease. Initial hemogram test results of the fifty-eight year-old man was as follows: RBC: 1.34 M/µL, hemoglobin (Hb): 12.4 g/dL, hematocrit (Htc): 11.8%, mean corpuscular hemoglobin (MCH): 92.4 pg, and mean corpuscular hemoglobin concentration (MCHC): 105 gr/dL. Despite the standard indirect Coombs test being negative, repeated tests at room temperature was 4+. We suspected cold agglutinin disease and repeated the hemogram test using the Bain-Marie method at 37°C and the test results showed RBC: 3.4 M/µL, hemoglobin: 12.6 g/dL, hematocrit: 30.2%, MCH: 31.7 pg, and MCHC: 41.8 g/dL. Inappropriate hemogram results may be a sign of underlying cold agglutinin disease. Hemolytic anemia not always accompanies the disease; however, cold exposure may trigger erythrocyte agglutination in vitro and may cause erratic laboratory results.
Cold Probes of the Hot Universe
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline
2017-01-01
In this image, data from NASA's Spitzer, Hubble, and Chandra satellites are combined. Optical light from stars (yellow-greenHubble) shows the disk of an apparently normal galaxy. Another Hubble observation designed to image 10,000 K hydrogen gas (orange) reveals matter blasting out of the galaxy. The Spitzer infrared image (red) shows that cool gas and dust are also being ejected. Chandra's X-ray image (blue) reveals gas that has been heated to millions of degrees by the violent outflow.
A Stirling engine analysis method based upon moving gas nodes
NASA Technical Reports Server (NTRS)
Martini, W. R.
1986-01-01
A Lagrangian nodal analysis method for Stirling engines (SEs) is described, validated, and applied to a conventional SE and an isothermalized SE (with fins in the hot and cold spaces). The analysis employs a constant-mass gas node (which moves with respect to the solid nodes during each time step) instead of the fixed gas nodes of Eulerian analysis. The isothermalized SE is found to have efficiency only slightly greater than that of a conventional SE.
Zhang, Zhi-Yu; Papadopoulos, Padelis P; Ivison, R J; Galametz, Maud; Smith, M W L; Xilouris, Emmanuel M
2016-06-01
Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh-Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.
Water in embedded low-mass protostars: cold envelopes and warm outflows
NASA Astrophysics Data System (ADS)
Kristensen, Lars E.; van Dishoeck, Ewine; Mottram, Joseph; Schmalzl, Markus; Visser, Ruud
2015-08-01
As stars form, gas from the parental cloud is transported through the molecular envelope to the protostellar disk from which planets eventually form. Water plays a crucial role in such systems: it forms the backbone of the oxygen chemistry, it is a unique probe of warm and hot gas, and it provides a unique link between the grain surface and gas-phase chemistries. The distribution of water, both as ice and gas, is a fundamental question to our understanding of how planetary systems, such as the Solar System, form.The Herschel Space Observatory observed many tens of embedded low-mass protostars in a suite of gas-phase water transitions in several programs (e.g. Water in Star-forming regions with Herschel, WISH, and the William Herschel Line Legacy Survey, WILL), and related species (e.g. CO in Protostars with HIFI, COPS-HIFI). I will summarize what Herschel has revealed about the water distribution in the cold outer molecular envelope of low-mass protostars, and the warm gas in outflows, the two components predominantly traced by Herschel observations. I will present our current understanding of where the water vapor is in protostellar systems and the underlying physical and chemical processes leading to this distribution. Through these dedicated observational surveys and complementary modeling efforts, we are now at a stage where we can quantify where the water is during the early stages of star formation.
Kinetic Equation for a Soliton Gas and Its Hydrodynamic Reductions
NASA Astrophysics Data System (ADS)
El, G. A.; Kamchatnov, A. M.; Pavlov, M. V.; Zykov, S. A.
2011-04-01
We introduce and study a new class of kinetic equations, which arise in the description of nonequilibrium macroscopic dynamics of soliton gases with elastic collisions between solitons. These equations represent nonlinear integro-differential systems and have a novel structure, which we investigate by studying in detail the class of N-component `cold-gas' hydrodynamic reductions. We prove that these reductions represent integrable linearly degenerate hydrodynamic type systems for arbitrary N which is a strong evidence in favour of integrability of the full kinetic equation. We derive compact explicit representations for the Riemann invariants and characteristic velocities of the hydrodynamic reductions in terms of the `cold-gas' component densities and construct a number of exact solutions having special properties (quasiperiodic, self-similar). Hydrodynamic symmetries are then derived and investigated. The obtained results shed light on the structure of a continuum limit for a large class of integrable systems of hydrodynamic type and are also relevant to the description of turbulent motion in conservative compressible flows.
Dispersion of gravitational waves in cold spherical interstellar medium
NASA Astrophysics Data System (ADS)
Barta, Dániel; Vasúth, Mátyás
We investigate the propagation of locally plane, small-amplitude, monochromatic gravitational waves (GWs) through cold compressible interstellar gas in order to provide a more accurate picture of expected waveforms for direct detection. The quasi-isothermal gas is concentrated in a spherical symmetric cloud held together by self-gravitation. Gravitational waves can be treated as linearized perturbations on the background inner Schwarzschild spacetime. The perturbed quantities lead to the field equations governing the gas dynamics and describe the interaction of gravitational waves with matter. We have shown that the transport equation of these amplitudes provides numerical solutions for the frequency-alteration. The decrease in frequency is driven by the energy dissipating process of GW-matter interactions. The decrease is significantly smaller than the magnitude of the original frequency and too small to be detectable by present second-generation and planned third-generation detectors. It exhibits a power-law relationship between original and decreased frequencies. The frequency deviation was examined particularly for the transient signal GW150914.
Undergraduate ALFALFA Team: Star Formation in the NGC 5846 Group of Galaxies
NASA Astrophysics Data System (ADS)
Viani, Lucas; Koopmann, R. A.; Darling, H.; ALFALFA Team
2013-01-01
We examine gas and star formation properties of galaxies in the NGC 5846 group. Narrowband Halpha and broadband R images for a sample of galaxies were obtained at the KPNO WIYN 0.9m with MOSAIC and the SMARTS 0.9m telescope at CTIO. Neutral hydrogen data from the Arecibo Legacy Fast ALFA (ALFALFA) survey trace the cold neutral gas content. The amounts and extents of star formation in a subsample of galaxies are compared as a function of cold gas content and position in the group. The typical star formation rates and extents of NGC 5846 galaxies are less than those of isolated galaxies and similar to those of galaxies located in the Virgo Cluster and other group environments. This work is part of the Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team Groups Project, a collaborative undertaking of faculty and undergraduates at 11 institutions, aimed at investigating properties of galaxy groups surveyed by the ALFALFA blind HI survey.
NASA Astrophysics Data System (ADS)
Akhlaghi, Morteza; Rajaei, Hajar; Mashayekh, Amir Shahriar; Shafiae, Mojtaba; Mahdikia, Hamed; Khani, Mohammadreza; Hassan, Zuhair Mohammad; Shokri, Babak
2016-10-01
Cold atmospheric plasmas (CAPs) can affect live cells and organisms due to the production of different reactive species. In this paper, the effects of various parameters of the CAP such as the treatment time, gas mixture, gas flow rate, applied voltage, and distance from the nozzle on the LL/2 lung cancer cell line have been studied. The probable effect of UV radiation has also been investigated using an MgF2 filter. Besides the cancerous cells, the 3T3 fibroblast cell line as a normal cell has been treated with the CAP. The Methylthiazol Tetrazolium assay showed that all parameters except the gas flow rate could impress effectively on the cancer cell viability. The cell proliferation seemed to be stopped after plasma treatment. The flow cytometry assay revealed that apoptosis and necrosis were appreciable. It was also found that treating time up to 2 min will not exert any effect on the normal cells.
Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases
NASA Astrophysics Data System (ADS)
Ding, Yijue
This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.
Shi, Linfan; Fu, Xiong; Tan, Chin Ping; Huang, Qiang; Zhang, Bin
2017-03-15
Ethylene gas was introduced into granular cold-water-soluble (GCWS) starches using a solid encapsulation method. The morphological and structural properties of the novel inclusion complexes (ICs) were characterized using scanning electron microscopy, X-ray diffractometry, and Raman spectroscopy. The V-type single helix of GCWS starches was formed through controlled gelatinization and ethanol precipitation and was approved to host ethylene gas. The controlled release characteristics of ICs were also investigated at various temperature and relative humidity conditions. Avrami's equation was fitted to understand the release kinetics and showed that the release of ethylene from the ICs was accelerated by increasing temperature or RH and was decelerated by increased degree of amylose polymerization. The IC of Hylon-7 had the highest ethylene concentration (31.8%, w/w) among the five starches, and the IC of normal potato starch showed the best controlled release characteristics. As a renewable and inexpensive material, GCWS starch is a desirable solid encapsulation matrix with potential in agricultural and food applications.
Haze heats Pluto's atmosphere yet explains its cold temperature.
Zhang, Xi; Strobel, Darrell F; Imanaka, Hiroshi
2017-11-15
Pluto's atmosphere is cold and hazy. Recent observations have shown it to be much colder than predicted theoretically, suggesting an unknown cooling mechanism. Atmospheric gas molecules, particularly water vapour, have been proposed as a coolant; however, because Pluto's thermal structure is expected to be in radiative-conductive equilibrium, the required water vapour would need to be supersaturated by many orders of magnitude under thermodynamic equilibrium conditions. Here we report that atmospheric hazes, rather than gases, can explain Pluto's temperature profile. We find that haze particles have substantially larger solar heating and thermal cooling rates than gas molecules, dominating the atmospheric radiative balance from the ground to an altitude of 700 kilometres, above which heat conduction maintains an isothermal atmosphere. We conclude that Pluto's atmosphere is unique among Solar System planetary atmospheres, as its radiative energy equilibrium is controlled primarily by haze particles instead of gas molecules. We predict that Pluto is therefore several orders of magnitude brighter at mid-infrared wavelengths than previously thought-a brightness that could be detected by future telescopes.
Cold Regions Test of Indirect Fire Weapons Ammunition
1983-03-08
COLD REGIONS TEST OF INDIRECT FIRE WEAPONS AMMUNITION Paragraph 1 . SCOPE. 1 2. FACILITIES AND INSTRUMENTATION .......... 3. PREPARATION FOR TEST...A- 1 B. Data Collection Sheets ..... .............. B- 1 C. References ..... .................... ... C- 1 D. Cold-Dry...Uniform .D...... .. ... .. ... 0- 1 1 . SCOPE. The procedures outlined in this TOP are designed to determine the c-h-arac-teristics of indirect artillery
A new interstellar molecule - Tricarbon monoxide
NASA Technical Reports Server (NTRS)
Matthews, H. E.; Irvine, W. M.; Friberg, P.; Brown, R. D.; Godfrey, P. D.
1984-01-01
The C3O molecule, whose pure rotational spectrum has only recently been studied in the laboratory, has been detected in the cold, dark interstellar Taurus Molecular Cloud 1. Since C3O is the first interstelar carbon chain molecule to contain oxygen, its existence places an important new constraint on chemical schemes for cold interstellar clouds. The abundance of C3O can be understood in terms of purely gas-phase ion-molecule chemistry.