Sample records for cold ischemia

  1. Different methods of hilar clamping during partial nephrectomy: Impact on renal function.

    PubMed

    Lee, Jeong Woo; Kim, Hwanik; Choo, Minsoo; Park, Yong Hyun; Ku, Ja Hyeon; Kim, Hyeon Hoe; Kwak, Cheol

    2014-03-01

    To evaluate the impact of different hilar clamping methods on changes in renal function after partial nephrectomy. We analyzed the clinical data of 369 patients who underwent partial nephrectomy for a single renal tumor of size ≤4.0 cm and a normal contralateral kidney. Patients were separated into three groups depending on hilar clamping method: non-clamping, cold ischemia and warm ischemia. Estimated glomerular filtration rate was examined at preoperative, nadir and 1 year postoperatively. Percent change in estimated glomerular filtration rate was used as the parameter to assess the renal functional outcome. Percent change in nadir estimated glomerular filtration rate in the non-clamping group was significantly less compared with the cold ischemia and warm ischemia groups (P < 0.001). However, no significant differences among the groups were noted in percent change of estimated glomerular filtration rate at 1 year (P = 0.348). The cold ischemia group had a similar serial change of postoperative renal function compared with the warm ischemia group. Percent change in 1-year estimated glomerular filtration rate increased with increasing ischemia time in the cold ischemia (P for trend = 0.073) and warm ischemia groups (P for trend = 0.010). On multivariate analysis, hilar clamping (both warm ischemia and cold ischemia) were significantly associated with percent change in nadir estimated glomerular filtration rate, but not in 1-year estimated glomerular filtration rate. Non-clamping partial nephrectomy results in a lower percent change in nadir estimated glomerular filtration rate, whereas it carries an estimated glomerular filtration rate change at 1 year that is similar to partial nephrectomy with cold ischemia and warm ischemia. Cold ischemia and warm ischemia provide a similar effect on renal function. Therefore, when hilar clamping is required, minimization of ischemia time is necessary. © 2013 The Japanese Urological Association.

  2. Effect of Cold Preservation on Chronic Rejection in a Rat Hindlimb Transplantation Model.

    PubMed

    Bonastre, Jorge; Landín, Luis; Bolado, Pedro; Casado-Sánchez, César; López-Collazo, Eduardo; Díez, Jesús

    2016-09-01

    Previous studies on solid organ transplantation have shown that cold ischemia contributes to the development of chronic allograft vasculopathy. The authors evaluated the effect of cold ischemia on the development of chronic rejection in vascularized composite allotransplantation. Thirty rat hindlimbs were transplanted and divided into two experimental groups: immediate transplantation and transplantation after 7 hours of cold ischemia. The animals received daily low-dose immunosuppression with cyclosporine A for 2 months. Intimal proliferation, arterial permeability rate, leukocyte infiltration, and tissue fibrosis were assessed. The CD3, CD4, CD8, CD20, and CD68 cells per microscopic field (200×) were counted, and C4d deposition was investigated. Cytokine RNA analysis was performed to measure tumor necrosis factor-α, interleukin-6, and interleukin-10 levels. Significant differences were found in the intimal proliferation and arterial permeability rate between the two groups (p = 0.004). The arterial permeability rate worsened in the most distal and small vessels (p = 0.047). The numbers of CD3, CD8, CD20, and CD68 were also statistically higher in the cold ischemia group (p < 0.05, all levels). A trend toward significance was observed with C4d deposition (p = 0.059). No differences were found in the RNA of cytokines. An association between cold ischemia and chronic rejection was observed in experimental vascularized composite allotransplantation. Chronic rejection intensity and distal progression were significantly related with cold ischemia. The leukocyte infiltrates in vascularized composite allotransplantation components were a rejection marker; however, their exact implication in monitoring and their relation with cold ischemia are yet to be clarified.

  3. Hypothermic machine perfusion permits extended cold ischemia times with improved early graft function.

    PubMed

    Guy, Alison; McGrogan, Damian; Inston, Nicholas; Ready, Andrew

    2015-04-01

    The logistics of deceased-donor renal transplants are largely affected by cold ischemia time. However, to attain successful outcomes, other issues must be considered. Extending cold ischemia time to accommodate these issues would be valuable. We investigated the role of hypothermic machine perfusion to extend cold ischaemia time. Deceased-donor kidneys were allocated to a storage method, depending on predicted time to operation. Kidneys to be transplanted from 8:00 AM to 8:00 PM in the transplant room remained in static cold storage. If predicted operating time was out of hours, the kidney was transferred to hypothermic machine perfusion and transplanted at the earliest opportunity on the dedicated transplant list. There were 74 kidneys transplanted from hypothermic machine perfusion and 101 kidneys from static cold storage. Median cold ischemia time was 23.85 hours in the hypothermic machine perfusion group, compared with 13 hours in the static cold storage group (P ≤ .0001). There were 20 kidneys (27%) from hypothermic machine perfusion that had delayed graft function, compared with 47 kidneys (47%) in the static cold storage group (P = .012). There were no other significant differences in graft or postoperative complications. This study demonstrated that improved early graft outcomes can be achieved following longer cold ischemia time by using hypothermic machine perfusion rather than static cold storage. This effect is likely multifactorial including the inherent effects of hypothermic machine perfusion, improved recipient preparation, and possibly better perioperative conditions.

  4. [Decreasing reperfusion damage with N-acetylcysteine in experimental pancreas transplantion].

    PubMed

    Mayer, H; Thies, J; Schmidt, J; Gebhard, M M; Herfarth, C; Klar, E

    1998-01-01

    In this study we investigated the effect of donor and recipient conditioning with N-acetylcysteine on the ischemia/reperfusion injury after experimental pancreas-transplantation. We performed standardized pancreaticoduodenal transplantation in male lewis rats. The pancreas was perfused with UW-solution, harvested and conserved at 4 degrees C. Cold ischemia time was 1.5 hours and 16 hours respectively. The microcirculation in the transplanted organ was quantified by means of intravital microscopy 1.5 hours after implantation and reperfusion in the recipient. After 16 hours of cold ischemia we found a significant reduction in capillary erythrocyte velocity and a significantly enhanced leucocyte/endothelium interaction. The treatment with N-acetylcysteine resulted in a significant improvement of these microcirculatory disorders after prolonged cold ischemia.

  5. Development of models to predict early post-transplant recurrence of hepatocellular carcinoma that also integrate the quality and characteristics of the liver graft: A national registry study in China.

    PubMed

    Ling, Qi; Liu, Jimin; Zhuo, Jianyong; Zhuang, Runzhou; Huang, Haitao; He, Xiangxiang; Xu, Xiao; Zheng, Shusen

    2018-04-27

    Donor characteristics and graft quality were recently reported to play an important role in the recurrence of hepatocellular carcinoma after liver transplantation. Our aim was to establish a prognostic model by using both donor and recipient variables. Data of 1,010 adult patients (training/validation: 2/1) undergoing primary liver transplantation for hepatocellular carcinoma were extracted from the China Liver Transplant Registry database and analyzed retrospectively. A multivariate competing risk regression model was developed and used to generate a nomogram predicting the likelihood of post-transplant hepatocellular carcinoma recurrence. Of 673 patients in the training cohort, 70 (10.4%) had hepatocellular carcinoma recurrence with a median recurrence time of 6 months (interquartile range: 4-25 months). Cold ischemia time was the only independent donor prognostic factor for predicting hepatocellular carcinoma recurrence (hazard ratio = 2.234, P = .007). The optimal cutoff value was 12 hours when patients were grouped according to cold ischemia time at 2-hour intervals. Integrating cold ischemia time into the Milan criteria (liver transplantation candidate selection criteria) improved the accuracy for predicting hepatocellular carcinoma recurrence in both training and validation sets (P < .05). A nomogram composed of cold ischemia time, tumor burden, differentiation, and α-fetoprotein level proved to be accurate and reliable in predicting the likelihood of 1-year hepatocellular carcinoma recurrence after liver transplantation. Additionally, donor anti-hepatitis B core antibody positivity, prolonged cold ischemia time, and anhepatic time were linked to the intrahepatic recurrence, whereas older donor age, prolonged donor warm ischemia time, cold ischemia time, and ABO incompatibility were relevant to the extrahepatic recurrence. The graft quality integrated models exhibited considerable predictive accuracy in early hepatocellular carcinoma recurrence risk assessment. The identification of donor risks can further help understand the mechanism of different patterns of recurrence. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Tumor Cold Ischemia | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a recently published manuscript in the journal of Molecular and Cellular Proteomics, researchers from the National Cancer Institutes (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigated the effect of cold ischemia on the proteome of fresh frozen tumors.

  7. Histologic evaluation of post-implantation immediate C4d deposition in 13 intestinal grafts: correlation with cell-based crossmatching, cold ischemia time, and preservation injury.

    PubMed

    López-García, P; Calvo Pulido, J; Colina, F; Ballestin Carcavilla, C; Jiménez-Romero, C; Martinez González, M A; Ibarrola de Andrés, C; López-Alonso, G; Cambra Molero, F; Justo Alonso, I; Moreno-González, E

    2014-01-01

    C4d deposits are predictive of humoral rejection in kidney and heart transplantation. The aim of this study was to identify C4d deposit patterns in intestinal mucosa of the grafts on biopsy specimens obtained immediately after implantation and to detect if it could be a valuable tool to predict humoral or acute rejection. A second objective was to search for a statistically significant relationship between positive C4d deposition and other collected variables. Thirteen immediately post-transplantation mucosal graft biopsy specimens, formalin fixed, underwent immunohistochemical stain for C4d deposits. Diffuse intense staining of capillary endothelium was considered positive and absent, focal or weak stains as negative. Preservation injury grade and cold ischemia times were registered for each case. Donor-specific preformed antibodies were detected by complement dependent cytotoxicity serologic technique (crossmatching). Another 19 endoscopic follow-up biopsy specimens from days 2 to 6 were also evaluated. Statistical studies were made using the index of correlation ρ (Spearman's test). Diffuse intense C4d deposits were observed in 2 grafts, focal and weak in 5, and completely negative in 6. The mean cold ischemia time was 327 ± 101 minutes. Two cases showed diffuse positive deposits, 1 had a positive crossmatch and the cold ischemia time was 360 minutes whereas the other had not preformed antibodies and its cold ischemia time was 475 minutes. Humoral or acute rejection was not observed in follow-up mucosal biopsy specimens. There was no statistically significant relationship between the C4d deposition, cold ischemia time, crossmatching results, and preservation injury degree. In conclusion, C4d deposition was not a helpful tool for diagnosis of humoral rejection and prediction of acute rejection during the early post-transplantation period. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Temporary renal ischemia during nephron sparing surgery is associated with short-term but not long-term impairment in renal function.

    PubMed

    Yossepowitch, Ofer; Eggener, Scott E; Serio, Angel; Huang, William C; Snyder, Mark E; Vickers, Andrew J; Russo, Paul

    2006-10-01

    The emergence of laparoscopic nephron sparing surgery has rekindled interest in the impact of warm renal ischemia on renal function. To provide data with which warm renal ischemia can be compared we analyzed short-term and long-term changes in the glomerular filtration rate after temporary cold renal ischemia. In patients undergoing open nephron sparing surgery the estimated glomerular filtration rate was assessed preoperatively, early in the postoperative hospital stay, and 1 and 12 months after surgery using the abbreviated Modification of Diet in Renal Disease Study equation. We separately analyzed 70 patients with a solitary kidney and 592 with 2 functioning kidneys. The end point was the percent change from the baseline glomerular filtration rate. A linear regression model was used to test the association between the glomerular filtration rate change, and ischemia time, patient age, tumor size, estimated blood loss and intraoperative fluid administration. Median cold ischemia time was 31 minutes in patients with a solitary kidney and 35 minutes in those with 2 kidneys. Compared to patients with 2 kidneys those with a solitary kidney had a significantly lower preoperative estimated glomerular filtration rate (p < 0.001), which decreased a median of 30% during the early postoperative period, and 15% and 32% 1 and 12 months after surgery, respectively. In patients with 2 kidneys the corresponding glomerular filtration rate decreases were 16%, 13% and 14%, respectively. On multivariate analyses in each group cold ischemia duration and intraoperative blood loss were significantly associated with early glomerular filtration rate changes. However, 12 months after surgery age was the only independent predictor of a glomerular filtration rate decrease in patients with 2 kidneys. Cold renal ischemia during nephron sparing surgery is a significant determinant of the short-term postoperative glomerular filtration rate. Longer clamping time is particularly detrimental in patients with a solitary kidney but it does not appear to influence long-term renal function. Patients of advanced age may be less likely to recover from acute ischemic renal injury.

  9. PARP inhibition attenuates histopathological lesion in ischemia/reperfusion renal mouse model after cold prolonged ischemia.

    PubMed

    del Moral, Raimundo M G; Gómez-Morales, Mercedes; Hernández-Cortés, Pedro; Aguilar, David; Caballero, Trinidad; Aneiros-Fernández, Jose; Caba-Molina, Mercedes; Rodríguez-Martínez, M Dolores; Peralta, Andreina; Galindo-Moreno, Pablo; Osuna, Antonio; Oliver, F Javier; del Moral, Raimundo G; O'Valle, Francisco

    2013-01-01

    We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

  10. Hydrogen Sulfide Protects Renal Grafts Against Prolonged Cold Ischemia-Reperfusion Injury via Specific Mitochondrial Actions.

    PubMed

    Lobb, I; Jiang, J; Lian, D; Liu, W; Haig, A; Saha, M N; Torregrossa, R; Wood, M E; Whiteman, M; Sener, A

    2017-02-01

    Ischemia-reperfusion injury is unavoidably caused by loss and subsequent restoration of blood flow during organ procurement, and prolonged ischemia-reperfusion injury IRI results in increased rates of delayed graft function and early graft loss. The endogenously produced gasotransmitter, hydrogen sulfide (H 2 S), is a novel molecule that mitigates hypoxic tissue injury. The current study investigates the protective mitochondrial effects of H 2 S during in vivo cold storage and subsequent renal transplantation (RTx) and in vitro cold hypoxic renal injury. Donor allografts from Brown Norway rats treated with University of Wisconsin (UW) solution + H 2 S (150 μM NaSH) during prolonged (24-h) cold (4°C) storage exhibited significantly (p < 0.05) decreased acute necrotic/apoptotic injury and significantly (p < 0.05) improved function and recipient Lewis rat survival compared to UW solution alone. Treatment of rat kidney epithelial cells (NRK-52E) with the mitochondrial-targeted H 2 S donor, AP39, during in vitro cold hypoxic injury improved the protective capacity of H 2 S >1000-fold compared to similar levels of the nonspecific H 2 S donor, GYY4137 and also improved syngraft function and survival following prolonged cold storage compared to UW solution. H 2 S treatment mitigates cold IRI-associated renal injury via mitochondrial actions and could represent a novel therapeutic strategy to minimize the detrimental clinical outcomes of prolonged cold IRI during RTx. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Livers from fasted rats acquire resistance to warm and cold ischemia injury.

    PubMed

    Sumimoto, R; Southard, J H; Belzer, F O

    1993-04-01

    Successful liver transplantation is dependent upon many factors, one of which is the quality of the donor organ. Previous studies have suggested that the donor nutritional status may affect the outcome of liver transplantation and starvation, due to prolonged stay in the intensive care unit, may adversely affect the liver. In this study we have used the orthotopic rat liver transplant model to measure how fasting the donor affects the outcome of liver transplantation. Rat livers were preserved with UW solution either at 37 degrees C (warm ischemia for 45-60 min) or at 4 degrees C (cold ischemia for 30 or 44 hr). After preservation the livers were orthotopically transplanted and survival (for 7 days) was measured, as well as liver functions 6 hr after transplantation. After 45 min of warm ischemia 50% (3 of 6) animals survived when the liver was obtained from a fed donor about 80% (4 of 5) survived when the liver was obtained from a three-day-fasted donor. After 60 min warm ischemia no animal survived (0 of 8, fed group). However, if the donor was fasted for 3 days 89% (8 of 9) of the animals survived for 7 days. Livers cold-stored for 30 hr were 50% viable (3 of 6) and fasting for 1-3 days did not affect this outcome. However, if the donor was fasted for 4 days 100% (9 of 9) survival was obtained. After 44-hr preservation only 29% (2/7) of the recipients survived for 7 days. If the donor was fasted for 4 days, survival increased to 83% (5/6). Liver functions, bile production, and serum enzymes were better in livers from the fasted rats than from the fed rats. Fasting caused a 95% decrease in liver glycogen content. Even with this low concentration of glycogen, liver viability (animal survival) after warm or cold ischemia was not affected, and livers with a low glycogen content were fully viable. Thus liver glycogen does not appear to be important in liver preservation. This study shows that fasting the donor does not cause injury to the liver after warm or cold ischemia. In fact, the livers appeared to be better able to tolerate ischemia when obtained from fasted rats. Thus donor nutritional status may be an important factor for outcome of liver transplantation. Livers from fasted donors may be capable of tolerating long-term preservation better than livers from fed donors.

  12. Oxidative stress in follicular units during hair transplantation surgery.

    PubMed

    Crisóstomo, Márcio Rocha; Guimarães, Sérgio Botelho; de Vasconcelos, Paulo Roberto Leitão; Crisóstomo, Marília Gabriela Rocha; Benevides, André Nunes

    2011-02-01

    Hair transplantation surgery currently is a well-established procedure in plastic surgery. It consists of harvesting a strip of scalp from the back of the head, then obtaining grafts called follicular units (FUs) from this strip and implanting them in the bald area. The FUs undergo oxidative stress during cold ischemia and after their implantation. Surgery was performed for 18 patients between April and July 2008. Follicular units were preserved in solutions containing different growth-stimulating hormone (GSH) concentrations (5, 10, and 20 mmol). Saline solution was used as a control condition. Spectrophotometry was used to measure the thiobarbituric acid-reactive substance (TBARS) and GSH concentrations before ischemia (control group) in the FUs preserved in the four proposed solutions, then after 30 min of cold ischemia and 30 min after grafting. The data obtained were submitted to analysis of variance, t test, and linear regression analysis. The TBARS (μmol of malondialdehyde [MDA]/g) and GSH (μmol/g) concentrations were not significantly different between the four solutions in either the ischemia or grafting group. The GSH concentration did not differ significantly between the control (59.801 ± 30.639 μmol/g) and ischemia (56.284 ± 28.404 μmol/g) groups. The GSH concentrations were significantly greater (p < 0.05) in the postgrafting group (63.815 ± 28.404 μmol/g) than in the group subjected to ischemia. Increasing the GSH concentrations used in FU preservation solutions does not reduce the oxidative effects of cold ischemia and reperfusion injury during hair transplantation surgery.

  13. Occurance of apoptosis during ischemia in porcine pancreas islet cells.

    PubMed

    Stadlbauer, V; Schaffellner, S; Iberer, F; Lackner, C; Liegl, B; Zink, B; Kniepeiss, D; Tscheliessnigg, K H

    2003-03-01

    Pancreas islet transplantation is a potential treatment of diabetes mellitus and porcine organs provide an easily available source of cells. Unfortunately quality and quantity of isolated islets are still not satisfactory. Apoptosis occurs in freshly isolated islets and plays a significant role in early graft loss. We evaluated the influence of four storage solutions on porcine pancreas islets. After warm ischemia of 15-20 minutes 12 organs were stored in 4 cold preservation solutions: Histidine-Tryptophan-Ketoglutarate solution (HTK), Hank's buffered saline solution (HBSS), University of Wisconsin (UW) solution and Ringer-Lactate (R). After cold ischemia for 100 minutes, organs were fixed in 3% formalin. Apoptotic cells were counted on hematocylin-eosin stainings. Most apoptotic cells were found in organs stored in R. Low numbers were found in the other groups. The difference between organs stored in R and organs stored in UW, HTK, or HBSS was highly significant. No significant difference could be found between UW, HTK and HBSS. Cold and warm ischemia of the pancreas seems to induce apoptosis in islet cells. Preservation solutions cause less apoptosis than electrolyte solution. No significant differences could be found among the preservation solutions.

  14. Normothermic perfusion: a new paradigm for organ preservation.

    PubMed

    Brockmann, Jens; Reddy, Srikanth; Coussios, Constantin; Pigott, David; Guirriero, Dino; Hughes, David; Morovat, Alireza; Roy, Debabrata; Winter, Lucy; Friend, Peter J

    2009-07-01

    Transplantation of organs retrieved after cardiac arrest could increase the donor organ supply. However, the combination of warm ischemia and cold preservation is highly detrimental to the reperfused organ. Our objective was to maintain physiological temperature and organ function during preservation and thereby alleviate this injury and allow successful transplantation. We have developed a liver perfusion device that maintains physiological temperature with provision of oxygen and nutrition. Reperfusion experiments suggested that this allows recovery of ischemic damage. In a pig liver transplant model, we compared the outcome following either conventional cold preservation or warm preservation. Preservation periods of 5 and 20 hours and durations of warm ischemia of 40 and 60 minutes were tested. After 20 hours preservation without warm ischemia, post-transplant survival was improved (27%-86%, P = 0.026), with corresponding differences in transaminase levels and histological analysis. With the addition of 40 minutes warm ischemia, the differences were even more marked (cold vs. warm groups 0% vs. 83%, P = 0.001). However, with 60 minutes warm ischemia and 20 hours preservation, there were no survivors. Analysis of hemodynamic and liver function data during perfusion showed several factors to be predictive of posttransplant survival, including bile production, base excess, portal vein flow, and hepatocellular enzymes. Organ preservation by warm perfusion, maintaining physiological pressure and flow parameters, has enabled prolonged preservation and successful transplantation of both normal livers and those with substantial ischemic damage. This technique has the potential to address the shortage of organs for transplantation.

  15. [The influence with block the endotoxin signal transduction for ischemia/reperfusion injury of graft liver in rats].

    PubMed

    Liu, Zuo-jin; Li, Sheng-wei; Li, Xu-hong; Peng, Yong; You, Hai-bo; Li, Shou-bai; Gong, Jian-ping

    2006-09-01

    To explore the feasibility of interleukin 1 receptor associated kinase-4 (IRAK-4) as gene therapy target for liver ischemia/reperfusion injury (I/RI) and effective approach in vivo for short hairpin RNA (shRNA) interference used to gene therapy in liver graft hqappened. Sprague-Dawley rats were randomly divided into three groups: the control group, the in vivo transfection group (IVT) and the cold ischemia transfection group (CIT). Experiments of orthotopic liver transplantation were performed by two-cuff method. CIT were perfused with IRAK-4-shRNA plasmid (pSIIRAK-4) during cold ischemia phase, IVT received the equivalent volumes (2 mL) of pSIIRAK-4 after portal vein inosculated, and the control group leaved without any treatment. At 0 min, 60 min and 180 min after reperfusion, the expression of IRAK-4 gene and protein level were determined by RT-PCR and Western blot. The serum TNF-alpha level was detected by ELISA. Liver histopathological changes and cell apoptosis were observed by electron microscope and TUNEL. After reperfusion, the expression of IRAK-4 were largely depressed in CIT than that of IVT and the control group (P < 0.01), and furthermore, the serum TNF-alpha level, proportion of hepatocyte apoptosis and severity of hepatocyte injury were also lower than the latter. These results indicate that depression IRAK-4 expression with IRAK-4-shRNA through portal vein perfusion during cold ischemia phase could effectively blunt graft hepatic I/RI.

  16. Infusion of mesenchymal stem cells protects lung transplants from cold ischemia-reperfusion injury in mice.

    PubMed

    Tian, Weijun; Liu, Yi; Zhang, Bai; Dai, Xiangchen; Li, Guang; Li, Xiaochun; Zhang, Zhixiang; Du, Caigan; Wang, Hao

    2015-02-01

    Cold ischemia-reperfusion injury (IRI) is a major cause of graft failure in lung transplantation. Despite therapeutic benefits of mesenchymal stem cells (MSCs) in attenuating acute lung injury, their protection of lung transplants from cold IRI remains elusive. The present study was to test the efficacy of MSCs in the prevention of cold IRI using a novel murine model of orthotopic lung transplantation. Donor lungs from C57BL/6 mice were exposed to 6 h of cold ischemia before transplanted to syngeneic recipients. MSCs were isolated from the bone marrows of C57BL/6 mice for recipient treatment. Gas exchange was determined by the measurement of blood oxygenation, and lung injury and inflammation were assessed by histological analyses. Intravenously delivered MSC migration/trafficking to the lung grafts occurred within 4-hours post-transplantation. As compared to untreated controls, the graft arterial blood oxygenation (PaO2/FiO2) capacity was significantly improved in MSC-treated recipients as early as 4 h post-reperfusion and such improvement continued over time. By 72 h, oxygenation reached normal level that was not seen in controls. MSCs treatment conferred significant protection of the grafts from cold IRI and cell apoptosis, which is correlated with less cellular infiltration, a decrease in proinflammatory cytokines (TNF-α, IL-6) and toll-like receptor 4, and an increase in anti-inflammatory TSG-6 generation. MSCs provide significant protection against cold IRI in lung transplants, and thus may be a promising strategy to improve outcomes after lung transplantation.

  17. Beware Cold Agglutinins in Organ Donors! Ex Vivo Lung Perfusion From an Uncontrolled Donation After Circulatory-Determination-of-Death Donor With a Cold Agglutinin: A Case Report.

    PubMed

    Venkataraman, A; Blackwell, J W; Funkhouser, W K; Birchard, K R; Beamer, S E; Simmons, W T; Randell, S H; Egan, T M

    2017-09-01

    We began to recover lungs from uncontrolled donation after circulatory determination of death to assess for transplant suitability by means of ex vivo lung perfusion (EVLP) and computerized tomographic (CT) scan. Our first case had a cold agglutinin with an interesting outcome. A 60-year-old man collapsed at home and was pronounced dead by Emergency Medical Services personnel. Next-of-kin consented to lung retrieval, and the decedent was ventilated and transported. Lungs were flushed with cold Perfadex, removed, and stored cold. The lungs did not flush well. Medical history revealed a recent hemolytic anemia and a known cold agglutinin. Warm nonventilated ischemia time was 51 minutes. O 2 -ventilated ischemia time was 141 minutes. Total cold ischemia time was 6.5 hours. At cannulation for EVLP, established clots were retrieved from both pulmonary arteries. At initiation of EVLP with Steen solution, tiny red aggregates were observed initially. With warming, the aggregates disappeared and the perfusate became red. After 1 hour, EVLP was stopped because of florid pulmonary edema. The lungs were cooled to 20°C; tiny red aggregates formed again in the perfusate. Ex vivo CT scan showed areas of pulmonary edema and a pyramidal right middle lobe opacity. Dissection showed multiple pulmonary emboli-the likely cause of death. However, histology showed agglutinated red blood cells in the microvasculature in pre- and post-EVLP biopsies, which may have contributed to inadequate parenchymal preservation. Organ donors with cold agglutinins may not be suitable owing to the impact of hypothermic preservation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms.

    PubMed

    Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G

    2016-02-01

    Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain.

  19. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats

    PubMed Central

    Liu, Rongfang; Fang, Xianhai; Meng, Chao; Xing, Jingchun; Liu, Jinfeng; Yang, Wanchao

    2015-01-01

    Hydrogen has antioxidant and anti-inflammatory effects on lung ischemia–reperfusion injury when it is inhaled by donor or/and recipient. This study examined the effects of lung inflation with 3% hydrogen during the cold ischemia phase on lung graft function in rats. The donor lung was inflated with 3% hydrogen, 40% oxygen, and 57% nitrogen at 5 mL/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. In the control group, the donor lung was inflated with 40% oxygen and 60% nitrogen at 5 mL/kg. The recipient was euthanized 2 h after orthotropic lung transplantation. The hydrogen concentration in the donor lung during the cold ischemia phase was 1.99–3%. The oxygenation indices in the arterial blood and pulmonary vein blood were improved in the hydrogen group. The inflammation response indices, including lung W/D ratio, the myeloperoxidase activity in the grafts, and the levels of IL-8 and TNF-α in serum, were significantly lower in the hydrogen group (5.2 ± 0.8, 0.76 ± 0.32 U/g, 340 ± 84 pg/mL, and 405 ± 115 pg/mL, respectively) than those in the control group (6.5 ± 0.7, 1.1 ± 0.5 U/g, 443 ± 94 pg/mL, and 657 ± 96 pg/mL, respectively (P < 0.05), and the oxidative stress indices, including the superoxide dismutase activity and the level of malonaldehyde in lung grafts were improved after hydrogen application. Furthermore, the lung injury score determined by histopathology, the cell apoptotic index, and the caspase-3 protein expression in lung grafts were decreased after hydrogen treatment, and the static pressure–volume curve of lung graft was improved by hydrogen inflation. In conclusion, lung inflation with 3% hydrogen during the cold ischemia phase alleviated lung graft injury and improved graft function. PMID:25662956

  20. Comparative efficacy of Belzer or Euro-Collins solutions for pancreatic preservation during cold ischemic storage in rats.

    PubMed

    Perez, Rogério Renato; Goldenberg, Alberto; Netto, Alcides Augusto Salzedas; Gonzalez, Adriano Miziara

    2014-03-01

    To compare the efficacy of different types of solutions (Belzer or Euro-Collins) for the preservation of rat pancreas during cold ischemia. Thirty Wistar rats were divided into three groups according to the perfusion or storage solution: Group E (perfusion and storage in Euro-Collins solution); Group B (perfusion and storage in Belzer solution) and Group BE (Perfusion in Belzer solution and storage in Euro-Collins solution). After perfusion, the pancreas was excised and stored at 4˚C for 18 hours. Amylase was measured at 6, 12 and 18h, and histological analysis of the pancreas was performed after 18h of cold storage. Amylase was elevated and comparable in Groups E and BE after 12 and 18 hours of ischemia (p<0.05). In the exocrine pancreas, histological differences in the amount of necrosis (p=0.049), lymphocytic infiltrate (p<0.001) and neutrophilic infiltrate (p=0.004) were observed, with more favorable features present in Group B. In the endocrine pancreas, Group B showed less edema (p<0.001), but other parameters were similar among all groups. The Euro-Collins solution is inferior to the Belzer solution for the preservation of rat pancreas during cold ischemia.

  1. Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain.

    PubMed

    Liu, Aijun; Zhang, Zhiwen; Li, Anmin; Xue, Jinghui

    2010-08-06

    CIRP (cold-inducible RNA-binding protein) mRNA is highly expressed in hypothermic conditions in mammalian cells, and the relationship between CIRP and neuroprotection for cerebral ischemia under hypothermia has been focused upon. At present, however, the expression characteristics of CIRP under hypothermia and cerebral ischemia in vivo are not clearly elucidated. In this study, CIRP mRNA expression in various regions of rat brain was examined by reverse transcriptase polymerase chain reaction (RT-PCR). CIRP expression levels were found to be similar in the hippocampus and cortex. Real-time quantitative PCR analysis revealed increasing CIRP mRNA expression in the cortex during the 24-h observation period following treatment with hypothermia or cerebral ischemia, with a greater increase in the hypothermia group. When cerebral ischemia was induced following hypothermia, CIRP mRNA expression in the cortex again showed a significant increasing tendency, but ischemia delayed the appearance of this increase. To reveal the relationship between CIRP and energy metabolism in the rat brain, lactate and pyruvate concentrations in the cortex of the rats treated with hypothermia, ischemia and ischemia after hypothermia were determined by spectrophotometric assay, and levels of phosphofructokinas-1 (PFK-1), the major regulatory enzyme of the glycolytic pathway, in the rat cortex in the three groups was also analyzed by Western blot. Using linear correlation, lactate and pyruvate concentrations, and PFK-1 levels, were each analyzed in the three groups in association with CIRP mRNA expression levels. The analysis did not reveal any correlation between the three metabolic parameters and CIRP mRNA expression induced by hypothermia, suggesting that while playing a role in neuroprotection under hypothermia, CIRP does not affect cerebral energy metabolism. Copyright 2010. Published by Elsevier B.V.

  2. Comparison of Aerobic Preservation by Venous Systemic Oxygen Persufflation or Oxygenated Machine Perfusion of Warm-Ischemia-Damaged Porcine Kidneys.

    PubMed

    Kalenski, Julia; Mancina, Elina; Paschenda, Pascal; Beckers, Christian; Bleilevens, Christian; Tóthová, Ľubomíra; Boor, Peter; Gross, Dominik; Tolba, René H; Doorschodt, Benedict M

    2016-01-01

    The global shortage of donor organs for transplantation has necessitated the expansion of the organ pool through increased use of organs from less ideal donors. Venous systemic oxygen persufflation (VSOP) and oxygenated machine perfusion (OMP) have previously demonstrated beneficial results compared to cold storage (CS) in the preservation of warm-ischemia-damaged kidney grafts. The aim of this study was to compare the efficacy of VSOP and OMP for the preservation of warm-ischemia-damaged porcine kidneys using the recently introduced Ecosol preservation solution compared to CS using Ecosol or histidine-tryptophan-ketoglutarate solution (HTK). Kidneys from German Landrace pigs (n = 5/group) were retrieved and washed out with either Ecosol or HTK after 45 min of clamping of the renal pedicle. As controls, kidneys without warm ischemia, cold stored for 24 h in HTK, were employed. Following 24 h of preservation by VSOP, OMP, CS-Ecosol, or CS-HTK, renal function and damage were assessed during 1 h using the isolated perfused porcine kidney model. During reperfusion, urine production was significantly higher in the VSOP and OMP groups than in the CS-HTK group; however, only VSOP could demonstrate lower urine protein concentrations and fractional excretion of sodium, which did not differ from the non-warm-ischemia-damaged control group. VSOP, CS-Ecosol, and controls showed better maintenance of the acid-base balance than CS-HTK. Reduced lipid peroxidation, as reflected in postreperfusion tissue thiobarbituric acid-reactive substance levels, was observed in the VSOP group compared to the OMP group, and the VSOP and CS-Ecosol groups had concentrations similar to the controls. The ratio of reduced to oxidized glutathione was higher in the VSOP, OMP, and CS-Ecosol groups than in the CS-HTK group and controls, with a higher ratio in the VSOP than in the OMP group. VSOP was associated with mitigation of oxidative stress in comparison to OMP and CS. Preservation of warm-ischemia-damaged porcine kidneys by VSOP was improved compared to OMP and CS, and was comparable to preservation of non-warm-ischemia-damaged cold-stored kidneys. © 2016 S. Karger AG, Basel.

  3. The effect of a hydrogen sulfide releasing molecule (Na2S) on the cold storage of livers from cardiac dead donor rats. A study in an ex vivo model.

    PubMed

    Balaban, Cecilia Lucía; Rodríguez, Joaquín Valentín; Tiribelli, Claudio; Guibert, Edgardo Elvio

    2015-08-01

    Liver transplantation is currently the preferred treatment option for end-stage liver disease. Donation after cardiac death was a common practice in the early years of organ donation before brain death criteria were established. Those organs were subjected to variable periods of warm ischemia that might intensify cold ischemia/reperfusion injuries. In the present, shortage of brain dead donors has led to the reassessment of organ donation after cardiac death. Since many cytoprotective roles have been describe for H2S during ischemia/reperfusion on a variety of tissues, we hypothesized that graft exposure to this bioactive gas might improve preservation of non-heart beating donated organs. Therefore, to establish a rat model of donation post-cardiac arrest and using this approach to judge H2S delivery effects on graft hypothermic preservation, were the main objectives of this investigation. Cardiopulmonary arrest was induced in sedated rats by overload of potassium (K(+)). Livers were surgically removed and subsequently stored in HTK Solution (Histidine-tryptophan-ketoglutarate) at 0-4°C. After 24 h of hypothermic preservation, livers were rewarmed in an ex vivo model. Three experimental groups were established as follows: I--Livers procured before cardiac death and cold stored 24 h in HTK (BCD); II--Livers procured after cardiac death (45 min) and cold stored 24 h in HTK (ACD); III--Livers procured after cardiac death (45 min) and cold stored 24 h in HTK+10 μM Sodium Sulfide (Na2S) (ACD-SS). Data suggest that after 45 min of warm ischemia, viability parameters assessed during reperfusion in the ex vivo model were significantly impaired. Real time PCR revealed that after ex vivo reperfusion there is an increased expression of HO-1 and TNF-α and a modest drop in Bcl-2 mRNA, which could be interpreted as the cellular response to the hypoxic insult sustained during warm ischemia. On the other hand, warm ischemic livers exposed to H2S during cold storage, improved microcirculation, morphology and viability parameters during ex vivo reperfusion and showed significant modulation of HO-1 mRNA expression. In conclusion, HTK supplementation with Na2S arose as a potential treatment to recover non-heart beating harvested organs. Furthermore, an appropriate model of cardiac dead liver donors was successfully developed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation.

    PubMed

    O'Valle, Francisco; Del Moral, Raimundo G M; Benítez, María del Carmén; Martín-Oliva, David; Gómez-Morales, Mercedes; Aguilar, David; Aneiros-Fernández, José; Hernández-Cortés, Pedro; Osuna, Antonio; Moreso, Francesc; Serón, Daniel; Oliver, Francisco J; Del Moral, Raimundo G

    2009-09-28

    Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.

  5. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury

    PubMed Central

    Meng, Chao; Ma, Liangjuan; Liu, Jinfeng; Cui, Xiaoguang; Liu, Rongfang; Xing, Jingchun

    2015-01-01

    Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure–volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly (P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure–volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) (P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) (P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen. PMID:26290141

  6. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury.

    PubMed

    Meng, Chao; Ma, Liangjuan; Liu, Jinfeng; Cui, Xiaoguang; Liu, Rongfang; Xing, Jingchun; Zhou, Huacheng

    2016-02-01

    Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure-volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly (P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure-volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) (P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) (P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen. © 2015 by the Society for Experimental Biology and Medicine.

  7. The Protective Effects of Trypsin Inhibitor on Hepatic Ischemia-Reperfusion Injury and Liver Graft Survival

    PubMed Central

    Guan, Lianyue; Liu, Hongyu; Fu, Peiyao; Li, Zhuonan; Li, Peidong; Xie, Lijuan; Xin, Mingang; Wang, Zhanpeng

    2016-01-01

    The aim of this study was to explore the protective effects of ulinastatin (urinary trypsin inhibitor, UTI) on liver ischemia-reperfusion injury (IRI) and graft survival. We employed mouse liver cold IRI and orthotopic liver transplantation (OLTx) models. UTI was added to lactated Ringer's (LR) solution for liver perfusion and preservation in vitro or combined with UTI injection intraperitoneally to the liver graft recipient. Our results indicated that UTI supplementation protected the liver from cold IRI in a dose-dependent manner and prolonged liver graft survival from extended cold preserved liver donors significantly. The underlying mechanism of UTI on liver IRI may be mediated by inhibition of proinflammatory cytokine release, increasing the expression of the antiapoptotic gene Bcl-2 and decreasing the expression of the proapoptosis genes of Caspase-3 and Bax, and further protects hepatocytes from apoptotic death and improves liver function. PMID:26783413

  8. The Protective Effects of Trypsin Inhibitor on Hepatic Ischemia-Reperfusion Injury and Liver Graft Survival.

    PubMed

    Guan, Lianyue; Liu, Hongyu; Fu, Peiyao; Li, Zhuonan; Li, Peidong; Xie, Lijuan; Xin, Mingang; Wang, Zhanpeng; Li, Wei

    2016-01-01

    The aim of this study was to explore the protective effects of ulinastatin (urinary trypsin inhibitor, UTI) on liver ischemia-reperfusion injury (IRI) and graft survival. We employed mouse liver cold IRI and orthotopic liver transplantation (OLTx) models. UTI was added to lactated Ringer's (LR) solution for liver perfusion and preservation in vitro or combined with UTI injection intraperitoneally to the liver graft recipient. Our results indicated that UTI supplementation protected the liver from cold IRI in a dose-dependent manner and prolonged liver graft survival from extended cold preserved liver donors significantly. The underlying mechanism of UTI on liver IRI may be mediated by inhibition of proinflammatory cytokine release, increasing the expression of the antiapoptotic gene Bcl-2 and decreasing the expression of the proapoptosis genes of Caspase-3 and Bax, and further protects hepatocytes from apoptotic death and improves liver function.

  9. 17β-Estradiol protects the liver against cold ischemia/reperfusion injury through the Akt kinase pathway.

    PubMed

    Yang, Xiaohua; Qin, Lei; Liu, Jianxia; Tian, Liping; Qian, Haixin

    2012-12-01

    Hepatic ischemia-reperfusion (IR) injury occurs during liver resection and transplantation. Recent studies have shown that 17β-estradiol (E2) can protect the heart and liver against warm IR. The present study focused on the cytoprotective effects of E2 on cold IR injury to the liver. Sprague-Dawley male rats were randomly divided into three groups: sham, IR, and IR plus E2. The model of rat orthotopic liver transplantation was used. The rats in the IR plus E2 group were intraperitoneally injected with E2 (100 μg/kg/d) for 7 d before surgery. The sham and IR group received the same quantity of saline. The donor livers were then orthotopically transplanted into rats after cold ischemia preservation for 4 h at 4°C lactated Ringer's solution. After 6 h reperfusion, liver function, bile flow volume, hepatocyte apoptosis, and activation of Akt, glycogen synthase kinase-3β, and Bcl-2-associated death promoter were assessed. The survival rate of the rats was also investigated. The administration of E2 significantly prolonged the survival of liver grafts by improving liver function and decreasing hepatocyte apoptosis. Rats undergoing E2 demonstrated a greater level activation of Akt in the liver compared with the IR group. In addition, E2 also inhibited the activities of glycogen synthase kinase-3β, Bcl-2-associated death promoter, and caspase-3-induced by IR injury. E2 pretreatment attenuated the hepatocellular damage caused by hepatic cold IR injury through the Akt pathway. Estrogen therapy might be important in clinical settings associated with cold IR injury during liver transplantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Is Euro-Collins better than ringer lactate in live related donor renal transplantation?

    PubMed

    Prasad, G Siva; Ninan, Chacko N; Devasia, Antony; Gnanaraj, Lionel; Kekre, Nitin S; Gopalakrishnan, Ganesh

    2007-07-01

    Euro-Collins and University of Wisconsin are preferred solutions in cadaveric renal transplantation. There are no guidelines regarding the perfusion fluids in live donor renal transplantation. We studied whether Euro-Collins was better than Ringer lactate in terms of protecting allograft function. A double-blind permuted randomized trial comparing Euro-Collins and Ringer lactate was performed on 100 patients undergoing live related donor renal transplantation. Outcome variable was serum creatinine. Age, sex, donor nephrectomy and ischemia times, kidney temperature, time of first appearance of urine was not significantly different in both the groups. Fall in serum creatinine was significantly more in Euro-Collins than Ringer lactate in the first postoperative week (P-<0.05). The time to reach nadir creatinine was 4.97 days in Euro-Collins and 7.75 days in the Ringer lactate group (P-0.088). Serum creatinine was significantly lower in the Euro-Collins group till six months, thereafter it equalized with Ringer lactate. When individual parameters were analyzed for time to nadir creatinine, only the cold ischemia time of > 80 min was found to be significant (P-0.024). Twelve kidneys in Euro-Collins and 17 in the Ringer lactate group had cold ischemia times of >/=80 min and time to nadir creatinine was 4.33 +/-3.74 and 12.76+/- 12.68 days (P-0.035). Renal function normalized rapidly when Euro-Collins was used. Cold ischemia time of >/= 80 min was the most important factor affecting the graft function and perfusing with Euro-Collins could protect the allograft.

  11. Poly[ADP-Ribose] Polymerase-1 Expression Is Related To Cold Ischemia, Acute Tubular Necrosis, and Delayed Renal Function In Kidney Transplantation

    PubMed Central

    O'Valle, Francisco; Del Moral, Raimundo G. M.; Benítez, María del Carmén; Martín-Oliva, David; Gómez-Morales, Mercedes; Aguilar, David; Aneiros-Fernández, José; Hernández-Cortés, Pedro; Osuna, Antonio; Moreso, Francesc; Serón, Daniel; Oliver, Francisco J.; Del Moral, Raimundo G.

    2009-01-01

    Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). Materials and Methods Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. Results PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function. PMID:19784367

  12. Cold preservation with hyperbranched polyglycerol-based solution improves kidney functional recovery with less injury at reperfusion in rats

    PubMed Central

    Li, Shadan; Liu, Bin; Guan, Qiunong; Chafeeva, Irina; Brooks, Donald E; Nguan, Christopher YC; Kizhakkedathu, Jayachandran N; Du, Caigan

    2017-01-01

    Minimizing donor organ injury during cold preservation (including cold perfusion and storage) is the first step to prevent transplant failure. We recently reported the advantages of hyperbranched polyglycerol (HPG) as a novel substitute for hydroxyethyl starch in UW solution for both cold heart preservation and cold kidney perfusion. This study evaluated the functional recovery of the kidney at reperfusion after cold preservation with HPG solution. The impact of HPG solution compared to conventional UW and HTK solutions on tissue weight and cell survival at 4°C was examined using rat kidney tissues and cultured human umbilical vein endothelial cells (HUVECs), respectively. The kidney protection by HPG solution was tested in a rat model of cold kidney ischemia-reperfusion injury, and was evaluated by histology and kidney function. Here, we showed that preservation with HPG solution prevented cell death in cultured HUVECs and edema formation in kidney tissues at 4°C similar to UW solution, whereas HTK solution was less effective. In rat model of cold ischemia-reperfusion injury, the kidneys perfused and subsequently stored 1-hour with cold HPG solution showed less leukocyte infiltration, less tubular damage and better kidney function (lower levels of serum creatinine and blood urea nitrogen) at 48 h of reperfusion than those treated with UW or HTK solution. In conclusion, our data show the superiority of HPG solution to UW or HTK solution in the cold perfusion and storage of rat kidneys, suggesting that the HPG solution may be a promising candidate for improved donor kidney preservation prior to transplantation. PMID:28337272

  13. Prevention of ischemia-reperfusion lung injury during static cold preservation by supplementation of standard preservation solution with HEMO2life® in pig lung transplantation model.

    PubMed

    Glorion, M; Polard, V; Favereau, F; Hauet, T; Zal, F; Fadel, E; Sage, E

    2017-10-25

    We describe the results of adding a new biological agent HEMO 2 life ® to a standard preservation solution for hypothermic static lung preservation aiming to improve early functional parameters after lung transplantation. HEMO 2 life ® is a natural oxygen carrier extracted from Arenicola marina with high oxygen affinity developed as an additive to standard organ preservation solutions. Standard preservation solution (Perfadex ® ) was compared with Perfadex ® associated with HEMO 2 life ® and with sham animals after 24 h of hypothermic preservation followed by lung transplantation. During five hours of lung reperfusion, functional parameters and biomarkers expression in serum and in bronchoalveolar lavage fluid (BALF) were measured. After five hours of reperfusion, HEMO 2 life ® group led to significant improvement in functional parameters: reduction of graft vascular resistance (p < .05) and increase in graft oxygenation ratio (p < .05). Several ischemia-reperfusion related biomarkers showed positive trends in the HEMO 2 life ® group: expression of HMG B1 in serum tended to be lower in comparison (2.1 ± 0.8 vs. 4.6 ± 1.5) with Perfadex ® group, TNF-α and IL-8 in BALF were significantly higher in the two experimental groups compared to control (p < .05). During cold ischemia, expression of HIF1α and histology remained unchanged and similar to control. Supplementation of the Perfadex ® solution by an innovative oxygen carrier HEMO 2 life ® during hypothermic static preservation improves early graft function after prolonged cold ischemia in lung transplantation.

  14. Oxygen-charged HTK-F6H8 emulsion reduces ischemia-reperfusion injury in kidneys from brain-dead pigs.

    PubMed

    Asif, Sana; Sedigh, Amir; Nordström, Johan; Brandhorst, Heide; Jorns, Carl; Lorant, Tomas; Larsson, Erik; Magnusson, Peetra U; Nowak, Greg; Theisinger, Sonja; Hoeger, Simone; Wennberg, Lars; Korsgren, Olle; Brandhorst, Daniel

    2012-12-01

    Prolonged cold ischemia is frequently associated with a greater risk of delayed graft function and enhanced graft failure. We hypothesized that media, combining a high oxygen-dissolving capacity with specific qualities of organ preservation solutions, would be more efficient in reducing immediate ischemia-reperfusion injury from organs stored long term compared with standard preservation media. Kidneys retrieved from brain-dead pigs were flushed using either cold histidine-tryptophan-ketoglutarate (HTK) or oxygen-precharged emulsion composed of 75% HTK and 25% perfluorohexyloctane. After 18 h of cold ischemia the kidneys were transplanted into allogeneic recipients and assessed for adenosine triphosphate content, morphology, and expression of genes related to hypoxia, environmental stress, inflammation, and apoptosis. Compared with HTK-flushed kidneys, organs preserved using oxygen-precharged HTK-perfluorohexyloctane emulsion had increased elevated adenosine triphosphate content and a significantly lower gene expression of hypoxia inducible factor-1α, vascular endothelial growth factor, interleukin-1α, tumor necrosis factor-α, interferon-α, JNK-1, p38, cytochrome-c, Bax, caspase-8, and caspase-3 at all time points assessed. In contrast, the mRNA expression of Bcl-2 was significantly increased. The present study has demonstrated that in brain-dead pigs the perfusion of kidneys with oxygen-precharged HTK-perfluorohexyloctane emulsion results in significantly reduced inflammation, hypoxic injury, and apoptosis and cellular integrity and energy content are well maintained. Histologic examination revealed less tubular, vascular, and glomerular changes in the emulsion-perfused tissue compared with the HTK-perfused counterparts. The concept of perfusing organs with oxygen-precharged emulsion based on organ preservation media represents an efficient alternative for improved organ preservation. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Gene Therapy for Liver Transplantation Using Adenoviral Vectors: CD40–CD154 Blockade by Gene Transfer of CD40Ig Protects Rat Livers from Cold Ischemia and Reperfusion Injury

    PubMed Central

    Ke, Bibo; Shen, Xiu-Da; Gao, Feng; Busuttil, Ronald W.; Löwenstein, Pedro R.; Castro, Maria G.; Kupiec-Weglinski, Jerzy W.

    2010-01-01

    Liver injury induced by ischemia/reperfusion (I/R) is the prime factor in delayed or loss graft function following transplantation. CD4+ T lymphocytes are key cellular mediators of antigen-independent inflammatory response triggered by I/R. We attempted to modulate rat liver I/R injury by targeted gene therapy with CD40Ig, which blocks the CD40–CD154 costimulation pathway. One hundred percent of Ad-CD40Ig-pretreated orthotopic liver transplants (OLTs) subjected to 24 h of cold (4°C) ischemia survived >14 days (vs 50% in untreated/Ad-β-gal groups). Ad-CD40Ig treatment decreased sGOT levels and depressed neutrophil infiltration, compared with controls. These functional data correlated with histological Suzuki’s grading of hepatic injury, which in untreated/Ad-β-gal groups showed severe necrosis (>60%) and moderate to severe sinusoidal congestion; the Ad-CD40Ig-pretreated group revealed minimal sinusoidal congestion/necrosis. Unlike in controls, OLT expression of mRNA coding for IL-2/IFN-γ remained depressed, whereas that of IL-4/IL-13 reciprocally increased in the Ad-CD40Ig group. Ad-CD40Ig reduced frequency of TUNEL+ cells and proapoptotic Caspase-3, but enhanced antioxidant HO-1 and antiapoptotic Bcl-2/Bcl-xl expression. Thus, prolonged blockade of CD40–CD154 by CD40Ig exerts potent cytoprotection against hepatic I/R injury. These results provide the rationale for a novel gene therapy approach to maximize the organ donor pool through the safer use of liver transplants exposed to prolonged cold ischemia. PMID:14741776

  16. Functional Recovery From Extended Warm Ischemia Associated With Partial Nephrectomy.

    PubMed

    Zhang, Zhiling; Zhao, Juping; Velet, Lily; Ercole, Cesar E; Remer, Erick M; Mir, Carme M; Li, Jianbo; Takagi, Toshio; Demirjian, Sevag; Campbell, Steven C

    2016-01-01

    To evaluate the impact of extended warm ischemia on incidence of acute kidney injury (AKI) and ultimate functional recovery after partial nephrectomy (PN), incorporating rigorous control for loss of parenchymal mass, and embedded within comparison to cohorts of patients managed with hypothermia or limited warm ischemia. From 2007 to 2014, 277 patients managed with PN had appropriate studies to evaluate changes in function/mass specifically within the operated kidney. Recovery from ischemia was defined as %function saved/%parenchymal mass saved. AKI was based on global renal function and defined as a ≥1.5-fold increase in serum creatinine above the preoperative level. Hypothermia was utilized in 112 patients (median = 27 minutes) and warm ischemia in 165 (median = 21 minutes). AKI strongly correlated with solitary kidney (P < .001) and duration (P < .001) but not type (P = .49) of ischemia. Median recovery from ischemia in the operated kidney was 100% (interquartile range [IQR] = 88%-109%) for cold ischemia, with 6 (5%) noted to have <80% recovery from ischemia. For the warm ischemia group, median recovery from ischemia was 91% (IQR = 82%-101%, P < .001 compared with hypothermia), and 34 (21%) had recovery from ischemia <80% (P < .001). For warm ischemia subgrouped by duration <25 minutes (n = 114), 25-35 minutes (n = 35), and >35 minutes (n = 16), median recovery from ischemia was 92% (IQR = 86%-100%), 90% (IQR = 78%-104%), and 91% (IQR = 80%-96%), respectively (P = .77). Our results suggest that AKI after PN correlates with duration but not with type of ischemia. However, subsequent recovery, which ultimately defines the new baseline glomerular filtration rate, is most reliable with hypothermia. However, most patients undergoing PN with warm ischemia still recover relatively strongly from ischemia, even if extended to 35-45 minutes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats.

    PubMed

    Shiotani, Satoko; Shimada, Mitsuo; Suehiro, Taketoshi; Soejima, Yuji; Yosizumi, Tomoharu; Shimokawa, Hiroaki; Maehara, Yoshihiko

    2004-08-15

    Reperfusion of ischemic tissues is known to cause the generation of reactive oxygen species (ROS) with resultant tissue damage. However, the sources of ROS in reperfused tissues are not fully characterized. We hypothesized that the small GTPase Rho and its target effector Rho-kinase/ROK/ROCK are involved in the oxidative burst in reperfused tissue with resultant reperfusion injury. In an in vivo rat model of liver transplantation using cold ischemia for 12 hr followed by reperfusion, a specific Rho-kinase inhibitor, fasudil (30 mg/kg), was administered orally 1 hr before the transplantation. Fasudil suppressed the ischemia-reperfusion (I/R)-induced generation of ROS after reperfusion (P<0.01) and also suppressed the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta) 3 hr after reperfusion, resulting in a significant reduction of I/R-induced hepatocellular injury (P<0.05), necrosis, apoptosis (P<0.01), and neutrophil infiltration (P<0.0001) 12 hr after reperfusion. All animals receiving a graft without fasudil died within 3 days, whereas 40% of those receiving fasudil survived (P<0.001). The present study demonstrates that Rho-kinase-mediated production of ROS and inflammatory cytokines are substantially involved in the pathogenesis of hepatocellular necrosis and apoptosis induced by cold I/R in vivo and that Rho-kinase may be regarded as a novel therapeutic target for the disorder.

  18. Heart Rate Variability, Catecholamine and Hemodynamic Responses During Rest and Stress in Coronary Artery Disease Patients: The PIMI Study

    DTIC Science & Technology

    2007-01-31

    fatal arrhythmias and cardiac ischemia can be linked to both physical and mental stress (Alpert, Thygesen, Antman , & Bassand, 2000; Malliani & Montano...symptoms of chest discomfort, shortness of breath, and diaphoresis (cold sweat) during acute ischemia ( Antman & Fox, 2000). Risk factors for...and cardiovascular reactivity in college males. Health Psychol, 6(2), 113-130. Alpert, J. S., Thygesen, K., Antman , E., & Bassand, J. P. (2000

  19. Influence of PACAP on oxidative stress and tissue injury following small-bowel autotransplantation.

    PubMed

    Ferencz, Andrea; Racz, Boglarka; Tamas, Andrea; Reglodi, Dora; Lubics, Andrea; Nemeth, Jozsef; Nedvig, Klara; Kalmar-Nagy, Karoly; Horvath, Ors Peter; Weber, Gyorgy; Roth, Erzsebet

    2009-02-01

    Tissue injury caused by cold preservation and reperfusion remains an unsolved problem during small-bowel transplantation. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present and plays a central role in the intestinal physiology. This study investigated effect of PACAP-38 on the oxidative stress and tissue damage in autotransplanted intestine. Sham-operated, ischemia/reperfusion, and autotransplanted groups were established in Wistar rats. In ischemia/reperfusion groups, 1 h (group A), 2 h (group B), and 3 h (group C) ischemia followed by 3 h of reperfusion was applied. In autotransplanted groups, total orthotopic intestinal autotransplantation was performed. Grafts were preserved in University of Wisconsin (UW) solution and in UW containing 30 microg PACAP-38 for 1, 2, 3, and 6 h. Reperfusion lasted 3 h in all groups. Endogenous PACAP-38 concentration was measured by radioimmunoassay. To determine oxidative stress parameters, malondialdehyde, reduced glutathione, and superoxide dismutase were measured in tissue samples. Tissue damage was analyzed by qualitative and quantitative methods on hematoxylin/eosin-stained sections. Concentration of endogenous PACAP-38 significantly decreased in groups B and C compared to sham-operated group. Preservation solution containing PACAP-38 ameliorated bowel tissue oxidative injury induced by cold ischemia and reperfusion. Histological results showed that preservation caused destruction of the mucous, submucous, and muscular layers, which were further deteriorated by the end of reperfusion. In contrast, PACAP-38 significantly protected the intestinal structure. Ischemia/reperfusion decreased the endogenous PACAP-38 concentration in the intestinal tissue. Administration of PACAP-38 mitigated the oxidative injury and histological lesions in small-bowel autotransplantation model.

  20. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model.

    PubMed

    Dare, Anna J; Logan, Angela; Prime, Tracy A; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M; Bradley, J Andrew; Pettigrew, Gavin J; Murphy, Michael P; Saeb-Parsy, Kourosh

    2015-11-01

    Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non-anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  1. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model

    PubMed Central

    Dare, Anna J.; Logan, Angela; Prime, Tracy A.; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M.; Bradley, J. Andrew; Pettigrew, Gavin J.; Murphy, Michael P.; Saeb-Parsy, Kourosh

    2015-01-01

    Background Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Methods Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non–anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. Results MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. Conclusions IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. PMID:26140808

  2. Independent cellular effects of cold ischemia and reperfusion: experimental molecular study.

    PubMed

    Lledó-García, E; Humanes-Sánchez, B; Mojena-Sánchez, M; Rodrígez, J C J; Hernández-Fernández, C; Tejedor-Jorge, A; Fernández, A L

    2013-04-01

    There is less information available on cell cultures on the exclusive effects of either duration of cold ischemia (CI) or rewarming-reperfusion in the kidney subjected to initial warm ischemia (WI). Therefore, the goals of our work were: (1) to evaluate the consequences on tubular cellular viability of different durations of CI on a kidney after an initial period of WI, and (2) to analyze the additional effect on tubular cell viability of rewarming of the same kidney. Sixteen mini-pig were used. All the animals were performed a right nephrectomy after 45-minute occlusion of the vascular pedicle. The kidneys were then divided into 2 groups (phase 1): cold storage in university of wisconsin (UW) solution for 3 hours (group A, n = 8) at 4°C, or cold storage in UW for 12 hours (group B, n = 8) at 4°C. Four organs of group A and four organs of group B were autotrasplanted (AT) and reperfused for 1 hour (phase 2). Nephrectomy was finally done. Biopsies were taken from all groups to perform cultures of proximal tubule epithelium cells. The biopsies were subjected to studies of cellular morphological viability (contrast phase microscopy [CPM]) and quantitative (confluence cell [CC]) parameters. Phase of pure CI effects (phase 1): Both CC rate and CPM parameters were significantly lower in group B compared with group A, where cell activity reached almost normal results. Phase of CI + AT (phase 2): At produced additional harmful effects in cell cultures compared with those obtained in phase 1, more evident in group B cells. The presence of cold storage followed by rewarming-reperfusion induces independent and cumulative detrimental effects in viability of renal proximal tubule cells. CI periods ≤ 3 hours may ameliorate the injuries secondary to reperfusion in comparison with longer CI periods. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. High prevalence of self-reported symptoms of digital ischemia in elite male volleyball players in the Netherlands: a cross-sectional national survey.

    PubMed

    van de Pol, Daan; Kuijer, P Paul F M; Langenhorst, Ton; Maas, Mario

    2012-10-01

    In the past 3 years, 6 volleyball players with ischemic digits and small microemboli in the digital arteries of the dominant hand presented themselves in our hospital. These complaints were caused by an aneurysmatic dilation of the posterior circumflex humeral artery (PCHA) with distal occlusion and digital emboli in the isolateral limb. All were elite male volleyball players active in the national top league. Little is known about the exact symptoms associated with PCHA pathological lesions with digital emboli (PCHAP with DE) and its prevalence in elite volleyball players. If vascular injury can be identified at an early stage, thromboembolic complications and irreversible damage to the digits might be prevented. To assess the prevalence of symptoms that are consistent with digital ischemia and may be caused by PCHAP with DE in elite male volleyball players in the Netherlands. Cross-sectional study; Level of evidence, 3. A questionnaire survey was performed among elite volleyball players in the Dutch national top league and the Dutch beach volleyball team. The questionnaire was constructed using literature-based data on symptoms associated with PCHAP with DE, together with data retrieved from medical files. A total of 99 of the 107 athletes participated, with a response rate of 93%. The most frequently reported symptoms associated with PCHAP with DE were cold, blue, or pale digits in the dominant hand during or immediately after practice or competition. The prevalence of these symptoms ranged from 11% to 27%. The prevalence of cold digits during practice and competition was 27%. The prevalence of cold, blue, and pale digits during or immediately after practice and competition was 12%. An unexpectedly high percentage of elite volleyball players reported symptoms that are associated with PCHAP with DE in the dominant hand. Because these athletes are considered potentially at risk for developing critical digital ischemia, further analysis of the presence of digital ischemia and PCHA injury is warranted.

  4. Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats.

    PubMed

    Meng, Chao; Ma, Liangjuan; Niu, Li; Cui, Xiaoguang; Liu, Jinfeng; Kang, Jiyu; Liu, Rongfang; Xing, Jingchun; Jiang, Changlin; Zhou, Huacheng

    2016-04-15

    Lung ischemia-reperfusion injury (IRI) may be attenuated through carbon monoxide (CO)'s anti-inflammatory effect or hydrogen (H2)'s anti-oxidant effect. In this study, the effects of lung inflation with CO, H2, or both during the cold ischemia phase on graft function were observed. Rat donor lungs, inflated with 40% oxygen (control group), 500ppm CO (CO group), 3% H2 (H2 group) or 500ppm CO+3% H2 (COH group), were kept at 4°C for 180min. After transplantation, the recipients' artery blood gas and pressure-volume (P-V) curves were analyzed. The inflammatory response, oxidative stress and apoptosis in the recipients were assessed at 180min after reperfusion. Oxygenation in the CO and H2 groups were improved compared with the control group. The CO and H2 groups also exhibited significantly improved P-V curves, reduced lung injury, and decreased inflammatory response, malonaldehyde content, and cell apoptosis in the grafts. Furthermore, the COH group experienced enhanced improvements in oxygenation, P-V curves, inflammatory response, lipid peroxidation, and graft apoptosis compared to the CO and H2 groups. Lung inflation with CO or H2 protected against IRI via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms in a model of lung transplantation in rats, which was enhanced by combined treatment with CO and H2. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Abdominal Hernias, Giant Colon Diverticulum, GIST, Intestinal Pneumatosis, Colon Ischemia, Cold Intussusception, Gallstone Ileus, and Foreign Bodies: Our Experience and Literature Review of Incidental Gastrointestinal MDCT Findings.

    PubMed

    Di Grezia, G; Gatta, G; Rella, R; Donatello, D; Falco, G; Grassi, R; Grassi, R

    2017-01-01

    Incidental gastrointestinal findings are commonly detected on MDCT exams performed for various medical indications. This review describes the radiological MDCT spectrum of appearances already present in the past literature and in today's experience of several gastrointestinal acute conditions such as abdominal hernia, giant colon diverticulum, GIST, intestinal pneumatosis, colon ischemia, cold intussusception, gallstone ileus, and foreign bodies which can require medical and surgical intervention or clinical follow-up. The clinical presentation of this illness is frequently nonspecific: abdominal pain, distension, nausea, fever, rectal bleeding, vomiting, constipation, or a palpable mass, depending on the disease. A proper differential diagnosis is essential in the assessment of treatment and in this case MDCT exam plays a central rule. We wish that this article will familiarize the radiologist in the diagnosis of this kind of incidental MDCT findings for better orientation of the therapy.

  6. Correlation of volumetric flow rate and skin blood flow with cold intolerance in digital replantation

    PubMed Central

    Zhao, Gang; Mi, Jingyi; Rui, Yongjun; Pan, Xiaoyun; Yao, Qun; Qiu, Yang

    2017-01-01

    Abstract Cold intolerance is a common complication of digital replantation. The exact etiology is unclear, but it is considered to be multifactorial, including nonsurgical characteristics, vascular, and neurologic conditions. Blood flow may play a significant role in cold intolerance. This study was designed to evaluate the correlation of digital blood flow, including volumetric flow rate (VFR) and skin blood flow (SkBF), with cold intolerance in replanted fingers. A retrospective study was conducted among patients who underwent digital replantation between 2010 and 2013. Patients were selected into study cohort based on the inclusion criteria. Surgical data was collected on each patient, including age, sex, injury mechanism, amputation level, ischemia time, number of arteries repaired, and whether or not vascular crisis occurred. Patients were included as study cohort with both nerves repaired and without chronic disease. Cold intolerance was defined as a Cold Intolerance Symptom Severity (CISS) score over 30. The arterial flow velocity and caliber were measured by Color Doppler Ultrasound and the digital VFR was calculated. The SkBF was measured by Laser Speckle Imager. Both VFR and SkBF were calculated as a percentage of the contralateral fingers. Comparative study of surgical data and blood flow was performed between the patient with and without cold intolerance. Correlation between VFR and SkBF was also analyzed. A total of 93 patients met inclusion criteria for the study. Approximately, 42 patients were identified as having cold intolerance. Fingers that survived vascular crisis had a higher incidence of cold intolerance with a lower VFR and SkBF. The VFR was higher in 2-artery replantation, but the SkBF and incidence of cold intolerance did not differ significantly. No differences were found in age, sex, injury mechanism, amputation level, or ischemia time. Furthermore, no correlation was found between VFR and SkBF. Cold intolerance of digital replantation is associated with decreased SkBF and VFR in the replanted fingers, which survived vascular crisis. Further work will be focused on how vascular crisis cause the decreasing of SkBF and VFR and the increasing chance of cold intolerance. PMID:29390590

  7. The biopsied donor liver: incorporating macrosteatosis into high-risk donor assessment.

    PubMed

    Spitzer, Austin L; Lao, Oliver B; Dick, André A S; Bakthavatsalam, Ramasamy; Halldorson, Jeffrey B; Yeh, Matthew M; Upton, Melissa P; Reyes, Jorge D; Perkins, James D

    2010-07-01

    To expand the donor liver pool, ways are sought to better define the limits of marginally transplantable organs. The Donor Risk Index (DRI) lists 7 donor characteristics, together with cold ischemia time and location of the donor, as risk factors for graft failure. We hypothesized that donor hepatic steatosis is an additional independent risk factor. We analyzed the Scientific Registry of Transplant Recipients for all adult liver transplants performed from October 1, 2003, through February 6, 2008, with grafts from deceased donors to identify donor characteristics and procurement logistics parameters predictive of decreased graft survival. A proportional hazard model of donor variables, including percent steatosis from higher-risk donors, was created with graft survival as the primary outcome. Of 21,777 transplants, 5051 donors had percent macrovesicular steatosis recorded on donor liver biopsy. Compared to the 16,726 donors with no recorded liver biopsy, the donors with biopsied livers had a higher DRI, were older and more obese, and a higher percentage died from anoxia or stroke than from head trauma. The donors whose livers were biopsied became our study group. Factors most strongly associated with graft failure at 1 year after transplantation with livers from this high-risk donor group were donor age, donor liver macrovesicular steatosis, cold ischemia time, and donation after cardiac death status. In conclusion, in a high-risk donor group, macrovesicular steatosis is an independent risk factor for graft survival, along with other factors of the DRI including donor age, donor race, donation after cardiac death status, and cold ischemia time.

  8. The effects of profound hypothermia on pancreas ischemic injury: a new experimental model.

    PubMed

    Rocha-Santos, Vinicius; Ferro, Oscar Cavalcante; Pantanali, Carlos Andrés; Seixas, Marcel Povlovistsch; Pecora, Rafael Antonio Arruda; Pinheiro, Rafael Soares; Claro, Laura Carolina López; Abdo, Emílio Elias; Chaib, Eleazar; D'Albuquerque, Luiz Augusto Carneiro

    2014-08-01

    Pancreatic ischemia-reperfusion (IR) has a key role in pancreas surgery and transplantation. Most experimental models evaluate the normothermic phase of the IR. We proposed a hypothermic model of pancreas IR to evaluate the benefic effects of the cold ischemic phase. We performed a reproducible model of hypothermic pancreatic IR. The ischemia was induced in the pancreatic tail portion (1-hour ischemia, 4-hour reperfusion) in 36 Wistar rats. They are divided in 3 groups as follows: group 1 (control), sham; group 2, normothermic IR; and group 3, hypothermic IR. In group 3, the temperature was maintained as close to 4.5°C. After reperfusion, serum amylase and lipase levels, inflammatory mediators (tumor necrosis factor α, interleukin 6), and pancreas histology were evaluated. In pancreatic IR groups, amylase, cytokines, and histological damage were significantly increased when compared with group 1. In the group 3, we observed a significant decrease in tumor necrosis factor α (P = 0.004) and interleukin 6 (P = 0.001) when compared with group 2. We did not observe significant difference in amylase (P = 0.867), lipase (P = 0.993), and histology (P = 0.201). In our experimental model, we reproduced the cold phase of pancreas IR, and the pancreas hypothermia reduced the inflammatory mediators after reperfusion.

  9. ERK phosphorylation plays an important role in the protection afforded by hypothermia against renal ischemia-reperfusion injury.

    PubMed

    Choi, Dae Eun; Jeong, Jin Young; Choi, Hyunsu; Chang, Yoon Kyung; Ahn, Moon Sang; Ham, Young Rok; Na, Ki Ryang; Lee, Kang Wook

    2017-02-01

    Although hypothermia attenuates the renal injury induced by ischemia-reperfusion, the detailed molecular pathway(s) involved remains unknown. ERK phosphorylation is known to protect against ischemia-reperfusion injury. Also, it has been reported that hypothermia may induce ERK phosphorylation in the heart and brain. We evaluated the role played by ERK in hypothermic protection against renal ischemia-reperfusion injury. C57Bl/6 mice were divided into the following groups: sham-operated (cold, 32°C) vs normal temperature (37°C); ischemia-reperfusion mice (32°C vs 37°C); and PD98059- or vehicle-treated ischemia-reperfusion mice (32°C). Kidneys were harvested 10 and 27 minutes after induction of renal ischemia and 24 hours after ischemia-reperfusion injury. Functional and molecular markers of kidney injury were evaluated. To explore the molecular mechanism involved the expression levels of renal HIF-1 and associated proteins were evaluated. The blood urea nitrogen (BUN) and serum creatinine (s-Cr) levels and the histologic renal injury scores were significantly lower in 32°C ischemia-reperfusion than 37°C ischemia-reperfusion kidneys (all P values < .05). The expression levels of Bax and caspase-3 and the extent of TUNEL and 8-OHdG cell positivity decreased, whereas the renal Bcl-2 level increased, in 32°C ischemia-reperfusion compared to 37°C ischemia-reperfusion mice. The extent of renal ERK phosphorylation was significantly higher in ischemia-reperfusion than sham-operated kidneys. Also, ERK phosphorylation was significantly increased in the kidneys of 32°C compared to 37°C ischemia-reperfusion mice. PD98059 treatment of 32°C ischemia-reperfusion mice significantly decreased the renal HIF-1 level (P < .05) and increased the BUN, s-Cr, renal Bax, and caspase-3 expression levels; the tissue injury score; and the proportions of TUNEL- and 8-OHdG-positive cells. PD98059 also increased the renal Bcl-2 level in such mice. Hypothermia attenuates the renal apoptosis and oxidative stress induced by ischemia-reperfusion via a mechanism involving ERK phosphorylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Tezosentan, a Novel Endothelin Receptor Antagonist, Markedly Reduces Rat Hepatic Ischemia and Reperfusion Injury in Three Different Models

    PubMed Central

    Farmer, Douglas G.; Kaldas, Fady; Anselmo, Dean; Katori, Masamichi; Shen, Xiu-Da; Lassman, Charles; Kaldas, Marian; Clozel, Martine; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy

    2010-01-01

    This study investigated the effects of dual endothelin (ET) receptor blockade in rat models of liver ischemia and reperfusion injury (IRI). Three models of IRI were used: (1) in vivo total hepatic warm ischemia with portal shunting for 60 minutes with control (saline) and treatment groups (15 mg/kg tezosentan intravenously prior to reperfusion), (2) ex vivo hepatic perfusion after 24 hours of cold storage in University of Wisconsin solution with control and treatment groups (10 mg/kg tezosentan in the perfusate), and (3) syngeneic liver transplantation (LT) after 24 hours of cold storage in University of Wisconsin solution with control and treatment groups (10 mg/kg tezosentan intravenously prior to reperfusion). Tezosentan treatment significantly improved serum transaminase and histology after IRI in all 3 models. This correlated with reduced vascular resistance, improved bile production, and an improved oxygen extraction ratio. Treatment led to a reduction in neutrophil infiltration and interleukin-1 beta and macrophage inflammatory protein 2 production. A reduction in endothelial cell injury as measured by purine nucleoside phosphorylase was seen. Survival after LT was significantly increased with tezosentan treatment (90% versus 50%). In conclusion, this is the first investigation to examine dual receptor ET blockade in 3 models of hepatic IRI and the first to use the parenterally administered agent tezosentan. The results demonstrate that in both warm and cold IRI tezosentan administration improves sinusoidal hemodynamics and is associated with improved tissue oxygenation and reduced endothelial cell damage. In addition, reduced tissue inflammation, injury, and leukocyte chemotactic signaling were seen. These results provide compelling data for the further investigation of the use of tezosentan in hepatic IRI. PMID:19025917

  11. Complete major amputation of the upper extremity: Early results and initial treatment algorithm.

    PubMed

    Märdian, Sven; Krapohl, Björn D; Roffeis, Jana; Disch, Alexander C; Schaser, Klaus-Dieter; Schwabe, Philipp

    2015-03-01

    Traumatic major amputations of the upper extremity are devastating injuries. These injuries have a profound impact on patient's quality of life and pose a burden on social economy. The aims of the current study were to report about the initial management of isolated traumatic major upper limb amputation from the time of admission to definitive soft tissue closure and to establish a distinct initial management algorithm. We recorded data concerning the initial management of the patient and the amputated body part in the emergency department (ED) (time from admission to the operation, Injury Severity Score [ISS], cold ischemia time from injury to ED, and total cold ischemia time). The duration, amount of surgical procedures, the time to definitive soft tissue coverage, and the choice of flap were part of the documentation. All intraoperative and postoperative complications were recorded. All patients were successfully replanted (time from injury to ED, 59 ± 4 minutes; ISS16; time from admission to operating room 57 ± 10 minutes; total cold ischemia time 203 ± 20 minutes; total number of procedures 7.3 ± 2.5); definitive soft tissue coverage could be achieved 23 ± 14 days after injury. Two thromboembolic complications occurred, which could be treated by embolectomy during revision surgery, and we saw one early infection, which could be successfully managed by serial debridements in our series. The management of complete major amputations of the upper extremity should be reserved for large trauma centers with enough resources concerning technical, structural, and personnel infrastructure to meet the demands of surgical reconstruction as well as the postoperative care. Following a distinct treatment algorithm is mandatory to increase the rate of successful major replantations, thus laying the foundation for promising secondary functional reconstructive efforts. Therapeutic study, level V.

  12. Abdominal Hernias, Giant Colon Diverticulum, GIST, Intestinal Pneumatosis, Colon Ischemia, Cold Intussusception, Gallstone Ileus, and Foreign Bodies: Our Experience and Literature Review of Incidental Gastrointestinal MDCT Findings

    PubMed Central

    Gatta, G.; Rella, R.; Donatello, D.; Falco, G.; Grassi, R.

    2017-01-01

    Incidental gastrointestinal findings are commonly detected on MDCT exams performed for various medical indications. This review describes the radiological MDCT spectrum of appearances already present in the past literature and in today's experience of several gastrointestinal acute conditions such as abdominal hernia, giant colon diverticulum, GIST, intestinal pneumatosis, colon ischemia, cold intussusception, gallstone ileus, and foreign bodies which can require medical and surgical intervention or clinical follow-up. The clinical presentation of this illness is frequently nonspecific: abdominal pain, distension, nausea, fever, rectal bleeding, vomiting, constipation, or a palpable mass, depending on the disease. A proper differential diagnosis is essential in the assessment of treatment and in this case MDCT exam plays a central rule. We wish that this article will familiarize the radiologist in the diagnosis of this kind of incidental MDCT findings for better orientation of the therapy. PMID:28638830

  13. Randomized Trial of Machine Perfusion Versus Cold Storage in Recipients of Deceased Donor Kidney Transplants With High Incidence of Delayed Graft Function.

    PubMed

    Tedesco-Silva, Helio; Mello Offerni, Juliano Chrystian; Ayres Carneiro, Vanessa; Ivani de Paula, Mayara; Neto, Elias David; Brambate Carvalhinho Lemos, Francine; Requião Moura, Lúcio Roberto; Pacheco E Silva Filho, Alvaro; de Morais Cunha, Mirian de Fátima; Francisco da Silva, Erica; Miorin, Luiz Antonio; Demetrio, Daniela Priscila; Luconi, Paulo Sérgio; da Silva Luconi, Waldere Tania; Bobbio, Savina Adriana; Kuschnaroff, Liz Milstein; Noronha, Irene Lourdes; Braga, Sibele Lessa; Barsante, Renata Cristina; Mendes Moreira, João Cezar; Fernandes-Charpiot, Ida Maria Maximina; Abbud-Filho, Mario; Modelli de Andrade, Luis Gustavo; Dalsoglio Garcia, Paula; Tanajura Santamaria Saber, Luciana; Fernandes Laurindo, Alan; Chocair, Pedro Renato; Cuvello Neto, Américo Lourenço; Zanocco, Juliana Aparecida; Duboc de Almeida Soares Filho, Antonio Jose; Ferreira Aguiar, Wilson; Medina Pestana, Jose

    2017-05-01

    This study compared the use of static cold storage versus continuous hypothermic machine perfusion in a cohort of kidney transplant recipients at high risk for delayed graft function (DGF). In this national, multicenter, and controlled trial, 80 pairs of kidneys recovered from brain-dead deceased donors were randomized to cold storage or machine perfusion, transplanted, and followed up for 12 months. The primary endpoint was the incidence of DGF. Secondary endpoints included the duration of DGF, hospital stay, primary nonfunction, estimated glomerular filtration rate, acute rejection, and allograft and patient survivals. Mean cold ischemia time was high but not different between the 2 groups (25.6 ± 6.6 hours vs 25.05 ± 6.3 hours, 0.937). The incidence of DGF was lower in the machine perfusion compared with cold storage group (61% vs. 45%, P = 0.031). Machine perfusion was independently associated with a reduced risk of DGF (odds ratio, 0.49; 95% confidence interval, 0.26-0.95). Mean estimated glomerular filtration rate tended to be higher at day 28 (40.6 ± 19.9 mL/min per 1.73 m 2 vs 49.0 ± 26.9 mL/min per 1.73 m 2 ; P = 0.262) and 1 year (48.3 ± 19.8 mL/min per 1.73 m 2 vs 54.4 ± 28.6 mL/min per 1.73 m 2 ; P = 0.201) in the machine perfusion group. No differences in the incidence of acute rejection, primary nonfunction (0% vs 2.5%), graft loss (7.5% vs 10%), or death (8.8% vs 6.3%) were observed. In this cohort of recipients of deceased donor kidneys with high mean cold ischemia time and high incidence of DGF, the use of continuous machine perfusion was associated with a reduced risk of DGF compared with the traditional cold storage preservation method.

  14. Comparison of Recipient Outcomes After Kidney Transplantation: In-House Versus Imported Deceased Donors.

    PubMed

    Lim, S Y; Gwon, J G; Kim, M G; Jung, C W

    2018-05-01

    Increased cold ischemia time in cadaveric kidney transplants has been associated with a high rate of delayed graft function (DGF), and even with graft survival. Kidney transplantation using in-house donors reduces cold preservation time. The purpose of this study was to compare the clinical outcomes after transplantation in house and externally. We retrospectively reviewed the medical records of donors and recipients of 135 deceased-donor kidney transplantations performed in our center from March 2009 to March 2016. Among the 135 deceased donors, 88 (65.2%) received the kidneys from in-house donors. Median cold ischemia time of transplantation from in-house donors was shorter than for imported donors (180.00 vs 300.00 min; P < .001). The risks of DGF and slow graft function were increased among the imported versus in-house donors. Imported kidney was independently associated with greater odds of DGF in multivariate regression analysis (odds ratio, 4.165; P = .038). However, the renal function of recipients at 1, 3, 5, and 7 years after transplantation was not significantly different between the 2 groups. Transplantation with in-house donor kidneys was significantly associated with a decreased incidence of DGF, but long-term graft function and survival were similar compared with imported donor kidneys. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Pathogenesis of sudden death following water immersion (immersion syndrome)

    NASA Technical Reports Server (NTRS)

    Buhring, M.; Spies, H. F.

    1981-01-01

    Sympathetic activity under cold stress is investigated. Predominantly vagal cardio-depressive reflexes are discussed besides currently known mechanisms of sudden death after water immersion. Pronounced circulatory centralization in diving animals as well as following exposure in cold water indicates additional sympathetic activity. In cold water baths of 15 C, measurements indicate an increase in plasma catecholamine levels by more than 300 percent. This may lead to cardiac arrhythmias by the following mechanisms: cold water essentially induces sinus bradycardia; brady-and tachycardiarrhythmias may supervene as secondary complications; sinusbradycardia may be enhanced by sympathetic hypertonus. Furthermore, ectopic dysrhythmias are liable to be induced by the strictly sympathetic innervation of the ventricle. Myocardial ischemia following a rise in peripheral blood pressure constitutes another arrhythmogenic factor. Some of these reactions are enhanced by alcohol intoxication.

  16. Inhibition of CD26/DPP IV attenuates ischemia/reperfusion injury in orthotopic mouse lung transplants: the pivotal role of vasoactive intestinal peptide.

    PubMed

    Jungraithmayr, Wolfgang; De Meester, Ingrid; Matheeussen, Veerle; Inci, Ilhan; Augustyns, Koen; Scharpé, Simon; Weder, Walter; Korom, Stephan

    2010-04-01

    The T cell activation Ag CD26/dipeptidylpeptidase IV (DPP IV) combines co-stimulatory and enzymatic properties. Catalytically, it functions as an exopeptidase, modulating biological activity of key chemokines and peptides. Here we investigated the effect of organ-specific inhibition of DPP IV catalytic activity on ischemia/reperfusion injury after extended ischemia in the mouse model of orthotopic single lung transplantation. C57BL/6 mice were syngeneically, transplanted, grafts were perfused and stored in Perfadex with (treated) or without (control) a DPP IV enzymatic activity inhibitor (AB192). Transplantation was performed after 18h cold ischemia time; following 2-h reperfusion, grafts were analyzed for oxygenation, thiobarbituric acid-reactive substances, histomorphology, and immunohistochemistry was performed for leukocyte Ag 6, myeloperoxidase, hemoxygenase 1, vasoactive intestinal protein (VIP), and real-time PCR for VIP. Treatment with the DPP IV inhibitor AB192 resulted in significant improvement of gas exchange, less lipid oxidation, preservation of parenchymal ultrastructure, reduced neutrophil infiltration, reduced myeloperoxidase expression, increased hemoxygenase 1 expression, pronounced expression of VIP in alveolar macrophages and increased mRNA expression of VIP. Inhibition of intragraft DPP IV catalytic activity with AB192 strikingly ameliorates ischemia/reperfusion injury after extended ischemia. Furthermore, preservation of endogenous intragraft VIP levels correlate with maintaining lung function and structural integrity. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  17. Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors.

    PubMed

    Dong, Boming; Stewart, Paul W; Egan, Thomas M

    2013-08-01

    We sought to determine whether ventilation of lungs after death in non-heart-beating donors with carbon monoxide during warm ischemia and ex vivo lung perfusion and after transplant would reduce ischemia-reperfusion injury and improve lung function. One hour after death, Sprague-Dawley rats were ventilated for another hour with 60% oxygen (control group) or 500 ppm carbon monoxide in 60% oxygen (CO-vent group; n=6/group). Then, lungs were flushed with 20 mL cold Perfadex, stored cold for 1 hour, then warmed to 37 °C in an ex vivo lung perfusion circuit perfused with Steen solution. At 37 °C, lungs were ventilated for 15 minutes with alveolar gas with or without 500 ppm carbon monoxide, then perfusion-cooled to 20 °C, flushed with cold Perfadex and stored cold for 2 hours. The left lung was transplanted using a modified cuff technique. Recipients were ventilated with 60% oxygen with or without carbon monoxide. One hour after transplant, we measured blood gases from the left pulmonary vein and aorta, and wet-to-dry ratio of both lungs. The RNA and protein extracted from graft lungs underwent real-time polymerase chain reaction and Western blotting, and measurement of cyclic guanosine monophosphate by enzyme-linked immunosorbent assay. Carbon monoxide ventilation begun 1 hour after death reduced wet/dry ratio after ex vivo lung perfusion. After transplantation, the carbon monoxide-ventilation group had better oxygenation; higher levels of tissue cyclic guanosine monophosphate, heme oxidase-1 expression, and p38 phosphorylation; reduced c-Jun N-terminal kinase phosphorylation; and reduced expression of interleukin-6 and interleukin-1β messenger RNA. Administration of carbon monoxide to the deceased donor and non-heart-beating donor lungs reduces ischemia-reperfusion injury in rat lungs transplanted from non-heart-beating donors. Therapy to the deceased donor via the airway may improve post-transplant lung function. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  18. Intratracheal Administration of Small Interfering RNA Targeting Fas Reduces Lung Ischemia-Reperfusion Injury.

    PubMed

    Del Sorbo, Lorenzo; Costamagna, Andrea; Muraca, Giuseppe; Rotondo, Giuseppe; Civiletti, Federica; Vizio, Barbara; Bosco, Ornella; Martin Conte, Erica L; Frati, Giacomo; Delsedime, Luisa; Lupia, Enrico; Fanelli, Vito; Ranieri, V Marco

    2016-08-01

    Lung ischemia-reperfusion injury is the main cause of primary graft dysfunction after lung transplantation and results in increased morbidity and mortality. Fas-mediated apoptosis is one of the pathologic mechanisms involved in the development of ischemia-reperfusion injury. We hypothesized that the inhibition of Fas gene expression in lungs by intratracheal administration of small interfering RNA could reduce lung ischemia-reperfusion injury in an ex vivo model reproducing the procedural sequence of lung transplantation. Prospective, randomized, controlled experimental study. University research laboratory. C57/BL6 mice weighing 28-30 g. Ischemia-reperfusion injury was induced in lungs isolated from mice, 48 hours after treatment with intratracheal small interfering RNA targeting Fas, control small interfering RNA, or vehicle. Isolated lungs were exposed to 6 hours of cold ischemia (4°C), followed by 2 hours of warm (37°C) reperfusion with a solution containing 10% of fresh whole blood and mechanical ventilation with constant low driving pressure. Fas gene expression was significantly silenced at the level of messenger RNA and protein after ischemia-reperfusion in lungs treated with small interfering RNA targeting Fas compared with lungs treated with control small interfering RNA or vehicle. Silencing of Fas gene expression resulted in reduced edema formation (bronchoalveolar lavage protein concentration and lung histology) and improvement in lung compliance. These effects were associated with a significant reduction of pulmonary cell apoptosis of lungs treated with small interfering RNA targeting Fas, which did not affect cytokine release and neutrophil infiltration. Fas expression silencing in the lung by small interfering RNA is effective against ischemia-reperfusion injury. This approach represents a potential innovative strategy of organ preservation before lung transplantation.

  19. PRINS Long Noncoding RNA Involved in IP-10-Mediated Allograft Rejection in Rat Kidney Transplant.

    PubMed

    Zou, X-F; Song, B; Duan, J-H; Hu, Z-D; Cui, Z-L; Yang, T

    2018-06-01

    Previously, high levels of CXCR3+ T-cell recruitment was demonstrated in the prolonged ischemia-accelerated acute allograft rejection in rat kidney transplant. In the present study, the effect of chemokine IP-10 was investigated and the expression of chemokine-related PRINS (Psoriasis susceptibility-related RNA gene induced by stress) lncRNA determined in the allografts subjected to ischemia. F344-to-Lewis rat kidney transplantation was performed, and renal grafts were stored for 2 hours or 16 hours. Samples were removed at 24 hours and 7 days after operation. Cellular infiltration was determined with the use of immunohistochemistry, and messenger RNA expression was assessed with the use of real-time polymerase chain reaction. The 16-hour-ischemia kidney displayed acute tubule damage and up-regulation of PRINS lncRNA expression. On day 7, IP-10 expression and CD3-positive T cells were increased in allografts compared with control samples, which were inhibited by the IP-10 antibody treatment accompanied by reduced serum creatinine. These observations provide evidence for IP-10 in a regulatory role in cold ischemia-elicited acute allograft rejection and in PRINS lncRNA expression. Our data enhance the understanding of the mechanism underlying between prolonged ischemia and acute rejection. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Lung preservation with Euro-Collins, University of Wisconsin, Wallwork, and low-potassium-dextran solution. Université++ Paris-Sud Lung Transplant Group.

    PubMed

    Xiong, L; Mazmanian, M; Chapelier, A R; Reignier, J; Weiss, M; Dartevelle, P G; Hervé, P

    1994-09-01

    Using isolated rat lungs, we compared prevention of ischemia-reperfusion injury provided by flushing the lungs with modified Euro-Collins solution (EC), University of Wisconsin solution (UW), low-potassium-dextran solution (LPD), or Wallwork solution (WA). After 4 hours' and 6 hours' cold ischemia, reperfusion injury was assessed on the basis of changes in filtration coefficients (Kfc) and pressure-flow curves, characterized by the slope of the curves (incremental resistance) and the extrapolation of this slope to zero flow (pulmonary pressure intercept [Ppi]). After 4 hours, Kfc and Ppi were higher with EC than with UW, LPD, and WA, and the incremental resistance was higher with EC and UW. After 6 hours, Kfc and incremental resistance Ppi were higher with LPD than with WA. Because ischemia-reperfusion injury is associated with decreased endothelial synthesis of prostacyclin and nitric oxide, we tested whether the addition of prostacyclin or the nitric oxide precursor L-arginine to WA would improve preservation. The Kfc and Ppi were lower with both treatments. In conclusion, ischemia-reperfusion injury was best prevented by using WA. The favorable effect of prostacyclin or L-arginine emphasizes the role played by endothelial dysfunction in ischemia-reperfusion injury.

  1. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    PubMed

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.

  2. Anti-inflammatory effects on ischemia/reperfusion-injured lung transplants by the cluster of differentiation 26/dipeptidylpeptidase 4 (CD26/DPP4) inhibitor vildagliptin.

    PubMed

    Jang, Jae-Hwi; Yamada, Yoshito; Janker, Florian; De Meester, Ingrid; Baerts, Lesley; Vliegen, Gwendolyn; Inci, Ilhan; Chatterjee, Shampa; Weder, Walter; Jungraithmayr, Wolfgang

    2017-03-01

    We showed previously that stromal cell-derived factor 1 (SDF-1) is a substrate of cluster of differentiation 26/dipeptidylpeptidase 4 (CD26/DPP4) and exerts regenerative properties on acute lung ischemia-reperfusion injury on CD26/DPP4 inhibition. Here, we extend our studies to test whether an intermediate recovery of lung transplants from ischemia/reperfusion injury by CD26/DPP4 inhibition can be achieved for up to 14 days. Syngeneic mouse lung transplantation (Tx) was performed in C57BL/6 and in CD26-/- mice by applying 18 hours of cold ischemia. Donor lungs were preconditioned with saline or the CD26/DPP4 inhibitor vildagliptin (1 μg/mL [3 μM]). In vitro, the influence of vildagliptin and SDF-1 on the macrophage cell line RAW 264.7 was tested. Transplants were analyzed up to 14 days after Tx for the expression of SDF-1, tumor necrosis factor-α (TNF-α), interleukin-10, intercellular adhesion molecule-1 (ICAM-1), immune cell infiltration, and oxygenation. Cold ischemic time of 18 hours with vildagliptin preconditioning elevated lung SDF-1 levels (P = .0011) and increased interleukin-10-producing macrophages (P = .0165) compared with the control. SDF-1 reduced macrophage-derived TNF-α (P = .0248) in vitro. Five hours after Tx, vildagliptin significantly reduced macrophages and neutrophils (P = .0306), decreased ICAM-1 expression (P = .002), and improved transplant oxygenation (P = .0181). Seven days after Tx, grafts were preserved on CD26/DPP4-inhibition: perivascular macrophages (P = .0046) and TNF-α (P = .0013) were reduced as well as T and B cells. ICAM-1 was absent in CD26/DPP4-inhibited grafts at all time points. This study proves an intermediate improvement of ischemia/reperfusion-injured lung transplants by the CD26/DPP4-inhibitor vildagliptin up to 14 days. Enhanced levels of SDF-1 induced an anti-inflammatory effect on a cellular and protein level, and render CD26/DPP4 inhibition preconditioning effective for the protection from lung ischemia/reperfusion injury. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  3. Glycine ameliorates lung reperfusion injury after cold preservation in an ex vivo rat lung model.

    PubMed

    Omasa, Mitsugu; Fukuse, Tatsuo; Toyokuni, Shinya; Mizutani, Yoichi; Yoshida, Hiroshi; Ikeyama, Kazuyuki; Hasegawa, Seiki; Wada, Hiromi

    2003-03-15

    The role of glycine has not been investigated in lung ischemia-reperfusion injury after cold preservation. Furthermore, the role of apoptosis after reperfusion following cold preservation has not been fully understood. Lewis rats were divided into three groups (n=6 each). In the GLY(-) and GLY(+) groups, isolated lungs were preserved for 15 hr at 4 degrees C after a pulmonary artery (PA) flush using our previously developed preservation solution (ET-K; extracellular-type trehalose containing Kyoto), with or without the addition of glycine (5 mM). In the Fresh group, isolated lungs were reperfused immediately after a PA flush with ET-K. They were reperfused for 60 min with an ex vivo perfusion model. Pulmonary function, oxidative stress, apoptosis, and tumor necrosis factor (TNF)-alpha expression were assessed after reperfusion. Shunt fraction and peak inspiratory pressure after reperfusion in the GLY(-) group were significantly higher than those in the GLY(+) and Fresh groups. Oxidative damage and apoptosis in the alveolar epithelial cells of the GLY(-) group, assessed by immunohistochemical staining and quantification of 8-hydroxy-2'-deoxyguanosine and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling method, were significantly higher than those of the GLY(+) and Fresh groups. There were correlations among shunt fraction, oxidative damage, and apoptosis. There was no expression of TNF-alpha messenger RNA in all groups evaluated by the reverse transcription-polymerase chain reaction. Glycine attenuates ischemia/reperfusion injury after cold preservation by reducing oxidative damage and suppressing apoptosis independent of TNF-alpha in this model. The suppression of apoptosis might ameliorate lung function after reperfusion.

  4. Hot shot induction and reperfusion with a specific blocker of the es-ENT1 nucleoside transporter before and after hypothermic cardioplegia abolishes myocardial stunning in acutely ischemic hearts despite metabolic derangement: Hot shot drug delivery before hypothermic cardioplegia

    PubMed Central

    Abd-Elfattah, Anwar Saad; Tuchy, Gert E.; Jessen, Michael E.; Salter, David R.; Goldstein, Jacques P.; Brunsting, Louis A.; Wechsler, Andrew S.

    2013-01-01

    Objective Simultaneous inhibition of the cardiac equilibrative-p-nitrobenzylthioinosine (NBMPR)–sensitive (es) type of the equilibrative nucleoside transport 1 (ENT1) nucleoside transporter, with NBMPR, and adenosine deaminase, with erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA), prevents release of myocardial purines and attenuates myocardial stunning and fibrillation in canine models of warm ischemia and reperfusion. It is not known whether prolonged administration of hypothermic cardioplegia influences purine release and EHNA/NBMPR-mediated cardioprotection in acutely ischemic hearts. Methods Anesthetized dogs (n = 46), which underwent normothermic aortic crossclamping for 20 minutes on-pump, were divided to determine (1) purine release with induction of intermittent antegrade or continuous retrograde hypothermic cardioplegia and reperfusion, (2) the effects of postischemic treatment with 100 µM EHNA and 25 µM NBMPR on purine release and global functional recovery, and (3) whether a hot shot and reperfusion with EHNA/NBMPR inhibits purine release and attenuates ventricular dysfunction of ischemic hearts. Myocardial biopsies and coronary sinus effluents were obtained and analyzed using high-performance liquid chromatography. Results Warm ischemia depleted myocardial adenosine triphosphate and elevated purines (ie, inosine > adenosine) as markers of ischemia. Induction of intermittent antegrade or continuous retrograde hypothermic (4°C) cardioplegia releases purines until the heart becomes cold (<20°C). During reperfusion, the levels of hypoxanthine and xanthine (free radical substrates) were >90% of purines in coronary sinus effluent. Reperfusion with EHNA/NBMPR abolished ventricular dysfunction in acutely ischemic hearts with and without a hot shot and hypothermic cardioplegic arrest. Conclusions Induction of hypothermic cardioplegia releases purines from ischemic hearts until they become cold, whereas reperfusion induces massive purine release and myocardial stunning. Inhibition of cardiac es-ENT1 nucleoside transporter abolishes postischemic reperfusion injury in warm and cold cardiac surgery. PMID:23422047

  5. Test-retest reliability and agreement of the SPI-Questionnaire to detect symptoms of digital ischemia in elite volleyball players.

    PubMed

    van de Pol, Daan; Zacharian, Tigran; Maas, Mario; Kuijer, P Paul F M

    2017-06-01

    The Shoulder posterior circumflex humeral artery Pathology and digital Ischemia - questionnaire (SPI-Q) has been developed to enable periodic surveillance of elite volleyball players, who are at risk for digital ischemia. Prior to implementation, assessing reliability is mandatory. Therefore, the test-retest reliability and agreement of the SPI-Q were evaluated among the population at risk. A questionnaire survey was performed with a 2-week interval among 65 elite male volleyball players assessing symptoms of cold, pale and blue digits in the dominant hand during or after practice or competition using a 4-point Likert scale (never, sometimes, often and always). Kappa (κ) and percentage of agreement (POA) were calculated for individual symptoms, and to distinguish symptomatic and asymptomatic players. For the individual symptoms, κ ranged from "poor" (0.25) to "good" (0.63), and POA ranged from "moderate" (78%) to "good" (97%). To classify symptomatic players, the SPI-Q showed "good" reliability (κ = 0.83; 95%CI 0.69-0.97) and "good" agreement (POA = 92%). The current study has proven the SPI-Q to be reliable for detecting elite male indoor volleyball players with symptoms of digital ischemia.

  6. Liver graft preservation using perfluorocarbon improves the outcomes of simulated donation after cardiac death liver transplantation in rats.

    PubMed

    Okumura, Shinya; Uemura, Tadahiro; Zhao, Xiangdong; Masano, Yuki; Tsuruyama, Tatsuaki; Fujimoto, Yasuhiro; Iida, Taku; Yagi, Shintaro; Bezinover, Dmitri; Spiess, Bruce; Kaido, Toshimi; Uemoto, Shinji

    2017-09-01

    The outcomes of liver transplantation (LT) from donation after cardiac death (DCD) donors remain poor due to severe warm ischemia injury. Perfluorocarbon (PFC) is a novel compound with high oxygen carrying capacity. In the present study, a rat model simulating DCD LT was used, and the impact of improved graft oxygenation provided by PFC addition on liver ischemia/reperfusion injury (IRI) and survival after DCD LT was investigated. Orthotopic liver transplants were performed in male Lewis rats, using DCD liver grafts preserved with cold University of Wisconsin (UW) solution in the control group and preserved with cold oxygenated UW solution with addition of 20% PFC in the PFC group. For experiment I, in a 30-minute donor warm ischemia model, postoperative graft injury was analyzed at 3 and 6 hours after transplantation. For experiment II, in a 50-minute donor warm ischemia model, the postoperative survival was assessed. For experiment I, the levels of serum aspartate aminotransferase, alanine aminotransferase, hyaluronic acid, malondialdehyde, and several inflammatory cytokines were significantly lower in the PFC group. The hepatic expression levels of tumor necrosis factor α and interleukin 6 were significantly lower, and the expression level of heme oxygenase 1 was significantly higher in the PFC group. Histological analysis showed significantly less necrosis and apoptosis in the PFC group. Sinusoidal endothelial cells and microvilli of the bile canaliculi were well preserved in the PFC group. For experiment II, the postoperative survival rate was significantly improved in the PFC group. In conclusion, graft preservation with PFC attenuated liver IRI and improved postoperative survival. This graft preservation protocol might be a new therapeutic option to improve the outcomes of DCD LT. Liver Transplantation 23 1171-1185 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  7. Insulin in UW solution exacerbates hepatic ischemia / reperfusion injury by energy depletion through the IRS-2 / SREBP-1c pathway.

    PubMed

    Li, Xian Liang; Man, Kwan; Ng, Kevin T; Lee, Terence K; Lo, Chung Mau; Fan, Sheung Tat

    2004-09-01

    Ischemia / reperfusion (I / R) injury is related to tissue graft energy status. Insulin, which is currently used in the University of Wisconsin (UW) preservation solution with insulin (UWI), is an anabolic hormone and was shown to exacerbate the hepatic I / R injury in our previous study. In this study, the energy status and regulation of metabolism genes by insulin were investigated in liver grafts preserved by UW solution. Insulin could significantly decrease adenosine triphosphate (ATP) level after 3 hours of preservation, as well as total adenine nucleotides (TANs) and energy charge (EC) levels. Energy regeneration deteriorated in the grafts preserved by insulin in terms of ATP and EC levels at 24 hours after transplantation. The insulin signal was transduced through the insulin receptor substrate-2 (IRS-2) pathway and the activity of IRS-2 was decreased gradually at the messenger ribonucleic acid (mRNA) level during cold preservation. Downstream targeting genes such as sterol regulatory element-binding protein-1c (SREBP-1c), glucokinase (GKC), and fatty acid synthase (FAS) genes, as well as phospho-glycogen synthase kinase-3beta (GSK-3beta) were activated and they showed the similar expression profiles during cold preservation. Lipoprotein metabolism was accelerated by insulin through upregulation of the activity of apolipoprotein C-III (Apo C-III) during cold preservation. The insulin-like growth factor-binding protein-1 pathway was inhibited during cold preservation. In conclusion, insulin in UW solution exacerbates hepatic I / R injury by energy depletion as the graft maintains its anabolic activity. The key enzyme activities of the energy-consuming process of glycogen and fatty acid synthesis as well as lipoprotein metabolism were accelerated by insulin through the IRS-2 / SREBP-1c pathway.

  8. Prolonged warm ischemia time is associated with graft failure and mortality after kidney transplantation.

    PubMed

    Tennankore, Karthik K; Kim, S Joseph; Alwayn, Ian P J; Kiberd, Bryce A

    2016-03-01

    Warm ischemia time is a potentially modifiable insult to transplanted kidneys, but little is known about its effect on long-term outcomes. Here we conducted a study of United States kidney transplant recipients (years 2000-2013) to determine the association between warm ischemia time (the time from organ removal from cold storage to reperfusion with warm blood) and death/graft failure. Times under 10 minutes were potentially attributed to coding error. Therefore, the 10-to-under-20-minute interval was chosen as the reference group. The primary outcome was mortality and graft failure (return to chronic dialysis or preemptive retransplantation) adjusted for recipient, donor, immunologic, and surgical factors. The study included 131,677 patients with 35,901 events. Relative to the reference patients, times of 10 to under 20, 20 to under 30, 30 to under 40, 40 to under 50, 50 to under 60, and 60 and more minutes were associated with hazard ratios of 1.07 (95% confidence interval, 0.99-1.15), 1.13 (1.06-1.22), 1.17 (1.09-1.26), 1.20 (1.12-1.30), and 1.23 (1.15-1.33) for the composite event, respectively. Association between prolonged warm ischemia time and death/graft failure persisted after stratification by donor type (living vs. deceased donor) and delayed graft function status. Thus, warm ischemia time is associated with adverse long-term patient and graft survival after kidney transplantation. Identifying strategies to reduce warm ischemia time is an important consideration for future study. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. Role of NFkappaB in an animal model of complex regional pain syndrome-type I (CRPS-I).

    PubMed

    de Mos, Marissa; Laferrière, André; Millecamps, Magali; Pilkington, Mercedes; Sturkenboom, Miriam C J M; Huygen, Frank J P M; Coderre, Terence J

    2009-11-01

    NFkappaB is involved in several pathogenic mechanisms that are believed to underlie the complex regional pain syndrome (CRPS), including ischemia, inflammation and sensitization. Chronic postischemia pain (CPIP) has been developed as an animal model that mimics the symptoms of CRPS-I. The possible involvement of NFkappaB in CRPS-I was studied using CPIP rats. Under sodium pentobarbital anesthesia, a tourniquet was placed around the rat left ankle joint, producing 3 hours of ischemia, followed by rapid reperfusion (IR injury). NFkappaB was measured in nuclear extracts of muscle and spinal cord tissue using ELISA. Moreover, the anti-allodynic (mechanical and cold) effect was tested for systemic, intrathecal, or intraplantar treatment with the NFkappaB inhibitor pyrrolidine dithiocarbamate (PDTC). At 2 and 48 hours after IR injury, NFkappaB was elevated in muscle and spinal cord of CPIP rats compared to shams. At 7 days, NFkappaB levels were normalized in muscle, but still elevated in spinal cord tissue. Systemic PDTC treatment relieved mechanical and cold allodynia in a dose-dependent manner, lasting for at least 3 hours. Intrathecal-but not intraplantar-administration also relieved mechanical allodynia. The results suggest that muscle and spinal NFkappaB plays a role in the pathogenesis of CPIP and potentially of human CRPS. Using the CPIP model, we demonstrate that NFkappaB is involved in the development of allodynia after a physical injury (ischemia and reperfusion) without direct nerve trauma. Since CPIP animals exhibit many features of human CRPS-I, this observation indicates a potential role for NFkappaB in human CRPS.

  10. [Effect of nutritional status of the donor on the quality of hepatic graft. Value of restoration of glycogenic reserves of the donor].

    PubMed

    Pattou, F; Boudjema, K; Kerr-Conte, J; Wolf, P; Jaeck, D; Cinqualbre, J

    1992-01-01

    Initial function of the graft is an essential factor for successful liver transplantation. The aim of this study was to evaluate the influence of the nutritional status of the donor on hepatic graft quality at reperfusion. Livers (n = 41) were taken from pigs normally fed or fasted for 24 h or fasted for 24 h and conditioned for 2 hours with a solution containing glucose, fructose and glutamine. The quality of liver grafts was evaluated using an original, blood-free isolated perfusion model, after 8 h cold storage, or after 15 min warm ischemia performed prior to harvesting. The hepatic concentration of glycogen and ATP, measured from in vivo biopsies, was decreased in fasted animals (P less than 0.05 vs fed) and restored by nutritional conditioning (P less than 0.05 vs fasted). At the time of reperfusion following 8 h cold ischemia, the liberation of aminotransferases and lactate dehydrogenase was elevated in livers coming from fasted animals (P less than 0.05 vs fed) and restored to fed levels after nutritional conditioning (P less than 0.01 vs fasted). After 15 min of warm ischemia, the bile secretion during the reperfusion period was decreased in the 24 h fasted livers (P less than 0.01 vs fed) and reestablished after nutritional conditioning (P less than 0.01 vs fasted). Perfusion of the donor liver, in the 2 h preceding harvest, with a solution of glucose plus neoglucogenic precursors enhances the quality of the liver graft at the time of reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury

    PubMed Central

    Folch-Puy, Emma; Panisello, Arnau; Oliva, Joan; Lopez, Alexandre; Castro Benítez, Carlos; Adam, René; Roselló-Catafau, Joan

    2016-01-01

    The endoplasmic reticulum (ER) is involved in calcium homeostasis, protein folding and lipid biosynthesis. Perturbations in its normal functions lead to a condition called endoplasmic reticulum stress (ERS). This can be triggered by many physiopathological conditions such as alcoholic steatohepatitis, insulin resistance or ischemia-reperfusion injury. The cell reacts to ERS by initiating a defensive process known as the unfolded protein response (UPR), which comprises cellular mechanisms for adaptation and the safeguarding of cell survival or, in cases of excessively severe stress, for the initiation of the cell death program. Recent experimental data suggest the involvement of ERS in ischemia/reperfusion injury (IRI) of the liver graft, which has been considered as one of major problems influencing outcome after liver transplantation. The purpose of this review is to summarize updated data on the molecular mechanisms of ERS/UPR and the consequences of this pathology, focusing specifically on solid organ preservation and liver transplantation models. We will also discuss the potential role of ERS, beyond the simple adaptive response and the regulation of cell death, in the modification of cell functional properties and phenotypic changes. PMID:27231901

  12. Graft reconditioning with nitric oxide gas in rat liver transplantation from cardiac death donors.

    PubMed

    Kageyama, Shoichi; Yagi, Shintaro; Tanaka, Hirokazu; Saito, Shunichi; Nagai, Kazuyuki; Hata, Koichiro; Fujimoto, Yasuhiro; Ogura, Yasuhiro; Tolba, Rene; Shinji, Uemoto

    2014-03-27

    Liver transplant outcomes using grafts donated after cardiac death (DCD) remain poor. We investigated the effects of ex vivo reconditioning of DCD grafts with venous systemic oxygen persufflation using nitric oxide gas (VSOP-NO) in rat liver transplants. Orthotopic liver transplants were performed in Lewis rats, using DCD grafts prepared using static cold storage alone (group-control) or reconditioning using VSOP-NO during cold storage (group-VSOP-NO). Experiment I: In a 30-min warm ischemia model, graft damage and hepatic expression of inflammatory cytokines, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and endothelin-1 (ET-1) were examined, and histologic analysis was performed 2, 6, 24, and 72 hr after transplantation. Experiment II: In a 60-min warm ischemia model, grafts were evaluated 2 hr after transplantation (6 rats/group), and survival was assessed (7 rats/group). Experiment I: Group-VSOP-NO had lower alanine aminotransferase (ALT) (P<0.001), hyaluronic acid (P<0.05), and malondialdehyde (MDA) (P<0.001), hepatic interleukin-6 expression (IL-6) (P<0.05), and hepatic tumor necrosis factor-alpha (TNF-α) expression (P<0.001). Hepatic eNOS expression (P<0.001) was upregulated, whereas hepatic iNOS (P<0.01) and ET-1 (P<0.001) expressions were downregulated. The damage of hepatocyte and sinusoidal endothelial cells (SECs) were lower in group-VSOP-NO.Experiment II: VSOP-NO decreased ET-1 and 8-hydroxy-2'deoxyguanosine (8-OHdG) expression and improved survival after transplantation by 71.4% (P<0.01). These results suggest that VSOP-NO effectively reconditions warm ischemia-damaged grafts, presumably by decreasing ET-1 upregulation and oxidative damage.

  13. Ex Vivo Machine Perfusion in CTA with a Novel Oxygen Carrier System to Enhance Graft Preservation and Immunologic Outcomes

    DTIC Science & Technology

    2014-10-01

    rectus abdominal muscle, autotransplantation, heterotopic, superior epigastric vein, cold ischemia time, immunomodulation, transcriptomics...composite flap (muscle, adipose tissue and skin) from the whole rectus abdominal muscle (RAM). This model was maximized through extensive anatomical...The biopsies included Skin - Subcutaneous Fat – Muscle. (9 tissue samples per each biopsy time point for each flap) The biopsies were taken by punches

  14. Carbon monoxide protects rat lung transplants from ischemia-reperfusion injury via a mechanism involving p38 MAPK pathway.

    PubMed

    Kohmoto, J; Nakao, A; Stolz, D B; Kaizu, T; Tsung, A; Ikeda, A; Shimizu, H; Takahashi, T; Tomiyama, K; Sugimoto, R; Choi, A M K; Billiar, T R; Murase, N; McCurry, K R

    2007-10-01

    Carbon monoxide (CO) provides protection against oxidative stress via anti-inflammatory and cytoprotective actions. In this study, we tested the hypothesis that a low concentration of exogenous (inhaled) CO would protect transplanted lung grafts from cold ischemia-reperfusion injury via a mechanism involving the mitogen-activated protein kinase (MAPK) signaling pathway. Lewis rats underwent orthotopic syngeneic or allogeneic left lung transplantation with 6 h of cold static preservation. Exposure of donors and recipients (1 h before and then continuously post-transplant) to 250 ppm CO resulted in significant improvement in gas exchange, reduced leukocyte sequestration, preservation of parenchymal and endothelial cell ultrastructure and reduced inflammation compared to animals exposed to air. The beneficial effects of CO were associated with p38 MAPK phosphorylation and were significantly prevented by treatment with a p38 MAPK inhibitor, suggesting that CO's efficacy is at least partially mediated by activation of p38 MAPK. Furthermore, CO markedly suppressed inflammatory events in the contralateral naïve lung. This study demonstrates that perioperative exposure of donors and recipients to CO at a low concentration can impart potent anti-inflammatory and cytoprotective effects in a clinically relevant model of lung transplantation and support further evaluation for potential clinical use.

  15. The effect of donor treatment with hydrogen on lung allograft function in rats.

    PubMed

    Kawamura, Tomohiro; Huang, Chien-Sheng; Peng, Ximei; Masutani, Kosuke; Shigemura, Norihisa; Billiar, Timothy R; Okumura, Meinoshin; Toyoda, Yoshiya; Nakao, Atsunori

    2011-08-01

    Because inhaled hydrogen provides potent anti-inflammatory and antiapoptotic effects against acute lung injury, we hypothesized that treatment of organ donors with inhaled hydrogen during mechanical ventilation would decrease graft injury after lung transplantation. Orthotopic left lung transplants were performed using a fully allogeneic Lewis to Brown Norway rat model. The donors were exposed to mechanical ventilation with 98% oxygen plus 2% nitrogen or 2% hydrogen for 3 h prior to harvest, and the lung grafts underwent 4 h of cold storage in Perfadex (Vitrolife, Göteborg, Sweden). The graft function, histomorphologic changes, and inflammatory reactions were assessed. The combination of mechanical ventilation and prolonged cold ischemia resulted in marked deterioration of gas exchange when the donors were ventilated with 2% nitrogen/98% oxygen, which was accompanied by upregulation of proinflammatory cytokines and proapoptotic molecules. These lung injuries were attenuated significantly by ventilation with 2% hydrogen. Inhaled hydrogen induced heme oxygenase-1, an antioxidant enzyme, in the lung grafts prior to implantation, which might contribute to protective effects afforded by hydrogen. Preloaded hydrogen gas during ventilation prior to organ procurement protected lung grafts effectively from ischemia/reperfusion-induced injury in a rat lung transplantation model. Copyright © 2011 Mosby, Inc. All rights reserved.

  16. Cold ischemia contributes to the development of chronic rejection and mitochondrial injury after cardiac transplantation.

    PubMed

    Schneeberger, Stefan; Amberger, Albert; Mandl, Julia; Hautz, Theresa; Renz, Oliver; Obrist, Peter; Meusburger, Hugo; Brandacher, Gerald; Mark, Walter; Strobl, Daniela; Troppmair, Jakob; Pratschke, Johann; Margreiter, Raimund; Kuznetsov, Andrey V

    2010-12-01

    Chronic rejection (CR) remains an unsolved hurdle for long-term heart transplant survival. The effect of cold ischemia (CI) on progression of CR and the mechanisms resulting in functional deficit were investigated by studying gene expression, mitochondrial function, and enzymatic activity. Allogeneic (Lew→F344) and syngeneic (Lew→Lew) heart transplantations were performed with or without 10 h of CI. After evaluation of myocardial contraction, hearts were excised at 2, 10, 40, and 60 days for investigation of vasculopathy, gene expression, enzymatic activities, and mitochondrial respiration. Gene expression studies identified a gene cluster coding for subunits of the mitochondrial electron transport chain regulated in response to CI and CR. Myocardial performance, mitochondrial function, and mitochondrial marker enzyme activities declined in all allografts with time after transplantation. These declines were more rapid and severe in CI allografts (CR-CI) and correlated well with progression of vasculopathy and fibrosis. Mitochondria related gene expression and mitochondrial function are substantially compromised with the progression of CR and show that CI impacts on progression, gene profile, and mitochondrial function of CR. Monitoring mitochondrial function and enzyme activity might allow for earlier detection of CR and cardiac allograft dysfunction. © 2010 The Authors. Journal compilation © 2010 European Society for Organ Transplantation.

  17. Albumin augmentation improves condition of guinea pig hearts after 4 hr of cold ischemia.

    PubMed

    Jacob, Matthias; Paul, Oliver; Mehringer, Laurenz; Chappell, Daniel; Rehm, Markus; Welsch, Ulrich; Kaczmarek, Ingo; Conzen, Peter; Becker, Bernhard F

    2009-04-15

    Major causes of death after heart transplantation are right ventricular pump failure and, chronically, cardiac allograft vasculopathy. Traditional preservation techniques focus on immediate cardioplegia, without particularly considering vascular demands. Recently, the endothelial surface layer, composed of the endothelial glycocalyx and plasma proteins, was discovered to play a major role in vascular barrier function, edema formation, and leukocyte-to-endothelial interaction. The impact of augmenting a traditional preservation solution with plasma colloid albumin was therefore investigated. Guinea pig hearts underwent cold ischemic storage for 4 hr using Bretschneider's solution (histidine-tryptophan-ketoglutarate [HTK]) without and with augmentation with 1 g% human albumin. After reperfusion, intracoronary adhesion of polymorphonuclear granulocytes, edema formation, left and right heart performance of pressure-to-volume work, and glycocalyx shedding were assessed. Intracoronary retention of leukocytes was doubled in the traditional group (36.4+/-6.6%), whereas it remained at basal values after albumin preservation (23.5+/-2.4%; P<0.05). Addition of albumin to HTK significantly decreased edema formation (wet to dry weight ratio 6.9+/-0.1 vs. 7.2+/-0.2; P<0.05). Although left heart performance was comparable, right heart cardiac output was doubled in hearts having received HTK containing albumin versus HTK alone (94+/-14 vs. 50+/-11 mL/min/g; P<0.05). Glycocalyx shedding was significantly reduced when the hearts were stored under albumin protection. Augmenting HTK with human albumin improves endothelial integrity and heart performance after 4 hr cold ischemia, because of a marked protection of the endothelial glycocalyx. For the prevention of acute and chronic graft failure, the glycocalyx might represent a new target.

  18. Cardiovascular and autonomic responses to physiological stressors before and after six hours of water immersion.

    PubMed

    Florian, John P; Simmons, Erin E; Chon, Ki H; Faes, Luca; Shykoff, Barbara E

    2013-11-01

    The physiological responses to water immersion (WI) are known; however, the responses to stress following WI are poorly characterized. Ten healthy men were exposed to three physiological stressors before and after a 6-h resting WI (32-33°C): 1) a 2-min cold pressor test, 2) a static handgrip test to fatigue at 40% of maximum strength followed by postexercise muscle ischemia in the exercising forearm, and 3) a 15-min 70° head-up-tilt (HUT) test. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), cardiac output (Q), limb blood flow (BF), stroke volume (SV), systemic and calf or forearm vascular resistance (SVR and CVR or FVR), baroreflex sensitivity (BRS), and HR variability (HRV) frequency-domain variables [low-frequency (LF), high-frequency (HF), and normalized (n)] were measured. Cold pressor test showed lower HR, SBP, SV, Q, calf BF, LFnHRV, and LF/HFHRV and higher CVR and HFnHRV after than before WI (P < 0.05). Handgrip test showed no effect of WI on maximum strength and endurance and lower HR, SBP, SV, Q, and calf BF and higher SVR and CVR after than before WI (P < 0.05). During postexercise muscle ischemia, HFnHRV increased from baseline after WI only, and LFnHRV was lower after than before WI (P < 0.05). HUT test showed lower SBP, DBP, SV, forearm BF, and BRS and higher HR, FVR, LF/HFHRV, and LFnHRV after than before WI (P < 0.05). The changes suggest differential activation/depression during cold pressor and handgrip (reduced sympathetic/elevated parasympathetic) and HUT (elevated sympathetic/reduced parasympathetic) following 6 h of WI.

  19. First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-matched Case Analysis.

    PubMed

    Dutkowski, Philipp; Polak, Wojciech G; Muiesan, Paolo; Schlegel, Andrea; Verhoeven, Cornelia J; Scalera, Irene; DeOliveira, Michelle L; Kron, Philipp; Clavien, Pierre-Alain

    2015-11-01

    Exposure of donor liver grafts to prolonged periods of warm ischemia before procurement causes injuries including intrahepatic cholangiopathy, which may lead to graft loss. Due to unavoidable prolonged ischemic time before procurement in donation after cardiac death (DCD) donation in 1 participating center, each liver graft of this center was pretreated with the new machine perfusion "Hypothermic Oxygenated PErfusion" (HOPE) in an attempt to improve graft quality before implantation. HOPE-treated DCD livers (n = 25) were matched and compared with normally preserved (static cold preservation) DCD liver grafts (n = 50) from 2 well-established European programs. Criteria for matching included duration of warm ischemia and key confounders summarized in the balance of risk score. In a second step, perfused and unperfused DCD livers were compared with liver grafts from standard brain dead donors (n = 50), also matched to the balance of risk score, serving as baseline controls. HOPE treatment of DCD livers significantly decreased graft injury compared with matched cold-stored DCD livers regarding peak alanine-aminotransferase (1239 vs 2065 U/L, P = 0.02), intrahepatic cholangiopathy (0% vs 22%, P = 0.015), biliary complications (20% vs 46%, P = 0.042), and 1-year graft survival (90% vs 69%, P = 0.035). No graft failure due to intrahepatic cholangiopathy or nonfunction occurred in HOPE-treated livers, whereas 18% of unperfused DCD livers needed retransplantation. In addition, HOPE-perfused DCD livers achieved similar results as control donation after brain death livers in all investigated endpoints. HOPE seems to offer important benefits in preserving higher-risk DCD liver grafts.

  20. Cytoprotective Mechanisms in Fatty Liver Preservation against Cold Ischemia Injury: A Comparison between IGL-1 and HTK

    PubMed Central

    Panisello-Roselló, Arnau; Verde, Eva; Flores, Marta; Folch-Puy, Emma; Rolo, Anabela; Palmeira, Carlos; Hotter, Georgina; Adam, René; Roselló-Catafau, Joan

    2018-01-01

    Institute Goeorges Lopez 1 (IGL-1) and Histidine-Tryptophan-Ketoglutarate (HTK) preservation solutions are regularly used in clinical for liver transplantation besides University of Wisconsin (UW) solution and Celsior. Several clinical trials and experimental works have been carried out comparing all the solutions, however the comparative IGL-1 and HTK appraisals are poor; especially when they deal with the underlying protection mechanisms of the fatty liver graft during cold storage. Fatty livers from male obese Zücker rats were conserved for 24 h at 4 °C in IGL-1 or HTK preservation solutions. After organ recovery and rinsing of fatty liver grafts with Ringer Lactate solution, we measured the changes in mechanistic target of rapamycin (mTOR) signaling activation, liver autophagy markers (Beclin-1, Beclin-2, LC3B and ATG7) and apoptotic markers (caspase 3, caspase 9 and TUNEL). These determinations were correlated with the prevention of liver injury (aspartate and alanine aminostransferase (AST/ALT), histology) and mitochondrial damage (glutamate dehydrogenase (GLDH) and confocal microscopy findings). Liver grafts preserved in IGL-1 solution showed a marked reduction on p-TOR/mTOR ratio when compared to HTK. This was concomitant with significant increased cyto-protective autophagy and prevention of liver apoptosis, including inflammatory cytokines such as HMGB1. Together, our results revealed that IGL-1 preservation solution better protected fatty liver grafts against cold ischemia damage than HTK solution. IGL-1 protection was associated with a reduced liver damage, higher induced autophagy and decreased apoptosis. All these effects would contribute to limit the subsequent extension of reperfusion injury after graft revascularization in liver transplantation procedures. PMID:29364854

  1. Simultaneous air transportation of the harvested heart and visceral organs for transplantation.

    PubMed

    Aydin, U; Yazici, P; Kazimi, C; Bozoklar, A; Sozbilen, M; Zeytunlu, M; Kilic, M

    2008-01-01

    The purpose of this study was to evaluate the duration for organ procurement including both heart and visceral organs and outcomes of the simultaneous transportation of the teams back to the recipient hospitals. Between March 2005 and March 2007, 37/82 organ procurement was performed in the district hospitals and transported to our institution for organ transplantation. Combined heart and visceral organ procurement which was simultaneously transported to the recipient hospitals by one air vehicle was reviewed. After both the thoracic and abdominal cavities were entered, all intra-abdominal organs were mobilized allowing exposure of the inferior mesenteric vein and aorta. The supraceliac abdominal aorta was elevated. The attachments of the liver in the hilar region were incised and both kidneys and pancreas prepared for removal. After the inferior mesenteric vein and aorta were cannulated, simultaneous aortic cross-clamping was performed and cold preservation solution infused. Harvested organs were packed with ice and removed to the back table for initial preparation and packaging for air transport. The mean duration of 6 procurement procedures was 63 minutes (range 50-75 minutes) to aortic clamping, and 27.5 minutes (range, 20-40 minutes) between clamping and harvesting. Mean cold ischemia times for 6 hearts, 6 livers, 12 kidneys, 2 pancreas, and 1 small intestine were 2.4 hours (range, 2-3.5 hours), 5 hours (range, 3-8 hours), 10.3 hours (range, 8-15 hours), 6.7 hours, and 9.5 hours, respectively. No graft complication was observed to be associated with the procurement procedure. Better collaborations between surgical teams and rapid procurement techniques provide simultaneous air transportation back to the recipient hospital with reduced cold ischemia times of the visceral organs.

  2. Neuroprotection: Lessons from hibernators

    PubMed Central

    Dave, Kunjan R.; Christian, Sherri L.; Perez-Pinzon, Miguel A.; Drew, Kelly L.

    2012-01-01

    Mammals that hibernate experience extreme metabolic states and body temperatures as they transition between euthermia, a state resembling typical warm blooded mammals, and prolonged torpor, a state of suspended animation where the brain receives as low as 10% of normal cerebral blood flow. Transitions into and out of torpor are more physiologically challenging than the extreme metabolic suppression and cold body temperatures of torpor per se. Mammals that hibernate show unprecedented capacities to tolerate cerebral ischemia, a decrease in blood flow to the brain caused by stroke, cardiac arrest or brain trauma. While cerebral ischemia often leads to death or disability in humans and most other mammals, hibernating mammals suffer no ill effects when blood flow to the brain is dramatically decreased during torpor or experimentally induced during euthermia. These animals, as adults, also display rapid and pronounced synaptic flexibility where synapses retract during torpor and rapidly re-emerge upon arousal. A variety of coordinated adaptations contribute to tolerance of cerebral ischemia in these animals. In this review we discuss adaptations in heterothermic mammals that may suggest novel therapeutic targets and strategies to protect the human brain against cerebral ischemic damage and neurodegenerative disease. PMID:22326449

  3. Usefulness of ambulatory radionuclide monitoring of left ventricular function early after acute myocardial infarction for predicting residual myocardial ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breisblatt, W.M.; Weiland, F.L.; McLain, J.R.

    1988-11-15

    Ambulatory radionuclide monitoring of left ventricular function was performed with the nuclear Vest device in 35 patients early after acute myocardial infarction. Patients were evaluated during post-infarction treadmill, other activities that included mental stress and cold pressor challenge, and with stress thallium imaging and cardiac catheterization. Of the 35 patients evaluated, 14 had ischemic responses on treadmill testing and 21 had negative responses. By contrast, 20 had redistribution by thallium imaging suggesting ischemia. Vest studies demonstrated 56 responses suggestive of ischemia in 23 patients. Twenty-two occurred during exercise and 13 with mental stress. Seventy-five percent were silent and only 39%more » had associated electrocardiographic changes. Vest responses were compared in patients whose thallium scan was indicative of ischemia (thallium-positive) and those without ischemia (thallium-negative). Ejection fraction was higher in the thallium-positive group (0.52 +/- 0.11), as compared with thallium-negative patients (0.44 +/- 0.1). With exercise, ejection fraction decreased for the thallium-positive patients from 0.52 +/- 0.11 to 0.40 +/- 0.09 at peak exercise. For thallium-negative patients, ejection fraction changes were not significant. During mental stress, ejection fraction decreased from 0.51 +/- 0.11 to 0.45 +/- 0.12 for thallium-positive patients while thallium-negative patients were unchanged. Vest-measured decreases in ejection fraction of greater than or equal to 5 units during exercise were highly sensitive (90%), specific (73%) and predictive (82%) of a positive thallium scan. The same response for mental stress was specific (87%) and predictive (85%) of a positive scan result.« less

  4. Energy status of pig donor organs after ischemia is independent of donor type.

    PubMed

    Stadlbauer, Vanessa; Stiegler, Philipp; Taeubl, Philipp; Sereinigg, Michael; Puntschart, Andreas; Bradatsch, Andrea; Curcic, Pero; Seifert-Held, Thomas; Zmugg, Gerda; Stojakovic, Tatjana; Leopold, Barbara; Blattl, Daniela; Horki, Vera; Mayrhauser, Ursula; Wiederstein-Grasser, Iris; Leber, Bettina; Jürgens, Günther; Tscheliessnigg, Karlheinz; Hallström, Seth

    2013-04-01

    Literature is controversial whether organs from living donors have a better graft function than brain dead (BD) and non-heart-beating donor organs. Success of transplantation has been correlated with high-energy phosphate (HEP) contents of the graft. HEP contents in heart, liver, kidney, and pancreas from living, BD, and donation after cardiac death in a pig model (n=6 per donor type) were evaluated systematically. BD was induced under general anesthesia by inflating a balloon in the epidural space. Ten hours after confirmation, organs were retrieved. Cardiac arrest was induced by 9V direct current. After 10min of ventricular fibrillation without cardiac output, mechanical and medical reanimation was performed for 30min before organ retrieval. In living donors, organs were explanted immediately. Freeze-clamped biopsies were taken before perfusion with Celsior solution (heart) or University of Wisconsin solution (abdominal organs) in BD and living donors or with Histidine-Tryptophan-Ketoglutaric solution (all organs) in non-heart-beating donors, after perfusion, and after cold ischemia (4h for heart, 6h for liver and pancreas, and 12h for kidney). HEPs (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, and phosphocreatine), xanthine, and hypoxanthine were measured by high-performance liquid chromatography. Energy charge and adenosine triphosphate-to-adenosine diphosphate ratio were calculated. After ischemia, organs from different donor types showed no difference in energy status. In all organs, a decrease of HEP and an increase in hypoxanthine contents were observed during perfusion and ischemia, irrespective of the donor type. Organs from BD or non-heart-beating donors do not differ from living donor organs in their energy status after average tolerable ischemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Does machine perfusion decrease ischemia reperfusion injury?

    PubMed

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Incidence and Severity of Acute Cellular Rejection in Recipients Undergoing Adult Living Donor or Deceased Donor Liver Transplantation123

    PubMed Central

    Shaked, Abraham; Ghobrial, R. Mark; Merion, Robert M.; Shearon, Tempie H.; Emond, Jean C.; Fair, Jeffrey H.; Fisher, Robert A.; Kulik, Laura M.; Pruett, Timothy L.; Terrault, Norah A.

    2013-01-01

    Living donor liver transplantation (LDLT) may have better immunological outcomes compared to deceased donor liver transplantation (DDLT). The aim of this study was to analyze the incidence of acute cellular rejection (ACR) after LDLT and DDLT. Data from the Adult-to-Adult Living Donor Liver Transplantation (A2ALL) Retrospective Cohort Study on 593 liver transplants done between May 1998 and March 2004 were studied (380 LDLT; 213 DDLT). Median LDLT and DDLT follow-up was 778 and 713 days, respectively. Rates of clinically treated and biopsy-proven ACR were compared. There were 174 (46%) LDLT and 80 (38%) DDLT recipients with ≥1 clinically treated episodes of ACR, whereas 103 (27%) LDLT and 58 (27%) DDLT recipients had ≥1 biopsy-proven ACR episode. A higher proportion of LDLT recipients had clinically treated ACR (P=0.052), but this difference was largely attributable to one center. There were similar proportions of biopsy-proven rejection (P=0.97) and graft loss due to rejection (P=0.16). Longer cold ischemia time was associated with a higher rate of ACR in both groups despite much shorter median cold ischemia time in LDLT. These data do not show an immunological advantage for LDLT, and therefore do not support the application of unique post-transplant immunosuppression protocols for LDLT recipients. PMID:19120082

  7. Liver Transplantation With Old Grafts: A Ten-Year Experience.

    PubMed

    Roullet, S; Defaye, M; Quinart, A; Adam, J-P; Chiche, L; Laurent, C; Neau-Cransac, M

    2017-11-01

    The persistent scarcity of donors has prompted liver transplantation teams to find solutions for increasing graft availability. We report our experience of liver transplantations performed with grafts from older donors, specifically over 70 and 80 years old. We analyzed our prospectively maintained single-center database from January 1, 2005, to December 31, 2014, with 380 liver transplantations performed in 354 patients. Six groups were composed according to donor age: <40 (n = 84), 40 to 49 (n = 67), from 50 to 59 (n = 62), from 60 to 69 (n = 76), from 70 to 79 (n = 64), and ≥80 years (n = 27). Donors <40 years of age had a lower body mass index, died more often from trauma, and more often had cardiac arrest and high transaminase levels. In contrast, older donors (≥70 years of age) died more often from stroke. Recipients of grafts from donors <50 years of age were more frequently infected by hepatitis C virus; recipients of oldest grafts more often had hepatocellular carcinoma. Cold ischemia time was the shortest in donors >80 years of age. Patient survival was not significantly different between the groups. In multivariate analysis, factors predicting graft loss were transaminase peak, retransplantation and cold ischemia time but not donor age. Older donors >70 and >80 years of age could provide excellent liver grafts. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Trend in lung transplantation in the U.S.: an analysis of the UNOS registry.

    PubMed

    Freitas, Maria Cecilia S

    2010-01-01

    The number of lung transplants continues to increase in the U.S. The most significant change over the last decade occurred after the 2005 implementation of LAS. When the percentage of patients being transplanted increased even further, while time-to-transplant and the number of patients dying on the waiting list significantly declined. As a result of implementation of LAS in 2005, IPF recipients became the largest group to receive a lung transplant. And the number of transplants for patients age 60 and over has increased significantly. The number of DL transplants performed yearly increased while the number of SL transplants has remained relatively consistent throughout the last decade. Though the gender distribution of recipients has fluctuated each year, the proportion of females receiving lung transplant has decreased. Of the deceased-donor DL and SL transplant recipients, 69% had a cold ischemia time between 3-6 hrs. And 79% of primary DL and SL transplant recipients had a 0% PRA. 6. A higher number of HLA mismatches impacts unfavorably on graft survival rates; yet, surprisingly, zero HLA A-B-DR MM also have an unfavorable impact; Recipients with less than two hours of cold ischemia-time (n = 815, 4.3%) have the worst five-year graft survival; PRA levels greater than 25% have an unfavorable impact on graft survival.

  9. Stress associated proteins metallothionein, HO-1 and HSP 70 in human zero-hour biopsies of transplanted kidneys.

    PubMed

    August, Christian; Brockmann, Jens; Vowinkel, Thorsten; Wolters, Heiner; Dietl, Karl-Heinz; Levkau, Bodo; Heidenreich, Stefan; Lang, Detlef; Baba, Hideo A

    2006-08-01

    Light microscopic alterations reflecting both previous and preservation-induced changes in the donor organ are usually not very distinctive. The ischemia/reperfusion-associated injury depends primarily on the conditions of donor organ preservation. The present study examined human kidney biopsies with special attention paid to the molecular mechanisms of preservation-induced injury preceding reperfusion. Stress-associated proteins hemeoxygenase-1 (HO-1), heat shock protein 70 (HSP 70), and metallothionein (MT) were studied in human zero-hour biopsies of transplanted kidneys prior to reperfusion in 29 patients. Protein expression was evaluated by semiquantitative immunohistochemistry and Western blotting for HO-1 and HSP 70. These findings were correlated with terminal deoxynucleotidyltransferase-mediated 2'-deoxyuridine 5'-triphosphate-digoxigenin nick end labeling (TUNEL) staining and follow up. Compared to controls, MT and HSP 70 expression was significantly higher at zero hour. In contrast, HO-1 and the number of TUNEL-positive cells were not elevated. MT and HO-1 immunoexpression were inversely associated with graft function, and hence, were of prognostic relevance. MT and HSP 70 were sensitive to the duration of cold ischemia. MT and HO-1 are suitable indicators for tissue injury during ischemia and may serve as new predictive markers that need to be validated in further independent studies.

  10. Unilateral brain hypothermia as a method to examine efficacy and mechanisms of neuroprotection against global ischemia.

    PubMed

    Silasi, Gergely; Colbourne, Frederick

    2011-01-01

    Hypothermia, especially applied during ischemia, is the gold-standard neuroprotectant. When delayed, cooling must often be maintained for a day or more to achieve robust, permanent protection. Most animal and clinical studies use whole-body cooling-an arduous technique that can cause systemic complications. Brain-selective cooling may avoid such problems. Thus, in this rat study, we used a method that cools one hemisphere without affecting the contralateral side or the body. Localized brain hypothermia was achieved by flushing cold water through a metal tube attached to the rats' skull. First, in anesthetized rats we measured temperature in the cooled and contralateral hemisphere to demonstrate selective unilateral cooling. Subsequent telemetry recordings in awake rats confirmed that brain cooling did not cause systemic hypothermia during prolonged treatment. Additionally, we subjected rats to transient global ischemia and after recovering from anesthesia they remained at normothermia or had their right hemisphere cooled for 2 days (∼32°C-33°C). Hypothermia significantly lessened CA1 injury and microglia activation on the right side at 1 and 4 week survival times. Near-complete injury and a strong microglia response occurred in the left (normothermic) hippocampus as occurred in both hippocampi of the untreated group. Thus, this focal cooling method is suitable for evaluating the efficacy and mechanisms of hypothermic neuroprotection in global ischemia models. This method also has advantages over many current systemic cooling protocols in rodents, namely: (1) lower cost, (2) simplicity, (3) safety and suitability for long-term cooling, and (4) an internal control-the normothermic hemisphere.

  11. The Impact of Proposed Changes in Liver Allocation Policy on Cold Ischemia Times and Organ Transportation Costs

    PubMed Central

    DuBay, D. A.; MacLennan, P. A.; Reed, R. D.; Fouad, M.; Martin, M.; Meeks, C. B.; Taylor, G.; Kilgore, M. L.; Tankersley, M.; Gray, S. H.; White, J. A.; Eckhoff, D. E.; Locke, J. E.

    2015-01-01

    Changes to the liver allocation system have been proposed to decrease regional variation in access to liver transplant. It is unclear what impact these changes will have on cold ischemia times (CITs) and donor transportation costs. Therefore, we performed a retrospective single center study (2008–2012) measuring liver procurement CIT and transportation costs. Four groups were defined: Local-within driving distance (Local-D, n = 262), Local-flight (Local-F, n = 105), Regional-flight <3 h (Regional <3h, n = 61) and Regional-Flight >3 h (Regional >3h, n = 53). The median travel distance increased in each group, varying from zero miles (Local-D), 196 miles (Local-F), 384 miles (Regional <3 h), to 1647 miles (Regional >3 h). Increasing travel distances did not significantly increase CIT until the flight time was >3 h. The average CIT ranged from 5.0 to 6.0 h for Local-D, Local-F and Regional <3h, but increased to 10 h for Regional >3h (p < 0.0001). Transportation costs increased with greater distance traveled: Local-D $101, Local-F $1993, Regional <3h $8324 and Regional >3 h $27 810 (p < 0.0001). With proposed redistricting, local financial modeling suggests that the average liver donor procurement transportation variable direct costs will increase from $2415 to $7547/liver donor, an increase of 313%. These findings suggest that further discussion among transplant centers and insurance providers is needed prior to policy implementation. PMID:25612501

  12. Is prolonged cold ischemia a contraindication to using kidneys from acute kidney injury donors?

    PubMed

    Orlando, Giuseppe; Khan, Muhammad A; El-Hennawy, Hany; Farney, Alan C; Rogers, Jeffrey; Reeves-Daniel, Amber; Gautreaux, Michael D; Doares, William; Kaczmorski, Scott; Stratta, Robert J

    2018-03-01

    To determine the impact of prolonged cold ischemia time (CIT) on the outcome of acute kidney injury (AKI) renal grafts, we therefore performed a single-center retrospective analysis in adult patients receiving kidney transplantation (KT) from AKI donors. Outcomes were stratified according to duration of CIT. A total of 118 patients receiving AKI grafts were enrolled. Based on CIT, patients were stratified as follows: (i) <20 hours, 27 patients; (ii) 20-30 hours, 52 patients; (iii) 30-40 hours, 30 patients; (iv) ≥40 hours, nine patients. The overall incidence of delayed graft function DGF was 41.5%. According to increasing CIT category, DGF rates were 30%, 42%, 40%, and 78%, respectively (P = .03). With a mean follow-up of 48 months, overall patient and graft survival rates were 91% and 81%. Death-censored graft survival (DCGS) rates were 84% and 88% for patients with and without DGF (P = NS). DCGS rates were 92% in patients with CIT <20 hours compared to 85% with CIT >20 hours (P = NS). In the nine patients with CIT >40 hours, the 4-year DCGS rate was 100%. We conclude that prolonged CIT in AKI grafts may not adversely influence outcomes and so discard of AKI kidneys because of projected long CIT is not warranted when donors are wisely triaged. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. [Comparison of bulbar conjunctival microcirculation in rabbits of five subtypes of blood stasis syndrome].

    PubMed

    Hu, Wen-Juan; Zhang, Bing-Tao; Wu, Rui

    2013-09-01

    To observe changes of bulbar conjunctival microcirculation in rabbits of five kinds subtypes of blood stasis syndrome (BSS), and to analyze their different properties. Totally 60 Japanese big-ear rabbits were randomly divided into six groups, i.e., qi deficiency blood stasis group, qi stagnation blood stasis group, cold coagulation blood stasis group, heat toxin blood stasis group, external injury blood stasis group, and the normal control group, 10 in each group. Changes of rabbit bulbar conjunctiva microcirculation were observed before and after modeling. Compared with the normal control group, the total integral of bulbar conjunctiva microcirculation obviously increased in the 5 BSS groups (P < 0.05). There was no statistical difference among the 5 BSS groups (P > 0.05). But there was statistical difference in any concrete integral among the 5 BSS groups (P < 0.05). Thickening blood vessels and errhysis of vascular walls were dominant in the heat toxin blood stasis group. Ischemia, partial cystic dilatation, vascular engorgement and twist were dominant in the qi deficiency blood stasis group. Partial vascular buckling, aneurysmal changes, flow velocity slowed down were dominant in the qi stagnation blood stasis group. Vascular buckling, hyperemia, vascular engorgement, blood flow slowed down were dominant in the external injury blood stasis group. Vascular buckling, ischemia, dark color were dominant in the cold coagulation blood stasis group. Changes of bulbar conjunctival microcirculation were different in 5 kinds of BSS types, which could reflect their various features.

  14. Intraoperative Oxygen Consumption During Liver Transplantation.

    PubMed

    Shibata, M; Matsusaki, T; Kaku, R; Umeda, Y; Yagi, T; Morimatsu, H

    2015-12-01

    The aim of this study was to investigate the changes in oxygen consumption during liver transplantation and to examine the relationship between intraoperatively elevated systemic oxygen consumption and postoperative liver function. This study was performed in 33 adult patients undergoing liver transplantation between September 2011 and March 2014. We measured intraoperative oxygen consumption through the use of indirect calorimetry, preoperative and intraoperative data, liver function tests, and postoperative complications and outcomes. The mean age of patients was 52 ± 9.7 years; 14 (42%) of them were women. Average Model for End-Stage Liver Disease scores were 20 ± 8.9. Oxygen consumption significantly increased after reperfusion from 172 ± 30 mL/min during the anhepatic phase to 209 ± 30 mL/min (P < .0001). We divided patients into 2 groups according to the increase in oxygen consumption after reperfusion (oxygen consumption after reperfusion minus anhepatic phase oxygen consumption: 40 mL/min increase as cutoff). The higher consumption group had a longer cold ischemia time and higher postoperative aspartate aminotransferase and alanine aminotransferase levels as compared with the lower oxygen consumption group. There were no statistically significant differences in major postoperative complications, but the higher oxygen consumption group tended to have shorter hospital stays than the lower consumption group (58 versus 95 days). We have demonstrated that oxygen consumption significantly increased after reperfusion. Furthermore, this increased oxygen consumption was associated with a longer cold ischemia time and shorter hospital stays. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Do Alloreactivity and Prolonged Cold Ischemia Cause Different Elementary Lesions in Chronic Allograft Nephropathy?

    PubMed Central

    Herrero-Fresneda, Immaculada; Torras, Joan; Cruzado, Josep M.; Condom, Enric; Vidal, August; Riera, Marta; Lloberas, Nuria; Alsina, Jeroni; Grinyo, Josep M.

    2003-01-01

    This study assesses the individual contributions of the nonalloreactive factor, cold ischemia (CI), and alloreactivity to late functional and structural renal graft changes, and examines the effect of the association of both factors on the progression of chronic allograft nephropathy. Lewis rats acted as receptors of kidneys from either Lewis or Fischer rats. For CI, kidneys were preserved for 5 hours. The rats were divided into four groups: Syn, syngeneic graft; SynI, syngeneic graft and CI; Allo, allogeneic graft; AlloI, allogeneic graft and CI. Renal function was assessed every 4 weeks for 24 weeks. Grafts were evaluated for acute inflammatory response at 1 week and for chronic histological damage at 24 weeks. Only when CI and allogenicity were combined did immediate posttransplant mortality occur, while survivors showed accelerated renal insufficiency that induced further mortality at 12 weeks after transplant. Solely ischemic rats developed renal insufficiency. Renal structural damage in ischemic rats was clearly tubulointerstitial, while significant vasculopathy and glomerulosclerosis appeared only in the allogeneic groups. There was increased infiltration of macrophages and expression of mRNA-transforming growth factor-β1 in the ischemic groups, irrespective of the allogeneic background. The joint association of CI plus allogenicity significantly increased cellular infiltration at both early and late stages, aggravating tubulointerstitial and vascular damage considerably. In summary, CI is mainly responsible for tubulointerstitial damage, whereas allogenicity leads to vascular lesion. The association of both factors accelerates and aggravates the progression of experimental chronic allograft nephropathy. PMID:12507896

  16. The natural history of renal function after surgical management of renal cell carcinoma: Results from the Canadian Kidney Cancer Information System.

    PubMed

    Mason, Ross; Kapoor, Anil; Liu, Zhihui; Saarela, Olli; Tanguay, Simon; Jewett, Michael; Finelli, Antonio; Lacombe, Louis; Kawakami, Jun; Moore, Ronald; Morash, Christopher; Black, Peter; Rendon, Ricardo A

    2016-11-01

    Patients who undergo surgical management of renal cell carcinoma (RCC) are at risk for chronic kidney disease and its sequelae. This study describes the natural history of renal function after radical and partial nephrectomy and explores factors associated with postoperative decline in renal function. This is a multi-institutional cohort study of patients in the Canadian Kidney Cancer Information System who underwent partial or radical nephrectomy for RCC. Estimated glomerular filtration rate (eGFR) and stage of chronic kidney disease were determined preoperatively and at 3, 12, and 24 months postoperatively. Linear regression was used to determine the association between postoperative eGFR and type of surgery (radical vs. partial), duration of ischemia, ischemia type (warm vs. cold), and tumor size. With a median follow-up of 26 months, 1,379 patients were identified from the Canadian Kidney Cancer Information System database including 665 and 714 who underwent partial and radical nephrectomy, respectively. Patients undergoing radical nephrectomy had a lower eGFR (mean = 19ml/min/1.73m 2 lower) at 3, 12, and 24 months postoperatively (P<0.001). Decline in renal function occurred early and remained stable throughout follow-up. A lower preoperative eGFR and increasing age were also associated with a lower postoperative eGFR (P<0.01). Ischemia type and duration were not predictive of postoperative decline in eGFR (P>0.05). Severe renal failure (eGFR<30ml/min/1.73m 2 ) developed postoperatively in 12.5% and 4.1% of radical and partial nephrectomy patients, respectively (P<0.001). After the initial postoperative decline, renal function remains stable in patients undergoing surgery for RCC. Patients undergoing radical nephrectomy have a greater long-term reduction in renal function compared with those undergoing partial nephrectomy. Ischemia duration and type are not predictive of postoperative renal function when adhering to generally short ischemia durations. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Risk factors for vascular thrombosis in pediatric renal transplantation: a special report of the North American Pediatric Renal Transplant Cooperative Study.

    PubMed

    Singh, A; Stablein, D; Tejani, A

    1997-05-15

    Vascular thrombosis remains a major cause of graft failure, accounting for 12.2% of failed index transplants and 19.2% of repeat transplants. We conducted a special study to identify the risk factors for vascular thrombosis. A total of 4394 transplants (2060 living donor [LD] transplants and 2334 cadaver donor [CAD] source transplants) were evaluated. The respective vascular thrombosis rates for LD and CAD transplants were 38/2060 (1.8%) and 100/2334 (4.2%) (P<0.001). Univariate analysis showed that the rate of graft loss due to thrombosis was significantly higher in younger children (less than 2 years of age) as compared with older age groups (2-5 years, 6-12 years, and more than 12 years of age) (9.0% vs. 5.5%, 4.4%, and 3.5% for CAD transplant recipients and 3.5% vs. 3.4%, 0.7%, and 1.9% for LD graft recipients). Recipients of kidneys from cadaver donors less than 5 years of age had a significantly higher thrombosis rate (8.3%) than did recipients from older donor groups (5-10 years, 4.5%; greater than 10 years, 3.2%). Recipients of kidneys with cold ischemia time greater than 24 hr also had a higher thrombosis rate (5.6%), as compared with recipients of kidneys with a shorter cold ischemia time (3.2%). Recipients of antilymphocyte therapy on day 0 or day 1 were at dimished risk of graft loss due to thrombosis (2.2% vs. 4.1%, P=0.001). Comparable trends were seen for both LD and CAD organ recipients. LD organ recipients with a history of prior transplantation had a significantly higher rate of thrombosis as compared with those who received a primary transplant (4.6% vs. 1.6%, P=0.005). For both LD and CAD organ recipients, the occurrence of acute tubular necrosis was a significnat risk factor for the development of thrombosis. Regression analysis showed that for LD organ recipients, a history of prior transplantation increased the risk for thrombosis, whereas increasing recipient age had a linear decreasing risk effect. The use of antilymphocyte antibody or cyclosporine on day 0/1 decreased the risk for thrombosis. For CAD kidney recipients, organ cold ischemia time greater than 24 hr increased the risk for thrombosis. The use of antibody induction therapy, donors greater than 5 years of age, and increasing recipient age were factors that decreased the risk for thrombosis.

  18. Clusterin Reduces Cold Ischemia-Reperfusion Injury in Heart Transplantation Through Regulation of NF-kB Signaling and Bax/Bcl-xL Expression.

    PubMed

    Liu, Guodong; Zhang, Hongmei; Hao, Fengyun; Hao, Jing; Pan, Lixiao; Zhao, Qing; Wo, Jinshan

    2018-01-01

    Ischemia-reperfusion (I/R) injury is an unavoidable event occurring during heart transplantation and is a key factor in graft failure and the long-term survival rate of recipients. Therefore, there is an urgent need for the development of new therapies to prevent I/R injury. Clusterin is a hetero-dimeric glycoprotein with an antiapoptotic function. In this study, we investigated whether clusterin was cardioprotective in heart transplantation against I/R injury using an in vivo rat model and an in vitro cell culture system, and examined the underlying mechanisms of I/R injury. Heart grafts from wild-type C57BL/6 mice were preserved in UW solution (control) or UW solution containing recombinant human apolipoprotein-J (hr clusterin) for 24 h. The preserved hearts were implanted into recipient mice of the same strain as the donors for 72 h, and the heart grafts were then taken for histopathological and gene expression analyses. An in vitro ischemia reperfusion model using H9C2 cells or H9C2/clusterin cDNA cells was constructed. The expression of clusterin, p65, Bax, Bcl-xL, IL-1β, and TNF-α protein and mRNA in heart tissue and H9C2 cells was detected by western blot, reverse transcription-polymerase chain reaction (RT-PCR), and quantitative RT-PCR assays; IL-1β and TNF-α protein was detected by enzyme-linked immunosorbent assays; NF-kB activity was detected by an electrophoretic mobility shift assay; cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and flow cytometric analyses. Cold I/R caused severe morphologic myocardial injury to heart grafts from wild-type C57BL/6 mice, whereas grafts from hr clusterin preservation showed less damage, as demonstrated by decreased cell apoptosis/death, decreased neutrophil infiltration, and the preservation of the normal structure of the heart. Clusterin reduced the expression of p65, pre-inflammatory IL-1β, and TNF-α, and the pro-apoptotic gene Bax, while it enhanced the expression of the anti-apoptotic gene Bcl-xL in vitro and in vivo. Clusterin inhibited cell apoptosis/death and reduced pre-inflammatory. Clusterin is a promising target for preventing cold I/R injury in heart transplantation. This study also shows that the resultant protective effects of clusterin are mediated by NF-κB signaling and Bax/Bcl-xL expression. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. The Era of "Warm Organ Transplantation" Is Coming.

    PubMed

    Guo, Zhiyong; Fung, Uu En; Tang, Yunhua; Zhao, Qiang; Zhang, Zhiheng; Zhu, Zebin; Huang, Shanzhou; Wang, Linhe; Zhang, Yixi; Yang, Jie; Ju, Weiqiang; Wang, Dongping; Yang, Lu; Chen, Maogen; Wu, Linwei; Ma, Yi; Hu, Anbin; Chen, Guodong; Yuan, Xiaopeng; Cai, Changjie; Zhu, Xiaofeng; Wang, Changxi; Li, Xian C; Huang, Jiefu; He, Xiaoshun

    2018-05-15

    We would like to thank Otto van Leeuwen and colleagues for their interests in our paper titled "The First Case of Ischemia-Free Organ Transplantation (IFOT) in Human: A Proof of Concept"[1,2]. We appreciate that their team considers our innovation of IFOT "a milestone in the history of organ transplantation". All conventional transplant procedures require cessation of blood supply to the donor organs, a period in which the organs become cold and hypoxic. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Critical Ischemia Times and the Effect of Novel Preservation Solutions HTK-N and TiProtec on Tissues of a Vascularized Tissue Isograft.

    PubMed

    Messner, Franka; Hautz, Theresa; Blumer, Michael J F; Bitsche, Mario; Pechriggl, Elisabeth J; Hermann, Martin; Zelger, Bettina; Zelger, Bernhard; Öfner, Dietmar; Schneeberger, Stefan

    2017-09-01

    We herein investigate critical ischemia times and the effect of novel preservation solutions such as new histidine-tryptophan-ketoglutarate (HTK-N) and TiProtec on the individual tissues of a rat limb isograft. Orthotopic hind-limb transplantations were performed in male Lewis rats after 2 hours, 6 hours, or 10 hours of cold ischemia (CI). Limbs were flushed and stored in HTK-N, TiProtec, HTK, or saline solution. Muscle, nerve, vessel, skin, and bone samples were procured on day 10 for histology, immunohistochemistry, confocal and electron microscopy, and quantitative real-time polymerase chain reaction analysis. Histomorphology of the muscle showed a mainly perivascular inflammatory infiltrate, fibrotic degeneration, and neovascularization after 6 hours and 10 hours of CI. However, centrally aligned nuclei observed in muscle fibers suggest for muscle regeneration in these samples. In addition to Wallerian degeneration, nerve injury was significantly aggravated (P = 0.032) after prolonged CI. Proinflammatory and regulatory cytokines were most significantly upregulated after 2-hour CI. Our data suggest no superiority of novel perfusates HTK-N and TiProtec in terms of tissue preservation, compared with HTK and saline. Limiting CI time for less than 6 hours is the most significant factor to reduce tissue damage in vascularized tissue transplantation. Signs of muscle regeneration give rise that ischemic muscle damage in limb transplantation might be reversible to a certain extent.

  1. Persufflation (gaseous oxygen perfusion) as a method of heart preservation.

    PubMed

    Suszynski, Thomas M; Rizzari, Michael D; Scott, William E; Eckman, Peter M; Fonger, James D; John, Ranjit; Chronos, Nicolas; Tempelman, Linda A; Sutherland, David E R; Papas, Klearchos K

    2013-04-22

    Persufflation (PSF; gaseous oxygen perfusion) is an organ preservation technique with a potential for use in donor heart preservation. Improved heart preservation with PSF may improve outcomes by maintaining cardiac tissue quality in the setting of longer cold ischemia times and possibly increasing the number of donor hearts available for allotransplant. Published data suggests that PSF is able to extend the cold storage times for porcine hearts up to 14 hours without compromising viability and function, and has been shown to resuscitate porcine hearts following donation after cardiac death. This review summarizes key published work on heart PSF, including prospective implications and future directions for PSF in heart transplantation. We emphasize the potential impact of extending preservation times and expanding donor selection criteria in heart allotransplant. Additionally, the key issues that need to be addressed before PSF were to become a widely utilized preservation strategy prior to clinical heart transplantation are summarized and discussed.

  2. Impact of cold ischemia time on the outcomes of kidneys with Kidney Donor Profile Index ≥85%: mate kidney analysis - a retrospective study.

    PubMed

    Sampaio, Marcelo S; Chopra, Bhavna; Tang, Amy; Sureshkumar, Kalathil K

    2018-07-01

    The new kidney allocation system recommends local and regional sharing of deceased donor kidneys (DDK) with 86-100% Kidney Donor Profile Index (KDPI) to minimize discard. Regional sharing can increase cold ischemia time (CIT) which may negatively impact transplant outcomes. Using a same donor mate kidney model, we aimed to define a CIT that should be targeted to optimize outcomes. Using Organ Procurement and Transplant Network/United Network for Organ Sharing database, we identified recipients of DDK from 2000 to 2013 with ≥85% KDPI. From this cohort, three groups of mate kidney recipients were identified based on CIT: group 1 (≥24 vs. ≥12 to <24 h), group 2 (≥24 vs. <12 h), and group 3 (≥12 to <24 vs. <12 h). Adjusted delayed graft function (DGF), and graft and patient survivals were compared for mate kidneys. DGF risk was significantly lower for patients with CIT <12 vs. ≥24 h in group 2 (adjusted OR: 0.25, 95% CI: 0.12-0.57, P < 0.001) while trending lower for CIT ≥12 to <24 vs. ≥24 h in group 1 (adjusted OR: 0.78, 95% CI: 0.59-1.03, P = 0.08) and CIT <12 vs. ≥12 to <24 h in group 3 (adjusted OR: 0.74, 95% CI: 0.55-1.0, P = 0.05). Adjusted graft and patient survivals were similar between mate kidneys in all groups. Minimizing CIT improves outcomes with regional sharing of marginal kidneys. © 2018 Steunstichting ESOT.

  3. Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/reperfusion injury in rats.

    PubMed

    Kawamura, Tomohiro; Huang, Chien-Sheng; Tochigi, Naobumi; Lee, Sungsoo; Shigemura, Norihisa; Billiar, Timothy R; Okumura, Meinoshin; Nakao, Atsunori; Toyoda, Yoshiya

    2010-12-27

    Successful abrogation of ischemia/reperfusion (I/R) injury of lung grafts could significantly improve short- and long-term outcomes for lung transplant (LTx) recipients. Hydrogen gas has potent antioxidant and antiapoptotic properties and has been recently used in number of experimental and clinical studies. The purpose of this research was to investigate whether inhaled hydrogen gas could reduce graft I/R injury during lung transplantation. Orthotopic left LTxs were performed in syngenic Lewis rats. Grafts were perfused with and stored in low potassium dextran solution at 4°C for 6 hr. The recipients received 100% O2 or 98% O2 with 2% N2, 2% He, or 2% H2 during surgery and 1 hr after reperfusion. The effects of hydrogen were assessed by functional, pathologic, and molecular analysis. Gas exchange was markedly impaired in animals exposed to 100% O2, 2% N2, or 2% He. Hydrogen inhalation attenuated graft injury as indicated by significantly improved gas exchange 2 hr after reperfusion. Graft lipid peroxidation was significantly reduced in the presence of hydrogen, demonstrating antioxidant effects of hydrogen in the transplanted lungs. Lung cold I/R injury causes the rapid production and release of several proinflammatory mediators and epithelial apoptosis. Exposure to 2% H2 significantly blocked the production of several proinflammatory mediators and reduced apoptosis with induction of the antiapoptotic molecules B-cell lymphoma-2 and B-cell lymphoma-extra large. Treatment of LTx recipients with inhaled hydrogen can prevent lung I/R injury and significantly improve the function of lung grafts after extended cold preservation, transplant, and reperfusion.

  4. Protection against renal ischemia-reperfusion injury through hormesis? Dietary intervention versus cold exposure.

    PubMed

    Shushimita, Shushimita; Grefhorst, Aldo; Steenbergen, Jacobie; de Bruin, Ron W F; Ijzermans, Jan N M; Themmen, Axel P N; Dor, Frank J M F

    2016-01-01

    Dietary restriction (DR) and fasting (FA) induce robust protection against the detrimental effects of renal ischemia-reperfusion injury (I/RI). Several mechanisms of protection have been proposed, such as hormesis. Hormesis is defined as a life-supporting beneficial effect resulting from the cellular responses to single or multiple rounds of (mild) stress. The cold exposure (CE) model is a stress model similar to DR, and has been shown to have hormetic effects and has proved to increase longevity. CE is considered to be the most robust method to increase metabolism through activation of brown adipocytes. BAT has been considered important in etiology of obesity and its metabolic consequences. Since DR, FA, and CE models are proposed to work through hormesis, we investigated physiology of adipose tissue and effect on BAT in these models and compared them to ad libitum (AL) fed mice. We also studied the differential effect of these stress models on immunological changes, and effect of CE on renal I/RI. We show similar physiological changes in adiposity in male C57Bl/6 mice due to DR, FA and CE, but the CE mice were not protected against renal I/RI. The immunophenotypic changes observed in the CE mice were similar to the AL animals, in contrast to FA mice, that showed major immunophenotypic changes in the B and T cell development stages in primary and secondary lymphoid organs. Our findings thus demonstrate that DR, FA and CE are hormetic stress models. DR and FA protect against renal I/IR, whereas CE could not. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Which Donor for Uterus Transplants: Brain-Dead Donor or Living Donor? A Systematic Review.

    PubMed

    Lavoué, Vincent; Vigneau, Cécile; Duros, Solène; Boudjema, Karim; Levêque, Jean; Piver, Pascal; Aubard, Yves; Gauthier, Tristan

    2017-02-01

    The aim of this systematic review was to evaluate and compare the pros and cons of using living donors or brain-dead donors in uterus transplantation programs, 2 years after the first worldwide live birth after uterus transplantation. The Medline database and the Central Cochrane Library were used to locate uterine transplantation studies carried out in human or nonhuman primates. All types of articles (case reports, original studies, meta-analyses, reviews) in English or French were considered for inclusion. Overall, 92 articles were screened and 44 were retained for review. Proof of concept for human uterine transplantation was demonstrated in 2014 with a living donor. Compared with a brain-dead donor strategy, a living donor strategy offers greater possibilities for planning surgery and also decreases cold ischemia time, potentially translating into a higher success rate. However, this approach poses ethical problems, given that the donor is exposed to surgery risks but does not derive any direct benefit. A brain-dead donor strategy is more acceptable from an ethical viewpoint, but its feasibility is currently unproven, potentially owing to a lack of compatible donors, and is associated with a longer cold ischemia time and a potentially higher rejection rate. The systematic review demonstrates that uterine transplantation is a major surgical innovation for the treatment of absolute uterine factor infertility. Living and brain-dead donor strategies are not mutually exclusive and, in view of the current scarcity of uterine grafts and the anticipated future rise in demand, both will probably be necessary.

  6. Effects of angiotensin II type 1 receptor antagonist and temperature on prolonged cardioplegic arrest in neonatal rat myocytes.

    PubMed

    Lucchese, Gianluca; Cambi, Giulia Elisa; De Rita, Fabrizio; Franzoi, Mauro; Faggian, Giuseppe; Mazzucco, Alessandro; Modesti, Pietro Amedeo; Luciani, Giovanni Battista

    2013-08-01

    Cardioplegic arrest is a model of ischemia/reperfusion injury and results in the death of irreplaceable cardiac myocytes by a programmed cell death or apoptosis. Signal transducers and activators of transcription (STAT) signaling pathways play an important role in the modulation of apoptosis after ischemia and reperfusion. Angiotensin II type 1 (AT1) receptor antagonist added to cardioplegia could represent an additional modality for enhancing myocardial protection during cardioplegic arrest. To test that hypothesis, we studied the effect of AT1 receptor antagonism and cardioplegia temperature perfusion on STATs modulation during cardioplegic arrest in neonatal rat hearts. Isolated, nonworking hearts (n = 4 per group) from neonatal rats were perfused aerobically in the Langendorff mode according to the following scheme: Dulbecco's Modified Eagle's Medium solution (Group 1); cold (4°C) modified St. Thomas' Hospital no. 2 (MSTH2) cardioplegic solution (Group 2); cold (4°C) MSTH2 cardioplegic solution plus AT1 antagonist (Valsartan) (Group 3); and warm (34°C) MSTH2 cardioplegic solution (Group 4). Thus, myocytes were isolated by enzymatic digestion, and STAT1, STAT2, STAT3, and STAT5 were investigated in Western blot studies. Times to arrest after cardioplegia were 6-10 s for all groups with the exception of Group 1 (spontaneous arrest after 12-16 s). Total cardioplegia delivery volume was about 300 mL in 15 min. Perfusion with cold MSTH2 supplemented with AT1 receptor antagonist (Group 3) induced a significant reduction in STAT1, STAT2, and STAT5 tyrosine phosphorylation versus other groups (P < 0.05). The decreased activation of STAT1, STAT2, and STAT5 observed in Group 3 was accompanied by reduction of interleukin-1β (P < 0.05). On the other hand, STAT3 activation was significantly reduced in Groups 1 and 4 (P < 0.05). Only perfusion with AT1 receptor antagonist supplemented with cold MSTH2 significantly decreases the inflammatory response of the neonatal rat cardiomyocytes without affecting antiapoptotic influence provided by activation of STAT3. Therefore, AT1 receptor antagonist could play a pivotal role in cytoprotective effect and cardiac recovery in neonates and infants. © 2013, Copyright the Authors. Artificial Organs © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  7. Ob/ob Mouse Livers Show Decreased Oxidative Phosphorylation Efficiencies and Anaerobic Capacities after Cold Ischemia

    PubMed Central

    Tagaloa, Sherry; Zhang, Linda; Dare, Anna J.; MacDonald, Julia R.; Yeong, Mee-Ling; Bartlett, Adam S. J. R.; Phillips, Anthony R. J.

    2014-01-01

    Background Hepatic steatosis is a major risk factor for graft failure in liver transplantation. Hepatic steatosis shows a greater negative influence on graft function following prolonged cold ischaemia. As the impact of steatosis on hepatocyte metabolism during extended cold ischaemia is not well-described, we compared markers of metabolic capacity and mitochondrial function in steatotic and lean livers following clinically relevant durations of cold preservation. Methods Livers from 10-week old leptin-deficient obese (ob/ob, n = 9) and lean C57 mice (n = 9) were preserved in ice-cold University of Wisconsin solution. Liver mitochondrial function was then assessed using high resolution respirometry after 1.5, 3, 5, 8, 12, 16 and 24 hours of storage. Metabolic marker enzymes for anaerobiosis and mitochondrial mass were also measured in conjunction with non-bicarbonate tissue pH buffering capacity. Results Ob/ob and lean mice livers showed severe (>60%) macrovesicular and mild (<30%) microvesicular steatosis on Oil Red O staining, respectively. Ob/ob livers had lower baseline enzymatic complex I activity but similar adenosine triphosphate (ATP) levels compared to lean livers. During cold storage, the respiratory control ratio and complex I-fueled phosphorylation deteriorated approximately twice as fast in ob/ob livers compared to lean livers. Ob/ob livers also demonstrated decreased ATP production capacities at all time-points analyzed compared to lean livers. Ob/ob liver baseline lactate dehydrogenase activities and intrinsic non-bicarbonate buffering capacities were depressed by 60% and 40%, respectively compared to lean livers. Conclusions Steatotic livers have impaired baseline aerobic and anaerobic capacities compared to lean livers, and mitochondrial function indices decrease particularly from after 5 hours of cold preservation. These data provide a mechanistic basis for the clinical recommendation of shorter cold storage durations in steatotic donor livers. PMID:24956382

  8. Effect of melatonin on kidney cold ischemic preservation injury

    PubMed Central

    Aslaner, Arif; Gunal, Omer; Turgut, Hamdi Taner; Celik, Erdal; Yildirim, Umran; Demirci, Rojbin Karakoyun; Gunduz, Umut Riza; Calis, Hasan; Dogan, Sami

    2013-01-01

    Melatonin is a potent free radical scavenger of reactive oxygen species, nitric oxide synthase inhibitor and a well-known antioxidant secreted from pineal gland. This hormone has been reported to protect tissue from oxidative damage. In this study, we aim to investigate the effect of melatonin on kidney cold ischemia time when added to preservation solution. Thirty male Wistar albino rats were divided equally into three groups; Ringer Lactate (RL) solution, University of Wisconsin (UW) solution with and without melatonin. The serum Lactate Dehydrogenase (LDH) activities of the preservation solutions at 2nd, 24th, 36th, and 48th hours were determined. Tissue malondialdehyde (MDA) levels were also measured and a histological examination was performed at 48th hour. Melatonin that added to preservation solution prevented enzyme elevation and decreased lipid peroxidation in preservation solution when compared to the control group (p<0.05). The histological examination revealed that UW solution containing melatonin significantly prevented the kidney from pathological injury (p<0.05). Melatonin added to preservation solutions such as UW solution seemed to protect the tissue preserved effectively from cold ischemic injury for up to 48 hour. PMID:24179573

  9. Hydrogen Gas Ameliorates Hepatic Reperfusion Injury After Prolonged Cold Preservation in Isolated Perfused Rat Liver.

    PubMed

    Shimada, Shingo; Wakayama, Kenji; Fukai, Moto; Shimamura, Tsuyoshi; Ishikawa, Takahisa; Fukumori, Daisuke; Shibata, Maki; Yamashita, Kenichiro; Kimura, Taichi; Todo, Satoru; Ohsawa, Ikuroh; Taketomi, Akinobu

    2016-12-01

    Hydrogen gas reduces ischemia and reperfusion injury (IRI) in the liver and other organs. However, the precise mechanism remains elusive. We investigated whether hydrogen gas ameliorated hepatic I/R injury after cold preservation. Rat liver was subjected to 48-h cold storage in University of Wisconsin solution. The graft was reperfused with oxygenated buffer with or without hydrogen at 37° for 90 min on an isolated perfusion apparatus, comprising the H 2 (+) and H 2 (-) groups, respectively. In the control group (CT), grafts were reperfused immediately without preservation. Graft function, injury, and circulatory status were assessed throughout the perfusion. Tissue samples at the end of perfusion were collected to determine histopathology, oxidative stress, and apoptosis. In the H 2 (-) group, IRI was indicated by a higher aspartate aminotransferase (AST), alanine aminotransferase (ALT) leakage, portal resistance, 8-hydroxy-2-deoxyguanosine-positive cell rate, apoptotic index, and endothelial endothelin-1 expression, together with reduced bile production, oxygen consumption, and GSH/GSSG ratio (vs. CT). In the H 2 (+) group, these harmful changes were significantly suppressed [vs. H 2 (-)]. Hydrogen gas reduced hepatic reperfusion injury after prolonged cold preservation via the maintenance of portal flow, by protecting mitochondrial function during the early phase of reperfusion, and via the suppression of oxidative stress and inflammatory cascades thereafter. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. Real-Time Noninvasive Assessment of Pancreatic ATP Levels During Cold Preservation

    PubMed Central

    Scott, W.E.; Matsumoto, S.; Tanaka, T.; Avgoustiniatos, E.S.; Graham, M.L.; Williams, P.C.; Tempelman, L.A.; Sutherland, D.E.; Hering, B.J.; Hammer, B.E.; Papas, K.K.

    2008-01-01

    31P-NMR spectroscopy was utilized to investigate rat and porcine pancreatic ATP:Pi ratios to assess the efficacy of existing protocols for cold preservation (CP) in maintaining organ quality. Following sacrifice, rat pancreata were immediately excised or left enclosed in the body for 15 minutes of warm ischemia (WI). After excision, rat pancreata were stored at 6°C to 8°C using histidine-tryptophan-ketoglutarate solution (HTK) presaturated with air (S1), HTK presaturated with O2 (S2), or the HTK/perfluorodecalin two-layer method (TLM) with both liquids presaturated with O2 (S3). 31P-NMR spectra were sequentially collected at 3, 6, 9, 12, and 24 hours of CP from pancreata stored with each of the three protocols examined. The ATP:Pi ratio for rat pancreata exposed to 15 minutes of WI and stored with S3 increased during the first 9 hours of CP, approaching values observed for organs procured with no WI. A marked reduction in the ATP:Pi ratio was observed beyond 12 hours of CP with S3. After 6 hours of CP, the ATP:Pi ratio was highest for S3, substantially decreased for S2, and below detection for S1. In sharp contrast to the rat model, ATP was barely detectable in porcine pancreata exposed to minimal warm ischemia (<15 minutes) stored with the TLM regardless of CP time. We conclude that 31P-NMR spectroscopy is a powerful tool that can be used to (1) noninvasively evaluate pancreata prior to islet isolation, (2) assess the efficacy of different preservation protocols, (3) precisely define the timing of reversible versus irreversible damage, and (4) assess whether intervention will extend this timing. PMID:18374082

  11. CXCR3+CD4+ T cells mediate innate immune function in the pathophysiology of liver ischemia/reperfusion injury.

    PubMed

    Zhai, Yuan; Shen, Xiu-da; Hancock, Wayne W; Gao, Feng; Qiao, Bo; Lassman, Charles; Belperio, John A; Strieter, Robert M; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W

    2006-05-15

    Ischemia-reperfusion injury (IRI), an innate immune-dominated inflammatory response, develops in the absence of exogenous Ags. The recently highlighted role of T cells in IRI raises a question as to how T lymphocytes interact with the innate immune system and function with no Ag stimulation. This study dissected the mechanism of innate immune-induced T cell recruitment and activation in rat syngeneic orthotopic liver transplantation (OLT) model. Liver IRI was induced after cold storage (24-36 h) at 4 degrees C in University of Wisconsin solution. Gene products contributing to IRI were identified by cDNA microarray at 4-h posttransplant. IRI triggered increased intrahepatic expression of CXCL10, along with CXCL9 and 11. The significance of CXCR3 ligand induction was documented by the ability of neutralizing anti-CXCR3 Ab treatment to ameliorate hepatocellular damage and improve 14-day survival of 30-h cold-stored OLTs (95 vs 40% in controls; p < 0.01). Immunohistology analysis confirmed reduced CXCR3+ and CD4+ T cell infiltration in OLTs after treatment. Interestingly, anti-CXCR3 Ab did not suppress innate immune activation in the liver, as evidenced by increased levels of IL-1beta, IL-6, inducible NO synthase, and multiple neutrophil/monokine-targeted chemokine programs. In conclusion, this study demonstrates a novel mechanism of T cell recruitment and function in the absence of exogenous Ag stimulation. By documenting that the execution of innate immune function requires CXCR3+CD4+ T cells, it highlights the critical role of CXCR3 chemokine biology for the continuum of innate to adaptive immunity in the pathophysiology of liver IRI.

  12. The impact of proposed changes in liver allocation policy on cold ischemia times and organ transportation costs.

    PubMed

    DuBay, D A; MacLennan, P A; Reed, R D; Fouad, M; Martin, M; Meeks, C B; Taylor, G; Kilgore, M L; Tankersley, M; Gray, S H; White, J A; Eckhoff, D E; Locke, J E

    2015-02-01

    Changes to the liver allocation system have been proposed to decrease regional variation in access to liver transplant. It is unclear what impact these changes will have on cold ischemia times (CITs) and donor transportation costs. Therefore, we performed a retrospective single center study (2008-2012) measuring liver procurement CIT and transportation costs. Four groups were defined: Local-within driving distance (Local-D, n = 262), Local-flight (Local-F, n = 105), Regional-flight <3 h (Regional <3 h, n = 61) and Regional-Flight >3 h (Regional >3 h, n = 53). The median travel distance increased in each group, varying from zero miles (Local-D), 196 miles (Local-F), 384 miles (Regional <3 h), to 1647 miles (Regional >3 h). Increasing travel distances did not significantly increase CIT until the flight time was >3 h. The average CIT ranged from 5.0 to 6.0 h for Local-D, Local-F and Regional <3 h, but increased to 10 h for Regional >3 h (p < 0.0001). Transportation costs increased with greater distance traveled: Local-D $101, Local-F $1993, Regional <3 h $8324 and Regional >3 h $27 810 (p < 0.0001). With proposed redistricting, local financial modeling suggests that the average liver donor procurement transportation variable direct costs will increase from $2415 to $7547/liver donor, an increase of 313%. These findings suggest that further discussion among transplant centers and insurance providers is needed prior to policy implementation. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Cold intermittent cardioplegia reduces the acidosis during prolonged cardiac surgery with cardiopulmonary bypass.

    PubMed

    Nollo, Giandomenico; Ferrari, Paolo; Graffigna, Angelo C

    2011-01-01

    The effect on acid-base balance efficacy of intermittent warm and cold blood cardioplegia (IWBC, ICBC) was assessed in 44 patients who underwent cardiac surgery with prolonged aortic cross clamping. With this purpose a customized multi sensor probe was inserted in the coronary sinus, and pH, PO(2), PCO(2) and temperature were continuously measured at 1 Hz sampling rate. The mean cross-clamping time was of 76 ± 26 min on 19 IWBC cases and of 80 ± 24 min on 14 ICBC cases. With IWBC perfusion, at the end of every ischemic period, the lowest pH and PO(2) progressively decreased and the maximal PCO(2) increased. During ICBC the minimum of pH and PO(2) and maximum of PCO2 at the end of different ischemic period during time were constant, also during long cross-clamping time. With IWBC, myocardial ischemia seemed not completely reversed by standardized reperfusions, as reflected by steady deterioration of PCO(2) and pH after each reperfusion.

  14. Apoptosis in fresh and cryopreserved cardiac valves of pig samples.

    PubMed

    Rendal Vázquez, M Esther; Díaz Román, T M; Rodríguez Cabarcos, M; Zavanella Botta, C; Domenech García, N; González Cuesta, M; Sánchez Dopico, M J; Pértega Díaz, S; Andión Núñez, C

    2008-06-01

    To analyse the influence of cold ischemic time (CIT) (2-24 h) and of cryopreservation (liquid phase) on the viability of the valvular fibroblasts and in the presence of apoptosis. Cardiac valves from 10 pigs were evaluated by anatomo-pathological study of the wall, muscle and leaflet. At the same time, the presence of cellular death due to apoptosis was investigated in two ways; directly on tissue by Apodetec system and by two-colour flow cytometry assay analyzing a suspension of fibroblast from valve leaflets using Anexina V and propidium iodure (PI). We established three groups of samples to compare different experimental conditions: 2 h of ischemia (group 1), 24 h of ischemia (group 2), and a programme of cryopreservation (-1 degrees C/min) after 2 h of ischemia, followed by storage in liquid nitrogen during a week and thawing was performed (group 3). The analysis of viabilities showed slight differences between all three groups. The results indicated CIT of 24 h undergoing more structural affectation than CIT of 2 h. Flow cytometry analysis did not show important differences between groups; however cryopreserved samples (group 3) slightly less viability and a higher percentage of death by apoptosis than group 1 and 2 using flow cytometry. Apoptosis was confirmed on tissue from all valves but mainly in samples of group 2 and group 3. In summary, the viability of the valves in the case of ischemic times of 2 h, 24 h or after cryopreservation/thawing differs slightly. The death of the cells is mainly mediated by necrosis and not by apoptosis.

  15. Methylene blue attenuates ischemia--reperfusion injury in lung transplantation.

    PubMed

    Abreu, Marcus da Matta; Pazetti, Rogerio; Almeida, Francine Maria de; Correia, Aristides Tadeu; Parra, Edwin Roger; Silva, Laís Pereira da; Vieira, Rodolfo de Paula; Pêgo-Fernandes, Paulo Manuel; Jatene, Fabio Biscegli

    2014-12-01

    Ischemia-reperfusion injury (IRI) is one of the principal obstacles for the lung transplantation (LTx) success. Several strategies have been adopted to minimize the effects of IRI in lungs, including ex vivo conditioning of the grafts and the use of antioxidant drugs, such as methylene blue (MB). We hypothesized that MB could minimize the effects of IRI in a LTx rodent model. Forty rats were divided into four groups (n = 10) according to treatment (saline solution or MB) and graft cold ischemic time (3 or 6 h). All animals underwent unilateral LTx. Recipients received 2 mL of saline or MB intraperitoneally before transplantation. After 2 h of reperfusion, arterial blood and exhaled nitric oxide samples were collected and bronchoalveolar lavage performed. Then animals were euthanized, and histopathology analysis as well as cell counts and cytokine levels measurements in bronchoalveolar lavage fluid were performed. There was a significant decrease in exhaled nitric oxide, neutrophils, interleukin-6, and tumor necrosis factor-α in MB-treated animals. PaO2 and uric acid levels were higher in MB group. MB was able in attenuating IRI in this LTx model. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Intake of hot water-extracted apple protects against myocardial injury by inhibiting apoptosis in an ischemia/reperfusion rat model.

    PubMed

    Kim, Mi Young; Lim, Sun Ha; Lee, Jongwon

    2014-11-01

    Intakes of apple and its products are shown to reduce the risk of coronary heart disease by delaying occlusion of coronary arteries. In our previous study, we showed that apple pectin protected against myocardial injury by prohibiting apoptotic cascades in a rat model of ischemia/reperfusion. Thus, we hypothesized that water-extracted apple, into which apple pectin was released from the cell wall, might exhibit the same efficacy as apple pectin. To test this hypothesis, we fed rats either cold water- (400 mg kg(-1) d(-1)) or hot water-extracted apples (HWEA; 40, 100, and 400 mg kg(-1) d(-1)). Three days later, the rats were subjected to myocardial injuries by ligating the left anterior descending coronary artery (30 minutes), and subsequently, the heart (3 hours) reperfused by releasing the ligation. Only the rats that were supplemented with HWEA (400 mg kg(-1) d(-1)) showed significant reductions in infarct size, which was 28.5% smaller than that of the control group. This infarct size reduction could be partly attributed to the prevention of steps leading to apoptosis. These steps are manifested by a higher Bcl-2/Bax ratio, lower procaspase-3 conversion to caspase-3, and inhibition of DNA nick generation, which reflects the extent of apoptosis. The findings indicate that HWEA supplementation reduces myocardial injury by inhibiting apoptosis under ischemia/reperfusion conditions. In conclusion, this study suggests that apple intake, specifically boiled apple, might reduce the risk of coronary heart disease by inhibiting postocclusion steps, such as myocardial injury after artery occlusion, as well as preocclusion steps, such as atherosclerotic plaque formation. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Liver transplant using donors after cardiac death: a single-center approach providing outcomes comparable to donation after brain death.

    PubMed

    Vanatta, Jason M; Dean, Amanda G; Hathaway, Donna K; Nair, Satheesh; Modanlou, Kian A; Campos, Luis; Nezakatgoo, Nosratollah; Satapathy, Sanjaya K; Eason, James D

    2013-04-01

    Organ donation after cardiac death remains an available resource to meet the demand for transplant. However, concern persists that outcomes associated with donation after cardiac death liver allografts are not equivalent to those obtained with organ donation after brain death. The aim of this matched case control study was to determine if outcomes of liver transplants with donation after cardiac death donors is equivalent to outcomes with donation after brain death donors by controlling for careful donor and recipient selection, surgical technique, and preservation solution. A retrospective, matched case control study of adult liver transplant recipients at the University of Tennessee/Methodist University Hospital Transplant Institute, Memphis, Tennessee was performed. Thirty-eight donation after cardiac death recipients were matched 1:2, with 76 donation after brain death recipients by recipient age, recipient laboratory Model for End Stage Liver Disease score, and donor age to form the 2 groups. A comprehensive approach that controlled for careful donor and recipient matching, surgical technique, and preservation solution was used to minimize warm ischemia time, cold ischemia time, and ischemia-reperfusion injury. Patient and graft survival rates were similar in both groups at 1 and 3 years (P = .444 and P = .295). There was no statistically significant difference in primary nonfunction, vascular complications, or biliary complications. In particular, there was no statistically significant difference in ischemic-type diffuse intrahepatic strictures (P = .107). These findings provide further evidence that excellent patient and graft survival rates expected with liver transplants using organ donation after brain death donors can be achieved with organ donation after cardiac death donors without statistically higher rates of morbidity or mortality when a comprehensive approach that controls for careful donor and recipient matching, surgical technique, and preservation solution is used.

  18. Intestinal transplantation: The anesthesia perspective.

    PubMed

    Dalal, Aparna

    2016-04-01

    Intestinal transplantation is a complex and challenging surgery. It is very effective for treating intestinal failure, especially for those patients who cannot tolerate parenteral nutrition nor have extensive abdominal disease. Chronic parental nutrition can induce intestinal failure associated liver disease (IFALD). According to United Network for Organ Sharing (UNOS) data, children with intestinal failure affected by liver disease secondary to parenteral nutrition have the highest mortality on a waiting list when compared with all candidates for solid organ transplantation. Intestinal transplant grafts can be isolated or combined with the liver/duodenum/pancreas. Organ Procurement and Transplantation Network (OPTN) has defined intestinal donor criteria. Living donor intestinal transplant (LDIT) has the advantages of optimal timing, short ischemia time and good human leukocyte antigen matching contributing to lower postoperative complications in the recipient. Thoracic epidurals provide excellent analgesia for the donors, as well as recipients. Recipient management can be challenging. Thrombosis and obstruction of venous access maybe common due to prolonged parenteral nutrition and/or hypercoaguability. Thromboelastography (TEG) is helpful for managing intraoperative product therapy or thrombosis. Large fluid shifts and electrolyte disturbances may occur due to massive blood loss, dehydration, third spacing etc. Intestinal grafts are susceptible to warm and cold ischemia and ischemia-reperfusion injury (IRI). Post-reperfusion syndrome is common. Cardiac or pulmonary clots can be monitored with transesophageal echocardiography (TEE) and treated with recombinant tissue plasminogen activator. Vasopressors maybe used to ensure stable hemodynamics. Post-intestinal transplant patients may need anesthesia for procedures such as biopsies for surveillance of rejection, bronchoscopy, endoscopy, postoperative hemorrhage, anastomotic leaks, thrombosis of grafts etc. Asepsis, drug interactions between anesthetic and immunosuppressive agents and venous access are some of the anesthetic considerations for this group. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Adenoviral bcl-2 transfer improves survival and early graft function after ischemia and reperfusion in rat liver transplantation.

    PubMed

    Rentsch, Markus; Kienle, Klaus; Mueller, Thomas; Vogel, Mandy; Jauch, Karl Walter; Püllmann, Kerstin; Obed, Aiman; Schlitt, Hans J; Beham, Alexander

    2005-11-27

    Primary graft dysfunction due to ischemia and reperfusion injury represents a major problem in liver transplantation. The related cell stress may induce apoptosis, which can be suppressed by bcl-2. The purpose of the study was to investigate the effect of adenoviral bcl-2 gene transfer on early graft function and survival in rat liver transplantation. An adenoviral construct that transfers bcl-2 under the control of a tetracycline inducible promoter was generated (advTetOn bcl-2) and used with a second adenovirus that transfers the repressor protein (advCMV Rep). Forty-eight hours before explantation, donor rats were treated with advTetOn bcl-2/ advCMV Rep (n=7) and doxycyclin, with the control adenoviral construct advCMV GFP (n=8) or with doxycyclin alone (n=8). Liver transplantation was performed following 16 hours of cold storage (UW). Bcl-2 expression and intrahepatic apoptosis was assessed. Bile flow was monitored 90 min posttransplantation. The endpoint for survival was 7 days. Bcl-2 was expressed in hepatocytes and sinusoidal lining cells. This was associated with a significant reduction of apoptotic sinusoidal lining cells and hepatocytes after 24 hours and 7 days. Bile production was significantly higher following bcl-2 pretreatment. Furthermore, bcl-2 transfer resulted in significantly improved survival (100% vs. 50% both control groups). Adenoviral bcl-2 transfer results in protein expression in hepatocytes and sinusoidal lining cells resulting in early graft function and survival enhancement after prolonged ischemia and reperfusion injury. The inhibition of apoptosis in the context of liver transplantation might be a reasonable approach in the treatment of graft dysfunction.

  20. The Relevance of the UPS in Fatty Liver Graft Preservation: A New Approach for IGL-1 and HTK Solutions

    PubMed Central

    Panisello-Roselló, Arnau; Verde, Eva; Amine Zaouali, Mohamed; Flores, Marta; Alva, Norma; Lopez, Alexandre; Folch-Puy, Emma; Hotter, Georgina; Adam, René; Roselló-Catafau, Joan

    2017-01-01

    The 26S proteasome is the central proteolytic machinery of the ubiquitin proteasome system (UPS), which is involved in the degradation of ubiquitinated protein substrates. Recently, UPS inhibition has been shown to be a key factor in fatty liver graft preservation during organ cold storage using University of Wisconsin solution (UW) and Institute Georges Lopez (IGL-1) solutions. However, the merits of IGL-1 and histidine-tryptophan-ketoglutarate (HTK) solutions for fatty liver preservation have not been compared. Fatty liver grafts from obese Zücker rats were preserved for 24 h at 4 °C. Aspartate aminotransferase and alanine aminotransferase (AST/ALT), glutamate dehydrogenase (GLDH), ATP, adenosine monophosphate protein kinase (AMPK), e-NOS, proteasome activity and liver polyubiquitinated proteins were determined. IGL-1 solution prevented ATP breakdown during cold-storage preservation of steatotic livers to a greater extent than HTK solution. There were concomitant increases in AMPK activation, e-NOS (endothelial NOS (NO synthase)) expression and UPS inhibition. UPS activity is closely related to the composition of the solution used to preserve the organ. IGL-1 solution provided significantly better protection against ischemia-reperfusion for cold-stored fatty liver grafts than HTK solution. The effect is exerted through the activation of the protective AMPK signaling pathway, an increase in e-NOS expression and a dysregulation of the UPS. PMID:29088097

  1. Adenosine and inosine exert cytoprotective effects in an in vitro model of liver ischemia-reperfusion injury

    PubMed Central

    MÓDIS, KATALIN; GERŐ, DOMOKOS; STANGL, RITA; ROSERO, OLIVÉR; SZIJÁRTÓ, ATTILA; LOTZ, GÁBOR; MOHÁCSIK, PETRA; SZOLECZKY, PETRA; COLETTA, CIRO; SZABÓ, CSABA

    2013-01-01

    Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cytoprotective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300–1,000 μM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 μM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cytoprotective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 μM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygenation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor-independent, intracellular modes of action, which, in part, depend on the restoration of cellular bioenergetics. The present study supports the view that testing of inosine for protection against various forms of warm and cold liver ischemia is relevant. PMID:23232950

  2. Adenosine and inosine exert cytoprotective effects in an in vitro model of liver ischemia-reperfusion injury.

    PubMed

    Módis, Katalin; Gerő, Domokos; Stangl, Rita; Rosero, Olivér; Szijártó, Attila; Lotz, Gábor; Mohácsik, Petra; Szoleczky, Petra; Coletta, Ciro; Szabó, Csaba

    2013-02-01

    Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cytoprotective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300-1,000 µM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 µM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cytoprotective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6‑morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 µM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygenation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor-independent, intracellular modes of action, which, in part, depend on the restoration of cellular bioenergetics. The present study supports the view that testing of inosine for protection against various forms of warm and cold liver ischemia is relevant.

  3. Outcomes Using Grafts from Donors after Cardiac Death.

    PubMed

    Doyle, M B Majella; Collins, Kelly; Vachharajani, Neeta; Lowell, Jeffrey A; Shenoy, Surendra; Nalbantoglu, Ilke; Byrnes, Kathleen; Garonzik-Wang, Jacqueline; Wellen, Jason; Lin, Yiing; Chapman, William C

    2015-07-01

    Previous reports suggest that donation after cardiac death (DCD) liver grafts have increased primary nonfunction (PNF) and cholangiopathy thought to be due to the graft warm ischemia before cold flushing. In this single-center, retrospective study, 866 adult liver transplantations were performed at our institution from January 2005 to August 2014. Forty-nine (5.7%) patients received DCD donor grafts. The 49 DCD graft recipients were compared with all recipients of donation after brain death donor (DBD) grafts and to a donor and recipient age- and size-matched cohort. The DCD donors were younger (age 28, range 8 to 60 years) than non-DCD (age 44.3, range 9 to 80 years) (p < 0.0001), with similar recipient age. The mean laboratory Model for End-Stage Liver Disease (MELD) was lower in DCD recipients (18.7 vs 22.2, p = 0.03). Mean cold and warm ischemia times were similar. Median ICU and hospital stay were 2 days and 7.5 days in both groups (p = 0.37). Median follow-ups were 4.0 and 3.4 years, respectively. Long-term outcomes were similar between groups, with similar 1-, 3- and 5-year patient and graft survivals (p = 0.59). Four (8.5%) recipients developed ischemic cholangiopathy (IC) at 2, 3, 6, and 8 months. Primary nonfunction and hepatic artery thrombosis did not occur in any patient in the DCD group. Acute kidney injury was more common with DCD grafts (16.3% of DCD recipients required dialysis vs 4.1% of DBD recipients, p = 0.01). An increased donor age (>40 years) was shown to increase the risk of IC (p = 0.006). Careful selection of DCD donors can provide suitable donors, with results of liver transplantation comparable to those with standard brain dead donors. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Fructose 1-6 bisphosphate versus University of Wisconsin solution for rat liver preservation: does FBP prevent early mitochondrial injury?

    PubMed

    de Fraga, R S; Heinen, P E T; Kruel, C R P; Molin, S D; Mota, S M; Cerski, C T S; Gasperin, G; Souto, A A; de Oliveira, J R; Alvares-da-Silva, M R

    2011-06-01

    Fructose 1,6-biphosphate (FBP) has been shown to exert therapeutic effects in models of ischemia-reperfusion in organs other than the liver. This study compared FBP and University of Wisconsin (UW) solution during cold storage and reperfusion, among mitochondria of adult male Wistar rat livers. Adult male Wistar rats were assigned to two groups according to the preservation solution used; UW or FBP Aspartate transaminase (AST), alanine transferase (ALT); and lactic dehydrogenase (LDH) were measured in samples of the storage solution obtained at 2, 4 and 6 hours of preservation. After 6 hours of cold storage, we reperfused the liver, taking blood samples to measure AST, ALT, LDH, and throbarbituric acid reactive substances (TBARS). Hepatic fragments were processed for histologic analysis; for determinations of TBARS, catalase, and nitric oxide as well as for mitochondrial evaluation by infrared spectroscopy. During cold preservation, levels of AST and LDH in the storage solution were lower among the FBP group, but after reperfusion, serum levels of AST, ALT, and LDH were higher in this group, as was catalase activity. TBARS and nitric oxide were comparable between the groups. In the UW group there was a higher amide I/amide II ratio than in the FBP group, suggesting an abnormal protein structure of the mitochondrial membrane. No signs of preservation injury were observed in any liver biopsy, but sinusoidal congestion was present in livers preserved with FBP. FBP showed a protective effect for preservation during cold storage seeming to protect the mitochondrial membrane although it did not prevent reperfusion injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Short Oxygenated Warm Perfusion With Prostaglandin E1 Administration Before Cold Preservation as a Novel Resuscitation Method for Liver Grafts From Donors After Cardiac Death in a Rat In Vivo Model.

    PubMed

    Maida, Kai; Akamatsu, Yorihiro; Hara, Yasuyuki; Tokodai, Kazuaki; Miyagi, Shigehito; Kashiwadate, Toshiaki; Miyazawa, Koji; Kawagishi, Naoki; Ohuchi, Noriaki

    2016-05-01

    We previously demonstrated that short oxygenated warm perfusion (SOWP) prevented warm ischemia-reperfusion injury in rat livers from donors after cardiac death (DCDs) in an ex vivo model. In the present study, we aimed to examine the in vivo effects of SOWP and SOWP with prostaglandin E1 (PGE1) in DCD rat liver transplants. We performed liver transplantation after 6-hour cold preservation using grafts retrieved from DCD rats, divided into nontreatment (NT), SOWP, and SOWP with PGE1 (SOWP + PG) treatment groups. The SOWP grafts were perfused with oxygenated buffer at 37°C for 30 minutes before cold preservation. Prostaglandin E1 was added to the SOWP + PG group perfusate. Eleven liver transplants from each group were performed to evaluate graft function and survival; 5 rats were used for data collection after 1-hour reperfusion, and 6 rats were used for the survival study. As a positive control, the same experiment was performed in a heart-beating donor group. In both the SOWP and SOWP + PG groups, serum liver enzymes, intercellular adhesion molecule 1 levels, and cellular damage were significantly decreased compared with the NT group. In the SOWP + PG group, bile production and energy status were significantly improved compared with the NT group. The 4-week survival was 0% (0/6), 67% (4/6), 83% (5/6), and 100% (6/6) in the NT, SOWP, SOWP + PG, and heart-beating donor group, respectively. Short oxygenated warm perfusion before cold preservation and the addition of PGE1 to SOWP were thus beneficial in an in vivo rat model.

  6. Impacts of hot and cold temperature extremes on hospital admissions for cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Davídkovová, H.; Kyselý, J.; Kříž, B.

    2010-09-01

    Elevated mortality associated with high ambient temperatures in summer represents one of the main impacts of weather extremes on human society. Increases in mortality during heat waves were examined in many European countries; much less is known about the effects of heat waves on morbidity, measured for example by the number of hospital admissions. Relatively less understood is also cold-related mortality and morbidity in winter, when the relationships between weather and human health are more complex, less direct, and confounded by other factors such as epidemics of influenza/acute respiratory infections. The present study examines links between hot and cold temperature extremes and daily hospital admissions for cardiovascular diseases in the population of the Czech Republic over 1994-2007. We make use of a recently completed database of all admissions for cardiovascular diseases to hospitals in the area of the Czech Republic since 1994, with a detailed classification of diseases and detailed information concerning each patient (in total 1,467,675 hospital admissions over 1994-2007). The main goals of the study are (i) to identify excess/deficit morbidity during and after periods of heat waves in summer and cold spells in winter, (ii) to compare the links for individual diseases (e.g. acute myocardial infarction, I21; angina pectoris, I20; cerebral infarction, I63; brain ischemia, I64) and to identify those diagnoses that are most closely linked to weather, (iii) to identify population groups most vulnerable to temperature extremes, and (iv) to compare the links to temperature extremes for morbidity and mortality. Periods when morbidity data were affected by epidemics of influenza and acute respiratory infections in winter were excluded from the analysis.

  7. Quantitative assessment of effect of preanalytic cold ischemic time on protein expression in breast cancer tissues.

    PubMed

    Neumeister, Veronique M; Anagnostou, Valsamo; Siddiqui, Summar; England, Allison Michal; Zarrella, Elizabeth R; Vassilakopoulou, Maria; Parisi, Fabio; Kluger, Yuval; Hicks, David G; Rimm, David L

    2012-12-05

    Companion diagnostic tests can depend on accurate measurement of protein expression in tissues. Preanalytic variables, especially cold ischemic time (time from tissue removal to fixation in formalin) can affect the measurement and may cause false-negative results. We examined 23 proteins, including four commonly used breast cancer biomarker proteins, to quantify their sensitivity to cold ischemia in breast cancer tissues. A series of 93 breast cancer specimens with known time-to-fixation represented in a tissue microarray and a second series of 25 matched pairs of core needle biopsies and breast cancer resections were used to evaluate changes in antigenicity as a function of cold ischemic time. Estrogen receptor (ER), progesterone receptor (PgR), HER2 or Ki67, and 19 other antigens were tested. Each antigen was measured using the AQUA method of quantitative immunofluorescence on at least one series. All statistical tests were two-sided. We found no evidence for loss of antigenicity with time-to-fixation for ER, PgR, HER2, or Ki67 in a 4-hour time window. However, with a bootstrapping analysis, we observed a trend toward loss for ER and PgR, a statistically significant loss of antigenicity for phosphorylated tyrosine (P = .0048), and trends toward loss for other proteins. There was evidence of increased antigenicity in acetylated lysine, AKAP13 (P = .009), and HIF1A (P = .046), which are proteins known to be expressed in conditions of hypoxia. The loss of antigenicity for phosphorylated tyrosine and increase in expression of AKAP13, and HIF1A were confirmed in the biopsy/resection series. Key breast cancer biomarkers show no evidence of loss of antigenicity, although this dataset assesses the relatively short time beyond the 1-hour limit in recent guidelines. Other proteins show changes in antigenicity in both directions. Future studies that extend the time range and normalize for heterogeneity will provide more comprehensive information on preanalytic variation due to cold ischemic time.

  8. Is It Worthwhile Treating Occluded Cold Stored Venous Allografts by Thrombolysis?

    PubMed

    Balaz, P; Wohlfahrt, P; Rokosny, S; Maly, S; Bjorck, M

    2016-09-01

    Thrombolysis has been reported to be suboptimal in occluded vein grafts and cryopreserved allografts, and there are no data on the efficacy of thrombolysis in occluded cold stored venous allografts. The aim was to evaluate early outcomes, secondary patency and limb salvage rates of thrombolysed cold stored venous allograft bypasses and to compare the outcomes with thrombolysis of autologous bypasses. This was a single center study of consecutive patients with acute and non-acute limb ischemia between September 1, 2000, and January 1, 2014, with occlusion of cold stored venous allografts, and between January 1, 2012, and January 1, 2014, with occlusion of autologous bypass who received intra-arterial thrombolytic therapy. Sixty-one patients with occlusion of an infrainguinal bypass using a cold stored venous allograft (n = 35) or an autologous bypass (n = 26) underwent percutaneous intra-arterial thrombolytic therapy. The median duration of thrombolysis was 20 h (IQR 18-24) with no difference between the groups (p = .14). The median follow up was 18.5 months (IQR 11.0-52.0). Secondary patency rates of thrombolysed bypass at 6 and 12 months were 44 ± 9% and 32 ± 9% in patients with a venous allograft bypass and 46 ± 10% and 22 ± 8% with an autologous bypass, with no difference between groups (p = .40). Limb salvage rates at 1, 6, and 12 months after thrombolysis in the venous allograft group were 83 ± 7%, 72 ± 8% and 63 ± 9%, and in the autologous group 91 ± 6%, 76 ± 9%, and 65 ± 13%, with no difference between groups (p = .69). Long-term results of thrombolysis of venous allograft bypasses are similar to those of autologous bypasses. Occluded cold stored venous allograft can be successfully re-opened in most cases with a favorable effect on limb salvage. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  9. The effect of thalidomide on vascular endothelial growth factor and tumor necrosis factor-alpha levels in retinal ischemia/reperfusion injury.

    PubMed

    Aydoğan, Semih; Celiker, Ulkü; Türkçüoğlu, Peykan; Ilhan, Nevin; Akpolat, Nusret

    2008-03-01

    To evaluate the effects of thalidomide treatment on the temporal course of TNF-alpha, VEGF production and the histopathological changes in ischemia/reperfusion (I/R) injured guinea pigs retina. Control, ischemia, and thalidomide/ischemia groups including seven animals each were formed. Retinal ischemia was induced in male guinea pigs by cannulating anterior chambers and lifting the bottle to a height of 205 cm for 90 min in the ischemia and thalidomide/ischemia groups. The thalidomide/ischemia group received thalidomide (300 mg/kg/day) via nasogastric tube 24 h before ischemia and during 7 days of reperfusion. Guinea pigs were sacrificed for histopathological examination to evaluate the mean thickness of the inner plexiform layer (IPL), polymorphonuclear leukocyte (PMNL) infiltration, and biochemical analysis of retinal VEGF and TNF-alpha levels by ELISA. The mean retinal VEGF and TNF-alpha levels of the control, ischemia, and thalidomide/ischemia groups were 10.22 +/- 2.58 and 270.41 +/- 69.77 pg/ml; 35.80 +/- 5.97 and 629.93 +/- 146.41 pg/ml; 19.01 +/- 3.01 and 340.93 +/- 158.26 pg/ml, respectively. The retinal VEGF levels were significantly higher in I/R injured groups. The thalidomide/ischemia group retinal VEGF level was significantly lower versus the ischemia group. The retinal TNF-alpha levels were significantly elevated in the ischemia group, but no difference was observed between the thalidomide/ischemia and control groups. Also, the retinal TNF-alpha level was significantly lower in the thalidomide/ischemia group versus the ischemia group. The mean thickness of IPL and PMNL infiltration showed no difference between the control and thalidomide/ischemia groups. However, there was a significant difference between the control and ischemia groups. Thalidomide treatment decreases PMNL infiltration, retinal edema, VEGF, and TNF-alpha synthesis following I/R injury to the guinea pig retina.

  10. Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies.

    PubMed

    Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.

  11. Xenon Treatment Protects Against Cold Ischemia Associated Delayed Graft Function and Prolongs Graft Survival in Rats

    PubMed Central

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-01-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia–hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. PMID:23710625

  12. Computed tomography identifies patients at high risk for stroke after transient ischemic attack/nondisabling stroke: prospective, multicenter cohort study.

    PubMed

    Wasserman, Jason K; Perry, Jeffrey J; Sivilotti, Marco L A; Sutherland, Jane; Worster, Andrew; Émond, Marcel; Jin, Albert Y; Oczkowski, Wieslaw J; Sahlas, Demetrios J; Murray, Heather; MacKey, Ariane; Verreault, Steve; Wells, George A; Dowlatshahi, Dar; Stotts, Grant; Stiell, Ian G; Sharma, Mukul

    2015-01-01

    Ischemia on computed tomography (CT) is associated with subsequent stroke after transient ischemic attack. This study assessed CT findings of acute ischemia, chronic ischemia, or microangiopathy for predicting subsequent stroke after transient ischemic attack. This prospective cohort study enrolled patients with transient ischemic attack or nondisabling stroke that had CT scanning within 24 hours. Primary outcome was subsequent stroke within 90 days. Secondary outcomes were stroke at ≤2 or >2 days. CT findings were classified as ischemia present or absent and acute or chronic or microangiopathy. Analysis used Fisher exact test and multivariate logistic regression. A total of 2028 patients were included; 814 had ischemic changes on CT. Subsequent stroke rate was 3.4% at 90 days and 1.5% at ≤2 days. Stroke risk was greater if baseline CT showed acute ischemia alone (10.6%; P=0.002), acute+chronic ischemia (17.4%; P=0.007), acute ischemia+microangiopathy (17.6%; P=0.019), or acute+chronic ischemia+microangiopathy (25.0%; P=0.029). Logistic regression found acute ischemia alone (odds ratio [OR], 2.61; 95% confidence interval [CI[, 1.22-5.57), acute+chronic ischemia (OR, 5.35; 95% CI, 1.71-16.70), acute ischemia+microangiopathy (OR, 4.90; 95% CI, 1.33-18.07), or acute+chronic ischemia+microangiopathy (OR, 8.04; 95% CI, 1.52-42.63) was associated with a greater risk at 90 days, whereas acute+chronic ischemia (OR, 10.78; 95% CI, 2.93-36.68), acute ischemia+microangiopathy (OR, 8.90; 95% CI, 1.90-41.60), and acute+chronic ischemia+microangiopathy (OR, 23.66; 95% CI, 4.34-129.03) had greater risk at ≤2 days. Only acute ischemia (OR, 2.70; 95% CI, 1.01-7.18; P=0.047) was associated with a greater risk at >2 days. In patients with transient ischemic attack/nondisabling stroke, CT evidence of acute ischemia alone or acute ischemia with chronic ischemia or microangiopathy was associated with increased subsequent stroke risk within 90 days. © 2014 American Heart Association, Inc.

  13. A standardized model of brain death, donor treatment, and lung transplantation for studies on organ preservation and reconditioning.

    PubMed

    Valenza, Franco; Coppola, Silvia; Froio, Sara; Ruggeri, Giulia Maria; Fumagalli, Jacopo; Villa, Alessandro Maria; Rosso, Lorenzo; Mendogni, Paolo; Conte, Grazia; Lonati, Caterina; Carlin, Andrea; Leonardi, Patrizia; Gatti, Stefano; Stocchetti, Nino; Gattinoni, Luciano

    2014-12-01

    We set a model of brain death, donor management, and lung transplantation for studies on lung preservation and reconditioning before transplantation. Ten pigs (39.7 ± 5.9 Kg) were investigated. Five animals underwent brain death and were treated as organ donors; the lungs were then procured and cold stored (Ischemia). Five recipients underwent left lung transplantation and post-reperfusion follow-up (Graft). Cardiorespiratory and metabolic parameters were collected. Lung gene expression of cytokines (tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interferon gamma (IFNγ), high mobility group box-1 (HMGB-1)), chemokines (chemokine CC motif ligand-2 (CCL2-MCP-1), chemokine CXC motif ligand-10 (CXCL-10), interleukin-8 (IL-8)), and endothelial activation markers (endothelin-1 (EDN-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), selectin-E (SELE)) was assessed by real-time polymerase chain reaction (PCR). Tachycardia and hypertension occurred during brain death induction; cardiac output rose, systemic vascular resistance dropped (P < 0.05), and diabetes insipidus occurred. Lung-protective ventilation strategy was applied: 9 h after brain death induction, PaO2 was 192 ± 12 mmHg at positive end-expiratory pressure (PEEP) 8.0 ± 1.8 cmH2O and FiO2 of 40%; wet-to-dry ratio (W/D) was 5.8 ± 0.5, and extravascular lung water (EVLW) was 359 ± 80 mL. Procured lungs were cold-stored for 471 ± 24 min (Ischemia) at the end of which W/D was 6.1 ± 0.9. Left lungs were transplanted and reperfused (warm ischemia 98 ± 14 min). Six hours after controlled reperfusion, PaO2 was 192 ± 23 mmHg (PEEP 8.7 ± 1.5 cmH2O, FiO2 40%), W/D was 5.6 ± 0.4, and EVLW was 366 ± 117 mL. Levels of IL-8 rose at the end of donor management (BD, P < 0.05); CCL2-MCP-1, IL-8, HMGB-1, and SELE were significantly altered after reperfusion (Graft, P < 0.05). We have set a standardized, reproducible pig model resembling the entire process of organ donation that may be used as a platform to test in vivo and ex vivo strategies of donor lung optimization before transplantation.

  14. Modulation of the oxidative stress by metformin in the cerebrum of rats exposed to global cerebral ischemia and ischemia/reperfusion.

    PubMed

    Abd-Elsameea, A A; Moustaf, A A; Mohamed, A M

    2014-08-01

    Oxidative stress plays a major role in the pathogenesis of ischemic and reperfusion injury to many organs, including the brain. Chronic metformin treatment is associated with a lower risk of stroke in clinical populations. The aim of the present study was to investigate the effect of metformin on the oxidative stress induced in experimental model of incomplete global cerebral ischemia and ischemia/reperfusion in adult male Wistar rats. Metformin was administered to rats orally by gavage 500 mg/kg once daily for one week before induction of cerebral ischemia (rats were subjected to 30 min of ischemia before decapitation) and ischemia/reperfusion (rats were subjected to 30 min of ischemia then 60 minutes of reperfusion before decapitation). The selected parameters for oxidative stress were the activities of the antioxidant enzymes: glutathione peroxidase (GSHPx), superoxide dismutase (SOD), and catalase as well as malondialdehyde (MDA) levels. Metformin reduced the elevated activites of GSHPx, SOD and catalase as well as MDA levels in cerebrum of rats exposed to ischemia and ischemia/reperfusion injures. Metformin improved the oxidative stress induced by ischemia and ischemia/reperfusion injuries. This may be a mechanism that explains the cerebroprotective effect of the drug.

  15. Delayed Post-ischemic Conditioning Significantly Improves the Outcome after Retinal Ischemia

    PubMed Central

    Dreixler, John C.; Poston, Jacqueline N.; Shaikh, Afzhal R.; Alexander, Michael; Tupper, Kelsey Y.; Marcet, Marcus M.; Bernaudin, Myriam; Roth, Steven

    2011-01-01

    In previous studies, it was shown that post-conditioning, a transient period of brief ischemia following prolonged severe ischemia in the retina, could provide significant improvement in post-ischemic recovery, attenuation of cell loss, and decreased apoptosis. These studies showed that post-conditioning effectively prevented damage after retinal ischemia when it was instituted early (within one hour) in the post-ischemic period. While post-ischemic conditioning holds high promise of clinical translation, patients often present late after the onset of retinal ischemia and therefore immediate application of this anti-ischemic maneuver is generally not feasible. In this study, we examined the hypothesis that application of a post-conditioning stimulus at 24 h or greater following the end of prolonged ischemia would decrease the extent of ischemic injury. Ischemia was induced in rat retina in vivo. Recovery after ischemia followed by 5 minutes of post-conditioning brief ischemia 24 or 48 h after prolonged ischemia was assessed functionally (electroretinography) and histologically at 7 days after ischemia and post-conditioning or sham post-conditioning. We found that the brief ischemic stimulus applied 24, but not 48 h after prolonged ischemia significantly improved functional recovery and decreased histological damage induced by prolonged ischemia. We conclude that within a defined time window, delayed post-ischemic conditioning ameliorated post-ischemic injury in rats. Compared to earlier studies, the present work demonstrates for the first time the novel ability of a significantly delayed ischemic stimulus to provide robust neuroprotection in the retina following ischemia. PMID:21501608

  16. Ex vivo rehabilitation of non-heart-beating donor lungs in preclinical porcine model: delayed perfusion results in superior lung function.

    PubMed

    Mulloy, Daniel P; Stone, Matthew L; Crosby, Ivan K; Lapar, Damien J; Sharma, Ashish K; Webb, David V; Lau, Christine L; Laubach, Victor E; Kron, Irving L

    2012-11-01

    Ex vivo lung perfusion (EVLP) is a promising modality for the evaluation and treatment of marginal donor lungs. The optimal timing of EVLP initiation and the potential for rehabilitation of donor lungs with extended warm ischemic times is unknown. The present study compared the efficacy of different treatment strategies for uncontrolled non-heart-beating donor lungs. Mature swine underwent hypoxic arrest, followed by 60 minutes of no-touch warm ischemia. The lungs were harvested and flushed with 4°C Perfadex. Three groups (n = 5/group) were stratified according to the preservation method: cold static preservation (CSP; 4 hours of 4°C storage), immediate EVLP (I-EVLP: 4 hours EVLP at 37°C), and delayed EVLP (D-EVLP; 4 hours of CSP followed by 4 hours of EVLP). The EVLP groups were perfused with Steen solution supplemented with heparin, methylprednisolone, cefazolin, and an adenosine 2A receptor agonist. The lungs then underwent allotransplantation and 4 hours of recipient reperfusion before allograft assessment for resultant ischemia-reperfusion injury. The donor blood oxygenation (partial pressure of oxygen/fraction of inspired oxygen ratio) before death was not different between the groups. The oxygenation after transplantation was significantly greater in the D-EVLP group than in the I-EVLP or CSP groups. The mean airway pressure, pulmonary artery pressure, and expression of interleukin-8, interleukin-1β, and tumor necrosis factor-α were all significantly reduced in the D-EVLP group. Post-transplant oxygenation exceeded the acceptable clinical levels only in the D-EVLP group. Uncontrolled non-heart-beating donor lungs with extended warm ischemia can be reconditioned for successful transplantation. The combination of CSP and EVLP in the D-EVLP group was necessary to obtain optimal post-transplant function. This finding, if confirmed clinically, will allow expanded use of nonheart-beating donor lungs. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  17. A Comparison of Robotic, Laparoscopic and Open Partial Nephrectomy

    PubMed Central

    Lucas, Steven M.; Mellon, Matthew J.; Erntsberger, Luke

    2012-01-01

    Introduction: Comparison of treatments for partial nephrectomy is limited by case selection. We compared robotic (RPN), laparoscopic (LPN), and open partial nephrectomy (OPN), controlling for tumor size, patient age, sex, and nephrometry score. Methods: RPN, LPN, and OPN procedures between March 2003 and March 2010 were reviewed. All RPN and LPN were included, and 2 OPN were matched for each RPN in tumor size (±0.5cm), patient age (±10 y), sex, and nephrometry score. Perioperative outcomes were compared. Results: Ninety-six partial nephrectomy procedures were reviewed: 27 RPN, 15 LPN, and 54 OPN. RPN, LPN, and OPN had similar median tumor size (2.4, 2.2, and 2.3cm, respectively), nephrometry score (6.0 each), and preoperative glomerular filtration rate (71.5, 84.6, and 77.0 mL/min/1.73m2, respectively). Blood loss was higher for OPN (250 mL) than for RPN or LPN (100 mL), P < .001. Operative time was shorter in OPN (147 min) than in RPN (190 min) or LPN (195 min), P < .001. Median warm ischemia time was shorter for OPN (12.0 min) than for RPN (25.0 min) or LPN (29.5 min), P < .05. Cold ischemia time for OPN was 25.0 min. A 10% glomerular filtration rate decline occurred in 10 RPN, 5 LPN, and 29 OPN cases (P = .252). Median hospital stay for LPN and RPN was 2.0 d versus 3.0 d for OPN (P < .001). Urine leak occurred in 1 RPN and 3 OPN cases. Postoperative complications occurred in 4 RPN (3 were Clavien grade 2 or less), 1 LPN (grade 1), and 7 OPN (6 were grade 2 or less) cases. Conclusion: Renal function preservation and complications are similar for each treatment modality. OPN offers faster operative and ischemia times at the expense of greater blood loss and hospital stay. PMID:23484568

  18. Ischemic preconditioning protects neurons from damage and maintains the immunoreactivity of kynurenic acid in the gerbil hippocampal CA1 region following transient cerebral ischemia

    PubMed Central

    LEE, JAE-CHUL; TAE, HYUN-JIN; CHO, GEUM-SIL; KIM, IN HYE; AHN, JI HYEON; PARK, JOON HA; CHEN, BAI HUI; CHO, JEONG-HWI; SHIN, BICH NA; CHO, JUN HWI; BAE, EUN JOO; PARK, JINSEU; KIM, YOUNG-MYEONG; CHOI, SOO YOUNG; WON, MOO-HO

    2015-01-01

    Pyramidal neurons in region I of hippocampus proper (CA1) are particularly vulnerable to excitotoxic processes following transient forebrain ischemia. Kynurenic acid (KYNA) is a small molecule derived from tryptophan when this amino acid is metabolized through the kynurenine pathway. In the present study, we examined the effects of ischemic preconditioning (IPC) on the immunoreactivity and protein levels of KYNA following 5 min of transient forebrain ischemia in gerbils. The animals were randomly assigned to 4 groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia followed by 1 day of recovery. In the ischemia-operated group, we observed a significant loss of pyramidal neurons in the CA1 stratum pyramidale (SP) at 5 days post-ischemia; however, in the IPC + ischemia-operated group, the pyramidal neurons were well protected. KYNA immunoreactivity in the SP of the ischemia-operated group was significantly altered following ischemia-reperfusion and was very low 5 days following ischemia-reperfusion. In the IPC + ischemia-operated group, however, KYNA immunoreactivity was constitutively detected in the SP of the CA1 region after the ischemic insult. We also found that the alteration pattern of the KYNA protein level in the CA1 region following ischemia was generally similar to the immunohistochemical changes observed. In brief, our findings demonstrated that IPC maintained and even increased KYNA immunoreactivity in the SP of the CA1 region following ischemia-reperfusion. The data from the present study thus indicate that the enhancement of KYNA expression by IPC may be necessary for neuronal survival following transient ischemic injury. PMID:25872573

  19. Survival and resource utilization in liver transplant recipients: the impact of admission to the intensive care unit.

    PubMed

    Aggarwal, A; Ong, J P; Goormastic, M; Nelson, D R; Arroliga, A C; Farquhar, L; Mayes, J; Younossi, Z M

    2003-12-01

    The organ allocation system for liver transplantation was recently changed to address criticisms that it was too subjective and relied too heavily on total waiting time. The new system, Model for End-Stage Liver Disease and Pediatric Model for End-Stage Liver Disease (MELD/PELD), stratifies patients based on the risk of 3-month pretransplant mortality, allocating livers thereby. There is concern that such a scheme gives priority to the sickest patients, who may not enjoy good posttransplant outcomes. The aim of the present study was to compare the outcomes of liver transplant recipients who had been admitted to the intensive care unit (ICU) to those who had not. Admission to the ICU is considered here to be another indicator of the severity of illness. Patients who underwent liver transplantation at the Cleveland Clinic between January 1, 1993 and October 31, 1998 and were at least 18 years of age were coded for liver transplantation as status 2, 2A, and 2B (n = 112). These patients fell into three groups: those who had been admitted to an ICU before transplantation (group A, n = 16), those who had been admitted to the hospital but not to an ICU (group B, n = 63), and those who were living at home and had undergone an elective transplant (group C, n = 33). Clinical and demographic information (age, sex, race, disease severity, disease etiology, and cold ischemia time) were associated with patient survival, patient/graft survival, and posttransplant resource utilization (hospital length of stay and hospital charges). Age, sex, race, etiology of disease, and cold ischemia time were similar among the three groups. Patient survival, patient/graft survival, and hospital charges were not statistically different between the three groups. The median length of stay was statistically different only between groups B and C (P =.006). Our data support the idea that if severely ill patients with end-stage liver disease are selected appropriately, liver transplant outcomes are similar to those observed among subjects who are less ill and are transplanted electively from home.

  20. Kidney and liver transplants from donors after cardiac death: initial experience at the London Health Sciences Centre.

    PubMed

    Hernandez-Alejandro, Roberto; Caumartin, Yves; Chent, Cameron; Levstik, Mark A; Quan, Douglas; Muirhead, Norman; House, Andrew A; McAlister, Vivian; Jevnikar, Anthony M; Luke, Patrick P W; Wall, William

    2010-04-01

    The disparity between the number of patients waiting for an organ transplant and availability of donor organs increases each year in Canada. Donation after cardiac death (DCD), following withdrawal of life support in patients with hopeless prognoses, is a means of addressing the shortage with the potential to increase the number of transplantable organs. We conducted a retrospective, single-centre chart review of organs donated after cardiac death to the Multi-Organ Transplant Program at the London Health Sciences Centre between July 2006 and December 2007. In total, 34 solid organs (24 kidneys and 10 livers) were procured from 12 DCD donors. The mean age of the donors was 38 (range 18-59) years. The causes of death were craniocerebral trauma (n = 7), cerebrovascular accident (n = 4) and cerebral hypoxia (n = 1). All 10 livers were transplanted at our centre, as were 14 of the 24 kidneys; 10 kidneys were transplanted at other centres. The mean renal cold ischemia time was 6 (range 3-9.5) hours. Twelve of the 14 kidney recipients (86%) experienced delayed graft function, but all kidneys regained function. After 1-year follow-up, kidney function was good, with a mean serum creatinine level of 145 (range 107-220) micromol/L and a mean estimated creatinine clearance of 64 (range 41-96) mL/min. The mean liver cold ischemia time was 5.8 (range 5.5-8) hours. There was 1 case of primary nonfunction requiring retransplantation. The remaining 9 livers functioned well. One patient developed a biliary anastomotic stricture that resolved after endoscopic stenting. All liver recipients were alive after a mean follow-up of 11 (range 3-20) months. Since the inception of this DCD program, the number of donors referred to our centre has increased by 14%. Our initial results compare favourably with those from the transplantation of organs procured from donors after brain death. Donation after cardiac death can be an important means of increasing the number of organs available for transplant, and its widespread implementation in Canada should be encouraged.

  1. Influence of Cold Ischemia Time in Combination with Donor Acute Kidney Injury on Kidney Transplantation Outcomes.

    PubMed

    Xia, Yu; Friedmann, Patricia; Cortes, Carlos M; Lubetzky, Michelle L; Kayler, Liise K

    2015-08-01

    Deceased-donor kidneys are often exposed to ischemic events from donor instability, as evidenced by acute kidney injury (AKI). Clinicians may be reluctant to transplant kidneys with AKI that also have prolonged cold ischemia time (CIT) for fear of an additional deleterious effect. We evaluated national data between 1998 and 2013 of adult first-time kidney-only recipients of paired kidneys from donors with AKI (terminal serum creatinine ≥ 2 mg/dL), in which the CIT difference between recipients was ≥1, 5, 10, or 15 hours. On multivariate analysis of AKI kidney recipients, overall death-censored graft survival (DCGS) was comparable between recipients with higher CIT relative to paired donor recipients with lower CIT when the CIT difference was at least 1 hour (adjusted hazard ratio [aHR] 0.98, 95% CI 0.85 to 1.13, n = 4,458), 5 hours (aHR 0.97, 95% CI 0.79 to 1.18, n = 2,412), 10 hours (aHR 0.82, 95% CI 0.59 to 1.15, n = 922), or 15 hours (aHR 0.94, 95% CI 0.57 to 1.58, n = 442). Overall patient survival of the longer CIT groups was comparable or protective with delta CIT of ≥1 (aHR 0.94, 95% CI 0.83 to 1.06), 5 (aHR 0.80, 95% CI 0.68 to 0.94), 10 (aHR 0.70, 95% CI 0.53 to 0.91), and 15 (aHR 0.64, 95%CI 0.43 to 0.95) hours. Between each of the 4 delta-CIT levels of shorter and longer CIT, there were no statistically significant differences in the proportion of acute rejection at delta ≥1, 5, 10, or 15 hours. These results suggest that in the setting of a previous ischemic donor event, prolonged CIT has limited bearing on long-term outcomes. This may be important evidence that despite the occurrence of other ischemic events, kidneys with prolonged CIT offer acceptable outcomes to recipients and are a potential source to expand the donor pool. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Post-ischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic pre-conditioning.

    PubMed

    Dreixler, John C; Shaikh, Afzhal R; Alexander, Michael; Savoie, Brian; Roth, Steven

    2010-12-01

    Ischemic pre-conditioning (IPC) provides neuroprotection in the rat retina from the damaging effects of severe ischemia. Recently, neuroprotection by retinal ischemic post-conditioning (Post-C), i.e., transient ischemia after more lengthy, damaging ischemia, was described, but its mechanisms are not yet known. One possible explanation of the effectiveness of Post-C is that it augments intrinsic neuroprotective mechanisms initiated during ischemia. Increasing duration of the damaging ischemic insult may therefore impact the effectiveness of Post-C. IPC, in contrast, sets in motion a series of neuroprotective events prior to the onset of ischemia. Thus, IPC and Post-C may operate by differing mechanisms. Accordingly, we examined the effect of retinal ischemic duration on post-ischemic outcome in vivo in rats after adding Post-C, and the impact of combining pre- and post-conditioning. Recovery after ischemia performed 24 h after IPC, or after Post-C performed 5 min after ischemia ended, was assessed functionally (electroretinography) and histologically at 7 days after ischemia. Durations of ischemia of 45 and 55 min were studied. Since recovery with IPC or Post-C alone, with 55 min of ischemia, did not achieve the same degree of effect (i.e., not complete recovery) exhibited in our previous studies of IPC using a different ischemia model, we also combined IPC and Post-C to test the hypothesis of the possible additive effects of the IPC and Post-C. We found that the recovery after Post-C was enhanced to a greater degree when ischemia was of longer duration. Post-C led to greater post-ischemic recovery compared to IPC. Both IPC and Post-C also attenuated structural damage to the retina. Contrary to our hypothesis, IPC and Post-C did not combine to enhance recovery after ischemia. In earlier studies, IPC attenuated post-ischemic apoptosis. To begin to examine the mechanism of Post-C, we studied its impact on apoptosis following ischemia. We examined apoptosis by determining the percentage of TUNEL-positive cells at 24 h after ischemia. Post-C attenuated apoptosis, but when combined with IPC, TUNEL was similar in the combined group to that of ischemia alone. We also examined the role of the recruitment of an inflammatory response in ischemia and Post-C. We found that inflammatory markers increased by ischemia were not altered by Post-C. We conclude that Post-C effectiveness depends upon the duration of ischemia; Post-C is not additive with IPC, and Post-C functions, in part, by preventing apoptotic damage to the inner retina. Post-C has considerable promise for clinical translation to eye diseases that cause blindness by ischemia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Negative impact of prolonged cold storage time before machine perfusion preservation in donation after circulatory death kidney transplantation.

    PubMed

    Paloyo, Siegfredo; Sageshima, Junichiro; Gaynor, Jeffrey J; Chen, Linda; Ciancio, Gaetano; Burke, George W

    2016-10-01

    Kidney grafts are often preserved initially in static cold storage (CS) and subsequently on hypothermic machine perfusion (MP). However, the impact of CS/MP time on transplant outcome remains unclear. We evaluated the effect of prolonged CS/MP time in a single-center retrospective cohort of 59 donation after circulatory death (DCD) and 177 matched donation after brain death (DBD) kidney-alone transplant recipients. With mean overall CS/MP times of 6.0 h/30.0 h, overall incidence of delayed graft function (DGF) was higher in DCD transplants (30.5%) than DBD transplants (7.3%, P < 0.0001). In logistic regression, DCD recipient (P < 0.0001), longer CS time (P = 0.0002), male recipient (P = 0.02), and longer MP time (P = 0.08) were associated with higher DGF incidence. In evaluating the joint effects of donor type (DBD vs. DCD), CS time (<6 vs. ≥6 h), and MP time (<36 vs. ≥36 h) on DGF incidence, one clearly sees an unfavorable effect of MP time ≥36 h (P = 0.003) across each donor type and CS time stratum, whereas the unfavorable effect of CS time ≥6 h (P = 0.01) is primarily seen among DCD recipients. Prolonged cold ischemia time had no unfavorable effect on renal function or graft survival at 12mo post-transplant. Long CS/MP time detrimentally affects early DCD/DBD kidney transplant outcome when grafts were mainly preserved by MP; prolonged CS time before MP has a particularly negative impact in DCD kidney transplantation. © 2016 Steunstichting ESOT.

  4. Cerebral ischemia and neuroregeneration

    PubMed Central

    Lee, Reggie H. C.; Lee, Michelle H. H.; Wu, Celeste Y. C.; Couto e Silva, Alexandre; Possoit, Harlee E.; Hsieh, Tsung-Han; Minagar, Alireza; Lin, Hung Wen

    2018-01-01

    Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for treatment against cerebral ischemia/stroke are limited. All therapies except anti-thrombolytics (i.e., tissue plasminogen activator) and hypothermia have failed to reduce neuronal injury, neurological deficits, and mortality rates following cerebral ischemia, which suggests that development of novel therapies against stroke/cerebral ischemia are urgently needed. Here, we discuss the possible mechanism(s) underlying cerebral ischemia-induced brain injury, as well as current and future novel therapies (i.e., growth factors, nicotinamide adenine dinucleotide, melatonin, resveratrol, protein kinase C isozymes, pifithrin, hypothermia, fatty acids, sympathoplegic drugs, and stem cells) as it relates to cerebral ischemia. PMID:29623912

  5. Effect of hydrogen sulfide on inflammatory cytokines in acute myocardial ischemia injury in rats

    PubMed Central

    LIU, FANG; LIU, GUANG-JIE; LIU, NA; ZHANG, GANG; ZHANG, JIAN-XIN; LI, LAN-FANG

    2015-01-01

    Hydrogen sulfide (H2S) is believed to be involved in numerous physiological and pathophysiological processes, and now it is recognized as the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide; however, the effects of H2S on inflammatory factors in acute myocardial ischemia injury in rats have not been clarified. In the present study, sodium hydrosulfide (NaHS) was used as the H2S donor. Thirty-six male Sprague Dawley rats were randomly divided into five groups: Sham, ischemia, ischemia + low-dose (0.78 mg/kg) NaHS, ischemia + medium-dose (1.56 mg/kg) NaHS, ischemia + high-dose (3.12 mg/kg) NaHS and ischemia + propargylglycine (PPG) (30 mg/kg). The rats in each group were sacrificed 6 h after the surgery for sample collection. Compared with the ischemia group, the cardiac damage in the rats in the ischemia + NaHS groups was significantly reduced, particularly in the high-dose group; in the ischemia + PPG group, the myocardial injury was aggravated compared with that in the ischemia group. Compared with the ischemia group, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the serum of rats in the ischemia + medium- and high-dose NaHS groups were significantly reduced, and the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) protein in the myocardial tissues of rats was significantly reduced. In the ischemia + PPG group, the TNF-α, IL-1β and IL-6 levels in the serum were significantly increased, the expression of ICAM-1 mRNA was increased, although without a significant difference, and the expression of NF-κB was increased. The findings of the present study provide novel evidence for the dual effects of H2S on acute myocardial ischemia injury via the modulation of inflammatory factors. PMID:25667680

  6. Ischemic preconditioning maintains the immunoreactivities of glucokinase and glucokinase regulatory protein in neurons of the gerbil hippocampal CA1 region following transient cerebral ischemia

    PubMed Central

    CHO, YOUNG SHIN; CHO, JUN HWI; SHIN, BICH-NA; CHO, GEUM-SIL; KIM, IN HYE; PARK, JOON HA; AHN, JI HYEON; OHK, TAEK GEUN; CHO, BYUNG-RYUL; KIM, YOUNG-MYEONG; HONG, SEONGKWEON; WON, MOO-HO; LEE, JAE-CHUL

    2015-01-01

    Glucokinase (GK) is involved in the control of blood glucose homeostasis. In the present study, the effect of ischemic preconditioning (IPC) on the immunoreactivities of GK and its regulatory protein (GKRP) following 5 min of transient cerebral ischemia was investigated in gerbils. The gerbils were randomly assigned to four groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia, followed by 1 day of recovery. In the ischemia-operated group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) at 5 days post-ischemia; however, in the IPC+ischemia-operated group, the neurons in the SP were well protected. Following immunohistochemical investigation, the immunoreactivities of GK and GKRP in the neurons of the SP were markedly decreased in the CA1, but not the CA2/3, from 2 days post-ischemia, and were almost undetectable in the SP 5 days post-ischemia. In the IPC + ischemia-operated group, the immunoreactivities of GK and GKRP in the SP of the CA1 were similar to those in the sham-group. In brief, the findings of the present study demonstrated that IPC notably maintained the immunoreactivities of GK and GKRP in the neurons of the SP of CA1 following ischemia-reperfusion. This indicated that GK and GKRP may be necessary for neuron survival against transient cerebral ischemia. PMID:26134272

  7. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    PubMed

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

  8. The Effect of Pentoxifylline on bcl-2 Gene Expression Changes in Hippocampus after Ischemia-Reperfusion in Wistar Rats by a Quatitative RT-PCR Method

    PubMed Central

    Sari, Soyar; Hashemi, Mehrdad; Mahdian, Reza; Parivar, Kazem; Rezayat, Mehdi

    2013-01-01

    Ischemia-reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. Ischemia-reperfusion brain injury initiates an inflammatory response involving the expression of adhesion molecules and cytokines. Twenty–four male Wistar rats (250-300 g body wt) were used in this study. The animals were divided into four groups of 6 rats each: I: Control group that was subjected to ischemia-reperfusion, II: Ischemia-reperfusion group that was subjected to all surgical procedures, III: Drug group that received pentoxifylline (200, 400 and 600 mg/kg) 60 min before and after ischemia and IV: Vehicle group that received saline. Seventy two h after ischemia-reperfusion, the hippocampus was taken for studying the changes in bcl-2 gene expression. We used quantitative real-time PCR for the detection of bcl-2 gene expression in ischemia and drug groups and then compared them to normal samples. The results showed the gene dosage ratio of 0.66 and 1.5 for ischemia group and the drug groups, respectively. The results also showed the bcl-2 gene expression declined in ischemia group as compared to the drug group. Furthermore, we observed a significant difference in the bcl-2 gene expression between ischemia and drug groups. These findings are consistent with anti-apoptotic properties of bcl-2 gene. Furthermore this method provides a powerful tool for the investigators to study brain ischemia and respond to the treatment drugs with anti-apoptotic agents. PMID:24250655

  9. Quantitative Assessment of Effect of Preanalytic Cold Ischemic Time on Protein Expression in Breast Cancer Tissues

    PubMed Central

    2012-01-01

    Background Companion diagnostic tests can depend on accurate measurement of protein expression in tissues. Preanalytic variables, especially cold ischemic time (time from tissue removal to fixation in formalin) can affect the measurement and may cause false-negative results. We examined 23 proteins, including four commonly used breast cancer biomarker proteins, to quantify their sensitivity to cold ischemia in breast cancer tissues. Methods A series of 93 breast cancer specimens with known time-to-fixation represented in a tissue microarray and a second series of 25 matched pairs of core needle biopsies and breast cancer resections were used to evaluate changes in antigenicity as a function of cold ischemic time. Estrogen receptor (ER), progesterone receptor (PgR), HER2 or Ki67, and 19 other antigens were tested. Each antigen was measured using the AQUA method of quantitative immunofluorescence on at least one series. All statistical tests were two-sided. Results We found no evidence for loss of antigenicity with time-to-fixation for ER, PgR, HER2, or Ki67 in a 4-hour time window. However, with a bootstrapping analysis, we observed a trend toward loss for ER and PgR, a statistically significant loss of antigenicity for phosphorylated tyrosine (P = .0048), and trends toward loss for other proteins. There was evidence of increased antigenicity in acetylated lysine, AKAP13 (P = .009), and HIF1A (P = .046), which are proteins known to be expressed in conditions of hypoxia. The loss of antigenicity for phosphorylated tyrosine and increase in expression of AKAP13, and HIF1A were confirmed in the biopsy/resection series. Conclusions Key breast cancer biomarkers show no evidence of loss of antigenicity, although this dataset assesses the relatively short time beyond the 1-hour limit in recent guidelines. Other proteins show changes in antigenicity in both directions. Future studies that extend the time range and normalize for heterogeneity will provide more comprehensive information on preanalytic variation due to cold ischemic time. PMID:23090068

  10. Proteomic analysis of endothelial cold-adaptation

    PubMed Central

    2011-01-01

    Background Understanding how human cells in tissue culture adapt to hypothermia may aid in developing new clinical procedures for improved ischemic and hypothermic protection. Human coronary artery endothelial cells grown to confluence at 37°C and then transferred to 25°C become resistant over time to oxidative stress and injury induced by 0°C storage and rewarming. This protection correlates with an increase in intracellular glutathione at 25°C. To help understand the molecular basis of endothelial cold-adaptation, isolated proteins from cold-adapted (25°C/72 h) and pre-adapted cells were analyzed by quantitative proteomic methods and differentially expressed proteins were categorized using the DAVID Bioinformatics Resource. Results Cells adapted to 25°C expressed changes in the abundance of 219 unique proteins representing a broad range of categories such as translation, glycolysis, biosynthetic (anabolic) processes, NAD, cytoskeletal organization, RNA processing, oxidoreductase activity, response-to-stress and cell redox homeostasis. The number of proteins that decreased significantly with cold-adaptation exceeded the number that increased by 2:1. Almost half of the decreases were associated with protein metabolic processes and a third were related to anabolic processes including protein, DNA and fatty acid synthesis. Changes consistent with the suppression of cytoskeletal dynamics provided further evidence that cold-adapted cells are in an energy conserving state. Among the specific changes were increases in the abundance and activity of redox proteins glutathione S-transferase, thioredoxin and thioredoxin reductase, which correlated with a decrease in oxidative stress, an increase in protein glutathionylation, and a recovery of reduced protein thiols during rewarming from 0°C. Increases in S-adenosylhomocysteine hydrolase and nicotinamide phosphoribosyltransferase implicate a central role for the methionine-cysteine transulfuration pathway in increasing glutathione levels and the NAD salvage pathway in increasing the reducing capacity of cold-adapted cells. Conclusions Endothelial adaptation to mild-moderate hypothermia down-regulates anabolic processes and increases the reducing capacity of cells to enhance their resistance to oxidation and injury associated with 0°C storage and rewarming. Inducing these characteristics in a clinical setting could potentially limit the damaging effects of energy insufficiency due to ischemia and prevent the disruption of integrated metabolism at low temperatures. PMID:22192797

  11. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats.

    PubMed

    Kim, Eun Soo; Lee, Seung-Koo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min(-1) vs. 0.07 ± 0.02 min(-1), p = 0.661 for K(trans); 0.30 ± 0.05 min(-1) vs. 0.37 ± 0.11 min(-1), p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group.

  12. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    PubMed Central

    Kim, Eun Soo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    Objective The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Materials and Methods Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Results Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min-1 vs. 0.07 ± 0.02 min-1, p = 0.661 for Ktrans; 0.30 ± 0.05 min-1 vs. 0.37 ± 0.11 min-1, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Conclusion Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group. PMID:27587960

  13. Bowel obstruction complicated by ischemia: analysis of CT findings.

    PubMed

    Cox, Veronica L; Tahvildari, Ali M; Johnson, Benjamin; Wei, Wei; Jeffrey, R Brooke

    2018-06-01

    To analyze CT signs of bowel ischemia in patients with surgical bowel obstruction, and thereby improve CT diagnosis in this common clinical scenario. Surgical and histopathological findings were used as the reference standard. We retrospectively analyzed CT findings in patients brought to surgery for bowel obstruction over 13 years. Etiology of obstruction (adhesion, hernia, etc.) was recorded. Specific CT features of acute mesenteric ischemia (AMI) were analyzed, including bowel wall thickening, mucosal hypoenhancement, and others. 173 cases were eligible for analysis. 21% of cases were positive for bowel ischemia. Volvulus, internal hernia, and closed-loop obstructions showed ischemia rates of 60%, 43%, and 43%; ischemia rate in obstruction from simple adhesion was 21%. Patients with bowel obstruction related to malignancy were never ischemic. Sensitivities and specificities for CT features predicting ischemia were calculated, with wall thickening, hypoenhancement, and pneumatosis showing high specificity for ischemia (86%-100%). Wall thickening, hypoenhancement, and pneumatosis are highly specific CT signs of ischemia in the setting of obstruction. None of the evaluated CT signs were found to be highly sensitive. Overall frequency of ischemia in surgical bowel obstruction is 21%, and 2-3 times that for complex obstructions (volvulus, closed loop, etc.). Obstructions related to malignancy virtually never become ischemic.

  14. Effects of exercise preconditioning on intestinal ischemia-reperfusion injury.

    PubMed

    Gokbel, H; Oz, M; Okudan, N; Belviranli, M; Esen, H

    2014-01-01

    To investigate the effects of exercise preconditioning on oxidative injury in the intestinal tissue of rats. Sixty male Wistar rats were randomly divided into six groups as sham (n = 10), ischemia-reperfusion (n = 10), exercise (n = 10), exercise plus ischemia-reperfusion (n = 10), ischemic preconditioning (n = 10), and ischemic preconditioning plus ischemia-reperfusion groups (n = 10). Tissue levels of malondialdehyde and activities of myeloperoxidase and superoxide dismutase, and serum levels of tumor necrosis factor-alpha and interleukin-6 were measured. Intestinal tissue histopathology was also evaluated by light microscopy. Tumor necrosis factor-alpha concentrations significantly decreased in the exercise group compared to the sham group (p < 0.05). Myeloperoxidase activity significantly increased and superoxide dismutase activity significantly decreased in ischemia-reperfusion group compared to the sham group (p < 0.05). Superoxide dismutase activity in the ischemic preconditioning and ischemic preconditioning plus ischemia-reperfusion groups were significantly higher compared to the ischemia-reperfusion and exercise groups (p < 0.05). Histopathologically, intestinal injury significantly attenuated in the exercise plus ischemia-reperfusion group compared to the ischemia-reperfusion group. The results of the present study indicate that exercise training seems to have a protective role against intestinal ischemia-reperfusion injury (Tab. 3, Fig. 1, Ref. 35).

  15. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  16. Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus

    PubMed Central

    Chen, Xiaodi; Threlkeld, Steven W.; Cummings, Erin E.; Juan, Ilona; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Sadowska, Grazyna B.; Stonestreet, Barbara S.

    2012-01-01

    The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (Ki) and tight junction proteins by Western immunoblot in fetal sheep at 127 days-of-gestation without ischemia, and 4-, 24-, or 48-h after ischemia. The largest increase in Ki (P<0.05) was 4-h after ischemia. Occludin and claudin-5 expressions decreased at 4-h, but returned toward control levels 24- and 48-h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between Ki and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (Ki) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4-h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24- and 48- than 4-h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. PMID:22986172

  17. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed Central

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-01-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119

  18. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  19. Protective effects of osthole on intestinal ischemia-reperfusion injury in mice.

    PubMed

    Zhang, Zhen; Pan, Chen; Wang, Hong-zhi; Li, Yong-xiang

    2014-06-01

    The purpose of this study was to evaluate the effect of intravenous injection of osthole on intestinal ischemia-reperfusion injury and parameters of oxidative stress. In 45 Kunming male mice, treatment included sham surgery (15 mice); intestinal ischemia-reperfusion injury (clamping of the superior mesenteric artery, 2 h; clamp release, 1 h; 15 mice); or osthole treatment before and after ischemia-reperfusion injury (15 mice). Evaluation included histopathology, determination of intestinal wet/dry weight ratio, and measurement of levels of diamine oxidase, superoxide dismutase, malondialdehyde, interleukin 1β, tumor necrosis factor α, and interleukin 2. Intestinal barrier permeability was evaluated with Evans blue test. The mean wet-to-dry weight ratio, Evans blue content, and Chiu score were significantly greater in the ischemia-reperfusion than in the sham group and lower in the osthole-treated than the ischemia-reperfusion group. The mean serum diamine oxidase, malondialdehyde, interleukin 1β, and tumor necrosis factor α levels were significantly greater in the ischemia-reperfusion than in the sham group and lower in the osthole-treated than in the ischemia-reperfusion group. The mean superoxide dismutase activity and interleukin 2 levels were lower in the ischemia-reperfusion than in the sham group and greater in the osthole-treated than in the ischemia-reperfusion group. Treatment with osthole may protect against oxidative stress and tissue damage from intestinal ischemia-reperfusion injury.

  20. Transient ischemia reduces norepinephrine release during sustained ischemia. Neural preconditioning in isolated rat heart.

    PubMed

    Seyfarth, M; Richardt, G; Mizsnyak, A; Kurz, T; Schömig, A

    1996-04-01

    Endogenous catecholamine release may play a role in ischemic preconditioning either as a trigger or as a target within the process of myocardial preconditioning. Therefore, we investigated the effect of transient ischemia (TI) on norepinephrine release during sustained ischemia in isolated rat hearts. TI was induced by multiple cycles of global ischemia followed by reperfusion with a duration of 5 minutes each, comparable to ischemic preconditioning protocols. After TI, norepinephrine release was evoked by either sustained global ischemia, anoxia, cyanide intoxication, tyramine, or electrical stimulation. During TI, no washout of norepinephrine was observed, and tissue concentrations of norepinephrine were not changed. TI, however, reduced norepinephrine overflow after 20 minutes of sustained ischemia from 239 +/- 26 pmol/g (control) to 79+/-8 pmol/g (67% reduction, P <.01 ). A similar reduction of ischemia-induced norepinephrine release from 192 +/- 22 pmol/g (control) to 90 +/- 15 pmol/g was observed when hearts underwent transient anoxia without glucose (P < .05). When reperfusion between TI and sustained ischemia was prolonged from 5 to 90 minutes, the inhibitory effect of TI on norepinephrine release was gradually lost. Susceptibility to TI was a unique feature of norepinephrine release induced by sustained ischemia, since release of norepinephrine evoked by anoxia, cyanide intoxication, tyramine, or electrical stimulation remained unaffected by TI. We propose a protective effect of TI on neural tissue, which may reduce norepinephrine-induced damage during prolonged myocardial ischemia.

  1. Isoflurane administration before ischemia and during reperfusion attenuates ischemia/reperfusion-induced injury of isolated rabbit lungs.

    PubMed

    Liu, R; Ishibe, Y; Ueda, M; Hang, Y

    1999-09-01

    To investigate the effects of isoflurane on ischemia/ reperfusion (IR)-induced lung injury, we administered isoflurane before ischemia or during reperfusion. Isolated rabbit lungs were divided into the following groups: control (n = 6), perfused and ventilated for 120 min without ischemia; ISO-control (n = 6), 1 minimum alveolar anesthetic concentration (MAC) isoflurane was administered for 30 min before 120 min continuous perfusion; IR (n = 6), ischemia for 60 min, followed by 60 min reperfusion; IR-ISO1 and IR-ISO2, ischemia followed by reperfusion and 1 MAC (n = 6) or 2 MAC (n = 6) isoflurane for 60 min; ISO-IR (n = 6), 1 MAC isoflurane was administered for 30 min before ischemia, followed by IR. During these maneuvers, we measured total pulmonary vascular resistance (Rt), coefficient of filtration (Kfc), and lung wet to dry ratio (W/D). The results indicated that administration of isoflurane during reperfusion inhibited an IR-induced increase in Kfc and W/D ratio. Furthermore, isoflurane at 2 MAC, but not 1 MAC, significantly inhibited an IR-induced increase in Rt. The administration of isoflurane before ischemia significantly attenuated the increase in IR-induced Kfc, W/D, and Rt. Our results suggest that the administration of isoflurane before ischemia and during reperfusion protects against ischemia-reperfusion-induced injury in isolated rabbit lungs.

  2. Magnesium in cardioplegia: Is it necessary?

    PubMed Central

    Shakerinia, Tooraj; Ali, Idris M.; Sullivan, John A.P.

    1996-01-01

    Objective To study the effectiveness of magnesium in cardioplegic solution in preventing postoperative arrhythmias and perioperative ischemia. Design Randomized, control study. Setting The cardiovascular surgery division of a major referral centre for the maritime provinces of Canada. Patients Fifty patients scheduled to undergo coronary artery bypass who had a normal ejection fraction, normal preoperative serum magnesium level and no history of atrial or ventricular arrhythmia were randomized into two groups of 25 patients. One group received magnesium sulfate (15 mmol/L) in the cardioplegic solution (group 1), the other (control) group did not receive magnesium sulfate in the cardioplegic solution (group 2). Intervention Coronary artery bypass grafting during which myocardial protection was provided by intermittent cold blood cardioplegia. Outcome Measures Postoperative serum magnesium levels, cardiac-related death, infarction and arrhythmias. Results All group 2 patients had a lower postoperative serum magnesium level than group 1 patients. There were no cardiac-related deaths in either group. More group 2 patients had ischemic electrocardiographic changes than group 1 patients (p < 0.03). Non-Q-wave myocardial infarction occurred in two patients (one in each group). Eight patients in group 2 had atrial fibrillation compared with five patients in group 1. Ventricular ectopia occurred significantly (p < 0.01) more frequently in group 2 than in group 1. Conclusion The addition of magnesium to the cardioplegic solution is beneficial in reducing the incidence of perioperative ischemia and ventricular arrhythmia in patients who undergo coronary bypass grafting. PMID:8857989

  3. Donation after cardiac death liver transplantation: predictors of outcome.

    PubMed

    Mathur, A K; Heimbach, J; Steffick, D E; Sonnenday, C J; Goodrich, N P; Merion, R M

    2010-11-01

    We aimed to identify recipient, donor and transplant risk factors associated with graft failure and patient mortality following donation after cardiac death (DCD) liver transplantation. These estimates were derived from Scientific Registry of Transplant Recipients data from all US liver-only DCD recipients between September 1, 2001 and April 30, 2009 (n = 1567) and Cox regression techniques. Three years post-DCD liver transplant, 64.9% of recipients were alive with functioning grafts, 13.6% required retransplant and 21.6% died. Significant recipient factors predictive of graft failure included: age ≥ 55 years, male sex, African-American race, HCV positivity, metabolic liver disorder, transplant MELD ≥ 35, hospitalization at transplant and the need for life support at transplant (all, p ≤ 0.05). Donor characteristics included age ≥ 50 years and weight >100 kg (all, p ≤ 0.005). Each hour increase in cold ischemia time (CIT) was associated with 6% higher graft failure rate (HR 1.06, p < 0.001). Donor warm ischemia time ≥ 35 min significantly increased graft failure rates (HR 1.84, p = 0.002). Recipient predictors of mortality were age ≥ 55 years, hospitalization at transplant and retransplantation (all, p ≤ 0.006). Donor weight >100 kg and CIT also increased patient mortality (all, p ≤ 0.035). These findings are useful for transplant surgeons creating DCD liver acceptance protocols. ©2010 The Authors Journal compilation©2010 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Successful donation after cardiac death liver transplants with prolonged warm ischemia time using normothermic regional perfusion.

    PubMed

    De Carlis, Riccardo; Di Sandro, Stefano; Lauterio, Andrea; Ferla, Fabio; Dell'Acqua, Antonio; Zanierato, Marinella; De Carlis, Luciano

    2017-02-01

    The role of donation after cardiac death (DCD) in expanding the donor pool is mainly limited by the incidence of primary nonfunction (PNF) and ischemia-related complications. Even greater concern exists toward uncontrolled DCD, which represents the largest potential pool of DCD donors. We recently started the first Italian series of DCD liver transplantation, using normothermic regional perfusion (NRP) in 6 uncontrolled donors and in 1 controlled case to deal with the legally required no-touch period of 20 minutes. We examined our first 7 cases for the incidence of PNF, early graft dysfunction, and biliary complications. Acceptance of the graft was based on the trend of serum transaminase and lactate during NRP, the macroscopic appearance, and the liver biopsy. Hypothermic machine perfusion (HMP) was associated in selected cases to improve cold storage. Most notably, no cases of PNF were observed. Median posttransplant transaminase peak was 1014 IU/L (range, 393-3268 IU/L). Patient and graft survival were both 100% after a mean follow-up of 6.1 months (range, 3-9 months). No cases of ischemic cholangiopathy occurred during the follow-up. Only 1 anastomotic stricture completely resolved with endoscopic stenting. In conclusion, DCD liver transplantation is feasible in Italy despite the protracted no-touch period. The use of NRP and HMP seems to earn good graft function and proves safe in these organs. Liver Transplantation 23 166-173 2017 AASLD. © 2016 by the American Association for the Study of Liver Diseases.

  5. Xenon treatment protects against cold ischemia associated delayed graft function and prolongs graft survival in rats.

    PubMed

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-08-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia-hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  6. Histopathologic and molecular evaluation of the Organ Procurement and Transplantation Network selection criteria for intestinal graft donation.

    PubMed

    Roskott, Anne Margot C; van Haaften, Wouter T; Leuvenink, Henri G D; Ploeg, Rutger J; van Goor, Harry; Blokzijl, Tjasso; Ottens, Petra J; Dijkstra, Gerard; Nieuwenhuijs, Vincent B

    2014-06-01

    The Organ Procurement and Transplantation Network (OPTN) has formulated criteria for the selection of donors for intestinal transplantation. To date, however, no study has correlated histologic findings of intestinal injury with the OPTN criteria. We aimed to describe histopathologic and molecular features of allograft injury in relation to donor conditions defined by the OPTN criteria. Graft histology (Park Score), Claudin-3 staining, systemic inflammatory markers (C-reactive protein/lipopolysaccharide-binding protein) and expression of heat shock protein 70, heme oxygenase 1, and interleukin 6 were evaluated in multiorgan deceased donors (donation after brain death [DBD] and donation after cardiac death [DCD]). Ninety-seven samples (52 jejunum/45 ileum) were recovered from 59 donors (46 DBD/13 DCD). The OPTN criterion cold ischemia time correlated with histologic injury (Park score) to which the jejunum appeared more susceptible than the ileum. Claudin-3 staining was higher, and heat shock protein 70 expression lower in donors meeting the OPTN criteria compared with donors not meeting the criteria and in DBD versus DCD. In DBD donors, interleukin 6 expression was higher compared with DCD donors and inversely related to C-reactive protein. Our multiparameter analysis suggests that the OPTN criteria can be discriminative concerning intestinal graft quality. Our data suggest that DCD intestinal allografts are qualitatively inferior and that the jejunum is more sensitive to ischemia than the ileum. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Parecoxib reduces renal injury in an ischemia/reperfusion model in rats.

    PubMed

    Calistro Neto, José Pedro; Torres, Rômulo da Costa; Gonçalves, Giovanna Maria; Silva, Leopoldo Muniz da; Domingues, Maria Aparecida Custódio; Módolo, Norma Sueli Pinheiro; Barros, Guilherme Antonio Moreira de

    2015-04-01

    To evaluate the effect of parecoxib (an NSAID) on renal function by measuring plasma NGAL (serum neutrophil gelatinase-associated lipocalin) levels in an induced-ischemia rat model. Forty male Wistar rats were randomly assigned to one of four groups: Ischemia (I), Ischemia/parecoxib (IP), No-ischemia (NI), and No-ischemia/parecoxib (NIP). Body weight, mean arterial pressure, heart rate, body temperature, NGAL levels, and renal histology were compared across groups. The Ischemia (I) group, which did not receive parecoxib, showed the highest NGAL levels (p=0.001), while the IP group, which received the medication, had NGAL levels similar to those of the non-ischemic (NI and NIP) groups. Parecoxib resulted in renal protection in this experimental model.

  8. Controversies in cardiovascular care: silent myocardial ischemia

    NASA Technical Reports Server (NTRS)

    Hollenberg, N. K.

    1987-01-01

    The objective evidence of silent myocardial ischemia--ischemia in the absence of classical chest pain--includes ST-segment shifts (usually depression), momentary left ventricular failure, and perfusion defects on scintigraphic studies. Assessment of angina patients with 24-hour ambulatory monitoring may uncover episodes of silent ischemia, the existence of which may give important information regarding prognosis and may help structure a more effective therapeutic regimen. The emerging recognition of silent ischemia as a significant clinical entity may eventually result in an expansion of current therapy--not only to ameliorate chest pain, but to minimize or eliminate ischemia in the absence of chest pain.

  9. Protection of Hippocampal CA1 Neurons Against Ischemia/Reperfusion Injury by Exercise Preconditioning via Modulation of Bax/Bcl-2 Ratio and Prevention of Caspase-3 Activation.

    PubMed

    Aboutaleb, Nahid; Shamsaei, Nabi; Rajabi, Hamid; Khaksari, Mehdi; Erfani, Sohaila; Nikbakht, Farnaz; Motamedi, Pezhman; Shahbazi, Ali

    2016-01-01

    Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Male rats weighing 260-300 g were randomly allocated into three groups (sham, exercise, and ischemia). The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Ischemia was induced by the occlusion of both common carotid arteries (CCAs) for 20 min. Levels of expression of Bax, Bcl-2, and caspase-3 proteins in CA1 area of hippocampus were determined by immunohistochemical staining . The number of active caspase-3-positive neurons in CA1 area were significantly increased in ischemia group, compared to sham-operated group (P<0.001), and exercise preconditioning significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P<0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in ischemia group, compared to sham-operated group (P<0.001). This study indicated that exercise has a neuroprotective effects against cerebral ischemia when used as preconditioning stimuli.

  10. Association between aortic valve calcification and myocardial ischemia, especially in asymptomatic patients.

    PubMed

    Yamazato, Ryo; Yamamoto, Hideya; Tadehara, Futoshi; Teragawa, Hiroki; Kurisu, Satoshi; Dohi, Yoshihiro; Ishibashi, Ken; Kunita, Eiji; Utsunomiya, Hiroto; Oka, Toshiharu; Kihara, Yasuki

    2012-08-01

    Aortic valve calcification (AVC) is recognized as a manifestation of systemic arteriosclerosis. However, it is unclear whether AVC is associated with myocardial ischemia. Stress myocardial perfusion SPECT (MPS) is widely used for the diagnosis of myocardial ischemia. However, routine MPS is not recommended, particularly in asymptomatic patients. Accordingly, we investigated the hypothesis that the presence of AVC is strongly associated with inducible myocardial ischemia, even among asymptomatic patients. We investigated 669 consecutive patients who underwent both adenosine stress (201)Tl MPS and echocardiography. We evaluated the extent and severity of myocardial ischemia by the summed difference score (SDS). We defined the presence of myocardial ischemia as SDS ≥ 3 and moderate to severe ischemia as SDS ≥ 8. We classified the severity of AVC according to the number of affected aortic leaflets. We also compared the mean SDS and the prevalence of SDS ≥ 3 and SDS ≥ 8 among patients stratified by the severity of AVC. The presence of AVC was significantly associated with myocardial ischemia (odds ratio [OR], 1.56; 95% confidence interval [CI], 1.10-2.23; P = 0.013) and moderate to severe ischemia (OR, 2.16; 95% CI, 1.26-3.80; P = 0.0061). In 311 asymptomatic patients, AVC was strongly associated with moderate to severe ischemia (OR, 4.31; 95% CI, 1.67-12.8; P = 0.0043). However, the SDS value and the prevalence of SDS ≥ 3 and SDS ≥ 8 did not increase with increasing number of affected aortic leaflets. The presence of AVC may be associated with the presence of myocardial ischemia, particularly in asymptomatic patients. However, we found no association between the extent of AVC and inducible myocardial ischemia. The presence of AVC may be a useful anatomic marker to help identify patients at high risk of myocardial ischemia, particularly asymptomatic patients.

  11. Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus.

    PubMed

    Chen, X; Threlkeld, S W; Cummings, E E; Juan, I; Makeyev, O; Besio, W G; Gaitanis, J; Banks, W A; Sadowska, G B; Stonestreet, B S

    2012-12-13

    The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (P<0.05) was 4 h after ischemia. Occludin and claudin-5 expressions decreased at 4 h, but returned toward control levels 24 and 48 h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between K(i) and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats.

    PubMed

    Zhang, Na; Cheng, Gen-Yang; Liu, Xian-Zhi; Zhang, Feng-Jiang

    2014-05-01

    To investigate the effect of acute renal ischemia reperfusion on brain tissue. Fourty eight rats were randomly divided into four groups (n=12): sham operation group, 30 min ischemia 60 min reperfusion group, 60 min ischemia 60 min reperfusion group, and 120 min ischemia 60 min reperfusion group. The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors. Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time. The detection at the molecular level showed decreased Bcl-2 expression, increased Bax expression, upregulated expression of NF-κB and its downstream factor COX-2/PGE2. Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  13. [The relationship between ischemic preconditioning-induced infarction size limitation and duration of test myocardial ischemia].

    PubMed

    Blokhin, I O; Galagudza, M M; Vlasov, T D; Nifontov, E M; Petrishchev, N N

    2008-07-01

    Traditionally infarction size reduction by ischemic preconditioning is estimated in duration of test ischemia. This approach limits the understanding of real antiischemic efficacy of ischemic preconditioning. Present study was performed in the in vivo rat model of regional myocardial ischemia-reperfusion and showed that protective effect afforded by ischemic preconditioning progressively decreased with prolongation of test ischemia. There were no statistically significant differences in infarction size between control and preconditioned animals when the duration of test ischemia was increased up to 1 hour. Preconditioning ensured maximal infarction-limiting effect in duration of test ischemia varying from 20 to 40 minutes.

  14. The effect of aloe vera on ischemia--Reperfusion injury of sciatic nerve in rats.

    PubMed

    Guven, Mustafa; Gölge, Umut Hatay; Aslan, Esra; Sehitoglu, Muserref Hilal; Aras, Adem Bozkurt; Akman, Tarik; Cosar, Murat

    2016-04-01

    Aloe vera is compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of aloe vera treatment in rats with experimental sciatic nerve ischemia/reperfusion injury. Twenty-eight male Wistar Albino rats were divided equally into 4 groups. Groups; Control group (no surgical procedure or medication), sciatic nerve ischemia/reperfusion group, sciatic nerve ischemia/reperfusion+aloe vera group and sciatic nerve ischemia/reperfusion+methylprednisolone group. Ischemia was performed by clamping the infrarenal abdominal aorta. 24 hours after ischemia, all animals were sacrificed. Sciatic nerve tissues were also examined histopathologically and biochemically. Ischemic fiber degeneration significantly decreased in the pre-treated with aloe vera and treated with methylprednisolone groups, especially in the pre-treated with aloe vera group, compared to the sciatic nerve ischemia/reperfusion group (p<0.05). A significant decrease in MDA, an increase in NRF1 level and SOD activity were observed in the groups which obtained from the AV and MP groups when compared to the sciatic nerve ischemia/reperfusion group. When all results were analysed it was seen that the aloe vera group was not statistically different compared to the MP group (p>0.05). Aloe vera is effective neuroprotective against sciatic nerve ischemia/reperfusion injury via antioxidant and anti-inflammatory properties. Also aloe vera was found to be as effective as MP. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Hyperbaric oxygen in skeletal muscle of rats submitted to total acute left hindlimb ischemia: A research report.

    PubMed

    da Silva, Luis Gustavo Campos; Dalio, Marcelo Bellini; Joviliano, Edwaldo Edner; Feres, Omar; Piccinato, Carlos Eli

    2015-01-01

    Determine the effect of hyperbaric oxygen treatment in skeletal muscle of rats submitted to total acute left hindlimb ischemia. An experimental study was designed using 48 Wistar rats divided into four groups (n = 12): Control; Ischemia (I)--total hindlimb ischemia for 270 minutes; Hyperbaric oxygen treatment during ischemia (HBO2)--total hindlimb ischemia for 270 minutes and hyperbaric oxygen during the first 90 minutes; Pre-treatment with hyperbaric oxygen (PHBO2)--90 minutes of hyperbaric oxygen treatment before total hindlimb ischemia for 270 minutes. Skeletal muscle injury was evaluated by measuring levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total creatine phosphokinase (CPK); muscular malondialdehyde (MDA), muscular glycogen, and serum ischemia-modified albumin (IMA). AST was significantly higher in I, HBO2 and PHBO2 compared with control (P = .001). There was no difference in LDH. CPK was significantly higher in I, HBO2 and PHBO2, compared with control (p = .014). MDA was significantly higher in PHBO2, compared with other groups (p = .042). Glycogen was significantly decreased in I, HBO2 and PHBO2, compared with control (p < .001). Hyperbaric oxygen treatment in acute total hindlimb ischemia exerted no protective effect on muscle injury, regardless of time of application. When applied prior to installation of total ischemia, hyperbaric oxygen treatment aggravated muscle injury.

  16. Marginal donors: can older donor hearts tolerate prolonged cold ischemic storage?

    PubMed

    Korkmaz, Sevil; Bährle-Szabó, Susanne; Loganathan, Sivakkanan; Li, Shiliang; Karck, Matthias; Szabó, Gábor

    2013-10-01

    Both advanced donor age and prolonged ischemic time are significant risk factors for the 1-year mortality. However, its functional consequences have not been fully evaluated in the early-phase after transplantation; even early graft dysfunction is the main determinant of long-term outcome following transplantation. We evaluated in vivo left-ventricular (LV) cardiac and coronary vascular function of old-donor grafts after short and prolonged cold ischemic times in rats 1 h after heart transplantation. The hearts were excised from young donor (3-month-old) or old donor (18-month-old) rats, stored in cold preservation solution for either 1 or 8 h, and heterotopically transplanted. After 1 h of ischemic period, in the old-donor group, LV pressure, maximum pressure development (dP/dt max), time constant of LV pressure decay (τ), LV end-diastolic pressure and coronary blood flow did not differ compared with young donors. However, endothelium-dependent vasodilatation to acetylcholine resulted in a significantly lower response of coronary blood flow in the old-donor group (33 ± 4 vs. 51 ± 15 %, p < 0.05). After 8 h preservation, two of the old-donor hearts showed no mechanical activity upon reperfusion. LV pressure (55 ± 6 vs. 72 ± 5 mmHg, p < 0.05), dP/dt max (899 ± 221 vs. 1530 ± 217 mmHg/s, p < 0.05), coronary blood flow and response to acetylcholine were significantly reduced and τ was increased in the old-donor group in comparison to young controls. During the early-phase after transplantation, the ischemic tolerance of older-donor hearts is reduced after prolonged preservation time and the endothelium is more vulnerable to ischemia/reperfusion.

  17. Impact of machine perfusion after long static cold storage on delayed graft function incidence and duration and time to hospital discharge.

    PubMed

    Matos, Ana Cristina C; Requiao Moura, Lúcio Roberto; Borrelli, Milton; Nogueira, Mario; Clarizia, Gabriela; Ongaro, Paula; Durão, Marcelino Souza; Pacheco-Silva, Alvaro

    2018-01-01

    Delayed graft function (DGF) is very high in our center (70%-80%), and we usually receive a kidney for transplant after more than 22 hours of static cold ischemia time (CIT). Also, there is an inadequate care of the donors, contributing to a high rate of DGF. We decided to test whether machine perfusion (MP) after a CIT improved the outcome of our transplant patients. We analyzed the incidence of DGF, its duration, and the length of hospital stay (LOS) in patients who received a kidney preserved with MP after a CIT (hybrid perfusion-HP). We included 54 deceased donors kidneys preserved with HP transplanted from Feb/13 to Jul/14, and compared them to 101 kidney transplants preserved by static cold storage (CS) from Nov/08 to May/12. The median pumping time was 11 hours. DGF incidence was 61.1% vs 79.2% (P = .02), median DGF duration was 5 vs 11 days (P < .001), and median LOS was 13 vs 18 days (P < .011), for the HP compared to CS group. The observed reduction of DGF with machine perfusion did not occur in donors over 50 years old. In the multivariate analysis, risk factors for DGF, adjusted for CIT, were donor age (OR, 1.04; P = .005) and the absence of use of MP (OR, 1.54; P = .051). In conclusion, the use of HP contributed to faster recovery of renal function and to a shorter length of hospital stay. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Hyperbaric oxygen modalities are differentially effective in distinct brain ischemia models

    PubMed Central

    Ostrowski, Robert P.; Stępień, Katarzyna; Pucko, Emanuela; Matyja, Ewa

    2016-01-01

    The effectiveness and efficacy of hyperbaric oxygen (HBO) preconditioning and post-treatment modalities have been demonstrated in experimental models of ischemic cerebrovascular diseases, including global brain ischemia, transient focal and permanent focal cerebral ischemia, and experimental neonatal hypoxia-ischemia encephalopathy. In general, early and repetitive post-treatment of HBO appears to create enhanced protection against brain ischemia whereas delayed HBO treatment after transient focal ischemia may even aggravate brain injury. This review advocates the level of injury reduction upon HBO as an important component for translational evaluation of HBO based treatment modalities. The combined preconditioning and HBO post-treatment that would provide synergistic effects is also worth considering. PMID:27826422

  19. Neuroprotective effects of ischemic preconditioning on hippocampal CA1 pyramidal neurons through maintaining calbindin D28k immunoreactivity following subsequent transient cerebral ischemia

    PubMed Central

    Kim, In Hye; Jeon, Yong Hwan; Lee, Tae-Kyeong; Cho, Jeong Hwi; Lee, Jae-Chul; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Bich-Na; Kim, Yang Hee; Hong, Seongkweon; Yan, Bing Chun; Won, Moo-Ho; Lee, Yun Lyul

    2017-01-01

    Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the neuroprotective effects of ischemic preconditioning (2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal transient ischemic insult (5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining calbindin D28k immunoreactivity. PMID:28761424

  20. Insulin/NFκB protects against ischemia-induced necrotic cardiomyocyte death.

    PubMed

    Díaz, Ariel; Humeres, Claudio; González, Verónica; Gómez, María Teresa; Montt, Natalia; Sanchez, Gina; Chiong, Mario; García, Lorena

    2015-11-13

    In the heart, insulin controls key functions such as metabolism, muscle contraction and cell death. However, all studies have been focused on insulin action during reperfusion. Here we explore the cardioprotective action of this hormone during ischemia. Rat hearts were perfused ex vivo with an ischemia/reperfusion Langendorff model in absence or presence of insulin. Additionally, cultured rat cardiomyocytes were exposed to simulated ischemia in the absence or presence of insulin. Cytoprotective effects were measured by myocardial infarct size, trypan blue exclusion, released LDH and DNA fragmentation by flow cytometry. We found that insulin protected against cardiac ischemia ex vivo and in vitro. Moreover, insulin protected cardiomyocytes from simulated ischemia by reducing necrotic cell death. Protective effects of insulin were dependent of Akt and NFκB. These novel results show that insulin reduces ischemia-induced cardiomyocyte necrosis through an Akt/NF-κB dependent mechanism. These novel findings clarify the role of insulin during ischemia and further support its use in early GIK perfusion to treat myocardial infarction. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Quantified kidney echogenicity in mice with renal ischemia reperfusion injury: evaluation as a noninvasive biomarker of acute kidney injury.

    PubMed

    Murata, Shinya; Sugiyama, Noriyuki; Maemura, Kentaro; Otsuki, Yoshinori

    2017-09-01

    The purpose is to evaluate quantified kidney echogenicity as a biomarker for the early diagnosis of acute kidney injury (AKI) and predicting progression to chronic kidney disease (CKD) in a mouse model of ischemia-reperfusion injury (IRI). Two separate protocols of murine models of IRI were used: (1) 10, 30, and 40 min of bilateral ischemia duration and (2) 45 and 60 min of unilateral ischemia duration. Renal echogenicity was measured with ultrasound and compared with serum creatinine or urine neutrophil gelatinase-associated lipocalin (NGAL) at various timepoints after IRI. In mice subjected to 10, 30, and 40 min of bilateral ischemia, renal echogenicity increased about 2 h after IRI for all ischemia times, earlier than serum creatinine or urine NGAL. In those subjected to 45 and 60 min of unilateral ischemia, 60 min of unilateral ischemia, which represents atrophic changes 28 days after IRI, resulted in a sustained high level of echogenicity and was significantly different 24 h after IRI, while 45 min of unilateral ischemia resulted in trivial levels of histological damage 28 days after IRI. Renal echogenicity might have the potential to be a biomarker for the early diagnosis of AKI and the prognosis of CKD.

  2. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Canxiang; Yang Qingwu; Lv Fenglin

    Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-{alpha} andmore » IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity.« less

  3. Effect of pacing-induced myocardial ischemia on platelet activation and fibrin formation in the coronary circulation.

    PubMed

    Nichols, A B; Gold, K D; Marcella, J J; Cannon, P J; Owen, J

    1987-07-01

    The effect of pacing-induced myocardial ischemia on platelet activation and fibrin formation was investigated in seven patients with severe proximal lesions of the left anterior descending coronary artery to determine if acute ischemia activates the coagulation system. Fibrin formation was assessed from plasma levels of fibrinopeptide A. Platelet activation was assessed by levels of platelet factor 4, beta-thromboglobulin and thromboxane B2. Plasma levels were measured before, during and after acute myocardial ischemia induced by rapid atrial pacing. Blood samples were collected from the ascending aorta and from the great cardiac vein through heparin-bonded catheters. The occurrence of anterior myocardial ischemia was established by electrocardiography and by myocardial lactate extraction. No significant transmyocardial gradients in the levels of fibrinopeptide A, platelet factor 4, beta-thromboglobulin or thromboxane B2 were found at rest, during ischemia or in the recovery period, and levels in the great cardiac vein did not change in response to ischemia. These data indicate that pacing-induced myocardial ischemia does not result in release of fibrinopeptide A, platelet factor 4, beta-thromboglobulin or thromboxane B2 into the coronary circulation, and imply that acute ischemia does not induce platelet activation or fibrin formation in the coronary circulation.

  4. Extending the duration of hypothermia does not further improve white matter protection after ischemia in term-equivalent fetal sheep.

    PubMed

    Davidson, Joanne O; Yuill, Caroline A; Zhang, Frank G; Wassink, Guido; Bennet, Laura; Gunn, Alistair J

    2016-04-28

    A major challenge in modern neonatal care is to further improve outcomes after therapeutic hypothermia for hypoxic ischemic encephalopathy. In this study we tested whether extending the duration of cooling might reduce white matter damage. Term-equivalent fetal sheep (0.85 gestation) received either sham ischemia followed by normothermia (n = 8) or 30 minutes of bilateral carotid artery occlusion followed by three days of normothermia (n = 8), three days of hypothermia (n = 8) or five days of hypothermia (n = 8) started three hours after ischemia. Histology was assessed 7 days after ischemia. Ischemia was associated with loss of myelin basic protein (MBP) and Olig-2 positive oligodendrocytes and increased Iba-1-positive microglia compared to sham controls (p < 0.05). Three days and five days of hypothermia were associated with a similar, partial improvement in MBP and numbers of oligodendrocytes compared to ischemia-normothermia (p < 0.05). Both hypothermia groups had reduced microglial activation compared to ischemia-normothermia (p < 0.05). In the ischemia-five-day hypothermia group, but not ischemia-three-day, numbers of microglia remained higher than in sham controls (p < 0.05). In conclusion, delayed cerebral hypothermia partially protected white matter after global cerebral ischemia in fetal sheep. Extending cooling from 3 to 5 days did not further improve outcomes, and may be associated with greater numbers of residual microglia.

  5. Forearm ischemia decreases endothelial colony-forming cell angiogenic potential.

    PubMed

    Mauge, Laetitia; Sabatier, Florence; Boutouyrie, Pierre; D'Audigier, Clément; Peyrard, Séverine; Bozec, Erwan; Blanchard, Anne; Azizi, Michel; Dizier, Blandine; Dignat-George, Françoise; Gaussem, Pascale; Smadja, David M

    2014-02-01

    Circulating endothelial progenitor cells and especially endothelial colony-forming cells (ECFCs) are promising candidate cells for endothelial regenerative medicine of ischemic diseases, but the conditions for an optimal collection from adult blood must be improved. On the basis of a recently reported vascular niche of ECFCs, we hypothesized that a local ischemia could trigger ECFC mobilization from the vascular wall into peripheral blood to optimize their collection for autologous implantation in critical leg ischemia. Because the target population with critical leg ischemia is composed of elderly patients in whom a vascular impairment has been documented, we also analyzed the impact of aging on ECFC mobilization and vascular integrity. After having defined optimized ECFC culture conditions, we studied the effect of forearm ischemia on ECFC numbers and functions in 26 healthy volunteers (13 volunteers ages 20-30-years old versus 13 volunteers ages 60-70 years old). The results show that forearm ischemia induced an efficient local ischemia and a normal endothelial response but did not mobilize ECFCs regardless of the age group. Moreover, we report an alteration of angiogenic properties of ECFCs obtained after forearm ischemia, in vitro as well as in vivo in a hindlimb ischemia murine model. This impaired ECFC angiogenic potential was not associated with a quantitative modification of the circulating endothelial compartment. The procedure of local ischemia, although reulting in a preserved endothelial reactivity, did not mobilize ECFCs but altered their angiogenic potential. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Electrocardiography as a Tool for Validating Myocardial Ischemia–Reperfusion Procedures in Mice

    PubMed Central

    Preda, Mihai B; Burlacu, Alexandrina

    2010-01-01

    This paper evaluates the modifications induced by ischemia and ischemia–reperfusion in mice after permanent or transient, respectively, ligation of the left coronary artery and establishes a correlation among the extent of ischemia, electrocardiograph features, and infarct size. The left coronary artery was ligated 1 mm distal from the tip of the left auricle. Histologic analysis revealed that 30-min ischemia (n = 9) led to infarction involving 9.7% ± 0.5% of the left ventricle, whereas 1-h ischemia (n = 9) resulted in transmural infarction of 16.1% ± 4.6% of the left ventricle. In contrast, 24-h ischemia (n = 8) and permanent ischemia (n = 8) induced similarly sized infarcts (33% ± 2% and 31.8% ± 0.7%, respectively), suggesting ineffective reperfusion after 24-h ischemia. Electrocardiography revealed that ligation of the left coronary artery led to ST height elevation (204 compared with 14 μV) and QTc prolongation (136 compared with 76 ms). Both parameters rapidly normalized on reperfusion, demonstrating that electrocardiography was important for validating correct ligation and reperfusion. In addition, electrocardiography predicted the severity of the myocardial damage induced by ischemia. Our results show that electrocardiographic changes present after 30-min ischemia were reversed on reperfusion; however, prolonged ischemia induced pathologic electrocardiographic patterns that remained even after reperfusion. The mouse model of myocardial ischemia–reperfusion can be improved by using electrocardiography to validate ligation and reperfusion during surgery and to predict the severity of infarction. PMID:21262130

  7. Neuroprotective effects of Alpinia katsumadai against experimental ischemic damage via control of oxidative stress.

    PubMed

    Li, Hua; Park, Joon Ha; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Lee, Choong Hyun; Choi, Jung Hoon; Kim, Jong-Dai; Kang, Il-Jun; Won, Moo-Ho

    2013-02-01

    Alpinia katsumadai (Zingiberaceae) has been identified by the National Plant Quarantine Service in Korea. The extract of Alpinia katsumadai seed (EAKS) has antioxidant activities. We investigated the neuroprotective effects of EAKS on ischemic damage in the gerbil hippocampal CA1 region after transient cerebral ischemia. The ethanol extract of EAKS was obtained by organic solvent, collected in Kangwon province (South Korea) and orally administered using a feeding needle once a day for one week before transient cerebral ischemia in gerbils. We adapted oral administration of 25 and 50 mg/kg EAKS because there are no data about the absorption and metabolism of EKAS. We found a significant neuroprotection in the 50 mg/kg EAKS-treated ischemia group, not in the 25 mg/kg EAKS-treated ischemia group, at 4 days ischemia-reperfusion (I-R). In the 50 mg/kg EAKS-treated ischemia group, about 68% of pyramidal neurons in the CA1 region were immunostained with neuronal nuclei (NeuN) 4 days after I-R, compared to the vehicle-treated ischemia group. 8-Hydroxy-2'-deoxyguanosine (a marker for DNA damage) and 4-hydroxy-2-nonenal (a marker for lipid peroxidation) immunoreactivity in the CA1 region of the EAKS-treated ischemia group were not markedly changed compared to the vehicle-treated ischemia group. In addition, Cu,Zn- and Mn-SOD immunoreactivity in the CA1 region of the EAKS-treated ischemia group were increased compared to the vehicle-treated ischemia group. Repeated supplements of EAKS could protect neurons against ischemic damage, showing that DNA damage and lipid peroxidation are attenuated and SODs are increased in the ischemic CA1 region.

  8. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death

    PubMed Central

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A.; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  9. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death.

    PubMed

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion.

  10. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury.

    PubMed

    Imahashi, Kenichi; Schneider, Michael D; Steenbergen, Charles; Murphy, Elizabeth

    2004-10-01

    The antiapoptotic protein Bcl-2 is targeted to the mitochondria, but it is uncertain whether Bcl-2 affects only myocyte survival after ischemia, or whether it also affects metabolic functions of mitochondria during ischemia. Hearts from mice overexpressing human Bcl-2 and from their wild-type littermates (WT) were subjected to 24 minutes of global ischemia followed by reperfusion. During ischemia, the decrease in pH(i) and the initial rate of decline in ATP were significantly reduced in Bcl-2 hearts compared with WT hearts (P<0.05). The reduced acidification during ischemia was dependent on the activity of mitochondrial F1F0-ATPase. In the presence of oligomycin (Oligo), an F1F0-ATPase inhibitor, the decrease in pH(i) was attenuated in WT hearts, but in Bcl-2 hearts, Oligo had no additional effect on pH(i) during ischemia. Likewise, addition of Oligo to WT hearts slowed the rate of decline in ATP during ischemia to a level similar to that observed in Bcl-2 hearts, but addition of Oligo had no significant effect on the rate of decline in ATP in Bcl-2 hearts during ischemia. These data are consistent with Bcl-2-mediated inhibition of consumption of glycolytic ATP. Furthermore, mitochondria from Bcl-2 hearts have a reduced rate of consumption of ATP on uncoupler addition. This could be accomplished by limiting ATP entry into the mitochondria through the voltage-dependent anion channel, and/or the adenine nucleotide transporter, or by direct inhibition of the F1F0-ATPase. Immunoprecipitation showed greater interaction between Bcl-2 and voltage-dependent anion channel during ischemia. These data indicate that Bcl-2 modulation of metabolism contributes to cardioprotection.

  11. Revascularization and Muscle Adaptation to Limb Demand Ischemia in Diet Induced Obese Mice

    PubMed Central

    Albadawi, Hassan; Tzika, Aria; Rask-Madsen, Christian; Crowley, Lindsey M.; Koulopoulos, Michael W.; Yoo, Hyung-Jin; Watkins, Michael T.

    2016-01-01

    Background Obesity and type 2 diabetes are major risk factors for peripheral arterial disease (PAD) in humans which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). Materials and Methods DIO mice (n=7) underwent unilateral femoral artery ligation (FAL) and recovered for 2-weeks followed by 4-weeks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia group (n=7) had FAL without exercise. The contralateral limb muscles of sedentary ischemia served as control. Muscles were examined for capillary density, myofiber cross-sectional area (CSA), cytokine levels, and phosphorylation of STAT3 and ERK1/2. Results Exercise significantly enhanced capillary density (p<0.01) and markedly lowered CSA (p<0.001) in demand ischemia compared to sedentary ischemia. These findings coincided with a significant increase in G-CSF (p<0.001) and IL-7 (p<0.01) levels. In addition, phosphorylation of STAT3 and ERK1/2 (p<0.01) were increased while UCP-1 and MCP-1 protein levels were lower (p<0.05) without altering VEGF and TNFα protein levels. Demand ischemia increased the PGC1α mRNA (p<0.001) without augmenting PGC1α protein levels. Conclusions Exercise induced limb demands ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in TNFα, lower VEGF and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. PMID:27620999

  12. Postischemic alterations of BDNF, NGF, HSP 70 and ubiquitin immunoreactivity in the gerbil hippocampus: pharmacological approach.

    PubMed

    Himeda, Toshiki; Tounai, Hiroko; Hayakawa, Natsumi; Araki, Tsutomu

    2007-03-01

    1. We investigated the immunohistochemical alterations of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus 1 h to 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pitavastatin against the changes of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus after cerebral ischemia in the hippocampus after ischemia. 2. The transient cerebral ischemia was carried out by clamping the carotid arteries with aneurismal clips for 5 min. 3. In the present study, the alteration of HSP 70 and ubiquitin immunoreactivity in the hippocampal CA1 sector was more pronounced than that of BDNF and NGF immunoreactivity after transient cerebral ischemia. In double-labeled immunostainings, BDNF, NGF and ubiquitin immunostaining was observed both in GFAP-positive astrocytes and MRF-1-positive microglia in the hippocampal CA1 sector after ischemia. Furthermore, prophylactic treatment with pitavastatin prevented the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after ischemia. 4. These findings suggest that the expression of stress protein including HSP 70 and ubiquitin may play a key role in the protection against the hippocampal CA1 neuronal damage after transient cerebral ischemia in comparison with the expression of neurotrophic factor such as BDNF and NGF. The present findings also suggest that the glial BDNF, NGF and ubiquitin may play some role for helping surviving neurons after ischemia. Furthermore, our present study indicates that prophylactic treatment with pitavastatin can prevent the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after transient cerebral ischemia. Thus our study provides further valuable information for the pathogenesis after transient cerebral ischemia.

  13. Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus

    PubMed Central

    Bae, Eun Joo; Chen, Bai Hui; Yan, Bing Chun; Shin, Bich Na; Cho, Jeong Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae Chul; Tae, Hyun-Jin; Hong, Seongkweon; Kim, Dong Won; Cho, Jun Hwi; Lee, Yun Lyul; Won, Moo-Ho; Park, Joon Ha

    2015-01-01

    The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1–3) between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults. PMID:26199612

  14. Retinal ischemic injury rescued by sodium 4-phenylbutyrate in a rat model.

    PubMed

    Jeng, Yung-Yue; Lin, Nien-Ting; Chang, Pen-Heng; Huang, Yuan-Ping; Pang, Victor Fei; Liu, Chen-Hsuan; Lin, Chung-Tien

    2007-03-01

    Retinal ischemia is a common cause of visual impairment for humans and animals. Herein, the neuroprotective effects of phenylbutyrate (PBA) upon retinal ischemic injury were investigated using a rat model. Retinal ganglion cells (RGCs) were retrograde labeled with the fluorescent tracer fluorogold (FG) applied to the superior collicoli of test Sprague-Dawley rats. High intraocular pressure and retinal ischemia were induced seven days subsequent to such FG labeling. A dose of either 100 or 400 mg/kg PBA was administered intraperitoneally to test rats at two time points, namely 30 min prior to the induction of retinal ischemia and 1 h subsequent to the cessation of the procedure inducing retinal ischemia. The test-rat retinas were collected seven days subsequent to the induction of retinal ischemia, and densities of surviving RGCs were estimated by counting FG-labeled RGCs within the retina. Histological analysis revealed that ischemic injury caused the loss of retinal RGCs and a net decrease in retinal thickness. For PBA-treated groups, almost 100% of the RGCs were preserved by a pre-ischemia treatment with PBA (at a dose of either 100 or 400 mg/kg), while post-ischemia treatment of RGCs with PBA did not lead to the preservation of RGCs from ischemic injury by PBA as determined by the counting of whole-mount retinas. Pre-ischemia treatment of RGCs with PBA (at a dose of either 100 or 400 mg/kg) significantly reduced the level of ischemia-associated loss of thickness of the total retina, especially the inner retina, and the inner plexiform layer of retina. Besides, PBA treatment significantly reduced the ischemia-induced loss of cells in the ganglion-cell layer of the retina. Taken together, these results suggest that PBA demonstrates a marked neuroprotective effect upon high intraocular pressure-induced retinal ischemia when the PBA is administered prior to ischemia induction.

  15. A nationwide analysis of 30-day readmissions related to critical limb ischemia.

    PubMed

    Masoomi, Reza; Shah, Zubair; Quint, Clay; Hance, Kirk; Vamanan, Karthik; Prasad, Anand; Hoel, Andrew; Dawn, Buddhadeb; Gupta, Kamal

    2018-06-01

    Objectives There is paucity of information regarding critical limb ischemia-related readmission rates in patients admitted with critical limb ischemia. We studied 30-day critical limb ischemia-related readmission rate, its predictors, and clinical outcomes using a nationwide real-world dataset. Methods We did a secondary analysis of the 2013 Nationwide Readmissions Database. We included all patients with a primary diagnosis of extremity rest pain, ulceration, and gangrene secondary to peripheral arterial disease. From this group, all patients readmitted with similar diagnosis within 30 days were recorded. Results Of the total 25,111 index hospitalization for critical limb ischemia, 1270 (5%) were readmitted with a primary diagnosis of critical limb ischemia within 30 days. The readmission rate was highest (9.5%) for the group that did not have any intervention (revascularization or major amputation) and was lowest for surgical revascularization and major amputation groups (2.6% and 1.3%, P value <0.001 for all groups). Severity of critical limb ischemia at index admission was associated with a significantly higher rate of 30-day readmission. Critical limb ischemia-related readmission was associated with a higher rate of major amputation (29.6% vs. 16.2%, P<0.001), a lower rate of any revascularization procedure (46% vs. 62.6%, P<0.001), and a higher likelihood of discharge to a skilled nursing facility (43.2% vs. 32.2%, P<0.001) compared to index hospitalization. Conclusions In patients with primary diagnosis of critical limb ischemia, 30-day critical limb ischemia-related readmission rate was affected by initial management strategy and the severity of critical limb ischemia. Readmission was associated with a significantly higher rate of amputation, increased length of stay, and a more frequent discharge to an alternate care facility than index admission and thus may serve as a useful quality of care metric in critical limb ischemia patients.

  16. Nampt/PBEF/visfatin exerts neuroprotective effects against ischemia/reperfusion injury via modulation of Bax/Bcl-2 ratio and prevention of caspase-3 activation.

    PubMed

    Erfani, Sohaila; Khaksari, Mehdi; Oryan, Shahrbanoo; Shamsaei, Nabi; Aboutaleb, Nahid; Nikbakht, Farnaz

    2015-05-01

    Nicotinamide phosphoribosyl transferase/pre-B cell colony-enhancing factor/visfatin (Nampt/PBEF/visfatin) is an adipocytokine. By synthesizing nicotinamide adenine dinucleotide (NAD(+)), Nampt/PBEF/visfatin functions to maintain an energy supply that has critical roles in cell survival. Cerebral ischemia leads to energy depletion and eventually neuronal death by apoptosis in specific brain regions specially the hippocampus. However, the role of Nampt/PBEF/visfatin in brain and cerebral ischemia remains to be investigated. This study investigated the role of administration Nampt/PBEF/visfatin in hippocampal CA3 area using a transient global cerebral ischemia model. Both common carotid arteries were occluded for 20 min followed by reperfusion. Saline as a vehicle and Nampt/PBEF/visfatin at a dose of 100 ng were injected intracerebroventricularly (ICV) at the time of cerebral reperfusion. To investigate the underlying mechanisms of Nampt/PBEF/visfatin neuroprotection, levels of expression of apoptosis-related proteins (caspase-3 activation, Bax protein levels, and Bcl-2 protein levels) 96 h after ischemia were determined by immunohistochemical staining. The number of active caspase-3-positive neurons in CA3 was significantly increased in the ischemia group, compared with the sham group (P < 0.001), and treatment with Nampt/PBEF/visfatin significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P < 0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in the ischemia group, compared with the sham group (P < 0.01). However, treatment with Nampt/PBEF/visfatin significantly attenuated the ischemia/reperfusion-induced increase in Bax/Bcl-2 ratio, compared with the ischemia group (P < 0.05). This study has indicated that Nampt/PBEF/visfatin entails neuroprotective effects against ischemia injury when used at the time of cerebral reperfusion. These neuroprotective mechanisms of Nampt/PBEF/visfatin occur through decrease the expression ofproapoptotic proteins (cleaved caspase-3 and Bax) and, on the other hand, increase the expression ofantiapoptotic proteins (Bcl-2). Thus, our findings indicate that Nampt/PBEF/visfatin is a new therapeutic target for cerebral ischemia.

  17. Robot-assisted laparoscopic versus open partial nephrectomy in patients with chronic kidney disease: A propensity score-matched comparative analysis of surgical outcomes.

    PubMed

    Takagi, Toshio; Kondo, Tsunenori; Tachibana, Hidekazu; Iizuka, Junpei; Omae, Kenji; Kobayashi, Hirohito; Yoshida, Kazuhiko; Tanabe, Kazunari

    2017-07-01

    To compare surgical outcomes between robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy in patients with chronic kidney disease. Of 550 patients who underwent partial nephrectomy between 2012 and 2015, 163 patients with T1-2 renal tumors who had an estimated glomerular filtration rate between 30 and 60 mL/min/1.73 m 2 , and underwent robot-assisted laparoscopic partial nephrectomy or open partial nephrectomy were retrospectively analyzed. To minimize selection bias between the two surgical methods, patient variables were adjusted by 1:1 propensity score matching. The present study included 75 patients undergoing robot-assisted laparoscopic partial nephrectomy and 88 undergoing open partial nephrectomy. After propensity score matching, 40 patients were included in each operative group. The mean preoperative estimated glomerular filtration rate was 49 mL/min/1.73 m 2 . The mean ischemia time was 21 min in robot-assisted laparoscopic partial nephrectomy (warm ischemia) and 35 min in open partial nephrectomy (cold ischemia). Preservation of the estimated glomerular filtration rate 3-6 months postoperatively was not significantly different between robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy (92% vs 91%, P = 0.9348). Estimated blood loss was significantly lower in the robot-assisted laparoscopic partial nephrectomy group than in the open partial nephrectomy group (104 vs 185 mL, P = 0.0025). The postoperative length of hospital stay was shorter in the robot-assisted laparoscopic partial nephrectomy group than in the open partial nephrectomy group (P < 0.0001). The prevalence of Clavien-Dindo grade 3 complications and a negative surgical margin status were not significantly different between the two groups. In our experience, robot-assisted laparoscopic partial nephrectomy and open partial nephrectomy provide similar outcomes in terms of functional preservation and perioperative complications among patients with chronic kidney disease. However, a lower estimated blood loss and shorter postoperative length of hospital stay can be obtained with robot-assisted laparoscopic partial nephrectomy. © 2017 The Japanese Urological Association.

  18. [Acute mesenteric ischemia: do biomarkers contribute to diagnosis?].

    PubMed

    Rosero, Olivér; Harsányi, László; Szijártó, Attila

    2014-10-12

    Acute mesenteric ischemia is an emergency condition that requires immediate therapy. Despite advances in the fields of surgery and intensive therapy, the mortality of this condition remains high. This is due to the broad variability of clinical presentations and non-specific laboratory findings, which delay the diagnosis allowing the ischemia to progress and further worsening the patients' chances of survival. Thus, there is a significant need for reliable and enhanced serological markers of intestinal ischemia. The authors review the traditionally used and novel experimental serological markers for early diagnosis of mesenteric ischemia.

  19. Acute tryptophan pretreatment protects against behavioral changes caused by cerebral ischemia.

    PubMed

    Carney, J M

    1986-05-15

    Male gerbils (Meronies ungulata) were treated with various doses of tryptophan and the changes in spontaneous motor activity determined. Tryptophan decreased behavior at a dose of 200 mg/kg. Cerebral ischemia was produced by bilateral carotid occlusion for 5 min. This duration of ischemia produced a large increase in activity at both 6 h and 24 h postischemia. Tryptophan (200 mg/kg) prevented the ischemia-induced increases in locomotor activity. These data suggest that dietary amino acids may play a role in determining the effects of ischemia.

  20. Dictionary-Driven Ischemia Detection From Cardiac Phase-Resolved Myocardial BOLD MRI at Rest.

    PubMed

    Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A

    2016-01-01

    Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP-BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP-BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson's r=0.84) with respect to infarct size. When advances in automated registration and segmentation of CP-BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique.

  1. Mechanism underlying impaired cardiac pacemaking rhythm during ischemia: A simulation study

    NASA Astrophysics Data System (ADS)

    Bai, Xiangyun; Wang, Kuanquan; Yuan, Yongfeng; Li, Qince; Dobrzynski, Halina; Boyett, Mark R.; Hancox, Jules C.; Zhang, Henggui

    2017-09-01

    Ischemia in the heart impairs function of the cardiac pacemaker, the sinoatrial node (SAN). However, the ionic mechanisms underlying the ischemia-induced dysfunction of the SAN remain elusive. In order to investigate the ionic mechanisms by which ischemia causes SAN dysfunction, action potential models of rabbit SAN and atrial cells were modified to incorporate extant experimental data of ischemia-induced changes to membrane ion channels and intracellular ion homeostasis. The cell models were incorporated into an anatomically detailed 2D model of the intact SAN-atrium. Using the multi-scale models, the functional impact of ischemia-induced electrical alterations on cardiac pacemaking action potentials (APs) and their conduction was investigated. The effects of vagal tone activity on the regulation of cardiac pacemaker activity in control and ischemic conditions were also investigated. The simulation results showed that at the cellular level ischemia slowed the SAN pacemaking rate, which was mainly attributable to the altered Na+-Ca2+ exchange current and the ATP-sensitive potassium current. In the 2D SAN-atrium tissue model, ischemia slowed down both the pacemaking rate and the conduction velocity of APs into the surrounding atrial tissue. Simulated vagal nerve activity, including the actions of acetylcholine in the model, amplified the effects of ischemia, leading to possible SAN arrest and/or conduction exit block, which are major features of the sick sinus syndrome. In conclusion, this study provides novel insights into understanding the mechanisms by which ischemia alters SAN function, identifying specific conductances as contributors to bradycardia and conduction block.

  2. Renal ischemia induces an increase in nitric oxide levels from tissue stores.

    PubMed

    Salom, Miguel G; Arregui, Begoña; Carbonell, Luis F; Ruiz, Fernando; González-Mora, José Luis; Fenoy, Francisco J

    2005-11-01

    Tissue nitric oxide (NO) levels increase dramatically during ischemia, an effect that has been shown to be partially independent from NO synthases. Because NO is stored in tissues as S-nitrosothiols and because these compounds could release NO during ischemia, we evaluated the effects of buthionine sulfoximine (BSO; an intracellular glutathione depletor), light stimulation (which releases NO, decomposing S-nitrosothiols), and N-acetyl-L-cysteine (a sulfhydryl group donor that repletes S-nitrosothiols stores) on the changes in outer medullary NO concentration produced during 45 min of renal artery occlusion in anesthetized rats. Renal ischemia increased renal tissue NO concentration (+223%), and this effect was maintained along 45 min of renal arterial blockade. After reperfusion, NO concentration fell below preischemic values and remained stable for the remainder of the experiment. Pretreatment with 10 mg/kg nitro-L-arginine methyl ester (L-NAME) decreased significantly basal NO concentration before ischemia, but it did not modify the rise in NO levels observed during ischemia. In rats pretreated with 4 mmol/kg BSO and L-NAME, ischemia was followed by a transient increase in renal NO concentration that fell to preischemic values 20 min before reperfusion. A similar response was observed when the kidney was illuminated 40 min before the ischemia. The coadministration of 10 mg/kg iv N-acetyl-L-cysteine with BSO + L-NAME restored the increase in NO levels observed during renal ischemia and prevented the depletion of renal thiol groups. These results demonstrate that the increase in renal NO concentration observed during ischemia originates from thiol-dependent tissue stores.

  3. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research

    PubMed Central

    Gonzalez, Liara M.; Moeser, Adam J.

    2014-01-01

    Research in the field of ischemia-reperfusion injury continues to be plagued by the inability to translate research findings to clinically useful therapies. This may in part relate to the complexity of disease processes that result in intestinal ischemia but may also result from inappropriate research model selection. Research animal models have been integral to the study of ischemia-reperfusion-induced intestinal injury. However, the clinical conditions that compromise intestinal blood flow in clinical patients ranges widely from primary intestinal disease to processes secondary to distant organ failure and generalized systemic disease. Thus models that closely resemble human pathology in clinical conditions as disparate as volvulus, shock, and necrotizing enterocolitis are likely to give the greatest opportunity to understand mechanisms of ischemia that may ultimately translate to patient care. Furthermore, conditions that result in varying levels of ischemia may be further complicated by the reperfusion of blood to tissues that, in some cases, further exacerbates injury. This review assesses animal models of ischemia-reperfusion injury as well as the knowledge that has been derived from each to aid selection of appropriate research models. In addition, a discussion of the future of intestinal ischemia-reperfusion research is provided to place some context on the areas likely to provide the greatest benefit from continued research of ischemia-reperfusion injury. PMID:25414098

  4. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia

    PubMed Central

    Guven, Mustafa; Aras, Adem Bozkurt; Akman, Tarik; Sen, Halil Murat; Ozkan, Adile; Salis, Osman; Sehitoglu, Ibrahim; Kalkan, Yildiray; Silan, Coskun; Deniz, Mustafa; Cosar, Murat

    2015-01-01

    Objective(s): Stroke poses a crucial risk for mortality and morbidity. Our study aimed to investigate the effect of p-coumaric acid on focal cerebral ischemia in rats. Material and Methods: Rats were randomly divided into four groups, namely Group I (control rats), Group II (ischemia rats), Group III (6 hr ischemia + p-coumaric acid rats) and Group IV (24 hr ischemia + p-coumaric acid rats). Cerebral ischemia was induced via intraluminal monofilament occlusion model. In all groups, the brain was removed after the procedure and rats were sacrificed. Malondialdehyde, superoxide dismutase and nuclear respiratory factor-1 were measured in the ischemic hemisphere. The histopathological changes were observed in the right hemisphere within the samples. Functional assessment was performed for neurological deficit scores. Results: Following the treatment, biochemical factors changed significantly. Histopathologically, it was shown that p-coumaric acid decreased the oxidative damage. The neurological deficit scores of p-coumaric acid-treated rats were significantly improved after cerebral ischemia. Conclusion: Our results showed that p-coumaric acid is a neuroprotective agent on account of its strong anti-oxidant and anti-apoptotic features. Moreover, p-coumaric acid decreased the focal ischemia. Extra effort should be made to introduce p-coumaric acid as a promising therapeutic agent to be utilized for treatment of human cerebral ischemia in the future. PMID:26019798

  5. Protective Effect of Platelet Rich Plasma on Experimental Ischemia/Reperfusion Injury in Rat Ovary.

    PubMed

    Bakacak, Murat; Bostanci, Mehmet Suhha; İnanc, Fatma; Yaylali, Asli; Serin, Salih; Attar, Rukset; Yildirim, Gazi; Yildirim, Ozge Kizilkale

    2016-01-01

    Ovarian torsion is a common cause of local ischemic damage, reduced follicular activity and infertility. Platelet-rich plasma (PRP) contains growth factors with demonstrated cytoprotective properties; so we evaluated PRP efficacy in a rat ischemia/reperfusion (I/R) model. Sixty adult female Sprague-Dawley albino rats were randomly assigned to 6 groups of 8 animals each: Sham, Ischemia, I/R, Sham + PRP, I + PRP and I/R + PRP; and the remaining 12 used to prepare PRP. Ischemia groups were subjected to bilateral adnexal torsion for 3 h, while I/R and I/R + PRP groups received subsequent detorsion for 3 h. Intraperitoneal PRP was administered 30 min prior to ischemia (Ischemia + PRP) or reperfusion (I/R + PRP). Total oxidant status (TOS), oxidative stress index (OSI) and total ovarian histopathological scores were higher in Ischemia and I/R groups than in the Sham group (p < 0.05). PRP decreased mean TOS, OSI and histopathological scores in I + PRP and I/R + PRP groups compared to the corresponding Ischemia and I/R groups (p < 0.001). There was a strong correlation between total histopathological score and OSI (r = 0.877, p < 0.001). Peritoneal vascular endothelial growth factor was significantly higher in PRP-treated groups than corresponding untreated groups (p < 0.05). PRP is effective for the prevention of ischemia and reperfusion damage in rat ovary. © 2015 S. Karger AG, Basel.

  6. Raynaud’s phenomenon and digital ischemia: a practical approach to risk stratification, diagnosis and management

    PubMed Central

    McMahan, Zsuzsanna H.; Wigley, Fredrick M.

    2015-01-01

    Digital ischemia is a painful and often disfiguring event. Such an ischemic event often leads to tissue loss and can significantly affect the patient’s quality of life. Digital ischemia can be secondary to a vasculopathy, vasculitis, embolic disease, trauma, or extrinsic vascular compression. It is an especially serious complication in patients with scleroderma. Risk stratification of patients with scleroderma at risk for digital ischemia is now possible with clinical assessment and autoantibody profiles. Because there are a variety of conditions that lead to digital ischemia, it is important to understand the pathophysiology underlying each ischemic presentation in order to target therapy appropriately. Significant progress has been made in the last two decades in defining the pathophysiological processes leading to digital ischemia in rheumatic diseases. In this article we review the risk stratification, diagnosis, and management of patients with digital ischemia and provide a practical approach to therapy, particularly in scleroderma. PMID:26523153

  7. Identification of the boundary between normal brain tissue and ischemia region using two-photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Du, Huiping; Wang, Shu; Wang, Xingfu; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2016-10-01

    Ischemic stroke is one of the common neurological diseases, and it is becoming the leading causes of death and permanent disability around the world. Early and accurate identification of the potentially salvageable boundary region of ischemia brain tissues may enable selection of the most appropriate candidates for early stroke therapies. In this work, TPEF microscopy was used to image the microstructures of normal brain tissues, ischemia regions and the boundary region between normal and ischemia brain tissues. The ischemia brain tissues from Sprague-Dawley (SD) rats were subjected to 6 hours of middle cerebral artery occlusion (MCAO). Our study demonstrates that TPEF microscopy has the ability to not only reveal the morphological changes of the neurons but also identify the boundary between normal brain tissue and ischemia region, which correspond well to the hematoxylin and eosin (H and E) stained images. With the development of miniaturized TPEF microscope imaging devices, TPEF microscopy can be developed into an effectively diagnostic and monitoring tool for cerebral ischemia.

  8. Use of OCTA, FA, and Ultra-Widefield Imaging in Quantifying Retinal Ischemia: A Review.

    PubMed

    Or, Chris; Sabrosa, Almyr S; Sorour, Osama; Arya, Malvika; Waheed, Nadia

    2018-01-01

    As ischemia remains a key prognostic factor in the management of various diseases including diabetic retinopathy, an increasing amount of research has been dedicated to its quantification as a potential biomarker. Advancements in the quantification of retinal ischemia have been made with the imaging modalities of fluorescein angiography (FA), ultra-widefield imaging (UWF), and optical coherence tomography angiography (OCTA), with each imaging modality offering certain benefits over the others. FA remains the gold standard in assessing the extent of ischemia. UWF imaging has allowed for the assessment of peripheral ischemia via FA. It is, however, OCTA that offers the best visualization of retinal vasculature with its noninvasive depth-resolved imaging and therefore has the potential to become a mainstay in the assessment of retinal ischemia. The primary purpose of this article is to review the use of FA, UWF, and OCTA to quantify retinal ischemia and the various methods described in the literature by which this is achieved. Copyright 2018 Asia-Pacific Academy of Ophthalmology.

  9. PPAR{gamma} agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong-Ryong; Chronic Disease Research Center and Institute for Medical Science, School of Medicine, Keimyung University, Taegu; Kim, Hahn-Young

    2009-02-27

    Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonist, has shown protective effects against ischemic insult in various tissues. Pioglitazone is also reported to reduce matrix metalloproteinase (MMP) activity. MMPs can remodel extracellular matrix components in many pathological conditions. The current study was designed to investigate whether the neuroprotection of pioglitazone is related to its MMP inhibition in focal cerebral ischemia. Mice were subjected to 90 min focal ischemia and reperfusion. In gel zymography, pioglitazone reduced the upregulation of active form of MMP-9 after ischemia. In in situ zymograms, pioglitazone also reduced the gelatinase activity induced by ischemia. After co-incubation withmore » pioglitazone, in situ gelatinase activity was directly reduced. Pioglitazone reduced the infarct volume significantly compared with controls. These results demonstrate that pioglitazone may reduce MMP-9 activity and neuronal damage following focal ischemia. The reduction of MMP-9 activity may have a possible therapeutic effect for the management of brain injury after focal ischemia.« less

  10. Development of an ion-pair HPLC method for investigation of energy charge changes in cerebral ischemia of mice and hypoxia of Neuro-2a cell line.

    PubMed

    Chen, Yunyun; Xing, Dongming; Wang, Wei; Ding, Yi; Du, Lijun

    2007-06-01

    The determination of adenine nucleotides and energy charge (EC) has great importance in the characterization of cerebral ischemic injury and post-ischemic recovery. An IP-HPLC method was developed for the quantification of AMP, ADP, ATP and EC in cerebral ischemia and hypoxia of the Neuro-2a cell line. The chromatographic conditions were: a Zorbax SB-C18 reversed-phase column; mobile phase 100 mM KH(2)PO(4), 1 mM tetrabutylammonium hydroxide, and 2.5% acetonitrile, brought to pH 7.0 with potassium hydroxide (4 M), filtered through a 0.45 microm Millipore filter and degassed prior to use. The flow-rate was 1.0 mL/min. The injection volume was 20 microL. Detection was performed at a wavelength of 254 nm under a constant temperature (27 +/- 1 degrees C). The method was validated by means of linearity, using calibration curves constructed with five concentration levels of each compound. The limit of detection was also determined. The system precision was calculated as the coefficient of variation for five injections for each compound tested. Cerebral tissue was homogenized (4 degrees C) in 1 mL of an ice-cold 6% trichloroacetic acid that contained ATPase inhibitor and obtained good recovery (>90%). The results show that the described method for the determination of adenine nucleotides by HPLC has good linearity, limit of detection, precision and specificity, and is simple and rapid to perform. Copyright 2007 John Wiley & Sons, Ltd.

  11. Extended criteria donors in liver transplantation Part I: reviewing the impact of determining factors.

    PubMed

    Nemes, Balázs; Gámán, György; Polak, Wojciech G; Gelley, Fanni; Hara, Takanobu; Ono, Shinichiro; Baimakhanov, Zhassulan; Piros, Laszlo; Eguchi, Susumu

    2016-07-01

    The definition and factors of extended criteria donors have already been set; however, details of the various opinions still differ in many respects. In this review, we summarize the impact of these factors and their clinical relevance. Elderly livers must not be allocated for hepatitis C virus (HCV) positives, or patients with acute liver failure. In cases of markedly increased serum transaminases, donor hemodynamics is an essential consideration. A prolonged hypotension of the donor does not always lead to an increase in post-transplantation graft loss if post-OLT care is proper. Hypernatremia of less than 160 mEq/L is not an absolute contraindication to accept a liver graft per se. The presence of steatosis is an independent and determinant risk factor for the outcome. The gold standard of the diagnosis is the biopsy. This is recommended in all doubtful cases. The use of HCV+ grafts for HCV+ recipients is comparable in outcome. The leading risk factor for HCV recurrence is the actual RNA positivity of the donor. The presence of a proper anti-HBs level seems to protect from de novo HBV infection. A favourable outcome can be expected if a donation after cardiac death liver is transplanted in a favourable condition, meaning, a warm ischemia time < 30 minutes, cold ischemia time < 8-10 hours, and donor age 50-60 years. The pathway of organ quality assessment is to obtain the most relevant information (e.g. biopsy), consider the co-existing donor risk factors and the reserve capacity of the recipient, and avoid further technical issues.

  12. Hepatic ischemia

    MedlinePlus

    ... artery to the liver (hepatic artery) after a liver transplant Swelling of blood vessels leading to reduced blood ... the illness causing hepatic ischemia can be treated. Death from liver failure due to hepatic ischemia is ...

  13. Allowable warm ischemic time and morphological and biochemical changes in uterine ischemia/reperfusion injury in cynomolgus macaque: a basic study for uterus transplantation.

    PubMed

    Kisu, Iori; Umene, Kiyoko; Adachi, Masataka; Emoto, Katsura; Nogami, Yuya; Banno, Kouji; Itagaki, Iori; Kawamoto, Ikuo; Nakagawa, Takahiro; Narita, Hayato; Yoshida, Atsushi; Tsuchiya, Hideaki; Ogasawara, Kazumasa; Aoki, Daisuke

    2017-10-01

    How long is the allowable warm ischemic time of the uterus and what morphological and biochemical changes are caused by uterine ischemia/reperfusion injury in cynomolgus macaques? Warm ischemia in the uterus of cynomolgus macaques is tolerated for up to 4 h and reperfusion after uterine ischemia caused no further morphological and biochemical changes. Uterus transplantation is a potential option for women with uterine factor infertility. The allowable warm ischemic time and ischemia/reperfusion injury of the uterus in humans and non-human primates is unknown. This experimental study included 18 female cynomolgus macaques with periodic menstruation. Animals were divided into six groups of three monkeys each: a control group and groups with uterine ischemia for 0.5, 1, 2, 4 and 8 h. Biopsies of uterine tissues were performed before blood flow blockage, after each blockage time, and after reperfusion for 3 h. Blood sampling was performed after each blockage time, and after reperfusion for 5, 15 and 30 min for measurement of biochemical data. Resumption of menstruation was monitored after the surgical procedure. Morphological, physiological and biochemical changes after ischemia and reperfusion were evaluated. Mild muscle degeneration and zonal degeneration were observed in all animals subjected to warm ischemia for 4 or 8 h, but there were no marked differences in the appearance of specimens immediately after ischemia and after reperfusion for 3 h in animals subjected to 4 or 8 h of warm ischemia. There were no significant changes in any biochemical parameters at any time point in each group. Periodical menstruation resumed in all animals with warm ischemia up to 4 h, but did not recover in animals with warm ischemia for 8 h with atrophic uteri. Warm ischemia in actual transplantation was not exactly mimicked in this study because uteri were not perfused, cooled, transplanted or reanastomosed with vessels. Results in non-human primates cannot always be extrapolated to humans. The findings suggest that the tolerable warm ischemia time in the uterus is expected to be longer than that in other vital organs. This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 26713050. None of the authors has a conflict of interest to declare. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Adverse remodeling of the electrophysiological response to ischemia-reperfusion in human heart failure is associated with remodeling of metabolic gene expression.

    PubMed

    Ng, Fu Siong; Holzem, Katherine M; Koppel, Aaron C; Janks, Deborah; Gordon, Fabiana; Wit, Andrew L; Peters, Nicholas S; Efimov, Igor R

    2014-10-01

    Ventricular arrhythmias occur more frequently in heart failure during episodes of ischemia-reperfusion although the mechanisms underlying this in humans are unclear. We assessed, in explanted human hearts, the remodeled electrophysiological response to acute ischemia-reperfusion in heart failure and its potential causes, including the remodeling of metabolic gene expression. We optically mapped coronary-perfused left ventricular wedge preparations from 6 human end-stage failing hearts (F) and 6 donor hearts rejected for transplantation (D). Preparations were subjected to 30 minutes of global ischemia, followed by 30 minutes of reperfusion. Failing hearts had exaggerated electrophysiological responses to ischemia-reperfusion, with greater action potential duration shortening (P<0.001 at 8-minute ischemia; P=0.001 at 12-minute ischemia) and greater conduction slowing during ischemia, delayed recovery of electric excitability after reperfusion (F, 4.8±1.8 versus D, 1.0±0 minutes; P<0.05), and incomplete restoration of action potential duration and conduction velocity early after reperfusion. Expression of 46 metabolic genes was probed using custom-designed TaqMan arrays, using extracted RNA from 15 failing and 9 donor hearts. Ten genes important in cardiac metabolism were downregulated in heart failure, with SLC27A4 and KCNJ11 significantly downregulated at a false discovery rate of 0%. We demonstrate, for the first time in human hearts, that the electrophysiological response to ischemia-reperfusion in heart failure is accelerated during ischemia with slower recovery after reperfusion. This can enhance spatial conduction and repolarization gradients across the ischemic border and increase arrhythmia susceptibility. This adverse response was associated with downregulation of expression of cardiac metabolic genes. © 2014 American Heart Association, Inc.

  15. [Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart].

    PubMed

    Peng, Long-yun; Ma, Hong; He, Jian-gui; Gao, Xiu-ren; Zhang, Yan; He, Xiao-hong; Zhai, Yuan-sheng; Zhang, Xue-jiao

    2006-08-01

    To explore the effects of ischemic postconditioning on ischemia/reperfusion injury in isolated hypertrophied rat heart and investigate the signal transduction pathway changes induced by ischemia postconditioning. Cardiac hypertrophy was induced in rats by abdominal aortic banding, and isolated hypertrophied rat heart ischemia/reperfusion model was made by Langendorff technique to evaluate the effects of ischemia postconditioning on left ventricular systole pressure, coronary artery flow, creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) release, myocardial infarction size, and the level of myocardial phospho-protein kinase B/Akt (Ser473), phospho-glycogen synthase kinase-3beta (Ser9). Following groups were studied (n = 12 each group): IR, 30 min ischemia (I)/60 min Reperfusion (R); Post: 30 min ischemia, 6 circles of 10 s I/10 s R followed by 60 min R; Post Wort: 30 min ischemia, 6 circles of 10 s I/10 s R, wortmannin (10(-7) mol/L) followed by 60 min R; Wort: 30 min ischemia, wortmannin (10(-7) mol/L) followed by 60 min R. Left ventricular systolic pressure and coronary artery flow were significantly increased, myocardial infarction size and the release of CPK, LDH significantly reduced in Post group compared to that in IR group. Phospho-protein kinase B/Akt (Ser473) and phospho-glycogen synthase kinase-3beta (Ser9) levels were also significantly higher in Post group than that in IR group. Phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin prevented the increase of phospho-protein kinase B/Akt (Ser473) and phospho-glycogen synthase kinase-3beta (Ser9) induced by ischemic postconditioning, but only partly abolished the cardioprotection of ischemic postconditioning. Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart. The cardioprotective effects of ischemic postconditioning were partly mediated through PI3K/Akt/GSK-3beta signaling pathway.

  16. Photothrombosis-induced Focal Ischemia as a Model of Spinal Cord Injury in Mice

    PubMed Central

    Zhang, Nannan; Ding, Shinghua

    2015-01-01

    Spinal cord injury (SCI) is a devastating clinical condition causing permanent changes in sensorimotor and autonomic functions of the spinal cord (SC) below the site of injury. The secondary ischemia that develops following the initial mechanical insult is a serious complication of the SCI and severely impairs the function and viability of surviving neuronal and non-neuronal cells in the SC. In addition, ischemia is also responsible for the growth of lesion during chronic phase of injury and interferes with the cellular repair and healing processes. Thus there is a need to develop a spinal cord ischemia model for studying the mechanisms of ischemia-induced pathology. Focal ischemia induced by photothrombosis (PT) is a minimally invasive and very well established procedure used to investigate the pathology of ischemia-induced cell death in the brain. Here, we describe the use of PT to induce an ischemic lesion in the spinal cord of mice. Following retro-orbital sinus injection of Rose Bengal, the posterior spinal vein and other capillaries on the dorsal surface of SC were irradiated with a green light resulting in the formation of a thrombus and thus ischemia in the affected region. Results from histology and immunochemistry studies show that PT-induced ischemia caused spinal cord infarction, loss of neurons and reactive gliosis. Using this technique a highly reproducible and relatively easy model of SCI in mice can be achieved that would serve the purpose of scientific investigations into the mechanisms of ischemia induced cell death as well as the efficacy of neuroprotective drugs. This model will also allow exploration of the pathological changes that occur following SCI in live mice like axonal degeneration and regeneration, neuronal and astrocytic Ca2+ signaling using two-photon microscopy. PMID:26274772

  17. A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo.

    PubMed

    Tang, Yao Liang; Qian, Keping; Zhang, Y Clare; Shen, Leping; Phillips, M Ian

    2005-12-01

    The effect of a cardiac specific, hypoxia-regulated, human heme oxygenase-1 (hHO-1) vector to provide cardioprotection from ischemia-reperfusion injury was assessed. When myocardial ischemia and reperfusion is asymptomatic, the damaging effects are cumulative and patients miss timely treatment. A gene therapy approach that expresses therapeutic genes only when ischemia is experienced is a desirable strategy. We have developed a cardiac-specific, hypoxia-regulated gene therapy "vigilant vector'' system that amplifies cardioprotective gene expression. Vigilant hHO-1 plasmids, LacZ plasmids, or saline (n = 40 per group) were injected into mouse heart 2 days in advance of ischemia-reperfusion injury. Animals were exposed to 60 minutes of ischemia followed by 24 hours of reperfusion. For that term (24 hours) effects, the protein levels of HO-1, inflammatory responses, apoptosis, and infarct size were determined. For long-term (3 week) effects, the left ventricular remodeling and recovery of cardiac function were assessed. Ischemia-reperfusion resulted in a timely overexpression of HO-1 protein. Infarct size at 24 hours after ischemia-reperfusion was significantly reduced in the HO-1-treated animals compared with the LacZ-treated group or saline-treated group (P < .001). The reduction of infarct size was accompanied by a decrease in lipid peroxidant activity, inflammatory cell infiltration, and proapoptotic protein level in ischemia-reperfusion-injured myocardium. The long-term study demonstrated that timely, hypoxia-induced HO-1 overexpression is beneficial in conserving cardiac function and attenuating left ventricle remodelling. The vigilant HO-1 vector provides a protective therapy in the heart for reducing cellular damage during ischemia-reperfusion injury and preserving heart function.

  18. Pharmacological postconditioning with atorvastatin calcium attenuates myocardial ischemia/reperfusion injury in diabetic rats by phosphorylating GSK3β.

    PubMed

    Chen, Linyan; Cai, Ping; Cheng, Zhendong; Zhang, Zaibao; Fang, Jun

    2017-07-01

    Diabetes is an independent risk factor for myocardial ischemia, and many epidemiological data and laboratory studies have revealed that diabetes significantly exacerbated myocardial ischemia/reperfusion injury and ameliorated protective effects. The present study aimed to determine whether pharmacological postconditioning with atorvastatin calcium lessened diabetic myocardial ischemia/reperfusion injury, and investigated the role of glycogen synthase kinase (GSK3β) in this. A total of 72 streptozotocin-induced diabetic rats were randomly divided into six groups, and 24 age-matched male non-diabetic Sprague-Dawley rats were randomly divided into two groups. Rats all received 40 min myocardial ischemia followed by 180 min reperfusion, except sham-operated groups. Compared with the non-diabetic ischemia/reperfusion model group, the diabetic ischemia/reperfusion group had a comparable myocardial infarct size, but a higher level of serum cardiac troponin I (cTnI) and morphological alterations to their myocardial cells. Compared with the diabetic ischemia/reperfusion group, the group that received pharmacological postconditioning with atorvastatin calcium had smaller myocardial infarct sizes, lower levels of cTnI, reduced morphological alterations to myocardial cells, higher levels of p-GSK3β, heat shock factor (HSF)-1 and heat shock protein (HSP)70. The cardioprotective effect conferred by atorvastatin calcium did not attenuate myocardial ischemia/reperfusion injury following application of TDZD-8, which phosphorylates and inactivates GSK3β. Pharmacological postconditioning with atorvastatin calcium may attenuate diabetic heart ischemia/reperfusion injury in the current context. The phosphorylation of GSK3β serves a critical role during the cardioprotection in diabetic rats, and p-GSK3β may accelerate HSP70 production partially by activating HSF-1 during myocardial ischemic/reperfusion injury.

  19. Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia.

    PubMed

    Hwang, In Koo; Yoo, Ki-Yeon; Suh, Hong-Won; Kim, Young Sup; Kwon, Dae Young; Kwon, Young-Guen; Yoo, Jun-Hyun; Won, Moo-Ho

    2008-07-01

    Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia. 2008 Wiley-Liss, Inc.

  20. Dictionary-driven Ischemia Detection from Cardiac Phase-Resolved Myocardial BOLD MRI at Rest

    PubMed Central

    Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A.

    2016-01-01

    Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP–BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP–BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson’s r = 0.84) w.r.t. infarct size. When advances in automated registration and segmentation of CP–BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique. PMID:26292338

  1. Myocardial ischemia induced by nebulized fenoterol for severe childhood asthma.

    PubMed

    Zanoni, L Z; Palhares, D B; Consolo, L C T

    2005-10-01

    We examined for myocardial ischemia induced by continuous inhalation of fenoterol in children with severe acute asthma. Thirty children with severe acute asthma were evaluated for signs of myocardial ischemia when treated with 0.5 mg kg dose (maximum 15 mg) of inhaled fenoterol for one hour. The heart rate was measured before and after inhalation. Cardiac enzymes (creatine kinase, creatine kinase MB fraction and troponin levels) were measured at admission and 12 hours later. An EKG was recorded before inhalation was started and immediately after its completion to detect the presence of any evidence of myocardial ischemia. All patients developed significant increase in heart rate. Six patients showed EKG changes compatible with myocardial ischemia, despite normal enzyme levels. Patients with severe acute asthma show tachycardia and may show EKG changes of myocardial ischemia.

  2. In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Li, Hui; Chen, Haiyu; Xie, Wengming

    2011-07-01

    The location and ischemia extent are two important parameters for evaluating the acute myocardial ischemia (AMI). A focused-transducer-based photoacoustic imaging method was employed to assess time-dependent AMI. Our preliminary results show that the photoacoustic signal could identify the myocardium. The intensity and area of photoacoustic images of myocardium could be used for characterizing the ischemia extent and scope of myocardial ischemia. The results also imply that the intensity and area of photoacoustic images are the rapid fall of an exponential model with an increase of delaying time after the left anterior descending coronary artery (LAD) occlusion. These experimental results were consistent with the clinical characteristics. The findings suggest that the photoacoustic imaging be a potential tool for the real-time assessment of acute myocardial ischemia during surgical operation.

  3. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    PubMed

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  4. Liver ischemia and ischemia-reperfusion induces and trafficks the multi-specific metal transporter Atp7b to bile duct canaliculi: possible preferential transport of iron into bile.

    PubMed

    Goss, John A; Barshes, Neal R; Karpen, Saul J; Gao, Feng-Qin; Wyllie, Samuel

    2008-04-01

    Both Atp7b (Wilson disease gene) and Atp7a (Menkes disease gene) have been reported to be trafficked by copper. Atp7b is trafficked to the bile duct canaliculi and Atp7a to the plasma membrane. Whether or not liver ischemia or ischemia-reperfusion modulates Atp7b expression and trafficking has not been reported. In this study, we report for the first time that the multi-specific metal transporter Atp7b is significantly induced and trafficked by both liver ischemia alone and liver ischemia-reperfusion, as judged by immunohistochemistry and Western blot analyses. Although hepatocytes also stained for Atp7b, localized intense staining of Atp7b was found on bile duct canaliculi. Inductive coupled plasma-mass spectrometry analysis of bile copper, iron, zinc, and manganese found a corresponding significant increase in biliary iron. In our attempt to determine if the increased biliary iron transport observed may be a result of altered bile flow, lysosomal trafficking, or glutathione biliary transport, we measured bile flow, bile acid phosphatase activity, and glutathione content. No significant difference was found in bile flow, bile acid phosphatase activity, and glutathione, between control livers and livers subjected to ischemia-reperfusion. Thus, we conclude that liver ischemia and ischemia-reperfusion induction and trafficking Atp7b to the bile duct canaliculi may contribute to preferential iron transport into bile.

  5. Renoprotective Effect of Humic Acid on Renal Ischemia-Reperfusion Injury: An Experimental Study in Rats.

    PubMed

    Akbas, Alpaslan; Silan, Coskun; Gulpinar, Murat Tolga; Sancak, Eyup Burak; Ozkanli, Sidika Seyma; Cakir, Dilek Ulker

    2015-12-01

    Humic acid is an antioxidant molecule used in agriculture and livestock breeding, as well as in medicine. Our aim was to investigate the potential renoprotective effects of humic acid in a renal ischemia reperfusion model. Twenty-one rats were randomly divided into three equal groups. Intraperitoneal serum or humic acid was injected at 1, 12, and 24 h. Non-ischemic group I was evaluated as sham. The left renal artery was clamped in serum (group II) and intraperitoneal humic acid (group III) to subject to left renal ischemic reperfusion procedure. Ischemia and reperfusion time was 60 min for each. Total antioxidant status, total oxidative status, oxidative stress index, and ischemia-modified albumin levels were analyzed biochemically from the serum samples. Kidneys were evaluated histopatologically and immunohistochemically. Biochemical results showed that total oxidative status, ischemia-modified albumin, and oxidative stress index levels were significantly decreased, but total antioxidant status was increased in the humic acid group (III) compared with the ischemia group (II) On histopathological examination, renal tubular dilatation, tubular cell damage and necrosis, dilatation of Bowman's capsule, hyaline casts, and tubular cell spillage were decreased in the humic acid group (III) compared with the ischemia group (II). Immunohistochemical results showed that apoptosis was deteriorated in group III. Renal ischemia reperfusion injury was attenuated by humic acid administration. These observations indicate that humic acid may have a potential therapeutic effect on renal ischemia reperfusion injury by preventing oxidative stress.

  6. Non-occlusive Mesenteric Ischemia in Patients with Methamphetamine Use.

    PubMed

    Anderson, Jamie E; Brown, Ian E; Olson, Kristin A; Iverson, Katherine; Cocanour, Christine S; Galante, Joseph M

    2018-02-17

    Data suggest that methamphetamine may increase the risk of non-occlusive mesenteric ischemia (NOMI). We describe patterns of presentation and outcomes of patients with methamphetamine use who present with NOMI to a single institution. This is an observational study of patients from January 2015 to September 2017 with methamphetamine use who presented with NOMI at an academic medical center in Northern California. We summarize patient co-morbidities, clinical presentation, operative findings, pathologic findings, hospital course, and survival. Ten patients with methamphetamine use and severe NOMI were identified. One patient was readmitted with a perforated duodenal ulcer, for a total of 11 encounters. Most presented with acute (n=3) or acute-on-chronic (n=4) abdominal pain. Distribution of ischemia ranged from perforated duodenal ulcer (n=3), ischemia of the distal ileum (n=1), ischemia of entire small bowel (n=2), and patchy necrosis of entire small bowel and colon (n=5). Six patients died, three within one week of admission and three between 3-8 months. Methamphetamine use may be associated with significant microvascular compromise, increasing the risk of mesenteric ischemia. Providers in areas with high prevalence of methamphetamine use should have a high index of suspicion for intestinal ischemia in this patient population. Patients with methamphetamine use admitted for trauma or other pathology may be at particular risk of ischemia and septic shock, especially in the setting of dehydration. Use of vasoconstrictors in this patient population may also exacerbate intestinal ischemia. Level 5; Case series.

  7. Spinal cord ischemia following thoracotomy without epidural anesthesia.

    PubMed

    Raz, Aeyal; Avramovich, Aharon; Saraf-Lavi, Efrat; Saute, Milton; Eidelman, Leonid A

    2006-06-01

    Paraplegia is an uncommon yet devastating complication following thoracotomy, usually caused by compression or ischemia of the spinal cord. Ischemia without compression may be a result of global ischemia, vascular injury and other causes. Epidural anesthesia has been implicated as a major cause. This report highlights the fact that perioperative cord ischemia and paraplegia may be unrelated to epidural intervention. A 71-yr-old woman was admitted for a left upper lobectomy for resection of a non-small cell carcinoma of the lung. The patient refused epidural catheter placement and underwent a left T5-6 thoracotomy under general anesthesia. During surgery, she was hemodynamically stable and good oxygen saturation was maintained. Several hours following surgery the patient complained of loss of sensation in her legs. Neurological examination disclosed a complete motor and sensory block at the T5-6 level. Magnetic resonance imaging (MRI) revealed spinal cord ischemia. The patient received iv steroid treatment, but remained paraplegic. Five months following the surgery there was only partial improvement in her motor symptoms. A follow-up MRI study was consistent with a diagnosis of spinal cord ischemia. In this case of paraplegia following thoracic surgery for lung resection, epidural anesthesia/analgesia was not used. The MRI demonstrated evidence of spinal cord ischemia, and no evidence of cord compression. This case highlights that etiologies other than epidural intervention, such as injury to the spinal segmental arteries during thoracotomy, should be considered as potential causes of cord ischemia and resultant paraplegia in this surgical population.

  8. Is chlormethiazole neuroprotective in experimental global cerebral ischemia? A microdialysis and behavioral study.

    PubMed

    Thaminy, S; Reymann, J M; Heresbach, N; Allain, H; Lechat, P; Bentué-Ferrer, D

    1997-04-01

    Chlormethiazole, an anticonvulsive agent, has been shown to have a possible neuroprotective effect against cerebral ischemia. In addition, chlormethiazole inhibits methamphetamine-induced release of dopamine, protecting against this neurotransmitter's neurotoxicity. The aim of this work was to ascertain whether, in experimental cerebral ischemia, chlormethiazole administration attenuated the ischemia-induced rise of the extracellular concentration of aminergic neurotransmitters and whether it reduces ischemia-induced deficits in memory and learning. Histology for assessment of ischemic damage was a so included. The four-vessel occlusion rat model was used to induce global cerebral ischemia. Aminergic neurotransmitters and their metabolites in the striatal extracellular fluid obtained by microdialysis were assayed by high-performance liquid chromatography-electrochemical detection. The drug was administered either IP (50 mg/kg-1) or directly through the dialysis probe (30 microM) 80 min before ischemia. For the behavioral test and histology, the drug was given IP (100 mg/kg-1) 1 h postischemia. The results obtained did not demonstrate any statistically significant evidence that chlormethiazole has an effect on the ischemia-induced rise in extracellular dopamine and serotonin levels. There was also no variation in metabolite levels. Behavioral measures (learning, recall) were not changed appreciably by the treatment. We observed no significant cell protection in the hippocampus (CA1, CA1), striatum, and entorhinal cortex in animals treated with chlormethiazole. We conclude that, under our experimental conditions, chlormethiazole has little or no effect on the neurochemical, neurobehavioral, and histological consequences of global cerebral ischemia.

  9. Effect of hyperthermia on calbindin-D 28k immunoreactivity in the hippocampal formation following transient global cerebral ischemia in gerbils

    PubMed Central

    Lee, Jae-Chul; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Kim, In Hye; Won, Moo-Ho; Cho, Geum-Sil; Shin, Bich-Na; Hwang, In Koo; Park, Joon Ha; Ahn, Ji Hyeon; Kang, Il Jun; Lee, Young Joo; Kim, Yang Hee

    2017-01-01

    Calbindin D-28K (CB), a Ca2+-binding protein, maintains Ca2+ homeostasis and protects neurons against various insults. Hyperthermia can exacerbate brain damage produced by ischemic insults. However, little is reported about the role of CB in the brain under hyperthermic condition during ischemic insults. We investigated the effects of transient global cerebral ischemia on CB immunoreactivity as well as neuronal damage in the hippocampal formation under hyperthermic condition using immunohistochemistry for neuronal nuclei (NeuN) and CB, and Fluoro-Jade B histofluorescence staining in gerbils. Hyperthermia (39.5 ± 0.2°C) was induced for 30 minutes before and during transient ischemia. Hyperthermic ischemia resulted in neuronal damage/death in the pyramidal layer of CA1–3 area and in the polymorphic layer of the dentate gyrus at 1, 2, 5 days after ischemia. In addition, hyperthermic ischemia significantly decreaced CB immunoreactivity in damaged or dying neurons at 1, 2, 5 days after ischemia. In brief, hyperthermic condition produced more extensive and severer neuronal damage/death, and reduced CB immunoreactivity in the hippocampus following transient global cerebral ischemia. Present findings indicate that the degree of reduced CB immunoreactivity might be related with various neuronal damage/death overtime and corresponding areas after ischemic insults. PMID:29089991

  10. Anatomic partial nephrectomy: technique evolution.

    PubMed

    Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S

    2015-03-01

    Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.

  11. Silent ischemia: silent after all?

    PubMed

    D'Antono, Bianca; Dupuis, Gilles; Arsenault, André; Burelle, Denis

    2008-04-01

    To examine the association of nonpain symptoms in men and women with exercise-related silent ischemia, as well as the independence of these findings from other clinical factors. A prospective study of 482 women and 425 men (mean age 58 years) undergoing exercise stress testing with myocardial perfusion imaging. Analyses were performed on 60 women and 155 men with no angina but medical perfusion imaging evidence of ischemia during exercise. The presence of various non-pain-related symptoms. Ischemia is indicated by myocardial perfusion defects on exercise stress testing with single photon emission computed tomography. Women reported more nonangina symptoms than men (P<0.05). They experienced fatigue, hot flushes, tense muscles, shortness of breath and headaches more frequently (P<0.05). Symptoms relating to muscle tension and diaphoresis were associated with ischemia after controlling for pertinent clinical covariates. However, the direction of association differed according to sex and history of coronary artery disease events or procedures. Sensitivity of the detection models showed modest improvements with the addition of these symptoms. While patients who experience silent ischemia experience a number of nonpain symptoms, those symptoms may not be sufficiently specific to ischemia, nor sensitive in detecting ischemia, to be of particular help to physicians in the absence of other clinical information.

  12. The relationship between renal warm ischemia time and glomerular loss. An experimental study in a pig model.

    PubMed

    Damasceno-Ferreira, José Aurelino; Bechara, Gustavo Ruschi; Costa, Waldemar Silva; Pereira-Sampaio, Marco Aurélio; Sampaio, Francisco José Barcellos; Souza, Diogo Benchimol De

    2017-05-01

    To investigate the glomerular number after different warm ischemia times. Thirty two pigs were assigned into four groups. Three groups (G10, G20, and G30) were treated with 10, 20, and 30 minutes of left renal warm ischemia. The sham group underwent the same surgery without renal ischemia. The animals were euthanized after 3 weeks, and the kidneys were collected. Right kidneys were used as controls. The kidney weight, volume, cortical-medullar ratio, glomerular volumetric density, volume-weighted mean glomerular volume, and the total number of glomeruli per kidney were obtained. Serum creatinine levels were assessed pre and postoperatively. Serum creatinine levels did not differ among the groups. All parameters were similar for the sham, G10, and G20 groups upon comparison of the right and left organs. The G30 group pigs' left kidneys had lower weight, volume, and cortical-medullar ratio and 24.6% less glomeruli compared to the right kidney. A negative correlation was found between warm ischemia time and glomerular number. About one quarter of glomeruli was lost after 30 minutes of renal warm ischemia. No glomeruli loss was detected before 20 minutes of warm ischemia. However, progressive glomerular loss was associated with increasing warm ischemia time.

  13. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia

    PubMed Central

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung

    2015-01-01

    Abstract As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation. PMID:25785762

  14. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia.

    PubMed

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung; Hwang, In Koo

    2015-06-01

    As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation.

  15. Effects of vinpocetine and ozagrel on behavioral recovery of rats after global brain ischemia.

    PubMed

    Jincai, Wang; Tingfang, Dong; Yongheng, Zhang; Zhongmin, Lu; Kaihua, Zhai; Xiaohong, Liu

    2014-04-01

    Brain ischemia leads to severe disruption of the nervous system and recovery is often prolonged. Rehabilitative post-ischemia pharmacological treatment may therefore be important for behavioral recovery, especially for cognition and motor behavior. The present study investigated the effects of combined vinpocetine and ozagrel administration on the behavioral recovery of rats from global brain ischemia. The results suggest that the combined treatment leads to significantly better improvement compared to single drug administration. We conclude that the combined use of vinpocetine and ozagrel may provide beneficial effects to patients suffering from brain ischemia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. [The role of the adreno-cholinergic interaction in the pulmonary hemodynamics changes following myocardial ischemia].

    PubMed

    Evlakhov, V I; Poiasov, I Z

    2014-06-01

    In acute experiments in anesthetized rabbits the pulmonary hemodynamics changes were studied following 60 s myocardial ischemia in the region of the descendent left coronary artery in control state and after the blockade of M- or N-cholinoreceptors and acetylcholine infusion. Following myocardial ischemia in control animals the pulmonary artery pressure and flow decreased, the pulmonary vascular resistance was not changed. Following myocardial ischemia after the blockade of M-cholinoreceptors by atropine the changes of pulmonary hemodynamics were the same as in control animals, the cardiac output decreased twice as more as in control animals. Following myocardial ischemia after the blockade of N-cholinoreceptors by hexamethonium the pulmonary hemodynamics changes were the same as in the control rabbits. Following myocardial ischemia after the acetylcholine infusion the pulmonary artery flow decreased more than the cardiac output, the pulmonary vascular resistance was diminished. The disbalance of the cardiac output and pulmonary artery flow changes has revealed the significance of the adreno-cholinergic interaction in the changes of the pulmonary vessels capacitance and resistive functions following myocardial ischemia.

  17. 4-Phenylbutyrate protects rat skin flaps against ischemia-reperfusion injury and apoptosis by inhibiting endoplasmic reticulum stress

    PubMed Central

    YUE, ZHEN-SHUANG; ZENG, LIN-RU; QUAN, REN-FU; TANG, YANG-HUA; ZHENG, WEN-JIE; QU, GANG; XU, CAN-DA; ZHU, FANG-BING; HUANG, ZHONG-MING

    2016-01-01

    4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid, which has been demonstrated to regulate endoplasmic reticulum (ER) stress. ER stress-induced cell apoptosis has an important role in skin flap ischemia; however, a pharmacological approach for treating ischemia-induced ER dysfunction has yet to be reported. In the present study, the effects of 4-PBA-induced ER stress inhibition on ischemia-reperfusion injury were investigated in the skin flap of rats, and transcriptional regulation was examined. 4-PBA attenuated ischemia-reperfusion injury and inhibited cell apoptosis in the skin flap. Furthermore, 4-PBA reversed the increased expression levels of two ER stress markers: CCAAT/enhancer-binding protein-homologous protein and glucose-regulated protein 78. These results suggested that 4-PBA was able to protect rat skin flaps against ischemia-reperfusion injury and apoptosis by inhibiting ER stress marker expression and ER stress-mediated apoptosis. The beneficial effects of 4-PBA may prove useful in the treatment of skin flap ischemia-reperfusion injury. PMID:26648447

  18. Left ventricular function abnormalities as a manifestation of silent myocardial ischemia.

    PubMed

    Lambert, C R; Conti, C R; Pepine, C J

    1986-11-01

    A large body of evidence exists indicating that left ventricular dysfunction is a common occurrence in patients with severe coronary artery disease and represents silent or asymptomatic myocardial ischemia. Such dysfunction probably occurs early in the time course of every ischemic episode in patients with coronary artery disease whether symptoms are eventually manifested or not. The pathophysiology of silent versus symptomatic left ventricular dysfunction due to ischemia appears to be identical. Silent ischemia-related left ventricular dysfunction can be documented during spontaneous or stress-induced perturbations in the myocardial oxygen supply/demand ratio. It also may be detected by nitroglycerin-induced improvement in ventricular function or by salutary changes in wall motion following revascularization. Silent left ventricular dysfunction is a very early occurrence during ischemia and precedes electrocardiographic abnormalities. In this light, its existence should always be kept in mind when dealing with patients with ischemic heart disease. It can be hypothesized that because silent ischemia appears to be identical to ischemia with symptoms in a pathophysiologic sense, prognosis and treatment in both cases should be the same.

  19. Outcomes of lower extremity bypass performed for acute limb ischemia

    PubMed Central

    Baril, Donald T.; Patel, Virendra I.; Judelson, Dejah R.; Goodney, Philip P.; McPhee, James T.; Hevelone, Nathanael D.; Cronenwett, Jack L.; Schanzer, Andres

    2013-01-01

    Objective Acute limb ischemia remains one of the most challenging emergencies in vascular surgery. Historically, outcomes following interventions for acute limb ischemia have been associated with high rates of morbidity and mortality. The purpose of this study was to determine contemporary outcomes following lower extremity bypass performed for acute limb ischemia. Methods All patients undergoing infrainguinal lower extremity bypass between 2003 and 2011 within hospitals comprising the Vascular Study Group of New England were identified. Patients were stratified according to whether or not the indication for lower extremity bypass was acute limb ischemia. Primary end points included bypass graft occlusion, major amputation, and mortality at 1 year postoperatively as determined by Kaplan-Meier life table analysis. Multivariable Cox proportional hazards models were constructed to evaluate independent predictors of mortality and major amputation at 1 year. Results Of 5712 lower extremity bypass procedures, 323 (5.7%) were performed for acute limb ischemia. Patients undergoing lower extremity bypass for acute limb ischemia were similar in age (66 vs 67; P = .084) and sex (68% male vs 69% male; P = .617) compared with chronic ischemia patients, but were less likely to be on aspirin (63% vs 75%; P < .0001) or a statin (55% vs 68%; P < .0001). Patients with acute limb ischemia were more likely to be current smokers (49% vs 39%; P < .0001), to have had a prior ipsilateral bypass (33% vs 24%; P = .004) or a prior ipsilateral percutaneous intervention (41% vs 29%; P = .001). Bypasses performed for acute limb ischemia were longer in duration (270 vs 244 minutes; P = .007), had greater blood loss (363 vs 272 mL; P < .0001), and more commonly utilized prosthetic conduits (41% vs 33%; P = .003). Acute limb ischemia patients experienced increased in-hospital major adverse events (20% vs 12%; P < .0001) including myocardial infarction, congestive heart failure exacerbation, deterioration in renal function, and respiratory complications. Patients who underwent lower extremity bypass for acute limb ischemia had no difference in rates of graft occlusion (18.1% vs 18.5%; P = .77), but did have significantly higher rates of limb loss (22.4% vs 9.7%; P < .0001) and mortality (20.9% vs 13.1%; P < .0001) at 1 year. On multivariable analysis, acute limb ischemia was an independent predictor of both major amputation (hazard ratio, 2.16; confidence interval, 1.38–3.40; P = .001) and mortality (hazard ratio, 1.41; confidence interval, 1.09–1.83; P = .009) at 1 year. Conclusions Patients who present with acute limb ischemia represent a less medically optimized subgroup within the population of patients undergoing lower extremity bypass. These patients may be expected to have more complex operations followed by increased rates of perioperative adverse events. Additionally, despite equivalent graft patency rates, patients undergoing lower extremity bypass for acute ischemia have significantly higher rates of major amputation and mortality at 1 year. PMID:23714364

  20. Outcomes of lower extremity bypass performed for acute limb ischemia.

    PubMed

    Baril, Donald T; Patel, Virendra I; Judelson, Dejah R; Goodney, Philip P; McPhee, James T; Hevelone, Nathanael D; Cronenwett, Jack L; Schanzer, Andres

    2013-10-01

    Acute limb ischemia remains one of the most challenging emergencies in vascular surgery. Historically, outcomes following interventions for acute limb ischemia have been associated with high rates of morbidity and mortality. The purpose of this study was to determine contemporary outcomes following lower extremity bypass performed for acute limb ischemia. All patients undergoing infrainguinal lower extremity bypass between 2003 and 2011 within hospitals comprising the Vascular Study Group of New England were identified. Patients were stratified according to whether or not the indication for lower extremity bypass was acute limb ischemia. Primary end points included bypass graft occlusion, major amputation, and mortality at 1 year postoperatively as determined by Kaplan-Meier life table analysis. Multivariable Cox proportional hazards models were constructed to evaluate independent predictors of mortality and major amputation at 1 year. Of 5712 lower extremity bypass procedures, 323 (5.7%) were performed for acute limb ischemia. Patients undergoing lower extremity bypass for acute limb ischemia were similar in age (66 vs 67; P = .084) and sex (68% male vs 69% male; P = .617) compared with chronic ischemia patients, but were less likely to be on aspirin (63% vs 75%; P < .0001) or a statin (55% vs 68%; P < .0001). Patients with acute limb ischemia were more likely to be current smokers (49% vs 39%; P < .0001), to have had a prior ipsilateral bypass (33% vs 24%; P = .004) or a prior ipsilateral percutaneous intervention (41% vs 29%; P = .001). Bypasses performed for acute limb ischemia were longer in duration (270 vs 244 minutes; P = .007), had greater blood loss (363 vs 272 mL; P < .0001), and more commonly utilized prosthetic conduits (41% vs 33%; P = .003). Acute limb ischemia patients experienced increased in-hospital major adverse events (20% vs 12%; P < .0001) including myocardial infarction, congestive heart failure exacerbation, deterioration in renal function, and respiratory complications. Patients who underwent lower extremity bypass for acute limb ischemia had no difference in rates of graft occlusion (18.1% vs 18.5%; P = .77), but did have significantly higher rates of limb loss (22.4% vs 9.7%; P < .0001) and mortality (20.9% vs 13.1%; P < .0001) at 1 year. On multivariable analysis, acute limb ischemia was an independent predictor of both major amputation (hazard ratio, 2.16; confidence interval, 1.38-3.40; P = .001) and mortality (hazard ratio, 1.41; confidence interval, 1.09-1.83; P = .009) at 1 year. Patients who present with acute limb ischemia represent a less medically optimized subgroup within the population of patients undergoing lower extremity bypass. These patients may be expected to have more complex operations followed by increased rates of perioperative adverse events. Additionally, despite equivalent graft patency rates, patients undergoing lower extremity bypass for acute ischemia have significantly higher rates of major amputation and mortality at 1 year. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  1. Effects of Sildenafil and Tadalafil on Edema and Reactive Oxygen Species Production in an Experimental Model of Lung Ischemia-Reperfusion Injury.

    PubMed

    Guerra-Mora, J R; Perales-Caldera, E; Aguilar-León, D; Nava-Sanchez, C; Díaz-Cruz, A; Díaz-Martínez, N E; Santillán-Doherty, P; Torres-Villalobos, G; Bravo-Reyna, C C

    Lung ischemia-reperfusion injury is characterized by formation of reactive oxygen species and cellular swelling leading to pulmonary edema and primary graft dysfunction. Phosphodiesterase 5 inhibitors could ameliorate lung ischemia-reperfusion injury by interfering in many molecular pathways. The aim of this work was to evaluate and compare the effects of sildenafil and tadalafil on edema and reactive oxygen species formation in an ex vivo nonhuman animal model of lung ischemia-reperfusion injury. Thirty-two Wistar rats were distributed, treated, perfused and the cardiopulmonary blocks were managed as follows: control group: immediate excision and reperfusion without pretreatment; ischemia reperfusion group: treatment with dimethylsulfoxide 0.9% and excision 1 hour later; sildenafil group: treatment with sildenafil (0.7 mg/kg) and excision 1 hour later; and tadalafil group: treatment with tadalafil (0.15 mg/kg) and excision 2 hours later. All cardiopulmonary blocks except control group were preserved for 8 hours and then reperfused. Pulmonary arterial pressure, pulmonary venous pressure, and capillary filtration coefficient were measured. Reactive oxygen species were measured. Edema was similar between control and sildenafil groups, but significantly greater in the ischemia-reperfusion (P ≤ .04) and tadalafil (P ≤ .003) groups compared with the sildenafil group. The malondialdehyde levels were significantly lower in the sildenafil (P ≤ .001) and tadalafil (P ≤ .001) groups than the ischemia-reperfusion group. Administration of sildenafil, but not tadalafil, decreased edema in lung ischemia-reperfusion injury. Both drugs decreased reactive oxygen species formation in a lung ischemia-reperfusion injury model. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Isoflurane reduces the ischemia reperfusion injury surge: a longitudinal study with MRI.

    PubMed

    Taheri, Saeid; Shunmugavel, Anandakumar; Clark, Danielle; Shi, Honglian

    2014-10-24

    Recent studies show neuroprotective benefits of isoflurane (ISO) administered during cerebral ischemia. However, the available studies evaluated cerebral injury only at a single time point following the intervention and thus the longitudinal effect of ISO on ischemic tissues remains to be investigated. The objective of the present study was to investigate the longitudinal effect of ISO treatment in counteracting the deleterious effect of ischemia by evoking the transcription factor, hypoxia inducible factor-1 (HIF-1), and vascular endothelial growth factor (VEGF). Focal cerebral ischemia was induced in 70 rats by filament medial cerebral artery occlusion (MCAo) method. MCAo rats were randomly assigned to control (90 min ischemia) and MCAo+ISO (90 min ischemia+2% ISO) groups. Infarct volume, edema, intracerebral hemorrhage (ICH), and regional cerebral blood flow (rCBF) were measured in eight in vivo sequential MR imaging sessions for 3 weeks. Western blot analysis and immunofluorescence were used to determine the expression level of HIF-1α (the regulatable subunit of HIF-1) and VEGF proteins. ISO inhalation during ischemia significantly decreased the surge of infarct volume, edema, ICH, and reduced the mortality rate (p<0.01). ISO transiently altered the rCBF, significantly enhanced the expression of HIF-1α and VEGF, and decreased the immune cell infiltration. Locomotor dysfunction was ameliorated at a significantly faster pace, and the benefit was seen to persist up to three weeks. Treatment with ISO during ischemia limits the deadly surge in the dynamics of ischemia reperfusion injury with no observed long-term inverse effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The effect of captopril and losartan on the electrophysiology of myocardial cells of myocardial ischemia rats.

    PubMed

    Shi, Xiangmin; Shan, Zhaoling; Yuan, Hongtao; Guo, Hongyang; Wang, Yutang

    2014-01-01

    This study aims to investigate the effect of captopril and losartan on the electrophysiology of myocardial cells parameters in ventricular vulnerable period and effective refractory period of myocardial ischemia rats. 96 wistar rats were enrolled in the study and divided into six groups: Captopril myocardial ischemia group, losartan myocardial ischemia group, myocardial ischemia control group, captopril normal group, losartan normal group and normal control group (n=16). We observed morphological changes of myocardial tissue in each group. The cardiac electrophysiological parameters in effective refractory period of each group were measured. Creatine kinase (CK), alanine aminotransferase (GOT), lactate dehydrogenase (LDH), the expression of Cardiotrophin 1 (CT-1) and malonaldehyde (MDA) were detected. Compared the losartan and captopril group with the control group, (P<0.05). Losartan and captopril can shorten the ventricular vulnerable period of the normal group and ischemic group. There was no interaction effect between losartan and captopril group and the acute myocardial ischemia group. The effect of losartan and captopril on time window in ventricular vulnerable period showed that compared with the control group (P<0.05). Losartan and captopril had a significant effect on prolonged effective refractory period of normal and ischemic rats. There was no interaction effect between losartan and captopril group and the acute myocardial ischemia group. Compared with the myocardial ischemia control group, CK, GOT, LDH and MDA decreased in captopril and losartan myocardial ischemia groups (P<0.05). Losartan and captopril had a significant effect on prolonged effective refractory period and shorten ventricular vulnerable period, they can also effectively prevent arrhythmias.

  4. Is Chronic Curcumin Supplementation Neuroprotective Against Ischemia for Antioxidant Activity, Neurological Deficit, or Neuronal Apoptosis in an Experimental Stroke Model?

    PubMed

    Altinay, Serdar; Cabalar, Murat; Isler, Cihan; Yildirim, Funda; Celik, Duygu S; Zengi, Oguzhan; Tas, Abdurrahim; Gulcubuk, Ahmet

    2017-01-01

    To investigate the neuroprotective effect of chronic curcumin supplementation on the rat forebrain prior to ischemia and reperfusion. Forebrain ischemia was induced by bilateral common carotid artery occlusion for 1/2 hour, followed by reperfusion for 72 hours. Older rats were divided into five groups: Group I received 300 mg/kg oral curcumin for 21 days before ischemia and 300 mg/kg intraperitoneal curcumin after ischemia; Group II received 300 mg/kg intraperitoneal curcumin after ischemia; Group III received 300 mg/kg oral curcumin for 21 days before ischemia; Group IV had only ischemia; Group V was the sham-operated group. The forebrain was rapidly dissected for biochemical parameter assessment and histopathological examination. In forebrain tissue, enzyme activities of superoxide dismutase, glutathione peroxidase, and catalase were significantly higher in Group I than Groups II or III (p < 0.05) while xanthine dehydrogenase and malondialdehyde enzyme activities and concentrations of interleukin-6 and TNF-alpha were significantly lower in Group I when compared to Groups II and III (p < 0.05). A significant reduction in neurological score was observed after 24 and 72 hours in the curcumin-treated groups compared with the ischemic group. We also found a marked reduction in apoptotic index after 72 hours in the groups receiving curcumin. Significantly more TUNEL-positive cells were observed in the ischemic group compared to those treated with curcumin. We demonstrated the neuroprotective effect of chronic curcumin supplement on biochemical parameters, neurological scores and apoptosis following ischemia and reperfusion injury in rats.

  5. Augmentation of systemic blood pressure during spinal cord ischemia to prevent postoperative paraplegia after aortic surgery in a rabbit model.

    PubMed

    Izumi, So; Okada, Kenji; Hasegawa, Tomomi; Omura, Atsushi; Munakata, Hiroshi; Matsumori, Masamichi; Okita, Yutaka

    2010-05-01

    Paraplegia from spinal cord ischemia remains an unresolved complication in thoracoabdominal aortic surgery, with high morbidity and mortality. This study investigated postoperative effects of systemic blood pressure augmentation during ischemia. Spinal cord ischemia was induced in rabbits by infrarenal aortic occlusion for 15 minutes with infused phenylephrine (high blood pressure group, n = 8) or nitroprusside (low blood pressure group, n = 8) or without vasoactive agent (control, n = 8). Spinal cord blood flow, transcranial motor evoked potentials, neurologic outcome, and motor neuron cell damage (apoptosis, necrosis, superoxide generation, myeloperoxidase activity) were evaluated. Mean arterial pressures during ischemia were controlled at 121.9 +/- 2.8, 50.8 +/- 4.3, and 82.3 +/- 10.7 mm Hg in high blood pressure, low blood pressure, and control groups, respectively. In high blood pressure group, high spinal cord blood flow (P < .01), fast recovery of transcranial motor evoked potentials (P < .01), and high neurologic score (P < .05) were observed after ischemia relative to low blood pressure and control groups. At 48 hours after ischemia, there were significantly more viable neurons, fewer terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive neurons, and less alpha-fodrin expression in high blood pressure group than low blood pressure and control groups. Superoxide generation and myeloperoxidase activity at 3 hours after ischemia were suppressed in high blood pressure group relative to low blood pressure group. Augmentation of systemic blood pressure during spinal cord ischemia can reduce ischemic insult and postoperative neurologic adverse events. 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  6. The effects of Y-27632 on pial microvessels during global brain ischemia and reperfusion in rabbits.

    PubMed

    Shintani, Noriyuki; Ishiyama, Tadahiko; Kotoda, Masakazu; Asano, Nobumasa; Sessler, Daniel I; Matsukawa, Takashi

    2017-03-07

    Global brain ischemia-reperfusion during propofol anesthesia provokes persistent cerebral pial constriction. Constriction is likely mediated by Rho-kinase. Cerebral vasoconstriction possibly exacerbates ischemic brain injury. Because Y-27632 is a potent Rho-kinase inhibitor, it should be necessary to evaluate its effects on cerebral pial vessels during ischemia-reperfusion period. We therefore tested the hypotheses that Y-27632 dilates cerebral pial arterioles after the ischemia-reperfusion injury, and evaluated the time-course of cerebral pial arteriolar status after the ischemia-reperfusion. Japanese white rabbits were anesthetized with propofol, and a closed cranial window inserted over the left hemisphere. Global brain ischemia was produced by clamping the brachiocephalic, left common carotid, and left subclavian arteries for 15 min. Rabbits were assigned to cranial window perfusion with: (1) artificial cerebrospinal fluid (Control group, n = 7); (2) topical infusion of Y-27632 10 -6 mol · L -1 for 30 min before the initiation of global brain ischemia (Pre group, n = 7); (3) topical infusion of Y-27632 10 -6 mol · L -1 starting 30 min before ischemia and continuing throughout the study period (Continuous group, n = 7); and, (4) topical infusion of Y-27632 10 -6 mol · L -1 starting 10 min after the ischemia and continuing until the end of the study (Post group, n = 7). Cerebral pial arterial and venule diameters were recorded 30 min before ischemia, just before arterial clamping, 10 min after clamping, and 5, 10, 20, 40, 60, 80, 100, and 120 min after unclamping. Mean arterial blood pressure and blood glucose concentration increased significantly after global brain ischemia except in the Continuous group. In the Pre and Continuous groups, topical application of Y-27632 produced dilation of large (mean 18-19%) and small (mean; 25-29%) pial arteries, without apparent effect on venules. Compared with the Control and Pre groups, arterioles were significantly dilated during the reperfusion period in the Continuous and Post groups (mean at 120 min: 5-8% in large arterioles and 11-12% in small arterioles). Y-27632 dilated cerebral pial arterioles during reperfusion. Y-27632 may enhance recovery from ischemia by preventing arteriolar vasoconstriction during reperfusion.

  7. In vivo characterization of acute myocardial ischemia using photoacoustic imaging with a focused transducer

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Chen, Haiyu; Xie, Wengming; Li, Hui

    2011-03-01

    We explore the feasibility of using photoacoustic imaging based on a focused transducer to characterizing acute myocardial ischemia at different stage. In this study, we blocked rat left anterior coronary descending artery (LAD) to induce the acute myocardial ischemia. The results show that the intensity and areas of photoacoustic images of myocardial decrease with the LAD time increasing, which suggests that photoacoustic imaging has a potential for diagnosis of acute myocardial ischemia.

  8. Isolating the segment of the mitochondrial electron transport chain responsible for mitochondrial damage during cardiac ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qun; Yin, Guotian; Stewart, Sarah

    2010-07-09

    Ischemia damages the mitochondrial electron transport chain (ETC), mediated in part by damage generated by the mitochondria themselves. Mitochondrial damage resulting from ischemia, in turn, leads to cardiac injury during reperfusion. The goal of the present study was to localize the segment of the ETC that produces the ischemic mitochondrial damage. We tested if blockade of the proximal ETC at complex I differed from blockade distal in the chain at cytochrome oxidase. Isolated rabbit hearts were perfused for 15 min followed by 30 min stop-flow ischemia at 37 {sup o}C. Amobarbital (2.5 mM) or azide (5 mM) was used tomore » block proximal (complex I) or distal (cytochrome oxidase) sites in the ETC. Time control hearts were buffer-perfused for 45 min. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated. Ischemia decreased cytochrome c content in SSM but not in IFM compared to time control. Blockade of electron transport at complex I preserved the cytochrome c content in SSM. In contrast, blockade of electron transport at cytochrome oxidase with azide did not retain cytochrome c in SSM during ischemia. Since blockade of electron transport at complex III also prevented cytochrome c loss during ischemia, the specific site that elicits mitochondrial damage during ischemia is likely located in the segment between complex III and cytochrome oxidase.« less

  9. Downregulation of Glutathione Biosynthesis Contributes to Oxidative Stress and Liver Dysfunction in Acute Kidney Injury

    PubMed Central

    Siow, Yaw L.; Isaak, Cara K.

    2016-01-01

    Ischemia-reperfusion is a common cause for acute kidney injury and can lead to distant organ dysfunction. Glutathione is a major endogenous antioxidant and its depletion directly correlates to ischemia-reperfusion injury. The liver has high capacity for producing glutathione and is a key organ in modulating local and systemic redox balance. In the present study, we investigated the mechanism by which kidney ischemia-reperfusion led to glutathione depletion and oxidative stress. The left kidney of Sprague-Dawley rats was subjected to 45 min ischemia followed by 6 h reperfusion. Ischemia-reperfusion impaired kidney and liver function. This was accompanied by a decrease in glutathione levels in the liver and plasma and increased hepatic lipid peroxidation and plasma homocysteine levels. Ischemia-reperfusion caused a significant decrease in mRNA and protein levels of hepatic glutamate-cysteine ligase mediated through the inhibition of transcription factor Nrf2. Ischemia-reperfusion inhibited hepatic expression of cystathionine γ-lyase, an enzyme responsible for producing cysteine (an essential precursor for glutathione synthesis) through the transsulfuration pathway. These results suggest that inhibition of glutamate-cysteine ligase expression and downregulation of the transsulfuration pathway lead to reduced hepatic glutathione biosynthesis and elevation of plasma homocysteine levels, which, in turn, may contribute to oxidative stress and distant organ injury during renal ischemia-reperfusion. PMID:27872680

  10. Feasibility of quantitative diffuse reflectance spectroscopy for targeted measurement of renal ischemia during laparoscopic partial nephrectomy.

    PubMed

    Goel, Utsav O; Maddox, Michael M; Elfer, Katherine N; Dorsey, Philip J; Wang, Mei; McCaslin, Ian Ross; Brown, J Quincy; Lee, Benjamin R

    2014-01-01

    Reduction of warm ischemia time during partial nephrectomy (PN) is critical to minimizing ischemic damage and improving postoperative kidney function, while maintaining tumor resection efficacy. Recently, methods for localizing the effects of warm ischemia to the region of the tumor via selective clamping of higher-order segmental artery branches have been shown to have superior outcomes compared with clamping the main renal artery. However, artery identification can prolong operative time and increase the blood loss and reduce the positive effects of selective ischemia. Quantitative diffuse reflectance spectroscopy (DRS) can provide a convenient, real-time means to aid in artery identification during laparoscopic PN. The feasibility of quantitative DRS for real-time longitudinal measurement of tissue perfusion and vascular oxygenation in laparoscopic nephrectomy was investigated in vivo in six Yorkshire swine kidneys (n=three animals ). DRS allowed for rapid identification of ischemic areas after selective vessel occlusion. In addition, the rates of ischemia induction and recovery were compared for main renal artery versus tertiary segmental artery occlusion, and it was found that the tertiary segmental artery occlusion trends toward faster recovery after ischemia, which suggests a potential benefit of selective ischemia. Quantitative DRS could provide a convenient and fast tool for artery identification and evaluation of the depth, spatial extent, and duration of selective tissue ischemia in laparoscopic PN.

  11. Feasibility of quantitative diffuse reflectance spectroscopy for targeted measurement of renal ischemia during laparoscopic partial nephrectomy

    NASA Astrophysics Data System (ADS)

    Goel, Utsav O.; Maddox, Michael M.; Elfer, Katherine N.; Dorsey, Philip J.; Wang, Mei; McCaslin, Ian Ross; Brown, J. Quincy; Lee, Benjamin R.

    2014-10-01

    Reduction of warm ischemia time during partial nephrectomy (PN) is critical to minimizing ischemic damage and improving postoperative kidney function, while maintaining tumor resection efficacy. Recently, methods for localizing the effects of warm ischemia to the region of the tumor via selective clamping of higher-order segmental artery branches have been shown to have superior outcomes compared with clamping the main renal artery. However, artery identification can prolong operative time and increase the blood loss and reduce the positive effects of selective ischemia. Quantitative diffuse reflectance spectroscopy (DRS) can provide a convenient, real-time means to aid in artery identification during laparoscopic PN. The feasibility of quantitative DRS for real-time longitudinal measurement of tissue perfusion and vascular oxygenation in laparoscopic nephrectomy was investigated in vivo in six Yorkshire swine kidneys (n=three animals). DRS allowed for rapid identification of ischemic areas after selective vessel occlusion. In addition, the rates of ischemia induction and recovery were compared for main renal artery versus tertiary segmental artery occlusion, and it was found that the tertiary segmental artery occlusion trends toward faster recovery after ischemia, which suggests a potential benefit of selective ischemia. Quantitative DRS could provide a convenient and fast tool for artery identification and evaluation of the depth, spatial extent, and duration of selective tissue ischemia in laparoscopic PN.

  12. K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus.

    PubMed Central

    Heurteaux, C; Bertaina, V; Widmann, C; Lazdunski, M

    1993-01-01

    Transient global forebrain ischemia induces in rat brain a large increase of expression of the immediate early genes c-fos and c-jun and of the mRNAs for the 70-kDa heat-shock protein and for the form of the amyloid beta-protein precursor including the Kunitz-type protease-inhibitor domain. At 24 hr after ischemia, this increased expression is particularly observed in regions that are vulnerable to the deleterious effects of ischemia, such as pyramidal cells of the CA1 field in the hippocampus. In an attempt to find conditions which prevent the deleterious effects of ischemia, representatives of three different classes of K+ channel openers, (-)-cromakalim, nicorandil, and pinacidil, were administered both before ischemia and during the reperfusion period. This treatment totally blocked the ischemia-induced expression of the different genes. In addition it markedly protected neuronal cells against degeneration. The mechanism of the neuroprotective effects involves the opening of ATP-sensitive K+ channels since glipizide, a specific blocker of that type of channel, abolished the beneficial effects of K+ channel openers. The various classes of K+ channel openers seem to deserve attention as potential drugs for cerebral ischemia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8415718

  13. Physical exercise prevents motor disorders and striatal oxidative imbalance after cerebral ischemia-reperfusion.

    PubMed

    Sosa, P M; Schimidt, H L; Altermann, C; Vieira, A S; Cibin, F W S; Carpes, F P; Mello-Carpes, P B

    2015-09-01

    Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise.

  14. Neuroprotective effects of pretreatment with minocycline on memory impairment following cerebral ischemia in rats.

    PubMed

    Naderi, Yazdan; Sabetkasaei, Masoumeh; Parvardeh, Siavash; Moini Zanjani, Taraneh

    2017-04-01

    Cerebral ischemia leads to memory impairment that is associated with loss of hippocampal CA1 pyramidal neurons. Neuroinflammation and oxidative stress may be implicated in the pathogenesis of ischemia/reperfusion damage. Minocycline has anti-inflammatory and antioxidant properties. We investigated the neuroprotective effects of minocycline in rats subjected to cerebral ischemia/reperfusion injury. Thirty male rats were divided into three groups: control, sham, and minocycline-pretreated group. Minocycline (40 mg/kg) was injected intraperitoneally immediately before surgery, and then ischemia was induced by occlusion of common carotid arteries for 20 min. Seven days after reperfusion, the Morris water-maze task was used to evaluate memory. Nissl staining was also performed to analyze pyramidal cell damage. We measured the contents of malondialdehyde and proinflammatory cytokines in the hippocampus by the thiobarbituric acid method and enzyme-linked immunosorbent assay, respectively. Microglial activation was also investigated by Iba1 immunostaining. The results showed that pretreatment with minocycline prevented memory impairment induced by cerebral ischemia/reperfusion. Minocycline pretreatment also significantly attenuated ischemia-induced pyramidal cell death and microglial activation in the CA1 region and reduced the levels of malondialdehyde and proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of ischemic rats. Minocycline showed neuroprotective effects on cerebral ischemia-induced memory deficit probably through its anti-inflammatory and antioxidant activities.

  15. Neuroprotective properties of the novel antiepileptic lamotrigine in a gerbil model of global cerebral ischemia.

    PubMed

    Wiard, R P; Dickerson, M C; Beek, O; Norton, R; Cooper, B R

    1995-03-01

    Elevated glutamate levels are thought to be a primary cause of neuronal death after global cerebral ischemia. The purpose of this study was to investigate the potential neuroprotective effects of lamotrigine, a novel antiepileptic drug that inhibits the release of glutamate in vitro, with both behavioral and histological measures of global ischemia in gerbils. The common carotid arteries of gerbils were occluded for either 5, 10, or 15 minutes. Twenty-one days after reperfusion, gerbils were tested for impairments in a spatial memory task (Morris water maze). After water maze testing the animals were killed, and damage to hippocampal pyramidal cells was assessed. The effect of lamotrigine on the behavioral and histological outcome of either 5 or 15 minutes of global ischemia was evaluated. Bilateral occlusion of the common carotid arteries for 5 minutes resulted in severe degeneration of hippocampal CA1 and CA2 pyramidal cells. Lamotrigine significantly prevented loss of hippocampal CA1 neurons when administered acutely (100 mg/kg PO) immediately after reperfusion or when administered in two equal doses of 30 or 50 mg/kg 2 hours before and immediately after reperfusion. Gerbils subjected to 5 minutes of ischemic insult were not impaired in their ability to solve a spatial memory task 21 days after cerebral ischemia. However, gerbils subjected to 10 and 15 minutes of carotid artery occlusion showed significant impairment in their ability to solve a water maze task. Lamotrigine significantly protected against the cognitive deficits associated with 15 minutes of cerebral ischemia. Histologically, increased durations of cerebral ischemia resulted in a progressive loss of CA1, CA2, and CA3 pyramidal cells. Lamotrigine completely protected gerbils exposed to 15 minutes of cerebral ischemia against CA3 cell loss and greatly reduced damage to the CA1 and CA2 cell tracts of the hippocampus. Lamotrigine also reduced the mortality associated with 15 minutes of ischemia. Lamotrigine had neuroprotective effects in a gerbil model of global cerebral ischemia. Lamotrigine protected gerbils against behavioral deficits resulting from 15 minutes of carotid occlusion and also prevented histological damage resulting from 5 and 15 minutes of global cerebral ischemia.

  16. Effect of Ischemia Duration and Protective Interventions on the Temporal Dynamics of Tissue Composition After Myocardial Infarction

    PubMed Central

    Fernández-Jiménez, Rodrigo; Galán-Arriola, Carlos; Sánchez-González, Javier; Agüero, Jaume; López-Martín, Gonzalo J.; Gomez-Talavera, Sandra; Garcia-Prieto, Jaime; Benn, Austin; Molina-Iracheta, Antonio; Barreiro-Pérez, Manuel; Martin-García, Ana; García-Lunar, Inés; Pizarro, Gonzalo; Sanz, Javier; Sánchez, Pedro L.; Fuster, Valentin

    2017-01-01

    Rationale: The impact of cardioprotective strategies and ischemia duration on postischemia/reperfusion (I/R) myocardial tissue composition (edema, myocardium at risk, infarct size, salvage, intramyocardial hemorrhage, and microvascular obstruction) is not well understood. Objective: To study the effect of ischemia duration and protective interventions on the temporal dynamics of myocardial tissue composition in a translational animal model of I/R by the use of state-of-the-art imaging technology. Methods and Results: Four 5-pig groups underwent different I/R protocols: 40-minute I/R (prolonged ischemia, controls), 20-minute I/R (short-duration ischemia), prolonged ischemia preceded by preconditioning, or prolonged ischemia followed by postconditioning. Serial cardiac magnetic resonance (CMR)-based tissue characterization was done in all pigs at baseline and at 120 minutes, day 1, day 4, and day 7 after I/R. Reference myocardium at risk was assessed by multidetector computed tomography during the index coronary occlusion. After the final CMR, hearts were excised and processed for water content quantification and histology. Five additional healthy pigs were euthanized after baseline CMR as reference. Edema formation followed a bimodal pattern in all 40-minute I/R pigs, regardless of cardioprotective strategy and the degree of intramyocardial hemorrhage or microvascular obstruction. The hyperacute edematous wave was ameliorated only in pigs showing cardioprotection (ie, those undergoing short-duration ischemia or preconditioning). In all groups, CMR-measured edema was barely detectable at 24 hours postreperfusion. The deferred healing-related edematous wave was blunted or absent in pigs undergoing preconditioning or short-duration ischemia, respectively. CMR-measured infarct size declined progressively after reperfusion in all groups. CMR-measured myocardial salvage, and the extent of intramyocardial hemorrhage and microvascular obstruction varied dramatically according to CMR timing, ischemia duration, and cardioprotective strategy. Conclusions: Cardioprotective therapies, duration of index ischemia, and the interplay between these greatly influence temporal dynamics and extent of tissue composition changes after I/R. Consequently, imaging techniques and protocols for assessing edema, myocardium at risk, infarct size, salvage, intramyocardial hemorrhage, and microvascular obstruction should be standardized accordingly. PMID:28596216

  17. Increased E-selectin in hepatic ischemia-reperfusion injury mediates liver metastasis of pancreatic cancer

    PubMed Central

    YOSHIMOTO, KATSUHIRO; TAJIMA, HIDEHIRO; OHTA, TETSUO; OKAMOTO, KOICHI; SAKAI, SEISHO; KINOSHITA, JUN; FURUKAWA, HIROYUKI; MAKINO, ISAMU; HAYASHI, HIRONORI; NAKAMURA, KEISHI; OYAMA, KATSUNOBU; INOKUCHI, MASAFUMI; NAKAGAWARA, HISATOSHI; ITOH, HIROSHI; FUJITA, HIDETO; TAKAMURA, HIROYUKI; NINOMIYA, ITASU; KITAGAWA, HIROHISA; FUSHIDA, SACHIO; FUJIMURA, TAKASHI; WAKAYAMA, TOMOHIKO; ISEKI, SHOICHI; SHIMIZU, KOICHI

    2012-01-01

    Several recent studies have reported that selectins are produced during ischemia-reperfusion injury, and that selectin ligands play an important role in cell binding to the endothelium and in liver metastasis. Portal clamping during pancreaticoduodenectomy with vessel resection for pancreatic head cancer causes hepatic ischemia-reperfusion injury, which might promote liver metastasis. We investigated the liver colonization of pancreatic cancer cells under hepatic ischemia-reperfusion and examined the involvement of E-selectin and its ligands. A human pancreatic cancer cell line (Capan-1) was injected into the spleen of mice after hepatic ischemia-reperfusion (I/R group). In addition, to investigate the effect of an anti-E-selectin antibody on liver colonization in the IR group, mice received an intraperitoneal injection of the anti-E-selectin antibody following hepatic ischemia-reperfusion and tumor inoculation (IR+Ab group). Four weeks later, mice were sacrificed and the number of tumor nodules on the liver was compared to mice without hepatic ischemia-reperfusion (control group). The incidence of liver metastasis in the I/R group was significantly higher (16 of 20, 80%) than that in the control group (6 of 20, 30%) (P<0.01). Moreover, mice in the I/R group had significantly more tumor nodules compared to those in the control group (median, 9.9 vs. 2.7 nodules) (P<0.01). In the I/R+Ab group, only 2 of 5 (40%) mice developed liver metastases. RT-PCR and southern blotting of the liver extracts showed that the expression of IL-1 and E-selectin mRNA after hepatic ischemia-reperfusion was significantly higher than the basal levels. Hepatic ischemia-reperfusion increases liver metastases and E-selectin expression in pancreatic cancer. These results suggest that E-selectin produced due to hepatic ischemia-reperfusion is involved in liver metastasis. PMID:22766603

  18. The protective effect of fasudil pretreatment combined with ischemia postconditioning on myocardial ischemia/reperfusion injury in rats.

    PubMed

    Li, W-N; Wu, N; Shu, W-Q; Guan, Y-E; Jia, D-L

    2014-01-01

    Ischemic postconditioning (IPO) and pharmacological pretreatment may reduce myocardial necrosis and apoptosis during ischemia/reperfusion. This study aimed to determine the protective effect of fasudil pretreatment combined with IPO on myocardial ischemia/reperfusion injury in rats and explore the possible mechanisms. The SD rats were induced by intraperitoneal injection of fasudil hydrochloride (1 or 10 mg/kg) 60 min before the initiation of ischemia, while the control rats were given the same volume of saline. The hearts were hung on the Langendorff perfusion apparatus and underwent 30 min global ischemia and 120 min reperfusion. The IPO protocol was induced by six cycles of 10 sec ischemia and 10 sec reperfusion at the onset of reperfusion. The hemodynamic changes were measured, myocardial infarct size was determined by triphenyltetrazolium chloride (TTC) staining, cardiomyocyte apoptosis was detected by TUNEL staining, lactate dehydrogenase (LDH) was analyzed from coronary effluents, phosphorylation of Akt and eNOS, as well as expression of Bcl-2 and Bax were measured by western blotting analysis. The high-dose fasudil (10 mg/kg) pretreatment group and IPO group significantly improved post-ischemia cardiac function, reduced myocardial infarct size, attenuated cardiomyocyte apoptosis, decreased the release of LDH, increased expression of phospho-Akt, phospho-eNOS and Bcl-2, and reduced expression of Bax compared with the control group (p < 0.05). In addition, the high-dose fasudil pretreatment combined with IPO group could further improved post-ischemia cardiac function, reduced myocardial infarct size, attenuated cardiomyocyte apoptosis, decreased the release of LDH, increased expression of phospho-Akt, phospho-eNOS and Bcl-2, and reduced expression of Bax compared with the single treatment groups (p < 0.05). The combination of high-dose fasudil pretreatment and IPO had a synergistic protective effect on myocardial ischemia/reperfusion injury, which was mediated via upregulating the PI3K/Akt/eNOS pathway, increasing expression of antiapoptotic Bcl-2, and decreasing expression of proapoptotic Bax.

  19. Acute testicular ischemia caused by incarcerated inguinal hernia.

    PubMed

    Orth, Robert C; Towbin, Alexander J

    2012-02-01

    Acute testicular ischemia caused by an incarcerated inguinal hernia usually affects infants. There are few reports of diagnosis using US, and the effect of long-standing reducible hernias on testicular growth in infants and children is unknown. The objectives of this study were to determine the incidence of testicular ischemia secondary to an incarcerated inguinal hernia at scrotal sonography and to determine the effect on testicular size at diagnosis. A hospital database was used to locate scrotal sonography examinations documenting an inguinal hernia, and images were reviewed for signs of testicular ischemia. Testicular volumes were compared using the Wilcoxon signed rank test. A total of 147 patients were identified with an inguinal hernia (age 1 day to 23 years, average 6 years). Ten patients (6.8%) had associated testicular ischemia (age 3 weeks to 6 months, average 9 weeks) and showed a statistically significant increase in ipsilateral testicular size compared to the contralateral testicle (P = 0.012). Patients without testicular ischemia did not show a significant difference in testicular size, regardless of patient age. An incarcerated inguinal hernia should be considered as a cause of acute testicular ischemia in infants younger than 6 months of age.

  20. [The adrenergic mechanisms are involved in the pulmonary hemodynamics changes following experimental myocardial ischemia in rabbits].

    PubMed

    Evlakhov, V I; Poiasov, I Z

    2012-05-01

    In acute experiments in anesthetized rabbits the changes of the pulmonary hemodynamics following myocardial ischemia in the region of the descendent left coronary artery were studied in control animals and after the blockade of alpha-adrenoreceptors by phentolamine or N-cholinoreceptors of autonomic ganglia by hexamethonium. Following myocardial ischemia in control animals the pulmonary artery pressure and flow decreased, the pulmonary vascular resistance was elevated not significantly, the cardiac output decreased more than pulmonary artery flow. Following myocardial ischemia after the blockade of alpha-adrenoreceptors the pulmonary artery flow and cardiac output decreased in the same level and the pulmonary vascular resistance was decreased. In these conditions the pulmonary artery pressure decreased more than in control animals, meanwhile the pulmonary artery flow was decreased in the same level as in the last case. Following myocardial ischemia after the blockade of N-cholinoreceptors the pulmonary hemodynamics changes were the same as they were following myocardial ischemia in the control rabbits, the cardiac output decreased more than pulmonary artery flow. The disbalance of the cardiac output and pulmonary artery flow changes in the case of myocardial ischemia was caused by the pulmonary vessel reactions following activations of the humoral adrenergic mechanisms.

  1. A Program for Solving the Brain Ischemia Problem

    PubMed Central

    DeGracia, Donald J.

    2013-01-01

    Our recently described nonlinear dynamical model of cell injury is here applied to the problems of brain ischemia and neuroprotection. We discuss measurement of global brain ischemia injury dynamics by time course analysis. Solutions to proposed experiments are simulated using hypothetical values for the model parameters. The solutions solve the global brain ischemia problem in terms of “master bifurcation diagrams” that show all possible outcomes for arbitrary durations of all lethal cerebral blood flow (CBF) decrements. The global ischemia master bifurcation diagrams: (1) can map to a single focal ischemia insult, and (2) reveal all CBF decrements susceptible to neuroprotection. We simulate measuring a neuroprotectant by time course analysis, which revealed emergent nonlinear effects that set dynamical limits on neuroprotection. Using over-simplified stroke geometry, we calculate a theoretical maximum protection of approximately 50% recovery. We also calculate what is likely to be obtained in practice and obtain 38% recovery; a number close to that often reported in the literature. The hypothetical examples studied here illustrate the use of the nonlinear cell injury model as a fresh avenue of approach that has the potential, not only to solve the brain ischemia problem, but also to advance the technology of neuroprotection. PMID:24961411

  2. Sulforaphane exerts neuroprotective effects via suppression of the inflammatory response in a rat model of focal cerebral ischemia.

    PubMed

    Ma, Li-Li; Xing, Guo-Ping; Yu, Yin; Liang, Hui; Yu, Tian-Xia; Zheng, Wei-Hong; Lai, Tian-Bao

    2015-01-01

    Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Sulforaphane exerts protective effects in a rat model of focal cerebral ischemia/reperfusion injury by alleviating brain edema. However, the possible mechanisms of sulforaphane after cerebral ischemia/reperfusion injury have not been fully elucidated. Therefore, in the present study, we investigated the effect of sulforaphane on inflammatory reaction and the potential molecular mechanisms in cerebral ischemia rats. We found that sulforaphane significantly attenuated the blood-brain barrier (BBB) disruption; decreased the levels of pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β; reduced the nitric oxide (NO) levels and inducible nitric oxide synthase (iNOS) activity; inhibited the expression of iNOS and cyclooxygenase-2 (COX-2). In addition, sulforaphane inhibits the expression of p-NF-κB p65 after focal cerebral ischemia-reperfusion injury. Taken together, our results suggest that sulforaphane suppresses the inflammatory response via inhibiting the NF-κB signaling pathway in a rat model of focal cerebral ischemia, and sulforaphane may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  3. Testicular Ischemia Caused by Incarcerated Inguinal Hernia in Infants: Incidence, Conservative treatment procedure, and Follow-up.

    PubMed

    Ozdamar, Mustafa Yasar; Karakus, Osman Zeki

    2017-07-02

    Testicular ischemia and necrosis, especially in the infant age, may result from incarcerated inguinal hernia. Duration of ischemia is a significant factor for the affected testicle. We aimed to present a case series on the conservative management in the testicular ischemia caused by incarcerated inguinal hernia. Inguinal hernia repairs performed in between March 2009 and December 2014 were investigated retrospectively. Patients' characteristics, hernia side, incarceration, testicular ischemia and complications were recorded. Color Doppler ultrasonography was performed in the incarcerated inguinal hernia patients preoperatively and was repeated on 3 and 7 days and then at 1, 3 and 6 months postoperatively. The testicle sizes, volumes, and arterial flow patterns of them were recorded at the same time. Total 785 inguinal hernias were treated in 738 male patients, ranging from 18 days to 16 years. From all male patients, 44 (5.9%) had the IIH. There were 16 (36.3%) irreducible hernias in 44 incarcerated hernia patients. Of these 16, testicular ischemia was determined in 9 (56.2%) infants with the irreducible incarcerated hernia. Orchidopexyprocedure was performed in these patients. Testicular atrophy was occurred in two patients (22.2%). In the others, testicular volumes and perfusions were normal during follow-up (mean 8.3 ± 2.2 months). Testicular ischemia resulting from incarcerated inguinal hernia may be treated conservatively without orchiectomy for the ischemic testicle and testicular ischemia may be followed with color Doppler ultrasound for atleast 6 months. The inguinal hernia repair in infants should be subject to urgent surgery rather than elective surgery. So, the testicular ischemia in infants with the inguinal hernia will be an avoidable complication.

  4. The administration of renoprotective agents extends warm ischemia in a rat model.

    PubMed

    Cohen, Jacob; Dorai, Thambi; Ding, Cheng; Batinic-Haberle, Ines; Grasso, Michael

    2013-03-01

    Extended warm ischemia time during partial nephrectomy leads to considerable renal injury. Using a rat model of renal ischemia, we examined the ability of a unique renoprotective cocktail to ameliorate warm ischemia-reperfusion injury and extend warm ischemia time. A warm renal ischemia model was developed using Sprague-Dawley rats, clamping the left renal artery for 40, 50, 60, and 70 minutes, followed by 48 hours of reperfusion. An improved renoprotective cocktail referred to as I-GPM (a mixture of specific renoprotective growth factors, porphyrins, and mitochondria-protecting amino acids) was administered -24 hours, 0 hours, and +24 hours after surgery. At 48 hours, both kidneys were harvested and examined with hematoxylin and eosin and periodic acid-Schiff stains for the analysis of renal tubular necrosis. Creatinine, protein, and gene expression levels were also analyzed to evaluate several ischemia-specific and antioxidant response markers. I-GPM treated kidneys showed significant reversal of morphologic changes and a significant reduction in specific ischemic markers lipocalin-2, galectin-3, GRP-78, and HMGB1 compared with ischemic controls. These experiments also showed an upregulation of the stress response protein, heat shock protein (HSP)-70, as well as the phosphorylated active form of the transcription factor, heat shock factor (HSF)-1. In addition, quantitative RT-PCR analyses revealed a robust upregulation of several antioxidant pathway response genes in I-GPM treated animals. By histopathologic and several molecular measures, our unique renoprotective cocktail mitigated ischemia-reperfusion injury. Our cocktail minimized oxidative stress in an ischemic kidney rat model while at the same time protecting the global parenchymal function during extended periods of ischemia.

  5. Grade III ischemia on presentation with acute myocardial infarction predicts rapid progression of necrosis and less myocardial salvage with thrombolysis.

    PubMed

    Birnbaum, Yochai; Mahaffey, Kenneth W; Criger, Douglas A; Gates, Kathy B; Barbash, Gabriel I; Barbagelata, Alejandro; Clemmensen, Peter; Sgarbossa, Elena B; Gibbons, Raymond J; Rahman, M Atiar; Califf, Robert M; Granger, Chistopher B; Wagner, Galen S

    2002-01-01

    We assessed the relation between baseline electrocardiographic ischemia grades and initial myocardial area at risk (AR) and final infarct size (IS) in 49 patients who had undergone (99m)Tc sestamibi single-photon emission computed tomography before and 6 +/- 1 days after thrombolysis. Patients were classed as having grade III ischemia (ST segment elevation with terminal QRS distortion, n = 19) or grade II ischemia (ST elevation but no terminal QRS distortion, n = 30). We compared AR and IS by baseline ischemia grade and treatment (adenosine vs. placebo) and assessed relations of infarction index (IS/AR ratio x100) to time to thrombolysis, baseline ischemia grade, and adenosine therapy. Time to thrombolysis was similar for grade II and grade III. For placebo- treated patients, the median AR did not differ significantly between grade II (38%) and grade III patients (46%, p = 0.47), nor did median IS (16 vs. 40%, p = 0.096), but the median infarction index was 66 vs. 90% (p = 0.006). For adenosine-treated patients, median AR (21 vs. 26%, p = 0.44), median IS (5 vs. 17%, p = 0.15), and their ratio (31 vs. 67%, p = 0.23) did not differ significantly between grade II and grade III patients. The infarction index independently related to grade III ischemia (p = 0.0121) and adenosine therapy (p = 0.045). Infarct size related to baseline ischemia grade and was reduced by adenosine treatment. Necrosis progressed slowlier with baseline grade II versus III ischemia, which could offer more time for myocardial salvage with reperfusion. Copyright 2002 S. Karger AG, Basel

  6. Delayed Administration of Bone Marrow Mesenchymal Stem Cell Conditioned Medium Significantly Improves Outcome After Retinal Ischemia in Rats

    PubMed Central

    Dreixler, John C.; Poston, Jacqueline N.; Balyasnikova, Irina; Shaikh, Afzhal R.; Tupper, Kelsey Y.; Conway, Sineadh; Boddapati, Venkat; Marcet, Marcus M.; Lesniak, Maciej S.; Roth, Steven

    2014-01-01

    Purpose. Delayed treatment after ischemia is often unsatisfactory. We hypothesized that injection of bone marrow stem cell (BMSC) conditioned medium after ischemia could rescue ischemic retina, and in this study we characterized the functional and histological outcomes and mechanisms of this neuroprotection. Methods. Retinal ischemia was produced in adult Wistar rats by increasing intraocular pressure for 55 minutes. Conditioned medium (CM) from rat BMSCs or unconditioned medium (uCM) was injected into the vitreous 24 hours after the end of ischemia. Recovery was assessed 7 days after ischemia using electroretinography, at which time we euthanized the animals and then prepared 4-μm-thick paraffin-embedded retinal sections. TUNEL and Western blot were used to identify apoptotic cells and apoptosis-related gene expression 24 hours after injections; that is, 48 hours after ischemia. Protein content in CM versus uCM was studied using tandem mass spectrometry, and bioinformatics methods were used to model protein interactions. Results. Intravitreal injection of CM 24 hours after ischemia significantly improved retinal function and attenuated cell loss in the retinal ganglion cell layer. CM attenuated postischemic apoptosis and apoptosis-related gene expression. By spectral counting, 19 proteins that met stringent identification criteria were increased in the CM compared to uCM; the majority were extracellular matrix proteins that mapped into an interactional network together with other proteins involved in cell growth and adhesion. Conclusions. By restoring retinal function, attenuating apoptosis, and preventing retinal cell loss after ischemia, CM is a robust means of delayed postischemic intervention. We identified some potential candidate proteins for this effect. PMID:24699381

  7. Short Chemical Ischemia Triggers Phosphorylation of eIF2α and Death of SH-SY5Y Cells but not Proteasome Stress and Heat Shock Protein Response in both SH-SY5Y and T98G Cells.

    PubMed

    Klacanova, Katarina; Pilchova, Ivana; Klikova, Katarina; Racay, Peter

    2016-04-01

    Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.

  8. [Protective effect of octreotide on liver warm ischemia reperfusion injury].

    PubMed

    Li, Jie-qun; Qi, Hai-zhi; He, Zhi-jun; Hu, Wei; Si, Zhong-zhou; Li, Yi-ning

    2006-10-01

    To explore the protective effect of octreotide on liver warm ischemia-reperfusion injury and its possible mechanism. Pringle's maneuver liver ischemia-reperfusion models were established. Forty eight male Sprague Daweley rats were randomly divided into a sham operation group (S group, n=16), an ischemia-reperfusion group (I/R group, n=16) and an octreotide preconditioning group (OPC group, n=16). ALT and AST in the serum were measured at 30 min after the ischemia and 120 min after the reperfusion. The histomorphological changes and ultrastructure of hepatocellular were observed by optic and transmission electronic microscope. Hepatic adenine nucleotide levels and energy changes (EC) were determined by high performance liquid chromatography (HPLC). (1) At 30 min after the ischemia and 120 min after the reperfusion, the levels of ALT and AST in the serum of OPC group was lower than those in I/R group, whereas the levels of ATP and EC in the hepatic tissue were higher than those in the I/R group (P<0.01 or P<0.05). Compared with the I/R group, the injury of hepatocellular histomorphology and ultrastructure in the OPC group was abated. (2) At 30, 60, and 120 min after the reperfusion, the levels of ATP and EC in the OPC groups were higher than those in the I/R group. During the ischemia, the levels of ATP and EC in the OPC group dropped more slowly than those in the I/R group, but ATP and EC in the OPC groups rose more quickly than those in the I/R group during the reperfusion. Octreotide precondition can improve the hepatocellular energy reserve, and protect the liver from warm ischemia-reperfusion injury. The protective of octreotide on warm ischemia-reperfusion injury may be related to its influence on endocrine secretion.

  9. Effect of ischemic preconditioning on antioxidant status in the gerbil hippocampal CA1 region after transient forebrain ischemia

    PubMed Central

    Park, Seung Min; Park, Chan Woo; Lee, Tae-Kyeong; Cho, Jeong Hwi; Park, Joon Ha; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Ahn, Ji Hyeon; Tae, Hyun-Jin; Shin, Myoung Cheol; Ohk, Taek Geun; Cho, Jun Hwi; Won, Moo-Ho; Choi, Soo Young; Kim, In Hye

    2016-01-01

    Ischemic preconditioning (IPC) is a condition of sublethal transient global ischemia and exhibits neuroprotective effects against subsequent lethal ischemic insult. We, in this study, examined the neuroprotective effects of IPC and its effects on immunoreactive changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the gerbil hippocampal CA1 region after transient forebrain ischemia. Pyramidal neurons of the stratum pyramidale (SP) in the hippocampal CA1 region of animals died 5 days after lethal transient ischemia without IPC (8.6% (ratio of remanent neurons) of the sham-operated group); however, IPC prevented the pyramidal neurons from subsequent lethal ischemic injury (92.3% (ratio of remanent neurons) of the sham-operated group). SOD1, SOD2, CAT and GPX immunoreactivities in the sham-operated animals were easily detected in pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region, while all of these immunoreactivities were rarely detected in the stratum pyramidale at 5 days after lethal transient ischemia without IPC. Meanwhile, their immunoreactivities in the sham-operated animals with IPC were similar to (SOD1, SOD2 and CAT) or higher (GPX) than those in the sham-operated animals without IPC. Furthermore, their immunoreactivities in the stratum pyramidale of the ischemia-operated animals with IPC were steadily maintained after lethal ischemia/reperfusion. Results of western blot analysis for SOD1, SOD2, CAT and GPX were similar to immunohistochemical data. In conclusion, IPC maintained or increased the expression of antioxidant enzymes in the stratum pyramidale of the hippocampal CA1 region after subsequent lethal transient forebrain ischemia and IPC exhibited neuroprotective effects in the hippocampal CA1 region against transient forebrain ischemia. PMID:27630689

  10. Blood free Radicals Concentration Determined by Electron Paramagnetic Resonance Spectroscopy and Delayed Cerebral Ischemia Occurrence in Patients with Aneurysmal Subarachnoid Hemorrhage.

    PubMed

    Ewelina, Grzywna; Krzysztof, Stachura; Marek, Moskala; Krzysztof, Kruczala

    2017-12-01

    Pathophysiology of delayed cerebral ischemia and cerebral vasospasm following aneurysmal subarachnoid hemorrhage is still poorly recognized, however free radicals are postulated as one of the crucial players. This study was designed to scrutinize whether the concentration of free radicals in the peripheral venous blood is related to the occurrence of delayed cerebral ischemia associated with cerebral vasospasm. Twenty-four aneurysmal subarachnoid hemorrhage patients and seven patients with unruptured intracranial aneurysm (control group) have been studied. Free radicals in patients' blood have been detected by the electron paramagnetic resonance (CMH.HCl spin probe, 150 K, ELEXSYS E500 spectrometer) on admission and at least 72 h from disease onset. Delayed cerebral ischemia monitoring was performed by daily neurological follow-up and transcranial color coded Doppler. Delayed cerebral ischemia observed in six aneurysmal subarachnoid hemorrhage patients was accompanied by cerebral vasospasm in all six cases. No statistically significant difference in average free radicals concentration between controls and study subgroups was noticed on admission (p = .3; Kruskal-Wallis test). After 72 h free radicals concentration in delayed cerebral ischemia patients (3.19 ± 1.52 mmol/l) differed significantly from the concentration in aneurysmal subarachnoid hemorrhage patients without delayed cerebral ischemia (0.65 ± 0.37 mmol/l) (p = .012; Mann-Whitney test). These findings are consistent with our assumptions and seem to confirm the role of free radicals in delayed cerebral ischemia development. Preliminary results presented above are promising and we need perform further investigation to establish whether blood free radicals concentration may serve as the biomarker of delayed cerebral ischemia associated with cerebral vasospasm.

  11. Biological and histopathological investigations of moclobemide on injured ovarian tissue following induction of ischemia-reperfusion in rats.

    PubMed

    Ingec, Metin; Calik, Muhammet; Gundogdu, Cemal; Kurt, Ali; Yilmaz, Mehmet; Isaoglu, Unal; Salman, Suleyman; Akcay, Fatih; Suleyman, Halis

    2012-04-01

    The effects of moclobemide on damaged ovarian tissue induced by ischemia- reperfusion and damaged contralateral ovarian tissue were investigated in rats, biochemically and histologically. In this experimental study, 40 rats were equally divided into four groups: 10 mg/kg moclobemide, 20 mg/kg moclobemide, ischemia/reperfusion control, and intact control groups. A 2-2.5-cm-long vertical incision was made in the lower abdomen of each rat in order to reach the ovaries, after which a vascular clip was placed on the lower side of the right ovary of each animal in the two treatment groups and the ischemia-reperfusion control group, but not in the healthy (intact control) animal group. The purpose of this procedure was to create ischemia over the course of three hours, then the clips were unclamped to provide reperfusion for the next two hours. At the end of the two hours of reperfusion, all the animals were killed by high-dose anaesthesia and their ovaries were taken and subjected to histological and biochemical (malondialdehyde, nitric oxide, glutathione) studies. The obtained results showed that moclobemide suppressed nitric oxide and malondialdehyde production in the ischemia-reperfusion damage area, and prevented the decrease in endogenous antioxidant levels (glutathione) in the rat ovarian tissue. Moclobemide also prevented infiltration of leukocytes to the ovarian tissue. These results showed that moclobemide protected ovarian tissue against ischemiareperfusion injury. This study shows that moclobemide represses malondialdehyde and nitric oxide production in the rat ovarian tissue subjected to ischemia-reperfusion injury and keeps the endogenous antioxidant glutathione level from decreasing. Moclobemide also inhibits leukocytic migration into ovarian tissue following ischemia-reperfusion injury. From these results, it is suggested that moclobemide can be used in the treatment of ovarian ischemia-reperfusion injury.

  12. Endovascular thoracic aortic repair and previous or concomitant abdominal aortic repair: is the increased risk of spinal cord ischemia real?

    PubMed

    Baril, Donald T; Carroccio, Alfio; Ellozy, Sharif H; Palchik, Eugene; Addis, Michael D; Jacobs, Tikva S; Teodorescu, Victoria; Marin, Michael L

    2006-03-01

    Spinal cord ischemia after endovascular thoracic aortic repair remains a significant risk. Previous or concomitant abdominal aortic repair may increase this risk. This investigation reviews the occurrence of spinal cord ischemia after endovascular repair of the descending thoracic aorta in patients with previous or concomitant abdominal aortic repair. Over an 8-year period, 125 patients underwent endovascular exclusion of the thoracic aorta at the Mount Sinai Medical Center. Twenty-eight of these patients had previous or concomitant abdominal aortic repair. The 27 patients who underwent staged repairs all had cerebrospinal fluid (CSF) drainage during and following repair. This population was analyzed for the complication of spinal cord ischemia and factors related to its occurrence. Mean follow-up was 19.3 months (range 1-61). Spinal cord ischemia developed in four of the 28 patients (14.3%) who underwent endovascular thoracic aortic repair with previous or concomitant abdominal aortic repair, while one of 97 patients (1.0%) developed ischemia among the remaining thoracic endograft population. One patient with concomitant abdominal aortic repair developed cord ischemia that manifested 12 hr following the procedure. The remaining three patients with previous abdominal aortic repair developed more delayed-onset paralysis ranging from the third postoperative day to 7 weeks following repair. Irreversible cord ischemia occurred in three patients, with full recovery in one patient. Major complications from CSF drainage occurred in one patient (3.7%). Spinal cord ischemia occurred at a markedly higher rate in patients with previous or concomitant abdominal aortic repair. This risk continued beyond the immediate postoperative period. The benefit of perioperative and salvage CSF drainage remains to be determined.

  13. Salubrinal and robenacoxib treatment after global cerebral ischemia. Exploring the interactions between ER stress and inflammation.

    PubMed

    Anuncibay-Soto, Berta; Pérez-Rodriguez, Diego; Santos-Galdiano, María; Font-Belmonte, Enrique; Ugidos, Irene F; Gonzalez-Rodriguez, Paloma; Regueiro-Purriños, Marta; Fernández-López, Arsenio

    2018-05-01

    Blood reperfusion of the ischemic tissue after stroke promotes increases in the inflammatory response as well as accumulation of unfolded/misfolded proteins in the cell, leading to endoplasmic reticulum (ER) stress. Both Inflammation and ER stress are critical processes in the delayed death of the cells damaged after ischemia. The aim of this study is to check the putative synergic neuroprotective effect by combining anti-inflammatory and anti-ER stress agents after ischemia. The study was performed on a two-vessel occlusion global cerebral ischemia model. Animals were treated with salubrinal one hour after ischemia and with robenacoxib at 8 h and 32 h after ischemia. Parameters related to the integrity of the blood-brain barrier (BBB), such as matrix metalloproteinase 9 and different cell adhesion molecules (CAMs), were analyzed by qPCR at 24 h and 48 h after ischemia. Microglia and cell components of the neurovascular unit, including neurons, endothelial cells and astrocytes, were analyzed by immunofluorescence after 48 h and seven days of reperfusion. Pharmacologic control of ER stress by salubrinal treatment after ischemia, revealed a neuroprotective effect over neurons that reduces the transcription of molecules involved in the impairment of the BBB. Robenacoxib treatment stepped neuronal demise forward, revealing a detrimental effect of this anti-inflammatory agent. Combined treatment with robenacoxib and salubrinal after ischemia prevented neuronal loss and changes in components of the neurovascular unit and microglia observed when animals were treated only with robenacoxib. Combined treatment with anti-ER stress and anti-inflammatory agents is able to provide enhanced neuroprotective effects reducing glial activation, which opens new avenues in therapies against stroke. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus.

    PubMed

    Zhao, Bo; Gao, Wen-Wei; Liu, Ya-Jing; Jiang, Meng; Liu, Lian; Yuan, Quan; Hou, Jia-Bao; Xia, Zhong-Yuan

    2017-10-01

    Myocardial ischemia/reperfusion injury can lead to severe brain injury. Glycogen synthase kinase 3 beta is known to be involved in myo-cardial ischemia/reperfusion injury and diabetes mellitus. However, the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear. In this study, we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats. Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin. Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery. Post-conditioning comprised three cycles of ischemia/reperfusion. Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion, the structure of the brain was seriously damaged in the experimental rats compared with normal controls. Expression of Bax, interleukin-6, interleukin-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, and cleaved caspase-3 in the brain was significantly increased, while expression of Bcl-2, interleukin-10, and phospho-glycogen synthase kinase 3 beta was decreased. Diabetes mellitus can aggravate inflammatory reactions and apoptosis. Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes. Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glyco-gen synthase kinase 3 beta. According to these results, glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.

  15. Cycloheximide and actinomycin D delay death and affect bcl-2, bax, and Ice gene expression in astrocytes under in vitro ischemia.

    PubMed

    Yu, Albert Cheung Hoi; Yung, Hon Wa; Hui, Michael Hung Kit; Lau, Lok Ting; Chen, Xiao Qian; Collins, Richard A

    2003-10-15

    An in vitro ischemia model was established and the effect of the metabolic inhibitors cycloheximide (CHX) and actinomycin D (ActD) on apoptosis in astrocytes under ischemia studied. CHX decreased by 75% the number of cells dying after 6 hr of ischemia compared with control cultures. TdT-mediated dUTP nick end labelling (TUNEL) staining of comparable cultures was reduced by 40%. ActD decreased cell death by 60% compared with controls. The number of TUNEL-positive cells was reduced by 38%. The nuclear shrinkage in TUNEL-positive astrocytes in control cultures did not occur in ActD-treated astrocytes, indicating that nuclear shrinkage and DNA fragmentation during apoptosis are two unrelated processes. Expression of bcl-2 (alpha and beta), bax, and Ice in astrocytes under similar ischemic conditions, as measured by quantitative reverse transcription-polymerase chain reaction, indicated that ischemia down-regulated bcl-2 (alpha and beta) and bax. Ice was initially down-regulated from 0 to 4 hr, before returning to control levels after 8 hr of ischemia. ActD decreased the expression of these genes. CHX reduced the expression of bcl-2 (alpha and beta) but increased bax and Ice expression. It is hypothesized that the balance of proapoptotic (Bad, Bax) and antiapoptotic (Bcl-2, Bcl-Xl) proteins determines apoptosis. The data suggest that the ratio of Bcl-2/Bad in astrocytes following ActD and CHX treatment does not decrease as much in untreated cells during ischemia. Our data indicate that it is the ratio of Bcl-2 family members that plays a critical role in determining ischemia-induced apoptosis. It is also important to note that ischemia-induced apoptosis involves the regulation of RNA and protein synthesis. Copyright 2003 Wiley-Liss, Inc.

  16. IMM-H004, A New Coumarin Derivative, Improved Focal Cerebral Ischemia via Blood-Brain Barrier Protection in Rats.

    PubMed

    Niu, Fei; Song, Xiu-Yun; Hu, Jin-Feng; Zuo, Wei; Kong, Ling-Lei; Wang, Xiao-Feng; Han, Ning; Chen, Nai-Hong

    2017-10-01

    IMM-H004 (7-hydroxy-5-methoxy-4-methyl-3-[4-methylpiperazin-1-yl]-2H-chromen-2-one) is a novel coumarin derivative that showed better effect in improving global cerebral ischemia in rats. However, the effects and mechanisms in focal cerebral ischemia were not clear. Blood-brain barrier (BBB) protection is a vital strategy for the treatment of cerebral ischemia. This study is to investigate whether IMM-H004 improves brain ischemia injury via BBB protection. Focal brain ischemia model was induced by middle cerebral artery occlusion for 1 hour and reperfusion (MCAO/R) for 24 hours in rats. IMM-H004 (1.5, 3, 6 mg/kg) and edaravone (positive drug, 6 mg/kg) were administered after 5 minutes of occlusion. Neurological score and TTC staining were used to evaluate the effect of IMM-H004. Evans Blue (EB) staining and electron microscopy were used to assess BBB permeability. Western blot, reverse transcription-polymerase chain reaction, and immunohistochemistry were used to detect the expression of BBB structure-related proteins. Compared with the model group, IMM-H004 in the focal brain ischemia model improved neurological function and reduced cerebral infarction size and edema content. IMM-H004 sharply reduced the EB content and alleviated BBB structure. In addition, IMM-H004 increased the level of zonula occludens (ZO-1) and occluding, decreased the level of aquaporin 4 and matrix metalloproteinase 9, either in cortex or in hippocampus. And all of these changed were related to BBB protection. IMM-H004 improved cerebral ischemia injury via BBB protection. For a potential therapy drug of cerebral ischemia, IMM-H004 merits further study. Copyright © 2017. Published by Elsevier Inc.

  17. Reduced expression of IA channels is associated with post-ischemic seizures.

    PubMed

    Lei, Zhigang; Zhang, Hui; Liang, Yanling; Xu, Zao C

    2016-08-01

    Post-stroke seizures are considered as a major cause of epilepsy in adults. The pathophysiologic mechanisms resulting in post-stroke seizures are not fully understood. The present study attempted to reveal a new mechanism underlying neuronal hyperexcitability responsible to the seizure development after ischemic stroke. Transient global ischemia was produced in adult Wistar rats using the 4-vessel occlusion (4-VO) method. The spontaneous behavioral seizures were defined by the Racine scale III-V. The neuronal death in the brain was determined by hematoxylin-eosin staining. The expression levels of A-type potassium channels were analyzed by immunohistochemical staining and western blotting. We found that the incidence of spontaneous behavioral seizures increased according to the severity of ischemia with 0% after 15-min ischemia and ∼50% after 25-min ischemia. All behavioral seizures occurred with 48h after ischemia. Morphological analysis indicated that brain damage was not correlated with behavioral seizures. Immunohistochemical staining showed that the expression levels of the A-type potassium channel subunit Kv4.2 was significantly reduced in ischemic brains with behavioral seizures, but not in ischemic brains without seizures. In addition, rats failing to develop spontaneous behavioral seizures within 2days after ischemia were more sensitive to bicuculline-induced seizures at 2 months after ischemia than control rats. Meanwhile, Kv4.2 expression was decreased in brain at 2 months after ischemia. Our results demonstrated the reduction of Kv4.2 expression might contribute to the development of post-ischemic seizures and long-term increased seizure susceptibility after ischemia. The mechanisms underlying post-stroke seizures and epilepsy is unknown so far. The down-regulation of IA channels may explained the abnormal neuronal hyperexcitability responsible for the seizure development after ischemic stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury.

    PubMed

    Pachori, Alok S; Melo, Luis G; Hart, Melanie L; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D; Stahl, Gregory L; Pratt, Richard E; Dzau, Victor J

    2004-08-17

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  19. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    PubMed Central

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-01-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury. PMID:15302924

  20. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    NASA Astrophysics Data System (ADS)

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-08-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  1. Global Cerebral Ischemia: Synaptic and Cognitive Dysfunction

    PubMed Central

    Neumann, Jake T.; Cohan, Charles H.; Dave, Kunjan R.; Wright, Clinton B.; Perez-Pinzon, Miguel A.

    2018-01-01

    Cardiopulmonary arrest is one of the leading causes of death and disability, primarily occurring in the aged population. Numerous global cerebral ischemia animal models induce neuronal damage similar to cardiac arrest. These global cerebral ischemia models range from vessel occlusion to total cessation of cardiac function, both of which have allowed for the investigation of this multifaceted disease and detection of numerous agents that are neuroprotective. Synapses endure a variety of alterations after global cerebral ischemia from the resulting excitotoxicity and have been a major target for neuroprotection; however, neuroprotective agents have proven unsuccessful in clinical trials, as neurological outcomes have not displayed significant improvements in patients. A majority of these neuroprotective agents have specific neuronal targets, where the success of future neuroprotective agents may depend on non-specific targets and numerous cognitive improvements. This review focuses on the different models of global cerebral ischemia, neuronal synaptic alterations, synaptic neuroprotection and behavioral tests that can be used to determine deficits in cognitive function after global cerebral ischemia. PMID:23170794

  2. [Effects of the of renal warm ischemia time on the recovery of filtration function in the experiment].

    PubMed

    Guseinov, R G; Popov, S V; Gorshkov, A N; Sivak, K V; Martov, A G

    2017-12-01

    To investigate experimentally ultrastructural and biochemical signs of acute injury to the renal parenchyma after warm renal ischemia of various duration and subsequent reperfusion. The experiments were performed on 44 healthy conventional female rabbits of the "Chinchilla" breed weighted 2.6-2.7 kg, which were divided into four groups. In the first, control, group included pseudo-operated animals. In the remaining three groups, an experimental model of warm ischemia of renal tissue was created, followed by a 60-minute reperfusion. The renal warm ischemia time was 30, 60 and 90 minutes in the 2nd, 3rd and 4th groups, respectively. Electron microscopy was used to study ultrastructural disturbances of the renal parenchyma. Biochemical signs of acute kidney damage were detected by measuring the following blood serum and/or urine analytes: NGAL, cystatin C, KIM-1, L-FABP, interleukin-18. The glomerular filtration was evaluated by creatinine clearance, which was determined on days 1, 5, 7, 14, 21 and 35 of follow-up. A 30-minute renal warm ischemia followed by a 60-minute reperfusion induced swelling and edema of the brush membrane, vacuolation of the cytoplasm of the endothelial cells of the proximal tubules, and microvilli restructuring. The observed disorders were reversible, and the epithelial cells retained their viability. After 60 minutes of ischemia and 60 minutes of reperfusion, the observed changes in the ultrastructure of the epithelial cells were much more pronounced, some of the epithelial cells were in a state of apoptosis. 90 min of ischemia and 60 min of reperfusion resulted in electron-microscopic signs of the mass cellular death of the tubular epithelium. Concentration in serum and/or biochemical urine markers of acute renal damage increased sharply after ischemic-reperfusion injury. Restoration of indicators was observed only in cases when the renal warm ischemia time did not exceed 60 minutes. The decrease in creatinine clearance occurred in the first 24 hours after the intervention, lasting not less than two weeks after a 30-minute warm ischemia, at least 3 weeks after a 60-minute warm ischemia and continued more than a month after a 90-minute renal artery occlusion. Intraoperative warm ischemia and subsequent reperfusion are the actual reasons for the alteration of the ultrastructure of the renal tissue and the impairment of the filtration function. The severity of the disorders depends on the duration of the damaging factors. After a 30-60-minute ischemia, the structural and functional changes in the renal tissue are reversible. The mass death of nephrocytes-effectors is possible only after warm renal ischemia longer than 60 min.

  3. Effects of ischemic preconditioning on PDGF-BB expression in the gerbil hippocampal CA1 region following transient cerebral ischemia

    PubMed Central

    Lee, Jae-Chul; Kim, Yang Hee; Lee, Tae-Kyeong; Kim, In Hye; Cho, Jeong Hwi; Cho, Geum-Sil; Shin, Bich-Na; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Myoung Cheol; Cho, Jun Hwi; Kang, Il Jun; Won, Moo-Ho; Seo, Jeong Yeol

    2017-01-01

    Ischemic preconditioning (IPC) is induced by exposure to brief durations of transient ischemia, which results in ischemic tolerance to a subsequent longer or lethal period of ischemia. In the present study, the effects of IPC (2 min of transient cerebral ischemia) were examined on immunoreactivity of platelet-derived growth factor (PDGF)-BB and on neuroprotection in the gerbil hippocampal CA1 region following lethal transient cerebral ischemia (LTCI; 5 min of transient cerebral ischemia). IPC was subjected to a 2-min sublethal ischemia and a LTCI was given 5-min transient ischemia. The animals in all of the groups were given recovery times of 1, 2 and 5 days and change in PDGF-BB immunoreactivity was examined as was the neuronal damage/death in the hippocampus induced by LTCI. LTCI induced a significant loss of pyramidal neurons in the hippocampal CA1 region 5 days after LTCI, and significantly decreased PDGF-BB immunoreactivity in the CA1 pyramidal neurons from day 1 after LTCI. Conversely, IPC effectively protected the CA1 pyramidal neurons from LTCI and increased PDGF-BB immunoreactivity in the CA1 pyramidal neurons post-LTCI. In conclusion, the results demonstrated that LTCI significantly altered PDGF-BB immunoreactivity in pyramidal neurons in the hippocampal CA1 region, whereas IPC increased the immunoreactivity. These findings indicated that PDGF-BB may be associated with IPC-mediated neuroprotection. PMID:28627606

  4. Renal sympathetic denervation suppresses atrial fibrillation induced by acute atrial ischemia/infarction through inhibition of cardiac sympathetic activity.

    PubMed

    Zhou, Qina; Zhou, Xianhui; TuEr-Hong, ZuKe-la; Wang, Hongli; Yin, Tingting; Li, Yaodong; Zhang, Ling; Lu, Yanmei; Xing, Qiang; Zhang, Jianghua; Yang, Yining; Tang, Baopeng

    2016-01-15

    This study aims to explore the effects of renal sympathetic denervation (RSD) on atrial fibrillation (AF) inducibility and sympathetic activity induced by acute atrial ischemia/infarction. Acute ischemia/infarction was induced in 12 beagle dogs by ligating coronary arteries that supply the atria. Six dogs in the sham-RSD group did not undergo RSD, and six dogs without coronary artery ligation served as controls. AF induction rate, sympathetic discharge, catecholamine concentration and densities of tyrosine hydroxylase-positive nerves were measured. Acute atrial ischemia/infarction resulted in a significant increase of AF induction rate, which was decreased by RSD compared to controls (P<0.05). The root-mean-square peak value, peak area and number of sympathetic discharges were significantly augmented by atrial ischemia relative to the baseline and control (P<0.05). The number of sympathetic discharges was significantly reduced in the RSD group, compared to the control and sham-RSD groups (P<0.05). Norepinephrine and epinephrine concentrations in the atria, ventricle and kidney were elevated by atrial ischemia/infarction, but were reduced by RSD (P<0.05). Sympathetic hyperactivity was associated with pacing-induced AF after acute atrial ischemia/infarction. RSD has the potential to reduce the incidence of new-onset AF after acute atrial ischemia/infarction. The inhibition of cardiac sympathetic activity by RSD may be one of the major underlying mechanisms for the marked reduction of AF inducibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation.

    PubMed

    Rong, Song; Hueper, Katja; Kirsch, Torsten; Greite, Robert; Klemann, Christian; Mengel, Michael; Meier, Matthias; Menne, Jan; Leitges, Michael; Susnik, Nathan; Meier, Martin; Haller, Hermann; Shushakova, Nelli; Gueler, Faikah

    2014-09-15

    Acute kidney injury (AKI) increases the risk of morbidity and mortality after major surgery and transplantation. We investigated the effect of PKC-ε deficiency on AKI and ischemic allograft damage after kidney transplantation. PKC-ε-deficient and wild type (WT) control mice were subjected to 35 min of renal pedicle clamping to induce AKI. PKC-ε deficiency was associated with a marked improvement in survival and an attenuated loss of kidney function. Furthermore, functional MRI experiments revealed better renal perfusion in PKC-ε-deficient mice than in WT mice one day after IRI. Acute tubular necrosis and neutrophil infiltration were markedly reduced in PKC-ε-deficient mice. To determine whether this resistance to ischemia-reperfusion injury resulted from changes in local renal cells or infiltrating leukocytes, we studied a life-supporting renal transplant model of ischemic graft injury. We transplanted kidneys from H(2b) PKC-ε-deficient mice (129/SV) and their corresponding WT littermates into major histocompatibility complex-incompatible H(2d) recipients (BALB/c) and induced ischemic graft injury by prolonged cold ischemia time. Recipients of WT allografts developed severe renal failure and died within 10 days of transplantation. Recipients of PKC-ε-deficient allografts had better renal function and survival; they had less generation of ROS and upregulation of proinflammatory proteins (i.e., ICAM-1, inducible nitric oxide synthase, and TNF-α) and showed less tubular epithelial cell apoptosis and inflammation in their allografts. These data suggest that local renal PKC-ε expression mediates proapoptotic and proinflammatory signaling and that an inhibitor of PKC-ε signaling could be used to prevent hypoxia-induced AKI. Copyright © 2014 the American Physiological Society.

  6. Multicenter study on double kidney transplantation.

    PubMed

    Bertelli, R; Nardo, B; Capocasale, E; Cappelli, G; Cavallari, G; Mazzoni, M P; Benozzi, L; Dalla Valle, R; Fuga, G; Busi, N; Gilioli, C; Albertazzi, A; Stefoni, S; Pinna, A D; Faenza, A

    2008-01-01

    Marginal organs not suitable for single kidney transplantation are considered for double kidney transplantation (DKT). Herein we have reviewed short and long-term outcomes of DKT over a 7-year experience. Between 2001 and 2007, 80 DKT were performed in the transplant centers of Bologna, Parma, and Modena, Italy. Recipient mean age was 61+/-5 years. The main indications were glomerular nephropathy (n=33) and hypertensive nephroangiosclerosis (n=14). Mean HLA A, B, and DR mismatches were 3.1+/-1.2. Donor mean age was 69+/-8 years and mean creatinine clearance was 75+/-27 mL/min. Almost all kidneys were perfused with Celsior solution. Mean cold ischemia time was 17+/-4 hours and mean warm ischemia time was 41+/-17 minutes. Mean biopsy score was 4.4. Immunosuppression was based on tacrolimus (n=52) or cyclosporine (n=26). Fifty (62.5%) patients displayed good postoperative renal function. Thirty (37.5%) experienced acute tubular necrosis and required postoperative dialysis treatment; 8 acute rejections occurred. Urinary complications were 13.7% with 8/11 requiring surgical revision. There were 6 surgical reexplorations: intestinal perforation (n=2), bleeding (n=3), and lymphocele (n=1). Two patients lost both grafts due to vascular and infectious complications at 7 or 58 days after transplantation. Two patients underwent intraoperative transplantectomy due to massive vascular thrombosis. Four (5%) patients underwent transplantectomy of a single graft due to vascular complications (n=2), bleeding (n=1), or infectious complications (n=1). Graft and patient survivals were 95% and 100% versus 93% and 97% at 3 versus 36 months, respectively. DKT is a safe approach for organ shortage. The score used in this study is useful to determine whether a kidney should be refused or accepted.

  7. Single-center experience in double kidney transplantation.

    PubMed

    Fontana, I; Magoni Rossi, A; Gasloli, G; Santori, G; Giannone, A; Bertocchi, M; Piaggio, F; Bocci, E; Valente, Umberto

    2010-05-01

    Use of organs from marginal donors for transplantation is a current strategy to expand the organ donor pool. Its efficacy is universally accepted among data from multicenter studies. Herein, we have reviewed outcomes of double kidney transplantation (DKT) over an 9-year experience in our center. The aim of this study was to evaluate possible important differences between a monocenter versus multicenter studies. Between 1999 and 2008, we performed 59 DKT. Recipient mean age was 63 +/- 5 years. Mean HLA-A, -B, and -DR mismatches were 3.69 +/- 0.922. Donor mean age was 69 +/- 7 years and mean creatinine clearance was 69.8 +/- 30.8 mL/min. Proteinuria was detected in three donors (5%). Mean cold ischemia and warm ischemia times were 1130 +/- 216 and 48 +/- 11 minutes, respectively. The right and left kidney scores were 4.18 +/- 2 and 4.21 +/- 2, respectively. Thirty patients (51%) displayed good postoperative renal function; 22 (37%), acute tubular necrosis with postoperative dialysis; 3 (5%), acute rejection episodes; 4 (7%), single-graft transplantectomy due to vascular thrombosis; 1 (2%), a retransplantation; 5 (8%), a lymphocele; 3 (5%) vescicoureteral reflux or stenosis requiring surgical correction. Cytomegalovirus infection was detected in five patients (8%). In three patients (5%) displayed de novo neoplasia. Three patients showed chronic rejection (5%), whereas we observed a cyclosporine-related toxicity in 7 (12%). Nine patients (15%) developed iatrogenic diabetes. Patient and graft survivals after 3 years from DKT were 93% and 86.3%, respectively. In this study, we applied successfully a widespread score to allocate organs to single kidney transplantation or DKT. In our experience, the score is suitable for the organ allocation but it may be overprotective, excluding potentially suitable organs for a single transplantation. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Pretreatment of liver grafts in vivo by γ-aminobutyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat

    PubMed Central

    Hori, Tomohide; Gardner, Lindsay B.; Hata, Toshiyuki; Chen, Feng; Baine, Ann-Marie T.; Uemoto, Shinji; Nguyen, Justin H.

    2014-01-01

    Summary Background: Gamma-aminobutyric acid (GABA) is found throughout the body. The regulation of GABA receptor (GABAR) reduces oxidative stress (OS). Ischemia/reperfusion injury after orthotopic liver transplantation (OLT) causes OS-induced graft damage. The effects of GABAR regulation in donors in vivo were investigated. Material/Methods: Donor rats received saline, a GABAR agonist or GABAR antagonist 4 h before surgery. Recipient rats were divided into four groups according to the donor treatments: laparotomy, OLT with saline, OLT with GABAR agonist and OLT with GABAR antagonist. Histopathological, biochemical and immunohistological examinations were performed at 6, 12 and 24 h after OLT. Protein assays were performed at 6 h after OLT. The 4-hydroxynonenal (4-HNE), ataxia-telangiectasia mutated kinase (ATM), phosphorylated histone H2AX (γH2AX), phosphatidylinositol-3 kinase (PI3K), Akt and superoxide dismutase (SOD) were assessed by western blot analysis. Results: In the univariate analysis, histopathological and biochemical profiles verified that the GABAR agonist reduced graft damage. Immunohistology revealed that the GABAR agonist prevented the induction of apoptosis. Measurement of 4-4-HNE levels confirmed OS-induced damage after OLT, and the GABAR agonist improved this damage. In the γH2AX, PI3K, Akt and antioxidant enzymes (SODs), ATM and H2AX were greatly increased after OLT, and were reduced by the GABAR agonist. In the multivariate analyses between multiple groups, histopathological assessment, aspartate aminotransferase level, immunohistological examinations for apoptotic induction and γH2AX showed statistical differences. Conclusions: A specific agonist demonstrated regulation of GABAR in vivo in the liver. This activation in vivo reduced OS after OLT via the ATM/H2AX pathway. PMID:23792534

  9. Role of donor hemodynamic trajectory in determining graft survival in liver transplantation from donation after circulatory death donors.

    PubMed

    Firl, Daniel J; Hashimoto, Koji; O'Rourke, Colin; Diago-Uso, Teresa; Fujiki, Masato; Aucejo, Federico N; Quintini, Cristiano; Kelly, Dympna M; Miller, Charles M; Fung, John J; Eghtesad, Bijan

    2016-11-01

    Donation after circulatory death (DCD) donors show heterogeneous hemodynamic trajectories following withdrawal of life support. Impact of hemodynamics in DCD liver transplant is unclear, and objective measures of graft viability would ease transplant surgeon decision making and inform safe expansion of the donor organ pool. This retrospective study tested whether hemodynamic trajectories were associated with transplant outcomes in DCD liver transplantation (n = 87). Using longitudinal clustering statistical techniques, we phenotyped DCD donors based on hemodynamic trajectory for both mean arterial pressure (MAP) and peripheral oxygen saturation (SpO 2 ) following withdrawal of life support. Donors were categorized into 3 clusters: those who gradually decline after withdrawal of life support (cluster 1), those who maintain stable hemodynamics followed by rapid decline (cluster 2), and those who decline rapidly (cluster 3). Clustering outputs were used to compare characteristics and transplant outcomes. Cox proportional hazards modeling revealed hepatocellular carcinoma (hazard ratio [HR] = 2.53; P = 0.047), cold ischemia time (HR = 1.50 per hour; P = 0.027), and MAP cluster 1 were associated with increased risk of graft loss (HR = 3.13; P = 0.021), but not SpO 2 cluster (P = 0.172) or donor warm ischemia time (DWIT; P = 0.154). Despite longer DWIT, MAP and SpO 2 clusters 2 showed similar graft survival to MAP and SpO 2 clusters 3, respectively. In conclusion, despite heterogeneity in hemodynamic trajectories, DCD donors can be categorized into 3 clinically meaningful subgroups that help predict graft prognosis. Further studies should confirm the utility of liver grafts from cluster 2. Liver Transplantation 22 1469-1481 2016 AASLD. © 2016 by the American Association for the Study of Liver Diseases.

  10. An Oxygenated and Transportable Machine Perfusion System Fully Rescues Liver Grafts Exposed to Lethal Ischemic Damage in a Pig Model of DCD Liver Transplantation.

    PubMed

    Compagnon, Philippe; Levesque, Eric; Hentati, Hassen; Disabato, Mara; Calderaro, Julien; Feray, Cyrille; Corlu, Anne; Cohen, José Laurent; Ben Mosbah, Ismail; Azoulay, Daniel

    2017-07-01

    Control of warm ischemia (WI) lesions that occur with donation after circulatory death (DCD) would significantly increase the donor pool for liver transplantation. We aimed to determine whether a novel, oxygenated and hypothermic machine perfusion device (HMP Airdrive system) improves the quality of livers derived from DCDs using a large animal model. Cardiac arrest was induced in female large white pigs by intravenous injection of potassium chloride. After 60 minutes of WI, livers were flushed in situ with histidine-tryptophan-ketoglutarate and subsequently preserved either by simple cold storage (WI-SCS group) or HMP (WI-HMP group) using Belzer-MPS solution. Liver grafts procured from heart-beating donors and preserved by SCS served as controls. After 4 hours of preservation, all livers were transplanted. All recipients in WI-SCS group died within 6 hours after transplantation. In contrast, the HMP device fully protected the liver against lethal ischemia/reperfusion injury, allowing 100% survival rate. A postreperfusion syndrome was observed in all animals of the WI-SCS group but none of the control or WI-HMP groups. After reperfusion, HMP-preserved livers functioned better and showed less hepatocellular and endothelial cell injury, in agreement with better-preserved liver histology relative to WI-SCS group. In addition to improved energy metabolism, this protective effect was associated with an attenuation of inflammatory response, oxidative load, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. This study demonstrates for the first time the efficacy of the HMP Airdrive system to protect liver grafts from lethal ischemic damage before transplantation in a clinically relevant DCD model.

  11. Paradoxical toxicity of cardioplegic compounds on ischemic cardiomyocyte using optimal design strategy.

    PubMed

    Ferrera, René; Michel, Pierre; Ovize, Michel

    2005-07-01

    The aim of this study was to evaluate the effects of major components of cardioplegic solutions on myocardial tissue submitted to prolonged cold ischemia. Our methodology was based on the simultaneous testing in the same series of experiments of many compounds (19 in number), which were included in the composition of 20 established solutions. All the experiments were performed by a matricial-predefined protocol that allows the evaluation of the protective or toxic effects of each of these 19 compounds. Pig hearts were removed and left ventricular myocardiums were cut into 320 pieces. For each solution tested, 8 pieces of myocardial tissue were incubated at 4 degrees C for 24 hours and 8 other pieces were incubated for 72 hours. At the end of incubation period, tissue injury was assessed by measuring the leakage of myocardial enzymes(glutamic-oxaloacetic transaminase, lactate dehydrogenase, creatine phosphokinase) into the incubation medium. Initially, the effects of each solution were evaluated, and then a mathematical analysis was performed and the effects of each compound deduced. After the 24-hour incubation period, pyruvate (5 mmol/liter), polyethylene glycol (5 mmol/liter), Ala-Gln (20 mmol/liter), and reduced glutathione (3 mmol/liter) showed toxic effects, whereas ethanol (1%) and calcium chloride (2 mmol/liter) seemed to be protective. After 72 hours' incubation, similar data were obtained; dextran 70 (0.57 mmol/liter) was also found to be deleterious. The results revealed surprising myocardial toxicity (enzymatic release) from components included in cardioplegic solutions. Some components would induce metabolic activation during prolonged hypothermic ischemia, which may be inappropriated and which may perhaps exacerbate damages by increasing membrane ruptures. This concept confirms eventual discrepant effects of preservative compounds on cardiomyocyte membrane during deep hypothermia, according to the metabolic state of the cell.

  12. Optimization of Perioperative Conditions to Prevent Ischemic Cholangiopathy in Donation After Circulatory Death Donor Liver Transplantation.

    PubMed

    Kubal, Chandrashekhar; Mangus, Richard; Fridell, Jonathan; Saxena, Romil; Rush, Natalia; Wingler, Matthew; Ekser, Burcin; Tector, Joseph

    2016-08-01

    Donation after circulatory death (DCD) donor pool remains underutilized for liver transplantation (LT). We describe optimizing "modifiable risk factors," such as cold ischemia time (CIT) recipient warm ischemia time (WIT) and the use of thrombolytic flush at the time of procurement to minimize ischemic cholangiopathy (IC). From July 2011 (era II), to improve outcomes after DCD LT, measures were taken to minimize CIT, operative time and recipient WIT along with the use of tissue plasminogen activator (tPA) flush during DCD procurements. Thirty consecutive DCD LTs were performed prospectively in era II. Outcomes were compared with 61 historic controls (era I). Reperfusion biopsies were evaluated for the presence of necrosis and biliary epithelial damage. Median CIT (4.9 [3.5-5.9] vs 6.4 [4.3-12]; P < 0.001), hepatectomy time (70 [42-120] vs 81 [58-207]; P = 0.02), and recipient WIT (16 [13-31] vs 24[15-40]; P < 0.001) were significantly shorter in era II. All patients in era II received tPA flushed liver grafts. None of the patients in era II developed IC (0% vs 18%; P = 0.013). There were fewer biliary complications in era II, and there was no increased risk of bleeding associated with the use of tPA. One-year graft survival was slightly better in era II (n = 24 patients with 1 year follow-up) (88% vs 80%; P = 0.14). Optimizing peritransplant conditions, such as shortening ischemic times with the use of thrombolytic donor flush, may prevent IC after DCD LT. With this approach, the DCD donor pool may be expanded.

  13. Optimal Utilization of Donor Grafts With Extended Criteria

    PubMed Central

    Cameron, Andrew M.; Ghobrial, R Mark; Yersiz, Hasan; Farmer, Douglas G.; Lipshutz, Gerald S.; Gordon, Sherilyn A.; Zimmerman, Michael; Hong, Johnny; Collins, Thomas E.; Gornbein, Jeffery; Amersi, Farin; Weaver, Michael; Cao, Carlos; Chen, Tony; Hiatt, Jonathan R.; Busuttil, Ronald W.

    2006-01-01

    Objective: Severely limited organ resources mandate maximum utilization of donor allografts for orthotopic liver transplantation (OLT). This work aimed to identify factors that impact survival outcomes for extended criteria donors (ECD) and developed an ECD scoring system to facilitate graft-recipient matching and optimize utilization of ECDs. Methods: Retrospective analysis of over 1000 primary adult OLTs at UCLA. Extended criteria (EC) considered included donor age (>55 years), donor hospital stay (>5 days), cold ischemia time (>10 hours), and warm ischemia time (>40 minutes). One point was assigned for each extended criterion. Cox proportional hazard regression model was used for multivariate analysis. Results: Of 1153 allografts considered in the study, 568 organs exhibited no extended criteria (0 score), while 429, 135 and 21 donor allografts exhibited an EC score of 1, 2 and 3, respectively. Overall 1-year patient survival rates were 88%, 82%, 77% and 48% for recipients with EC scores of 0, 1, 2 and 3 respectively (P < 0.001). Adjusting for recipient age and urgency at the time of transplantation, multivariate analysis identified an ascending mortality risk ratio of 1.4 and 1.8 compared to a score of 0 for an EC score of 1, and 2 (P < 0.01) respectively. In contrast, an EC score of 3 was associated with a mortality risk ratio of 4.5 (P < 0.001). Further, advanced recipient age linearly increased the death hazard ratio, while an urgent recipient status increased the risk ratio of death by 50%. Conclusions: Extended criteria donors can be scored using readily available parameters. Optimizing perioperative variables and matching ECD allografts to appropriately selected recipients are crucial to maintain acceptable outcomes and represent a preferable alternative to both high waiting list mortality and to a potentially futile transplant that utilizes an ECD for a critically ill recipient. PMID:16772778

  14. Clinical characteristics and current treatment of glaucoma.

    PubMed

    Cohen, Laura P; Pasquale, Louis R

    2014-06-02

    Glaucoma is a neurodegenerative disorder in which degenerating retinal ganglion cells (RGC) produce significant visual disability. Clinically, glaucoma refers to an array of conditions associated with variably elevated intraocular pressure (IOP) that contributes to RGC loss via mechanical stress, vascular abnormalities, and other mechanisms, such as immune phenomena. The clinical diagnosis of glaucoma requires assessment of the ocular anterior segment with slit lamp biomicroscopy, which allows the clinician to recognize signs of conditions that can produce elevated IOP. After measurement of IOP, a specialized prismatic lens called a gonioscope is used to determine whether the angle is physically open or closed. The structural manifestation of RGC loss is optic nerve head atrophy and excavation of the neuroretinal rim tissue. Treatment is guided by addressing secondary causes for elevated IOP (such as inflammation, infection, and ischemia) whenever possible. Subsequently, a variety of medical, laser, and surgical options are used to achieve a target IOP. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. [Organ procurement and transplantation from non-heart-beating donors].

    PubMed

    Antoine, Corinne; Brun, Frédéric; Tenaillon, Alain; Loty, Bernard

    2008-02-01

    Despite a significant increase in procurement and transplantation activities observed in France in the last eight years, the shortage in grafts is on the rise and demand keeps being much higher than supply. Since 1968 and until now, procurement was limited to heart beating brain donors. The results of kidneys transplanted from non-heart-beating donors have significantly improved and are nowadays comparable to those of kidney transplantations from brain death donors, thanks to a more accurate selection of donors and recipients, to better respect of preventing cold and warm ischemia times and to several major therapeutic innovations. Procurement on non-heart-beating donors are therefore being reconsidered under considerations of feasibility, results and ethical and legal consequences, under a specific medical protocol issued by the agency of biomedicine with the pilot hospital center agreement to comply with the protocol. Referring to foreign experiences, this program is likely to decrease the organ shortage, which is jeopardizing the treatment of a large number of patients awaiting transplantation.

  16. [Laser-assisted lipolysis for gynecomastia: safe and effective skin retraction].

    PubMed

    Trelles, Mario; Bonanad, Enrique; Moreno-Moraga, Javier; Alcolea, Justo; Mordon, Serge; Leclère, Franck Marie

    2013-01-01

    To evaluate efficacy of laser lipolysis in the treatment of gynecomastia to correct breast volume, flaccidity and excess skin without its excision. Prospectively, 32 patients with gynecomastia under tumescent anaesthesia and sedation underwent laser lipolysis with 980 nm diode laser, 15W continuous emission and 8 to 12 kJ energy per breast. Externally cold air was used to protect the skin. No drainages were used but a compressive bandage. Patients evaluated results on a VAS scale. Two doctors evaluated results comparing before and 6 month after photographs and also measured the areola and chest diameter. Twenty three patients considered results as Very Good, 7 Good and 2 Fair Cutaneous retraction of the areola was noticeable one month after the surgery and was maximum 6 months after. Evaluation by doctors was 26 Very Good, 5 Good and 1 Fair. There were no burns, ischemia or lesions in areolas or nipples. Laser assisted liposuction is a simple and efficacious technique, barely traumatic and permits a rapid reincorporation to normal activities.

  17. En-bloc Transplantation: an Eligible Technique for Unilateral Dual Kidney Transplantation

    PubMed Central

    Salehipour, M.; Bahador, A.; Nikeghbalian, S.; Kazemi, K.; Shamsaeifar, A. R.; Ghaffaripour, S.; Sahmeddini, M. A.; Salahi, H.; Bahreini, A.; Janghorban, P.; Gholami, S.; Malek-Hosseini, S. A.

    2012-01-01

    Background: Kidney transplantation is the best available treatment for patients with end-stage renal disease. Objective: To evaluate the en bloc anastomosis technique for unilateral dual kidney transplantation (DKT). Methods: From May to October 2011, 5 patients (4 women and 1 man) with mean age of 31.8 years underwent unilateral DKT with this technique in which distal end of the aorta and proximal end of inferior vena cava (IVC) were closed with running sutures. Then, proximal end of the aorta and distal end of the IVC were anastomosed to internal (or external) iliac artery and external iliac vein, respectively. Results: Post-operative course was uneventful. No vascular and urologic complications developed; all patient had acceptable serum creatinine at discharge time and up of 2–6 months of post-operation follow up. Conclusion: Unilateral DKT is a safe method for performing DKT. The proposed en bloc anastomosis can improve the outcome of the graft by reducing the cold ischemia and the operation time. PMID:25013633

  18. En-bloc Transplantation: an Eligible Technique for Unilateral Dual Kidney Transplantation.

    PubMed

    Salehipour, M; Bahador, A; Nikeghbalian, S; Kazemi, K; Shamsaeifar, A R; Ghaffaripour, S; Sahmeddini, M A; Salahi, H; Bahreini, A; Janghorban, P; Gholami, S; Malek-Hosseini, S A

    2012-01-01

    Kidney transplantation is the best available treatment for patients with end-stage renal disease. To evaluate the en bloc anastomosis technique for unilateral dual kidney transplantation (DKT). From May to October 2011, 5 patients (4 women and 1 man) with mean age of 31.8 years underwent unilateral DKT with this technique in which distal end of the aorta and proximal end of inferior vena cava (IVC) were closed with running sutures. Then, proximal end of the aorta and distal end of the IVC were anastomosed to internal (or external) iliac artery and external iliac vein, respectively. Post-operative course was uneventful. No vascular and urologic complications developed; all patient had acceptable serum creatinine at discharge time and up of 2-6 months of post-operation follow up. Unilateral DKT is a safe method for performing DKT. The proposed en bloc anastomosis can improve the outcome of the graft by reducing the cold ischemia and the operation time.

  19. Tuberculous spondylodiscitis in a patient with a sickle-cell disease: CT findings.

    PubMed

    Krupniewski, Leszek; Palczewski, Piotr; Gołębiowski, Marek; Kosińska-Kaczyńska, Katarzyna

    2012-01-01

    Although sickle-cell anemia (SCA) is common in black Americans, Sub-Saharan Africa and in the Mediterranean area, the disease is rare in the temperate climate zone. The manifestations of the disease are related mainly to the production of abnormal hemoglobin that leads to organ ischemia and increased susceptibility to infection caused by functional asplenia. The authors present CT findings in a 39-year-old black woman diagnosed due to abdominal pain, lymphadenopathy and fever. CT of the thorax and abdomen demonstrated changes in the liver, spleen, and skeletal system suggestive of SCA complicated with spondylodiscitis in the thoracic spine. Hepatomegaly and small calcified spleen are typical findings in older homozygotic patients with SCA. The lesions in the skeleton may be related either to intramedullary hematopoiesis or osteonecrosis and osteomyelitis. In the latter case, diffuse osteosclerosis and H-shaped vertebrae are most typical. Tuberculous spondylodiscitis is characterized by the location in the thoracic region, preferential involvement of anterior elements, relative sparing of intervertebral discs, and cold abscesses.

  20. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia

    USDA-ARS?s Scientific Manuscript database

    Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, ...

  1. Huperzine A attenuates cognitive deficits and hippocampal neuronal damage after transient global ischemia in gerbils.

    PubMed

    Zhou, J; Zhang, H Y; Tang, X C

    2001-11-09

    The protective effects of huperzine A on transient global ischemia in gerbils were investigated. Five min of global ischemia in gerbils results in working memory impairments shown by increased escape latency in a water maze and reduced time spent in the target quadrant. These signs of dysfunction are accompanied by delayed degeneration of pyramidal hippocampal CA1 neurons and by decrease in acetylcholinesterase activity in the hippocampus. Subchronic oral administration of huperzine A (0.1 mg/kg, twice per day for 14 days) after ischemia significantly reduced the memory impairment, reduced neuronal degeneration in the CA1 region, and partially restored hippocampal choline acetyltransferase activity. The ability of huperzine A to attenuate memory deficits and neuronal damage after ischemia might be beneficial in cerebrovascular type dementia.

  2. Hypothermia inhibits translocation of CaM kinase II and PKC-alpha, beta, gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion.

    PubMed

    Harada, Kazuki; Maekawa, Tsuyoshi; Tsuruta, Ryosuke; Kaneko, Tadashi; Sadamitsu, Daikai; Yamashima, Tetsumori; Yoshida Ki, Ken-ichi

    2002-03-01

    To clarify the involvement of intracellular signaling pathway and calpain in the brain injury and its protection by mild hypothermia, immunoblotting analyses were performed in the rat brain after global forebrain ischemia and reperfusion. After 30 min of ischemia followed by 60 min of reperfusion, Ca2+/calmodulin-dependent kinase II (CaM kinase II) and protein kinase C (PKC)-alpha, beta, gamma isoforms translocated to the synaptosomal fraction, while mild hypothermia (32 degrees C) inhibited the translocation. The hypothermia also inhibited fodrin proteolysis caused by ischemia-reperfusion, indicating the inhibition of calpain. These effects of hypothermia may explain the mechanism of the protection against brain ischemia-reperfusion injury through modulating synaptosomal function.

  3. Syringaldehyde exerts neuroprotective effect on cerebral ischemia injury in rats through anti-oxidative and anti-apoptotic properties

    PubMed Central

    Bozkurt, Aras Adem; Mustafa, Guven; Tarık, Akman; Adile, Ozkan; Murat, Sen Halil; Mesut, Kılıcoglu; Yıldıray, Kalkan; Coskun, Silan; Murat, Cosar

    2014-01-01

    There are few studies on the neuroprotective effects of syringaldehyde in a rat model of cerebral ischemia. The study aimed to elucidate the mechanisms underlying the neuroprotective effects of syringaldehyde on ischemic brain cells. Rat models of cerebral ischemia were intraperitoneally administered syringaldehyde. At 6 and 24 hours after syringaldehyde administration, cell damage in the brain of cerebral ischemia rats was obviously reduced, superoxide dismutase activity and nuclear respiratory factor 1 expression in the brain tissue were markedly increased, malondiadehyde level was obviously decreased, apoptosis-related cysteine peptidase caspase-3 and -9 immunoreactivity was obviously decreased, and neurological function was markedly improved. These findings suggest that syringaldehyde exerts neuroprotective effects on cerebral ischemia injury through anti-oxidation and anti-apoptosis. PMID:25558237

  4. Syringaldehyde exerts neuroprotective effect on cerebral ischemia injury in rats through anti-oxidative and anti-apoptotic properties.

    PubMed

    Bozkurt, Aras Adem; Mustafa, Guven; Tarık, Akman; Adile, Ozkan; Murat, Sen Halil; Mesut, Kılıcoglu; Yıldıray, Kalkan; Coskun, Silan; Murat, Cosar

    2014-11-01

    There are few studies on the neuroprotective effects of syringaldehyde in a rat model of cerebral ischemia. The study aimed to elucidate the mechanisms underlying the neuroprotective effects of syringaldehyde on ischemic brain cells. Rat models of cerebral ischemia were intraperitoneally administered syringaldehyde. At 6 and 24 hours after syringaldehyde administration, cell damage in the brain of cerebral ischemia rats was obviously reduced, superoxide dismutase activity and nuclear respiratory factor 1 expression in the brain tissue were markedly increased, malondiadehyde level was obviously decreased, apoptosis-related cysteine peptidase caspase-3 and -9 immunoreactivity was obviously decreased, and neurological function was markedly improved. These findings suggest that syringaldehyde exerts neuroprotective effects on cerebral ischemia injury through anti-oxidation and anti-apoptosis.

  5. Zinc translocation accelerates infarction after mild transient focal ischemia.

    PubMed

    Lee, J-M; Zipfel, G J; Park, K H; He, Y Y; Hsu, C Y; Choi, D W

    2002-01-01

    Excess release of chelatable zinc (Zn(2+)) from central synaptic vesicles may contribute to the pathogenesis of selective neuronal cell death following transient forebrain ischemia, but a role in neurodegeneration after focal ischemia has not been defined. Adult male Long-Evans rats subjected to middle cerebral artery occlusion (MCAO) for 30 min followed by reperfusion developed delayed cerebral infarction reaching completion 3 days after the insult. One day after the insult, many degenerating cerebral neurons exhibited increased intracellular Zn(2+), and some labeled with the antibody against activated caspase-3. I.c.v. administration of the Zn(2+) chelator, EDTA saturated with equimolar Ca(2+) (CaEDTA), 15 min prior to ischemia attenuated subsequent Zn(2+) translocation into cortical neurons, and reduced infarct volume measured 3 days after ischemia. Although the protective effect of CaEDTA at this endpoint was substantial (about 70% infarct reduction), it was lost when insult severity was increased (from 30 to 60 min MCAO), or when infarct volume was measured at a much later time point (14 days instead of 3 days after ischemia). These data suggest that toxic Zn(2+) translocation, from presynaptic terminals to post-synaptic cell bodies, may accelerate the development of cerebral infarction following mild transient focal ischemia.

  6. Anticerebral Ischemia-Reperfusion Injury Activity of Synthesized Puerarin Derivatives

    PubMed Central

    Ji, Yubin; Yan, Xinjia

    2016-01-01

    When cerebral ischemia-reperfusion injury happened in patients, multiple pathological processes occur, such as leukocyte infiltration, platelet, and complement activation, which would result in cognitive dysfunction and inflammation. Puerarin has shown protective effect on injury of neural cell. In order to enhance this protective effect of puerarin, puerarin derivatives with different log⁡P values were designed and synthesized. The original phenolic hydroxyl in the puerarin molecules was substituted in order to change the blood-brain barrier permeability and thus enhance the efficacy for preventing cerebral ischemia/reperfusion injury. And the structure of the newly synthesized molecules was confirmed by 1H NMR spectroscopy and mass spectrometry. The mouse model of cerebral artery ischemia/reperfusion injury was established to test the anticerebral ischemia-reperfusion injury activity of the puerarin derivatives. The assays of the water maze, Y maze, brain cortex Ca2+-Mg2+-ATP enzyme, and iNOS enzyme activity were performed in this mouse model. The results showed that puerarin derivative P1-EA and P2-EA were resulting in an increased lipophilicity that enabled the derivatives to pass more efficiently through the blood-brain barrier, thus, improving the protective effects against cerebral ischemia/reperfusion injury. Therefore, derivatives of puerarin may serve as promising approach to improve neuron function in ischemia-reperfusion brain injury-related disorders. PMID:27807543

  7. Vinpocetine modulates metabolic activity and function during retinal ischemia.

    PubMed

    Nivison-Smith, Lisa; O'Brien, Brendan J; Truong, Mai; Guo, Cindy X; Kalloniatis, Michael; Acosta, Monica L

    2015-05-01

    Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues. Copyright © 2015 the American Physiological Society.

  8. Minoxidil attenuates ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes.

    PubMed

    Takatani, Tomoka; Takahashi, Kyoko; Jin, Chengshi; Matsuda, Takahisa; Cheng, Xinyao; Ito, Takashi; Azuma, Junichi

    2004-06-01

    The effects of minoxidil (a mitochondrial K+(ATP) channel opener) on ischemia-induced necrosis and apoptosis were examined using a cardiomyocyte model of simulated ischemia, since mitochondrial K+(ATP) channel openers have been suggested to be involved in the mechanisms of cardioprotective action against ischemia/reperfusion injury. In the absence of minoxidil, simulated ischemia led to cellular release of creatine phosphokinase (CPK), morphologic degeneration, and beating cessation within 24 to 72 hours. Based on the Hoechst 33258 staining pattern, a significant number of cells placed in sealed flasks underwent apoptosis. Myocytes treated with 5 microM of minoxidil failed to alter the degree of ischemia-induced CPK loss for 48 to 72 hours. However, minoxidil treatment prevented the loss of beating function in many of the ischemic cells, and attenuated the decline in intracellular ATP content after a 48-hour ischemic incubation. The number of nuclear fragmentation was significantly reduced in minoxidil-treated cells after a 72-hour ischemic insult compared with untreated ischemic cells. This effect was blocked by the mitochondrial K+(ATP) channel antagonist 5-HD. The data suggest that minoxidil renders the cell resistant to ischemia-induced necrosis and apoptosis. The beneficial effects of minoxidil appear to be related to the opening of mitochondrial K+(ATP) channels.

  9. Effects of single antegrade hot shot in comparison with no hot shot administration during coronary artery bypass grafting

    PubMed Central

    Mirmohammadsadeghi, Pouya; Mirmohammadsadeghi, Mohsen

    2015-01-01

    BACKGROUND Superior results will be achieved from cardiac surgery by minimizing the effect of ischemia/reperfusion injury during cross-clamping of the aorta. Different cardioplegia solutions have been introduced, but the optimum one is still ambiguous. The aim of this study is to determine the effect of single antegrade hot shot terminal warm blood cardioplegia (TWBC) on patients who had undergone coronary artery bypass grafting (CABG). METHODS In total, 2488 patients who had CABG surgery in Sina Hospital, Isfahan, Iran, from 2003 to 2011 were enrolled in this case-control study. They were divided into two groups, those who received cold cardioplegia only and those who received a hot shot following cold cardioplegia. Demographics, and clinical data, such as; premature atrial contraction (PAC) arrhythmia, diabetes treatment, and left ventricular ejection fraction (EF), were collected and logistic regression analysis was used to analyze the data. RESULTS There were significant differences found between subjects receiving antegrade hot shot based on direct current (DC) shocks, with regard to; female, EF levels, diabetes treatment (P < 0.050). Those who did not receive the hot shot and were not diabetic received more DC shock (P = 0.019). The prevalence of subjects who did no need DC shock was significantly higher among male subjects who had good EF and acceptable diabetic treatment. Multiple logistic regression showed that PAC arrhythmia did not have a significant effect on receiving DC shock during CAGB [0.84 (0.25, 2.85), (P = 0.780)]. Having poor EF increased the risk of receiving DC shock among subjects by 2.81 [(1.69, 4.69), (P ≤ 0.001)] (P < 0.001). Among the diabetic subjects, receiving insulin decreased the risk of receiving DC shock by 0.54 (0.29, 0.98) (P = 0.042). CONCLUSION It was concluded that single antegrade hot shot following cold cardioplegia was not particularly effective in the CABG group. TWBC will decrease the need for DC shock. PMID:26405451

  10. Effects of single antegrade hot shot in comparison with no hot shot administration during coronary artery bypass grafting.

    PubMed

    Mirmohammadsadeghi, Pouya; Mirmohammadsadeghi, Mohsen

    2015-05-01

    Superior results will be achieved from cardiac surgery by minimizing the effect of ischemia/reperfusion injury during cross-clamping of the aorta. Different cardioplegia solutions have been introduced, but the optimum one is still ambiguous. The aim of this study is to determine the effect of single antegrade hot shot terminal warm blood cardioplegia (TWBC) on patients who had undergone coronary artery bypass grafting (CABG). In total, 2488 patients who had CABG surgery in Sina Hospital, Isfahan, Iran, from 2003 to 2011 were enrolled in this case-control study. They were divided into two groups, those who received cold cardioplegia only and those who received a hot shot following cold cardioplegia. Demographics, and clinical data, such as; premature atrial contraction (PAC) arrhythmia, diabetes treatment, and left ventricular ejection fraction (EF), were collected and logistic regression analysis was used to analyze the data. There were significant differences found between subjects receiving antegrade hot shot based on direct current (DC) shocks, with regard to; female, EF levels, diabetes treatment (P < 0.050). Those who did not receive the hot shot and were not diabetic received more DC shock (P = 0.019). The prevalence of subjects who did no need DC shock was significantly higher among male subjects who had good EF and acceptable diabetic treatment. Multiple logistic regression showed that PAC arrhythmia did not have a significant effect on receiving DC shock during CAGB [0.84 (0.25, 2.85), (P = 0.780)]. Having poor EF increased the risk of receiving DC shock among subjects by 2.81 [(1.69, 4.69), (P ≤ 0.001)] (P < 0.001). Among the diabetic subjects, receiving insulin decreased the risk of receiving DC shock by 0.54 (0.29, 0.98) (P = 0.042). It was concluded that single antegrade hot shot following cold cardioplegia was not particularly effective in the CABG group. TWBC will decrease the need for DC shock.

  11. Anesthesia-Induced Hypothermia Attenuates Early-Phase Blood-Brain Barrier Disruption but Not Infarct Volume following Cerebral Ischemia.

    PubMed

    Liu, Yu-Cheng; Lee, Yu-Da; Wang, Hwai-Lee; Liao, Kate Hsiurong; Chen, Kuen-Bao; Poon, Kin-Shing; Pan, Yu-Ling; Lai, Ted Weita

    2017-01-01

    Blood-brain barrier (BBB) disruption is thought to facilitate the development of cerebral infarction after a stroke. In a typical stroke model (such as the one used in this study), the early phase of BBB disruption reaches a peak 6 h post-ischemia and largely recovers after 8-24 h, whereas the late phase of BBB disruption begins 48-58 h post-ischemia. Because cerebral infarct develops within 24 h after the onset of ischemia, and several therapeutic agents have been shown to reduce the infarct volume when administered at 6 h post-ischemia, we hypothesized that attenuating BBB disruption at its peak (6 h post-ischemia) can also decrease the infarct volume measured at 24 h. We used a mouse stroke model obtained by combining 120 min of distal middle cerebral arterial occlusion (dMCAo) with ipsilateral common carotid arterial occlusion (CCAo). This model produced the most reliable BBB disruption and cerebral infarction compared to other models characterized by a shorter duration of ischemia or obtained with dMCAO or CCAo alone. The BBB permeability was measured by quantifying Evans blue dye (EBD) extravasation, as this tracer has been shown to be more sensitive for the detection of early-phase BBB disruption compared to other intravascular tracers that are more appropriate for detecting late-phase BBB disruption. We showed that a 1 h-long treatment with isoflurane-anesthesia induced marked hypothermia and attenuated the peak of BBB disruption when administered 6 h after the onset of dMCAo/CCAo-induced ischemia. We also demonstrated that the inhibitory effect of isoflurane was hypothermia-dependent because the same treatment had no effect on ischemic BBB disruption when the mouse body temperature was maintained at 37°C. Importantly, inhibiting the peak of BBB disruption by hypothermia had no effect on the volume of brain infarct 24 h post-ischemia. In conclusion, inhibiting the peak of BBB disruption is not an effective neuroprotective strategy, especially in comparison to the inhibitors of the neuronal death signaling cascade; these, in fact, can attenuate the infarct volume measured at 24 h post-ischemia when administered at 6 h in our same stroke model.

  12. Tribulus terrestris (Linn.) Attenuates Cellular Alterations Induced by Ischemia in H9c2 Cells Via Antioxidant Potential.

    PubMed

    Reshma, P L; Lekshmi, V S; Sankar, Vandana; Raghu, K G

    2015-06-01

    Tribulus terrestris L. was evaluated for its cardioprotective property against myocardial ischemia in a cell line model. Initially, methanolic extract was prepared and subjected to sequential extraction with various solvents. The extract with high phenolic content (T. terrestris L. ethyl acetate extract-TTME) was further characterized for its chemical constituents and taken forward for evaluation against cardiac ischemia. HPLC analysis revealed the presence of phenolic compounds like caffeic acid (12.41 ± 0.22 mg g(-1)), chlorogenic acid (0.52 ± 0.06 mg g(-1)) and 4-hydroxybenzoic acid (0.60 ± 0.08 mg g(-1)). H9c2 cells were pretreated with TTME (10, 25, 50 and 100 µg/ml) for 24 h before the induction of ischemia. Then ischemia was induced by exposing cells to ischemia buffer, in a hypoxic chamber, maintained at 0.1% O2, 95% N2 and 5% CO2, for 1 h. A significant (p ≤ 0.05) increase in reactive oxygen species generation (56%), superoxide production (18%), loss of plasma membrane integrity, dissipation of transmembrane potential, permeability transition pore opening and apoptosis had been observed during ischemia. However, pretreatment with TTME was found to significantly (p ≤ 0.05) attenuate the alterations caused by ischemia. The overall results of this study partially reveal the scientific basis of the use of T. terrestris L. in the traditional system of medicine for heart diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Activation of the Nrf2 defense pathway contributes to neuroprotective effects of phloretin on oxidative stress injury after cerebral ischemia/reperfusion in rats.

    PubMed

    Liu, Yu; Zhang, Lei; Liang, Jiangjiu

    2015-04-15

    Oxidative stress is considered a major contributing factor in cerebral ischemia/reperfusion injury. Phloretin, a dihydrochalcone belonging to the flavonoid family, is particularly rich in apples and apple-derived products. A large body of evidence demonstrates that phloretin exhibits anti-oxidant properties, and phloretin has potential implications for treating oxidative stress injuries in cerebral ischemia/reperfusion. Therefore, the neuroprotective and antioxidant effects of phloretin against ischemia/reperfusion injury, as well as related probable mechanisms, were investigated. The cerebral ischemic/reperfusion injury model was reproduced in male Sprague-Dawley rats through middle cerebral artery occlusion. At 24h after reperfusion, neurological score, infarct volume, and brain water content were assessed. Oxidative stress was evaluated by superoxide dismutases (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels. Nrf2 expression was measured by RT-PCR and western blot. Consequently, results showed that phloretin pretreatment for 14days significantly reduced infarct volume and brain edema, and ameliorated neurological scores in focal cerebral ischemia/reperfusion rats. SOD, GSH and GSH-Px activities were greatly decreased, and MDA levels significantly increased after ischemia/reperfusion injury. However, phloretin pretreatment dramatically suppressed these oxidative stress processes. Furthermore, phloretin upregulated Nrf2 mRNA and protein expression of in ischemia/reperfusion brain tissue. Taken together, phloretin exhibited neuroprotective effects in cerebral ischemia/reperfusion, and the mechanisms are associated with oxidative stress inhibition and Nrf2 defense pathway activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Difference in transient ischemia-induced neuronal damage and glucose transporter-1 immunoreactivity in the hippocampus between adult and young gerbils

    PubMed Central

    Park, Seung Min; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Won, Moo-Ho; Ahn, Ji Hyeon; Tae, Hyun-Jin; Shin, Myoung Cheol; Park, Chan Woo; Cho, Jun Hwi; Lee, Hui Young

    2016-01-01

    Objective(s): The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreactive microvessels in their ischemic hippocampal CA1 region. Materials and Methods: Transient cerebral ischemia was developed by 5-min occlusion of both common carotid arteries. Neuronal damage was examined by cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining and changes in GLUT-1 expression was carried out by immunohistochemistry. Results: About 90% of pyramidal neurons only in the adult CA1 region were damaged after ischemia/reperfusion; in the young, about 53 % of pyramidal neurons were damaged from 7 days after ischemia/reperfusion. The density of GLUT-1-immunoreactive microvessels was significantly higher in the young sham-group than that in the adult sham-group. In the ischemia-operated-groups, the density of GLUT-1-immunoreactive microvessels was significantly decreased in the adult and young at 1 and 4 days post-ischemia, respectively, thereafter, the density of GLUT-1-immunoreactive microvessels was gradually increased in both groups after ischemia/reperfusion. Conclusion: CA1 pyramidal neurons of the young gerbil were damaged much later than that in the adult and that GLUT-1-immunoreactive microvessels were significantly decreased later in the young. These data indicate that GLUT-1 might differently contribute to neuronal damage according to age after ischemic insults. PMID:27403259

  15. Zero ischemia robotic-assisted partial nephrectomy in Alberta: Initial results of a novel approach.

    PubMed

    Forbes, Ellen; Cheung, Douglas; Kinnaird, Adam; Martin, Blair St

    2015-01-01

    Partial nephrectomy remains the standard of care in early stage, organ-confined renal tumours. Recent evidence suggests that minimally invasive surgery can proceed without segmental vessel clamping. In this study, we review our experience at a Canadian centre with zero ischemia robotic-assisted partial nephrectomy (RAPN). A retrospective chart review of zero ischemia RAPN was performed. All surgeries were consecutive partial nephrectomies performed by the same surgeon at a tertiary care centre in Northern Alberta. The mean follow-up period was 28 months. These outcomes were compared against the current standards for zero ischemia (as outlined by the University of Southern California Institute of Urology [USC]). We included 21 patients who underwent zero ischemia RAPN between January 2012 and June 2013. Baseline data were similar to contemporary studies. Twelve (57.1%) required no vascular clamping, 7 (33.3%) required clamping of a single segmental artery, and 2 (9.5%) required clamping of two segmental arteries. We achieved an average estimated blood loss of 158 cc, with a 9.2% average increase in creatinine postoperatively. Operating time and duration of hospital stay were short at 153 minutes and 2.2 days, respectively. Zero ischemia partial nephrectomy was a viable option at our institution with favourable results in terms of intra-operative blood loss and postoperative creatinine change compared to results from contemporary standard zero ischemia studies (USC). To our knowledge, this is the first study to review an initial experience with the zero ischemia protocol in robotic-assisted partial nephrectomies at a Canadian hospital.

  16. Clinical Features and Outcomes of Gastric Ischemia.

    PubMed

    Sharma, Ayush; Mukewar, Saurabh; Chari, Suresh T; Wong Kee Song, Louis M

    2017-12-01

    Gastric ischemia is a rare condition associated with poor prognosis. Our study aim was to highlight the clinical features and outcomes of patients with gastric ischemia. A retrospective review of patients diagnosed with isolated gastric ischemia at our institution from January 1, 2000, to May 5, 2016, was performed. Demographic, clinical, endoscopic, radiologic, and outcome variables were abstracted for analysis. Seventeen patients (65% men) with mean age of 69.3 ± 11.3 years and body mass index of 28.8 ± 11.1 were identified. The etiologies for gastric ischemia included local vascular causes (n = 8), systemic hypoperfusion (n = 4), and mechanical obstruction (n = 5). The most common presenting symptoms were abdominal pain (65%), gastrointestinal bleeding (47%), and altered mental status (23%). The typical endoscopic appearance was mucosal congestion and erythema with or without ulceration. Gastric pneumatosis and portal venous air were more commonly seen on CT imaging. Radiologic and/or surgical intervention was needed in 9 patients, while the remaining 8 patients were managed conservatively with acid suppression, antibiotics, and nasogastric tube decompression. The median duration of hospital stay was 15 days (range 1-36 days). There were no cases of rebleeding and the mortality rate as a direct result of gastric ischemia was 24% within 6 months of diagnosis. Although uncommon, gastric ischemia is associated with significant mortality. Endoscopy and CT imaging play an important role in its diagnosis. The management of gastric ischemia is dictated by its severity and associated comorbidities.

  17. Neuroprotective Mechanisms of Calycosin Against Focal Cerebral Ischemia and Reperfusion Injury in Rats.

    PubMed

    Wang, Yong; Ren, Qianyao; Zhang, Xing; Lu, Huiling; Chen, Jian

    2018-01-01

    Emerging evidence suggests that autophagy plays important roles in the pathophysiological processes of cerebral ischemia and reperfusion injury. Calycosin, an isoflavone phytoestrogen, possesses neuroprotective effects in cerebral ischemia and reperfusion in rats. Here, we investigated the neuroprotective effects of calycosin against ischemia and reperfusion injury, as well as related probable mechanisms behind autophagy pathways. A cerebral ischemic and reperfusion injury model was established by middle cerebral artery occlusion in male Sprague-Dawley rats. Neurological scores, infarct volumes, and brain water content were assessed after 24 h reperfusion following 2 h ischemia. Additionally, the expression of the autophagy-related protein p62 and NBR1 (neighbor of BRCA1 gene 1), as well as Bcl-2, and TNF-α in rat brain tissues was measured by RT-PCR, western blotting and immunohistochemical analyses. The results showed that calycosin pretreatment for 14 days markedly decreased infarct volume and brain edema, and ameliorated neurological scores in rats with focal cerebral ischemia and reperfusion. It was observed that levels of p62, NBR1 and Bcl-2 were greatly decreased, and levels of TNF-α significantly increased after ischemia and reperfusion injury. However, calycosin administration dramatically upregulated the expression of p62, NBR1 and Bcl-2, and downregulated the level of TNF-α. All data reveal that calycosin exerts a neuroprotective effect on cerebral ischemia and reperfusion injury, and the mechanisms maybe associated with its anti-autophagic, anti-apoptotic and anti-inflammatory action. © 2018 The Author(s). Published by S. Karger AG, Basel.

  18. Acute retinal ischemia inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production.

    PubMed

    Hein, Travis W; Ren, Yi; Potts, Luke B; Yuan, Zhaoxu; Kuo, Enoch; Rosa, Robert H; Kuo, Lih

    2012-01-03

    Because retinal vascular disease is associated with ischemia and increased oxidative stress, the vasodilator function of retinal arterioles was examined after retinal ischemia induced by elevated intraocular pressure (IOP). The role of superoxide anions in the development of vascular dysfunction was assessed. IOP was increased and maintained at 80 to 90 mm Hg for 30, 60, or 90 minutes by infusing saline into the anterior chamber of a porcine eye. The fellow eye with normal IOP (10-20 mm Hg) served as control. In some pigs, superoxide dismutase mimetic TEMPOL (1 mM) or vehicle (saline) was injected intravitreally before IOP elevation. After enucleation, retinal arterioles were isolated and pressurized without flow for functional analysis by recording diameter changes using videomicroscopic techniques. Dihydroethidium (DHE) was used to detect superoxide production in isolated retinal arterioles. Isolated retinal arterioles developed stable basal tone and the vasodilations to endothelium-dependent nitric oxide (NO)-mediated agonists bradykinin and L-lactate were significantly reduced only by 90 minutes of ischemia. However, vasodilation to endothelium-independent NO donor sodium nitroprusside was unaffected after all time periods of ischemia. DHE staining showed that 90 minutes of ischemia significantly increased superoxide levels in retinal arterioles. Intravitreal injection of membrane-permeable radical scavenger but not vehicle before ischemia prevented elevation of vascular superoxide and preserved bradykinin-induced dilation. Endothelium-dependent NO-mediated dilation of retinal arterioles is impaired by 90 minutes of ischemia induced by elevated IOP. The inhibitory effect appears to be mediated by the alteration of NO signaling via vascular superoxide.

  19. Cardioprotective effect of resistance training and Crataegus oxyacantha extract on ischemia reperfusion-induced oxidative stress in diabetic rats.

    PubMed

    Ranjbar, Kamal; Zarrinkalam, Ebrahim; Salehi, Iraj; Komaki, Alireza; Fayazi, Bayan

    2018-04-01

    Discovering an effective approach to limit infarction size after ischemia-reperfusion has a clinical importance in diabetics. We investigated the anti-myocardial ischemia-reperfusion injury effect of resistance training and Crataegus oxyacantha extract on diabetic rats. To this end, 50 male Wistar rats were randomly divided into 5 groups: the sedentary control (SC), sedentary diabetic (SD), resistance trained diabetic (RD), diabetic plus C. oxyacantha extract treatment (CD) and resistance trained diabetic plus C. oxyacantha extract treatment (RCD) groups. Animals in trained groups were subjected to progressive resistance training program with the use of a ladder (5 days/week, for 10 weeks). C. oxyacantha extract rats were treated with 100 mg/kg body weight of the extract using a gavage every day for 10 weeks. After treatments, rats were subjected to ischemia via LAD artery ligation for 30 min followed by 90 min reperfusion. The heart was collected following the ischemia-reperfusion and analyzed for oxidative stress and ischemia-reperfusion injury. Compared to the SC group, LDH, CK-MB and infarction size in the SD group were significantly higher, whereas injury indices in the RCD group were significantly lower than those in the SD group. GPx and MPO levels after reperfusion increased and decreased, respectively in response to training and C. oxyacantha. These findings suggest that 10 weeks resistance training and C. oxyacantha can synergistically decrease ischemia-reperfusion injury, and this mechanism may be related to a reduction in oxidative stress which is normally associated with ischemia-reperfusion. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Digital image analysis of striated skeletal muscle tissue injury during reperfusion after induced ischemia

    NASA Astrophysics Data System (ADS)

    Rosero Salazar, Doris Haydee; Salazar Monsalve, Liliana

    2015-01-01

    Conditions such as surgical procedures or vascular diseases produce arterial ischemia and reperfusion injuries, which generate changes in peripheral tissues and organs, for instance, in striated skeletal muscle. To determine such changes, we conducted an experimental method in which 42 male Wistar rat were selected, to be undergone to tourniquet application on the right forelimb and left hind limb, to induce ischemia during one and three hours, followed by reperfusion periods starting at one hour and it was prolonged up to 32 days. Extensor carpi radialis longus and soleus respectively, were obtained to be processed for histochemical and morphometric analysis. By means of image processing and detection of regions of interest, variations of areas occupied by muscle fibers and intramuscular extracellular matrix (IM-ECM) throughout reperfusion were observed. In extensor carpi radialis longus, results shown reduction in the area occupied by muscle fibers; this change is significant between one hour and three hours ischemia followed by 16 hours, 48 hours and 32 days reperfusión (p˂0.005). To compare only periods of reperfusión that continued to three hours ischemia, were found significant differences, as well. For area occupied by IM-ECM, were identified increments in extensor carpi radialis longus by three hours ischemia and eight to 16 days reperfusion; in soleus, was observed difference by one hour ischemia with 42 hours reperfusion, and three hours ischemia followed by four days reperfusion (p˂0.005). Skeletal muscle develops adaptive changes in longer reperfusion, to deal with induced injury. Descriptions beyond 32 days reperfusion, can determine recovering normal pattern.

  1. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery.

    PubMed

    Chen, Han-Sen; Chen, Xi; Li, Wen-Ting; Shen, Jian-Gang

    2018-05-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO - ), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment.

  2. PubMed Central

    Beaudry, Philippe R.

    1991-01-01

    How widespread is silent myocardial ischemia and should we be actively looking for it? If found, how should it be treated? Is the prognosis for silent myocardial ischemia different from that for symptomatic myocardial ischemia? In this article, we shall summarize what is known about this coronary disease, then present a practical approach which, hopefully, will answer these questions. PMID:21229092

  3. Consumed Ischemia of Lower Limbs in the Newborn: A Case Report

    PubMed Central

    Hamid, Jiber; Rita, Hajji; Youssef, Zrihni; Abdellatif, Bouarhroum

    2013-01-01

    The limb ischemia is a rare phenomenon in the newborn. It is most often a postnatal ischemia secondary to arterial or venous catheterization, to neonatal infection. Maternal diabetes is most often implicated. The diagnosis implies an urgent situation which may result in extremity gangrene and ultimate loss of limb. PMID:24251263

  4. Assessment of Myocardial Ischemia with Cardiovascular Magnetic Resonance

    PubMed Central

    Heydari, Bobak; Jerosch-Herold, Michael; Kwong, Raymond Y.

    2014-01-01

    Assessment of myocardial ischemia in symptomatic patients remains a common and challenging clinical situation faced by physicians. Risk stratification by presence of ischemia provides important utility for both prognostic assessment and management. Unfortunately, current noninvasive modalities possess numerous limitations and have limited prognostic capacity. More recently, ischemia assessment by cardiovascular magnetic resonance (CMR) has been shown to be a safe, available, and potentially cost-effective alternative with both high diagnostic and prognostic accuracy. Cardiovascular magnetic resonance has numerous advantages over other noninvasive methods, including high temporal and spatial resolution, relatively few contraindications, and absence of ionizing radiation. Furthermore, studies assessing the clinical utility and cost effectiveness of CMR in the short-term setting for patients without evidence of an acute myocardial infarction have also demonstrated favorable results. This review will cover techniques of ischemia assessment with CMR by both stress-induced wall motion abnormalities as well as myocardial perfusion imaging. The diagnostic and prognostic performance studies will also be reviewed, and the use of CMR for ischemia assessment will be compared with other commonly used noninvasive modalities. PMID:22014487

  5. Protective effect of remote ischemic per-conditioning in the ischemia and reperfusion-induce renal injury in rats.

    PubMed

    Yamaki, Vitor Nagai; Gonçalves, Thiago Barbosa; Coelho, João Vitor Baia; Pontes, Ruy Victor Simões; Costa, Felipe Lobato da Silva; Brito, Marcus Vinicius Henriques

    2012-12-01

    To evaluate the protective effect of remote ischemic per-conditioning in ischemia and reperfusion-induced renal injury. Fifteen rats (Rattus norvegicus) were randomized into three groups (n = 5): Group Normality (GN), Control Ischemia and Reperfusion (GIR) and Group remote ischemic per-conditioning (GPER). With the exception of the GN group, all others underwent renal ischemia for 30 minutes. In group GPER we performed the ischemic remote per-conditioning, consisting of three cycles of ischemia and reperfusion applied every five minutes during the ischemic period, to the left hindlimb of the rats by means of a tourniquet. To quantify the lesions we measured serum levels of creatinine and urea, as well as analyzed renal histopathology. The GPER group presented with better levels of urea (83.74 ± 14.58%) and creatinine (0.72 ± 26.14%) when compared to GIR group, approaching the GN group. Histopathologically, the lower levels of medullary congestion and hydropic degeneration were found in group GPER. The remote ischemic per-conditioning had a significant protective effect on renal ischemia and reperfusion.

  6. Novel antiepileptic drug lacosamide exerts neuroprotective effects by decreasing glial activation in the hippocampus of a gerbil model of ischemic stroke.

    PubMed

    Ahn, Ji Yun; Yan, Bing Chun; Park, Joon Ha; Ahn, Ji Hyeon; Lee, Dae Hwan; Kim, In Hye; Cho, Jeong-Hwi; Chen, Bai Hui; Lee, Jae-Chul; Cho, Young Shin; Shin, Myoung Chul; Cho, Jun Hwi; Hong, Seongkweon; Won, Moo-Ho; Kim, Sung Koo

    2015-12-01

    Lacosamide, which is a novel antiepileptic drug, has been reported to exert various additional therapeutic effects. The present study investigated the neuroprotective effects of lacosamide against transient cerebral ischemia-induced neuronal cell damage in the hippocampal cornu ammonis (CA)-1 region of a gerbil model. Neuronal Nuclei immunohistochemistry demonstrated that pre- and post-surgical treatment (5 min ischemia) with 25 mg/kg lacosamide protected CA1 pyramidal neurons in the lacosamide-treated-ischemia-operated group from ischemic injury 5 days post-ischemia, as compared with gerbils in the vehicle-treated-ischemia-operated group. Furthermore, treatment with 25 mg/kg lacosamide markedly attenuated the activation of astrocytes and microglia in the ischemic CA1 region at 5 days post-ischemia. The results of the present study suggested that pre- and post-surgical treatment of the gerbils with lacosamide was able to protect against transient cerebral ischemic injury-induced CA1 pyramidal neuronal cell death in the hippocampus. In addition, the neuroprotective effects of lacosamide may be associated with decreased activation of glial cells in the ischemic CA1 region.

  7. Cross-linked polyhemoglobin-superoxide dismutase-catalase supplies oxygen without causing blood-brain barrier disruption or brain edema in a rat model of transient global brain ischemia-reperfusion.

    PubMed

    Powanda, D Douglas; Chang, Thomas M S

    2002-01-01

    In strokes, myocardial infarctions, severe sustained hemorrhagic shock, and donor organs, inadequate blood supply results in lack of oxygen to the tissue (ischemia). If ischemia is sustained, reperfusion with the needed oxygen can result in tissue injury (ischemia-reperfusion injury) due to formation of reactive oxygen species. We are studying an oxygen-carrying solution with anitoxidant activity formed by cross-linking hemoglobin, superoxide dismutase, and catalase to form PolyHb-SOD-CAT. The present report studies its effect on the blood-brain barrier and cerebral edema when used in a transient global brain ischemia-reperfusion rat model. We compare this solution to sham-control, oxygenated saline, stroma-free hemoglobin (SF-Hb), polymerized hemoglobin (PolyHb), and a mixture of SF-Hb, SOD, and CAT in free solution. The results show that the cross-linked PolyHb-SOD-CAT solution, unlike the other solutions, can supply oxygen to ischemic tissues without causing reperfusion injury in the transient global brain ischemia-reperfusion model.

  8. The relation between persistent coma and brain ischemia after severe brain injury.

    PubMed

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  9. [Digital ischemia in two patients treated with gemcitabine].

    PubMed

    Viguier, J-B; Solanilla, A; Boulon, C; Constans, J; Conri, C

    2010-06-01

    A 73-year-old man with an urothelial carcinoma treated with gemcitabine and carboplatinium and an 84-year-old man with a mesothelioma treated with gemcitabine alone developed digital ischemia. In the first patient, the ischemia involved all fingers except the thumbs during the second cycle of treatment. The ischemia developed during the first cycle in the second patient and involved the right major and ring fingers. In the literature, gemcitabine vascular toxicity is probably potentialized by platinium salts. Several nosological entities occur simultaneously. The most widely described involve isolated digital ischemia for doses to the order of 3000mg, and a hemolytic and uremic thrombotic microangiopathy for gemcitabine doses above 10,000mg. The vascular toxicity of platinium salts is not dose-dependent. In these two patients, the clinical course was favorable with interruption of the chemotherapy, treatment by iloprost and aspirin.

  10. Do metaboreceptors alter heat loss responses following dynamic exercise?

    PubMed

    McGinn, Ryan; Swift, Brendan; Binder, Konrad; Gagnon, Daniel; Kenny, Glen P

    2014-01-01

    Metaboreceptor activation during passive heating is known to influence cutaneous vascular conductance (CVC) and sweat rate (SR). However, whether metaboreceptors modulate the suppression of heat loss following dynamic exercise remains unclear. On separate days, before and after 15 min of high-intensity treadmill running in the heat (35°C), eight males underwent either 1) no isometric handgrip exercise (IHG) or ischemia (CON), 2) 1 min IHG (60% of maximum, IHG), 3) 1 min IHG followed by 2 min of ischemia (IHG+OCC), 4) 2 min of ischemia (OCC), or 5) 1 min IHG followed by 2 min of ischemia with application of lower body negative pressure (IHG+LBNP). SR (ventilated capsule), cutaneous blood flow (Laser-Doppler), and mean arterial pressure (Finometer) were measured continuously before and after dynamic exercise. Following dynamic exercise, CVC was reduced with IHG exercise (P < 0.05) and remained attenuated with post-IHG ischemia during IHG+OCC relative to CON (39 ± 2 vs. 47 ± 6%, P < 0.05). Furthermore, the reduction in CVC was exacerbated by application of LBNP during post-IHG ischemia (35 ± 3%, P < 0.05) relative to IHG+OCC. SR increased during IHG exercise (P < 0.05) and remained elevated during post-IHG ischemia relative to CON following dynamic exercise (0.94 ± 0.15 vs. 0.53 ± 0.09 mg·min(-1)·cm(-2), P < 0.05). In contrast, application of LBNP during post-IHG ischemia had no effect on SR (0.93 ± 0.09 mg·min(-1)·cm(-2), P > 0.05) relative to post-IHG ischemia during IHG+OCC. We show that CVC is reduced and that SR is increased by metaboreceptor activation following dynamic exercise. In addition, we show that the metaboreflex-induced loading of the baroreceptors can influence the CVC response, but not the sweating response.

  11. Assessment of global ischemic/reperfusion and Tacrolimus administration on CA1 region of hippocampus: gene expression profiles of BAX and BCL2 genes.

    PubMed

    Badr, R; Hashemi, M; Javadi, G; Movafagh, A; Mahdian, R

    2016-01-01

    It is well known that hippocampus has a pivotal role in learning, formation and consolidation of memory. Global cerebral ischemia causes severe damage to pyramidal neurons of the CA1 region and usually results in residual neurological deficits following a recovery from ischemia. Scientists investigate to find the molecular mechanism of apoptosis and to use this cell death for clinical treatment. In this investigation, we evaluated the molecular mechanism of FK-506 in apoptosis using gene expression quantification of BAX and BCL-2 genes in hippocampus following global ischemic/reperfusion. In the present experimental study, adult male Wistar rats were obtained and housed under standard conditions. Each experimental group consisted of five rats and was equally distributed in the normal control, ischemia/reperfusion, ischemia/reperfusion followed by FK-506. Global ischemia was induced for animals in ischemia and drug groups. In the drug group, moreover, two doses of FK-506 were injected as IV injection and intra-peritoneal (IP) injection after 48 h. Then, hippocampus tissue was removed. Consequently, RNA isolated, cDNA was synthesized and Real-Time PCR was performed. Finally, the obtained data was analyzed statistically (p<0.05). The quantitative results showed the BAX expression ratio increased approximately 3-times in ischemia/reperfusion (3.11 ± 0.28) group compared to the untreated (NR) and the drug group (p<0.001). The statistical analysis showed a significant difference for BCL-2 expression between the experimental groups (p<0.001). The mRNA level of BCL-2 decreased in the ischemia/reperfusion group, while it was without alteration in the other groups. The results showed that global cerebral ischemia/reperfusion induced BAX as pro-apoptotic gene and tacrolimus a neuroprotective drug inhibited BAX gene expression and induced BCL-2 gene expression as anti-apoptotic gene (Tab. 2, Fig. 3, Ref. 21).

  12. The Effect of Rosa Damascena Extract on Expression of Neurotrophic Factors in the CA1 Neurons of Adult Rat Hippocampus Following Ischemia.

    PubMed

    Moniri, Seyedeh Farzaneh; Hedayatpour, Azim; Hassanzadeh, Gholamreza; Vazirian, Mahdi; Karimian, Morteza; Belaran, Maryam; Ejtemaie Mehr, Shahram; Akbari, Mohamad

    2017-12-01

    Ischemic stroke is an important cause of death and disability in the world. Brain ischemia causes damage to brain cell, and among brain neurons, pyramidal neurons of the hippocampal CA1 region are more susceptive to ischemic injury. Recent findings suggest that neurotrophic factors protect against ischemic cell death. A dietary component of Rosa damascene extract possibly is associated with expression of neurotrophic factors mRNA following ischemia, so it can have therapeutic effect on cerebral ischemia. The present study attempts to evaluate the neuroprotective effect of Rosa damascene extract on adult rat hippocampal neurons following ischemic brain injury. Forty-eight adult male Wistar rats (weighing 250±20 gr and ages 10-12 weeks) used in this study, animals randomly were divided into 6 groups including Control, ischemia/ reperfusion (IR), vehicle and three treated groups (IR+0.5, 1, 2 mg/ml extract). Global ischemia was induced by bilateral common carotid arteries occlusion for 20 minutes. The treatment was done by different doses of Rosa damascena extract for 30 days. After 30 days cell death and gene expression in neurons of the CA1 region of the hippocampus were evaluated by Nissl staining and real time PCR assay. We found a significant decrease in NGF, BDNF and NT3 mRNA expression in neurons of CA1 region of the hippocampus in ischemia group compared to control group (P<0.0001). Our results also revealed that the number of dark neurons significantly increases in ischemia group compared to control group (P<0.0001). Following treatment with Rosa damascene extract reduced the number of dark neurons that was associated with NGF, NT3, and BDNF mRNA expression. All doses level had positive effects, but the most effective dose of Rosa damascena extract was 1 mg/ml. Our results suggest that neuroprotective activity of Rosa damascena can enhance hippocampal CA1 neuronal survival after global ischemia.

  13. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    PubMed Central

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the responses of cardiac sympathetic afferent nerves to myocardial ischemia and ischemic mediators like ATP and bradykinin. PMID:23645463

  14. Revascularization and muscle adaptation to limb demand ischemia in diet-induced obese mice.

    PubMed

    Albadawi, Hassan; Tzika, A Aria; Rask-Madsen, Christian; Crowley, Lindsey M; Koulopoulos, Michael W; Yoo, Hyung-Jin; Watkins, Michael T

    2016-09-01

    Obesity and type 2 diabetes are major risk factors for peripheral arterial disease in humans, which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). DIO mice (n = 7) underwent unilateral femoral artery ligation and recovered for 2 wks followed by 4 wks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia (SI) group (n = 7) had femoral artery ligation without exercise. The contralateral limb muscles of SI served as control. Muscles were examined for capillary density, myofiber cross-sectional area, cytokine levels, and phosphorylation of STAT3 and ERK1/2. Exercise significantly enhanced capillary density (P < 0.01) and markedly lowered cross-sectional area (P < 0.001) in demand ischemia compared with SI. These findings coincided with a significant increase in granulocyte colony-stimulating factor (P < 0.001) and interleukin-7 (P < 0.01) levels. In addition, phosphorylation levels of STAT3 and ERK1/2 (P < 0.01) were increased, whereas UCP1 and monocyte chemoattractant protein-1 protein levels were lower (P < 0.05) without altering vascular endothelial growth factor and tumor necrosis factor alpha protein levels. Demand ischemia increased the PGC1α messenger RNA (P < 0.001) without augmenting PGC1α protein levels. Exercise-induced limb demand ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in tumor necrosis factor alpha, lower vascular endothelial growth factor, and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Donor hypernatremia influences outcomes following pediatric liver transplantation.

    PubMed

    Kaseje, Neema; Lüthold, Samuel; Mentha, Gilles; Toso, Christian; Belli, Dominique; McLin, Valérie; Wildhaber, Barbara

    2013-02-01

    With the rising demand for liver transplantations (LTs), and the shortage of organs, extended criteria including donor hypernatremia have been adopted to increase the donor pool. Currently, there is conflicting evidence on the effect of donor hypernatremia on outcomes following LT. Our aim was to investigate differences in outcome in patients receiving grafts from hypernatremic donors compared with patients receiving grafts from normonatremic donors in the pediatric population. We retrospectively reviewed 94 pediatric patients with LTs from 1994 to 2011. We divided the patients into two groups: patients receiving organs from donors with sodium levels < 150 µmol/L, n = 67 (group 1), and patients receiving organs from donors with sodium levels ≥ 150 µmol/L, n = 27 (group 2). Using proportions and means, we analyzed patient age, sex, weight, model for end-stage liver disease (MELD) score, primary diagnosis, emergency of procedure, intraoperative transfusion volume, cold ischemia time, donor age, graft type, and postoperative graft function. Rates of mortality, rejection, early biliary, infectious, and vascular complications were calculated. Mean age was 3.9 years in group 1 and 3.7 years in group 2 (p = 0.69). Mean weight and MELD scores were similar in the two study groups (16.0 vs. 15.9 and 21.2 vs. 22.0, respectively). There were no significant differences in mean cold ischemia times 6.4 versus 6.9 hours (p = 0.29), and mean intraoperative transfusion volumes 1,068.5 mL versus 1,068.8 mL (p = 0.89). There were no statistically significant differences in mortality rates (7.3 vs. 11.1%, p = 0.68). Prothrombin time (PT) at day 10 post-LT was significantly lower in group 2 (79 vs. 64, p = 0.017), and there was a higher relative risk (RR) for early thrombotic vascular complications in group 2 (RR = 2.48); however, this was not significant (p = 0.26). No significant differences in RR for rejection (0.97, p = 0.86), viral infections (1.24, p = 0.31), bacterial infections (0.86, p = 0.62), or early biliary complications (1.03, p = 1.00) were observed. In pediatric LT patients receiving grafts from hypernatremic donors, there are no significant increases in rates of mortality, rejection, early biliary, and infectious complications. However, there is a statistically significant lower PT at postoperative day 10 following transplantation, and a more than double RR for early thrombotic vascular complications although this was not statistically significant. Georg Thieme Verlag KG Stuttgart · New York.

  16. Impact of Cold Ischemia Time in Kidney Transplants From Donation After Circulatory Death Donors.

    PubMed

    Kayler, Liise; Yu, Xia; Cortes, Carlos; Lubetzky, Michelle; Friedmann, Patricia

    2017-07-01

    Deceased-donor kidneys are exposed to ischemic events from donor instability during the process of donation after circulatory death (DCD). Clinicians may be reluctant to transplant DCD kidneys with prolonged cold ischemia time (CIT) for fear of an additional deleterious effect. We performed a retrospective cohort study examining US registry data between 1998 and 2013 of adult first-time kidney-only recipients of paired kidneys (derived from the same donor transplanted into different recipients) from DCD donors. On multivariable analysis, death-censored graft survival (DCGS) was comparable between recipients of kidneys with higher CIT relative to paired donor recipients with lower CIT when the CIT difference was 1 hour or longer (adjusted hazard ratio, [aHR], 1.02; 95% confidence interval [CI], 0.88-1.17; n = 6276), 5 hours or longer (aHR, 0.98; 95% CI, 0.80-1.19; n = 3130), 10 hours or longer (aHR, 1.15; 95% CI, 0.82-1.60; n = 1124) or 15 hours (aHR, 1.15; 95% CI, 0.66-1.99; n = 498). There was a higher rate of primary non function in the long CIT groups for delta 1 hour or longer (0.89% vs 1.63%; P = 0.006), 5 hours (1.09% vs 1.67%, P = 0.13); 10 hours (0.53% vs 1.78%; P = 0.03), and 15 hours (0.40% vs 1.61%; P = 0.18), respectively. Between each of the 4 delta CIT levels of shorter and longer CIT, there was a significantly and incrementally higher rate of delayed graft function in the long CIT groups for delta 1 hour or longer (37.3% vs 41.7%; P < 0.001), 5 hours (35.9% vs 42.7%; P < 0.001), 10 hours (29.4% vs 44.2%, P < 0.001), and 15 hours (29.6% vs 46.1%, P < 0.001), respectively. Overall patient survival was comparable with delta CITs of 1 hour or longer (aHR, 0.96; 95% CI, 0.84-1.08), 5 hours (aHR, 1.01; 95% CI, 0.85-1.20), and 15 hours (aHR, 1.27; 95% CI, 0.79-2.06) but not 10 hours (aHR, 1.47; 95% CI, 1.09-1.98). These results suggest that in the setting of a prior ischemic donor event, prolonged CIT has limited bearing on long-term outcomes.

  17. Impact of Cold Ischemia Time in Kidney Transplants From Donation After Circulatory Death Donors

    PubMed Central

    Kayler, Liise; Yu, Xia; Cortes, Carlos; Lubetzky, Michelle; Friedmann, Patricia

    2017-01-01

    Background Deceased-donor kidneys are exposed to ischemic events from donor instability during the process of donation after circulatory death (DCD). Clinicians may be reluctant to transplant DCD kidneys with prolonged cold ischemia time (CIT) for fear of an additional deleterious effect. Methods We performed a retrospective cohort study examining US registry data between 1998 and 2013 of adult first-time kidney-only recipients of paired kidneys (derived from the same donor transplanted into different recipients) from DCD donors. Results On multivariable analysis, death-censored graft survival (DCGS) was comparable between recipients of kidneys with higher CIT relative to paired donor recipients with lower CIT when the CIT difference was 1 hour or longer (adjusted hazard ratio, [aHR], 1.02; 95% confidence interval [CI], 0.88-1.17; n = 6276), 5 hours or longer (aHR, 0.98; 95% CI, 0.80-1.19; n = 3130), 10 hours or longer (aHR, 1.15; 95% CI, 0.82-1.60; n = 1124) or 15 hours (aHR, 1.15; 95% CI, 0.66-1.99; n = 498). There was a higher rate of primary non function in the long CIT groups for delta 1 hour or longer (0.89% vs 1.63%; P = 0.006), 5 hours (1.09% vs 1.67%, P = 0.13); 10 hours (0.53% vs 1.78%; P = 0.03), and 15 hours (0.40% vs 1.61%; P = 0.18), respectively. Between each of the 4 delta CIT levels of shorter and longer CIT, there was a significantly and incrementally higher rate of delayed graft function in the long CIT groups for delta 1 hour or longer (37.3% vs 41.7%; P < 0.001), 5 hours (35.9% vs 42.7%; P < 0.001), 10 hours (29.4% vs 44.2%, P < 0.001), and 15 hours (29.6% vs 46.1%, P < 0.001), respectively. Overall patient survival was comparable with delta CITs of 1 hour or longer (aHR, 0.96; 95% CI, 0.84-1.08), 5 hours (aHR, 1.01; 95% CI, 0.85-1.20), and 15 hours (aHR, 1.27; 95% CI, 0.79-2.06) but not 10 hours (aHR, 1.47; 95% CI, 1.09-1.98). Conclusions These results suggest that in the setting of a prior ischemic donor event, prolonged CIT has limited bearing on long-term outcomes. PMID:28706980

  18. Exertional headache and coronary ischemia despite normal electrocardiographic stress testing.

    PubMed

    Cutrer, F Michael; Huerter, Karina

    2006-01-01

    Exertional headaches may under certain conditions reflect coronary ischemia. We report the case of a patient seen in a neurology referral practice whose exertional headaches, even in the face of two normal electrocardiographic stress tests and in the absence of underlying chest pain were the sole symptoms of coronary ischemia as detected by Tc-99m Sestamibi testing SPECT stress testing. Stent placement resulted in complete resolution of headaches. Exertional headache in the absence of chest pain may reflect underlying symptomatic coronary artery disease (CAD) even when conventional electrocardiographic stress testing does not indicate ischemia.

  19. Coronary artery calcification score by multislice computed tomography predicts the outcome of dobutamine cardiovascular magnetic resonance imaging.

    PubMed

    Janssen, Caroline H C; Kuijpers, Dirkjan; Vliegenthart, Rozemarijn; Overbosch, Jelle; van Dijkman, Paul R M; Zijlstra, Felix; Oudkerk, Matthijs

    2005-06-01

    The aim of this study was to determine whether a coronary artery calcium (CAC) score of less than 11 can reliably rule out myocardial ischemia detected by dobutamine cardiovascular magnetic resonance imaging (CMR) in patients suspected of having myocardial ischemia. In 114 of 136 consecutive patients clinically suspected of myocardial ischemia with an inconclusive diagnosis of myocardial ischemia, dobutamine CMR was performed and the CAC score was determined. The CAC score was obtained by 16-row multidetector compued tomography (MDCT) and was calculated according to the method of Agatston. The CAC score and the results of the dobutamine CMR were correlated and the positive predictive value (PPV) and the negative predictive value (NPV) of the CAC score for dobutamine CMR were calculated. A total of 114 (87%) of the patients were eligible for this study. There was a significant correlation between the CAC score and dobutamine CMR (p<0.001). Patients with a CAC score of less than 11 showed no signs of inducible ischemia during dobutamine CMR. For a CAC score of less than 101, the NPV and the PPV of the CAC score for the outcome of dobutamine CMR were, respectively, 0.96 and 0.29. In patients with an inconclusive diagnosis of myocardial ischemia a MDCT CAC score of less than 11 reliably rules out myocardial ischemia detected by dobutamine CMR.

  20. Silencing of long noncoding RNA AK139328 attenuates ischemia/reperfusion injury in mouse livers.

    PubMed

    Chen, Zhenzhen; Jia, Shi; Li, Danhua; Cai, Junyan; Tu, Jian; Geng, Bin; Guan, Youfei; Cui, Qinghua; Yang, Jichun

    2013-01-01

    Recently, increasing evidences had suggested that long noncoding RNAs (LncRNAs) are involved in a wide range of physiological and pathophysiological processes. Here we determined the LncRNA expression profile using microarray technology in mouse livers after ischemia/reperfusion treatment. Seventy one LncRNAs were upregulated, and 27 LncRNAs were downregulated in ischemia/reperfusion-treated mouse livers. Eleven of the most significantly deregulated LncRNAs were further validated by quantitative PCR assays. Among the upregulated LncRNAs confirmed by quantitative PCR assays, AK139328 exhibited the highest expression level in normal mouse livers. siRNA-mediated knockdown of hepatic AK139328 decreased plasma aminotransferase activities, and reduced necrosis area in the livers with a decrease in caspase-3 activation after ischemia/reperfusion treatment. In ischemia/reperfusion liver, knockdown of AK139328 increased survival signaling proteins including phosphorylated Akt (pAkt), glycogen synthase kinase 3 (pGSK3) and endothelial nitric oxide synthase (peNOS). Furthermore, knockdown of AK139328 also reduced macrophage infitration and inhibited NF-κB activity and inflammatory cytokines expression. In conclusion, these findings revealed that deregulated LncRNAs are involved in liver ischemia/reperfusion injury. Silencing of AK139328 ameliorated ischemia/reperfusion injury in the liver with the activation of Akt signaling pathway and inhibition of NF-κB activity. LncRNA AK139328 might be a novel target for diagnosis and treatment of liver surgery or transplantation.

  1. Role of inflammatory cells and adenosine in lung ischemia reoxygenation injury using a model of lung donation after cardiac death.

    PubMed

    Smail, Hassiba; Baste, Jean-Marc; Gay, Arnaud; Begueret, Hugues; Noël, Romain; Morin, Jean-Paul; Litzler, Pierre-Yves

    2016-04-01

    The objective of this study is to analyze the role of inflammation in the lung ischemia reperfusion (IR) injury and determine the protective role of adenosine in an in vitro lung transplantation model. We used a hybrid model of lung donor after cardiac death, with warm ischemia in corpo of varying duration (2 h, 4 h) followed by in vitro lung slices culture for reoxygenation (1 h, 4 h and 24 h), in the presence or not of lymphocytes and of adenosine. To quantify the inflammatory lesions, we performed TNFα, IL2 assays, and histological analysis. In this model of a nonblood perfused system, the addition of lymphocytes during reoxygenation lead to higher rates of TNFα and IL2 after 4 h than after 2 h of warm ischemia (P < .05). These levels increased with the duration of reoxygenation and were maximum at 24 h (P < .05). In the presence of adenosine TNFα and IL2 decreased. After 2 h of warm ischemia, we observed a significant inflammatory infiltration, alveolar thickening and a necrosis of the bronchiolar cells. After 4 h of warm ischemia, alveolar cells necrosis was associated. This model showed that lymphocytes increased the inflammatory response and the histological lesions after 4 h of warm ischemia and that adenosine could have an anti-inflammatory role with potential reconditioning action when used in the pneumoplegia solution.

  2. [Effect and mechanism of icariin on myocardial ischemia-reperfusion injury model in diabetes rats].

    PubMed

    Hu, Yan-wu; Liu, Kai; Yan, Meng-tong

    2015-11-01

    To study the therapeutic effect and possible mechanism of icariin on myocardial ischemia-reperfusion injury ( MIRI) model in diabetes rats. The model of diabetic rats were induced by Streptozotocin (STZ), then the model of MIRI was established by ligating the reversible left anterior descending coronary artery for 30 min, and then reperfusing for 120 min. totally 40 male SD were randomly divided into five groups: the control group (NS), the ischemia reperfusion group (NIR), the diabetes control group (MS), the diabetic ischemia reperfusion group (MIR) and the diabetic ischemia reperfusion with icariin group (MIRI). The changes in blood glucose, body weight and living status were observed; the enzyme activity of serum CK-MB, LDH, GSH-Px and myocardium SOD and the content MDA and NO in myocardium were detected; the myocardial pathological changes were observed by HE staining; the myocardial Caspase-3, the Bcl-2, Bax protein expressions were detected by Western blot. The result showed that the diabetes model was successfully replicated; myocardial ischemia-reperfusion injury was more serious in diabetes rats; icariin can increase NO, SOD, GSH-Px, Bcl-2 protein expression, decrease MDA formation, CK-MB and LDH activities and Caspase-3 and Bcl-2 protein expressions and myocardial damage. The result suggested that icariin may play a protective role against ischemia reperfusion myocardial injury in diabetes rats by resisting oxidative stress and inhibiting cell apoptosis.

  3. Ischemia-reperfusion of human skeletal muscle during aortoiliac surgery: effects of acetylcarnitine.

    PubMed

    Adembri, C; Domenici, L L; Formigli, L; Brunelleschi, S; Ferrari, E; Novelli, G P

    1994-10-01

    Our previous study on human skeletal muscle undergoing ischemia and reperfusion has revealed that granulocytes, which infiltrate the muscle tissue in large numbers, play an important role in mediating fibre injuries by producing superoxide anion (O2-) which is responsible for membrane lipid peroxidation. In the current study, five patients undergoing aortic reconstructive surgery were given acetyl-carnitine (2 mg/kg i.v. plus 1 mg/kg/min for 30 min) prior to the induction of ischemia. Muscle biopsies and blood samples were examined: a) after anaesthesia; b) at the end of ischemia; and c) 30 min after reperfusion, with the aim of elucidating whether acetylcarnitine could prevent the infiltration and/or the activation of granulocytes and eventually skeletal muscle injuries. During ischemia and reperfusion complement activation recruited numerous granulocytes into the muscle tissue, but, contrary to the untreated samples, the ability for O2(-)-generation of these cells remained at low levels and was comparable to that of ischemia even when molecular O2 was reintroduced to the tissue. Accordingly, the morphological changes of the postischemic muscle fibers were substantially reduced when compared to the untreated samples; in fact, the mitochondrial swelling was only moderate and the intramitochondrial dense bodies were small and scarce. The current findings support a positive role of acetyl-carnitine in ameliorating the ischemia-reperfusion (I-R)-induced damage of human skeletal muscle.

  4. MicroRNA-320 involves in the cardioprotective effect of insulin against myocardial ischemia by targeting survivin.

    PubMed

    Yang, Ni; Wu, Liuzhong; Zhao, Ying; Zou, Ning; Liu, Chunfeng

    2018-04-01

    It is generally accepted that insulin exerts an antiapoptotic effect against ischemia/reperfusion through the activation of PI3K/Akt/mTOR pathway. MicroRNAs involve in multiple cardiac pathophysiological processes, including ischemia/reperfusion-induced cardiac injury. However, the regulation of microRNAs in the cardioprotective effect of insulin is rarely discussed. In this study, using a cell model of ischemia through culturing H9C2 cardiac myocytes in serum-free medium with hypoxia, we demonstrated that pretreatment with insulin significantly inhibited cell apoptosis and downregulated microRNA-320 (miR-320) expression. Interestingly, miR-320 mimic impaired the cardioprotective effect of insulin against myocardial ischemia injury by targeting survivin, which is a member of the family of inhibitor of apoptosis proteins. Suppression miR-320 expression by miR-320 inhibitor in H9C2 cells with myocardial ischemia mimics the cardioprotective effect of insulin by maintaining survivin expression. Taken together, miR-320-mediated survivin expression involves in cardioprotective effect of insulin against myocardial ischemia injury. Myocardial ischemia/reperfusion (I/R) injury remains an important clinical problem with extremely deficient clinical therapies. Insulin exerts an antiapoptotic effect against I/R through the activation of PI3K/Akt/mTOR pathway. Here, we provided evidences to show that microRNA-320 involves in the cardioprotective effect of insulin by targeting survivin, which is an inhibitor of apoptosis protein and functions as a key regulator in cell apoptosis and involves in the tumour genesis and progression. Our findings may provide a new potential therapeutic strategy for I/R injury and ischemic heart disease. Copyright © 2018 John Wiley & Sons, Ltd.

  5. β-Adrenergic Inhibition Prevents Action Potential and Calcium Handling Changes during Regional Myocardial Ischemia

    PubMed Central

    Murphy, Shannon R.; Wang, Lianguo; Wang, Zhen; Domondon, Philip; Lang, Di; Habecker, Beth A.; Myles, Rachel C.; Ripplinger, Crystal M.

    2017-01-01

    β-adrenergic receptor (β-AR) blockers may be administered during acute myocardial infarction (MI), as they reduce energy demand through negative chronotropic and inotropic effects and prevent ischemia-induced arrhythmogenesis. However, the direct effects of β-AR blockers on ventricular electrophysiology and intracellular Ca2+ handling during ischemia remain unknown. Using optical mapping of transmembrane potential (with RH237) and sarcoplasmic reticulum (SR) Ca2+ (with the low-affinity indicator Fluo-5N AM), the effects of 15 min of regional ischemia were assessed in isolated rabbit hearts (n = 19). The impact of β-AR inhibition on isolated hearts was assessed by pre-treatment with 100 nM propranolol (Prop) prior to ischemia (n = 7). To control for chronotropy and inotropy, hearts were continuously paced at 3.3 Hz and contraction was inhibited with 20 μM blebbistatin. Untreated ischemic hearts displayed prototypical shortening of action potential duration (APD80) in the ischemic zone (IZ) compared to the non-ischemic zone (NI) at 10 and 15 min ischemia, whereas APD shortening was prevented with Prop. Untreated ischemic hearts also displayed significant changes in SR Ca2+ handling in the IZ, including prolongation of SR Ca2+ reuptake and SR Ca2+ alternans, which were prevented with Prop pre-treatment. At 5 min ischemia, Prop pre-treated hearts also showed larger SR Ca2+ release amplitude in the IZ compared to untreated hearts. These results suggest that even when controlling for chronotropic and inotropic effects, β-AR inhibition has a favorable effect during acute regional ischemia via direct effects on APD and Ca2+ handling. PMID:28894423

  6. Silent myocardial ischemia in patients with stable coronary artery disease receiving conventional antianginal drug therapy.

    PubMed

    Ferreira, João Fernando Monteiro; César, Luiz Antonio Machado; Gruppi, César J; Giorgi, Dante M A; Hueb, Whady A; Mansur, Antonio P; Ramires, José A F

    2007-11-01

    Few data are available on the behavior of myocardial ischemia during daily activities in patients with coronary artery disease receiving antianginal drug therapy. To study the mechanism generating myocardial ischemia by evaluating blood pressure and heart rate changes in patients with stable atherosclerotic disease receiving drug therapy and with evidence of myocardial ischemia. Fifty non-hospitalized patients (40 males) underwent 24-hour electrocardiographic monitoring synchronized with blood pressured monitoring. Thirty five episodes of myocardial ischemia were detected in 17 patients, with a total duration of 146.3 minutes; angina was reported in five cases. Twenty nine episodes (100.3 minutes) occurred during wakefulness, with 11 episodes (35.3 + 3.7 min) in the period from 11 a.m. to 3 p.m. Blood pressure and heart rate evaluation in the three ten-minute intervals following the ischemic episodes showed a statistically significant difference (p< 0.05), unlike that shown for the three intervals preceding the episodes. However, during the ischemic episode, a higher than 10-mmHg elevation in blood pressure and 5 beats per minute in heart rate were observed when compared with the time interval between 20 and 10 minutes before the episode. The mean heart rate at the onset of ischemia during the exercise test performed before the study was 118.2 + 14.0, and 81.1 + 20.8 beats per minute on the 24-hour electrocardiogram (p < 0.001). The incidence of silent myocardial ischemia is high in stable coronary artery disease and is related to alterations in blood pressure and heart rate, with different thresholds for ischemia for the same patient.

  7. The value of core lab stress echocardiography interpretations: observations from the ISCHEMIA Trial.

    PubMed

    Kataoka, Akihisa; Scherrer-Crosbie, Marielle; Senior, Roxy; Gosselin, Gilbert; Phaneuf, Denis; Guzman, Gabriela; Perna, Gian; Lara, Alfonso; Kedev, Sasko; Mortara, Andrea; El-Hajjar, Mohammad; Shaw, Leslee J; Reynolds, Harmony R; Picard, Michael H

    2015-12-18

    Stress echocardiography (SE) is dependent on subjective interpretations. As a prelude to the International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA) Trial, potential sites were required to submit two SE, one with moderate or severe left ventricular (LV) myocardial ischemia and one with mild ischemia. We evaluated the concordance of site and core lab interpretations. Eighty-one SE were submitted from 41 international sites. Ischemia was classified by the number of new or worsening segmental LV wall motion abnormalities (WMA): none, mild (1 or 2) or moderate or severe (3 or more) by the sites and the core lab. Core lab classified 6 SE as no ischemia, 35 mild and 40 moderate or greater. There was agreement between the site and core in 66 of 81 total cases (81%, weighted kappa coefficient [K] =0.635). Agreement was similar for SE type - 24 of 30 exercise (80%, K = 0.571) vs. 41 of 49 pharmacologic (84%, K = 0.685). The agreement between poor or fair image quality (27 of 36 cases, 75%, K = 0.492) was not as good as for the good or excellent image quality cases (39 of 45 cases, 87%, K = 0.755). Differences in concordance were noted for degree of ischemia with the majority of discordant interpretations (87%) occurring in patients with no or mild LV myocardial ischemia. While site SE interpretations are largely concordant with core lab interpretations, this appears dependent on image quality and the extent of WMA. Thus core lab interpretations remain important in clinical trials where consistency of interpretation across a range of cases is critical. ClinicalTrials.gov NCT01471522.

  8. Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.

    PubMed

    Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro

    2018-05-01

    Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery

    PubMed Central

    Chen, Han-sen; Chen, Xi; Li, Wen-ting; Shen, Jian-gang

    2018-01-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO−), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment. PMID:29595191

  10. Organotypic lung culture: A new model for studying ischemia and ex vivo perfusion in lung transplantation.

    PubMed

    Baste, Jean-Marc; Gay, Arnaud; Smail, Hassiba; Noël, Romain; Bubenheim, Michael; Begueret, Hugues; Morin, Jean-Paul; Litzler, Pierre-Yves

    2015-01-01

    Donors after cardiac death (DCD) in lung transplantation is considered as a solution for organ shortage. However, it is characterized by warm ischemic period, which could be involved in severe Ischemia-Reperfusion lesion (IR) with early graft dysfunction. We describe a new hybrid model combining in vivo ischemia followed by in vitro reoxygenation using organ-specific culture. A hybrid model using in vivo ischemic period followed by in vitro lung slice reoxygenation was set up in rat to mimic DCD in lung transplantation with in vitro perfusion. Different markers (bioenergetics, oxidant stress assays, and histology) were measured to evaluate the viability of lung tissue after different ischemic times (I-0, I-1, I-2, I-4, I-15 hours) and reoxygenation times (R-0, R-1, R-4, R-24 hours). No differences were found in cell viability, ATP concentrations, extracellular LDH assays or histology, demonstrating extensive viability of up to 4 hours in lung tissue warm ischemia. We found oxidative stress mainly during the ischemic period with no burst at reoxygenation. Cytosolic anti-oxidant system was involved first (I-0,I-1,I-2) followed by mitochondrial anti-oxidant system for extensive ischemia (I-4). Histological features showed differences in this model of ischemia-reoxygenation between bronchial epithelium and lung parenchymal cells, with epithelium regeneration after 2 hours of warm ischemia and 24 hours of perfusion. The results of our hybrid model experiment suggest extensive lung viability of up to 4 hours ischemia. Our model could be an interesting tool to evaluate ex vivo reconditioning techniques after different in vivo lung insults.

  11. Exercise preconditioning improves behavioral functions following transient cerebral ischemia induced by 4-vessel occlusion (4-VO) in rats.

    PubMed

    Tahamtan, Mahshid; Allahtavakoli, Mohammad; Abbasnejad, Mehdi; Roohbakhsh, Ali; Taghipour, Zahra; Taghavi, Mohsen; Khodadadi, Hassan; Shamsizadeh, Ali

    2013-12-01

    There is evidence that exercise decreases ischemia/reperfusion injury in rats. Since behavioral deficits are the main outcome in patients after stroke, our study was designed to investigate whether exercise preconditioning improves the acute behavioral functions and also brain inflammatory injury following cerebral ischemia. Male rats weighing 250-300 g were randomly allocated into five experimental groups. Exercise was performed on a treadmill 30min/day for 3 weeks. Ischemia was induced by 4-vessel occlusion method. Recognition memory was assessed by novel object recognition task (NORT) and step-through passive avoidance task. Sensorimotor function and motor movements were evaluated by adhesive removal test and ledged beam-walking test, respectively. Brain inflammatory injury was evaluated by histological assessment. In NORT, the discrimination ratio was decreased after ischemia (P < 0.05) and exercise preconditioning improved it in ischemic animals. In the passive avoidance test, a significant reduction in response latency was observed in the ischemic group. Exercise preconditioning significantly decreased the response latency in the ischemic rats (P < 0.001). In the adhesive removal test, latency to touch and remove the sticky labels from forepaw was increased following induction of ischemia (all P < 0.001) and exercise preconditioning decreased these indices compared to the ischemic group (all P < 0.001). In the ledged beam-walking test, the slip ratio was increased following ischemia (P < 0.05).  In the ischemia group, marked neuronal injury in hippocampus was observed. These neuropathological changes were attenuated by exercise preconditioning (P < 0.001). Our results showed that exercise preconditioning improves behavioral functions and maintains more viable cells in the dorsal hippocampus of the ischemic brain.

  12. Sickle Mice Are Sensitive to Hypoxia/Ischemia-Induced Stroke but Respond to Tissue-Type Plasminogen Activator Treatment.

    PubMed

    Sun, Yu-Yo; Lee, Jolly; Huang, Henry; Wagner, Mary B; Joiner, Clinton H; Archer, David R; Kuan, Chia-Yi

    2017-12-01

    The effects of lytic stroke therapy in patients with sickle cell anemia are unknown, although a recent study suggested that coexistent sickle cell anemia does not increase the risk of cerebral hemorrhage. This finding calls for systemic analysis of the effects of thrombolytic stroke therapy, first in humanized sickle mice, and then in patients. There is also a need for additional predictive markers of sickle cell anemia-associated vasculopathy. We used Doppler ultrasound to examine the carotid artery of Townes sickle mice tested their responses to repetitive mild hypoxia-ischemia- and transient hypoxia-ischemia-induced stroke at 3 or 6 months of age, respectively. We also examined the effects of tPA (tissue-type plasminogen activator) treatment in transient hypoxia-ischemia-injured sickle mice. Three-month-old sickle cell (SS) mice showed elevated resistive index in the carotid artery and higher sensitivity to repetitive mild hypoxia-ischemia-induced cerebral infarct. Six-month-old SS mice showed greater resistive index and increased flow velocity without obstructive vasculopathy in the carotid artery. Instead, the cerebral vascular wall in SS mice showed ectopic expression of PAI-1 (plasminogen activator inhibitor-1) and P-selectin, suggesting a proadhesive and prothrombotic propensity. Indeed, SS mice showed enhanced leukocyte and platelet adherence to the cerebral vascular wall, broader fibrin deposition, and higher mortality after transient hypoxia-ischemia. Yet, post-transient hypoxia-ischemia treatment with tPA reduced thrombosis and mortality in SS mice. Sickle mice are sensitive to hypoxia/ischemia-induced cerebral infarct but benefit from thrombolytic treatment. An increased resistive index in carotid arteries may be an early marker of sickle cell vasculopathy. © 2017 American Heart Association, Inc.

  13. Pathophysiological appraisal of a rat model of total hepatic ischemia with an extracorporeal portosystemic shunt.

    PubMed

    Suzuki, S; Nakamura, S; Sakaguchi, T; Mitsuoka, H; Tsuchiya, Y; Kojima, Y; Konno, H; Baba, S

    1998-11-01

    Animal models of total hepatic ischemia (THI) and reperfusion injury are restricted by concomitant splanchnic congestion. This study was performed to determine the requirement suitable for an extracorporeal portosystemic shunt (PSS) to maintain the intestinal integrity in a rat model of THI. Using a polyethylene tube (0.86 or 1 mm i.d.), PSS was placed between the mesenteric and jugular veins. Comparison was done between THI models with or without PSS and a partial ischemia model with hepatectomy of the nonischemic lobes. Well-tolerated hepatic ischemic period, portal pressure after 10 min of hepatic ischemia, portal endotoxin levels at 1 h after reperfusion, histological features of the small bowel just before reperfusion, and local jejunal and ileal blood hemoglobin oxygen saturation index (ISO2) were compared among the models. Animals without PSS poorly tolerated 30 min of THI. Animals receiving THI with PSS or partial hepatic ischemia tolerated a longer ischemic period (60 min) with a significantly higher small bowel ISO2, lower portal pressure and endotoxin levels (P < 0.01), and less histological damage of the small bowel when compared to those receiving THI without PSS. Portal endotoxin levels after THI with PSS using a 1-mm i.d. tube as well as partial hepatic ischemia were significantly lower than those after THI with PSS using a 0.86-mm i.d. tube. THI with PSS using a 1-mm i.d. tube was strikingly similar to partial hepatic ischemia in the pathophysiological profile during hepatic ischemia. PSS with a tube 1 mm or more in inner diameter offers pathophysiological advantages in experiments on THI and reperfusion. Copyright 1998 Academic Press.

  14. Clonidine preconditioning improved cerebral ischemia-induced learning and memory deficits in rats via ERK1/2-CREB/ NF-κB-NR2B pathway.

    PubMed

    Li, Yanli; Yu, Min; Zhao, Bo; Wang, Yan; Zha, Yunhong; Li, Zicheng; Yu, Lingling; Yan, Lingling; Chen, Zhangao; Zhang, Wenjuan; Zeng, Xiaoli; He, Zhi

    2018-01-05

    Clonidine, a classical α-2 adrenergic agonists, has been shown to antagonize brain damage caused by hypoxia, cerebral ischemia and excitotoxicity and reduce cerebral infarction volume in recent studies. We herein investigate the regulatory effect and possible underlying mechanism of clonidine on learning and memory in rats with cerebral ischemia. The cerebral ischemia rat model was established by right middle cerebral artery occlusion for 2h and reperfusion for 28 days. Drugs were administrated to the rats for consecutive 7 days intraperitoneally and once again on the day of surgery. The learning and memory in rats was assayed by Morris water maze. Moreover, protein expression levels of NMDAR2B (NR2B)/ phosphor - NR2B, ERK1/2/phosphor- ERK1/2, CREB/phosphor-CREB and NF-κB/phosphor-NF-κB in the cortex and hippocampus of the rats were assayed by western blotting. Our results demonstrated that clonidine treatment significantly abrogated the negative effect induced by cerebral ischemia on the learning and memory in the rats. In the Western blotting assay, clonidine treatment led to significant up-regulation of the expression level of NR2B and Phospho-NR2B in the hippocampus of the rats when compared with the cerebral ischemia group. Furthermore, clonidine also significantly decreased the protein expression levels of ERK1/2, Phospho-ERK1/2, CREB, Phospho-CREB and Phospho-NF-κB in the hippocampus of the rats when compared with the cerebral ischemia group. In conclusion, clonidine could improve the learning and memory ability of rats with cerebral ischemia, and NR2B, ERK1/2, CREB, NF-κB were involved in this effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The effects of sildenafil and n-acetylcysteine on ischemia and reperfusion injury in gastrocnemius muscle and femoral artery endothelium.

    PubMed

    Aksu, Volkan; Yüksel, Volkan; Chousein, Serchat; Taştekin, Ebru; İşcan, Şahin; Sağiroğlu, Gönül; Canbaz, Suat; Sunar, Hasan

    2015-02-01

    We aimed to examine the effects of sildenafil and n-acetylcystein on ischemia/reperfusion injury in femoral artery endothelium and gastrocnemius muscle. 32 rats of Sprague-Dawley breed were randomly divided into four groups (n=8). Median laparotomy was performed, then a 120-minute ischemia was created by microvascular clamping of infrarenal aorta, followed by the release of clamping. In sildenafil group, 1 mg/kg of sildenafil infusion and in the n-acetylcystein group, 100 mg/kg of n-acetylcystein infusion was administered after release of clamps. Blood samples and tissue samples of femoral artery and gastrocnemius muscle were extracted for a histopathological evaluation. Serum levels of malondialdehyde in ischemia/reperfusion group (6.16±0.79) were higher compared to the control group (4.69±0.33), whereas a significant decrease was detected in sildenafil (5.17±0.50) and n-acetylcystein (4.96±0.49) groups. Femoral artery tissue sections of the control group, mean tumor necrosis factor alpha and hypoxy-induced factor-1 alpha immunoreactivity were found to be negative. In the ischemia/reperfusion group, mean tumor necrosis factor α immunoreactivity was intense and mean hypoxy-induced factor-1 alpha immunoreactivity was 51-75%. In the ischemia/reperfusion+Sildenafil and ischemia/reperfusion+NAS groups, mean tumor necrosis factor α immunoreactivity was slight and mean hypoxy-induced factor-1 alpha immunoreactivity was 26-50%. In conclusion, sildenafil and n-acetylcystein may reduce femoral artery endothelium and gastrocnemius muscle injury following lower extremity ischemia/reperfusion. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Protective effects of hydrogen enriched saline on liver ischemia reperfusion injury by reducing oxidative stress and HMGB1 release

    PubMed Central

    2014-01-01

    Background The nuclear protein high-mobility group box 1 (HMGB1) is a key trigger for the inflammatory reaction during liver ischemia reperfusion injury (IRI). Hydrogen treatment was recently associated with down-regulation of the expression of HMGB1 and pro-inflammatory cytokines during sepsis and myocardial IRI, but it is not known whether hydrogen has an effect on HMGB1 in liver IRI. Methods A rat model of 60 minutes 70% partial liver ischemia reperfusion injury was used. Hydrogen enriched saline (2.5, 5 or 10 ml/kg) was injected intraperitoneally 10 minutes before hepatic reperfusion. Liver injury was assessed by serum alanine aminotransferase (ALT) enzyme levels and histological changes. We also measured malondialdehyde (MDA), hydroxynonenal (HNE) and 8-hydroxy-guanosine (8-OH-G) levels as markers of the peroxidation injury induced by reactive oxygen species (ROS). In addition, pro-inflammatory cytokines including TNF-α and IL-6, and high mobility group box B1 protein (HMGB1) were measured as markers of post ischemia-reperfusion inflammation. Results Hydrogen enriched saline treatment significantly attenuated the severity of liver injury induced by ischemia-reperfusion. The treatment group showed reduced serum ALT activity and markers of lipid peroxidation and post ischemia reperfusion histological changes were reduced. Hydrogen enriched saline treatment inhibited HMGB1 expression and release, reflecting a reduced local and systemic inflammatory response to hepatic ischemia reperfusion. Conclusion These results suggest that, in our model, hydrogen enriched saline treatment is protective against liver ischemia-reperfusion injury. This effect may be mediated by both the anti-oxidative and anti-inflammatory effects of the solution. PMID:24410860

  17. Loss of c-Kit function impairs arteriogenesis in a mouse model of hindlimb ischemia.

    PubMed

    Hernandez, Diana R; Artiles, Adriana; Duque, Juan C; Martinez, Laisel; Pinto, Mariana T; Webster, Keith A; Velazquez, Omaida C; Vazquez-Padron, Roberto I; Lassance-Soares, Roberta M

    2018-04-01

    Arteriogenesis is a process whereby collateral vessels remodel usually in response to increased blood flow and/or wall stress. Remodeling of collaterals can function as a natural bypass to alleviate ischemia during arterial occlusion. Here we used a genetic approach to investigate possible roles of tyrosine receptor c-Kit in arteriogenesis. Mutant mice with loss of c-Kit function (Kit W/W-v ), and controls were subjected to hindlimb ischemia. Blood flow recovery was evaluated pre-, post-, and weekly after ischemia. Foot ischemic damage and function were assessed between days 1 to 14 post-ischemia while collaterals remodeling were measured 28 days post-ischemia. Both groups of mice also were subjected to wild type bone marrow cells transplantation 3 weeks before hindlimb ischemia to evaluate possible contributions of defective bone marrow c-Kit expression on vascular recovery. Kit W/W-v mice displayed impaired blood flow recovery, greater ischemic damage and foot dysfunction after ischemia compared to controls. Kit W/W-v mice also demonstrated impaired collateral remodeling consistent with flow recovery findings. Because arteriogenesis is a biological process that involves bone marrow-derived cells, we investigated which source of c-Kit signaling (bone marrow or vascular) plays a major role in arteriogenesis. Kit W/W-v mice transplanted with bone marrow wild type cells exhibited similar phenotype of impaired blood flow recovery, greater tissue ischemic damage and foot dysfunction as nontransplanted Kit W/W-v mice. This study provides evidence that c-Kit signaling is required during arteriogenesis. Also, it strongly suggests a vascular role for c-Kit signaling because rescue of systemic c-Kit activity by bone marrow transplantation did not augment the functional recovery of Kit W/W-v mouse hindlimbs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Transport mechanism of L-[14C]glutamate in cortical slices and synaptosomes of rabbits exposed to brain ischemia and reperfusion.

    PubMed

    Solyakov, L; Dobrota, D; Drany, O; Vachova, M; Machac, S; Mezesova, V; Bachurin, S; Lombardi, V

    1995-01-01

    Changes in the functioning of the glutamatergic system in rabbit brain were studied after partial brain ischemia and reperfusion. In vitro studies were conducted relating to the release of L-[14C]glutamate from cortical brain slices, L-[14C]glutamate uptake in synaptosomes, and 45Ca uptake in synaptosomes. It was found that basal release of L-[14C]glutamate from rabbit brain cortical slices after 30 min of partial ischemia and 1 d of reperfusion was essentially without change compared to the control values. After 3 d of reperfusion, there was an increase in basal release of L-[14C]glutamate from rabbit brain cortical slices. K+ stimulated release of L-[14C]glutamate in normal Krebs-Ringer medium was essentially the same in the control group and in the experimental group after 30 min of ischemia. The K+ stimulated release of L-[14C]glutamate independent of calcium was increased to 145% after 30 min of ischemia and 1 d of reperfusion. The decreased Km value at the glutamate transporter may have contributed to this difference. Kinetic parameters of the L-[14C]glutamate uptake (Km and Vmax) in synaptosomes from rabbit brain were significantly lower after 30 min of ischemia. The authors discovered that during the reperfusion period, Vmax was almost the same as in the control group. The activity of the Na+/Ca2+ exchanger in synaptosomes of rat brain was about 70% of the control values after 30 min of ischemia and 72 h of reperfusion. According to our results, increased L-[14C]glutamate release after 30 min of ischemia appears to be the result of higher intracellular calcium concentration and possibly also of a higher uptake of glutamate.

  19. Obesity Alters Molecular and Functional Cardiac Responses to Ischemia-Reperfusion and Glucagon-Like Peptide-1 Receptor Agonism

    PubMed Central

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B. Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-01-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miR) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-min coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca2+ binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  20. Different mechanisms of secondary neuronal damage in thalamic nuclei after focal cerebral ischemia in rats.

    PubMed

    Dihné, Marcel; Grommes, Christian; Lutzenburg, Michael; Witte, Otto W; Block, Frank

    2002-12-01

    After focal cerebral ischemia, depending on its localization and extent, secondary neuronal damage may occur that is remote from the initial lesion. In this study differences in secondary damage of the ventroposterior thalamic nucleus (VPN) and the reticular thalamic nucleus (RTN) were investigated with the use of different ischemia models. Transient middle cerebral artery occlusion (MCAO) leads to cortical infarction, including parts of the basal ganglia such as the globus pallidus, and to widespread edema. Photothrombotic ischemia generates pure cortical infarcts sparing the basal ganglia and with only minor edema. Neuronal degeneration was quantified within the ipsilateral RTN and VPN 14 days after ischemia. Glial reactions were studied with the use of immunohistochemistry. MCAO resulted in delayed neuronal cell loss of the ipsilateral VPN and RTN. Glial activation occurred in both nuclei beginning after 24 hours. Photothrombotic ischemia resulted in delayed neuronal cell loss only within the VPN. Even 2 weeks after photothrombotic ischemia, glial activation could only be seen within the VPN. Pure cortical infarcts after photothrombotic ischemia, without major edema and without effects on the globus pallidus of the basal ganglia, only lead to secondary VPN damage that is possibly due to retrograde degeneration. MCAO, which results in infarction of cortex and globus pallidus and which causes widespread edema, leads to secondary damage in the VPN and RTN. Thus, additional RTN damage may be due to loss of protective GABAergic input from the globus pallidus to the RTN or due to the extensive edema. Retrograde degeneration is not possible because the RTN, in contrast to the VPN, has no efferents to the cortex.

  1. Mental stress-induced ischemia in patients with coronary artery disease: echocardiographic characteristics and relation to exercise-induced ischemia.

    PubMed

    Stepanovic, Jelena; Ostojic, Miodrag; Beleslin, Branko; Vukovic, Olivera; Djordjevic-Dikic, Ana; Dikic, Ana Djordjevic; Giga, Vojislav; Nedeljkovic, Ivana; Nedeljkovic, Milan; Stojkovic, Sinisa; Vukcevic, Vladan; Dobric, Milan; Petrasinovic, Zorica; Marinkovic, Jelena; Lecic-Tosevski, Dusica

    2012-09-01

    The aims of this study were to investigate the incidence and parameters associated with myocardial ischemia during mental stress (MS) as measured by echocardiography and to evaluate the relation between MS-induced and exercise-induced myocardial ischemia. Study participants were 79 patients (63 men; mean [M] [standard deviation {SD}] age = 52 [8] years) with angiographically confirmed coronary artery disease and previous positive exercise test result. The MS protocol consisted of mental arithmetic and anger recall task. The patients performed a treadmill exercise test 15 to 20 minutes after the MS task. Data of post-MS exercise were compared with previous exercise stress test results. The frequency of echocardiographic abnormalities was 35% in response to the mental arithmetic task, compared with 61% with anger recall and 96% with exercise (p < .001, exercise versus MS). Electrocardiogram abnormalities and chest pain were substantially less common during MS than were echocardiographic abnormalities. Independent predictors of MS-induced myocardial ischemia were: wall motion score index at rest (p = .02), peak systolic blood pressure (p = .005), and increase in rate-pressure product (p = .004) during MS. The duration of exercise stress test was significantly shorter (p < .001) when MS preceded the exercise and in the case of earlier exercise (M [SD] = 4.4 [1.9] versus 6.7 [2.2] minutes for patients positive on MS and 5.7 [1.9] versus 8.0 [2.3] minutes for patients negative on MS). Echocardiography can be successfully used to document myocardial ischemia induced by MS. MS-induced ischemia was associated with an increase in hemodynamic parameters during MS and worse function of the left ventricle. MS may shorten the duration of subsequent exercise stress testing and can potentiate exercise-induced ischemia in susceptible patients with coronary artery disease.

  2. Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, James F

    2003-08-01

    Neuroprotection by citicoline (CDP-choline) in transient cerebral ischemia has been demonstrated previously. Citicoline has undergone several Phase III clinical trials for stroke, and is being evaluated for treatment of Alzheimer's and Parkinson's diseases. Phospholipid degradation and generation of reactive oxygen species (ROS) are major factors causing neuronal injury in CNS trauma and neurodegenerative diseases. Oxidative metabolism of arachidonic acid (released by the action of phospholipases) contributes to ROS generation. We examined the effect of citicoline on phospholipase A(2) (PLA(2)) activity in relation to the attenuation of hydroxyl radical (OH.) generation after transient forebrain ischemia of gerbil. PLA(2) activity (requires mM Ca(2+)) increased significantly (P < 0.05) in both membrane (50.2 +/- 2.2 pmol/min/mg protein compared to sham 35.9 +/- 3.2) and mitochondrial fractions (77.0 +/- 1.2 pmol/min/mg protein compared to sham 33.9 +/- 1.2) after cerebral ischemia and 2 hr reperfusion in gerbil, which was significantly attenuated (P < 0.01) by citicoline (membrane, 39.9. +/- 2.2 and mitochondria, 41.9 +/- 3.2 pmol/min/mg protein). In vitro, citicoline and its components cytidine and choline had no effect on PLA(2) activity, and thus citicoline as such is not a PLA(2) inhibitor. Ischemia/reperfusion resulted in significant OH. generation (P < 0.01) and citicoline significantly (P < 0.01) attenuated their formation (expressed as 2,3-dihydroxybenzoic acid/salicylate ratio; ischemia/24 hr reperfusion, 6.30 +/- 0.23; sham, 2.56 +/- 0.27; ischemia/24 hr reperfusion + citicoline, 4.85 +/- 0.35). These results suggest that citicoline affects PLA(2) stimulation and decreases OH. generation after transient cerebral ischemia. Copyright 2003 Wiley-Liss, Inc.

  3. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    PubMed

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-10-01

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  4. Desferrioxamine in warm reperfusion media decreases liver injury aggravated by cold storage

    PubMed Central

    Arthur, Peter G; Niu, Xian-Wa; Huang, Wen-Hua; DeBoer, Bastiaan; Lai, Ching Tat; Rossi, Enrico; Joseph, John; Jeffrey, Gary P

    2013-01-01

    AIM: To evaluate whether desferrioxamine decreases ischemia and perfusion injury aggravated by cold storage (CS) in a rat liver perfusion model. METHODS: Isolated rat livers were kept in CS in University of Wisconsin Solution for 20 h at 4 °C, then exposed to 25 min of warm ischemia (WI) at 37 °C followed by 2 h of warm perfusion (WP) at 37 °C with oxygenated (95% oxygen and 5% carbon dioxide) Krebs-Henseleit buffer. Desferrioxamine (DFO), an iron chelator, was added at different stages of storage, ischemia and perfusion: in CS only, in WI only, in WP only, in WI and perfusion, or in all stages. Effluent samples were collected after CS and after WI. Perfusate samples and bile were collected every 30 min (0, 0.5, 1, 1.5 and 2 h) during liver perfusion. Cellular injury was assessed by the determination of lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) in the effluent and perfusate samples. Total iron was analysed in the perfusate samples. After WP, the liver was collected for the determination of liver swelling (wet to dry ratio) and liver morphological examination (hematoxylin and eosin staining). RESULTS: Increased CS time caused increased liver dysfunction during WP. After 2 h of WP, liver injury was indicated by increased release of AST (0.5 h CS: 9.4 ± 2.2 U/g liver vs 20 h CS: 45.9 ± 10.8 U/g liver, P < 0.05) and LDH (0.5 h CS: 59 ± 14 U/g liver vs 20 h CS: 297 ± 71 U/g liver, P < 0.05). There was an associated increase in iron release into the perfusate (0.5 h CS: 0.11 ± 0.03 μmoL/g liver vs 20 h CS: 0.58 ± 0.10 μmoL/g liver, P < 0.05) and reduction in bile flow (0.5 h CS: 194 ± 12 μL/g vs 20 h CS: 71 ± 8 μL/g liver, P < 0.05). When DFO was added during WI and WP following 20 h of CS, release of iron into the perfusate was decreased (DFO absent 0.58 ± 0.10 μmoL/g liver vs DFO present 0.31 ± 0.06 μmoL/g liver, P < 0.05), and liver function substantially improved with decreased release of AST (DFO absent 45.9 ± 10.8 U/g liver vs DFO present 8.1 ± 0.9 U/g liver, P < 0.05) and LDH (DFO absent 297 ± 71 U/g liver vs DFO present 56 ± 7 U/g liver, P < 0.05), and increased bile flow (DFO absent 71 ± 8 μL/g liver vs DFO present 237 ± 36 μL/g liver, P < 0.05). DFO was also shown to improve liver morphology after WP. Cellular injury (the release of LDH and AST) was significantly reduced with the addition of DFO in CS medium but to a lesser extent compared to the addition of DFO in WP or WI and perfusion. There was no effect on liver swelling or bile flow when DFO was only added to the CS medium. CONCLUSION: DFO added during WI and perfusion decreased liver perfusion injury aggravated by extended CS. PMID:23429835

  5. Method of empirical dependences in estimation and prediction of activity of creatine kinase isoenzymes in cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Sergeeva, Tatiana F.; Moshkova, Albina N.; Erlykina, Elena I.; Khvatova, Elena M.

    2016-04-01

    Creatine kinase is a key enzyme of energy metabolism in the brain. There are known cytoplasmic and mitochondrial creatine kinase isoenzymes. Mitochondrial creatine kinase exists as a mixture of two oligomeric forms - dimer and octamer. The aim of investigation was to study catalytic properties of cytoplasmic and mitochondrial creatine kinase and using of the method of empirical dependences for the possible prediction of the activity of these enzymes in cerebral ischemia. Ischemia was revealed to be accompanied with the changes of the activity of creatine kinase isoenzymes and oligomeric state of mitochondrial isoform. There were made the models of multiple regression that permit to study the activity of creatine kinase system in cerebral ischemia using a calculating method. Therefore, the mathematical method of empirical dependences can be applied for estimation and prediction of the functional state of the brain by the activity of creatine kinase isoenzymes in cerebral ischemia.

  6. Neuroprotective effects of tanshinone I from Danshen extract in a mouse model of hypoxia-ischemia

    PubMed Central

    Lee, Jae-Chul; Park, Joon Ha; Park, Ok Kyu; Kim, In Hye; Yan, Bing Chun; Ahn, Ji Hyeon; Kwon, Seung-Hae; Choi, Jung Hoon

    2013-01-01

    Hypoxia-ischemia leads to serious neuronal damage in some brain regions and is a strong risk factor for stroke. The aim of this study was to investigate the neuroprotective effect of tanshinone I (TsI) derived from Danshen (Radix Salvia miltiorrhiza root extract) against neuronal damage using a mouse model of cerebral hypoxia-ischemia. Brain infarction and neuronal damage were examined using 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin histochemistry, and Fluoro-Jade B histofluorescence. Pre-treatment with TsI (10 mg/kg) was associated with a significant reduction in infarct volume 1 day after hypoxia-ischemia was induced. In addition, TsI protected against hypoxia-ischemia-induced neuronal death in the ipsilateral region. Our present findings suggest that TsI has strong potential for neuroprotection against hypoxic-ischemic damage. These results may be used in research into new anti-stroke medications. PMID:24179693

  7. Evidence of a heterogeneous tissue oxygenation: renal ischemia/reperfusion injury in a large animal model

    NASA Astrophysics Data System (ADS)

    Crane, Nicole J.; Huffman, Scott W.; Alemozaffar, Mehrdad; Gage, Frederick A.; Levin, Ira W.; Elster, Eric A.

    2013-03-01

    Renal ischemia that occurs intraoperatively during procedures requiring clamping of the renal artery (such as renal procurement for transplantation and partial nephrectomy for renal cancer) is known to have a significant impact on the viability of that kidney. To better understand the dynamics of intraoperative renal ischemia and recovery of renal oxygenation during reperfusion, a visible reflectance imaging system (VRIS) was developed to measure renal oxygenation during renal artery clamping in both cooled and warm porcine kidneys. For all kidneys, normothermic and hypothermic, visible reflectance imaging demonstrated a spatially distinct decrease in the relative oxy-hemoglobin concentration (%HbO2) of the superior pole of the kidney compared to the middle or inferior pole. Mean relative oxy-hemoglobin concentrations decrease more significantly during ischemia for normothermic kidneys compared to hypothermic kidneys. VRIS may be broadly applicable to provide an indicator of organ ischemia during open and laparoscopic procedures.

  8. Myocardial and Peripheral Ischemia Causes an Increase in Circulating Pregnancy-Associated Plasma Protein-A in Non-atherosclerotic, Non-heparinized Pigs.

    PubMed

    Steffensen, Lasse Bach; Poulsen, Christian Bo; Shim, Jeong; Bek, Marie; Jacobsen, Kevin; Conover, Cheryl A; Bentzon, Jacob Fog; Oxvig, Claus

    2015-12-01

    The usefulness of circulating pregnancy-associated plasma protein-A (PAPP-A) as a biomarker for acute coronary syndrome (ACS) is widely debated. We used the pig as a model to assess PAPP-A dynamics in the setting of myocardial ischemia. Induction of myocardial ischemia by ligation of the left anterior descending (LAD) coronary artery caused a systemic rise in PAPP-A. However, the ischemic myocardium was excluded as the source of PAPP-A. Interestingly, induction of ischemia in peripheral tissues by ligation of the left femoral artery caused a systemic rise in PAPP-A originating from the left hind limb. This is the first study to demonstrate PAPP-A elevations in the absence of atherosclerosis or heparin during myocardial ischemia. Our findings thus add to the current discussion of the usefulness of PAPP-A as a biomarker for ACS.

  9. [Activity of antioxidative enzymes of the myocardium during ischemia].

    PubMed

    Gutkin, D V; Petrovich, Iu A

    1982-01-01

    Activation of lipid peroxidation during myocardial ischemia may be determined by the reduction of the enzymatic antioxidant cell protection. Such a conclusion has been drawn on the basis of an analysis of variation in the activity of superoxide dismutase, glutathion peroxidase and catalase in experimental myocardial ischemia in rats, induced by ligation of the left descending artery of the heart. In the early period of ischemia (1-3 h) the activity of superoxide dismutase and glutation peroxidase markedly decreases. In the periischemic zone, the fall in the enzymatic activity is not so pronounced. The activity of the enzymes does not reach the basic level 5 days after the operation.

  10. Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans

    NASA Technical Reports Server (NTRS)

    Cui, J.; Wilson, T. E.; Shibasaki, M.; Hodges, N. A.; Crandall, C. G.

    2001-01-01

    To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip muscle ischemia. During muscle ischemia, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.001) during posthandgrip muscle ischemia (-201.9 +/- 20.4 units. beat(-1). mmHg(-1)) when compared with control conditions (-142.7 +/- 17.3 units. beat(-1). mmHg(-1)). No significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. However, both curves shifted during postexercise ischemia to accommodate the elevation in blood pressure and MSNA that occurs with this condition. These data suggest that the sensitivity of baroreflex modulation of MSNA is elevated by muscle metaboreceptor stimulation, whereas the sensitivity of baroreflex of modulate heart rate is unchanged during posthandgrip muscle ischemia.

  11. Novel antiepileptic drug lacosamide exerts neuroprotective effects by decreasing glial activation in the hippocampus of a gerbil model of ischemic stroke

    PubMed Central

    AHN, JI YUN; YAN, BING CHUN; PARK, JOON HA; AHN, JI HYEON; LEE, DAE HWAN; KIM, IN HYE; CHO, JEONG-HWI; CHEN, BAI HUI; LEE, JAE-CHUL; CHO, YOUNG SHIN; SHIN, MYOUNG CHUL; CHO, JUN HWI; HONG, SEONGKWEON; WON, MOO-HO; KIM, SUNG KOO

    2015-01-01

    Lacosamide, which is a novel antiepileptic drug, has been reported to exert various additional therapeutic effects. The present study investigated the neuroprotective effects of lacosamide against transient cerebral ischemia-induced neuronal cell damage in the hippocampal cornu ammonis (CA)-1 region of a gerbil model. Neuronal Nuclei immunohistochemistry demonstrated that pre- and post-surgical treatment (5 min ischemia) with 25 mg/kg lacosamide protected CA1 pyramidal neurons in the lacosamide-treated-ischemia-operated group from ischemic injury 5 days post-ischemia, as compared with gerbils in the vehicle-treated-ischemia-operated group. Furthermore, treatment with 25 mg/kg lacosamide markedly attenuated the activation of astrocytes and microglia in the ischemic CA1 region at 5 days post-ischemia. The results of the present study suggested that pre- and post-surgical treatment of the gerbils with lacosamide was able to protect against transient cerebral ischemic injury-induced CA1 pyramidal neuronal cell death in the hippocampus. In addition, the neuroprotective effects of lacosamide may be associated with decreased activation of glial cells in the ischemic CA1 region. PMID:26668588

  12. Erythropoietin protects CA1 neurons against global cerebral ischemia in rat: potential signaling mechanisms.

    PubMed

    Zhang, Feng; Signore, Armando P; Zhou, Zhigang; Wang, Suping; Cao, Guodong; Chen, Jun

    2006-05-15

    Erythropoietin (EPO) is a hormone that is neuroprotective in models of neurodegenerative diseases. This study examined whether EPO can protect against neuronal death in the CA1 region of the rat hippocampus following global cerebral ischemia. Recombinant human EPO was infused into the intracerebral ventricle either before or after the induction of ischemia produced by using the four-vessel-occlusion model in rat. Hippocampal CA1 neuron damage was ameliorated by infusion of 50 U EPO. Administration of EPO was neuroprotective if given 20 hr before or 20 min after ischemia, but not 1 hr following ischemia. Coinjection of the phosphoinositide 3 kinase inhibitor LY294002 with EPO inhibited the protective effects of EPO. Treatment with EPO induced phosphorylation of both AKT and its substrate, glycogen synthase kinase-3beta, in the CA1 region. EPO also enhanced the CA1 level of brain-derived neurotrophic factor. Finally, we determined that ERK activation played minor roles in EPO-mediated neuroprotection. These studies demonstrate that a single injection of EPO ICV up to 20 min after global ischemia is an effective neuroprotective agent and suggest that EPO is a viable candidate for treating global ischemic brain injury. Copyright 2006 Wiley-Liss, Inc.

  13. Ionizing radiation as preconditioning against transient cerebral ischemia in rats.

    PubMed

    Kokošová, Natália; Danielisová, Viera; Smajda, Beňadik; Burda, Jozef

    2014-01-01

    Induction of ischemic tolerance (IT), the ability of an organism to survive an otherwise lethal ischemia, is the most effective known approach to preventing postischemic damage. IT can be induced by exposing animals to a broad range of stimuli. In this study we tried to induce IT of brain neurons using ionizing radiation (IR). A preconditioning (pre-C) dose of 10, 20, 30 or 50 Gy of gamma rays was used 2 days before an 8 min ischemia in adult male rats. Ischemia alone caused the degeneration of almost one half of neurons in CA1 region of hippocampus. However, a significant decrease of the number of degenerating neurons was observed after higher doses of radiation (30 and 50 Gy). Moreover, ischemia significantly impaired the spatial memory of rats as tested in Morris's water maze. In rats with a 50 Gy pre-C dose, the latency times were reduced to values close to the control level. Our study is the first to reveal that IR applied in sufficient doses can induce IT and thus allow pyramidal CA1 neurons to survive ischemia. In addition, we show that the beneficial effect of IR pre-C is proportional to the radiation dose.

  14. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice.

    PubMed

    Rehni, Ashish K; Singh, Nirmal

    2007-01-01

    The present study has been designed to pharmacologically investigate the role of phosphoinositide 3-kinase in ischemic postconditioning-induced reversal of global cerebral ischemia and reperfusion-induced behavioral dysfunction in mice. Bilateral carotid artery occlusion for 10 min followed by reperfusion for 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in mice. Short-term memory was evaluated using the elevated plus maze test. The inclined beam walking test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced impaired short-term memory, motor co-ordination and lateral push response. Three episodes of carotid artery occlusion for a period of 10 s and reperfusion of 10 s (ischemic postconditioning) significantly prevented ischemia-reperfusion-induced behavioral deficit measured in terms of loss of short-term memory, motor coordination and lateral push response. Wortmannin (2 mg/kg, iv), a phosphoinositide 3-kinase inhibitor given 10 min before ischemia attenuated the beneficial effects of ischemic postconditioning. It may be concluded that beneficial effects of ischemic postconditioning on global cerebral ischemia and reperfusion-induced behavioral deficits may involve activation of phosphoinositide 3-kinase-linked pathway.

  15. Effect of Cuscuta chinensis on renal function in ischemia/reperfusion-induced acute renal failure rats.

    PubMed

    Shin, Sun; Lee, Yun Jung; Kim, Eun Ju; Lee, An Sook; Kang, Dae Gill; Lee, Ho Sub

    2011-01-01

    The kidneys play a central role in regulating water, ion composition and excretion of metabolic waste products in the urine. Cuscuta chinensis has been known as an important traditional Oriental medicine for the treatment of liver and kidney disorders. Thus, we studied whether an aqueous extract of Cuscuta chinensis (ACC) seeds has an effect on renal function parameters in ischemia/reperfusion-induced acute renal failure (ARF) rats. Administration of 250 mg/kg/day ACC showed that renal functional parameters including urinary excretion rate, osmolality, Na(+), K(+), Cl(-), creatinine clearance, solute-free water reabsorption were significantly recovered in ischemia/reperfusion-induced ARF. Periodic acid Schiff staining showed that administration of ACC improved tubular damage in ischemia/reperfusion-induced ARF. In immunoblot and immunohistological examinations, ischemia/reperfusion-induced ARF decreased the expressions of water channel AQP 2, 3 and sodium potassium pump Na,K-ATPase in the renal medulla. However, administration of ACC markedly incremented AQP 2, 3 and Na,K-ATPase expressions. Therefore, these data indicate that administration of ACC ameliorates regulation of the urine concentration and renal functions in rats with ischemia/reperfusion-induced ARF.

  16. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid prevents cerebral ischemia-reperfusion injury

    PubMed Central

    Zhao, Shumin; Kong, Wei; Zhang, Shufeng; Chen, Meng; Zheng, Xiaoying; Kong, Xiangyu

    2013-01-01

    Pretreatment with scutellaria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scutellaria baicalensis stem-leaf total flavonoid intragastrically at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutellaria baicalensis stem-leaf total flavonoid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutellaria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological functions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury. PMID:25206639

  17. Features of the temperature response to a double cuff-occlusion of the upper limbs: remote ischemic preconditioning aspect

    NASA Astrophysics Data System (ADS)

    Sagaidachnyi, A. A.; Fomin, A. V.; Mayskov, D. I.; Skripal, A. V.; Usanov, D. A.

    2018-04-01

    The essence of the phenomenon of ischemic preconditioning is increasing myocardium resistance to long periods of ischemia that occurs after several short ischemia-reperfusion periods. The aim of this pilot study was to determine the temperature and vascular response in double brachial occlusions and to assess the prospects of using this maneuver for remote ischemic preconditioning. Infrared thermography-based measurements were used to assess hemodynamics both left and right hands during the baseline, ischemia and hyperemia periods. Double ischemia with a period of 2 min was implemented by a cuff compression of the brachial artery of the right hand. A study group was constituted of eight men and six women without cardiovascular abnormalities at the age of 22 to 35 years. As a result, we have determined that a temperature and vascular response to ischemia of right hand is accompanied by the vascular reaction of the contralateral left hand, especially after the inflation and deflation of the cuff. These vascular reactions are reproducible, systemic and appear to be at least neurological in nature. An experimental confirmation of the systemic vascular «training effect» after multiple brachial ischemia-reperfusion periods is a subject of further investigations.

  18. Dietary Fish Oil Blocks the Microcirculatory Manifestations of Ischemia- Reperfusion Injury in Striated Muscle in Hamsters

    NASA Astrophysics Data System (ADS)

    Lehr, Hans-Anton; Hubner, Christoph; Nolte, Dirk; Kohlschutter, Alfried; Messmer, Konrad

    1991-08-01

    Epidemiologic observations and experimental studies have demonstrated a protective effect of dietary fish oil on the clinical manifestations of ischemia-reperfusion injury. To investigate the underlying mechanisms, we used the dorsal skinfold chamber model for intravital fluorescence microscopy of the microcirculation in striated muscle of awake hamsters. In control hamsters (n = 7), reperfusion after a 4-hr pressure-induced ischemia to the muscle tissue elicited the adhesion of fluorescently stained leukocytes to the endothelium of postcapillary venules, capillary obstruction, and the breakdown of endothelial integrity. These microvascular manifestations of ischemia-reperfusion injury were significantly attenuated in animals (n = 7) when fed with a fish oil-enriched diet for 4 weeks prior to the experiments. In leukocyte total lipids, the fish oil diet resulted in a substantial displacement of arachidonic acid, the precursor of the potent adhesionpromoting leukotriene (LT) B_4, by fish oil-derived eicosapentaenoic acid, the precursor of biologically less potent LTB_5, emphasizing the mediator role of LTB_4 in ischemia-reperfusion injury. These results suggest that the preservation of microvascular perfusion by dietary fish oil contributes to its protective effects on the clinical manifestations of ischemia-reperfusion injury.

  19. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia

    PubMed Central

    Ardell, Jeffrey L.; Cardinal, René; Vermeulen, Michel; Armour, J. Andrew

    2009-01-01

    Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. Their capacity to transduce a global (rapid ventricular pacing) vs. regional (transient regional ischemia) ventricular stress was tested before and during SCS (50 Hz, 0.2 ms duration at 90% MT) applied to the dorsal aspect of the T1 to T4 spinal cord. Rapid ventricular pacing and transient myocardial ischemia both activated cardiac-related middle cervical ganglion neurons. SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects. PMID:19515981

  20. [Effect of progesterone on the expression of GLUT in the brain following hypoxic-ischemia in newborn rats].

    PubMed

    Li, Dong-Liang; Han, Hua

    2008-08-01

    To investigate the expression of GLUT1 and GLUT3 in the hippocampus after cerebral hypoxic-ischemia (HI) in newborn rats and the effect of progesterone (PROG) on them. Forty newborn SD rats were randomly divided into four groups: normal group, sham-operated group, hypoxic-ischemic group and progesterone group. Model of hypoxic-ischemia encephalopathy (HIE) was established in the 7-day-old newborn SD rats. Immunohistochemical method was applied to detect the expression of GLUT1 and GLUT3 in hippocampus. GLUT1 and GLUT3 were slightly seen in normal and sham operation group, there was no obviously difference between the two groups (P > 0.05). The expression of GLUT1 and GLUT3 in hypoxic-ischemia group were all higher than that in sham operated group (P < 0.05). Not only the expression of GLUT in progesterone group were significantly higher than that in sham operated group (P < 0.01), but also than that in hypoxic-ischemia group (P < 0.05). PROG could increase the tolerance of neuron to hypoxic-ischemia with maintaining the energy supply in the brain by up-regulating GLUT expression.

  1. Biochemical markers of acute limb ischemia, rhabdomyolysis, and impact on limb salvage.

    PubMed

    Watson, J Devin B; Gifford, Shaun M; Clouse, W Darrin

    2014-12-01

    Biochemical markers of ischemia reperfusion injury have been of interest to vascular surgeons and researchers for many years. Acute limb ischemia is the quintessential clinical scenario where these markers would seem relevant. The use of biomarkers to preoperatively or perioperatively predict which patients will not tolerate limb-salvage efforts or who will have poor functional outcomes after salvage is of immense interest. Creatinine phosphokinase, myoglobin, lactate, lactate dehydrogenase, potassium, bicarbonate, and neutrophil/leukocyte ratios are a few of the studied biomarkers available. Currently, the most well-studied aspect of ischemia reperfusion injury is rhabdomyolysis leading to acute kidney injury. The last 10 years have seen significant progression and improvement in the treatment of rhabdomyolysis, from minor supportive care to use of continuous renal replacement therapy. Identification of specific biomarkers with predictive outcome characteristics in the setting of ischemia reperfusion injury will help guide therapeutic development and potentially mitigate pathophysiologic changes in acute limb ischemia, including rhabdomyolysis. These may further lead to improvements in short- and long-term surgical outcomes and limb salvage, as well as a better understanding of the timing and selection of intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. In Potential Stroke Patients on Warfarin, the International Normalized Ratio Predicts Ischemia.

    PubMed

    Cao, Cathy; Martinelli, Ashley; Spoelhof, Brian; Llinas, Rafael H; Marsh, Elisabeth B

    2017-01-01

    Stroke can occur in patients on warfarin despite anticoagulation. Patients with a low international normalized ratio (INR) should theoretically be at greater risk for ischemia than those who are therapeutic. Therefore, INR may be able to indicate whether new neurological deficits are more likely strokes or stroke mimics in patients on warfarin. This study evaluates the association and predictive value of INR in determining the likelihood of ischemia. Patients were identified using the acute stroke registry at a Primary Stroke Center from January 2013 through December 2014. All adult patients undergoing evaluation for acute stroke with prior documented use of warfarin and an INR level at presentation were included. Data were collected regarding patient demographics, medical comorbidities, stroke severity, reason for anticoagulation, and laboratory studies including INR. Student t tests and χ2 analysis were used to evaluate factors associated with increased likelihood of ischemia (stroke or transient ischemic attack) versus mimic. Significant results were entered into a multivariable regression analysis. Sensitivity and specificity analyses were conducted to determine the predictive value of INR for ischemic risk. 116 patients were included; 46 were diagnosed with ischemia, 70 were diagnosed as mimics. 75% of patients were on warfarin for atrial fibrillation versus 25% for venous thrombosis. A statistically significant difference in mean INR for patients with ischemia (n = 46) versus mimics (n = 70) was observed (1.7 vs. 2.8; p < 0.001). In multivariable analysis, both sub-therapeutic INR (p < 0.001) and atrial fibrillation (p = 0.014) were predictors of ischemia. In patients with an INR ≥2, the predictive value of having a non-ischemic etiology was 79%. No patient with an INR of ≥3.6 was found to have ischemia. Sub-therapeutic INR and atrial fibrillation are strongly associated with ischemia in patients on warfarin presenting with acute neurologic symptoms. Ischemia is far less likely in patients with an INR of ≥2 and rare in those with an INR ≥3.6. This study shows that the INR value of a patient on warfarin can help stratify patients' risk for acute ischemic stroke and guide further neurologic imaging and workup. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. The effects of propofol on hippocampal caspase-3 and Bcl-2 expression following forebrain ischemia-reperfusion in rats.

    PubMed

    Li, Jun; Han, Baoqing; Ma, Xuesong; Qi, Sihua

    2010-10-14

    Transient cerebral ischemia may result in neuronal apoptosis. During this process, several apoptosis-regulatory genes are induced in apoptotic cells. Among these genes, cysteinyl aspartate-specific protease-3 (caspase-3) and B-cell leukemia-2 (Bcl-2) are the most effective apoptotic regulators because they play a decisive role in the occurrence of apoptosis. Research has shown that propofol, which is an intravenous anesthetic agent, exhibits neuroprotective effects against cerebral ischemia-reperfusion injury, although the neuroprotective mechanism is still unclear. In this study, we examined the effects of propofol in rats after forebrain ischemia-reperfusion. We assessed the expression of hippocampal caspase-3, which acts as an apoptotic activator, and Bcl-2, which acts as an apoptotic suppressor. Forebrain ischemia was induced in hypotensive rats by clamping the bilateral common carotid arteries for 10 min. Propofol was administered via a lateral cerebral ventricle injection using a microsyringe after the induction of ischemia. Neuronal damage was determined by histological examination of brain sections at the level of the dorsal hippocampus. Caspase-3 and Bcl-2 expression in the hippocampus were detected using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. We also used an immunohistochemical method after ischemia-reperfusion. In the hippocampus, caspase-3 and Bcl-2 mRNA were dramatically increased at 24h after forebrain ischemia. Following 6-24h of reperfusion, forebrain ischemia for 10 min induced a gradual increase in the expression of caspase-3 and Bcl-2 protein in the rat hippocampus, which peaked at 24h. In the propofol (1.0mg/kg) intervention group, the hippocampal expression of caspase-3 mRNA decreased significantly in rats 24h after ischemia; Bcl-2 mRNA was increased at the same time point. During the 24-h reperfusion period and after treatment with propofol, the level of caspase-3 protein expression was low, while the level of Bcl-2 was high. Thus, our results suggest that the neuroprotective effects of propofol against neuronal apoptosis may be mediated by the inhibition of caspase-3 expression and an increase in Bcl-2 expression. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Mucosal injury induced by ischemia and reperfusion in the piglet intestine: Influences of age and feeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crissinger, K.D.; Granger, D.N.

    1989-10-01

    The pathogenesis of neonatal necrotizing enterocolitis is unknown, but enteral alimentation, infectious agents, and mesenteric ischemia have been frequently invoked as primary initiators of the disease. To define the vulnerability of the intestinal mucosa to ischemia and reperfusion in the developing piglet, we evaluated changes in mucosal permeability using plasma-to-lumen clearance of chromium 51-labeled ethylenediaminetetraacetic acid in the ileum of anesthetized 1-day-, 3-day-, 2-wk-, and 1-mo-old piglets as a function of (a) duration of intestinal ischemia (20, 40, or 60 min of total superior mesenteric artery occlusion), (b) feeding status (fasted or nursed), and (c) composition of luminal perfusate (balancedmore » salt solution vs. predigested cow milk-based formula). Baseline chromium 51-labeled ethylenediaminetetraacetic acid clearance was not significantly altered by ischemia, irrespective of duration, or feeding in all age groups. However, clearances were significantly elevated during reperfusion after 1 h of total intestinal ischemia in all age groups, whether fasted or fed. Reperfusion-induced increases in clearance did not differ among age groups when the bowel lumen was perfused with a balanced salt solution. However, luminal perfusion with formula resulted in higher clearances in 1-day-old piglets compared with all older animals. Thus, the neonatal intestine appears to be more vulnerable to mucosal injury induced by ischemia and reperfusion in the presence of formula than the intestine of older animals.« less

  5. Lower Hemoglobin Concentration Is Associated with Retinal Ischemia and the Severity of Diabetic Retinopathy in Type 2 Diabetes

    PubMed Central

    Traveset, Alicia; Rubinat, Esther; Ortega, Emilio; Alcubierre, Nuria; Vazquez, Beatriz; Hernández, Marta; Jurjo, Carmen; Espinet, Ramon; Ezpeleta, Juan Antonio; Mauricio, Didac

    2016-01-01

    Aims. To assess the association of blood oxygen-transport capacity variables with the prevalence of diabetic retinopathy (DR), retinal ischemia, and macular oedema in patients with type 2 diabetes mellitus (T2DM). Methods. Cross-sectional, case-control study (N = 312) with T2DM: 153 individuals with DR and 159 individuals with no DR. Participants were classified according to the severity of DR and the presence of retinal ischemia or macular oedema. Hematological variables were collected by standardized methods. Three logistic models were adjusted to ascertain the association between hematologic variables with the severity of DR and the presence of retinal ischemia or macular oedema. Results. Individuals with severe DR showed significantly lower hemoglobin, hematocrit, and erythrocyte levels compared with those with mild disease and in individuals with retinal ischemia and macular oedema compared with those without these disorders. Hemoglobin was the only factor that showed a significant inverse association with the severity of DR [beta-coefficient = −0.52, P value = 0.003] and retinal ischemia [beta-coefficient = −0.49, P value = 0.001]. Lower erythrocyte level showed a marginally significant association with macular oedema [beta-coefficient = −0.86, P value = 0.055]. Conclusions. In patients with DR, low blood oxygen-transport capacity was associated with more severe DR and the presence of retinal ischemia. Low hemoglobin levels may have a key role in the development and progression of DR. PMID:27200379

  6. DIFFERENT PROTOCOLS OF POSTCONDITIONING DOES NOT ATTENUATE MESENTERIC ISCHEMIA-REPERFUSION INJURY AFTER SHORT-TERM REPERFUSION

    PubMed Central

    BRITO, Marcus Vinicius Henriques; YASOJIMA, Edson Yuzur; MACHADO, Andressa Abnader; SILVEIRA, Matheus Paiva Pacheco Reis; TEIXEIRA, Renan Kleber Costa; YAMAKI, Vitor Nagai; COSTA, Felipe Lobato da Silva

    2017-01-01

    ABSTRACT Background: Mesenteric ischemia is a challenging diagnosis. Delay in diagnosis can lead to extent bowel necrosis and poor outcomes. Ischemia and reperfusion syndrome plays an important role in this scenario. Aim: To access effects of different post-conditioning cycles on mesenteric ischemia-reperfusion syndrome. Method: Twenty-five rats were assigned into five groups: Sham, used to establish normal parameters; control group, submitted to mesenteric ischemia for 30 min; in groups GP3, GP1 and GP30, ischemia was followed by post-conditioning protocol, which consisted of 1 cycle of 3 min (GP3), 3 cycles of 1 min (GP1) or 6 cycles of 30 s (GP30), respectively. Ileum samples were harvested after one hour of reperfusion. Intestinal mucosal injury was evaluated through histopathological analysis. Results: The average of mesenteric injury degree was 0 in the sham group, 3.6 in the control group, 3.4 in GP3, 3.2 in GP1, and 3.0 in GP30; villous length average was 161.59 in sham group, 136.27 in control group, 135.89 in GP3, 129.46 in GP1, and 135.18 in GP30. Was found significant difference between sham and other groups (p<0.05); however, there was no difference among post-conditioning groups. Conclusion: Post-conditioning adopted protocols were not able to protect intestinal mucosa integrity after mesenteric ischemia and short term reperfusion. PMID:28489164

  7. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading.

    PubMed

    Loerakker, S; Manders, E; Strijkers, G J; Nicolay, K; Baaijens, F P T; Bader, D L; Oomens, C W J

    2011-10-01

    Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period. Magnetic resonance imaging (MRI) was used to study perfusion (contrast-enhanced MRI) and tissue integrity (T2-weighted MRI). The levels of tissue deformation were estimated using finite element models. Complete ischemia caused a gradual homogeneous increase in T2 (∼20% during the 6-h period). The effect of reperfusion on T2 was highly variable, depending on the anatomical location. In experiments involving deformation, inevitably associated with partial ischemia, a variable T2 increase (17-66% during the 6-h period) was observed reflecting the significant variation in deformation (with two-dimensional strain energies of 0.60-1.51 J/mm) and ischemia (50.8-99.8% of the leg) between experiments. These results imply that deformation, ischemia, and reperfusion all contribute to the damage process during prolonged loading, although their importance varies with time. The critical deformation threshold and period of ischemia that cause muscle damage will certainly vary between individuals. These variations are related to intrinsic factors, such as pathological state, which partly explain the individual susceptibility to the development of DTI and highlight the need for regular assessments of individual subjects.

  8. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats.

    PubMed

    Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria

    2016-01-01

    Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney's response to ischemia-reperfusion injury.

  9. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats

    PubMed Central

    Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria

    2016-01-01

    Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney’s response to ischemia-reperfusion injury. PMID:27551718

  10. Decreased akt activity is associated with activation of forkhead transcription factor after transient forebrain ischemia in gerbil hippocampus.

    PubMed

    Kawano, Takayuki; Morioka, Motohiro; Yano, Shigetoshi; Hamada, Jun-Ichiro; Ushio, Yukitaka; Miyamoto, Eishichi; Fukunaga, Kohji

    2002-08-01

    The authors recently reported that sodium orthovanadate rescues cells from delayed neuronal death in gerbil hippocampus after transient forebrain ischemia through phosphatidylinositol 3-kinase-protein kinase B (Akt) pathway (Kawano et al., 2001). In the current study, they demonstrated that the activation of FKHR, a Forkhead transcription factor and a substrate for Akt, preceded delayed neuronal death in CA1 regions after transient forebrain ischemia. Adult Mongolian gerbils were subjected to 5-minute forebrain ischemia. Immunoblotting analysis with anti-phospho-FKHR antibody showed that phosphorylation of FKHR at serine-256 in the CA1 region decreased immediately after and 0.5 and 1 hour after reperfusion. The dephosphorylation of FKHR was correlated with the decreased Akt activity. Intracerebroventricular injection of orthovanadate 30 minutes before ischemia inhibited dephosphorylation of FKHR after reperfusion, and blocked delayed neuronal death in the CA1 region. Gel mobility shift analysis using nuclear extracts from the CA1 region prepared immediately after reperfusion revealed increases in DNA binding activity for the FKHR-responsive element on the Fas ligand promoter. The orthovanadate injection administered before ischemia inhibited its binding activity. Two days after reperfusion, expression of Fas ligand increased in the CA1 region and the orthovanadate injection inhibited this increased expression. These results suggest that the inactivation of Akt results in the activation of FKHR and, in turn, relates to the expression of Fas ligand in the CA1 region after transient forebrain ischemia.

  11. Reductions in mitochondrial O(2) consumption and preservation of high-energy phosphate levels after simulated ischemia in chronic hibernating myocardium.

    PubMed

    Hu, Qingsong; Suzuki, Gen; Young, Rebeccah F; Page, Brian J; Fallavollita, James A; Canty, John M

    2009-07-01

    We performed the present study to determine whether hibernating myocardium is chronically protected from ischemia. Myocardial tissue was rapidly excised from hibernating left anterior descending coronary regions (systolic wall thickening = 2.8 +/- 0.2 vs. 5.4 +/- 0.3 mm in remote myocardium), and high-energy phosphates were quantified by HPLC during simulated ischemia in vitro (37 degrees C). At baseline, ATP (20.1 +/- 1.0 vs. 26.7 +/- 2.1 micromol/g dry wt, P < 0.05), ADP (8.1 +/- 0.4 vs. 10.3 +/- 0.8 micromol/g, P < 0.05), and total adenine nucleotides (31.2 +/- 1.3 vs. 40.1 +/- 2.9 micromol/g, P < 0.05) were depressed compared with normal myocardium, whereas total creatine, creatine phosphate, and ATP-to-ADP ratios were unchanged. During simulated ischemia, there was a marked attenuation of ATP depletion (5.6 +/- 0.9 vs. 13.7 +/- 1.7 micromol/g at 20 min in control, P < 0.05) and mitochondrial respiration [145 +/- 13 vs. 187 +/- 11 ng atoms O(2).mg protein(-1).min(-1) in control (state 3), P < 0.05], whereas lactate accumulation was unaffected. These in vitro changes were accompanied by protection of the hibernating heart from acute stunning during demand-induced ischemia. Thus, despite contractile dysfunction at rest, hibernating myocardium is ischemia tolerant, with reduced mitochondrial respiration and slowing of ATP depletion during simulated ischemia, which may maintain myocyte viability.

  12. Lower Hemoglobin Concentration Is Associated with Retinal Ischemia and the Severity of Diabetic Retinopathy in Type 2 Diabetes.

    PubMed

    Traveset, Alicia; Rubinat, Esther; Ortega, Emilio; Alcubierre, Nuria; Vazquez, Beatriz; Hernández, Marta; Jurjo, Carmen; Espinet, Ramon; Ezpeleta, Juan Antonio; Mauricio, Didac

    2016-01-01

    Aims. To assess the association of blood oxygen-transport capacity variables with the prevalence of diabetic retinopathy (DR), retinal ischemia, and macular oedema in patients with type 2 diabetes mellitus (T2DM). Methods. Cross-sectional, case-control study (N = 312) with T2DM: 153 individuals with DR and 159 individuals with no DR. Participants were classified according to the severity of DR and the presence of retinal ischemia or macular oedema. Hematological variables were collected by standardized methods. Three logistic models were adjusted to ascertain the association between hematologic variables with the severity of DR and the presence of retinal ischemia or macular oedema. Results. Individuals with severe DR showed significantly lower hemoglobin, hematocrit, and erythrocyte levels compared with those with mild disease and in individuals with retinal ischemia and macular oedema compared with those without these disorders. Hemoglobin was the only factor that showed a significant inverse association with the severity of DR [beta-coefficient = -0.52, P value = 0.003] and retinal ischemia [beta-coefficient = -0.49, P value = 0.001]. Lower erythrocyte level showed a marginally significant association with macular oedema [beta-coefficient = -0.86, P value = 0.055]. Conclusions. In patients with DR, low blood oxygen-transport capacity was associated with more severe DR and the presence of retinal ischemia. Low hemoglobin levels may have a key role in the development and progression of DR.

  13. Ischemia and reperfusion induce differential expression of calpastatin and its homologue high molecular weight calmodulin-binding protein in murine cardiomyocytes.

    PubMed

    Parameswaran, Sreejit; Sharma, Rajendra K

    2014-01-01

    In the heart, calpastatin (Calp) and its homologue high molecular weight calmodulin-binding protein (HMWCaMBP) regulate calpains (Calpn) by inhibition. A rise in intracellular myocardial Ca2+ during cardiac ischemia activates Calpn thereby causing damage to myocardial proteins, which leads to myocyte death and consequently to loss of myocardial structure and function. The present study aims to elucidate expression of Calp and HMWCaMBP with respect to Calpn during induced ischemia and reperfusion in primary murine cardiomyocyte cultures. Ischemia and subsequently reperfusion was induced in ∼ 80% confluent cultures of neonatal murine cardiomyocytes (NMCC). Flow cytometric analysis (FACS) has been used for analyzing protein expression concurrently with viability. Confocal fluorescent microscopy was used to observe protein localization. We observed that ischemia induces increased expression of Calp, HMWCaMBP and Calpn. Calpn expressing NMCC on co-expressing Calp survived ischemic induction compared to NMCC co-expressing HMWCaMBP. Similarly, living cells expressed Calp in contrast to dead cells which expressed HMWCaMBP following reperfusion. A significant difference in the expression of Calp and its homologue HMWCaMBP was observed in localization studies during ischemia. The current study adds to the existing knowledge that HMWCaMBP could be a putative isoform of Calp. NMCC on co-expressing Calp and Calpn-1 survived ischemic and reperfusion inductions compared to NMCC co-expressing HMWCaMBP and Calpn-1. A significant difference in expression of Calp and HMWCaMBP was observed in localization studies during ischemia.

  14. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps.

    PubMed

    Jansen, Marcel P B; Emal, Diba; Teske, Gwendoline J D; Dessing, Mark C; Florquin, Sandrine; Roelofs, Joris J T H

    2017-02-01

    Acute kidney injury is often the result of ischemia reperfusion injury, which leads to activation of coagulation and inflammation, resulting in necrosis of renal tubular epithelial cells. Platelets play a central role in coagulation and inflammatory processes, and it has been shown that platelet activation exacerbates acute kidney injury. However, the mechanism of platelet activation during ischemia reperfusion injury and how platelet activation leads to tissue injury are largely unknown. Here we found that renal ischemia reperfusion injury in mice leads to increased platelet activation in immediate proximity of necrotic cell casts. Furthermore, platelet inhibition by clopidogrel decreased cell necrosis and inflammation, indicating a link between platelet activation and renal tissue damage. Necrotic tubular epithelial cells were found to release extracellular DNA, which, in turn, activated platelets, leading to platelet-granulocyte interaction and formation of neutrophil extracellular traps ex vivo. Renal ischemia reperfusion injury resulted in increased DNA-platelet and DNA-platelet-granulocyte colocalization in tissue and elevated levels of circulating extracellular DNA and platelet factor 4 in mice. After renal ischemia reperfusion injury, neutrophil extracellular traps were formed within renal tissue, which decreased when mice were treated with the platelet inhibitor clopidogrel. Thus, during renal ischemia reperfusion injury, necrotic cell-derived DNA leads to platelet activation, platelet-granulocyte interaction, and subsequent neutrophil extracellular trap formation, leading to renal inflammation and further increase in tissue injury. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury.

    PubMed

    Si, Jingwen; Wang, Ning; Wang, Huan; Xie, Juan; Yang, Jian; Yi, Hui; Shi, Zixuan; Ma, Jing; Wang, Wen; Yang, Lifang; Yu, Shiqiang; Li, Junchang

    2014-01-01

    In this study, we evaluated the effect of astragaloside IV (Ast IV) post-ischemia treatment on myocardial ischemia-reperfusion (IR) injury (IRI). We also examined whether hypoxia inducible factor-1α (HIF-1α) and its downstream gene-inducible nitric oxide (NO) synthase (iNOS) play roles in the cardioprotective effect of Ast IV. Cultured cardiomyocytes and perfused isolated rat hearts were exposed to Ast IV during reperfusion in the presence or absence of the HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2). The post-ischemia treatment with Ast IV protected cardiomyocytes from the apoptosis and death induced by simulated IRI (SIRI). Additionally, in cardiomyocytes, 2-MeOE2 and HIF-1α siRNA treatment each not only abolished the anti-apoptotic effect of post-ischemia treatment with Ast IV but also reversed the upregulation of HIF-1α and iNOS expression. Furthermore, after treatment with Ast IV, post-ischemic cardiac functional recovery and lactate dehydrogenase (LDH) release in the coronary flow (CF) were improved, and the myocardial infarct size was decreased. Moreover, the number of apoptotic cells was reduced, and the upregulation of the anti-apoptotic protein Bcl2 and downregulation of the pro-apoptotic protein Caspase3 were reversed. 2-MeOE2 reversed these effects of Ast IV on IR-injured hearts. These results suggest that post-ischemia treatment with Ast IV can attenuate IRI by upregulating HIF-1α expression, which transmits a survival signal to the myocardium.

  16. Evaluation of extra- and intracellular apparent diffusion coefficient of sodium in rat skeletal muscle: effects of prolonged ischemia.

    PubMed

    Babsky, Andriy M; Topper, Stephen; Zhang, Hong; Gao, Yong; James, Judy R; Hekmatyar, Shahryar K; Bansal, Navin

    2008-03-01

    The mechanism of water and sodium apparent diffusion coefficient (ADC) changes in rat skeletal muscle during global ischemia was examined by in vivo 1H and 23Na magnetic resonance spectroscopy (MRS). The ADCs of Na+ and water are expected to have similar characteristics because sodium is present as an aqua-cation in tissue. The shift reagent, TmDOTP5(-), was used to separate intra- and extracellular sodium (Na+i and Na+e, respectively) signals. Water, total tissue sodium (Na+t), Na+i, and Na+e ADCs were measured before and 1, 2, 3, and 4 hr after ischemia. Contrary to the general perception, Na+i and Na+e ADCs were identical before ischemia. Thus, ischemia-induced changes in Na+e ADC cannot be explained by a simple change in the size of relative intracellular or extracellular space. Na+t and Na+e ADCs decreased after 2-4 hr of ischemia, while water and Na+i ADC remained unchanged. The correlation between Na+t and Na+e ADCs was observed because of high Na+e concentration. Similarly, the correlation between water and Na+i ADCs was observed because cells occupy 80% of the tissue space in the skeletal muscle. Ischemia also caused an increase in the Na+i and an equal decrease in Na+e signal intensity due to cessation of Na+/K+-ATPase function. (c) 2008 Wiley-Liss, Inc.

  17. Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress.

    PubMed

    Lee, Choong Hyun; Park, Joon Ha; Yoo, Ki-Yeon; Choi, Jung Hoon; Hwang, In Koo; Ryu, Pan Dong; Kim, Do-Hoon; Kwon, Young-Guen; Kim, Young-Myeong; Won, Moo-Ho

    2011-06-01

    Selective serotonin re-uptake inhibitors (SSRI) have been widely used in treatment of major depression because of their efficacy, safety, and tolerability. Escitalopram, an SSRI, is known to decrease oxidative stress in chronic stress animal models. In the present study, we examined the neuroprotective effects of pre- and post-treatments with 20 mg/kg and 30 mg/kg escitalopram in the gerbil hippocampal CA1 region (CA1) after transient cerebral ischemia. Pre-treatment with escitalopram protected against ischemia-induced neuronal death in the CA1 after ischemia/reperfusion (I/R). Post-treatment with 30 mg/kg, not 20 mg/kg, escitalopram had a neuroprotective effect against ischemic damage. In addition, 20 mg/kg pre- and 30 mg/kg post-treatments with escitalopram increased brain-derived neurotrophic factor (BDNF) protein levels in the ischemic CA1 compared to vehicle-treated ischemia animals. In addition, 20 mg/kg pre- and 30 mg/kg post-treatments with escitalopram reduced microglia activation and decreased 4-hydroxy-2-nonenal and Cu,Zn-superoxide dismutase immunoreactivity and their levels in the ischemic CA1 compared to vehicle-treated ischemia animals after transient cerebral ischemia. In conclusion, these results indicated that pre- and post-treatments with escitalopram can protect against ischemia-induced neuronal death in the CA1 induced by transient cerebral ischemic damage by increase of BDNF as well as decrease of microglia activation and oxidative stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Neutralizing anti-interleukin-1β antibodies modulate fetal blood-brain barrier function after ischemia.

    PubMed

    Chen, Xiaodi; Sadowska, Grazyna B; Zhang, Jiyong; Kim, Jeong-Eun; Cummings, Erin E; Bodge, Courtney A; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Threlkeld, Steven W; Banks, William A; Stonestreet, Barbara S

    2015-01-01

    We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0.03), and interleukin-1β protein concentrations (P<0.03) and protein expressions (P<0.001) were lower in the monoclonal antibody-treated group than in placebo-treated-ischemia-reperfusion group. Monoclonal antibody infusions attenuated ischemia-reperfusion-related increases in Ki across the brain regions (P<0.04), and Ki showed an inverse linear correlation (r= -0.65, P<0.02) with anti-interleukin-1β monoclonal antibody concentrations in the parietal cortex, but had little effect on tight junction protein expression. We conclude that systemic anti-interleukin-1β monoclonal antibody infusions after ischemia result in brain anti-interleukin-1β antibody uptake, and attenuate ischemia-reperfusion-related interleukin-1β protein up-regulation and increases in blood-brain barrier permeability across brain regions in the fetus. The pro-inflammatory cytokine, interleukin-1β, contributes to impaired blood-brain barrier function after ischemia in the fetus. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madaric, Juraj, E-mail: jurmad@hotmail.com; Klepanec, Andrej; Mistrik, Martin

    Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.

  20. The P2X7 receptor antagonist, oxidized adenosine triphosphate, ameliorates renal ischemia-reperfusion injury by expansion of regulatory T cells.

    PubMed

    Koo, Tai Yeon; Lee, Jae-Ghi; Yan, Ji-Jing; Jang, Joon Young; Ju, Kyung Don; Han, Miyeun; Oh, Kook-Hwan; Ahn, Curie; Yang, Jaeseok

    2017-08-01

    Extracellular adenosine triphosphate (ATP) binds to purinergic receptors and, as a danger molecule, promotes inflammatory responses. Here we tested whether periodate-oxidized ATP (oATP), a P2X7 receptor (P2X7R) antagonist can attenuate renal ischemia-reperfusion injury and clarify the related cellular mechanisms. Treatment with oATP prior to ischemia-reperfusion injury decreased blood urea nitrogen, serum creatinine, the tubular injury score, and tubular epithelial cell apoptosis after injury. The infiltration of dendritic cells, neutrophils, macrophages, CD69 + CD4 + , and CD44 + CD4 + T cells was attenuated, but renal Foxp3 + CD4 + Treg infiltration was increased by oATP. The levels of IL-6 and CCL2 were reduced in the oATP group. Additionally, oATP treatment following injury improved renal function, decreased the infiltration of innate and adaptive effector cells, and increased the renal infiltration of Foxp3 + CD4 + Tregs. Post-ischemia-reperfusion injury oATP treatment increased tubular cell proliferation and reduced renal fibrosis. oATP treatment attenuated renal functional deterioration after ischemia-reperfusion injury in RAG-1 knockout mice; however, Treg depletion using PC61 abrogated the beneficial effects of oATP in wild-type mice. Furthermore, oATP treatment after transfer of Tregs from wild-type mice improved the beneficial effects of Tregs on ischemia-reperfusion injury, but treatment after transfer of Tregs from P2X7R knockout mice did not. Renal ischemia-reperfusion injury was also attenuated in P2X7R knockout mice. Experiments using bone marrow chimeras established that P2X7R expression on hematopoietic cells rather than non-hematopoietic cells, such as tubular epithelial cells, plays a major role in ischemia-reperfusion injury. Thus, oATP attenuated acute renal damage and facilitated renal recovery in ischemia-reperfusion injury by expansion of Tregs. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Trigeminal Inflammatory Compression (TIC) Injury Induces Chronic Facial Pain and Susceptibility to Anxiety-Related Behaviors

    PubMed Central

    Lyons, Danielle N.; Kniffin, Tracey C.; Zhang, Liping; Danaher, Robert J.; Miller, Craig S.; Bocanegra, Jose L.; Carlson, Charles R.; Westlund, Karin N.

    2015-01-01

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week 8 post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury which resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model’s chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. PMID:25818051

  2. Comparsion between Intravenous Delivered Human Fetal Bone Marrow Mesenchymal Stromal Cells and Mononuclear Cells in the Treatment of Rat Cerebral Infarct.

    PubMed

    Huang, Ai-Hua; Zhang, Ping-Ping; Zhang, Bin; Ma, Bu-Qing; Guan, Yun-Qian; Zhou, Yi-Dan

    2016-10-10

    Objective To compare the effecacy of human mesenchymal stromal cell (hMSC) with human mononuclear cell (hMNC) in treating rat cerebral infarct.Methods The SD rat models of cerebral infarct were established by distal middle cerebral artery occlusion (dMCAO). Rats were divided into four groups: sham,ischemia vehicle,MSC,and MNC transplantation groups. For the transplantation group,1×10 6 hMSCs or hMNCs were intravascularly transplanted into the tail vein 1 hour after the ischemia onset. The ischemia vehicle group received dMCAO surgery and intravascular saline injection 1,3,5,and 7 days after the ischemia onset,and then behavioral tests were performed. At 48 h after the ischemia onset,the abundance of Iba- 1,the symbol of activated microglia,was evaluated in the peri-ischemia striatum area; meanwhile,the neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in ipsilateral peri-ischemia striatum area were also measured. Results The relative infarct volume in ischemia vehicle group,hMSC group,and hMNC transplantation group were (37.85±4.40)%,(33.41±3.82)%,and (30.23±3.63)%,respectively. The infarct volumes of MSC group (t=2.100,P=0.034) and MNC group (t=2.109,P=0.0009) were significantly smaller than that of ischemia vehicle group,and that of MNC group was significantly smaller than that of MSC group (t=1.743,P=0.043). One day after transplantation,the score of ischemia vehicle group in limb placing test was (4.32±0.71)%,which was significantly lower than that in sham group (9.73±0.36)% (t=2.178,P=8.61×10 -11 ). The scores of MSC and MNC group,which were (5.09±0.62)% (t=2.1009,P=0.024) and (5.90±0.68)% (t=2.1008,P=0.0001),respectively,were significantly higher than that of ischemia vehicle group; also,the score of MNC group was significantly higher than that of MSC group(t=2.1009,P=0.0165). The contralateral forelimb scores of MSC and MNC groups in beam walking test were (5.56±0.86)% (t=2.120,P=0.020) and (5.13±0.95)% (t=2.131,P=0.003),were both significantly lower than that of ischemia vehicle group [(6.47±0.61)%]. Three days after the transplantation,the limb placing test score of MNC group [(6.91±1.10)%] was significantly higher than that of ischemia vehicle group (5.80±0.82)% (t=2.110,P=0.027). The score of MSC group [(6.30±0.77)%] showed no statistic difference with that of ischemia vehicle group(t=2.101,P=0.199).The contralateral forelimb scores of MNC group in beam walking test [(4.34±0.58)%] was significantly lower than that of ischemia vehicle group [(5.31±0.65)%] (t=2.100,P=0.006) and MSC group [(4.92±0.53)%] (t=2.100,P=0.041); there was no statistic difference between MSC group and ischemia vehicle group (t=2.109,P=0.139). The relative abundance of Iba- 1 in sham,ischemia vehicle,MSC,and MNC groups was 1.00+0.00,1.72±0.21,1.23±0.08,and 1.48±0.06,respectively. The Iba-1 relative abundance of ischemia vehicle group was significantly higher than that of sham group (t=2.262,P=2.9×10 -6 ). The Iba-1 relative abundances of both MSC (t=2.178,P=3.91×10 -5 )and MNC (t=2.200,P=0.007)groups were significantly lower than that of ischemia vehicle group. It was also significantly lower in MNC group than in MSC group also (t=2.120,P=7.09×10 -6 ). Three days after transplantation,the BDNF and GDNF levels of MSC group,which were (531.127±73.176)pg/mg (t=2.109,P=0.003)and(127.780±16.733)pg/mg(t=2.100,P=2.76×10 -5 ),respectively,were significantly higher than those of ischemia vehicle group,which were (401.988±89.006)pg/mg and (86.278±14.832) pg/mg,respectively. The BDNF and GDNF levels of MNC group,which were (627.429±65.646)pg/mg (t=2.144,P=0.017) and (153.117±20.443)pg/mg (t=2.109,P=0.010),respectively,were all significantly higher than that of MSC group. At day 7,the BDNF and GDNF levels of MSC group,which were (504.776±83.282)pg/mg (t=2.101,P=0.005) and (81.641±11.019)pg/mg (t=2.100,P=0.002),respectively,were significantly higher than those of ischemia vehicle group,which were (389.257±70.440)pg/mg and (64.322±9.855) pg/mg,respectively. The BDNF and GDNF levels of MNC group,which were (589.068±63.323)pg/mg (t=2.100,P=0.027) and (102.161±19.932)pg/mg (t=2.144,P=0.017),respectively,were all significantly higher than that of MSC group. Conclusions Both hMSC and hMNC are beneficial to the ischemia-damaged brain when they are intravascularly transplanted within 1 h after the onset of ischemia. The anti-inflammation ability and secretion of neurotrophic factors are the underlying mechanisms of the therapeutic effects. MNC is more effective than MSC in reducing infarct area and improving behaviors,which might be explained by the fact that MNC induces more GDNF and BDNF in brain than MSC.

  3. Gene Expression ‏‏‏‏Profiles of BAD and Bcl-xL in the CA1 Region of the Hippocampus Following Global Ischemic/Reperfusion and FK-506 Administration.

    PubMed

    Badr, Ramak; Hashemi, Mehrdad; Javadi, Gholamreza; Movafagh, Abolfazl; Mahdian, Reza

    2015-12-01

    The hippocampus is a tiny nub in the mammalian brain that is involved in forming, organizing, and storing memories. Global cerebral ischemia (GCI) and reperfusion induced apoptosis lead to cell injury and death. FK-506 is a strong immunosuppressant drug that has neuroprotective effects on the hypoxic-ischemic effects of brain damage. BAD and Bcl-xL are pro-apoptotic and anti-apoptotic genes, respectively. These genes belong to The B-cell lymphoma-2 (Bcl-2) family. In this study, we assessed the neurotrophic properties of FK-506 on expression of the BAD and Bcl-xL genes in the hippocampus following global ischemia and reperfusion. In the present experimental study, adult male Wistar rats were obtained and housed under standard conditions in the Tehran University of Medical Science in Iran. Rats were equally distributed in groups of three among the following groups: normal control, treated-1 (ischemia/reperfusion), and treated-2 (ischemia/reperfusion followed by FK-506). Global ischemia was induced for animals in the treated-1 and treated-2 groups. In treated-2, two doses of FK-506 were injected: one dose as an IV injection immediately after reperfusion and another as an intra-peritoneal (IP) injection after 48 hours. Then, the hippocampus tissue was removed after anaesthetizing the rats. RNA was isolated, cDNA was synthesized, and real-time PCR was performed. Finally, the obtained data were analyzed statistically (P value ˂ 0.05). The quantitative results of real-time PCR show that the mRNA expression ratio of Bcl-xL down-regulated was 0.75 ± 0.06 in the ischemia/reperfusion group versus 1.57 ± 0.09 in the control group (P value < 0.001), whereas Bcl-xL gene expression was greater in the ischemia/reperfusion +FK506 group (1.93 ± 0.15) than in the ischemia/reperfusion group. Moreover, the mRNA expression ratio of BAD up-regulated in the ischemia/reperfusion + FK506 group was 3.65 ± 0.49 compared to Normal control (1.39 ± 0.09) and Ischemia/reperfusion + FK506 was 1.09 ± 0.20 (P value < 0.001). The analysis of the pro-apoptotic gene to anti-apoptotic gene expression ratio (BAD /Bcl-xL) confirmed that expression of the pro-apoptotic gene significantly decreased (P value ˂ 0.001) under the ischemia/reperfusion condition. In contrast, the expression of the anti-apoptotic gene increased after administration of FK-506 (P value ˂ 0.001).

  4. MI: Not a Heart Attack but a Gut Attack.

    PubMed

    Lee, Rosemary K; Cabrera, Ana M

    2018-02-01

    Mesenteric ischemia and infarction are infrequent but often deadly conditions in acute and critically ill patients. Mesenteric ischemia may be a primary admission diagnosis or may develop secondary to another diagnosis. Having a high index of suspicion for patients at risk of mesenteric ischemia and mesenteric infarction can alter a poor outcome. This article reviews the pathophysiology, risk factors, assessment, medical and nursing diagnoses, as well as collaborative management for mesenteric ischemia. Early identification of patients at risk and the appropriate diagnostic testing are stressed. Nurses armed with the knowledge of this condition are better able to provide safe care to their patients. ©2018 American Association of Critical-Care Nurses.

  5. Anti-inflammatory effects of Chinese medicinal herbs on cerebral ischemia.

    PubMed

    Su, Shan-Yu; Hsieh, Ching-Liang

    2011-07-09

    Recent studies have demonstrated the importance of anti-inflammation, including cellular immunity, inflammatory mediators, reactive oxygen species, nitric oxide and several transcriptional factors, in the treatment of cerebral ischemia. This article reviews the roles of Chinese medicinal herbs as well as their ingredients in the inflammatory cascade induced by cerebral ischemia. Chinese medicinal herbs exert neuroprotective effects on cerebral ischemia. The effects include inhibiting the activation of microglia, decreasing levels of adhesion molecules such as intracellular adhesion molecule-1, attenuating expression of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α, reducing inducible nitric oxide synthase and reactive oxygen species, and regulating transcription factors such as nuclear factor-κB.

  6. [Application of IMA and H-FABP in Forensic Diagnosis of Sudden Cardiac Death].

    PubMed

    Zhu, Z L; Wang, P; You, J B; Yue, Q; Wang, P F; Wang, X L; Zhang, C N; Zhang, G H

    2017-08-01

    Acute myocardial ischemia is the most common cause of sudden cardiac death. The diagnosis of early myocardial ischemia is a hot point in forensic medicine, which is also an early and important part for a prevention against myocardial infarction. This paper conducts a comprehensive discussion of the structure, function, clinical value and forensic medicine application prospect of ischemia modified albumin (IMA) and heart-type fatty acid binding protein (H-FABP), aiming to determine whether the two proteins can be used as biochemical detection indicators of early myocardial ischemia for the diagnosis of sudden cardiac death in forensic medicine. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  7. L-NAME reduces infarction, neurological deficit and blood-brain barrier disruption following cerebral ischemia in mice.

    PubMed

    Ding-Zhou, Li; Marchand-Verrecchia, Catherine; Croci, Nicole; Plotkine, Michel; Margaill, Isabelle

    2002-12-20

    The role of nitric oxide (NO) in the development of post-ischemic cerebral infarction has been extensively examined, but fewer studies have investigated its role in other outcomes. In the present study, we first determined the temporal evolution of infarct volume, NO production, neurological deficit and blood-brain barrier disruption in a model of transient focal cerebral ischemia in mice. We then examined the effect of the nonselective NO-synthase inhibitor N(omega)-nitro-L-arginine-methylester (L-NAME). L-NAME given at 3 mg/kg 3 h after ischemia reduced by 20% the infarct volume and abolished the increase in brain NO production evaluated by its metabolites (nitrites/nitrates) 48 h after ischemia. L-NAME with this protocol also reduced the neurological deficit evaluated by the grip test and decreased by 65% the extravasation of Evans blue, an index of blood-brain barrier breakdown. These protective activities of L-NAME suggest that NO has multiple deleterious effects in cerebral ischemia.

  8. Platelets, diabetes and myocardial ischemia/reperfusion injury.

    PubMed

    Russo, Isabella; Penna, Claudia; Musso, Tiziana; Popara, Jasmin; Alloatti, Giuseppe; Cavalot, Franco; Pagliaro, Pasquale

    2017-05-31

    Mechanisms underlying the pathogenesis of ischemia/reperfusion injury are particularly complex, multifactorial and highly interconnected. A complex and entangled interaction is also emerging between platelet function, antiplatelet drugs, coronary diseases and ischemia/reperfusion injury, especially in diabetic conditions. Here we briefly summarize features of antiplatelet therapy in type 2 diabetes (T2DM). We also treat the influence of T2DM on ischemia/reperfusion injury and how anti-platelet therapies affect post-ischemic myocardial damage through pleiotropic properties not related to their anti-aggregating effects. miRNA-based signature associated with T2DM and its cardiovascular disease complications are also briefly considered. Influence of anti-platelet therapies and different effects of healthy and diabetic platelets on ischemia/reperfusion injury need to be further clarified in order to enhance patient benefits from antiplatelet therapy and revascularization. Here we provide insight on the difficulty to reduce the cardiovascular risk in diabetic patients and report novel information on the cardioprotective role of widely used anti-aggregant drugs.

  9. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury

    PubMed Central

    Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun

    2013-01-01

    It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629

  10. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes.

    PubMed

    Seo, Jeong Yeol; Lee, Choong Hyun; Cho, Jun Hwi; Choi, Jung Hoon; Yoo, Ki-Yeon; Kim, Dae Won; Park, Ok Kyu; Li, Hua; Choi, Soo Young; Hwang, In Koo; Won, Moo-Ho

    2009-10-15

    Seleno-organic compound, ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), is a substrate with radical-scavenging activity. In this study, we observed the neuroprotective effects of ebselen against ischemic damage and on GABA shunt enzymes such as glutamic acid decarboxylase 67 (GAD67), GABA transaminse (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) in the hippocampal CA1 region after 5 min of transient forebrain ischemia in gerbils. For this, vehicle (physiological saline) or ebselen was administered 30 min before or after ischemia/reperfusion and sacrificed 4 days after ischemia/reperfusion. The administration of ebselen significantly reduced the neuronal death in the CA1 region induced by ischemia/reperfusion. In addition, treatment with ebselen markedly elevated GAD67, GABA-T and SSADH immunoreactivity and their protein levels compared to that in the vehicle-treated group, respectively. These results suggest that ebselen protects neurons from ischemic damage via control of the expressions of GABA shunt enzymes to enter the TCA cycle.

  11. Effects of Physical Activity and Ginkgo Biloba on Cognitive Function and Oxidative Stress Modulation in Ischemic Rats.

    PubMed

    Vaghef, Ladan; Bafandeh Gharamaleki, Hassan

    2017-09-01

    Either exercise or Ginkgo biloba is reported to improve cognitive functioning. The aim of this study is to compare the protective effects of forced exercise and Ginkgo biloba on oxidative stress as well as memory impairments induced by transient cerebral ischemia. Adult male Wistar rats were treated with treadmill running or Ginkgo biloba extract for 2 weeks before cerebral ischemia. Memory was assessed using a Morris water maze (MWM) task. At the end of the behavioral testing, oxidative stress biomarkers were evaluated in the hippocampus tissue. As expected, the cerebral ischemia induced memory impairment in the MWM task, and oxidative stress in the hippocampus. These effects were significantly prevented by treadmill running. Indeed, it ameliorated oxidative stress and memory deficits induced by ischemia. In contrast, Ginkgo biloba was not as effective as exercise in preventing ischemia-induced memory impairments. The results confirmed the neuroprotective effects of treadmill running on hippocampus-dependent memory.

  12. Ischemia-reperfusion injury of the cochlea: pharmacological strategies for cochlear protection and implications of glutamate and reactive oxygen species.

    PubMed

    Tabuchi, Keiji; Nishimura, Bungo; Tanaka, Shuho; Hayashi, Kentaro; Hirose, Yuki; Hara, Akira

    2010-06-01

    A large amount of energy produced by active aerobic metabolism is necessary for the cochlea to maintain its function. This makes the cochlea vulnerable to blockade of cochlear blood flow and interruption of the oxygen supply. Although certain forms of human idiopathic sudden sensorineural hearing loss reportedly arise from ischemic injury, the pathological mechanism of cochlear ischemia-reperfusion injury has not been fully elucidated. Recent animal studies have shed light on the mechanisms of cochlear ischemia-reperfusion injury. It will help in the understanding of the pathology of cochlear ischemia-reperfusion injury to classify this injury into ischemic injury and reperfusion injury. Excitotoxicity, mainly observed during the ischemic period, aggravates the injury of primary auditory neurons. On the other hand, oxidative damage induced by hydroxyl radicals and nitric oxide enhances cochlear reperfusion injury. This article briefly summarizes the generation mechanisms of cochlear ischemia-reperfusion injury and potential therapeutic targets that could be developed for the effective management of this injury type.

  13. Radix Ilicis Pubescentis total flavonoids combined with mobilization of bone marrow stem cells to protect against cerebral ischemia/reperfusion injury

    PubMed Central

    Miao, Ming-san; Guo, Lin; Li, Rui-qi; Ma, Xiao

    2016-01-01

    Previous studies have shown that Radix Ilicis Pubescentis total flavonoids have a neuroprotective effect, but it remains unclear whether Radix Ilicis Pubescentis total flavonoids have a synergistic effect with the recombinant human granulocyte colony stimulating factor-mobilized bone marrow stem cell transplantation on cerebral ischemia/reperfusion injury. Rat ischemia models were administered 0.3, 0.15 and 0.075 g/kg Radix Ilicis Pubescentis total flavonoids from 3 days before modeling to 2 days after injury. Results showed that Radix Ilicis Pubescentis total flavonoids could reduce pathological injury in rats with cerebral ischemia/reperfusion injury. The number of Nissl bodies increased, Bax protein expression decreased, Bcl-2 protein expression increased and the number of CD34-positive cells increased. Therefore, Radix Ilicis Pubescentis total flavonoids can improve the bone marrow stem cell mobilization effect, enhance the anti-apoptotic ability of nerve cells, and have a neuroprotective effect on cerebral ischemia/reperfusion injury in rats. PMID:27073381

  14. Effect of desipramine on spontaneous activity of hippocampal CA1 neuron after transient cerebral ischemia in rats.

    PubMed

    Zhu, Z T; Zhang, X X; Liu, J; Jin, G Z

    1996-01-01

    To study the spontaneous firing of CA1 neurons in rat hippocampus after transient cerebral ischemia and the effect of desipramine (Des) on the post-ischemic electric activity of CA1 neurons. Single-unit extracellular recordings were performed in rats on d 3 after 10 min of cerebral ischemia by occlusion of 4 arteries. Des and saline were injected into a tail vein. The histological changes of CA1 neurons was assessed by the neuronal density of the CA1 sector. The spontaneous firing rate of CA1 neurons on d 3 after ischemia was enhanced in comparison with the control value. Des (0.2 and 0.4 mg.kg-1, i.v., n = 5 & 6, respectively) reduced dose-dependently the increase of firing rate with maximal inhibition by 6 min (58% & 85%) to 9 min (69% & 94%) (vs vehicle group, P < 0.01). About 50% cells in CA1 region showed necrotic changes. Des antagonized the hyperexcitability of CA1 neurons after cerebral ischemia.

  15. Influence of remote ischemic conditioning and tramadol hydrochloride on oxidative stress in kidney ischemia/reperfusion injury in rats.

    PubMed

    Oliveira, Rita de Cássia Silva de; Brito, Marcus Vinicius Henriques; Ribeiro, Rubens Fernando Gonçalves; Oliveira, Leonam Oliver Durval; Monteiro, Andrew Moraes; Brandão, Fernando Mateus Viegas; Cavalcante, Lainy Carollyne da Costa; Gouveia, Eduardo Henrique Herbster; Henriques, Higor Yuri Bezerra

    2017-03-01

    To evaluate the effects of tramadol hydrochloride associated to remote ischemic perconditioning on oxidative stress. Twenty five male rats (Wistar) underwent right nephrectomy and were distributed into five groups: Sham group (S); Ischemia/Reperfusion group (I/R) with 30 minutes of renal ischemia; Remote ischemic perconditioning group (Per) with three cycles of 10 minutes of I/R performed during kidney ischemia; Tramadol group (T) treated with tramadol hydrochloride (40mg/kg); remote ischemic perconditioning + Tramadol group (Per+T) with both treatments. Oxidative stress was assessed after 24 hours of reperfusion. Statistical differences were observed in MDA levels between I/R group with all groups (p<0.01), in addition there was difference between Tramadol with Sham, Per and Per+T groups (p<0.05), both in plasma and renal tissue. Remote ischemic perconditioning was more effective reducing renal ischemia-reperfusion injury than administration of tramadol or association of both treatments.

  16. Influence of Fiber-Type Composition on Recovery from Tourniquet-Induced Skeletal Muscle Ischemia-Reperfusion Injury

    DTIC Science & Technology

    2008-03-11

    slow - twitch muscle , would be less vulnerable to tourniquet-induced ischemia–reperfusion than the plantaris (Plant), a predominantly fast - twitch muscle ...predominantly fast - and slow - twitch muscle reported after 2–3 h of ischemia will be erased after longer periods of ischemia (Carvalho et al. 1997a). The...functional loss in predominantly fast - twitch muscle than in predominantly slow - twitch muscle in response

  17. The Role of Erythropoietin Signaling in Human Cancer

    DTIC Science & Technology

    2004-01-01

    Semenza GL. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia - reperfusion injury . Circulation, 2003...against ischemia - reperfusion injury . Circulation, 2003; 108:79-85. 18. Wu H, Lee SH, Gao J, Liu X and Iruela-Arispe ML. Inactivation of... injury of the brain and spinal cord39, 40. It prevents hypoxia/ ischemia -induced DNA fragmentation in an experimental model of perinatal asphyxia41. Epo

  18. Atypical Presentation of Ocular Toxoplasmosis: A Case Report of Exudative Retinal Detachment and Choroidal Ischemia.

    PubMed

    Al-Zahrani, Yahya A; Al-Dhibi, Hassan A; Al-Abdullah, Abdulelah A

    2016-01-01

    A 24-year-old healthy male presented with a chief complaint of blurred vision in the right eye for 1-week. Fundus examination indicated right exudative retinal detachment and choroidal ischemia. The patient responded well to anti-toxoplasmosis medications and steroids. Exudative retinal detachment and choroidal ischemia are atypical presentations of ocular toxoplasmosis. However, both conditions responded well to anti.parasitic therapy with steroid.

  19. Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia.

    PubMed

    Nivison-Smith, Lisa; Khoo, Pauline; Acosta, Monica L; Kalloniatis, Michael

    2018-02-01

    Retinal ischemia is involved in the pathogenesis of many major vision threatening diseases. Vinpocetine is a natural drug, which has a range of neuroprotective actions against retinal ischemia including modulating cation flow, improving metabolic activity and preventing apoptosis. The exact mechanism behind these actions remains unknown but may involve glutamate receptors, major components of the ischemic cascade. This study examined the effects of vinpocetine in association with specific ionotropic glutamate receptor agonists: N-methyl-D-aspartate (NMDA) and kainate. Vinpocetine's actions to improve cation channel permeability and cell marker immunoreactivity following ischemia appeared to be limited to NMDA activation with no changes observed following kainate stimulation. Vinpocetine's actions were lost in the presence of an NMDA receptor inhibitor further suggesting they may be secondary to NMDA receptor activation. NMDA receptor function was also necessary for vinpocetine's actions on glucose availability during ischemia but not lactate dehydrogenase (LDH) activity in the ischemic retina suggesting not all of vinpocetine's actions are linked to NMDA receptor function. These results may explain vinpocetine's effectiveness as a neuroprotective agent as the NMDA receptor is implicated in the pathogenesis of ischemia in a range of tissues of the central nervous system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sildenafil Attenuates Hepatocellular Injury after Liver Ischemia Reperfusion in Rats: A Preliminary Study

    PubMed Central

    Savvanis, Spyridon; Nastos, Constantinos; Tasoulis, Marios-Konstantinos; Papoutsidakis, Nikolaos; Demonakou, Maria; Karmaniolou, Iosifina; Arkadopoulos, Nikolaos; Smyrniotis, Vassilios; Theodoraki, Kassiani

    2014-01-01

    We evaluated the role of sildenafil in a rat liver ischemia-reperfusion model. Forty male rats were randomly allocated in four groups. The sham group underwent midline laparotomy only. In the sildenafil group, sildenafil was administered intraperitoneally 60 minutes before sham laparotomy. In the ischemia-reperfusion (I/R) group, rats were subjected to 45 minutes of hepatic ischemia followed by 120 minutes of reperfusion, while in the sild+I/R group rats were subjected to a similar pattern of I/R after the administration of sildenafil, 60 minutes before ischemia. Two hours after reperfusion, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured and histopathological examination of the lobes subjected to ischemia as well as TUNEL staining for apoptotic bodies was performed. Additionally, myeloperoxidase (MPO) activity and the expression of intercellular adhesion molecule-1 (ICAM-1) were analyzed. Serum markers of hepatocellular injury were significantly lower in the sild+I/R group, which also exhibited lower severity of histopathological lesions and fewer apoptotic bodies, as compared to the I/R group. The I/R group showed significantly higher MPO activity and higher expression of ICAM-1, as compared to the sild+I/R group. Use of sildenafil as a preconditioning agent in a rat model of liver I/R exerted a protective effect. PMID:24999378

  1. Grade 3 ischemia on the admission electrocardiogram is associated with severe microvascular injury on cardiac magnetic resonance imaging after ST elevation myocardial infarction.

    PubMed

    Weaver, James C; Rees, David; Prasan, Ananth M; Ramsay, David D; Binnekamp, Maurits F; McCrohon, Jane A

    2011-01-01

    Grade 3 ischemia during ST elevation myocardial infarction (STEMI) is defined as ST elevation with distortion of the terminal portion of the QRS on electrocardiogram (ECG). The aim of this study was to evaluate the effect of ischemic grade on cardiac magnetic resonance (CMR) imaging infarct characteristics such as infarct size, microvascular obstruction (MVO), intramyocardial hemorrhage (IMH), and myocardial salvage. Patients with STEMI treated with primary percutaneous coronary intervention had a 12-lead ECG on presentation for analysis of ischemic grade. Gadolinium-enhanced CMR imaging was performed within 7 days to assess infarct size, MVO, IMH, and myocardial salvage. Of the 37 patients enrolled in the study, grade 3 ischemia was present in 32%. Those with grade 3 ischemia had higher peak troponin I levels (P = .013), more MVO (P < .001), more IMH (P < .001), larger infarct size (P = .025), and less myocardial salvage (P = .012). Regression analysis found that grade 3 ischemia, infarct size, and peak troponin I level were significantly associated with MVO and IMH. Grade 3 ischemia on the admission ECG during STEMI is closely associated with the development of severe microvascular damage on CMR imaging. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  2. Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival.

    PubMed

    Renault, Marie-Ange; Chapouly, Candice; Yao, Qinyu; Larrieu-Lahargue, Frédéric; Vandierdonck, Soizic; Reynaud, Annabel; Petit, Myriam; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Traiffort, Elisabeth; Ruat, Martial; Duplàa, Cécile; Couffinhal, Thierry; Desgranges, Claude; Gadeau, Alain-Pierre

    2013-03-01

    Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.

  3. Prolonged Ischemia Triggers Necrotic Depletion of Tissue Resident Macrophages to Facilitate Inflammatory Immune Activation in Liver Ischemia Reperfusion Injury

    PubMed Central

    Yue, Shi; Zhou, Haoming; Wang, Xuehao; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.; Zhai, Yuan

    2017-01-01

    Although mechanisms of immune activation against liver ischemia reperfusion injury (IRI) have been studied extensively, questions regarding liver resident macrophages, i.e., Kupffer cells, remain controversial. Recent progress in the biology of tissue resident macrophages implicates homeostatic functions of KCs. This study aims to dissect responses and functions of KCs in liver IRI. In a murine liver partial warm ischemia model, we analyzed liver resident vs. infiltrating macrophages by fluorescence-activated cell sorting (FACS) and immunofluorescence staining. Our data showed that liver immune activation by IR was associated with not only infiltrations/activations of peripheral macrophages (iMØ), but also necrotic depletion of KCs. Inhibition of Receptor Interacting Protein 1 (RIP1) by necrostatin-1s protected KCs from ischemia-induce depletion, resulting in the reduction of iMØ infiltration, suppression of pro-inflammatory immune activation and protection of livers from IRI. The depletion of KCs by clodronate-liposomes abrogated these effects of Nec-1s. Additionally, liver reconstitutions with KCs post-ischemia exerted anti-inflammatory/cytoprotective effects against IRI. These results reveal a unique response of KCs against liver IR, i.e., RIP-1-dependent necrosis, which constitutes a novel mechanism of liver inflammatory immune activation in the pathogenesis of liver IRI. PMID:28289160

  4. Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway.

    PubMed

    Zhang, Shuang-Wei; Liu, Yu; Wang, Fang; Qiang, Jiao; Liu, Pan; Zhang, Jun; Xu, Jin-Wen

    2017-01-01

    The protective effects of ilexsaponin A on ischemia-reperfusion-induced myocardial injury were investigated. Myocardial ischemia/reperfusion model was established in male Sprague-Dawley rats. Myocardial injury was evaluated by TTC staining and myocardial marker enzyme leakage. The in vitro protective potential of Ilexsaponin A was assessed on hypoxia/reoxygenation cellular model in neonatal rat cardiomyocytes. Cellular viability and apoptosis were evaluated by MTT and TUNEL assay. Caspase-3, cleaved caspase-3, bax, bcl-2, p-Akt and Akt protein expression levels were detected by western-blot. Ilexsaponin A treatment was able to attenuate the myocardial injury in ischemia/reperfusion model by reducing myocardial infarct size and lower the serum levels of LDH, AST and CK-MB. The in vitro study also showed that ilexsaponin A treatment could increase cellular viability and inhibit apoptosis in hypoxia/reoxygenation cardiomyocytes. Proapoptotic proteins including caspase-3, cleaved caspase-3 and bax were significantly reduced and anti-apoptotic protein bcl-2 was significantly increased by ilexsaponin A treatment in hypoxia/reoxygenation cardiomyocytes. Moreover, Ilexsaponin A treatment was able to increase the expression levels of p-Akt in hypoxia/reoxygenation cellular model and myocardial ischemia/reperfusion animal model. Coupled results from both in vivo and in vitro experiments indicate that Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway.

  5. Assessment of Renal Ischemia By Optical Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, J T; Demos, S; Michalopoulou, A

    2004-01-07

    Introduction: No reliable method currently exists for quantifying the degree of warm ischemia in kidney grafts prior to transplantation. We describe a method for evaluating pretransplant warm ischemia time using optical spectroscopic methods. Methods: Lewis rat kidney vascular pedicles were clamped unilaterally in vivo for 0, 5, 10, 20, 30, 60, 90 or 120 minutes; 8 animals were studied at each time point. Injured and contra-lateral control kidneys were then flushed with Euro-Collins solution, resected and placed on ice. 335 nm excitation autofluorescence as well as cross polarized light scattering images were taken of each injured and control kidney usingmore » filters of various wavelengths. The intensity ratio of the injured to normal kidneys was compared to ischemia time. Results: Autofluorescence intensity ratios through a 450 nm filter and light scattering intensity ratios through an 800 nm filter both decreased significantly with increasing ischemia time (p < 0.0001 for each method, one-way ANOVA). All adjacent and non-adjacent time points between 0 and 90 minutes were distinguishable using one of these two modalities by Fisher's PLSD. Conclusions: Optical spectroscopic methods can accurately quantify warm ischemia time in kidneys that have been subsequently hypothermically preserved. Further studies are needed to correlate results with physiological damage and posttransplant performance.« less

  6. Protective effect of crataegus extract on the cardiac mechanical dysfunction in isolated perfused working rat heart.

    PubMed

    Nasa, Y; Hashizume, H; Hoque, A N; Abiko, Y

    1993-09-01

    The effect of the water-soluble fraction of Crataegus (Crataegus extract) on the cardiac mechanical and metabolic function was studied in the isolated, perfused working rat heart during ischemia and reperfusion. Ischemia (15 min) was produced by removing afterload pressure, and reperfusion (20 min) was produced by returning it to the original pressure. In the control (no drug) heart, ischemia decreased mechanical function to the lowest level, which did not recover even after the end of reperfusion. Crataegus extract (0.01 or 0.05%) was applied to the heart from 5 min before ischemia through the first 10 min after reperfusion. With the high concentration of Crataegus extract (0.05%) the mechanical function recovered during reperfusion incompletely without increasing coronary flow, but the low concentration of Crataegus extract (0.01%) did not. In the heart treated with the high concentration of Crataegus extract, the reperfusion-induced recovery of the energy metabolism was accelerated, and the level of lactate during ischemia was lower than that in the control heart, although the myocardial levels of free fatty acids during ischemia and reperfusion were not greatly affected. These results demonstrate that Crataegus extract (0.05%) has a cardioprotective effect on the ischemic-reperfused heart, and that the cardioprotective effect is not accompanied by an increase in coronary flow.

  7. Texture Analysis of Poly-Adenylated mRNA Staining Following Global Brain Ischemia and Reperfusion

    PubMed Central

    Szymanski, Jeffrey J.; Jamison, Jill T.; DeGracia, Donald J.

    2011-01-01

    Texture analysis provides a means to quantify complex changes in microscope images. We previously showed that cytoplasmic poly-adenylated mRNAs form mRNA granules in post-ischemic neurons and that these granules correlated with protein synthesis inhibition and hence cell death. Here we utilized the texture analysis software MaZda to quantify mRNA granules in photomicrographs of the pyramidal cell layer of rat hippocampal region CA3 around 1 hour of reperfusion after 10 min of normothermic global cerebral ischemia. At 1 hour reperfusion, we observed variations in the texture of mRNA granules amongst samples that were readily quantified by texture analysis. Individual sample variation was consistent with the interpretation that animal-to-animal variations in mRNA granules reflected the time-course of mRNA granule formation. We also used texture analysis to quantify the effect of cycloheximide, given either before or after brain ischemia, on mRNA granules. If administered before ischemia, cycloheximide inhibited mRNA granule formation, but if administered after ischemia did not prevent mRNA granulation, indicating mRNA granule formation is dependent on dissociation of polysomes. We conclude that texture analysis is an effective means for quantifying the complex morphological changes induced in neurons by brain ischemia and reperfusion. PMID:21477879

  8. Glomerular loss after arteriovenous and arterial clamping for renal warm ischemia in a swine model.

    PubMed

    Bechara, Gustavo Ruschi; Damasceno-Ferreira, José Aurelino; Abreu, Leonardo Albuquerque Dos Santos; Costa, Waldemar Silva; Sampaio, Francisco José Barcellos; Pereira-Sampaio, Marco Aurélio; Souza, Diogo Benchimol De

    2016-11-01

    To evaluate the glomerular loss after arteriovenous or arterial warm ischemia in a swine model. Twenty four pigs were divided into Group Sham (submitted to all surgical steps except the renal ischemia), Group AV (submitted to 30 minutes of warm ischemia by arteriovenous clamping of left kidney vessels), and Group A (submitted to 30 minutes of ischemia by arterial clamping). Right kidneys were used as controls. Weigh, volume, cortical volume, glomerular volumetric density (Vv[Glom]), volume-weighted glomerular volume (VWGV), and the total number of glomeruli were measured for each organ. Group AV showed a 24.5% reduction in its left kidney Vv[Glom] and a 25.4% reduction in the VWGV, when compared to the right kidney. Reductions were also observed when compared to kidneys of sham group. There was a reduction of 19.2% in the total number of glomeruli in AV kidneys. No difference was observed in any parameters analyzed on the left kidneys from group A. Renal warm ischemia of 30 minutes by arterial clamping did not caused significant glomerular damage, but arteriovenous clamping caused significant glomerular loss in a swine model. Clamping only the renal artery should be considered to minimize renal injury after partial nephrectomies.

  9. Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Calcium and nitric oxide involvement.

    PubMed

    Nadjafi, S; Ebrahimi, S-A; Rahbar-Roshandel, N

    2015-12-01

    This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production.

  10. Evaluation of hypoxic tissue dynamics with 18F-FMISO PET in a rat model of permanent cerebral ischemia.

    PubMed

    Rojas, Santiago; Herance, José Raul; Abad, Sergio; Jiménez, Xavier; Pareto, Deborah; Ruiz, Alba; Torrent, Èlia; Figueiras, Francisca P; Popota, Foteini; Fernández-Soriano, Francisco J; Planas, Anna M; Gispert, Juan D

    2011-06-01

    [¹⁸F]Fluoromisonidazole (¹⁸F-FMISO) is a nitroimidazole derivative that has been proposed as a positron emission tomography (PET) radiotracer to detect hypoxic tissue in vivo. This compound accumulates in hypoxic but viable tissue and may be a good candidate for evaluating the ischemic penumbra. We evaluated the time course of ¹⁸F-FMISO uptake using PET in a rat model of permanent cerebral ischemia and the correlation with histological changes. Rats (n = 14) were subjected to permanent ischemia by intraluminal occlusion of the middle cerebral artery in order to assess by PET the uptake of ¹⁸F-FMISO at various times over 24 h following ischemia. The PET results were compared to histological changes with Nissl and 2,3,5 triphenyltetrazolium chloride staining. Elevated uptake of ¹⁸F-FMISO was detected in the infarcted area up to 8 h after occlusion but was no longer detected at 24 h, a time point coincident with pan necrosis of the tissue. Our findings suggest that salvageable tissue persists for up to 8 h in this rat model of brain ischemia. We propose ¹⁸F-FMISO PET as a tool for evaluating the ischemic penumbra after cerebral ischemia.

  11. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    PubMed

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  12. Sleep Is Critical for Remote Preconditioning-Induced Neuroprotection.

    PubMed

    Brager, Allison J; Yang, Tao; Ehlen, J Christopher; Simon, Roger P; Meller, Robert; Paul, Ketema N

    2016-11-01

    Episodes of brief limb ischemia (remote preconditioning) in mice induce tolerance to modeled ischemic stroke (focal brain ischemia). Since stroke outcomes are in part dependent on sleep-wake history, we sought to determine if sleep is critical for the neuroprotective effect of limb ischemia. EEG/EMG recording electrodes were implanted in mice. After a 24 h baseline recording, limb ischemia was induced by tightening an elastic band around the left quadriceps for 10 minutes followed by 10 minutes of release for two cycles. Two days following remote preconditioning, a second 24 h EEG/EMG recording was completed and was immediately followed by a 60-minute suture occlusion of the middle cerebral artery (modeled ischemic stroke). This experiment was then repeated in a model of circadian and sleep abnormalities ( Bmal1 knockout [KO] mice sleep 2 h more than wild-type littermates). Brain infarction was determined by vital dye staining, and sleep was assessed by trained identification of EEG/EMG recordings. Two days after limb ischemia, wild-type mice slept an additional 2.4 h. This additional sleep was primarily comprised of non-rapid eye movement (NREM) sleep during the middle of the light-phase (i.e., naps). Repeating the experiment but preventing increases in sleep after limb ischemia abolished tolerance to ischemic stroke. In Bmal1 knockout mice, remote preconditioning did not increase daily sleep nor provide tolerance to subsequent focal ischemia. These results suggest that sleep induced by remote preconditioning is both sufficient and necessary for its neuroprotective effects on stroke outcome. © 2016 Associated Professional Sleep Societies, LLC.

  13. Limited utility of MRA for acute bowel ischemia after portal venous phase CT.

    PubMed

    Shetty, Anup S; Mellnick, Vincent M; Raptis, Constantine; Loch, Ronald; Owen, Joseph; Bhalla, Sanjeev

    2015-10-01

    Mesenteric ischemia and ischemic colitis are uncommon but potentially life-threatening causes of acute abdominal pain. Portal venous phase computed tomography (CT) is routinely ordered in the emergency room setting for abdominal pain, but subsequent MR angiography may be requested for additional evaluation of the mesenteric vasculature. We compare the concordance of CT and magnetic resonance angiography (MRA) for acute bowel ischemia. Thirty-two patients who underwent contrast-enhanced MRA for bowel ischemia after having undergone CT evaluation within the preceding 2 weeks were identified. A retrospective review of imaging, treatment history, surgical, and pathology reports was conducted. Two radiologists each reviewed the imaging studies in a blinded fashion. Ten cases of bowel ischemia were confirmed by endoscopy and/or surgical pathology. CT correctly identified bowel findings in all cases. Intraobserver agreement between CT and MRA for all vessels was 0.68 and 0.63, highest for the superior mesenteric artery. Interobserver agreement was 0.74 for MRA and 0.78 for CT. Vascular findings were only directly mentioned in 10 of 32 CT reports (and 7 of 10 cases with confirmed bowel ischemia). MRA only detected two additional or alternative diagnoses. Portal venous phase CT and MRA demonstrate a high degree of concordance for vascular evaluation. Reviewed CT examinations were sufficient to assess the patency of the mesenteric vasculature, but vascular findings were not reported in most cases. A direct description within the report may have obviated the request for further MR imaging. MRA adds little value after portal venous CT in assessing bowel ischemia.

  14. Electroencephalographic Response to Sodium Nitrite May Predict Delayed Cerebral Ischemia After Severe Subarachnoid Hemorrhage.

    PubMed

    Garry, Payashi S; Rowland, Matthew J; Ezra, Martyn; Herigstad, Mari; Hayen, Anja; Sleigh, Jamie W; Westbrook, Jon; Warnaby, Catherine E; Pattinson, Kyle T S

    2016-11-01

    Aneurysmal subarachnoid hemorrhage often leads to death and poor clinical outcome. Injury occurring during the first 72 hours is termed "early brain injury," with disruption of the nitric oxide pathway playing an important pathophysiologic role in its development. Quantitative electroencephalographic variables, such as α/δ frequency ratio, are surrogate markers of cerebral ischemia. This study assessed the quantitative electroencephalographic response to a cerebral nitric oxide donor (intravenous sodium nitrite) to explore whether this correlates with the eventual development of delayed cerebral ischemia. Unblinded pilot study testing response to drug intervention. Neuroscience ICU, John Radcliffe Hospital, Oxford, United Kingdom. Fourteen World Federation of Neurosurgeons grades 3, 4, and 5 patients (mean age, 52.8 yr [range, 41-69 yr]; 11 women). IV sodium nitrite (10 μg/kg/min) for 1 hour. Continuous electroencephalographic recording for 2 hours. The alpha/delta frequency ratio was measured before and during IV sodium nitrite infusion. Seven of 14 patients developed delayed cerebral ischemia. There was a +30% to +118% (range) increase in the alpha/delta frequency ratio in patients who did not develop delayed cerebral ischemia (p < 0.0001) but an overall decrease in the alpha/delta frequency ratio in those patients who did develop delayed cerebral ischemia (range, +11% to -31%) (p = 0.006, multivariate analysis accounting for major confounds). Administration of sodium nitrite after severe subarachnoid hemorrhage differentially influences quantitative electroencephalographic variables depending on the patient's susceptibility to development of delayed cerebral ischemia. With further validation in a larger sample size, this response may be developed as a tool for risk stratification after aneurysmal subarachnoid hemorrhage.

  15. Dobutamine stress magnetic resonance imaging: a valuable method in the noninvasive diagnosis of ischemic heart disease.

    PubMed

    van Dijkman, Paul R M; Kuijpers, Dirkjan A; Blom, Bernadette M; van Herpen, Gerard

    2002-01-01

    We assessed the clinical applicability of dobutamine stress magnetic resonance imaging (DS-MRI) for the detection of myocardial ischemia and myocardial viability. One hundred patients with suspected coronary artery disease and inconclusive exercise electrocardiography or significant repolarization abnormalities on the resting ECG underwent breath hold DS-MRI (1 Tesla), 4 days after cessation of anti-ischemic medication. Three left ventricular short axis planes were imaged at increasing doses of dobutamine. Recovery of wall thickening in a previously diminished or non contracting segment at low dose dobutamine was considered proof of viability. Development of hypo-, a- or dyskinesia at higher doses of dobutamine was taken to indicate ischemia. If the DS-MRI test was positive for ischemia, coronary angiography was performed. If indicated, this was followed by revascularization. If DS-MRI did not demonstrate ischemia, neither angiography nor revascularization were carried out. Ninety five DS-MRI investigations were available for diagnosis. Forty two patients had DS-MRI scans positive for ischemia and subsequently coronary angiography assessment of the clinical applicability of DS-MRI for the detection of myocardial ischemia was performed. One patient was false-positive. All 53 patients with non-ischemic DS-MRI scans had follow-up for 11-23 months (mean 17 months). One patient died suddenly 2 weeks after the MRI-test. The other 52 patients did not experience any coronary event nor sudden cardiac death. The predictive value of a positive (for ischemia) DS-MRI test is 98% and the predictive value of a negative DS-MRI test is also 98%.

  16. Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain.

    PubMed

    Mun, Chin Hee; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2010-09-01

    Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.

  17. Glycine aggravates ischemia reperfusion-induced acute kidney injury through N-Methyl-D-Aspartate receptor activation in rats.

    PubMed

    Arora, Shiyana; Kaur, Tajpreet; Kaur, Anudeep; Singh, Amrit Pal

    2014-08-01

    The present study was designed to investigate the role of glycine in ischemia reperfusion-induced acute kidney injury (AKI) in rats. The AKI was induced in rats by occluding renal pedicles for 40 min followed by reperfusion for 24 h. The AKI was assessed by measuring creatinine clearance, blood urea nitrogen, plasma uric acid, potassium, fractional excretion of sodium, and microproteinuria. The oxidative stress in renal tissues was assessed by quantification of myeloperoxidase activity, thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. Glycine (100, 200, and 400 mg/kg, i.p.) was administered to rats 30 min before subjecting to AKI. The glycinergic receptor blocker, strychnine (0.75 mg/kg i.p.), and glycine-binding site blocker at N-methyl-D-aspartate (NMDA) receptor, kynurenic acid (300 and 600 mg/kg i.p.), were used in the present study. The ischemia reperfusion induced AKI as witnessed by significant change in plasma, urinary, and tissue parameters employed in the present study. Glycine treatment increased ischemia reperfusion-induced AKI. The treatment with strychnine did not show any protection, whereas kynurenic acid ameliorated renal ischemia reperfusion-induced AKI. The results obtained in present study suggest that glycine increases ischemia reperfusion-induced renal damage through NMDA receptor agonism rather than strychnine-sensitive glycinergic receptors. Hence, it is concluded that glycine aggravates ischemia reperfusion-induced AKI. In addition, the activation of strychnine-insensitive glycine-binding site of NMDA receptors is responsible for its renal-damaging effect rather than strychnine-sensitive glycinergic receptors.

  18. The Akt/GSK-3β pathway mediates flurbiprofen-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rats.

    PubMed

    Sun, Baozhu; Chen, Lin; Wei, Xinbing; Xiang, Yanxiao; Liu, Xiaoqian; Zhang, Xiumei

    2011-06-17

    Apoptosis is one of the major mechanisms of cell death during cerebral ischemia and reperfusion injury. Flurbiprofen has been shown to reduce cerebral ischemia/reperfusion injury in both focal and global cerebral ischemia models, but the mechanism remains unclear. This study aimed to investigate the potential association between the neuroprotective effect of flurbiprofen and the apoptosis inhibiting signaling pathways, in particularly the Akt/GSK-3β pathway. A focal cerebral ischemia rat model was subjected to middle cerebral artery occlusion (MCAO) for 120 min and then treated with flurbiprofen at the onset of reperfusion. The infarct volume and the neurological deficit scores were evaluated at 24h after reperfusion. Cell apoptosis, apoptosis-related proteins and the levels of p-Akt and p-GSK-3β in ischemic penumbra were measured using TUNEL and western blot. The results showed that administration of flurbiprofen at the doses of 5 and 10mg/kg significantly attenuated brain ischemia/reperfusion injury, as shown by a reduction in the infarct volume, neurological deficit scores and cell apoptosis. Moreover, flurbiprofen not only inhibited the expression of Bax protein and p-GSK-3β, but also increased the expression of Bcl-2 protein, the ratio of Bcl-2/Bax as well as the P-Akt level. Taken together, these results suggest that flurbiprofen protects the brain from ischemia/reperfusion injury by reducing apoptosis and this neuroprotective effect may be partly due to the activation of Akt/GSK-3β signaling pathway. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  19. Striatal infarction in the rat causes a transient reduction of tyrosine hydroxylase immunoreactivity in the ipsilateral substantia nigra.

    PubMed

    Soriano, M A; Justicia, C; Ferrer, I; Rodríguez-Farré, E; Planas, A M

    1997-01-01

    Dopaminergic neurons of the substantia nigra pars compacta were examined in the rat brain following striatal infarction subsequent to transient focal cerebral ischemia. Rats had the middle cerebral artery occluded for 2 h or were sham-operated, and tyrosine hydroxylase immunoreactivity was evaluated by Western blot and immunohistochemistry at different times ranging from 1 to 60 days after ischemia. The number of tyrosine hydroxylase-immunoreactive cells in the substantia nigra pars compacta was counted under the light microscope and compared to that in the contralateral side and controls. No changes of tyrosine hydroxylase immunoreactivity were detected in the ipsilateral versus the contralateral substantia nigra of sham-operated rats or 1 day after ischemia. However, a statistically significant reduction of tyrosine hydroxylase-immunoreactive cells became apparent in the ipsilateral compared with the contralateral substantia nigra at 7 and 14 days after ischemia. This reduction showed a clear recovery at 30 days after ischemia, and no signs of difference between the ipsilateral and the contralateral side were apparent by 60 days. Therefore, the reduction of tyrosine hydroxylase immunoreactivity in the ipsilateral substantia nigra was only transiently seen from 1 to 2 weeks following ischemia. The observed loss of tyrosine hydroxylase was not accompanied by signs of cell death or gliosis in the ipsilateral pars compacta. The present results show a transitory reduction of tyrosine hydroxylase immunoreactivity in the ipsilateral substantia nigra pars compacta after focal ischemia and suggest that striatal infarction causes a transient deficit of dopaminergic function.

  20. Investigation of ischemia modified albumin, oxidant and antioxidant markers in acute myocardial infarction

    PubMed Central

    Hazini, Ahmet; Işıldak, İbrahim; Alpdağtaş, Saadet; Önül, Abdullah; Şenel, Ünal; Kocaman, Tuba; Dur, Ali; Iraz, Mustafa; Uyarel, Hüseyin

    2015-01-01

    Introduction Acute myocardial infarction (AMI) is still one of the most common causes of death worldwide. In recent years, for diagnosis of myocardial ischemia, a new parameter, called ischemia modified albumin (IMA), which is thought to be more advantageous than common methods, has been researched. Aim In this study, systematic analysis of parameters considered to be related to myocardial ischemia has been performed, comparing between control and myocardial ischemia groups. Material and methods We selected 40 patients with AMI and 25 healthy controls for this study. Ischemia modified albumin levels, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) antioxidant enzyme activities and non-enzymatic antioxidants such as retinol, α-tocopherol, β-carotene and ascorbic acid levels were investigated in both groups. Glutathione (GSH) and malondialdehyde (MDA) levels, which are indicators of oxidative stress, were compared between patient and control groups. Results Ischemia modified albumin levels were found significantly higher in the AMI diagnosed group when compared with controls. The MDA level was elevated in the patient group, whereas the GSH level was decreased. SOD, GPx and CAT enzyme levels were decreased in the patient group, where it could be presumed that oxidative stress causes the cardiovascular diseases. Conclusions Due to the increased oxidative stress, non-enzymatic and enzymatic antioxidant capacity was affected. Systematic investigation of parameters related to myocardial infarction has been performed, and it is believed that such parameters can contribute to protection and early diagnosis of AMI and understanding the mechanism of development of the disease. PMID:26677379

  1. Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats.

    PubMed

    Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas

    2014-11-01

    Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome.

  2. Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema

    PubMed Central

    Zanotti, Giorgio; Casiraghi, Monica; Abano, John B.; Tatreau, Jason R.; Sevala, Mayura; Berlin, Hilary; Smyth, Susan; Funkhouser, William K.; Burridge, Keith; Randell, Scott H.; Egan, Thomas M.

    2009-01-01

    Toll-like receptors (TLRs) of the innate immune system contribute to noninfectious inflammatory processes. We employed a murine model of hilar clamping (1 h) with reperfusion times between 15 min and 3 h in TLR4-sufficient (C3H/OuJ) and TLR4-deficient (C3H/HeJ) anesthetized mice with additional studies in chimeric and myeloid differentiation factor 88 (MyD88)- and TLR4-deficient mice to determine the role of TLR4 in lung ischemia-reperfusion injury. Human pulmonary microvascular endothelial monolayers were subjected to simulated warm ischemia and reperfusion with and without CRX-526, a competitive TLR4 inhibitor. Functional TLR4 solely on pulmonary parenchymal cells, not bone marrow-derived cells, mediates early lung edema following ischemia-reperfusion independent of MyD88. Activation of MAPKs and NF-κB was significantly blunted and/or delayed in lungs of TLR4-deficient mice as a consequence of ischemia-reperfusion injury, but edema development appeared to be independent of activation of these signaling pathways. Pretreatment with a competitive TLR4 inhibitor prevented edema in vivo and reduced actin cytoskeletal rearrangement and gap formation in pulmonary microvascular endothelial monolayers subjected to simulated warm ischemia and reperfusion. In addition to its well-accepted role to alter gene transcription, functioning TLR4 on pulmonary parenchymal cells plays a key role in very early and profound pulmonary edema in murine lung ischemia-reperfusion injury. This may be due to a novel mechanism: regulation of endothelial cell cytoskeleton affecting microvascular endothelial cell permeability. PMID:19376887

  3. Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats

    PubMed Central

    Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas

    2014-01-01

    Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. Methods: In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. Results: In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Conclusion: Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome. PMID:25429176

  4. Ischemia-reperfusion injury in rat fatty liver: role of nutritional status.

    PubMed

    Caraceni, P; Nardo, B; Domenicali, M; Turi, P; Vici, M; Simoncini, M; De Maria, N; Trevisani, F; Van Thiel, D H; Derenzini, M; Cavallari, A; Bernardi, M

    1999-04-01

    Fatty livers are more sensitive to the deleterious effects of ischemia-reperfusion than normal livers. Nutritional status greatly modulates this injury in normal livers, but its role in the specific setting of fatty liver is unknown. This study aimed to determine the effect of nutritional status on warm ischemia-reperfusion injury in rat fatty livers. Fed and fasted rats with normal or fatty liver induced by a choline deficient diet underwent 1 hour of lobar ischemia and reperfusion. Rat survival was determined for 7 days. Serum transaminases, liver histology and cell ultrastructure were assessed before and after ischemia, and at 30 minutes, 2 hours, 8 hours, and 24 hours after reperfusion. Survival was also determined in fatty fasted rats supplemented with glucose before surgery. The preischemic hepatic glycogen was measured in all groups. Whereas survival was similar in fasted and fed rats with normal liver (90% vs. 100%), fasting dramatically reduced survival in rats with fatty liver (14% vs. 64%, P <.01). Accordingly, fasting and fatty degeneration had a synergistic effect in exacerbating liver injury. Mitochondrial damage was a predominant feature of ultrastructural hepatocyte injury in fasted fatty livers. Glucose supplementation partially prevented the fasting-induced depletion of glycogen and improved the 7-day rat survival to 45%. These data indicate that rat fatty livers exposed to normothermic ischemia-reperfusion injury are much more sensitive to fasting than histologically normal livers. Because glucose supplementation improves both the hepatic glycogen stores and the rat survival, a nutritional repletion procedure may be part of a treatment strategy aimed to prevent ischemia-reperfusion injury in fatty livers.

  5. Exercise may cause myocardial ischemia at the anaerobic threshold in cardiac rehabilitation programs.

    PubMed

    Fuchs, A R C N; Meneghelo, R S; Stefanini, E; De Paola, A V; Smanio, P E P; Mastrocolla, L E; Ferraz, A S; Buglia, S; Piegas, L S; Carvalho, A A C

    2009-03-01

    Myocardial ischemia may occur during an exercise session in cardiac rehabilitation programs. However, it has not been established whether it is elicited when exercise prescription is based on heart rate corresponding to the anaerobic threshold as measured by cardiopulmonary exercise testing. Our objective was to determine the incidence of myocardial ischemia in cardiac rehabilitation programs according to myocardial perfusion SPECT in exercise programs based on the anaerobic threshold. Thirty-nine patients (35 men and 4 women) diagnosed with coronary artery disease by coronary angiography and stress technetium-99m-sestamibi gated SPECT associated with a baseline cardiopulmonary exercise test were assessed. Ages ranged from 45 to 75 years. A second cardiopulmonary exercise test determined training intensity at the anaerobic threshold. Repeat gated-SPECT was obtained after a third cardiopulmonary exercise test at the prescribed workload and heart rate. Myocardial perfusion images were analyzed using a score system of 6.4 at rest, 13.9 at peak stress, and 10.7 during the prescribed exercise (P < 0.05). The presence of myocardial ischemia during exercise was defined as a difference > or = 2 between the summed stress score and summed rest score. Accordingly, 25 (64%) patients were classified as ischemic and 14 (36%) as nonischemic. MIBI-SPECT showed myocardial ischemia during exercise within the anaerobic threshold. The 64% prevalence of ischemia observed in the study should not be looked on as representative of the whole population of patients undergoing exercise programs. Changes in patient care and exercise programs were implemented as a result of our finding of ischemia during the prescribed exercise.

  6. Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms.

    PubMed

    Yang, Zhang; Weian, Chen; Susu, Huang; Hanmin, Wang

    2016-01-15

    The aim of our study was to investigate the protective properties of mangiferin, a natural glucosyl xanthone found in both mango and papaya on the cerebral ischemia-reperfusion injury and the underlying mechanism. Wistar male rats were subjected to middle cerebral artery occlusion for 2h followed by 24h of reperfusion. Mangiferin (25, 50, and 100mg/kg, ig) or 0.5% carboxymethyl cellulose sodium was administered three times before ischemia and once at 2h after the onset of ischemia. Neurological score, infarct volume, and brain water content, some oxidative stress markers and inflammatory cytokines were evaluated after 24h of reperfusion. Treatment with mangiferin significantly ameliorated neurologic deficit, infarct volume and brain water content after cerebral ischemia reperfusion. Mangiferin also reduced the content of malondialdehyde (MDA), IL-1β and TNF-α, and up-regulated the activities of superoxide dismutase (SOD), glutathione (GSH) and IL-10 levels in the brain tissue of rats with the cerebral ischemia-reperfusion injury. Moreover, mangiferin up-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream anti-oxidant protein heme oxygenase-1 (HO-1). The results indicate that mangiferin can play a certain protective role in the cerebral ischemia-reperfusion injury, and the protective effect of mangiferin may be related to the improvement on the antioxidant capacity of brain tissue and the inhibition of overproduction of inflammatory cytokines. The mechanisms are associated with enhancing the oxidant defense systems via the activation of Nrf2/HO-1 pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cardioprotective activity of urocortin by preventing caspase-independent, non-apoptotic death in cultured neonatal rat cardiomyocytes exposed to ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    Research highlights: {yields} Ischemia induces high level of iPLA{sub 2} resulting in caspase-independent myocyte death. {yields} Urocortin causes iPLA{sub 2} down-regulation leading to avoidance of non-apoptotic death. {yields} The survival-promoting effect of urocortin is abrogated by CRH receptor antagonist. -- Abstract: Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemiamore » caused elevation of the phospholipase A{sub 2} (iPLA{sub 2}) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of {approx}10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA{sub 2}, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.« less

  8. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT

    PubMed Central

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M.; Manteufel, Edward J.; Goldspink, Paul H.; Levick, Scott P.

    2015-01-01

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. PMID:26071541

  9. Ischemia/reperfusion-induced injury of forebrain mitochondria and protection by ascorbate.

    PubMed

    Sciamanna, M A; Lee, C P

    1993-09-01

    Complete, reversible forebrain ischemia was induced with a seven-vessel occlusion rat model. Previous studies of ischemic (M. A. Sciamanna, J. Zinkel, A. Y. Fabi, and C. P. Lee, 1992, Biochim. Biophys. Acta 1134, 223-232) rat brain mitochondria (RBM) showed that ischemia of 30 min caused an approximately 60% decrease in State 3 respiratory rates with both succinate and NAD-linked substrates and also in energy-linked Ca2+ transport. No significant change was seen in the State 4 rates. The inhibition of respiration could be prevented by EGTA or ruthenium red. In this paper it is shown that reperfusion (5 h) following ischemia (30 min) further impaired RBM respiratory activities (succinate and NAD-linked substrates). The presence of EGTA or ruthenium red in the assay medium did not protect against ischemia/reperfusion-induced injury. The effects of ascorbate, an oxygen radical scavenger, were studied. RBM isolated from ascorbate-treated animals (0.8 mg ascorbate/kg body weight) after ischemia (30 min) alone showed only a slight increase in State 3 (approximately 25%) and a decrease in State 4 (approximately 20%) activities with succinate, when compared to untreated 30-min ischemic animals, whereas, with glutamate+malate little or no effect was seen. The respiratory activities of RBM from ascorbate-treated, ischemic/reperfused (30 min/5 h) rats were restored to approximately 65% of controls levels. Ascorbate protection was dose-dependent with maximum protection at 0.8 mg ascorbate/kg body weight of rat. The k of succinate oxidase-supported Ca2+ uptake also returned to 62% of control values. Protection by ascorbate was most effective when administered prior to the onset of ischemia and provided partial protection when administered after the onset of reperfusion. These results suggest that ischemia-induced injury is primarily mediated by disruption of cellular Ca2+ homeostasis, and reperfusion-induced injury by peroxidative events.

  10. Stress Perfusion Cardiac Magnetic Resonance Imaging Effectively Risk Stratifies Diabetic Patients With Suspected Myocardial Ischemia.

    PubMed

    Heydari, Bobak; Juan, Yu-Hsiang; Liu, Hui; Abbasi, Siddique; Shah, Ravi; Blankstein, Ron; Steigner, Michael; Jerosch-Herold, Michael; Kwong, Raymond Y

    2016-04-01

    Diabetics remain at high risk of cardiovascular disease and mortality despite advancements in medical therapy. Noninvasive cardiac risk profiling is often more difficult in diabetics owing to the prevalence of silent ischemia with unrecognized myocardial infarction, reduced exercise capacity, nondiagnostic electrocardiographic changes, and balanced ischemia from diffuse epicardial coronary atherosclerosis and microvascular dysfunction. A consecutive cohort of 173 patients with diabetes mellitus (mean age, 61.7±11.9 years; 37% women) with suspected myocardial ischemia underwent stress perfusion cardiac magnetic resonance imaging. Patients were evaluated for adverse cardiac events after cardiac magnetic resonance imaging with mean follow-up time of 2.9±2.5 years. Mean hemoglobin A1c for the population was 7.9±1.8%. Primary end point was a composite of cardiac death and nonfatal myocardial infarction. Diabetics with no inducible ischemia (n=94) experienced an annualized event rate of 1.4% compared with 8.2% (P=0.0003) in those with inducible ischemia (n=79). Diabetics without late gadolinium enhancement or inducible ischemia had a low annual cardiac event rate (0.5% per year). The presence of inducible ischemia was the strongest unadjusted predictor (hazard ratio, 4.86; P<0.01) for cardiac death and nonfatal myocardial infarction. This association remained robust in adjusted stepwise multivariable Cox regression analysis (hazard ratio, 4.28; P=0.02). In addition, categorical net reclassification index using 5-year risk cutoffs of 5% and 10% resulted in reclassification of 43.4% of the diabetic cohort with net reclassification index of 0.38 (95% confidence interval, 0.20-0.56; P<0.0001). Stress perfusion cardiac magnetic resonance imaging provided independent prognostic utility and effectively reclassified risk in patients with diabetes mellitus referred for ischemic assessment. Further evaluation is required to determine whether a noninvasive imaging strategy with cardiac magnetic resonance imaging can favorably affect downstream outcomes and improve cost-effectiveness of care in diabetics. © 2016 American Heart Association, Inc.

  11. Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography.

    PubMed

    Sim, Dawn A; Keane, Pearse A; Rajendram, Ranjan; Karampelas, Michael; Selvam, Senthil; Powner, Michael B; Fruttiger, Marcus; Tufail, Adnan; Egan, Catherine A

    2014-07-01

    To investigate the association between peripheral and central ischemia in diabetic retinopathy. Retrospective, cross-sectional. Consecutive ultra-widefield fluorescein angiography images were collected from patients with diabetes over a 12-month period. Parameters quantified include the foveal avascular zone (FAZ) area, peripheral ischemic index, peripheral leakage index, and central retinal thickness measurements, as well as visual acuity. The peripheral ischemia or leakage index was calculated as the area of capillary nonperfusion or leakage, expressed as a percentage of the total retinal area. Forty-seven eyes of 47 patients were included. A moderate correlation was observed between the peripheral ischemia index and FAZ area (r = 0.49, P = .0001). A moderate correlation was also observed between the peripheral leakage index and FAZ area, but only in eyes that were laser naïve (r = 0.44, P = .02). A thinner retina was observed in eyes with macular ischemia (217 ± 81.8 μm vs 272 ± 36.0 μm) (P = .02), but not peripheral ischemia (258 ± 76.3 μm vs 276 ± 68.0 μm) (P = .24). The relationships between different patterns of peripheral and central macular pathology and visual acuity were evaluated in a step-wise multivariable regression model, and the variables that remained independently associated were age (r = 0.33, P = .03), FAZ area (r = 0.45, P = .02), and central retinal thickness (r = 0.38, P = .01), (R(2)-adjusted = 0.36). Ultra-widefield fluorescein angiography provides an insight into the relationships between diabetic vascular complications in the retinal periphery and central macula. Although we observed relationships between ischemia and vascular leakage in the macula and periphery, it was only macular ischemia and retinal thinning that was independently associated with a reduced visual function. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Detection of microcirculatory impairment by transcutaneous oxymetry monitoring during hemodialysis: an observational study

    PubMed Central

    2014-01-01

    Background Little is known about the effects of intermittent hemodialysis on microcirculatory perfusion. The aim of this study is to assess the effects of hemodialysis on microvascular perfusion using transcutaneous oxymetry (TCPO2). Methods In this observational study, hourly TCPO2 measurements were performed during hemodialysis sessions. Ankle brachial index (ABI) was carried out to classify patients according their vascular condition. Results 50 patients (mean age 70 ± 8 years old) were enrolled. Mean TCPO2 decreased significantly on average 23.9% between start and finish of hemodialysis. Severe ischemia (TCPO2 < 30 mmHg) and critical ischemia (TCPO2 < 10 mmHg) occurred during dialysis in 47.1% and 15.5% respectively. Critical ischemia occurred only in limbs with ABI < 0.9 (8.3%) or > 1.3 (28%). Patients with critical ischemia experienced a significantly larger decline in mean blood pressure (32.4 ± 26.1 mmHg vs 12.7 ± 10.7 mmHg; P = 0.007) and a more pronounced ultrafiltration (45.55 ± 16.9 ml/kg vs 35.17 ± 18.2 ml/kg; P = 0.04) compared to patients without ischemia. Clinical outcomes (death or vascular procedures) were five times more frequent in patients who had developed critical ischemia (55.7% vs 10.1% P = 0.01). The elevated age of patients, the low basal value of TCPO2, and the occurrence of critical ischemia were more frequently associated with clinical outcome (P = 0.03, P = 0.048, P = 0.01 respectively). Conclusions This study demonstrates that hemodialysis induces microcirculatory injury, dependent on blood pressure reduction, peripheral vascular state and ultrafiltration. The occurrence of critical ischemia is associated to pejorative patient outcome and therefore, TCPO2 seems to be useful to avoid potential distal tissue damage during hemodialysis. PMID:24400914

  13. Blockade of Hsp20 Phosphorylation Exacerbates Cardiac Ischemia/Reperfusion Injury by Suppressed Autophagy and Increased Cell Death

    PubMed Central

    Qian, Jiang; Ren, Xiaoping; Wang, Xiaohong; Zhang, Pengyuan; Jones, W. Keith; Molkentin, Jeffery D.; Fan, Guo-Chang; Kranias, Evangelia G.

    2009-01-01

    Rationale The levels of a small heat shock protein 20 (Hsp20) and its phosphorylation are increased upon ischemic insults, and overexpression of Hsp20 protects the heart against ischemia/reperfusion injury. However, the mechanism underlying cardioprotection of Hsp20 and especially the role of its phosphorylation in regulating ischemia/reperfusion-induced autophagy, apoptosis and necrosis remain to be clarified. Objective Herein we generated a cardiac-specific overexpression model, carrying non-phosphorylatable Hsp20, where serine 16 was substituted with alanine (Hsp20S16A). By subjecting this model to ischemia/reperfusion, we addressed whether: 1) the cardioprotective effects of Hsp20 are associated with serine 16 phosphorylation; 2) blockade of Hsp20 phosphorylation influences the balance between autophagy and cell death; and 3) the aggregation pattern of Hsp20 is altered by its phosphorylation. Methods and Results Our results demonstrated that Hsp20S16A hearts were more sensitive to ischemia/reperfusion injury, evidenced by lower recovery of contractile function and increased necrosis and apoptosis, compared with non-transgenic (TG) hearts. Interestingly, autophagy was activated in non-TG hearts, but significantly inhibited in Hsp20S16A hearts following ischemia/reperfusion. Accordingly, pre-treatment of Hsp20S16A hearts with rapamycin, an activator of autophagy, resulted in improvement of functional recovery, compared with saline-treated Hsp20S16A hearts. Furthermore, upon ischemia/reperfusion, the oligomerization pattern of Hsp20 appeared to shift to higher aggregates in Hsp20S16A hearts. Conclusion Collectively, these data indicate that blockade of Ser16-Hsp20 phosphorylation attenuates the cardioprotective effects of Hsp20 against ischemia/reperfusion injury, which may be due to suppressed autophagy and increased cell death. Therefore, phosphorylation of Hsp20 at serine 16 may represent a potential therapeutic target in ischemic heart disease. PMID:19850943

  14. Delayed preconditioning with NMDA receptor antagonists in a rat model of perinatal asphyxia.

    PubMed

    Makarewicz, Dorota; Sulejczak, Dorota; Duszczyk, Małgorzata; Małek, Michał; Słomka, Marta; Lazarewicz, Jerzy W

    2014-01-01

    In vitro experiments have demonstrated that preconditioning primary neuronal cultures by temporary application of NMDA receptor antagonists induces long-term tolerance against lethal insults. In the present study we tested whether similar effects also occur in brain submitted to ischemia in vivo and whether the potential benefit outweighs the danger of enhancing the constitutive apoptosis in the developing brain. Memantine in pharmacologically relevant doses of 5 mg/kg or (+)MK-801 (3 mg/kg) was administered i.p. 24, 48, 72 and 96 h before 3-min global forebrain ischemia in adult Mongolian gerbils or prior to hypoxia/ischemia in 7-day-old rats. Neuronal loss in the hippocampal CA1 in gerbils or weight deficit of the ischemic hemispheres in the rat pups was evaluated after 14 days. Also, the number of apoptotic neurons in the immature rat brain was evaluated. In gerbils only the application of (+)MK-801 24 h before ischemia resulted in significant prevention of the loss of pyramidal neurons. In rat pups administration of (+)MK-801 at all studied times before hypoxia-ischemia, or pretreatment with memantine or with hypoxia taken as a positive control 48 to 92 h before the insult, significantly reduced brain damage. Both NMDA receptor antagonists equally reduced the number of apoptotic neurons after hypoxia-ischemia, while (+)MK-801-evoked potentiation of constitutive apoptosis greatly exceeded the effect of memantine. We ascribe neuroprotection induced in the immature rats by the pretreatment with both NMDA receptor antagonists 48 to 92 h before hypoxia-ischemia to tolerance evoked by preconditioning, while the neuroprotective effect of (+)MK-801 applied 24 h before the insults may be attributed to direct consequences of the inhibition of NMDA receptors. This is the first report demonstrating the phenomenon of inducing tolerance against hypoxia-ischemia in vivo in developing rat brain by preconditioning with NMDA receptor antagonists.

  15. [Transfection of hBcl-2 gene protects the liver against ischemia/reperfusion injury in rats during liver transplantation].

    PubMed

    Liu, Ji-tong; Liu, Jing-shi; Jiang, Jin-yu; Zhou, Li-xue; Liang, Gang; Li, Yan-chun

    2010-12-01

    To study the effect of hBcl-2 gene transfer on rat liver against ischemia-reperfusion injury, and explore the feasibility of this approach to reduce ischemia-reperfusion injury in liver transplantation. We constructed the replication-deficient recombinant adenoviruses Adv-EGFP and Adv-Bcl-2 and transfected them into 293 cells and packaged into adenovirus particles for amplification and purification. The empty plasmid vector virus was constructed similarly. Male SD rats were randomized into Adv-Bcl-2-transfected group, Adv-EGFP-transfected group, ischemia-reperfusion group, and sham-operated group, and liver allograft transplantation model was established by sleeve method. In the transfected groups, the recombinant viruses were administered by perfusion through the portal vein, and the ischemia-reperfusion and sham-operated groups received no treatment. Real-time quantitative PCR and Western blotting were used to detect the mRNA and protein expressions of bcl-2 in the liver tissue of each group, and at 0, 60 and 180 min after reperfusion, serum AST, LDH, and MDA levels were measured. Histological changes of the liver cells were evaluated by HE staining. Bcl-2 mRNA and protein expressions in Adv-Bcl-2-transfected group, as compared with those in Adv-EGFP-transfected group and control group, were significantly increased (P<0.01); the serum levels of AST, LDH and MDA in Adv-Bcl-2-transfected group were significantly lower than those of Adv-EGFP-transfected group and ischemia-reperfusion group (P<0.05 or 0.01). Compared with the sham-operated group, Adv-Bcl-2 treatment group showed lessened edema and vacuolar degeneration of the liver cells without patches or spots of necrosis. In ischemia-reperfusion and Adv-EGFP group, HE staining revealed hepatic lobular destruction and extensive liver cell swelling, enlargement, vacuolar degeneration, edema and occasional focal necrosis. Adv-Bcl-2 transfection can induce the expression of bcl-2 gene to reduce ischemia-reperfusion injury of the liver graft in rats.

  16. Inhibition of Bcl-2 Sensitizes Mitochondrial Permeability Transition Pore (MPTP) Opening in Ischemia-Damaged Mitochondria

    PubMed Central

    Chen, Qun; Xu, Haishan; Xu, Aijun; Ross, Thomas; Bowler, Elizabeth; Hu, Ying; Lesnefsky, Edward J.

    2015-01-01

    Background Mitochondria are critical to cardiac injury during reperfusion as a result of damage sustained during ischemia, including the loss of bcl-2. We asked if bcl-2 depletion not only leads to selective permeation of the outer mitochondrial membrane (MOMP) favoring cytochrome c release and programmed cell death, but also favors opening of the mitochondrial permeability transition pore (MPTP). An increase in MPTP susceptibility would support a role for bcl-2 depletion mediated cell death in the calcium overload setting of early reperfusion via MPTP as well as later in reperfusion via MOMP as myocardial calcium content normalizes. Methods Calcium retention capacity (CRC) was used to reflect the sensitivity of the MPTP opening in isolated cardiac mitochondria. To study the relationship between bcl-2 inhibition and MPTP opening, mitochondria were incubated with a bcl-2 inhibitor (HA14-1) and CRC measured. The contribution of preserved bcl-2 content to MPTP opening following ischemia-reperfusion was explored using transgenic bcl-2 overexpressed mice. Results CRC was decreased in mitochondria following reperfusion compared to ischemia alone, indicating that reperfusion further sensitizes to MPTP opening. Incubation of ischemia-damaged mitochondria with increasing HA14-1concentrations increased calcium-stimulated MPTP opening, supporting that functional inhibition of bcl-2 during simulated reperfusion favors MPTP opening. Moreover, HA14-1 sensitivity was increased by ischemia compared to non-ischemic controls. Overexpression of bcl-2 attenuated MPTP opening in following ischemia-reperfusion. HA14-1 inhibition also increased the permeability of the outer membrane in the absence of exogenous calcium, indicating that bcl-2 inhibition favors MOMP when calcium is low. Conclusions The depletion and functional inhibition of bcl-2 contributes to cardiac injury by increasing susceptibility to MPTP opening in high calcium environments and MOMP in the absence of calcium overload. Thus, ischemia-damaged mitochondria with decreased bcl-2 content are susceptible to MPTP opening in early reperfusion and MOMP later in reperfusion when cytosolic calcium has normalized. PMID:25756500

  17. Novel Biomarkers of Arterial and Venous Ischemia in Microvascular Flaps

    PubMed Central

    Nguyen, Gerard K.; Monahan, John F. W.; Davis, Gabrielle B.; Lee, Yong Suk; Ragina, Neli P.; Wang, Charles; Zhou, Zhao Y.; Hong, Young Kwon; Spivak, Ryan M.; Wong, Alex K.

    2013-01-01

    The field of reconstructive microsurgery is experiencing tremendous growth, as evidenced by recent advances in face and hand transplantation, lower limb salvage after trauma, and breast reconstruction. Common to all of these procedures is the creation of a nutrient vascular supply by microsurgical anastomosis between a single artery and vein. Complications related to occluded arterial inflow and obstructed venous outflow are not uncommon, and can result in irreversible tissue injury, necrosis, and flap loss. At times, these complications are challenging to clinically determine. Since early intervention with return to the operating room to re-establish arterial inflow or venous outflow is key to flap salvage, the accurate diagnosis of early stage complications is essential. To date, there are no biochemical markers or serum assays that can predict these complications. In this study, we utilized a rat model of flap ischemia in order to identify the transcriptional signatures of venous congestion and arterial ischemia. We found that the critical ischemia time for the superficial inferior epigastric fasciocutaneus flap was four hours and therefore performed detailed analyses at this time point. Histolgical analysis confirmed significant differences between arterial and venous ischemia. The transcriptome of ischemic, congested, and control flap tissues was deciphered by performing Affymetrix microarray analysis and verified by qRT-PCR. Principal component analysis revealed that arterial ischemia and venous congestion were characterized by distinct transcriptomes. Arterial ischemia and venous congestion was characterized by 408 and 1536>2-fold differentially expressed genes, respectively. qRT-PCR was used to identify five candidate genes Prol1, Muc1, Fcnb, Il1b, and Vcsa1 to serve as biomarkers for flap failure in both arterial ischemia and venous congestion. Our data suggests that Prol1 and Vcsa1 may be specific indicators of venous congestion and allow clinicians to both diagnose and successfully treat microvascular complications before irreversible tissue damage and flap loss occurs. PMID:23977093

  18. Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy.

    PubMed

    Benaron, David A; Parachikov, Ilian H; Friedland, Shai; Soetikno, Roy; Brock-Utne, John; van der Starre, Peter J A; Nezhat, Camran; Terris, Martha K; Maxim, Peter G; Carson, Jeffrey J L; Razavi, Mahmood K; Gladstone, Hayes B; Fincher, Edgar F; Hsu, Christopher P; Clark, F Landon; Cheong, Wai-Fung; Duckworth, Joshua L; Stevenson, David K

    2004-06-01

    The authors evaluated the ability of visible light spectroscopy (VLS) oximetry to detect hypoxemia and ischemia in human and animal subjects. Unlike near-infrared spectroscopy or pulse oximetry (SpO2), VLS tissue oximetry uses shallow-penetrating visible light to measure microvascular hemoglobin oxygen saturation (StO2) in small, thin tissue volumes. In pigs, StO2 was measured in muscle and enteric mucosa during normoxia, hypoxemia (SpO2 = 40-96%), and ischemia (occlusion, arrest). In patients, StO2 was measured in skin, muscle, and oral/enteric mucosa during normoxia, hypoxemia (SpO2 = 60-99%), and ischemia (occlusion, compression, ventricular fibrillation). In pigs, normoxic StO2 was 71 +/- 4% (mean +/- SD), without differences between sites, and decreased during hypoxemia (muscle, 11 +/- 6%; P < 0.001) and ischemia (colon, 31 +/- 11%; P < 0.001). In patients, mean normoxic StO2 ranged from 68 to 77% at different sites (733 measures, 111 subjects); for each noninvasive site except skin, variance between subjects was low (e.g., colon, 69% +/- 4%, 40 subjects; buccal, 77% +/- 3%, 21 subjects). During hypoxemia, StO2 correlated with SpO2 (animals, r2 = 0.98; humans, r2 = 0.87). During ischemia, StO2 initially decreased at -1.3 +/- 0.2%/s and decreased to zero in 3-9 min (r2 = 0.94). Ischemia was distinguished from normoxia and hypoxemia by a widened pulse/VLS saturation difference (Delta < 30% during normoxia or hypoxemia vs. Delta > 35% during ischemia). VLS oximetry provides a continuous, noninvasive, and localized measurement of the StO2, sensitive to hypoxemia, regional, and global ischemia. The reproducible and narrow StO2 normal range for oral/enteric mucosa supports use of this site as an accessible and reliable reference point for the VLS monitoring of systemic flow.

  19. Fasciotomy Reduces Compartment Pressures and Improves Recovery in a Porcine Model of Extremity Vascular Injury and Ischemia/Reperfusion

    DTIC Science & Technology

    2012-10-01

    the study. Ill. ~Ut’i.Jt.t.;l I 1:111V1~ Vascular injury, Extremity\\ Ischemia-rcperfusion, Therapeutic reperfusion, Statin \\ Recovery\\ Neuromuscular...Health Sciences, Bethesda, Maryland Keywords: Vascular injury, Extremity, Ischemia-reperfusion, Therapeutic reperfusion, Statin , Recovery...compartment pressure (pɘ.05) which were directly related to degree of muscle degeneration (pɘ.05) and inversely related to nerve recovery (p<.05

  20. Vinpocetine prevent ischemic cell damage in rat hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauer, D.; Rischke, R.; Beck, T.

    1988-01-01

    The effects of vinpocetine on hippocampal cell damage and local cerebral blood flow (LCBF) were measured in a rat model of forebrain ischemia. Duration of ischemia was 10 min. LCBF was determined after 2 min of recirculation using the /sup 14/C-iodoantipyrine technique. Hippocampal cell loss was quantified histologically 7 days post-ischemia. Intraperitoneal application of vinpocetine 15 min prior to ischemia significantly reduced neuronal cell loss in hippocampal CA 1 sector from 60% to 28%. The drug led to a marked increase in blood flow in cortical areas, whereas LCBF remained unchanged in hippocampus and all other structures measured. It ismore » suggested that the protective effect of vinpocetine does not depend on increased postischemic blood flow.« less

  1. Quantifying the vascular response to ischemia with speckle variance optical coherence tomography

    PubMed Central

    Poole, Kristin M.; McCormack, Devin R.; Patil, Chetan A.; Duvall, Craig L.; Skala, Melissa C.

    2014-01-01

    Longitudinal monitoring techniques for preclinical models of vascular remodeling are critical to the development of new therapies for pathological conditions such as ischemia and cancer. In models of skeletal muscle ischemia in particular, there is a lack of quantitative, non-invasive and long term assessment of vessel morphology. Here, we have applied speckle variance optical coherence tomography (OCT) methods to quantitatively assess vascular remodeling and growth in a mouse model of peripheral arterial disease. This approach was validated on two different mouse strains known to have disparate rates and abilities of recovering following induction of hind limb ischemia. These results establish the potential for speckle variance OCT as a tool for quantitative, preclinical screening of pro- and anti-angiogenic therapies. PMID:25574425

  2. Influence of Tanshinone IIa on heat shock protein 70, Bcl-2 and Bax expression in rats with spinal ischemia/reperfusion injury.

    PubMed

    Zhang, Li; Gan, Weidong; An, Guoyao

    2012-12-25

    Tanshinone IIa is an effective monomer component of Danshen, which is a traditional Chinese medicine for activating blood circulation to dissipate blood stasis. Tanshinone IIa can effectively improve brain tissue ischemia/hypoxia injury. The present study established a rat model of spinal cord ischemia/reperfusion injury and intraperitoneally injected Tanshinone IIa, 0.5 hour prior to model establishment. Results showed that Tanshinone IIa promoted heat shock protein 70 and Bcl-2 protein expression, but inhibited Bax protein expression in the injured spinal cord after ischemia/reperfusion injury. Furthermore, Nissl staining indicated a reduction in nerve cell apoptosis and fewer pathological lesions in the presence of Tanshinone IIa, compared with positive control Danshen injection.

  3. Diabetic aggravation of stroke and animal models

    PubMed Central

    Rehni, Ashish K.; Liu, Allen; Perez-Pinzon, Miguel A.; Dave, Kunjan R.

    2017-01-01

    Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage. PMID:28274862

  4. Investigating the Mechanisms Underlying Neuronal Death in Ischemia Using In Vitro Oxygen-Glucose Deprivation: Potential Involvement of Protein SUMOylation

    PubMed Central

    CIMAROSTI, HELENA; HENLEY, JEREMY M.

    2012-01-01

    It is well established that brain ischemia can cause neuronal death via different signaling cascades. The relative importance and interrelationships between these pathways, however, remain poorly understood. Here is presented an overview of studies using oxygen-glucose deprivation of organotypic hippocampal slice cultures to investigate the molecular mechanisms involved in ischemia. The culturing techniques, setup of the oxygen-glucose deprivation model, and analytical tools are reviewed. The authors focus on SUMOylation, a posttranslational protein modification that has recently been implicated in ischemia from whole animal studies as an example of how these powerful tools can be applied and could be of interest to investigate the molecular pathways underlying ischemic cell death. PMID:19029060

  5. [Effects of tanshinone- II A sulfonate on expression of nuclear factor-kappaB, vascular cell adhesion molecule-1 and hemorrheology during spinal cord ischemia reperfusion injury].

    PubMed

    Zhang, Li; An, Guo-Yao; Zhang, Wen-Guang; Chen, Kai

    2012-12-01

    To observe effects of Tanshinone- II A sulfonate on expression of Nuclear factor-kappaB (NF-kappaB), Vascular Cell Adhesion Molecule-1 (VCAM-1) and hemorrheology during spinal cord ischemia reperfusion injury,and explore the function and mechnism. Fifty-four New Zealand rabbits (aged 3 months,weighted 2.0 +/- 0.2 kg) were randomly divided into 6 in sham group (lumbar artery were separated in operation,0.8 ml/kg saline were injected at 0.5 h before and after operation), 24 in ischemia group ( lumbar artery were clipped after seperation, and the same dose of saline), 24 in Tanshinone group (lumbar artery were clipped after seperation, and the same dose of Tanshinone- II A sulfonate) . Abdomincal aorta blood were drawed after treatment respectively at 0.5 h, 1 h, 4 h and 8 h, and tesetd whole blood viscosity [high cut (mpa.s)/150(l/s), middle cut (mpa.s)/60(l/s) and low cut (mpa.s)/10(l/s)], capillary plasma viscosity, red cell aggregation index, rigid index, deformation index and electrophoresis index. Spinal cord tissues were divided into two sections,one fixed in 4% paraformaldehyde, another stored in liquid nitrogen. Immunohistochemical method and ELISA were used to test change of content of NF-kappaB and VCAM-1. 1) The expression of NF-kappaB in Tanshinone group were lowest, and in ischemia group were highest. 2) Compared with sham group, VCAM-1 in ischemia group at different time were obviously increased,especially at 0.5, 1 and 4 h (P<0.01), and had meaning at 8 h (P<0.05). Compare between Tanshinone group and ischemia group, VCAM-1 at 0.5 h were obviously decreased (P<0.01), and had meaning at 1 h, 4 h and 8 h (P<0.05). 3) There were no postive vasvular expression in sham group, and at 0.5 h in Tanshinone group and ischemia group. The highest postive vasvular expression in ischemia group were at 1 h, 4 h and 8 h, and had significant meaning at 1 h and 4 h between ischemia group and Tanshinone group (P<0.05), and 8 h were obviously most. 4) The whole blood viscosity in ischemia group at 10 s(-1), 60 s(-1), 150 s(-1) were highest, and capillary viscosity increased (P<0.05 or P<0.01). While capillary viscosity, red cell aggregation index, figid index, deformation index in Tanshinone group decreased obviously (P<0.01). Tanshinone-II A sulfonate can relieve spinal cord ischemia reperfusion injury by regulating expression of NF-kappaB, VCAM-1, decreasing whole blood viscosity, capillary plasma viscosity, red cell aggregation index, rigid index, and improve hemorhelogy.

  6. Tumor necrosis factor and its receptors in the neuroretina and retinal vasculature after ischemia-reperfusion injury in the pig retina

    PubMed Central

    Gesslein, Bodil; Håkansson, Gisela; Gustafsson, Lotta; Ekström, Per

    2010-01-01

    Purpose Numerous studies have been performed aimed at limiting the extent of retinal injury after ischemia, but there is still no effective pharmacological treatment available. The aim of the present study was to examine the role of tumor necrosis factor (TNF)α and its receptors (TNF-R1 and TNF-R2), especially considering the neuroretina and the retinal vasculature since the retinal blood vessels are key organs in circulatory failure. Methods Retinal ischemia was induced in pigs by elevating the intraocular pressure to 80 mmHg in one eye, while the other eye served as a control (sham-operated). One hour of ischemia was followed by 5 or 12 h of reperfusion. Retinal circulation was examined in vivo by fundus imaging and fluorescein angiography. TNF-α levels were measured in the vitreous using an angiogenesis antibody array test. The presence and amounts of TNF-α, TNF-R1, and TNF-R2 were investigated in the neuroretina and in the retinal blood vessels, using immunofluorescence staining and real-time PCR techniques. Results Fundus imaging showed obstructed blood flow when ischemia was induced, and reperfusion was clearly visualized using fluorescein angiography. Ischemia resulted in elevated levels of TNF-α protein in the vitreous and TNF-α mRNA in the neuroretina. TNF-α immunofluorescence staining was localized to the Müller cells and the outer plexiform layer of the neuroretina. The expression of TNF-R1 and TNF-R2 mRNA was increased in both the neuroretina and retinal arteries following ischemia-reperfusion. Immunofluorescence double staining for TNF-R1 and either smooth muscle actin or 4',6-diamidino-2-phenylindole (DAPI) indicated expression in the cell membranes of the vascular smooth muscle cells. Double staining with TNF-R1 and calbindin showed localization to the horizontal cells in the outer plexiform layer of the neuroretina. Conclusions Retinal ischemia results in increased expression of TNF-α and its receptors (TNF-R1 and TNF-R2). Cellular signaling pathways involving TNF may be important in the development of retinal injury following ischemia and thus an interesting target for future development of pharmacological therapeutics. PMID:21152396

  7. Effects of standard ethanolic extract from Erythrina velutina in acute cerebral ischemia in mice.

    PubMed

    Rodrigues, Francisca Taciana Sousa; de Sousa, Caren Nádia Soares; Ximenes, Naiara Coelho; Almeida, Anália Barbosa; Cabral, Lucas Moraes; Patrocínio, Cláudio Felipe Vasconcelos; Silva, Aline Holanda; Leal, Luzia Kalyne Almeida Moreira; Honório Júnior, José Eduardo Ribeiro; Macedo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2017-12-01

    The objective of this study was to verify a possible neuroprotective effect of the ethanolic extract of Erythrina velutina (EEEV). Male Swiss mice were submitted to transient cerebral ischemia by occlusion of both carotid arteries for 30 min and treated for 5 days with EEEV (200 or 400 mg/kg) or Memantine (MEM) 10 mg/kg, with initiation of treatment 2 or 24 h after Ischemia. On the 6th day after the induction of ischemia, the animals were submitted to evaluation of locomotor activity and memory and then sacrificed. The brains were dissected for the removal of the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) for determination of amino acid concentrations. In the step down and Y-maze tests, ischemia caused damage to the animals and treatment with EEEV or MEM reversed this effect. The animals submitted to ischemia also showed memory deficit in the object recognition test, an effect that was reverted by EEEV400 and MEM10. Amino acid dosage showed an increase in excitatory amino acid concentrations in the PFC of the ischemic animals and this effect was reversed by the treatment with EEEV400/24H. Regarding the inhibitory amino acids, ischemia caused an increase of taurine in the PFC while treatment with MEM10/24H or EEEV400/24H reversed this effect. In HC, an increase in excitatory amino acids was also observed in ischemiated animals having treatment with EEEV200/2H or EEEV400/24H reversed this effect. Similar effect was also observed in the same area in relation to the inhibitory amino acids with treatment with MEM10/24H or EEEV400/24H. In the ST, ischemia was also able to cause an increase in excitatory amino acids that was reversed more efficiently by the treatments with MEM10/24H and EEEV200. Also in this area, an increase of taurine and GABA was observed and only the treatment with EEEV200/2H showed a reversion of this effect. In view of these findings, EEEV presents a neuroprotective effect possibly due to its action on amino acid concentrations, and is therefore a potential therapeutic tool in reducing the damage caused by ischemia. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Protective effect of dexpanthenol on ischemia-reperfusion-induced renal injury in rats.

    PubMed

    Altintas, Ramazan; Parlakpinar, Hakan; Beytur, Ali; Vardi, Nigar; Polat, Alaadin; Sagir, Mustafa; Odabas, Gul Pelin

    2012-01-01

    This experimental study was designed to investigate protective and therapeutic effects of Dexpanthenol (Dxp), an alcoholic analogue of pantothenic acid, on kidney damage induced by ischemia-reperfusion (I/R) in rats. Forty rats were randomly divided into a control group and 4 I/R groups (1 h ischemia followed by 23 h reperfusion). Three I/R groups were treated by Dxp (500 mg/kg, i.p.) at 3 different time points (before ischemia, during ischemia and late reperfusion). The histopathological findings including apoptotic changes, and also tissue malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), blood urea nitrogen (BUN), serum creatinine (Cr) and albumin (Alb) levels were determined. Kidney tissue MDA levels were found to be significantly higher in the I/R group, whereas the values of GPX were lower when compared to the control group. The levels of SOD and CAT did not reach to statistical meaning level in I/R group. Dxp given during ischemia reduced the elevated MDA levels to the nearly control levels and this ameliorating effect was found as parallel to the result of GPX. Serum levels of BUN and Cr were significantly higher in I/R group. Dxp given during ischemia significantly reduced the elevated BUN and Cr levels when compared to I/R group. Renal I/R injury also induced extensive tubular necrosis, glomerular damage and apoptosis in the histological evaluation. Dxp ameliorated these histological damages in different amounts in all treatment groups. In this study the protective effects of Dxp against renal I/R injury has been evaluated for the first time. Copyright © 2012 S. Karger AG, Basel.

  9. Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with 64Cu-labeled TRC105.

    PubMed

    Orbay, Hakan; Zhang, Yin; Hong, Hao; Hacker, Timothy A; Valdovinos, Hector F; Zagzebski, James A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

    2013-07-01

    The goal of this study was to assess ischemia-induced angiogenesis with (64)Cu-NOTA-TRC105 positron emission tomography (PET) in a murine hindlimb ischemia model of peripheral artery disease (PAD). CD105 binding affinity/specificity of NOTA-conjugated TRC105 (an anti-CD105 antibody) was evaluated by flow cytometry, which exhibited no difference from unconjugated TRC105. BALB/c mice were anesthetized, and the right femoral artery was ligated to induce hindlimb ischemia, with the left hindlimb serving as an internal control. Laser Doppler imaging showed that perfusion in the ischemic hindlimb plummeted to ∼ 20% of the normal level after surgery and gradually recovered to near normal level on day 24. Ischemia-induced angiogenesis was noninvasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 1, 3, 10, 17, and 24. (64)Cu-NOTA-TRC105 uptake in the ischemic hindlimb increased significantly from the control level of 1.6 ± 0.2 %ID/g to 14.1 ± 1.9 %ID/g at day 3 (n = 3) and gradually decreased with time (3.4 ± 1.9 %ID/g at day 24), which correlated well with biodistribution studies performed on days 3 and 24. Blocking studies confirmed the CD105 specificity of tracer uptake in the ischemic hindlimb. Increased CD105 expression on days 3 and 10 following ischemia was confirmed by histology and reverse transcription polymerase chain reaction (RT-PCR). This is the first report of PET imaging of CD105 expression during ischemia-induced angiogenesis. (64)Cu-NOTA-TRC105 PET may play multiple roles in future PAD-related research and improve PAD patient management by identifying the optimal timing of treatment and monitoring the efficacy of therapy.

  10. Attenuation of intestinal ischemia-reperfusion-injury by β-alanine: a potentially glycine-receptor mediated effect.

    PubMed

    Brencher, Lisa; Verhaegh, Rabea; Kirsch, Michael

    2017-05-01

    Acute mesenteric ischemia is often caused by embolization of the mesenteric arterial circulation. Coherent intestinal injury due to ischemia and following reperfusion get visible on macroscopic and histologic level. In previous studies, application of glycine caused an ameliorated intestinal damage after ischemia-reperfusion in rats. Because we speculated that glycine acted here as a signal molecule, we investigated whether the glycine-receptor agonist β-alanine evokes the same beneficial effect in intestinal ischemia-reperfusion. β-alanine (10, 30, and 100 mg/kg) was administered intravenously. Ischemia/reperfusion of the small intestine was initiated by occluding and reopening the superior mesenteric artery in rats. After 90 min of ischemia and 120 min of reperfusion, the intestine was analyzed with regard to macroscopic and histologic tissue damage, the activity of the saccharase, and accumulation of macrophages. In addition, systemic parameters and metabolic ones (e.g., acid-base balance, electrolytes, and blood glucose) were measured at certain points in time. All three dosages of β-alanine did not change systemic parameters but prevent from hyponatremia during the period of reperfusion. Most importantly, application of 100-mg β-alanine clearly diminished intestinal tissue damage, getting visible on macroscopic and histologic level. In addition, I/R-mediated decrease of saccharase activity and accumulation of macrophages in the small intestine were ameliorated. The present study demonstrated that β-alanine was a potent agent to ameliorate I/R-induced injury of the small intestine. Due to its diminishing effect on the accumulation of macrophages, β-alanine is strongly expected to mediate its beneficial effect via glycine receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Divergent Systemic and Local Inflammatory Response to Hind Limb Demand Ischemia in Wild Type And ApoE−/− Mice

    PubMed Central

    Crawford, Robert S.; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A.; Abularrage, Christopher J.; Yoo, Hyung-Jin; LaMuraglia, Glenn M.; Watkins, Michael T.

    2013-01-01

    Introduction Studies were designed to determine whether the ApoE−/− phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE−/− phenotype is an experimental model for atherosclerosis in humans. Methods Aged female ApoE −/− and C57BL6 mice underwent femoral artery ligation, then divided into sedentary and demand ischemia (exercise) groups on day 14. Baseline and post exercise limb perfusion and hind limb function were assessed. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, plasma and skeletal muscle from ischemic limbs were harvested from sedentary and exercised mice. Muscle was assayed for angiogenic and pro-inflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Results Hind limb ischemia was similar in ApoE −/− and C57 mice prior to the onset of exercise. Under sedentary conditions, plasma VEGF, IL-6, but not KC or MIP-2 were higher in ApoE (P<0.0001). Following exercise, plasma levels of VEGF, KC and MIP-2, but not IL-6 were lower in ApoE (P<0.004). The cytokines KC and MIP-2 in muscle was greater in exercised ApoE−/− mice as compared to C57BL6 mice (p=0.01). Increased PAR activity, and mature muscle regeneration was associated with demand ischemia in the C57BL6 mice as compared to the ApoE −/− mice (p=0.01). Conclusion Demand limb ischemia in the ApoE−/− phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. PMID:23528286

  12. Dietary glutamine supplementation enhances endothelial progenitor cell mobilization in streptozotocin-induced diabetic mice subjected to limb ischemia.

    PubMed

    Su, Shiau-Tsz; Yeh, Chiu-Li; Hou, Yu-Chen; Pai, Man-Hui; Yeh, Sung-Ling

    2017-02-01

    Diabetes is a metabolic disorder with increased risk of vascular diseases. Tissue ischemia may occur with diabetic vascular complications. Bone marrow-derived endothelial progenitor cells (EPCs) constitute a reparative response to ischemic injury. This study investigated the effects of oral glutamine (GLN) supplementation on circulating EPC mobilization and expression of tissue EPC-releasing markers in diabetic mice subjected to limb ischemia. Diabetes was induced by a daily intraperitoneal injection of streptozotocin for 5 days. Diabetic mice were divided into 2 nonischemic groups and 6 ischemic groups. One of the nonischemic and 3 ischemic groups were fed the control diet, while the remaining 4 groups received diets with identical components except that part of the casein was replaced by GLN. The respective diets were fed to the mice for 3 weeks, and then the nonischemic mice were sacrificed. Unilateral hindlimb ischemia was created in the ischemic groups, and mice were sacrificed at 1, 7 or 21 days after ischemia. Their blood and ischemic muscle tissues were collected for further analyses. Results showed that plasma matrix metallopeptidase (MMP)-9 and the circulating EPC percentage increased after limb ischemia in a diabetic condition. Compared to groups without GLN, GLN supplementation up-regulated plasma stromal cell-derived factor (SDF)-1 and muscle MMP-9, SDF-1, hypoxia-inducible factor-1 and vascular endothelial growth factor gene expression. The CD31-immunoreactive intensities were also higher in the ischemic limb. These findings suggest that GLN supplementation enhanced circulating EPC mobilization that may promote endothelium repair at ischemic tissue in diabetic mice subjected to limb ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. No-flow ischemia inhibits insulin signaling in heart by decreasing intracellular pH.

    PubMed

    Beauloye, C; Bertrand, L; Krause, U; Marsin, A S; Dresselaers, T; Vanstapel, F; Vanoverschelde, J L; Hue, L

    2001-03-16

    Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pH(i)) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pH(i) and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pH(i) and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pH(i), being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pH(i).

  14. Effect of chronic pre-treatment with angiotensin converting enzyme inhibition on skeletal muscle mitochondrial recovery after ischemia/reperfusion.

    PubMed

    Thaveau, Fabien; Zoll, Joffrey; Bouitbir, Jamal; N'guessan, Benoît; Plobner, Philippe; Chakfe, Nabil; Kretz, Jean-Georges; Richard, Ruddy; Piquard, François; Geny, Bernard

    2010-06-01

    Impaired skeletal muscle energetic participates in peripheral arterial disease (PAD) patient's morbidity and mortality. Angiotensin converting enzyme inhibition (ACEi), cornerstone for pharmacologic risk factor management in PAD patients, might also be interesting by protecting skeletal muscle energetic. We therefore determined whether chronic ACEi might reduce ischemia-induced mitochondrial respiratory chain dysfunction in the frequent setting of hindlimb ischemia-reperfusion. Ischemic legs of rats submitted to 5 h ischemia induced by a rubber band tourniquet applied on the root of the hindlimb followed by reperfusion without (IR, n = 11) or after ACEi (n = 14; captopril 40 mg/kg per day during 28 days before surgery) were studied and compared to that of sham-operated animals (n = 11). The effect of ACEi on the non-ischemic contralateral leg was also determined in the ACEi group. Maximal oxidative capacities (V(max)) and complexes I, II and IV activities of the mitochondrial respiratory chain of the gastrocnemius muscle were determined using glutamate-malate, succinate and TMPD-ascorbate substrates. Arterial blood pressure was significantly decreased after ACEi (124 +/- 2.8 vs. 108 +/- 4.19 mmHg; P = 0.01). Ischemia-reperfusion reduced V(max) (4.4 +/- 0.4 vs. 8.7 +/- 0.5 micromol O2/min/g dry weight, -49%, P < 0.001), affecting mitochondrial complexes I, II and IV activities. ACEi failed to modulate ischemia-induced dysfunction (V(max) 5.1 +/- 0.7 micromol O2/min/g dry weight) or the non-ischemic contralateral muscle respiratory rate. Ischemia-reperfusion significantly impaired the mitochondrial respiratory chain I, II and IV complexes of skeletal muscle. Pharmacologic pre-treatment with ACEi did not prevent or increase such alterations. Further studies might be useful to improve the pharmacologic conditioning of PAD patients needing arterial revascularization.

  15. Effects of neural progenitor cells on post-stroke neurological impairment—a detailed and comprehensive analysis of behavioral tests

    PubMed Central

    Doeppner, Thorsten R.; Kaltwasser, Britta; Bähr, Mathias; Hermann, Dirk M.

    2014-01-01

    Systemic transplantation of neural progenitor cells (NPCs) in rodents reduces functional impairment after cerebral ischemia. In light of upcoming stroke trials regarding safety and feasibility of NPC transplantation, experimental studies have to successfully analyze the extent of NPC-induced neurorestoration on the functional level. However, appropriate behavioral tests for analysis of post-stroke motor coordination deficits and cognitive impairment after NPC grafting are not fully established. We therefore exposed male C57BL6 mice to either 45 min (mild) or 90 min (severe) of cerebral ischemia, using the thread occlusion model followed by intravenous injection of PBS or NPCs 6 h post-stroke with an observation period of three months. Post-stroke motor coordination was assessed by means of the rota rod, tight rope, corner turn, inclined plane, grip strength, foot fault, adhesive removal, pole test and balance beam test, whereas cognitive impairment was analyzed using the water maze, the open field and the passive avoidance test. Significant motor coordination differences after both mild and severe cerebral ischemia in favor of NPC-treated mice were observed for each motor coordination test except for the inclined plane and the grip strength test, which only showed significant differences after severe cerebral ischemia. Cognitive impairment after mild cerebral ischemia was successfully assessed using the water maze test, the open field and the passive avoidance test. On the contrary, the water maze test was not suitable in the severe cerebral ischemia paradigm, as it too much depends on motor coordination capabilities of test mice. In terms of both reliability and cost-effectiveness considerations, we thus recommend the corner turn, foot fault, balance beam, and open field test, which do not depend on durations of cerebral ischemia. PMID:25374509

  16. A novel method to measure regional muscle blood flow continuously using NIRS kinetics information

    PubMed Central

    Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton

    2006-01-01

    Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736

  17. Poloxamer 188 protects against ischemia-reperfusion injury in a murine hind-limb model.

    PubMed

    Murphy, Adrian D; McCormack, Michael C; Bichara, David A; Nguyen, John T; Randolph, Mark A; Watkins, Michael T; Lee, Raphael C; Austen, William G

    2010-06-01

    Ischemia-reperfusion injury can activate pathways generating reactive oxygen species, which can injure cells by creating holes in the cell membranes. Copolymer surfactants such as poloxamer 188 are capable of sealing defects in cell membranes. The authors postulated that a single-dose administration of poloxamer 188 would decrease skeletal myocyte injury and mortality following ischemia-reperfusion injury. Mice underwent normothermic hind-limb ischemia for 2 hours. Animals were treated with 150 microl of poloxamer 188 or dextran at three time points: (1) 10 minutes before ischemia; (2) 10 minutes before reperfusion; and (3) 2 or 4 hours after reperfusion. After 24 hours of reperfusion, tissues were analyzed for myocyte injury (histology) and metabolic dysfunction (muscle adenosine 5'-triphosphate). Additional groups of mice were followed for 7 days to assess mortality. When poloxamer 188 treatment was administered 10 minutes before ischemia, injury was reduced by 84 percent, from 50 percent injury in the dextran group to 8 percent injury in the poloxamer 188 group (p < 0.001). When administered 10 minutes before reperfusion, poloxamer 188 animals demonstrated a 60 percent reduction in injury compared with dextran controls (12 percent versus 29 percent). Treatment at 2 hours, but not at 4 hours, postinjury prevented substantial myocyte injury. Preservation of muscle adenosine 5'-triphosphate paralleled the decrease in myocyte injury in poloxamer 188-treated animals. Poloxamer 188 treatment significantly reduced mortality following injury (10 minutes before, 75 percent versus 25 percent survival, p = 0.0077; 2 hours after, 50 percent versus 8 percent survival, p = 0.032). Poloxamer 188 administered to animals decreased myocyte injury, preserved tissue adenosine 5'-triphosphate levels, and improved survival following hind-limb ischemia-reperfusion injury.

  18. Low-level light emitting diode therapy promotes long-term functional recovery after experimental stroke in mice.

    PubMed

    Lee, Hae In; Lee, Sae-Won; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Il; Shin, Hwa Kyoung

    2017-12-01

    We aimed to investigate the effects of low-level light emitting diode therapy (LED-T) on the long-term functional outcomes after cerebral ischemia, and the optimal timing of LED-T initiation for achieving suitable functional recovery. Focal cerebral ischemia was induced in mice via photothrombosis. These mice were assigned to a sham-operated (control), ischemic (vehicle), or LED-T group [initiation immediately (acute), 4 days (subacute) or 10 days (delayed) after ischemia, followed by once-daily treatment for 7 days]. Behavioral outcomes were assessed 21 and 28 days post-ischemia, and histopathological analysis was performed 28 days post-ischemia. The acute and subacute LED-T groups showed a significant improvement in motor function up to 28 days post-ischemia, although no brain atrophy recovery was noted. We observed proliferating cells (BrdU + ) in the ischemic brain, and significant increases in BrdU + /GFAP + , BrdU + /DCX + , BrdU + /NeuN + , and CD31 + cells in the subacute LED-T group. However, the BrdU + /Iba-1 + cell count was reduced in the subacute LED-T group. Furthermore, the brain-derived neurotrophic factor (BDNF) was significantly upregulated in the subacute LED-T group. We concluded that LED-T administered during the subacute stage had a positive impact on the long-term functional outcome, probably via neuron and astrocyte proliferation, blood vessel reconstruction, and increased BDNF expression. Picture: The rotarod test for motor coordination showed that acute and subacute LED-T improves long-term functional recovery after cerebral ischemia. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quantitative analysis of peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography.

    PubMed

    Karampelas, Michael; Sim, Dawn A; Chu, Colin; Carreno, Ester; Keane, Pearse A; Zarranz-Ventura, Javier; Westcott, Mark; Lee, Richard W J; Pavesio, Carlos E

    2015-06-01

    To investigate the relationships between peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography (FA). Cross-sectional, consecutive case series. Consecutive ultra-widefield FA images were collected from 82 uveitis patients (82 eyes) in a single center. The extent of peripheral vasculitis, capillary nonperfusion, and vessel leakage were quantified. Parameters included: (1) foveal avascular zone area and macular leakage, (2) peripheral diffuse capillary leakage and ischemia, (3) peripheral vasculitis, and (4) leakage from neovascularization. Central macular thickness measurements were derived with optical coherence tomography. Main outcome measures were correlations between central and peripheral fluorangiographic changes as well as associations between visual function, ultra-widefield FA-derived metrics, and central macular thickness. Although central leakage was associated with peripheral leakage (r = 0.553, P = .001), there was no association between foveal avascular zone size and peripheral ischemia (r = 0.114, P = .324), regardless of the underlying uveitic diagnosis. Peripheral ischemia was, however, correlated to neovascularization-related leakage (r = 0.462, P = .001) and focal vasculitis (r = 0.441, P = .001). Stepwise multiple regression analysis revealed that a poor visual acuity was independently associated with foveal avascular zone size and central macular thickness (R(2)-adjusted = 0.45, P = .001). We present a large cohort of patients with uveitis imaged with ultra-widefield FA and further describe novel methods for quantification of peripheral vascular pathology, in an attempt to identify visually significant parameters. Although we observed that relationships exist between peripheral vessel leakage, vasculitis, and ischemia, it was only macular ischemia and increased macular thickness that were independently associated with a reduced visual acuity. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia.

    PubMed

    Madineni, Anusha; Alhadidi, Qasim; Shah, Zahoor A

    2016-03-01

    Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke.

  1. Update and validation of the Society for Vascular Surgery wound, ischemia, and foot infection threatened limb classification system.

    PubMed

    Mills, Joseph L

    2014-03-01

    The diagnosis of critical limb ischemia, first defined in 1982, was intended to delineate a patient cohort with a threatened limb and at risk for amputation due to severe peripheral arterial disease. The influence of diabetes and its associated neuropathy on the pathogenesis-threatened limb was an excluded comorbidity, despite its known contribution to amputation risk. The Fontaine and Rutherford classifications of limb ischemia severity have also been used to predict amputation risk and the likelihood of tissue healing. The dramatic increase in the prevalence of diabetes mellitus and the expanding techniques of arterial revascularization has prompted modification of peripheral arterial disease classification schemes to improve outcomes analysis for patients with threatened limbs. The diabetic patient with foot ulceration and infection is at risk for limb loss, with abnormal arterial perfusion as only one determinant of outcome. The wound extent and severity of infection also impact the likelihood of limb loss. To better predict amputation risk, the Society for Vascular Surgery Lower Extremity Guidelines Committee developed a classification of the threatened lower extremity that reflects these important clinical considerations. Risk stratification is based on three major factors that impact amputation risk and clinical management: wound, ischemia, and foot infection. This classification scheme is relevant to the patient with critical limb ischemia because many are also diabetic. Implementation of the wound, ischemia, and foot infection classification system in critical limb ischemia patients is recommended and should assist the clinician in more meaningful analysis of outcomes for various forms of wound and arterial revascularizations procedures required in this challenging, patient population. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Diagnosis of non-occlusive acute mesenteric ischemia in the intensive care unit.

    PubMed

    Bourcier, Simon; Oudjit, Ammar; Goudard, Geoffrey; Charpentier, Julien; Leblanc, Sarah; Coriat, Romain; Gouya, Hervé; Dousset, Bertrand; Mira, Jean-Paul; Pène, Frédéric

    2016-12-01

    Non-occlusive mesenteric ischemia (NOMI) is a common complication and accounts for a major cause of death in critically ill patients. The diagnosis of NOMI with respect to the eventual indications for surgical treatment is challenging. We addressed the performance of the diagnostic strategy of NOMI in the intensive care unit, with emphasis on contrast-enhanced abdominal CT-scan. This was a retrospective monocenter study. Patients with clinically suspected acute mesenteric ischemia were included if a comprehensive diagnostic workup was carried out including surgical and/or endoscopic digestive explorations. Patients with evidence of occlusive mesenteric ischemia were excluded. A definite diagnosis of NOMI only relied on surgical or endoscopic findings. Abdominal CT-scans were reviewed by two radiologists blinded from the final diagnosis. A diagnosis of NOMI could be definitely confirmed or ruled out through surgical or endoscopic explorations of the digestive tract in 147 patients. With respect to their clinical characteristics, only a history of atrial fibrillation was an independent predictor of NOMI (odds ratio 8.3, 95% confidence interval 2.0-35.2, p = 0.004). Among them, 114 patients (75 with and 39 without NOMI) had previously been subjected to contrast-enhanced abdominal CT-scan. Portal venous gas, pneumatosis intestinalis and, to a lesser extent, abnormal contrast-induced bowel wall enhancement were poorly sensitive, but exhibited good specificities of 95, 85 and 71%, respectively. Nineteen out of 75 patients (25.3%) without any suggestive radiological signs finally exhibited mesenteric ischemia, including ten with intestinal necrosis. The performance of abdominal CT-scan for the diagnosis of NOMI is limited. Radiological signs of advanced-stage ischemia are good predictors of definite mesenteric ischemia, while their absence should not be considered sufficient to rule out the diagnosis.

  3. Combined metabolic and transcriptional profiling identifies pentose phosphate pathway activation by HSP27 phosphorylation during cerebral ischemia.

    PubMed

    Imahori, Taichiro; Hosoda, Kohkichi; Nakai, Tomoaki; Yamamoto, Yusuke; Irino, Yasuhiro; Shinohara, Masakazu; Sato, Naoko; Sasayama, Takashi; Tanaka, Kazuhiro; Nagashima, Hiroaki; Kohta, Masaaki; Kohmura, Eiji

    2017-05-04

    The metabolic pathophysiology underlying ischemic stroke remains poorly understood. To gain insight into these mechanisms, we performed a comparative metabolic and transcriptional analysis of the effects of cerebral ischemia on the metabolism of the cerebral cortex using middle cerebral artery occlusion (MCAO) rat model. Metabolic profiling by gas-chromatography/mass-spectrometry analysis showed clear separation between the ischemia and control group. The decreases of fructose 6-phosphate and ribulose 5-phosphate suggested enhancement of the pentose phosphate pathway (PPP) during cerebral ischemia (120-min MCAO) without reperfusion. Transcriptional profiling by microarray hybridization indicated that the Toll-like receptor and mitogen-activated protein kinase (MAPK) signaling pathways were upregulated during cerebral ischemia without reperfusion. In relation to the PPP, upregulation of heat shock protein 27 (HSP27) was observed in the MAPK signaling pathway and was confirmed through real-time polymerase chain reaction. Immunoblotting showed a slight increase in HSP27 protein expression and a marked increase in HSP27 phosphorylation at serine 85 after 60-min and 120-min MCAO without reperfusion. Corresponding upregulation of glucose 6-phosphate dehydrogenase (G6PD) activity and an increase in the NADPH/NAD + ratio were also observed after 120-min MCAO. Furthermore, intracerebroventricular injection of ataxia telangiectasia mutated (ATM) kinase inhibitor (KU-55933) significantly reduced HSP27 phosphorylation and G6PD upregulation after MCAO, but that of protein kinase D inhibitor (CID755673) did not affect HSP27 phosphorylation. Consequently, G6PD activation via ischemia-induced HSP27 phosphorylation by ATM kinase may be part of an endogenous antioxidant defense neuroprotection mechanism during the earliest stages of ischemia. These findings have important therapeutic implications for the treatment of stroke. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs.

    PubMed

    Shiroshita-Takeshita, Akiko; Sakabe, Masao; Haugan, Ketil; Hennan, James K; Nattel, Stanley

    2007-01-23

    Abnormal intercellular communication caused by connexin dysfunction may be involved in atrial fibrillation (AF). The present study assessed the effect of the gap junctional conduction-enhancing peptide rotigaptide on AF maintenance in substrates that result from congestive heart failure induced by 2-week ventricular tachypacing (240 bpm), atrial tachypacing (ATP; 400 bpm for 3 to 6 weeks), and isolated atrial myocardial ischemia. Electrophysiological study and epicardial mapping were performed before and after rotigaptide administration in dogs with ATP and congestive heart failure, as well as in similarly instrumented sham dogs that were not tachypaced. For atrial myocardial ischemia, dogs administered rotigaptide before myocardial ischemia were compared with no-drug myocardial ischemia controls. ATP significantly shortened the atrial effective refractory period (P=0.003) and increased AF duration (P=0.008), with AF lasting >3 hours in all 6-week ATP animals. Rotigaptide increased conduction velocity in ATP dogs slightly but significantly (P=0.04) and did not affect the effective refractory period, AF duration, or atrial vulnerability. In dogs with congestive heart failure, rotigaptide also slightly increased conduction velocity (P=0.046) but failed to prevent AF promotion. Rotigaptide had no statistically significant effects in sham dogs. Myocardial ischemia alone increased AF duration and impaired conduction (based on conduction velocity across the ischemic border and indices of conduction heterogeneity). Rotigaptide prevented myocardial ischemia-induced conduction slowing and AF duration increases. Rotigaptide improves conduction in various AF models but suppresses AF only for the acute ischemia substrate. These results define the atrial antiarrhythmic profile of a mechanistically novel antiarrhythmic drug and suggest that gap junction dysfunction may be more important in ischemic AF than in ATP remodeling or congestive heart failure substrates.

  5. The Synergistic Neuroprotective Effects of Combined Rosuvastatin and Resveratrol Pretreatment against Cerebral Ischemia/Reperfusion Injury.

    PubMed

    Liu, Ying; Yang, HongNa; Jia, GuoYong; Li, Lan; Chen, Hui; Bi, JianZhong; Wang, CuiLan

    2018-06-01

    It is well accepted that both rosuvastatin and resveratrol exert neuroprotective effects on cerebral ischemia/reperfusion injury through some common pathways. Resveratrol has also been demonstrated to protect against cerebral ischemia/reperfusion injury through enhancing autophagy. Thus, we hypothesized that combined rosuvastatin and resveratrol pretreatment had synergistic effects on cerebral ischemia/reperfusion injury. Adult male Sprague Dawley rats receiving middle cerebral artery occlusion surgery as animal model of cerebral ischemia/reperfusion injury were randomly assigned to 4 groups: control, resveratrol alone pretreatment, rosuvastatin alone pretreatment, and combined rosuvastatin and resveratrol pretreatment. Rosuvastatin (10 mg/kg) or resveratrol (50 mg/kg) was administrated once a day for 7 days before cerebral ischemia onset. We found that combined rosuvastatin and resveratrol pretreatment not only significantly decreased the neurologic defective score, cerebral infarct volume, the levels of caspase-3, and Interleukin-1β (IL-1β) but also significantly increased the ratios of Bcl-2/Bax and LC3II/LC3I, as well as the level of Becline-1, compared with resveratrol alone or rosuvastatin alone pretreatment group. Rosuvastatin alone pretreatment significantly increased the ratio of LC3II/LC3I and the level of Beclin-1. However, there were no significant differences in the neurologic defective score, cerebral infarct volume, the levels of caspase-3, IL-1β, and Beclin-1, and the ratios of Bcl-2/Bax and LC3II/LC3I between resveratrol pretreatment group and rosuvastatin pretreatment group. Synergistically enhanced antiapoptosis, anti-inflammation, and autophagy activation might be responsible for the synergistic neuroprotective effects of combining rosuvastatin with resveratrol on cerebral ischemia/reperfusion injury. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Protective Effects of Ultramicronized Palmitoylethanolamide (PEA-um) in Myocardial Ischaemia and Reperfusion Injury in VIVO.

    PubMed

    Di Paola, Rosanna; Cordaro, Marika; Crupi, Rosalia; Siracusa, Rosalba; Campolo, Michela; Bruschetta, Giuseppe; Fusco, Roberta; Pugliatti, Pietro; Esposito, Emanuela; Cuzzocrea, Salvatore

    2016-08-01

    Myocardial infarction is the leading cause of death, occurs after prolonged ischemia of the coronary arteries. Restore blood flow is the first intervention help against heart attack. However, reperfusion of the arteries leads to ischemia/reperfusion injury (I/R). The fatty acid amide palmitoylethanolamide (PEA) is an endogenous compound widely present in living organisms, with analgesic and anti-inflammatory properties. The present study evaluated the effect of ultramicronized palmitoylethanolamide (PEA-um) treatment on the inflammatory process associated with myocardial I/R. Myocardial ischemia reperfusion injury was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. PEA-um, was administered (10 mg/kg) 15 min after ischemia and 1 h after reperfusion. In this study, we demonstrated that PEA-um treatment reduces myocardial tissue injury, neutrophil infiltration, adhesion molecules (ICAM-1, P-selectin) expression, proinflammatory cytokines (TNF-α, IL-1β) production, nitrotyrosine and PAR formation, nuclear factor kB expression, and apoptosis (Fas-L, Bcl-2) activation. In addition to study whether the protective effect of PEA-um on myocardial ischemia reperfusion injury is also related to the activation of PPAR-α, in a separate set of experiments it has been performed myocardial I/R in PPARα mice. Genetic ablation of peroxisome proliferator activated receptor (PPAR)-α in PPAR-αKO mice exacerbated Myocardial ischemia reperfusion injury when compared with PPAR-αWT mice. PEA-um induced cardioprotection in PPAR-α wild-type mice, but the same effect cannot be observed in PPAR-αKO mice. Our results have clearly shown a modulation of the inflammatory process, associated with myocardial ischemia reperfusion injury, following administration of PEA-um.

  7. Effects of angiotensin-converting enzyme inhibition on transient ischemia: the Quinapril Anti-Ischemia and Symptoms of Angina Reduction (QUASAR) trial.

    PubMed

    Pepine, Carl J; Rouleau, Jean-Lucien; Annis, Karen; Ducharme, Anique; Ma, Patrick; Lenis, Jacques; Davies, Richard; Thadani, Udho; Chaitman, Bernard; Haber, Harry E; Freedman, S Ben; Pressler, Milton L; Pitt, Bertram

    2003-12-17

    We sought to determine whether angiotensin-converting enzyme inhibition (ACE-I) (i.e., quinapril) prevents transient ischemia (exertional and spontaneous) in patients with coronary artery disease (CAD). It is known that ACE-I reduces the risk of death, myocardial infarction (MI), and other CAD-related outcomes in high-risk patients. Numerous studies have confirmed that ACE-I improves coronary flow and endothelial function. Whether ACE-I also decreases transient ischemia is unclear, because no studies have been adequately designed or sufficiently powered to evaluate this issue. Using a randomized, double-blinded, placebo-controlled, multicenter design, we enrolled 336 CAD patients with stable angina. None had uncontrolled hypertension, left ventricular (LV) dysfunction, or recent MI, and all developed electrocardiographic (ECG) evidence of ischemia during exercise. They were randomly assigned to one of two groups: 40 mg/day quinapril (n = 177) or placebo (n = 159) for 8 weeks. Patients then entered an additional eight-week treatment phase to examine the full dose range. Those assigned to 40 mg quinapril continued that dose and those assigned to placebo were titrated to 80 mg/day. Treadmill testing, the Seattle Angina Questionnaire, and ambulatory ECG monitoring were used to assess responses at baseline and at 8 and 16 weeks. The groups did not differ significantly at entry or in terms of indexes assessing myocardial ischemia at 8 or 16 weeks of treatment. In this low-risk population, ACE-I was not associated with serious adverse events. Our findings suggest short-term ACE-I in CAD patients without hypertension, LV dysfunction, or acute MI is not associated with significant effects on transient ischemia.

  8. Do Women With Anxiety or Depression Have Higher Rates of Myocardial Ischemia During Exercise Testing Than Men?

    PubMed

    Paine, Nicola J; Bacon, Simon L; Pelletier, Roxanne; Arsenault, André; Diodati, Jean G; Lavoie, Kim L

    2016-02-01

    Women diagnosed with coronary artery disease (CAD) typically experience worse outcomes relative to men, possibly through diagnosis and treatment delays. Reasons for these delays may be influenced by mood and anxiety disorders, which are more prevalent in women and have symptoms (eg, palpitations and fatigue) that may be confounded with CAD. Our study examined sex differences in the association between mood and anxiety disorders and myocardial ischemia in patients with and without a CAD history presenting for exercise stress tests. A total of 2342 patients (women n=760) completed a single photon emission computed tomographic exercise stress test (standard Bruce Protocol) and underwent a psychiatric interview (The Primary Care Evaluation of Mental Disorders) to assess mood and anxiety disorders. Ischemia was assessed using single photon emission computed tomography, with odds ratio used to calculate the effect of sex and mood/anxiety on the presence of ischemia during stress testing by CAD history in a stratified analyses, adjusted for relevant covariates. There was a sex by anxiety interaction with ischemia in those without a CAD history (P=0.015): women with anxiety were more likely to exhibit ischemia during exercise than women without anxiety (odds ratio, 1.75; 95% confidence interval, 1.05-2.89). No significant effects were observed for men nor mood. Women with anxiety and no CAD history had higher rates of ischemia than women without anxiety. Results suggest that anxiety symptoms, many of which overlap with those of CAD, might mask CAD symptoms among women (but not men) and contribute to referral and diagnostic delays. Further research is needed to confirm this hypothesis. © 2016 American Heart Association, Inc.

  9. The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection.

    PubMed

    Johnsen, Jacob; Pryds, Kasper; Salman, Rasha; Løfgren, Bo; Kristiansen, Steen Buus; Bøtker, Hans Erik

    2016-03-01

    Remote ischemic preconditioning (rIPC), induced by cycles of transient limb ischemia and reperfusion (IR), is cardioprotective. The optimal rIPC-algorithm is not established. We investigated the effect of cycle numbers and ischemia duration within each rIPC-cycle and the influence of effector organ mass on the efficacy of cardioprotection. Furthermore, the duration of the early phase of protection by rIPC was investigated. Using a tourniquet tightened at the inguinal level, we subjected C57Bl/6NTac mice to intermittent hind-limb ischemia and reperfusion. The rIPC-protocols consisted of (I) two, four, six or eight cycles, (II) 2, 5 or 10 min of ischemia in each cycle, (III) single or two hind-limb occlusions and (IV) 0.5, 1.5, 2.0 or 2.5 h intervals from rIPC to index cardiac ischemia. All rIPC algorithms were followed by 5 min of reperfusion. The hearts were subsequently exposed to 25 min of global ischemia and 60 min of reperfusion in an ex vivo Langendorff model. Cardioprotection was evaluated by infarct size and post-ischemic hemodynamic recovery. Four to six rIPC cycles yielded significant cardioprotection with no further protection by eight cycles. Ischemic cycles lasting 2 min offered the same protection as cycles of 5 min ischemia, whereas prolonged cycles lasting 10 min abrogated protection. One and two hind-limb preconditioning were equally protective. In our mouse model, the duration of protection by rIPC was 1.5 h. These findings indicate that the number and duration of cycles rather than the tissue mass exposed to rIPC determines the efficacy of rIPC.

  10. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT.

    PubMed

    Jubair, Shaiban; Li, Jianping; Dehlin, Heather M; Manteufel, Edward J; Goldspink, Paul H; Levick, Scott P; Janicki, Joseph S

    2015-08-15

    Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. Copyright © 2015 the American Physiological Society.

  11. Postischemic changes in the immunophilin FKBP12 in the rat brain.

    PubMed

    Kato, H; Oikawa, T; Otsuka, K; Takahashi, A; Itoyama, Y

    2000-12-08

    An immunosuppressant tacrolimus (FK506) protects against neuronal damage following cerebral ischemia. On the other hand, the major physiological role of the immunophilin FK506-binding protein-12 (FKBP12) is a modulation of intracellular calcium flux. Since an increase in intracellular calcium concentration is a major mediator of ischemic neuronal death, we investigated the changes in FKBP12 following cerebral ischemia in the rat. We induced focal cerebral ischemia by intraluminal occlusion of the middle cerebral artery for 1 h, and global cerebral ischemia for 10 min by bilateral carotid artery occlusion combined with hypotension. The animals were killed at 4 h to 7 days after reperfusion. Immunohistochemistry was performed on paraffin sections using a monoclonal antibody raised against recombinant FKBP12. Immunoreactivity to FKBP12 in control brains was most pronounced in the CA1 subfield of the hippocampus and the striatum, the localization being primarily neuronal. Following focal ischemia, FKBP12 immunoreactivity decreased rapidly in the ischemic core by 4 h, but increased in surviving neurons in penumbra areas (4 h-7 days). Within an area of infarction, invading leukocytes and macrophages exhibited immunoreactivity to FKBP12 (3-7 days). Following global ischemia, FKBP12 immunoreactivity in CA1 neurons decreased after 1 day, and then it was lost between 2 and 7 days, although many CA1 neurons showed a transient increase in FKBP12 at 2 days. No FKBP12 immunoreactivity was observed in reactive glial cells. Thus, FKBP12 declined in dying neurons, whereas FKBP12 was upregulated in less severely injured neurons. The findings suggest that (1) FKBP12 plays an important role in the process of neuronal survival and death following cerebral ischemia, and (2) FKBP12 is involved in inflammatory reactions that occur within an area of infarction.

  12. Comparison of myocardial ischemia during intense mental stress using flight simulation in airline pilots with coronary artery disease to that produced with conventional mental and treadmill exercise stress testing.

    PubMed

    Doorey, Andrew; Denenberg, Barry; Sagar, Vidya; Hanna, Tracy; Newman, Jack; Stone, Peter H

    2011-09-01

    Mental stress increases cardiovascular morbidity and mortality. Although laboratory mental stress often causes less myocardial ischemia than exercise stress (ES), it is unclear whether mental stress is intrinsically different or differences are due to less hemodynamic stress with mental stress. We sought to evaluate the hemodynamic and ischemic response to intense realistic mental stress created by modern flight simulators and compare this response to that of exercise treadmill testing and conventional laboratory mental stress (CMS) testing in pilots with coronary disease. Sixteen airline pilots with angiographically documented coronary disease and documented myocardial ischemia during ES were studied using maximal treadmill ES, CMS, and aviation mental stress (AMS) testing. AMS testing was done in a sophisticated simulator using multiple system failures as stressors. Treadmill ES testing resulted in the highest heart rate, but AMS caused a higher blood pressure response than CMS. Maximal rate-pressure product was not significantly different between ES and AMS (25,646 vs 23,347, p = 0.08), although these were higher than CMS (16,336, p <0.0001). Despite similar hemodynamic stress induced by ES and AMS, AMS resulted in significantly less ST-segment depression and nuclear ischemia than ES. Differences in induction of ischemia by mental stress compared to ES do not appear to be due to the creation of less hemodynamic stress. In conclusion, even with equivalent hemodynamic stress, intense realistic mental stress induced by flight simulators results in significantly less myocardial ischemia than ES as measured by ST-segment depression and nuclear ischemia. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The role of the endoplasmic reticulum stress response following cerebral ischemia.

    PubMed

    Hadley, Gina; Neuhaus, Ain A; Couch, Yvonne; Beard, Daniel J; Adriaanse, Bryan A; Vekrellis, Kostas; DeLuca, Gabriele C; Papadakis, Michalis; Sutherland, Brad A; Buchan, Alastair M

    2018-06-01

    Background Cornu ammonis 3 (CA3) hippocampal neurons are resistant to global ischemia, whereas cornu ammonis (CA1) 1 neurons are vulnerable. Hamartin expression in CA3 neurons mediates this endogenous resistance via productive autophagy. Neurons lacking hamartin demonstrate exacerbated endoplasmic reticulum stress and increased cell death. We investigated endoplasmic reticulum stress responses in CA1 and CA3 regions following global cerebral ischemia, and whether pharmacological modulation of endoplasmic reticulum stress or autophagy altered neuronal viability . Methods In vivo: male Wistar rats underwent sham or 10 min of transient global cerebral ischemia. CA1 and CA3 areas were microdissected and endoplasmic reticulum stress protein expression quantified at 3 h and 12 h of reperfusion. In vitro: primary neuronal cultures (E18 Wistar rat embryos) were exposed to 2 h of oxygen and glucose deprivation or normoxia in the presence of an endoplasmic reticulum stress inducer (thapsigargin or tunicamycin), an endoplasmic reticulum stress inhibitor (salubrinal or 4-phenylbutyric acid), an autophagy inducer ([4'-(N-diethylamino) butyl]-2-chlorophenoxazine (10-NCP)) or autophagy inhibitor (3-methyladenine). Results In vivo, decreased endoplasmic reticulum stress protein expression (phospho-eIF2α and ATF4) was observed at 3 h of reperfusion in CA3 neurons following ischemia, and increased in CA1 neurons at 12 h of reperfusion. In vitro, endoplasmic reticulum stress inducers and high doses of the endoplasmic reticulum stress inhibitors also increased cell death. Both induction and inhibition of autophagy also increased cell death. Conclusion Endoplasmic reticulum stress is associated with neuronal cell death following ischemia. Neither reduction of endoplasmic reticulum stress nor induction of autophagy demonstrated neuroprotection in vitro, highlighting their complex role in neuronal biology following ischemia.

  14. Green tea polyphenols alleviate early BBB damage during experimental focal cerebral ischemia through regulating tight junctions and PKCalpha signaling.

    PubMed

    Liu, Xiaobai; Wang, Zhenhua; Wang, Ping; Yu, Bo; Liu, Yunhui; Xue, Yixue

    2013-07-21

    It has been supposed that green tea polyphenols (GTPs) have neuroprotective effects on brain damage after brain ischemia in animal experiments. Little is known regarding GTPs' protective effects against the blood-brain barrier (BBB) disruption after ischemic stroke. We investigated the effects of GTPs on the expression of claudin-5, occludin, and ZO-1, and the corresponding cellular mechanisms involved in the early stage of cerebral ischemia. Male Wistar rats were subjected to a middle cerebral artery occlusion (MCAO) for 0, 30, 60, and 120 min. GTPs (400 mg/kg/day) or vehicle was administered by intragastric gavage twice a day for 30 days prior to MCAO. At different time points, the expression of claudin-5, occludin, ZO-1, and PKCα signaling pathway in microvessel fragments of cerebral ischemic tissue were evaluated. GTPs reduced BBB permeability at 60 min and 120 min after ischemia as compared with the vehicle group. Transmission electron microscopy also revealed that GTPs could reverse the opening of tight junction (TJ) barrier at 60 min and 120 min after MACO. The decreased mRNA and protein expression levels of claudin-5, occludin, and ZO-1 in microvessel fragments of cerebral ischemic tissue were significantly prevented by treatment with GTPs at the same time points after ischemia in rats. Furthermore, GTPs could attenuate the increase in the expression levels of PKCα mRNA and protein caused by cerebral ischemia. These results demonstrate that GTPs may act as a potential neuroprotective agent against BBB damage at the early stage of focal cerebral ischemia through the regulation of TJ and PKCα signaling.

  15. Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils.

    PubMed

    Lee, Hyung; Bae, Jae Hoon; Lee, Seong-Ryong

    2004-09-15

    Previous studies have demonstrated that a green tea polyphenol, (-)-epigallocatechine gallate (EGCG), has a potent free radical scavenging and antioxidant effect. Glutamate leads to excitotoxicity and oxidative stress, which are important pathophysiologic responses to cerebral ischemia resulting in brain edema and neuronal damage. We investigated the effect of EGCG on excitotoxic neuronal damage in a culture system and the effect on brain edema formation and lesion after unilateral cerebral ischemia in gerbils. In vitro, excitotoxicity was induced by 24-hr incubation with N-methyl-D-aspartate (NMDA; 10 microM), AMPA (10 microM), or kainate (20 microM). EGCG (5 microM) was added to the culture media alone or with excitotoxins. We examined malondialdehyde (MDA) level and neuronal viability to evaluate the effect of EGCG. In vivo, unilateral cerebral ischemia was induced by occlusion of the right common carotid artery for 30, 60, or 90 min and followed by reperfusion of 24 hr. Brain edema, MDA, and infarction were examined to evaluate the protective effect of EGCG. EGCG (25 or 50 mg/kg, intraperitoneally) was administered twice, at 30 min before and immediately after ischemia. EGCG reduced excitotoxin-induced MDA production and neuronal damage in the culture system. In the in vivo study, treatment of gerbils with the lower EGCG dose failed to show neuroprotective effects; however, the higher EGCG dose attenuated the increase in MDA level caused by cerebral ischemia. EGCG also reduced the formation of postischemic brain edema and infarct volume. These results demonstrate EGCG may have future possibilities as a neuroprotective agent against excitotoxicity-related neurologic disorders such as brain ischemia.

  16. [Multiple coronary fistulas to the left ventricle. An unusual cause of myocardial ischemia].

    PubMed

    Piovaccari, G; Melandri, G; Marzocchi, A; Scarfoglio, D; Sanguinetti, M; Magnani, B

    1989-04-01

    Diffuse communications between the left coronary artery and the left ventricular cavity were found in a 54-years-old man presenting with angina pectoris and reversible ischemia documented on stress Thallium scintigraphy. During atrial pacing the patient experienced chest pain which was accompanied by lactate production. Atenolol, but not nifedipine, did ameliorate the symptoms. The anatomical types and the embriogenesis of coronary microfistulas along with possible mechanisms of ischemia are discussed.

  17. Ischemia-Reperfusion Injury and Volatile Anesthetics

    PubMed Central

    Erturk, Engin

    2014-01-01

    Ischemia-reperfusion injury (IRI) is induced as a result of reentry of the blood and oxygen to ischemic tissue. Antioxidant and some other drugs have protective effect on IRI. In many surgeries and clinical conditions IRI is counteract inevitable. Some anesthetic agents may have a protective role in this procedure. It is known that inhalational anesthetics possess protective effects against IRI. In this review the mechanism of preventive effects of volatile anesthetics and different ischemia-reperfusion models are discussed. PMID:24524079

  18. [Antioxidant effects of antihypoxic drugs in cerebral ischemia].

    PubMed

    Plotnikov, M B; Kobzeva, E A; Plotnikova, T M

    1992-05-01

    Cerebral ischemia in rats (both carotid arteries occlusion) during 30 min, 3 hours and recirculation (1 hour) after ischemia (30 min) stimulated diene conjugates and fluorescent products accumulation in brain tissue. Intraperitoneal injection of sodium hydroxybutyrate (100 mg/kg), bemitil (50 mg/kg), ethomersol (50 mg/kg) reduced brain lipid peroxidation and did not yield in this respect to emoxypin (5 mg/kg). In contrast to emoxypin, sodium hydroxybutyrate, bemitil and ethomersol had no antiradical activity.

  19. Improvement of retinal functions after ischemia with L-arginine and its derivatives.

    PubMed

    Liu, S X; Chiou, G C; Varma, R S

    1995-01-01

    Retinal ischemia was created by occlusion of rat central retinal artery for 30 minutes. The loss of retinal function was indicated by the loss of b-wave of electroretinogram. The recovery of retinal function after reperfusion of central retinal artery was observed with the gradual recovery of b-wave amplitude to approximately 20% of original b-wave amplitude. When L-arginine (RVC-579) was administered at the time of retina ischemia, the b-wave amplitudes recovered up to 64% of original height and were significantly higher than corresponding controls at 120, 180, and 240 min after ischemia. When the derivative of L-arginine, N alpha-benzoyl-L-arginine ethyl ester (RVC-578), was administered, the b-wave recovery was significantly higher than corresponding controls at 90, 120, 180, and 240 min after ischemia; the recovery reached 51% of the original b-wave value. These results indicate that the L-arginine and its lipophilic derivatives could be used for the treatment of ischemic retinopathy. Since L-arginine is a natural amino acid, it is not expected to produce major side effects, if any, and could pave the way for the development of a safer drug to be used in the clinics. Compounds which increase the formation of NO in vivo, dilate blood vessels. Both L-arginine and RVC-578 can be placed in this category. They may improve effects of retinal ischemia by increasing NO production.

  20. Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart.

    PubMed Central

    Bani, D.; Masini, E.; Bello, M. G.; Bigazzi, M.; Sacchi, T. B.

    1998-01-01

    Myocardial injury caused by ischemia and reperfusion comes from multiple pathogenic events, including endothelial damage, neutrophil extravasation into tissue, platelet and mast cell activation, and peroxidation of cell membrane lipids, which are followed by myocardial cell alterations resulting eventually in cell necrosis. The current study was designed to test the possible cardioprotective effect of the hormone relaxin, which has been found to cause coronary vessel dilation and to inhibit platelet and mast cell activation. Ischemia (for 30 minutes) was induced in rat hearts in vivo by ligature of the left anterior descending coronary artery; reperfusion (for 60 minutes or less if the rats died before this predetermined time) was induced by removal of the ligature. Relaxin (100 ng) was given intravenously 30 minutes before ischemia. The results obtained showed that relaxin strongly reduces 1) the extension of the myocardial areas affected by ischemia-reperfusion-induced damage, 2) ventricular arrhythmias, 3) mortality, 4) myocardial neutrophil number, 5) myeloperoxidase activity, a marker of neutrophil accumulation, 6) production of malonyldialdehyde, an end product of lipid peroxidation, 7) mast cell granule release, 8) calcium overload, and 9) morphological signs of myocardial cell injury. This study shows that relaxin can be regarded as an agent with a marked cardioprotective action against ischemia-reperfusion-induced myocardial injury. Images Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:9588905

Top