Insulation Test Cryostat with Lift Mechanism
NASA Technical Reports Server (NTRS)
Dokos, Adam G. (Inventor); Fesmire, James E. (Inventor)
2014-01-01
A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.
Insulation Test Cryostat with Lift Mechanism
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)
2016-01-01
A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.
Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.
1988-01-01
A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.
Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.
1988-11-01
A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.
Peebles, P. J. E.
1998-01-01
It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation. PMID:9419326
Ruggedizing vibration sensitive components of electro-optical module using wideband dynamic absorber
NASA Astrophysics Data System (ADS)
Veprik, Alexander; Openhaim, Yaki; Babitsky, Vladimir; Tuito, Avi
2018-05-01
In the modern design approach, the cold portion of Integrated Dewar-Detector-Cooler-Assembly (substrate, infrared focal plane array, cold shield and cold filter) is directly mounted upon the distal end of a cold finger of a cryogenic cooler with no mechanical contact with the warm Dewar shroud. This concept allows for essential reduction of parasitic (conductive) heat load. The penalty, however, is that resulting tip-mass cantilever is lightly damped and, therefore, prone to vibrational extremes typical of the modern battlefield. Without sufficient ruggedizing, vibration induced structural resonances may affect image quality and even may cause mechanical failures due to material fatigue. Use of additional front supports or thickening the cold finger walls results in increased parasitic conductive heat load, power consumption and mechanical complexity. The authors explore the concept of wideband dynamic absorber in application to ruggedizing the Integrated Dewar-Detector-Cooler Assembly.
A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups
NASA Astrophysics Data System (ADS)
Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu
2017-07-01
We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the Galaxy And Mass Assembly (GAMA) survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric Kilo-Degree Survey. We use GAMA groups with an apparent richness larger than 4 to identify samples with comparable mean host halo masses but with a different radial distribution of satellite galaxies, which is a proxy for the formation time of the haloes. We measure the weak lensing signal for groups with a steeper than average and with a shallower than average satellite distribution and find no sign of halo assembly bias, with the bias ratio of 0.85^{+0.37}_{-0.25}, which is consistent with the Λ cold dark matter prediction. Our galaxy groups have typical masses of 1013 M⊙ h-1, naturally complementing previous studies of halo assembly bias on galaxy cluster scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.; Bowring, D.; DeMello, A.
2012-05-20
Recent progress on the design and fabrication of the RFCC (RF and superconducting Coupling Coil) module for the international MICE (Muon Ionization Cooling Experiment) are reported. The MICE ionization cooling channel has two RFCC modules, each having four 201- MHz normal conducting RF cavities surrounded by one superconducting coupling coil (solenoid) magnet. The magnet is designed to be cooled by three cryocoolers. Fabrication of the RF cavities is complete; preparation for the cavity electro-polishing, low power RF measurements, and tuning are in progress at Lawrence Berkeley National Laboratory (LBNL). Fabrication of the cold mass of the first coupling coil magnetmore » has been completed in China and the cold mass arrived at LBNL in late 2011. Preparations for testing the cold mass are currently under way at Fermilab. Plans for the RFCC module assembly and integration are being developed and are described.« less
Guarded Flat Plate Cryogenic Test Apparatus and Calorimeter
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Johnson, Wesley L. (Inventor)
2017-01-01
A test apparatus for thermal energy measurement of disk-shaped test specimens has a cold mass assembly locatable within a sealable chamber with a guard vessel having a guard chamber to receive a liquid fluid and a bottom surface to contact a cold side of a test specimen, and a test vessel having a test chamber to receive a liquid fluid and encompassed on one side by a center portion of the bottom surface shared with the guard vessel. A lateral wall assembly of the test vessel is closed by a vessel top, the lateral wall assembly comprising an outer wall and an inner wall having opposing surfaces that define a thermal break including a condensable vapor pocket to inhibit heat transfer through the lateral wall from the guard vessel to the test vessel. A warm boundary temperature surface is in thermal communication with a lower surface of the test specimen.
Multipurpose Thermal Insulation Test Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2002-01-01
A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.
Cryogen free cooling of ASTRO-H SXS Helium Dewar from 300 K to 4 K
NASA Astrophysics Data System (ADS)
Kanao, Ken'ichi; Yoshida, Seiji; Miyaoka, Mikio; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Narasaki, Katsuhiro; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuji; Sato, Yoichi; Okamoto, Atsushi; Noda, Hirofumi; DiPirro, Michel J.; Shirron, Peter J.
2017-12-01
Soft X-ray Spectrometer instrument (SXS) is one of the primary scientific instruments of ASTRO-H. SXS has a cold detector that is cooled to 50 mK by using a multi-stage Adiabatic Demagnetization Refrigerator (ADR). SXS Dewar containing ADR provides 1.3 K heat sink by using liquid helium in nominal operation. After liquid helium is dried up, 4 K heat sink is provided by using mechanical coolers. Both nominal operation and cryogen free operation were successfully demonstrated. This paper describes the test result of cryogen free operation and cool-down performance from room temperature by using only mechanical coolers without liquid helium. The coolers on the Dewar cooled down cold mass from around 300 K to 4 K with 260 W electric power in 40 days. Cold mass is 35 kg in 4 K area including the helium tank, ADR and detector assembly.
Method for achieving sustained anisotropic crystal growth on the surface of a silicon melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackintosh, Brian H.; Kellerman, Peter L.; Sun, Dawei
An apparatus for growing a crystalline sheet from a melt includes a cold block assembly. The cold block assembly may include a cold block and a shield surrounding the cold block and being at an elevated temperature with respect to that of the cold block, the shield defining an opening disposed along a surface of the cold block proximate a melt surface that defines a cold area comprising a width along a first direction of the cold block, the cold area operable to provide localized cooling of a region of the melt surface proximate the cold block. The apparatus maymore » further include a crystal puller arranged to draw a crystalline seed in a direction perpendicular to the first direction when the cold block assembly is disposed proximate the melt surface.« less
Marroquin, Christopher M.; O'Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong
2018-02-13
A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.
Burnable absorber arrangement for fuel bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Townsend, D.B.
1986-12-16
This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less
The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey
NASA Astrophysics Data System (ADS)
Zhu, Ling; van de Ven, Glenn; Bosch, Remco van den; Rix, Hans-Walter; Lyubenova, Mariya; Falcón-Barroso, Jesús; Martig, Marie; Mao, Shude; Xu, Dandan; Jin, Yunpeng; Obreja, Aura; Grand, Robert J. J.; Dutton, Aaron A.; Macciò, Andrea V.; Gómez, Facundo A.; Walcher, Jakob C.; García-Benito, Rubén; Zibetti, Stefano; Sánchez, Sebastian F.
2018-03-01
Galaxy formation entails the hierarchical assembly of mass, along with the condensation of baryons and the ensuing, self-regulating star formation1,2. The stars form a collisionless system whose orbit distribution retains dynamical memory that can constrain a galaxy's formation history3. The orbits dominated by ordered rotation, with near-maximum circularity λz ≈ 1, are called kinematically cold, and the orbits dominated by random motion, with low circularity λz ≈ 0, are kinematically hot. The fraction of stars on `cold' orbits, compared with the fraction on `hot' orbits, speaks directly to the quiescence or violence of the galaxies' formation histories4,5. Here we present such orbit distributions, derived from stellar kinematic maps through orbit-based modelling for a well-defined, large sample of 300 nearby galaxies. The sample, drawn from the CALIFA survey6, includes the main morphological galaxy types and spans a total stellar mass range from 108.7 to 1011.9 solar masses. Our analysis derives the orbit-circularity distribution as a function of galaxy mass and its volume-averaged total distribution. We find that across most of the considered mass range and across morphological types, there are more stars on `warm' orbits defined as 0.25 ≤ λz ≤ 0.8 than on either `cold' or `hot' orbits. This orbit-based `Hubble diagram' provides a benchmark for galaxy formation simulations in a cosmological context.
NASA Astrophysics Data System (ADS)
Garion, C.; Dufay-Chanat, L.; Koettig, T.; Machiocha, W.; Morrone, M.
2015-12-01
The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented.
Deployment, release and recovery of ocean riser pipes
Person, Abraham; Wetmore, Sherman B.; McNary, James F.
1980-11-18
An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.
Hundal, Rolv
1976-01-01
A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.
Beyond assembly bias: exploring secondary halo biases for cluster-size haloes
NASA Astrophysics Data System (ADS)
Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.
2018-03-01
Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.
The CGM of Massive Galaxies: Where Cold Gas Goes to Die?
NASA Astrophysics Data System (ADS)
Howk, Jay
2017-08-01
We propose to survey the cold HI content and metallicity of the circumgalactic medium (CGM) around 50 (45 new, 5 archival) z 0.5 Luminous Red Galaxies (LRGs) to directly test a fundamental prediction of galaxy assembly models: that cold, metal-poor accretion does not survive to the inner halos of very massive galaxies. Accretion and feedback through the CGM play key roles in our models of the star formation dichotomy in galaxies. Low mass galaxies are thought to accrete gas in cold streams, while high mass galaxies host hot, dense halos that heat incoming gas and prevent its cooling, thereby quenching star formation. HST/COS has provided evidence for cold, metal-poor streams in the halos of star-forming galaxies (consistent with cold accretion). Observations have also demonstrated the presence of cool gas in the halos of passive galaxies, a potential challenge to the cold/hot accretion model. Our proposed observations will target the most massive galaxies and address the origin of the cool CGM gas by measuring the metallicity. This experiment is enabled by our novel approach to deriving metallicities, allowing the use of much fainter QSOs. It cannot be done with archival data, as these rare systems are not often probed along random sight lines. The H I column density (and metallicity) measurements require access to the UV. The large size of our survey is crucial to robustly assess whether the CGM in these galaxies is unique from that of star-forming systems, a comparison that provides the most stringent test of cold-mode accretion/quenching models to date. Conversely, widespread detections of metal-poor gas in these halos will seriously challenge the prevailing theory.
Miniature cryocooler developments for high operating temperatures at Thales Cryogenics
NASA Astrophysics Data System (ADS)
Arts, R.; Martin, J.-Y.; Willems, D.; Seguineau, C.; Van Acker, S.; Mullié, J. C.; Göbel, A.; Tops, M.; Le Bordays, J.; Etchanchu, T.; Benschop, A. A. J.
2015-05-01
In recent years there has been a drive towards miniaturized cooled IDCA solutions for low-power, low-mass, low-size products (SWaP). To support this drive, coolers are developed optimized for high-temperature, low heat load dewar-detector assemblies. In this paper, Thales Cryogenics development activities supporting SWaP are presented. Design choices are discussed and compared to various key requirements. Trade-off analysis results are presented on drive voltage, cold finger definition (length, material, diameter and sealing concept), and other interface considerations, including cold finger definition. In parallel with linear and rotary cooler options, designs for small-size high-efficiency drive electronics based on state-of-the-art architectures are presented.
Constraining the Assembly History of Massive Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Newman, Andrew
2013-01-01
Massive elliptical galaxies are interesting locations to test hierarchical galaxy formation models, because mergers are thought to play a very important role in their evolution. These systems continue their assembly long after their stellar populations are “dead.” Since z ~ 2, they have grown in mass by a factor of ~2 and in size by a factor of ~4. Dissipationless (“dry”) mergers involving low-mass systems are thought to drive much of this expansion. I have tracked the rate of size growth experienced by quiescent galaxies to z ~ 1.5 using dynamical mass measures, based on Keck spectroscopy, and to z ~ 2.5 using photometric mass and size estimates derived from WFC3/IR imaging in the CANDELS survey. I have also quantified the abundance of faint companion galaxies around the same sources, in order to compare the rate of size growth with the estimated frequency of mergers. While mergers with close companions may account for most of the size growth seen at z < 1, they appear to fall short of explaining the more rapid growth seen at higher redshifts. This suggests additional modes of growth may be required. A merger-rich assembly history will impact the distribution of stellar and dark mass within the galaxy. At the extreme end of the mass function, brightest cluster galaxies (BCGs) are interesting locations to study the effects of mergers, since their assembly is expected to be dominated by late, dry, minor stellar accretion. I will present measurements of the stellar and dark matter density profiles within 7 BCGs derived from resolved stellar kinematics and gravitational lensing. Remarkably, the stellar and dark components “conspire” to produce total density profiles remarkably close to those seen in simulations containing only collisionless cold dark matter. I will briefly describe how this intriguing result might be understood in the context of a merger-rich assembly.
Comparative Transcriptomic Analysis of the Response to Cold Acclimation in Eucalyptus dunnii
Liu, Yiqing; Jiang, Yusong; Lan, Jianbin; Zou, Yong; Gao, Junping
2014-01-01
Eucalyptus dunnii is an important macrophanerophyte with high economic value. However, low temperature stress limits its productivity and distribution. To study the cold response mechanisms of E. dunnii, 5 cDNA libraries were constructed from mRNA extracted from leaves exposed to cold stress for varying lengths of time and were evaluated by RNA-Seq analysis. The assembly of the Illumina datasets was optimized using various assembly programs and parameters. The final optimized assembly generated 205,325 transcripts with an average length of 1,701 bp and N50 of 2,627 bp, representing 349.38 Mb of the E. dunnii transcriptome. Among these transcripts, 134,358 transcripts (65.4%) were annotated in the Nr database. According to the differential analysis results, most transcripts were up-regulated as the cold stress prolonging, suggesting that these transcripts may be involved in the response to cold stress. In addition, the cold-relevant GO categories, such as ‘response to stress’ and ‘translational initiation’, were the markedly enriched GO terms. The assembly of the E. dunnii gene index and the GO classification performed in this study will serve as useful genomic resources for the genetic improvement of E. dunnii and also provide insights into the molecular mechanisms of cold acclimation in E. dunnii. PMID:25412179
14. INTERIOR VIEW TO THE SOUTH OF ROOM 136, COLD ...
14. INTERIOR VIEW TO THE SOUTH OF ROOM 136, COLD ASSEMBLY BAY NO. 2. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
13. INTERIOR VIEW TO THE SOUTHEAST OF ROOM 101, COLD ...
13. INTERIOR VIEW TO THE SOUTHEAST OF ROOM 101, COLD ASSEMBLY BAY NO. 1. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Beyond assembly bias: exploring secondary halo biases for cluster-size haloes
Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.
2017-12-01
Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less
Beyond assembly bias: exploring secondary halo biases for cluster-size haloes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.
Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less
NASA Technical Reports Server (NTRS)
Roelke, R. J.; Haas, J. E.
1981-01-01
The aerodynamic performance of the inlet manifold and stator assembly of the compressor drive turbine was experimentally determined with cold air as the working fluid. The investigation included measurements of mass flow and stator-exit fluid torque as well as radial surveys of total pressure and flow angle at the stator inlet and annulus surveys of total pressure and flow angle at the stator exit. The stator-exit aftermixed flow conditions and overall stator efficiency were obtained and compared with their design values and the experimental results from three other stators. In addition, an analysis was made to determine the constituent aerodynamic losses that made up the stator kinetic energy loss.
Progress in Development of a Miniature Pulse Tube Cooler for Space Applications
NASA Astrophysics Data System (ADS)
Gibson, A. S.; Hunt, R.; Charles, I.; Duband, L.; Crook, M. R.; Orlowska, A. H.; Bradshaw, T. W.; Linder, M.
2004-06-01
A pulse tube cryocooler is under development for high-reliability spacecraft applications. Recent developments in the assembly and verification of a Miniature Pulse Tube Cooler (MPTC) are presented, including the latest data from the test program. Details of advances related to the compressor, pulse tube and electronics are discussed. The pulse tube cooler achieves high efficiency, optimised through an extensive process of breadboard testing and analysis and is now approaching a more mature Engineering Model (EM) status. A representative pulse tube cold finger has been verified with respect to design changes incorporated following the breadboard test phase. Mass, heat lift and parasitic losses have been improved. A mechanical system mass of 3.1 kg has been achieved. Cold finger tests have demonstrated the ability of the pulse tube to lift 1.5 W at 80 K and to reach <50 K for a PV-work of 25 W. The useful range of operation for the cooler extends below 60 K, where test results indicate 600 mW of heat lift capability.
Central Stellar Mass Deficits in the Bulges of Local Lenticular Galaxies
NASA Astrophysics Data System (ADS)
Dullo, B. T.
2014-03-01
The centers of giant galaxies display stellar mass deficits (Mdef) which are thought to be a signature left by inspiraling supermassive black hole (SMBH) binaries that are formed in post-merger galaxies. We quantify these deficits for a sample of five luminous lenticular galaxies with bulge magnitude MV ≲ -21 mag and find Mdef ≍ 0.5 - 2MBH (black hole mass). Contrary to the traditionally proposed lenticular galaxy formation mechanisms such as ram-pressure stripping and galaxy harassment, the mass deficits in these galaxies suggest a two stage inside-out process for their assembly. That is, their bulges may have formed through “dry” major-merger events involving SMBHs while their disk was subsequently built up via cold gas accretion scenarios. Interestingly, these bulges have sizes and mass densities comparable to the compact massive galaxies found at z ˜ 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galperin, A.; Segev, M.; Radkowsky, A.
1986-11-01
Control requirements for advanced pressurized water reactor designs must be met with heavy loadings of burnable poison rods, the required reactivity hold-down typically amounting to 30% or more in a poisoned subassembly. Two apparent choices for poisons are natural boron rods and natural gadolinium rods. Studied and analyzed is the effect of these two poisons on the hot-to-cold reactivity upswing. Compared with an upswing of 2.9% in a nonpoisoned assembly, the upswing in the gadolinium-poisoned assembly is 3.0%, and the upswing in the boron-poisoned assembly is 8.8%. Thus the hot-to-cold control penalty is almost nil for the choice of gadoliniummore » and is considerable for the choice of boron.« less
A&M. TAN607 second floor plan for cold assembly area. Metallurgical ...
A&M. TAN-607 second floor plan for cold assembly area. Metallurgical lab, chemistry lab, nuclear instrument lab, equipment rooms. Ralph M. Parsons 902-ANP-607-A 102. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-693-106754 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Henry, L.-A.; Moreno Navas, J.; Roberts, J. M.
2013-04-01
We investigated how interactions between hydrography, topography and species ecology influence the assembly of species and functional traits across multiple spatial scales of a cold-water coral reef seascape. In a novel approach for these ecosystems, we used a spatially resolved complex three-dimensional flow model of hydrography to help explain assembly patterns. Forward-selection of distance-based Moran's eigenvector mapping (dbMEM) variables identified two submodels of spatial scales at which communities change: broad-scale (across reef) and fine-scale (within reef). Variance partitioning identified bathymetric and hydrographic gradients important in creating broad-scale assembly of species and traits. In contrast, fine-scale assembly was related more to processes that created spatially autocorrelated patches of fauna, such as philopatric recruitment in sessile fauna, and social interactions and food supply in scavenging detritivores and mobile predators. Our study shows how habitat modification of reef connectivity and hydrography by bottom fishing and renewable energy installations could alter the structure and function of an entire cold-water coral reef seascape.
Newborn Spheroidal Galaxies at High Redshift (1
NASA Astrophysics Data System (ADS)
Kaviraj, Sugata; Cohen, S. H.; Ellis, R. S.; O'Connell, R. W.; Windhorst, R. A.; Silk, J.; Science Organising Committee, WFC3
2013-01-01
While the majority 80%) of the stellar mass in today’s spheroidal galaxies (SGs) is old, surprisingly little is known about exactly when and how these stars formed in the early Universe. This requires a survey-scale study of primordial SGs in the early Universe, which is only now becoming possible. Exploiting rest-frame UV-optical data from the Wide Field Camera 3 Early-Release Science programme, we present a statistical study of primordial SGs around the epoch of peak cosmic star formation (1
NASA Astrophysics Data System (ADS)
Riechers, Dominik A.; Bolatto, Alberto D.; Carilli, Chris; Casey, Caitlin M.; Decarli, Roberto; Murphy, Eric Joseph; Narayanan, Desika; Walter, Fabian; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group
2018-01-01
The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Imaging of the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts back to early cosmic epochs will reveal the physical processes responsible for star formation and black hole growth in galaxies over a broad range in redshifts. In the nearby universe, the ngVLA has the capability to survey the structure of the cold, star-forming interstellar medium at parsec-resolution out to the Virgo cluster. A range of molecular tracers will be accessible to map the motion, distribution, and physical and chemical state of the gas as it flows in from the outer disk, assembles into clouds, and experiences feedback due to star formation or accretion into central super-massive black holes. These investigations will crucially complement studies of the star formation and stellar mass histories with the Large UV/Optical/Infrared Surveyor and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.
Horiuchi, Yoshihiro; Gnanadesikan, Vijay; Ohshima, Takashi; Masu, Hyuma; Katagiri, Kosuke; Sei, Yoshihisa; Yamaguchi, Kentaro; Shibasaki, Masakatsu
2005-09-05
The development of a direct catalytic asymmetric aldol-Tishchenko reaction and the nature of its catalyst are described. An aldol-Tishchenko reaction of various propiophenone derivatives with aromatic aldehydes was promoted by [LaLi3(binol)3] (LLB), and reactivity and enantioselectivity were dramatically enhanced by the addition of lithium trifluoromethanesulfonate (LiOTf). First, we observed a dynamic structural change of LLB by the addition of LiOTf using 13C NMR spectroscopy, electronspray ionization mass spectrometry (ESI-MS), and cold-spray ionization mass spectrometry (CSI-MS). X-ray crystallography revealed that the structure of the newly generated self-assembled complex was a binuclear [La2Li4(binaphthoxide)5] complex 6. A reverse structural change of complex 6 to LLB by the addition of one equivalent of Li2(binol) was also confirmed by ESI-MS and experimental results. The drastic concentration effects on the direct catalytic asymmetric aldol-Tishchenko reaction suggested that the addition of LiOTf to LLB generated an active oligomeric catalyst species.
Improvements in Cold-Plate Fabrication
NASA Technical Reports Server (NTRS)
Zaffetti, Mark A.; Taddey, Edmund P.; Laurin, Michael B.; Chabebe, Natalia
2012-01-01
Five improvements are reported in cold-plate fabrication. This cold plate is part of a thermal control system designed to serve on space missions. The first improvement is the merging of the end sheets of the cold plate with the face sheets of the structural honeycomb panel. The cold plate, which can be a brazed assembly, uses the honeycomb face sheet as its end sheet. Thus, when the honeycomb panel is fabricated, the face sheet that is used is already part of the cold plate. In addition to reducing weight, costs, and steps, the main benefit of this invention is that it creates a more structurally sound assembly. The second improvement involves incorporation of the header into the closure bar to pass the fluid to a lower layer. Conventional designs have used a separate header, which increases the geometry of the system. The improvement reduces the geometry, thus allowing the cold plate to fit into smaller area. The third improvement eliminates the need of hose, tube, or manifold to supply the cooling fluid externally. The external arrangement can be easily damaged and is vulnerable to leakage. The new arrangement incorporates an internal fluid transfer tube. This allows the fluid to pass from one cold plate to the other without any exposed external features. The fourth improvement eliminates separate fabrication of cold plate(s) and structural members followed by a process of attaching them to each other. Here, the structural member is made of material that can be brazed just as that of the cold plate. Now the structural member and the cold plate can be brazed at the same time, creating a monolithic unit, and thus a more structurally sound assembly. Finally, the fifth improvement is the elimination of an additional welding step that can damage the braze joints. A tube section, which is usually welded on after the braze process, is replaced with a more structurally sound configuration that can be brazed at the same time as the rest of the cold plate.
Status of the MiniCLEAN dark matter experiment
NASA Astrophysics Data System (ADS)
Rielage, Keith
2009-10-01
MiniCLEAN utilizes over 400 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter with a projected sensitivity of 2x10-45 cm^2 for a mass of 100 GeV. The liquid cryogen is interchangeable between argon and neon to study the A^2 dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize the light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. Particular attention is being paid to mitigating the backgrounds from contamination of surfaces by radon daughters during assembly. The design and assembly status of the experiment will be discussed. The projected timeline and future plans for staging the experiment at SNOLAB in Sudbury, Canada will be presented.
CASMO5/TSUNAMI-3D spent nuclear fuel reactivity uncertainty analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrer, R.; Rhodes, J.; Smith, K.
2012-07-01
The CASMO5 lattice physics code is used in conjunction with the TSUNAMI-3D sequence in ORNL's SCALE 6 code system to estimate the uncertainties in hot-to-cold reactivity changes due to cross-section uncertainty for PWR assemblies at various burnup points. The goal of the analysis is to establish the multiplication factor uncertainty similarity between various fuel assemblies at different conditions in a quantifiable manner and to obtain a bound on the hot-to-cold reactivity uncertainty over the various assembly types and burnup attributed to fundamental cross-section data uncertainty. (authors)
Cold cathode vacuum gauging system
Denny, Edward C.
2004-03-09
A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.
The Cold Gas History of the Universe as seen by the ngVLA
NASA Astrophysics Data System (ADS)
Riechers, Dominik A.; Carilli, Chris Luke; Casey, Caitlin; da Cunha, Elisabete; Hodge, Jacqueline; Ivison, Rob; Murphy, Eric J.; Narayanan, Desika; Sargent, Mark T.; Scoville, Nicholas; Walter, Fabian
2017-01-01
The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Informed by the first efforts with the Karl G. Jansky Very Large Array (COLDz survey) and the Atacama Large (sub)Millimeter Array (ASPECS survey), we here present initial predictions and possible survey strategies for such "molecular deep field" observations with the ngVLA. These investigations will provide a detailed measurement of the volume density of molecular gas in galaxies as a function of redshift, the "cold gas history of the universe". This will crucially complement studies of the neutral gas, star formation and stellar mass histories with large low-frequency arrays, the Large UV/Optical/Infrared Surveyor, and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.
A&M. TAN607 first floor plan for cold assembly area. Shows ...
A&M. TAN-607 first floor plan for cold assembly area. Shows special source vaults, X-ray room, instrument shops, and positions of large machines in component test laboratory. This drawing was re-drawn to show conditions in 1994. Ralph M. Parsons 902-3-ANP-607-A 100. Date of original: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-060-00-693-106752 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
How enhanced molecular ions in Cold EI improve compound identification by the NIST library.
Alon, Tal; Amirav, Aviv
2015-12-15
Library-based compound identification with electron ionization (EI) mass spectrometry (MS) is a well-established identification method which provides the names and structures of sample compounds up to the isomer level. The library (such as NIST) search algorithm compares different EI mass spectra in the library's database with the measured EI mass spectrum, assigning each of them a similarity score called 'Match' and an overall identification probability. Cold EI, electron ionization of vibrationally cold molecules in supersonic molecular beams, provides mass spectra with all the standard EI fragment ions combined with enhanced Molecular Ions and high-mass fragments. As a result, Cold EI mass spectra differ from those provided by standard EI and tend to yield lower matching scores. However, in most cases, library identification actually improves with Cold EI, as library identification probabilities for the correct library mass spectra increase, despite the lower matching factors. This research examined the way that enhanced molecular ion abundances affect library identification probability and the way that Cold EI mass spectra, which include enhanced molecular ions and high-mass fragment ions, typically improve library identification results. It involved several computer simulations, which incrementally modified the relative abundances of the various ions and analyzed the resulting mass spectra. The simulation results support previous measurements, showing that while enhanced molecular ion and high-mass fragment ions lower the matching factor of the correct library compound, the matching factors of the incorrect library candidates are lowered even more, resulting in a rise in the identification probability for the correct compound. This behavior which was previously observed by analyzing Cold EI mass spectra can be explained by the fact that high-mass ions, and especially the molecular ion, characterize a compound more than low-mass ions and therefore carries more weight in library search identification algorithms. These ions are uniquely abundant in Cold EI, which therefore enables enhanced compound characterization along with improved NIST library based identification. Copyright © 2015 John Wiley & Sons, Ltd.
Shafer, Scott F.
2002-01-01
The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.
Semi-Analytic Galaxies - I. Synthesis of environmental and star-forming regulation mechanisms
NASA Astrophysics Data System (ADS)
Cora, Sofía A.; Vega-Martínez, Cristian A.; Hough, Tomás; Ruiz, Andrés N.; Orsi, Álvaro; Muñoz Arancibia, Alejandra M.; Gargiulo, Ignacio D.; Collacchioni, Florencia; Padilla, Nelson D.; Gottlöber, Stefan; Yepes, Gustavo
2018-05-01
We present results from the semi-analytic model of galaxy formation SAG applied on the MULTIDARK simulation MDPL2. SAG features an updated supernova (SN) feedback scheme and a robust modelling of the environmental effects on satellite galaxies. This incorporates a gradual starvation of the hot gas halo driven by the action of ram pressure stripping (RPS), that can affect the cold gas disc, and tidal stripping (TS), which can act on all baryonic components. Galaxy orbits of orphan satellites are integrated providing adequate positions and velocities for the estimation of RPS and TS. The star formation history and stellar mass assembly of galaxies are sensitive to the redshift dependence implemented in the SN feedback model. We discuss a variant of our model that allows to reconcile the predicted star formation rate density at z ≳ 3 with the observed one, at the expense of an excess in the faint end of the stellar mass function at z = 2. The fractions of passive galaxies as a function of stellar mass, halo mass and the halo-centric distances are consistent with observational measurements. The model also reproduces the evolution of the main sequence of star forming central and satellite galaxies. The similarity between them is a result of the gradual starvation of the hot gas halo suffered by satellites, in which RPS plays a dominant role. RPS of the cold gas does not affect the fraction of quenched satellites but it contributes to reach the right atomic hydrogen gas content for more massive satellites (M⋆ ≳ 1010 M⊙).
The effect of fasting and body reserves on cold tolerance in 2 pit-building insect predators.
Scharf, Inon; Daniel, Alma; MacMillan, Heath Andrew; Katz, Noa
2017-06-01
Pit-building antlions and wormlions are 2 distantly-related insect species, whose larvae construct pits in loose soil to trap small arthropod prey. This convergent evolution of natural histories has led to additional similarities in their natural history and ecology, and thus, these 2 species encounter similar abiotic stress (such as periodic starvation) in their natural habitat. Here, we measured the cold tolerance of the 2 species and examined whether recent feeding or food deprivation, as well as body composition (body mass and lipid content) and condition (quantified as mass-to-size residuals) affect their cold tolerance. In contrast to other insects, in which food deprivation either enhanced or impaired cold tolerance, prolonged fasting had no effect on the cold tolerance of either species, which had similar cold tolerance. The 2 species differed, however, in how cold tolerance related to body mass and lipid content: although body mass was positively correlated with the wormlion cold tolerance, lipid content was a more reliable predictor of cold tolerance in the antlions. Cold tolerance also underwent greater change with ontogeny in wormlions than in antlions. We discuss possible reasons for this lack of effect of food deprivation on both species' cold tolerance, such as their high starvation tolerance (being sit-and-wait predators).
Natarajan, Sathishkumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup
2016-01-01
Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp. PMID:27627679
Han, Jeongsukhyeon; Thamilarasan, Senthil Kumar; Natarajan, Sathishkumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup
2016-01-01
Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp.
2010-05-06
This image from NASA Herschel, in the constellation of Vulpecula, shows an entire assembly line of newborn stars. The diffuse glow reveals the widespread cold reservoir of raw material that our Milky Way galaxy has in stock for building stars.
Cold fission description with constant and varying mass asymmetries
NASA Astrophysics Data System (ADS)
Duarte, S. B.; Rodríguez, O.; Tavares, O. A. P.; Gonçalves, M.; García, F.; Guzmán, F.
1998-05-01
Different descriptions for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the prescission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A>200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life values and mass yield of 234U cold fission are satisfactorily reproduced.
Lurking systematics in dust-based estimates of galaxy ISM masses
NASA Astrophysics Data System (ADS)
Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle
2018-01-01
We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. With observations of cold neutral atomic and molecular gas, we calibrate predictive relationships using infrared dust emission and gas depletion time methods. We derive a set of self-consistent predictions of cold gas masses with ~20% scatter, and the greatest accuracy for total cold gas mass. However, significant systematic residuals are found in all calibrations which depend strongly on the molecular-to-atomic hydrogen mass ratio, and they can over/under-predict gas masses by >0.5 dex. Extending these types of indirect predictions to high-z galaxies (e.g., using ALMA observations of dust continuum to determine gas masses) requires implicit assumptions about the conditions in their interstellar medium. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.
Advances in a high efficiency commercial pulse tube cooler
NASA Astrophysics Data System (ADS)
Zhang, Yibing; Li, Haibing; Wang, Xiaotao; Dai, Wei; Yang, Zhaohui; Luo, Ercang
2017-12-01
The pulse tube cryocooler has the advantage of no moving part at the cold end and offers a high reliability. To further extend its use in commercial applications, efforts are still needed to improve efficiency, reliability and cost effectiveness. This paper generalizes several key innovations in our newest cooler. The cooler consists of a moving magnet compressor with dual-opposed pistons, and a co-axial cold finger. Ambient displacers are employed to recover the expansion work to increase cooling efficiency. Inside the cold finger, the conventional flow straightener screens are replaced by a tapered throat between the cold heat exchanger and the pulse tube to strengthen its immunity to the working gas contamination as well as to simplify the manufacturing processes. The cold heat exchanger is made by copper forging process which further reduces the cost. Inside the compressor, a new gas bearing design has brought in assembling simplicity and running reliability. Besides the cooler itself, electronic controller is also important for actual application. A dual channel and dual driving mode control mechanism has been selected, which reduces the vibration to a minimum, meanwhile the cool-down speed becomes faster and run-time efficiency is higher. With these innovations, the cooler TC4189 reached a no-load temperature of 44 K and provided 15 W cooling power at 80K, with an input electric power of 244 W and a cooling water temperature of 23 ℃. The efficiency reached 16.9% of Carnot at 80 K. The whole system has a total mass of 4.3 kg.
An empirical model for optimal highway durability in cold regions.
DOT National Transportation Integrated Search
2016-03-10
We develop an empirical tool to estimate optimal highway durability in cold regions. To test the model, we assemble a data set : containing all highway construction and maintenance projects in Arizona and Washington State from 1990 to 2014. The data ...
THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Samaniego, A.; Avila-Reese, V.; Colín, P.
2016-03-10
By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses M{sub v} = (2–3) × 10{sup 10} h{sup −1} M{sub ⊙} at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is M{sub f} = 2 × 10{sup 10} h{sup −1} M{sub ⊙}. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro–Frenk–White parametric fit in both cosmologies, though the WDM halos have concentrations lower bymore » factors of 1.5–2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02R{sub v}, α{sub 0.02}, becomes shallow in periods of 2–5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), M{sub s}/M{sub v} ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α{sub 0.02} is shallower than −0.5, M{sub s}/M{sub v} is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the dwarfs are softened, their stellar half-mass radii strongly grow with time, and their central surface densities decrease.« less
4. EXTERIOR VIEW TO THE EAST OF THE WEST ELEVATION ...
4. EXTERIOR VIEW TO THE EAST OF THE WEST ELEVATION OF THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Reionization and Galaxy Formation in Warm Dark Matter Cosmologies
NASA Astrophysics Data System (ADS)
Dayal, Pratika; Choudhury, Tirthankar Roy; Bromm, Volker; Pacucci, Fabio
2017-02-01
We compare model results from a semi-analytic (merger-tree based) framework for high-redshift (z ≃ 5-20) galaxy formation against reionization indicators, including the Planck electron scattering optical depth (τ es) and the ionizing photon emissivity ({\\dot{n}}{ion}), to shed light on the reionization history and sources in Cold (CDM) and Warm Dark Matter (WDM; particle masses of {m}x = 1.5, 3, and 5 keV) cosmologies. This model includes all of the key processes of star formation, supernova feedback, the merger/accretion/ejection driven evolution of gas and stellar mass and the effect of the ultra-violet background (UVB), created during reionization, in photo-evaporating the gas content of galaxies in halos with M h ≲ 109 {M}⊙ . We find that the delay in the start of reionization in light (1.5 keV) WDM models can be compensated by a steeper redshift evolution of the ionizing photon escape fraction and a faster mass assembly, resulting in reionization ending at comparable redshifts (z ≃ 5.5) in all the dark matter models considered. We find that the bulk of the reionization photons come from galaxies with a halo mass of M h ≲ 109 {M}⊙ and a UV magnitude of -15 ≲ M UV ≲ -10 in CDM. The progressive suppression of low-mass halos with decreasing {m}x leads to a shift in the “reionization” population to larger halo masses of M h ≳ 109 {M}⊙ and -17 ≲ M UV ≲ -13 for 1.5 keV WDM. We find that current observations of τ es and the ultra violet luminosity function are equally compatible with all the (cold and warm) dark matter models considered in this work. Quantifying the impact of the UVB on galaxy observables (luminosity functions, stellar mass densities, and stellar to halo mass ratios) for different DM models, we propose that global indicators including the redshift evolution of the stellar mass density and the stellar mass-halo mass relation, observable with the James Webb Space Telescope, can be used to distinguish between CDM and WDM (1.5 keV) cosmologies.
NASA Astrophysics Data System (ADS)
Trujillo-Gomez, Sebastian; Klypin, Anatoly; Colín, Pedro; Ceverino, Daniel; Arraki, Kenza S.; Primack, Joel
2015-01-01
Despite recent success in forming realistic present-day galaxies, simulations still form the bulk of their stars earlier than observations indicate. We investigate the process of stellar mass assembly in low-mass field galaxies, a dwarf and a typical spiral, focusing on the effects of radiation from young stellar clusters on the star formation (SF) histories. We implement a novel model of SF with a deterministic low efficiency per free-fall time, as observed in molecular clouds. Stellar feedback is based on observations of star-forming regions, and includes radiation pressure from massive stars, photoheating in H II regions, supernovae and stellar winds. We find that stellar radiation has a strong effect on the formation of low-mass galaxies, especially at z > 1, where it efficiently suppresses SF by dispersing cold and dense gas, preventing runaway growth of the stellar component. This behaviour is evident in a variety of observations but had so far eluded analytical and numerical models without radiation feedback. Compared to supernovae alone, radiation feedback reduces the SF rate by a factor of ˜100 at z ≲ 2, yielding rising SF histories which reproduce recent observations of Local Group dwarfs. Stellar radiation also produces bulgeless spiral galaxies and may be responsible for excess thickening of the stellar disc. The galaxies also feature rotation curves and baryon fractions in excellent agreement with current data. Lastly, the dwarf galaxy shows a very slow reduction of the central dark matter density caused by radiation feedback over the last ˜7 Gyr of cosmic evolution.
Shock isolator for operating a diode laser on a closed-cycle refrigerator
NASA Technical Reports Server (NTRS)
Jennings, D. E. (Inventor)
1979-01-01
A diode laser mounted within a helium refrigerator is mounted using a braided copper ground strap which provides good impact shock isolation from the refrigerator cold-tip while also providing a good thermal link to the cold-tip. The diode mount also contains a rigid stand-off assembly consisting of alternate sections of nylon and copper which serve as cold stations to improve thermal isolation from the vaccum housing mounting structure. Included in the mount is a Pb-In alloy wafer inserted between the cold-tip and the diode to damp temperature fluctuations occurring at the cold-tip.
Galaxy Transformations In The Cosmic Web
NASA Astrophysics Data System (ADS)
Jablonka, Pascale
2017-06-01
In this talk, I present a new survey, the Spatial Extended EDisCS Survey (SEEDisCS), that aims at understanding how clusters assemble and the level at which galaxies are preprocessed before falling on the cluster cores. SEEDisCS therefore focusses on the changes in galaxy properties along the large scale structures surrounding a couple of z 0.5 medium mass clusters, I first describe how spiral disc stellar populations are affected by the environment,and how we can get constraints on the timescale of star formation quenching. I then present new NOEMA and ALMA CO observations that trace the fate of the galaxy cold gas content along the infalling paths towards the cluster cores.
10. INTERIOR VIEW TO THE NORTH OF THE HALLWAY WITHIN ...
10. INTERIOR VIEW TO THE NORTH OF THE HALLWAY WITHIN THE ADMINISTRATION PORTION OF THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
The rarity of dust in metal-poor galaxies.
Fisher, David B; Bolatto, Alberto D; Herrera-Camus, Rodrigo; Draine, Bruce T; Donaldson, Jessica; Walter, Fabian; Sandstrom, Karin M; Leroy, Adam K; Cannon, John; Gordon, Karl
2014-01-09
Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which--a mere 840 million years after the Big Bang--is forming stars at a rate of 30-100 solar masses per year, yielding a mass assembly time of about 150 × 10(6) years. Himiko is thought to have a low fraction (2-3 per cent of the Sun's) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun's and is forming stars less rapidly (assembly time about 1.6 × 10(9) years) than Himiko but still vigorously for its mass, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450-1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10(-6) to 10(-5) and a dust-to-gas mass ratio of 3.2-13 × 10(-6). If I Zw 18 is a reasonable analogue of Himiko, then Himiko's dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated.
Structural Assembly for Cold Plate Cooling
NASA Technical Reports Server (NTRS)
Zaffetti, Mark A. (Inventor); Taddey, Edmund P. (Inventor)
2014-01-01
A device including a structural member having a heat spreader and an electronic device mounted directly to a first surface of the heat spreader of the structural member. The device also includes a cold plate mounted directly to the first surface of the heat spreader of the structural member.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullrich, Rebecca A.
Assembly Building 9B (Building 09-54) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons designs. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.
20. INTERIOR VIEW TO THE EAST OF THE ACCESS RAMP ...
20. INTERIOR VIEW TO THE EAST OF THE ACCESS RAMP TO THE HOT DISASSEMBLY AREA FROM THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg
2012-01-01
Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991
The Baryonic Collapse Efficiency of Galaxy Groups in the RESOLVE and ECO Surveys
NASA Astrophysics Data System (ADS)
Eckert, Kathleen D.; Kannappan, Sheila J.; Lagos, Claudia del P.; Baker, Ashley D.; Berlind, Andreas A.; Stark, David V.; Moffett, Amanda J.; Nasipak, Zachary; Norris, Mark A.
2017-11-01
We examine the z = 0 group-integrated stellar and cold baryonic (stars + cold atomic gas) mass functions (group SMF and CBMF) and the baryonic collapse efficiency (group cold baryonic to dark matter halo mass ratio) using the RESOLVE and ECO survey galaxy group catalogs and a galform semi-analytic model (SAM) mock catalog. The group SMF and CBMF fall off more steeply at high masses and rise with a shallower low-mass slope than the theoretical halo mass function (HMF). The transition occurs at the group-integrated cold baryonic mass {M}{bary}{cold} ˜ 1011 {M}⊙ . The SAM, however, has significantly fewer groups at the transition mass ˜1011 {M}⊙ and a steeper low-mass slope than the data, suggesting that feedback is too weak in low-mass halos and conversely too strong near the transition mass. Using literature prescriptions to include hot halo gas and potential unobservable galaxy gas produces a group BMF with a slope similar to the HMF even below the transition mass. Its normalization is lower by a factor of ˜2, in agreement with estimates of warm-hot gas making up the remaining difference. We compute baryonic collapse efficiency with the halo mass calculated two ways, via halo abundance matching (HAM) and via dynamics (extended all the way to three-galaxy groups using stacking). Using HAM, we find that baryonic collapse efficiencies reach a flat maximum for groups across the halo mass range of {M}{halo}˜ {10}11.4-12 {M}⊙ , which we label “nascent groups.” Using dynamics, however, we find greater scatter in baryonic collapse efficiencies, likely indicating variation in group hot-to-cold baryon ratios. Similarly, we see higher scatter in baryonic collapse efficiencies in the SAM when using its true groups and their group halo masses as opposed to friends-of-friends groups and HAM masses.
4. VIEW TO THE NORTHWEST OF THE COLD BAY ON ...
4. VIEW TO THE NORTHWEST OF THE COLD BAY ON THE NORTH (RIGHT) AND THE POST-MORTEM CELLS ON THE SOUTH (LEFT). ALSO ILLUSTRATED ARE THE DIFFERENT ROOF HEIGHTS OF THE BUILDING. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV
The Ongoing Assembly of a Central Cluster Galaxy: Phase-space Substructures in the Halo of M87
NASA Astrophysics Data System (ADS)
Romanowsky, Aaron J.; Strader, Jay; Brodie, Jean P.; Mihos, J. Christopher; Spitler, Lee R.; Forbes, Duncan A.; Foster, Caroline; Arnold, Jacob A.
2012-03-01
The halos of galaxies preserve unique records of their formation histories. We carry out the first combined observational and theoretical study of phase-space halo substructure in an early-type galaxy: M87, the central galaxy in the Virgo cluster. We analyze an unprecedented wide-field, high-precision photometric and spectroscopic data set for 488 globular clusters (GCs), which includes new, large-radius Subaru/Suprime-Cam and Keck/DEIMOS observations. We find signatures of two substructures in position-velocity phase space. One is a small, cold stream associated with a known stellar filament in the outer halo; the other is a large shell-like pattern in the inner halo that implies a massive, hitherto unrecognized accretion event. We perform extensive statistical tests and independent metallicity analyses to verify the presence and characterize the properties of these features, and to provide more general methodologies for future extragalactic studies of phase-space substructure. The cold outer stream is consistent with a dwarf galaxy accretion event, while for the inner shell there is tension between a low progenitor mass implied by the cold velocity dispersion, and a high mass from the large number of GCs, which might be resolved by a ~0.5 L* E/S0 progenitor. We also carry out proof-of-principle numerical simulations of the accretion of smaller galaxies in an M87-like gravitational potential. These produce analogous features to the observed substructures, which should have observable lifetimes of ~1 Gyr. The shell and stream GCs together support a scenario where the extended stellar envelope of M87 has been built up by a steady rain of material that continues until the present day. This phase-space method demonstrates unique potential for detailed tests of galaxy formation beyond the Local Group.
17. INTERIOR VIEW TO THE EAST OF ROOM 215, A ...
17. INTERIOR VIEW TO THE EAST OF ROOM 215, A SECOND FLOOR OFFICE ABOVE ROOM 137 IN THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Argyropoulos, G; Samara, C; Diapouli, E; Eleftheriadis, K; Papaoikonomou, K; Kungolos, A
2017-12-01
A hybrid source-receptor modeling process was assembled, to apportion and infer source locations of PM 10 and PM 2.5 in three heavily-impacted urban areas of Greece, during the warm period of 2011, and the cold period of 2012. The assembled process involved application of an advanced computational procedure, the so-called Robotic Chemical Mass Balance (RCMB) model. Source locations were inferred using two well-established probability functions: (a) the Conditional Probability Function (CPF), to correlate the output of RCMB with local wind directional data, and (b) the Potential Source Contribution Function (PSCF), to correlate the output of RCMB with 72h air-mass back-trajectories, arriving at the receptor sites, during sampling. Regarding CPF, a higher-level conditional probability function was defined as well, from the common locus of CPF sectors derived for neighboring receptor sites. With respect to PSCF, a non-parametric bootstrapping method was applied to discriminate the statistically significant values. RCMB modeling showed that resuspended dust is actually one of the main barriers for attaining the European Union (EU) limit values in Mediterranean urban agglomerations, where the drier climate favors build-up. The shift in the energy mix of Greece (caused by the economic recession) was also evidenced, since biomass burning was found to contribute more significantly to the sampling sites belonging to the coldest climatic zone, particularly during the cold period. The CPF analysis showed that short-range transport of anthropogenic emissions from urban traffic to urban background sites was very likely to have occurred, within all the examined urban agglomerations. The PSCF analysis confirmed that long-range transport of primary and/or secondary aerosols may indeed be possible, even from distances over 1000km away from study areas. Copyright © 2017 Elsevier B.V. All rights reserved.
A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2010-01-01
Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/(kg/sec), show the dimensional consistency of overall results.
A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2010-01-01
Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.
Dependence of Halo Bias and Kinematics on Assembly Variables
NASA Astrophysics Data System (ADS)
Xu, Xiaoju; Zheng, Zheng
2018-06-01
Using dark matter haloes identified in a large N-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass into different percentiles of each assembly variable, we present the joint dependence of halo bias on the values of halo mass and each assembly variable. In the plane of halo mass and one assembly variable, the joint dependence can be largely described as halo bias increasing outward from a global minimum. We find it unlikely to have a combination of halo variables to absorb all assembly bias effects. We then present the joint dependence of halo bias on two assembly variables at fixed halo mass. The gradient of halo bias does not necessarily follow the correlation direction of the two assembly variables and it varies with halo mass. Therefore in general for two correlated assembly variables one cannot be used as a proxy for the other in predicting halo assembly bias trend. Finally, halo assembly is found to affect the kinematics of haloes. Low-mass haloes formed earlier can have much higher pairwise velocity dispersion than those of massive haloes. In general, halo assembly leads to a correlation between halo bias and halo pairwise velocity distribution, with more strongly clustered haloes having higher pairwise velocity and velocity dispersion. However, the correlation is not tight, and the kinematics of haloes at fixed halo bias still depends on halo mass and assembly variables.
Apparatus and Method for Cold Welding Thin Wafers to Hard Substrates
NASA Technical Reports Server (NTRS)
Oeftering, Richard C. (Inventor); Smith, Floyd A. (Inventor)
1996-01-01
An apparatus for coating and bonding parts in a vacuum includes a floating mount assembly holding one part and applying a bonding load to the parts. A pivoting mount assembly holds one part and is pivoted between a coating position and a bonding position. At least one coating source is provided for depositing a thin film of a metal onto a surface of each of the parts to improve the cold weld between the two parts. A restraining lever controls the application of the bonding load to the parts. The coating and bonding process occurs in a vacuum chamber with a single set-up.
Possible Imprints of Cold-mode Accretion on the Present-day Properties of Disk Galaxies
NASA Astrophysics Data System (ADS)
Noguchi, Masafumi
2018-01-01
Recent theoretical studies suggest that a significant part of the primordial gas accretes onto forming galaxies as narrow filaments of cold gas without building a shock and experiencing heating. Using a simple model of disk galaxy evolution that combines the growth of dark matter halos predicted by cosmological simulations with a hypothetical form of cold-mode accretion, we investigate how this cold-accretion mode affects the formation process of disk galaxies. It is found that the shock-heating and cold-accretion models produce compatible results for low-mass galaxies owing to the short cooling timescale in such galaxies. However, cold accretion significantly alters the evolution of disk galaxies more massive than the Milky Way and puts observable fingerprints on their present properties. For a galaxy with a virial mass {M}{vir}=2.5× {10}12 {M}ȯ , the scale length of the stellar disk is larger by 41% in the cold-accretion model than in the shock-heating model, with the former model reproducing the steep rise in the size–mass relation observed at the high-mass end. Furthermore, the stellar component of massive galaxies becomes significantly redder (0.66 in u ‑ r at {M}{vir}=2.5× {10}12 {M}ȯ ), and the observed color–mass relation in nearby galaxies is qualitatively reproduced. These results suggest that large disk galaxies with red optical colors may be the product of cold-mode accretion. The essential role of cold accretion is to promote disk formation in the intermediate-evolution phase (0.5< z< 1.5) by providing the primordial gas having large angular momentum and to terminate late-epoch accretion, quenching star formation and making massive galaxies red.
Star formation in simulated galaxies: understanding the transition to quiescence at 3 × 1010 M⊙
NASA Astrophysics Data System (ADS)
Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki
2017-08-01
Star formation in galaxies relies on the availability of cold, dense gas, which, in turn, relies on factors internal and external to the galaxies. In order to provide a simple model for how star formation is regulated by various physical processes in galaxies, we analyse data at redshift z = 0 from a hydrodynamical cosmological simulation that includes prescriptions for star formation and stellar evolution, active galactic nuclei, and their associated feedback processes. This model can determine the star formation rate (SFR) as a function of galaxy stellar mass, gas mass, black hole mass, and environment. We find that gas mass is the most important quantity controlling star formation in low-mass galaxies, and star-forming galaxies in dense environments have higher SFR than their counterparts in the field. In high-mass galaxies, we find that black holes more massive than ˜ 107.5 M⊙ can be triggered to quench star formation in their host; this mass scale is emergent in our simulations. Furthermore, this black hole mass corresponds to a galaxy bulge mass ˜ 2 × 1010 M⊙, consistent with the mass at which galaxies start to become dominated by early types ( ˜ 3 × 1010 M⊙, as previously shown in observations by Kauffmann et al.). Finally, we demonstrate that our model can reproduce well the SFR measured from observations of galaxies in the Galaxy And Mass Assembly and Arecibo Legacy Fast ALFA surveys.
5. EXTERIOR VIEW TO THE SOUTHEAST OF THE NORTH AND ...
5. EXTERIOR VIEW TO THE SOUTHEAST OF THE NORTH AND WEST ELEVATIONS, WITH THE COLD ASSEMBLY AREA TO THE RIGHT AND THE HOT DISASSEMBLY AREA TO THE LEFT. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
3. EXTERIOR VIEW TO THE NORTH OF THE SOUTH ELEVATION ...
3. EXTERIOR VIEW TO THE NORTH OF THE SOUTH ELEVATION OF THE ADMINISTRATION AREA IN THE COLD ASSEMBLY AREA, WITH THE MAIN ENTRANCE 'KENNEDY DOORS' IN THE MIDDLE. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
NASA Astrophysics Data System (ADS)
Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle J.
2018-05-01
We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. We calibrate predictions for cold neutral atomic and molecular gas using infrared dust emission and gas depletion time methods that are self-consistent and have ˜20 per cent accuracy (with the highest accuracy in the prediction of total cold gas mass). However, modest systematic residual dependences are found in all calibrations that depend on the partition between molecular and atomic gas, and can over/underpredict gas masses by up to 0.3 dex. As expected, dust-based estimates are best at predicting the total gas mass while depletion time-based estimates are only able to predict the (star-forming) molecular gas mass. Additionally, we advise caution when applying these predictions to high-z galaxies, as significant (0.5 dex or more) errors can arise when incorrect assumptions are made about the dominant gas phase. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.
A chronicle of galaxy mass assembly in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Qu, Yan; Helly, John C.; Bower, Richard G.; Theuns, Tom; Crain, Robert A.; Frenk, Carlos S.; Furlong, Michelle; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop; White, Simon D. M.
2017-01-01
We analyse the mass assembly of central galaxies in the Evolution and Assembly of Galaxies and their Environments (EAGLE) hydrodynamical simulations. We build merger trees to connect galaxies to their progenitors at different redshifts and characterize their assembly histories by focusing on the time when half of the galaxy stellar mass was assembled into the main progenitor. We show that galaxies with stellar mass M* < 1010.5 M⊙ assemble most of their stellar mass through star formation in the main progenitor (`in situ' star formation). This can be understood as a consequence of the steep rise in star formation efficiency with halo mass for these galaxies. For more massive galaxies, however, an increasing fraction of their stellar mass is formed outside the main progenitor and subsequently accreted. Consequently, while for low-mass galaxies, the assembly time is close to the stellar formation time, the stars in high-mass galaxies typically formed long before half of the present-day stellar mass was assembled into a single object, giving rise to the observed antihierarchical downsizing trend. In a typical present-day M* ≥ 1011 M⊙ galaxy, around 20 per cent of the stellar mass has an external origin. This fraction decreases with increasing redshift. Bearing in mind that mergers only make an important contribution to the stellar mass growth of massive galaxies, we find that the dominant contribution comes from mergers with galaxies of mass greater than one-tenth of the main progenitor's mass. The galaxy merger fraction derived from our simulations agrees with recent observational estimates.
Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.; Pan, Heng; Liu, X. K.
2009-07-01
A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed betweenmore » the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.« less
Multiple filters affect tree species assembly in mid-latitude forest communities.
Kubota, Y; Kusumoto, B; Shiono, T; Ulrich, W
2018-05-01
Species assembly patterns of local communities are shaped by the balance between multiple abiotic/biotic filters and dispersal that both select individuals from species pools at the regional scale. Knowledge regarding functional assembly can provide insight into the relative importance of the deterministic and stochastic processes that shape species assembly. We evaluated the hierarchical roles of the α niche and β niches by analyzing the influence of environmental filtering relative to functional traits on geographical patterns of tree species assembly in mid-latitude forests. Using forest plot datasets, we examined the α niche traits (leaf and wood traits) and β niche properties (cold/drought tolerance) of tree species, and tested non-randomness (clustering/over-dispersion) of trait assembly based on null models that assumed two types of species pools related to biogeographical regions. For most plots, species assembly patterns fell within the range of random expectation. However, particularly for cold/drought tolerance-related β niche properties, deviation from randomness was frequently found; non-random clustering was predominant in higher latitudes with harsh climates. Our findings demonstrate that both randomness and non-randomness in trait assembly emerged as a result of the α and β niches, although we suggest the potential role of dispersal processes and/or species equalization through trait similarities in generating the prevalence of randomness. Clustering of β niche traits along latitudinal climatic gradients provides clear evidence of species sorting by filtering particular traits. Our results reveal that multiple filters through functional niches and stochastic processes jointly shape geographical patterns of species assembly across mid-latitude forests.
Halo abundance and assembly history with extreme-axion wave dark matter at z ≥ 4
NASA Astrophysics Data System (ADS)
Schive, Hsi-Yu; Chiueh, Tzihong
2018-01-01
Wave dark matter (ψDM) composed of extremely light bosons (mψ ˜ 10 - 22 eV), with quantum pressure suppressing structures below a kpc-scale de Broglie wavelength, has become a viable dark matter candidate. Compared to the conventional free-particle ψDM (FPψDM), the extreme-axion ψDM model (EAψDM) proposed by Zhang & Chiueh features a larger cut-off wavenumber and a broad spectral bump in the matter transfer function. Here, we conduct cosmological simulations to compare the halo abundances and assembly histories at z = 4-11 between three different scenarios: FPψDM, EAψDM and cold dark matter (CDM). We show that EAψDM produces significantly more abundant low-mass haloes than FPψDM with the same mψ, and therefore could alleviate the tension in mψ required by the Lyα forest data and by the kpc-scale dwarf galaxy cores. We also find that, compared to the CDM counterparts, massive EAψDM haloes are, on average, 3-4 times more massive at z = 10-11 due to their earlier formation, undergo a slower mass accretion at 7 ≲ z ≲ 11, and then show a rapidly rising major merger rate exceeding CDM by ˜ 50 per cent at 4 ≲ z ≲ 7. This fact suggests that EAψDM haloes may exhibit more prominent starbursts at z ≲ 7.
Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves
NASA Astrophysics Data System (ADS)
Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B.; Yu, Hai-Bo
2017-09-01
The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25 - 300 km /s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.
Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves.
Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B; Yu, Hai-Bo
2017-09-15
The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25-300 km/s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.
Method of making tantalum capacitors
McMillan, April D.; Clausing, Robert E.; Vierow, William F.
1998-01-01
A method for manufacturing tantalum capacitors includes preparing a tantalum compact by cold pressing tantalum powder, placing the compact, along with loose refractory metal powder, in a microwave-transparent casket to form an assembly, and heating the assembly for a time sufficient to effect at least partial sintering of the compact and the product made by the method.
1. EXTERIOR VIEW TO THE NORTH OF THE SOUTH ELEVATIONS ...
1. EXTERIOR VIEW TO THE NORTH OF THE SOUTH ELEVATIONS OF THE R-MAD FACILITY WITH THE COLD ASSEMBLY AREA ON THE LEFT AND THE HOT DISASSEMBLY AREA TO THE RIGHT. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Microscale mass spectrometry systems, devices and related methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, John Michael
Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
Microscale mass spectrometry systems, devices and related methods
Ramsey, John Michael
2016-06-21
Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Where: Ywm = Weighted mass emissions of each pollutant, i.e., HC, CO, NOX or CO , in grams per vehicle mile. Yct = Mass emissions as calculated from the “transient” phase of the cold start test, in grams... grams per test phase. Ys = Mass emissions as calculated from the “stabilized” phase of the cold start...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Where: Ywm = Weighted mass emissions of each pollutant, i.e., HC, CO, NOX or CO , in grams per vehicle mile. Yct = Mass emissions as calculated from the “transient” phase of the cold start test, in grams... grams per test phase. Ys = Mass emissions as calculated from the “stabilized” phase of the cold start...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Where: Ywm = Weighted mass emissions of each pollutant, i.e., HC, CO, NOX or CO , in grams per vehicle mile. Yct = Mass emissions as calculated from the “transient” phase of the cold start test, in grams... grams per test phase. Ys = Mass emissions as calculated from the “stabilized” phase of the cold start...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Where: Ywm = Weighted mass emissions of each pollutant, i.e., HC, CO, NOX or CO , in grams per vehicle mile. Yct = Mass emissions as calculated from the “transient” phase of the cold start test, in grams... grams per test phase. Ys = Mass emissions as calculated from the “stabilized” phase of the cold start...
Luebke, E.A.; Vandenberg, L.B.
1959-09-01
A nuclear reactor for producing thermoelectric power is described. The reactor core comprises a series of thermoelectric assemblies, each assembly including fissionable fuel as an active element to form a hot junction and a thermocouple. The assemblies are disposed parallel to each other to form spaces and means are included for Introducing an electrically conductive coolant between the assemblies to form cold junctions of the thermocouples. An electromotive force is developed across the entire series of the thermoelectric assemblies due to fission heat generated in the fuel causing a current to flow perpendicular to the flow of coolant and is distributed to a load outside of the reactor by means of bus bars electrically connected to the outermost thermoelectric assembly.
Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.
Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick
2012-06-01
Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.
The vertical structure of gaseous galaxy discs in cold dark matter haloes
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Alejandro; Navarro, Julio F.; Frenk, Carlos S.; Ludlow, Aaron D.
2018-01-01
We study the vertical structure of polytropic centrifugally supported gaseous discs embedded in cold dark matter (CDM) haloes. At fixed radius, R, the shape of the vertical density profile depends weakly on whether the disc is self-gravitating (SG) or non-self-gravitating (NSG). The disc 'characteristic' thickness, zH, set by the midplane sound speed and circular velocity, zNSG = (cs/Vc)R, in the NSG case, and by the sound speed and surface density, z_SG = c_s^2/GΣ, in SG discs, is smaller than zSG and zNSG. SG discs are typically Toomre unstable, NSG discs are stable. Exponential discs in CDM haloes with roughly flat circular velocity curves 'flare' outwards. Flares in mono abundance or coeval populations in galaxies like the Milky Way are thus not necessarily due to radial migration. For the polytropic equation of state of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations, discs that match observational constraints are NSG for Md < 3 × 109 M⊙ and SG at higher masses, if fully gaseous. We test these analytic results using a set of idealized smoothed particle hydrodynamic simulations and find excellent agreement. Our results clarify the role of the gravitational softening on the thickness of simulated discs, and on the onset of radial instabilities. EAGLE low-mass discs are NSG so the softening plays no role in their vertical structure. High-mass discs are expected to be SG and unstable, and may be artificially thickened and stabilized unless gravity is well resolved. Simulations with spatial resolution high enough to not compromise the vertical structure of a disc also resolve the onset of their instabilities, but the converse is not true.
Growing massive black holes through supercritical accretion of stellar-mass seeds
NASA Astrophysics Data System (ADS)
Lupi, A.; Haardt, F.; Dotti, M.; Fiacconi, D.; Mayer, L.; Madau, P.
2016-03-01
The rapid assembly of the massive black holes that power the luminous quasars observed at z ˜ 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ˜105 M⊙, which can then reach a billion solar mass while accreting at the Eddington limit. Here, we propose an alternative scenario based on radiatively inefficient supercritical accretion of stellar-mass holes embedded in the gaseous circumnuclear discs (CNDs) expected to exist in the cores of high-redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the `slim-disc' solution can increase its mass by three orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of supercritical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.
A pulse tube cryocooler with a cold reservoir
NASA Astrophysics Data System (ADS)
Zhang, X. B.; Zhang, K. H.; Qiu, L. M.; Gan, Z. H.; Shen, X.; Xiang, S. J.
2013-02-01
Phase difference between pressure wave and mass flow is decisive to the cooling capacity of regenerative cryocoolers. Unlike the direct phase shifting using a piston or displacer in conventional Stirling or GM cryocoolers, the pulse tube cyocooler (PTC) indirectly adjusts the cold phase due to the absence of moving parts at the cold end. The present paper proposed and validated theoretically and experimentally a novel configuration of PTC, termed cold reservoir PTC, in which a reservoir together with an adjustable orifice is connected to the cold end of the pulse tube. The impedance from the additional orifice to the cold end helps to increase the mass flow in phase with the pressure wave at the cold end. Theoretical analyses with the linear model for the orifice and double-inlet PTCs indicate that the cooling performance can be improved by introducing the cold reservoir. The preliminary experiments with a home-made single-stage GM PTC further validated the results on the premise of minor opening of the cold-end orifice.
Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system
Zhang, Wei Peng; Wang, Yong; Tian, Ren Mao; Bougouffa, Salim; Yang, Bo; Cao, Hui Luo; Zhang, Gen; Wong, Yue Him; Xu, Wei; Batang, Zenon; Al-Suwailem, Abdulaziz; Zhang, Xi Xiang; Qian, Pei-Yuan
2014-01-01
Studies focusing on biofilm assembly in deep-sea environments are rarely conducted. To examine the effects of substrate type on microbial community assembly, biofilms were developed on different substrates for different durations at two locations in the Red Sea: in a brine pool and in nearby bottom water (NBW) adjacent to the Thuwal cold seep II. The composition of the microbial communities in 51 biofilms and water samples were revealed by classification of pyrosequenced 16S rRNA gene amplicons. Together with the microscopic characteristics of the biofilms, the results indicate a stronger selection effect by the substrates on the microbial assembly in the brine pool compared with the NBW. Moreover, the selection effect by substrate type was stronger in the early stages compared with the later stages of the biofilm development. These results are consistent with the hypotheses proposed in the framework of species sorting theory, which states that the power of species sorting during microbial community assembly is dictated by habitat conditions, duration and the structure of the source community. Therefore, the results of this study shed light on the control strategy underlying biofilm-associated marine fouling and provide supporting evidence for ecological theories important for understanding the formation of deep-sea biofilms. PMID:25323200
Purification and characterization of sheep brain cold-stable microtubules.
Pirollet, F; Job, D; Fischer, E H; Margolis, R L
1983-01-01
The isolation of cold-stable microtubules in high yields, described previously only from rodents, was extended to the brain of higher animals. Under optimal conditions, yields of 30 mg of cold-stable microtubles per 100 g of sheep brain could be obtained routinely. Material purified by two polymerization cycles displayed the same stability to cold temperature or to millimolar concentrations of calcium and the same lability to calmodulin and to ATP as did the purified material obtained from the rat [Job, D., Rauch, C.T., Fischer, E.H. & Margolis, R.L. (1982) Biochemistry 21, 509]. Furthermore, DE-52 chromatography of this material yielded a fraction that restored cold stability when added to cold-labile microtubules. Known to bind to calmodulin and to enhance microtubule assembly, tau proteins had no cold-stabilizing activity. Protein profiles of the cold-stabilizing fraction from sheep and rat brain were similar to one another but showed no protein bands corresponding to the tau proteins. Images PMID:6572919
Performance Testing of a Lightweight, High Efficiency 95 K Cryocooler
NASA Technical Reports Server (NTRS)
Salerno, Lou; Kittel, P.; Kashani, A.; Helvensteijn, B. P. M.; Tward, E.; Arnold, Jim A. (Technical Monitor)
2001-01-01
Performance data are presented for a flight-like, lightweight, high efficiency pulse tube cryogenic cooler. The cooler has a mass of less than 4.0 kg, and an efficiency of 12 W/W, which is 18% of Carnot at 95 K, nearly double the efficiency of previous cooler designs, The mass of the cooler has been reduced by approximately a factor of three. The design point cooling power is 10 watts at 95 K at a heat rejection temperature of 300 K. The no-load temperature is 45 K. The compressor is built by Hymatic Engineering, UK, and is of a horizontally opposed piston design using flexure bearings. The vertical pulse tube is built by TRW with the heat exchanger or cold block located approximately mid-way along the tube. The final assembly and integration is also performed by TRW. The inertance tube and dead volume are contained within one of the compressor end caps. The cooler was developed by TRW under a joint NASA-DOD program, and has a goal of 10 yr operating lifetime. Potential NASA applications will focus on using coolers of this type in Zero boil off (ZBO) cryogen storage topologies for next generation launch vehicles. Zero boil off systems will feature significant reductions in tank size and Initial Mass to Low Earth Orbit (IMLEO), thereby significantly reducing the cost of access to space, and enabling future missions. The coolers can be used directly in liquid oxygen (LOx) or liquid methane ZBO systems, as shield coolers in liquid hydrogen tanks, or as first stage coolers in two-stage liquid hydrogen (LH2) ZBO cooler systems. Finally, the coolers could find applications in exploration missions where either propellants or breathable oxygen are extracted from the planetary atmosphere using a Sabatier or similar process. The gases could then be liquefied for storage either directly in return vehicle propellant tanks or on the planetary surface. Data presented were taken with the cooler operating in a vacuum of 10 (exp -5) torr, at controlled rejection temperatures from 300 K down to 275 K using a cold water heat exchanger bolted to the cooler. Heat loads were varied between 0.5 W and 15 W by supplying current to a 50 omega resistor mounted on a copper cold plate which was bolted to the cooler cold block. Silicon diodes mounted on both the cold plate and the heat exchanger provided accurate temperature measurement to within plus or minus 0.25 K and plus or minus 0.5 K respectively, up to 100 K with plus or minus 1% accuracy above 100 K. Input power to the compressor was limited to 180 W, corresponding to a maximum stroke of 80%.
Under EPA Settlement, Chicopee, Mass. Cold Storage Warehouse Company Improves Public Protections
A Chicopee, Mass., company that operates a cold storage warehouse is spending more than half a million dollars, primarily on public safety enhancements, to resolve claims it violated the federal Clean Air Act's chemical release prevention requirements...
Modeling and Experiments on Fast Cooldown of a 120 Hz Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Vanapalli, Srinivas; Lewis, Michael; Grossman, Gershon; Gan, Zhihua; Radebaugh, Ray; Brake, H. J. M. ter
2008-03-01
High frequency operation of a pulse tube cryocooler leads to reduced regenerator volume, which results in a reduced heat capacity and a faster cooldown time. A pulse tube cryocooler operating at a frequency of 120 Hz and an average pressure of 3.5 MPa achieved a no-load temperature of 50 K. The cooling power at 80 K was about 3.35 W with a cooldown time from 285 K to 80 K of about 5.5 minutes, even though the additional thermal mass at the cold end due to flanges, screws, heater, and thermometer was 4.2 times that of the regenerator. This fast cooldown is about two to four times faster than that of typical pulse tube cryocoolers and is very attractive to many applications. In this study we measure the cooldown time to 80 K for different cold-end masses and extrapolate to zero cold-end mass. We also present an analytical model for the cooldown time for different cold-end masses and compare the results with the experiments. The model and the extrapolated experimental results indicate that with zero cold-end mass the cooldown time to 80 K with this 120 Hz pulse tube cryocooler would be about 32 s.
NASA Technical Reports Server (NTRS)
Eastman, G. Yale; Dussinger, Peter M.; Hartenstine, John R.
1994-01-01
Three modular heat-transfer components designed for use together or separately. Simple mechanical connections facilitate assembly of these and related heat-transfer components into cooling systems of various configurations, such as to cool laboratory equipment rearranged for different experiments. Components are clamp-on cold plate, cold plate attached to flexible heat pipe, and thermal-bus receptacle. Clamp-on cold plate moved to any convenient location for attachment of equipment cooled by it, then clamped onto thermal bus. Heat from equipment conducted through plate and into coolant. Thermal-bus receptacle integral with thermal bus. Includes part of thermal bus to which clamp-on cold plate attached, plus tapered socket into which condenser end of flexible heat pipe plugged. Thermal-bus receptacle includes heat-pipe wick structure using coolant in bus to enhance transfer of heat from cold plate.
High-gain cryogenic amplifier assembly employing a commercial CMOS operational amplifier.
Proctor, J E; Smith, A W; Jung, T M; Woods, S I
2015-07-01
We have developed a cryogenic amplifier for the measurement of small current signals (10 fA-100 nA) from cryogenic optical detectors. Typically operated with gain near 10(7) V/A, the amplifier performs well from DC to greater than 30 kHz and exhibits noise level near the Johnson limit. Care has been taken in the design and materials to control heat flow and temperatures throughout the entire detector-amplifier assembly. A simple one-board version of the amplifier assembly dissipates 8 mW to our detector cryostat cold stage, and a two-board version can dissipate as little as 17 μW to the detector cold stage. With current noise baseline of about 10 fA/(Hz)(1/2), the cryogenic amplifier is generally useful for cooled infrared detectors, and using blocked impurity band detectors operated at 10 K, the amplifier enables noise power levels of 2.5 fW/(Hz)(1/2) for detection of optical wavelengths near 10 μm.
Swanson, David; Zhang, Yufeng; Liu, Jin-Song; Merkord, Christopher L; King, Marisa O
2014-03-15
Seasonal phenotypic flexibility in small birds produces a winter phenotype with elevated maximum cold-induced metabolic rates (=summit metabolism, Msum). Temperature and photoperiod are candidates for drivers of seasonal phenotypes, but their relative impacts on metabolic variation are unknown. We examined photoperiod and temperature effects on Msum, muscle masses and activities of key catabolic enzymes in winter dark-eyed juncos (Junco hyemalis). We randomly assigned birds to four treatment groups varying in temperature (cold=3°C; warm=24°C) and photoperiod [short day (SD)=8 h:16 h light:dark; long day (LD)=16 h:8 h light:dark] in a two-by-two design. We measured body mass (Mb), flight muscle width and Msum before and after 3 and 6 weeks of acclimation, and flight muscle and heart masses after 6 weeks. Msum increased for cold-exposed, but not for warm-exposed, birds. LD birds gained more Mb than SD birds, irrespective of temperature. Flight muscle size and mass did not differ significantly among groups, but heart mass was larger in cold-exposed birds. Citrate synthase, carnitine palmitoyl transferase and β-hydroxyacyl Co-A dehydrogenase activities in the pectoralis were generally higher for LD and cold groups. The cold-induced changes in Msum and heart mass parallel winter changes for small birds, but the larger Mb and higher catabolic enzyme activities in LD birds suggest photoperiod-induced changes associated with migratory disposition. Temperature appears to be a primary driver of flexibility in Msum in juncos, but photoperiod-induced changes in Mb and catabolic enzyme activities, likely associated with migratory disposition, interact with temperature to contribute to seasonal phenotypes.
Nahon, Kimberly J; Boon, Mariëtte R; Doornink, Fleur; Jazet, Ingrid M; Rensen, Patrick C N; Abreu-Vieira, Gustavo
2017-10-01
It is colloquially stated that body size plays a role in the human response to cold, but the magnitude and details of this interaction are unclear. To explore the inherent influence of body size on cold-exposed metabolism, we investigated the relation between body composition and resting metabolic rate in humans at thermoneutrality and during cooling within the nonshivering thermogenesis range. Body composition and resting energy expenditure were measured in 20 lean and 20 overweight men at thermoneutrality and during individualized cold exposure. Metabolic rates as a function of ambient temperature were investigated considering the variability in body mass and composition. We observed an inverse relationship between body size and the lower critical temperature (LCT), i.e. the threshold where thermoneutrality ends and cold activates thermogenesis. LCT was higher in lean than overweight subjects (22.1 ± 0.6 vs 19.5 ± 0.5°C, p < 0.001). Below LCT, minimum conductance was identical between lean and overweight (100 ± 4 vs 97 ± 3kcal/°C/day respectively, p = 0.45). Overweight individuals had higher basal metabolic rate (BMR) explained mostly by the higher lean mass, and lower cold-induced thermogenesis (CIT) per degree of cold exposure. Below thermoneutrality, energy expenditure did not scale to lean body mass. Overweight subjects had lower heat loss per body surface area (44.7 ± 1.3 vs 54.7 ± 2.3kcal/°C/m 2 /day, p < 0.001). We conclude that larger body sizes possessed reduced LCT as explained by higher BMR related to more lean mass rather than a change in whole-body conductance. Thus, larger individuals with higher lean mass need to be exposed to colder temperatures to activate CIT, not because of increased insulation, but because of a higher basal heat generation. Our study suggests that the distinct effects of body size and composition on energy expenditure should be taken in account when exploring the metabolism of humans exposed to cold. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.
2017-12-01
Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results demonstrate that Northeast winters have air mass conditions that have become warmer and drier in recent decades. Additionally, Northern Plains winters have air mass setups that have become warmer and more moist since the mid 1970s.
The immitigable nature of assembly bias: the impact of halo definition on assembly bias
NASA Astrophysics Data System (ADS)
Villarreal, Antonio S.; Zentner, Andrew R.; Mao, Yao-Yuan; Purcell, Chris W.; van den Bosch, Frank C.; Diemer, Benedikt; Lange, Johannes U.; Wang, Kuan; Campbell, Duncan
2017-11-01
Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, Δ. We summarize the strength of concentration-, shape-, and spin-dependent halo clustering as a function of halo mass and halo definition. Concentration-dependent clustering depends strongly on mass at all Δ. For conventional halo definitions (Δ ∼ 200 - 600 m), concentration-dependent clustering at low mass is driven by a population of haloes that is altered through interactions with neighbouring haloes. Concentration-dependent clustering can be greatly reduced through a mass-dependent halo definition with Δ ∼ 20 - 40 m for haloes with M200 m ≲ 1012 h-1M⊙. Smaller Δ implies larger radii and mitigates assembly bias at low mass by subsuming altered, so-called backsplash haloes into now larger host haloes. At higher masses (M200 m ≳ 1013 h-1M⊙) larger overdensities, Δ ≳ 600 m, are necessary. Shape- and spin-dependent clustering are significant for all halo definitions that we explore and exhibit a relatively weaker mass dependence. Generally, both the strength and the sense of assembly bias depend on halo definition, varying significantly even among common definitions. We identify no halo definition that mitigates all manifestations of assembly bias. A halo definition that mitigates assembly bias based on one halo property (e.g. concentration) must be mass dependent. The halo definitions that best mitigate concentration-dependent halo clustering do not coincide with the expected average splashback radii at fixed halo mass.
Mu2e Transport Solenoid Cold-Mass Alignment Issues
Lopes, M.; Ambrosio, G.; Badgley, K.; ...
2017-01-05
The Muon-to-electron conversion experiment (Mu2e) at Fermilab is designed to explore charged lepton flavor violation. It is composed of three large superconducting solenoids: the Production Solenoid (PS), the Transport Solenoid (TS) and the Detector Solenoid (DS). The TS is formed by two magnets: TS upstream (TSu) and downstream (TSd). Each has its own cryostat and power supply. Tolerance sensitivity studies of the position and angular alignment of each coil in this magnet system were performed in the past with the objective to demonstrate that the magnet design meets all the field requirements. Furthermore, the alignment of the cold-masses is criticalmore » to maximize the transmission of muons and to avoid possible backgrounds that would reduce the sensitivity of the experiment. Each TS magnet cold-mass can be individually aligned. Here, we discuss implications of the alignment of the TS cold-masses in terms of the displacement of the magnetic center. Consideration of the practical mechanical limits are also presented.« less
Cold dark matter plus not-so-clumpy dark relics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph
Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions,more » covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.« less
Politis, Argyris; Schmidt, Carla
2018-03-20
Structural mass spectrometry with its various techniques is a powerful tool for the structural elucidation of medically relevant protein assemblies. It delivers information on the composition, stoichiometries, interactions and topologies of these assemblies. Most importantly it can deal with heterogeneous mixtures and assemblies which makes it universal among the conventional structural techniques. In this review we summarise recent advances and challenges in structural mass spectrometric techniques. We describe how the combination of the different mass spectrometry-based methods with computational strategies enable structural models at molecular levels of resolution. These models hold significant potential for helping us in characterizing the function of protein assemblies related to human health and disease. In this review we summarise the techniques of structural mass spectrometry often applied when studying protein-ligand complexes. We exemplify these techniques through recent examples from literature that helped in the understanding of medically relevant protein assemblies. We further provide a detailed introduction into various computational approaches that can be integrated with these mass spectrometric techniques. Last but not least we discuss case studies that integrated mass spectrometry and computational modelling approaches and yielded models of medically important protein assembly states such as fibrils and amyloids. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Hollow - cathode electrode for high-power, high-pressure discharge devices
Chang, Jim J.; Alger, Terry W.
1995-01-01
Several different cold cathode configurations for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures.
Effects of various conditions in cold-welding of copper nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Zhou, Hongjian; Wu, Wen-ping; Wu, Runni; Hu, Guoming; Xia, Re
2017-11-01
Cold-welding possesses such desirable environment as low temperature and low applied stress, thus becoming the prime candidate for nanojointing and nanoassembly techniques. To explore the welding mechanism of nanoscale structures, here, molecular dynamics was performed on copper nanowires under different welding conditions and various original characteristics to obtain an atomic-level depiction of their cold-welding behavior. By analyzing the mechanical properties of as-welded nanowires, the relations between welding quality and welding variables are revealed and identified. This comparison study will be of great importance to future mechanical processing and structural assembly of metallic nanowires.
Conceptual Design and Analysis of Cold Mass Support of the CS3U Feeder for the ITER
NASA Astrophysics Data System (ADS)
Zhu, Yinfeng; Song, Yuntao; Zhang, Yuanbin; Wang, Zhongwei
2013-06-01
In the International Thermonuclear Experimental Reactor (ITER) project, the feeders are one of the most important and critical systems. To convey the power supply and the coolant for the central solenoid (CS) magnet, 6 sets of CS feeders are employed, which consist mainly of an in-cryostat feeder (ICF), a cryostat feed-through (CFT), an S-bend box (SBB), and a coil terminal box (CTB). To compensate the displacements of the internal components of the CS feeders during operation, sliding cold mass supports consisting of a sled plate, a cylindrical support, a thermal shield, and an external ring are developed. To check the strength of the developed cold mass supports of the CS3U feeder, electromagnetic analysis of the two superconducting busbars is performed by using the CATIA V5 and ANSYS codes based on parametric technology. Furthermore, the thermal-structural coupling analysis is performed based on the obtained results, except for the stress concentration, and the max. stress intensity is lower than the allowable stress of the selected material. It is found that the conceptual design of the cold mass support can satisfy the required functions under the worst case of normal working conditions. All these performed activities will provide a firm technical basis for the engineering design and development of cold mass supports.
Cold plasma processing of local planetary ores for oxygen and metallurgically important metals
NASA Technical Reports Server (NTRS)
Lynch, D. C.; Bullard, D.; Ortega, R.
1990-01-01
The utilization of a cold plasma in chlorination processing is described. Essential equipment and instruments were received, the experimental apparatus assembled and tested, and preliminary experiments conducted. The results of the latter lend support to the original hypothesis: a cold plasma can both significantly enhance and bias chemical reactions. In two separate experiments, a cold plasma was used to reduce TiCl4 vapor and chlorinate ilmenite. The latter, reacted in an argon-chlorine plasma, yielded oxygen. The former experiment reveals that chlorine can be recovered as HCl vapor from metal chlorides in a hydrogen plasma. Furthermore, the success of the hydrogen experiments has lead to an analysis of the feasibility of direct hydrogen reduction of metal oxides in a cold plasma. That process would produce water vapor and numerous metal by-products.
Levin, Robert E.; English, George J.
1986-08-05
An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.
Bimodal gas accretion in the Horizon-MareNostrum galaxy formation simulation
NASA Astrophysics Data System (ADS)
Ocvirk, P.; Pichon, C.; Teyssier, R.
2008-11-01
The physics of diffuse gas accretion and the properties of the cold and hot modes of accretion on to proto-galaxies between z = 2 and 5.4 is investigated using the large cosmological simulation performed with the RAMSES code on the MareNostrum supercomputing facility. Galactic winds, chemical enrichment, ultraviolet background heating and radiative cooling are taken into account in this very high resolution simulation. Using accretion-weighted temperature histograms, we have performed two different measurements of the thermal state of the gas accreted towards the central galaxy. The first measurement, performed using accretion-weighted histograms on a spherical surface of radius 0.2Rvir centred on the densest gas structure near the halo centre of mass, is a good indicator of the presence of an accretion shock in the vicinity of the galactic disc. We define the hot shock mass, Mshock, as the typical halo mass separating cold dominated from hot dominated accretion in the vicinity of the galaxy. The second measurement is performed by radially averaging histograms between 0.2Rvir and Rvir, in order to detect radially extended structures such as gas filaments: this is a good proxy for detecting cold streams feeding the central galaxy. We define Mstream as the transition mass separating cold dominated from hot dominated accretion in the outer halo, marking the disappearance of these cold streams. We find a hot shock transition mass of Mshock = 1011.6Msolar (dark matter), with no significant evolution with redshift. Conversely, we find that Mstream increases sharply with z. Our measurements are in agreement with the analytical predictions of Birnboim & Dekel and Dekel & Birnboim, if we correct their model by assuming low metallicity (<=10-3Zsolar) for the filaments, correspondingly to our measurements. Metal enrichment of the intergalactic medium is therefore a key ingredient in determining the transition mass from cold to hot dominated diffuse gas accretion. We find that the diffuse cold gas supply at the inner halo stops at z = 2 for objects with stellar masses of about 1011.1Msolar, which is close to the quenching mass determined observationally by Bundy et al. However, its evolution with z is not well constrained, making it difficult to rule out or confirm the need for an additional feedback process such as active galactic nuclei.
Ultimate energy density of observable cold baryonic matter.
Lattimer, James M; Prakash, Madappa
2005-03-25
We demonstrate that the largest measured mass of a neutron star establishes an upper bound to the energy density of observable cold baryonic matter. An equation of state-independent expression satisfied by both normal neutron stars and self-bound quark matter stars is derived for the largest energy density of matter inside stars as a function of their masses. The largest observed mass sets the lowest upper limit to the density. Implications from existing and future neutron star mass measurements are discussed.
Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE
NASA Astrophysics Data System (ADS)
Ferrero, Ismael; Navarro, Julio F.; Abadi, Mario G.; Sales, Laura V.; Bower, Richard G.; Crain, Robert A.; Frenk, Carlos S.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom
2017-02-01
The Tully-Fisher relation (TFR) links the stellar mass of a disc galaxy, Mstr, to its rotation speed: it is well approximated by a power law, shows little scatter, and evolves weakly with redshift. The relation has been interpreted as reflecting the mass-velocity scaling (M ∝ V3) of dark matter haloes, but this interpretation has been called into question by abundance-matching (AM) models, which predict the galaxy-halo mass relation to deviate substantially from a single power law and to evolve rapidly with redshift. We study the TFR of luminous spirals and its relation to AM using the EAGLE set of Λ cold dark matter (ΛCDM) cosmological simulations. Matching both relations requires disc sizes to satisfy constraints given by the concentration of haloes and their response to galaxy assembly. EAGLE galaxies approximately match these constraints and show a tight mass-velocity scaling that compares favourably with the observed TFR. The TFR is degenerate to changes in galaxy formation efficiency and the mass-size relation; simulations that fail to match the galaxy stellar mass function may fit the observed TFR if galaxies follow a different mass-size relation. The small scatter in the simulated TFR results because, at fixed halo mass, galaxy mass and rotation speed correlate strongly, scattering galaxies along the main relation. EAGLE galaxies evolve with lookback time following approximately the prescriptions of AM models and the observed mass-size relation of bright spirals, leading to a weak TFR evolution consistent with observation out to z = 1. ΛCDM models that match both the abundance and size of galaxies as a function of stellar mass have no difficulty reproducing the observed TFR and its evolution.
Role of surface heat fluxes underneath cold pools
Garelli, Alix; Park, Seung‐Bu; Nie, Ji; Torri, Giuseppe; Kuang, Zhiming
2016-01-01
Abstract The role of surface heat fluxes underneath cold pools is investigated using cloud‐resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection. PMID:27134320
The dark side of galaxy colour
NASA Astrophysics Data System (ADS)
Hearin, Andrew P.; Watson, Douglas F.
2013-10-01
We present age distribution matching, a theoretical formalism for predicting how galaxies of luminosity L and colour C occupy dark matter haloes. Our model supposes that there are just two fundamental properties of a halo that determine the colour and brightness of the galaxy it hosts: the maximum circular velocity Vmax and the redshift zstarve that correlates with the epoch at which the star formation in the galaxy ceases. The halo property zstarve is intended to encompass physical characteristics of halo mass assembly that may deprive the galaxy of its cold gas supply and, ultimately, quench its star formation. The new, defining feature of the model is that, at fixed luminosity, galaxy colour is in monotonic correspondence with zstarve, with the larger values of zstarve being assigned redder colours. We populate an N-body simulation with a mock galaxy catalogue based on age distribution matching and show that the resulting mock galaxy distribution accurately describes a variety of galaxy statistics. Our model suggests that halo and galaxy assembly are indeed correlated. We make publicly available our low-redshift, Sloan Digital Sky Survey Mr < -19 mock galaxy catalogue, and main progenitor histories of all z = 0 haloes, at http://logrus.uchicago.edu/~aphearin
Engine balance apparatus and accessory drive device
NASA Technical Reports Server (NTRS)
Egleston, Robert W. (Inventor)
2002-01-01
A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons. The balancing mechanism comprises a primary balance mass assembly non-rotatably and removably affixed to the crankshaft. The primary mass assembly comprises a primary mass affixed to a primary hub portion and a primary cap portion removably affixed to the primary hub portion to clamp a portion of the crankshaft therebetween. A secondary balance mass assembly may be rotatably and removably supported on the crankshaft. A driver assembly is affixed to the crankshaft to cause the secondary balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components. The gears are readily detachable from the apparatus to facilitate inspection and repair operations.
Microcalorimeters for High Resolution X-Ray Spectroscopy of Laboratory and Astrophysical Plasmas
NASA Technical Reports Server (NTRS)
Silver, E.; Flowers, Bobby J. (Technical Monitor)
2003-01-01
The proposal has three major objectives. The first focuses on advanced neutron-transmutation-doped (NTD)-based microcalorimeter development. Our goal is to develop an array of microcalorimeters with sub- 5 eV energy resolution that can operate with pile-up-free throughput of at least 100 Hz per pixel. The second objective is to establish our microcalorimeter as an essential x-ray diagnostic for laboratory astrophysics studies. We propose to develop a dedicated microcalorimeter spectrometer for the EBIT (electron beam ion trap). This instrument will incorporate the latest detector and cryogenic technology that we have available. The third objective is to investigate innovative ideas related to possible flight opportunities. These include compact, long lived cryo-systems, ultra-low temperature cold stages, low mass and low power electronics, and novel assemblies of thin windows with high x-ray transmission.
Essais de fissuration a froid appliques aux metaux d'apport inoxydables martensitiques 410NiMo
NASA Astrophysics Data System (ADS)
Paquin, Mathieu
Martensitic stainless steels have represented since few years a material of choice for the manufacture of mechanical parts such as hydroelectric turbines. The development of the alloy has led to grades with very low amount of carbon giving them a good weldability. The assembly of these parts, made by autogenous welding, requires the use of materials with low transformation temperature (LTT) such as 410NiMo. These filler metals are also used for assembly by heterogeneous welding of steel parts susceptible to cold cracking. The transformation of austenite to martensite occurring at low temperature, residual stresses from single-pass welding operation are different from those normally found and reduce the risk of cracking. By cons, industrial experience shows that in situation of multipass welding, the risks of cold cracking are still present. This project aimed to determine a cracking test for assessing susceptibility to cold cracking of 13%Cr-4%Ni stainless steel according to the welding procedure, in autogenous welding situation. Literature contains much information about cold cracking phenomena. That phenomena occurs under three conditions. These conditions are: a high diffusible hydrogen level, significant residual stresses and a brittle microstructure. It seems that despite the low mass ratio of carbon (0.022%C) and the low diffusible hydrogen level (< 3 ml/100g) risks of cold cracking remain present during multipass deposits. Use of cracking tests was necessary to assess the sensitivity to cracking of the martensitic stainless steel. Before the work preliminary tests have been made or tested Tekken GBOP and testing to determine that to obtain the most representative of the industrial reality results. Then they have been modified to reverse the compression stress in the seam test to tension by the addition of a second weld. This inversion occurs in multipass welding and has been targeted as an important factor in the occurrence of cold cracking phenomenon. The results of these tests show that Tekken test is not suitable for LTT testing. It was also demonstrated that GBOP test with two juxtaposed seams configuration gave results consistent with the industrial observations. The second stage of the project was to study the cracking test selected. Acoustic emission tests were done during welding and cooling of GBOP test. These tests were conducted in order to detect when the cracking of the test occurred and to validate the method of inspection. This inspection is done after separation of the specimen, by observation of the fracture surface. Usually, cliveage zone on the fracture surface can be associated with cold cracking and dimple zones can be associated with the specimen separation. Through these tests, it was possible to validate this assertion. Then the relevance of the addition of a second weld has been validated by studying the residual stress by the contour method. It was possible to observe an area of the first bead in tension, promoting cracking of the test. Finally, some test runs were made with various filler metals in order to confirm that the utilization of the modified GBOP test for 13%Cr-4%Ni was adequate. A fractographic study of some sample was also made.
Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats.
Seferos, Nikos; Petrokokkinos, Loukas; Kotsiou, Antonia; Rallis, George; Tesseromatis, Christine
2016-01-01
Stress, via corticosteroids release, influences bone mass density. Hypericum perforatum (Hp) a traditional remedy possess antidepressive activity (serotonin reuptake inhibitor) and wound healing properties. Hp preparation contains mainly hypericin, hyperforin, hyperoside and flavonoids exerting oestrogen-mimetic effect. Cold swimming represents an experimental model of stress associating mental strain and corporal exhaustion. This study investigates the Hp effect on femur and mandible bone mass changes in rats under cold forced swimming procedure. 30 male Wistar rats were randomized into three groups. Group A was treated with Methanolic extract of Hp (Jarsin®) via gastroesophageal catheter, and was submitted to cold swimming stress for 10 min/daily. Group B was submitted to cold stress, since group C served as control. Experiment duration was 10 days. Haematocrite and serum free fatty acids (FFA) were estimated. Furthermore volume and specific weight of each bone as well as bone mass density via dual energy X-Ray absorptiometry (DEXA) were measured. Statistic analysis by t-test. Hp treatment restores the stress injuries. Adrenals and bone mass density regain their normal values. Injuries occurring by forced swimming stress in the rats are significantly improved by Hp treatment. Estrogen-like effects of Hp flavonoids eventually may act favorable in bone remodeling.
Temperature measuring analysis of the nuclear reactor fuel assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, F., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Kučák, L., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk; Bereznai, J., E-mail: jozef.bereznai@stuba.sk, E-mail: zdenko.zavodny@stuba.sk
2014-08-06
Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuelmore » assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.
2013-12-03
For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less
Hollow-cathode electrode for high-power, high-pressure discharge devices
Chang, J.J.; Alger, T.W.
1995-08-22
Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.
Discovery and Mass Measurements of a Cold, Sub-Neptune Mass Planet and Its Host Star
NASA Technical Reports Server (NTRS)
Barry, Richard K., Jr.
2011-01-01
The gravitational microlensing exoplanet detection method is uniquely sensitive to cold, low-mass planets which orbit beyond the snow-line, where the most massive planets are thought to form. The early statistical results from microlensing indicate that Neptune-Saturn mass planets located beyond the snow-line are substantially more common than their counterparts in closer orbits that have found by the Doppler radial velocity method. We present the discovery of the planet MOA-2009-BLG-266Lb, which demonstrates that the gravitational microlensing method also has the capability to measure the masses of cold, low-mass planets. The mass measurements of the host star and the planet are made possible by the detection of the microlensing parallax signal due to the orbital motion or the Earth as well as observations from the EPOXI spacecraft in a Heliocentric orbit. The microlensing light curve indicates a planetary host star mass of M(sun) = 0.54 + / - 0.05M(sun) located at a distance of DL= 2.94 _ 0.21 kpc, orbited by a planet of mass mp= 9.8 +/-1.1M(Earth) with a semi-major axis of a = 3.1(+1.9-0.4)MAU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; et al.
2017-11-02
We estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
Chiu, I.; Mohr, J. J.; McDonald, M.; ...
2018-05-16
Here, we estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; et al.
2017-11-02
We estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the strong mass and weak redshift trends in the stellar mass scaling relation suggest a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called 'missing baryons' outside cluster virial regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, I.; Mohr, J. J.; McDonald, M.
Here, we estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less
NASA Astrophysics Data System (ADS)
Chiu, I.; Mohr, J. J.; McDonald, M.; Bocquet, S.; Desai, S.; Klein, M.; Israel, H.; Ashby, M. L. N.; Stanford, A.; Benson, B. A.; Brodwin, M.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bayliss, M.; Benoit-Lévy, A.; Bertin, E.; Bleem, L.; Brooks, D.; Buckley-Geer, E.; Bulbul, E.; Capasso, R.; Carlstrom, J. E.; Rosell, A. Carnero; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; García-Bellido, J.; Garmire, G.; Gaztanaga, E.; Gerdes, D. W.; Gonzalez, A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, N.; Gutierrez, G.; Hlavacek-L, J.; Honscheid, K.; James, D. J.; Jeltema, T.; Kraft, R.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Murray, S.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Sanchez, E.; Saro, A.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sharon, K.; Smith, R. C.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Stalder, B.; Stern, C.; Strazzullo, V.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Vikram, V.; Walker, A. R.; Weller, J.; Zhang, Y.
2018-05-01
We estimate total mass (M500), intracluster medium (ICM) mass (MICM) and stellar mass (M⋆) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses M500 ≳ 2.5 × 1014M⊙ and redshift 0.2 < z < 1.25 from the 2500 ° ^2 South Pole Telescope SPT-SZ survey. The total masses M500 are estimated from the SZE observable, the ICM masses MICM are obtained from the analysis of Chandra X-ray observations, and the stellar masses M⋆ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) griz optical photometry and WISE or Spitzer near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster halo mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past ≈9 Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.
Cooled electronic system with thermal spreaders coupling electronics cards to cold rails
Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E
2013-07-23
Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.
Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web
NASA Astrophysics Data System (ADS)
Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne
2017-09-01
We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.
A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope
NASA Astrophysics Data System (ADS)
Zhong, Wei-Ye; Dong, Jian; Gou, Wei; Yu, Lin-Feng; Wang, Jin-Qing; Xia, Bo; Jiang, Wu; Liu, Cong; Zhang, Hui; Shi, Jun; Yin, Xiao-Xing; Shi, Sheng-Cai; Liu, Qing-Hui; Shen, Zhi-Qiang
2018-04-01
A Q-band two-beam cryogenic receiver for the Tianma Radio Telescope (TMRT) has been developed, and it uses the independently-developed key microwave and millimeter-wave components operating from 35 to 50GHz with a fractional bandwidth of 35%. The Q-band receiver consists of three parts: optics, cold unit assembly and warm unit assembly, and it can receive simultaneously the left-handed and right-handed circularly polarized waves. The cold unit assembly of each beam is composed of a feed horn, a noise injection coupler, a differential phase shifter, an orthomode transducer and two low-noise amplifiers, and it works at a temperature range near 20 K to greatly improve the detection sensitivity of the receiving system. The warm unit assembly includes four radio-frequency amplifiers, four radio-frequency high-pass filters, four waveguide biased mixers, four 4–12 GHz intermediate-frequency amplifiers and one 31–38 GHz frequency synthesizer. The measured Q-band four-channel receiver noise temperatures are roughly 30–40 K. In addition, the single-dish spectral line and international very long baseline interferometry (VLBI) observations between the TMRT and East Asia VLBI Network at the Q-band have been successfully carried out, demonstrating the advantages of the TMRT equipped with the state-of-the-art Q-band receiver.
Whispering-gallery-mode-based seismometer
Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro
2014-06-03
A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.
NASA Astrophysics Data System (ADS)
Rodríguez-Puebla, Aldo; Primack, Joel R.; Avila-Reese, Vladimir; Faber, S. M.
2017-09-01
We present new determinations of the stellar-to-halo mass relation (SHMR) at z = 0-10 that match the evolution of the galaxy stellar mass function, the star formation rate (SFR)-M* relation and the cosmic SFR. We utilize a compilation of 40 observational studies from the literature and correct them for potential biases. Using our robust determinations of halo mass assembly and the SHMR, we infer star formation histories, merger rates and structural properties for average galaxies, combining star-forming and quenched galaxies. Our main findings are as follows: (1) The halo mass M50 above which 50 per cent of galaxies are quenched coincides with sSFR/sMAR ˜ 1, where sSFR is the specific SFR and sMAR is the specific halo mass accretion rate. (2) M50 increases with redshift, presumably due to cold streams being more efficient at high redshifts, while virial shocks and active galactic nucleus feedback become more relevant at lower redshifts. (3) The ratio sSFR/sMAR has a peak value, which occurs around {M_vir}˜ 2× 10^{11} M_{⊙}. (4) The stellar mass density within 1 kpc, Σ1, is a good indicator of the galactic global sSFR. (5) Galaxies are statistically quenched after they reach a maximum in Σ1, consistent with theoretical expectations of the gas compaction model; this maximum depends on redshift. (6) In-situ star formation is responsible for most galactic stellar mass growth, especially for lower mass galaxies. (7) Galaxies grow inside-out. The marked change in the slope of the size-mass relation when galaxies became quenched, from d log {R_eff}/d log {M_*}˜ 0.35 to ˜2.5, could be the result of dry minor mergers.
AGN jet-driven stochastic cold accretion in cluster cores
NASA Astrophysics Data System (ADS)
Prasad, Deovrat; Sharma, Prateek; Babul, Arif
2017-10-01
Several arguments suggest that stochastic condensation of cold gas and its accretion on to the central supermassive black hole (SMBH) is essential for active galactic nuclei (AGNs) feedback to work in the most massive galaxies that lie at the centres of galaxy clusters. Our 3-D hydrodynamic AGN jet-ICM (intracluster medium) simulations, looking at the detailed angular momentum distribution of cold gas and its time variability for the first time, show that the angular momentum of the cold gas crossing ≲1 kpc is essentially isotropic. With almost equal mass in clockwise and counterclockwise orientations, we expect a cancellation of the angular momentum on roughly the dynamical time. This means that a compact accretion flow with a short viscous time ought to form, through which enough accretion power can be channeled into jet mechanical energy sufficiently quickly to prevent a cooling flow. The inherent stochasticity, expected in feedback cycles driven by cold gas condensation, gives rise to a large variation in the cold gas mass at the centres of galaxy clusters, for similar cluster and SMBH masses, in agreement with the observations. Such correlations are expected to be much tighter for the smoother hot/Bondi accretion. The weak correlation between cavity power and Bondi power obtained from our simulations also matches observations.
Outer crust of nonaccreting cold neutron stars
NASA Astrophysics Data System (ADS)
Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen
2006-03-01
The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.
Industrial production of RHIC magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anerella, M.D.; Fisher, D.H.; Sheedy, E.
1996-07-01
RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the startmore » of the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper.« less
First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements
NASA Astrophysics Data System (ADS)
Brouwer, Margot M.; Visser, Manus R.; Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Valentijn, Edwin A.; Bilicki, Maciej; Blake, Chris; Brough, Sarah; Buddelmeijer, Hugo; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; Klaes, Dominik; Liske, Jochen; Loveday, Jon; McFarland, John; Nakajima, Reiko; Sifón, Cristóbal; Taylor, Edward N.
2017-04-01
Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ˜180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.
NASA Astrophysics Data System (ADS)
Chen, Huizhong; Wu, Dui; Yu, Jianzhen
2016-04-01
Using the data on aerosol observed hourly by Marga ADI 2080 and Grimm 180, we compared the characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012. The mass concentration of aerosol appeared distinct between the two weather processes. During rainy weather, the mass concentration of PM and total water-soluble components decreased obviously. During cold air-dust weather, the cleaning effect of cold air occurred much more suddenly and about a half day earlier than the dust effect. As a result, the mass concentration of PM and total water-soluble components first dropped dramatically to a below-normal level and then rose gradually to an above-normal level. The ratio of PM2.5/PM10 and PM1/PM10 decreased, suggesting that dust-storm weather mainly brought in coarse particles. The proportion of Ca2+ in the total water-soluble components significantly increased to as high as 50 % because of the effect of dust weather. We further analysed the ionic equilibrium during rainy and cold air-dust weather, and compared it with that during hazy weather during the same period. The aerosol during rainy weather was slightly acidic, whereas that during hazy weather and cold air-dust weather was obviously alkaline, with that during cold air-dust weather being significantly more alkaline. Most of the anions, including SO4 2- and NO3 -, were neutralised by NH4 + during rainy and hazy weather, and by Ca2+ during cold air-dust weather.
Cold dark energy constraints from the abundance of galaxy clusters
Heneka, Caroline; Rapetti, David; Cataneo, Matteo; ...
2017-10-05
We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. We compare those models and set the stage for using non-linear information from semi-analytical modelling in cluster growth data analyses. For this, we recalibrate the halo mass function with non-linear characteristic quantities, the spherical collapse threshold and virial overdensity, that account for model and redshift-dependent behaviours, as well as an additional mass contributionmore » for cold dark energy. Here in this paper, we present the first constraints from this cold dark matter plus cold dark energy mass function using our cluster abundance likelihood, which self-consistently accounts for selection effects, covariances and systematic uncertainties. We combine cluster growth data with cosmic microwave background, supernovae Ia and baryon acoustic oscillation data, and find a shift between cold versus quasi-homogeneous dark energy of up to 1σ. We make a Fisher matrix forecast of constraints attainable with cluster growth data from the ongoing Dark Energy Survey (DES). For DES, we predict ~ 50 percent tighter constraints on (Ωm, w) for cold dark energy versus wCDM models, with the same free parameters. Overall, we show that cluster abundance analyses are sensitive to cold dark energy, an alternative, viable model that should be routinely investigated alongside the standard dark energy scenario.« less
Cold dark energy constraints from the abundance of galaxy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heneka, Caroline; Rapetti, David; Cataneo, Matteo
We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. We compare those models and set the stage for using non-linear information from semi-analytical modelling in cluster growth data analyses. For this, we recalibrate the halo mass function with non-linear characteristic quantities, the spherical collapse threshold and virial overdensity, that account for model and redshift-dependent behaviours, as well as an additional mass contributionmore » for cold dark energy. Here in this paper, we present the first constraints from this cold dark matter plus cold dark energy mass function using our cluster abundance likelihood, which self-consistently accounts for selection effects, covariances and systematic uncertainties. We combine cluster growth data with cosmic microwave background, supernovae Ia and baryon acoustic oscillation data, and find a shift between cold versus quasi-homogeneous dark energy of up to 1σ. We make a Fisher matrix forecast of constraints attainable with cluster growth data from the ongoing Dark Energy Survey (DES). For DES, we predict ~ 50 percent tighter constraints on (Ωm, w) for cold dark energy versus wCDM models, with the same free parameters. Overall, we show that cluster abundance analyses are sensitive to cold dark energy, an alternative, viable model that should be routinely investigated alongside the standard dark energy scenario.« less
A Compact, High-Performance Continuous Magnetic Refrigerator
NASA Technical Reports Server (NTRS)
Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Panek, John; Tuttle, James; Brodeur, Stephen J. (Technical Monitor)
2001-01-01
We present test results of the first adiabatic demagnetization refrigerator (ADR) that can produce continuous cooling at sub-kelvin temperatures. This system uses multiple stages that operate in sequence to cascade heat from a continuous stage up to a heat sink. Continuous operation aids the usual constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, and allows us to achieve much higher cooling power per unit mass. Our design goal is 10 microW of cooling at 50 mK while rejecting heat to a 6-10 K heat sink. The total cold mass is estimated to be less than 10 kg, including magnetic shielding of each stage. These parameters envelop the requirements for currently planned astronomy missions. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long, mission life and reduced complexity and cost. At present, we have assembled a three-stage ADR that operates with a superfluid helium bath. Additional work is underway to develop magnetocaloric materials that can extend its heat rejection capability up to 10 K. This paper discusses the design and operation of the ADR, as well as interface requirements for cryocooler-based operation.
Role of surface heat fluxes underneath cold pools
Gentine, Pierre; Garelli, Alix; Park, Seung -Bu; ...
2016-01-05
In this paper, the role of surface heat fluxes underneath cold pools is investigated using cloud–resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerousmore » and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection.« less
Hydrodynamics of a cold one-dimensional fluid: the problem of strong shock waves
NASA Astrophysics Data System (ADS)
Hurtado, Pablo I.
2005-03-01
We study a shock wave induced by an infinitely massive piston propagating into a one-dimensional cold gas. The cold gas is modelled as a collection of hard rods which are initially at rest, so the temperature is zero. Most of our results are based on simulations of a gas of rods with binary mass distribution, and we partcularly focus on the case of spatially alternating masses. We find that the properties of the resulting shock wave are in striking contrast with those predicted by hydrodynamic and kinetic approaches, e.g., the flow-field profiles relax algebraically toward their equilibrium values. In addition, most relevant observables characterizing local thermodynamic equilibrium and equipartition decay as a power law of the distance to the shock layer. The exponents of these power laws depend non-monotonously on the mass ratio. Similar interesting dependences on the mass ratio also characterize the shock width, density and temperature overshoots, etc.
Galactic chemical evolution in hierarchical formation models
NASA Astrophysics Data System (ADS)
Arrigoni, Matias
2010-10-01
The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.
Numerical Study of Unsteady Flow in Centrifugal Cold Compressor
NASA Astrophysics Data System (ADS)
Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing
In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.
Cold Gas Content and Morphology: Scaling Relationships and Gas Deficiencies
NASA Astrophysics Data System (ADS)
Zhang, Helen; Crocker, Alison
2018-01-01
Spiral arms are a key feature of spiral galaxies. They are areas of higher gas density, and thus more stars are actively being formed in these regions. Two armed spirals are commonly referred to as ‘grand design’ spirals. In constrast, many armed spirals have three or more arms that are often less distinct. Here we present the cold gas mass per unit of stellar mass (cold gas fraction) in grand design spirals versus many armed spiral galaxies using Galaxy Zoo 2 for our morphological classifications. The masses of HI and H2 gas are taken from the COLDGASS survey, which included nondetections in the form of upper limits. Through our analysis, we found that grand design galaxies have a lower cold gas fraction of both HI and H2. This is a surprising result, given that earlier studies have shown that they have comparable rates of star formation. Combined with our result, this means that grand design galaxies must be more efficient at converting H2 gas to stars.
NASA Astrophysics Data System (ADS)
Kelvin, Lee Steven
This thesis explores the relation between galaxy structure, morphology and stellar mass. In the first part I present single-Sersic two-dimensional model fits to 167,600 galaxies modelled independently in the ugrizYJHK bandpasses using reprocessed Sloan Digital Sky Survey Data Release Seven (SDSS DR7) and UKIRT Infrared Deep Sky Survey Large Area Survey (UKIDSS LAS) imaging data available via the Galaxy and Mass Assembly (GAMA) data base. In order to facilitate this study, we developed Structural Investigation of Galaxies via Model Analysis (SIGMA): an automated wrapper around several contemporary astronomy software packages. We confirm that variations in global structural measurements with wavelength arise due to the effects of dust attenuation and stellar population/metallicity gradients within galaxies. In the second part of this thesis we establish a volume-limited sample of 3,845 galaxies in the local Universe and visually classify these galaxies according to their morphological Hubble type. We find that single-Sersic photometry accurately reproduces the morphology luminosity functions predicted in the literature. We employ multi-component Sersic profiling to provide bulge-disk decompositions for this sample, allowing for the luminosity and stellar mass to be divided between the key structural components: spheroids and disks. Grouping the stellar mass in these structures by the evolutionary mechanisms that formed them, we find that hot-mode collapse, merger or otherwise turbulent mechanisms account for ~46% of the total stellar mass budget, cold-mode gas accretion and splashback mechanisms account for ~48% of the total stellar mass budget and secular evolutionary processes for ~6.5% of the total stellar mass budget in the local (z<0.06) Universe.
Massive Galaxies at z=2-3: A Large Population of Disky Star-Forming Systems?
NASA Astrophysics Data System (ADS)
Weinzirl, Tim; Jogee, S.; GOODS-NICMOS Collaboration
2011-01-01
The assembly modes via which galaxies develop their present-day mass and structure remain hotly debated. We explore this issue using one of the largest samples of massive galaxies (166 with stellar mass Mstar ≥ 5 × 1010 M⊙) at z=1-3 with NICMOS F160W observations from the GOODS NICMOS Survey (GNS), along with complementary ACS, Spitzer, and Chandra data. Our findings are: (1) The majority of the massive galaxies at z=2-3 have a disky structure (as characterized by the index of single-component Sersic profiles). Most are also compact with half-light radii less than 2 kpc. These massive galaxies at z=2-3 appear to be radically different in structure from their more massive descendants at z 0. Through artificial redshfiting experiments based on redshifted simulated NICMOS data of such massive z 0 elliptical, S0, and spiral galaxies, we show that most of this difference in structure is not due to cosmological or instrumental effects. This implies that significant structural evolution is needed to convert the massive z=2-3 systems into their z 0 elliptical and S0 descendants, and places important constraints on the associated evolutionary mechanisms (e.g., major mergers and cold accretion). (2) Using IR luminosities inferred from Spitzer detections, we find that over z=1-3, the mean star formation rate (SFR) rises substantially, even if AGN candidates are excluded. SFRs of several hundred solar masses per year or higher are common. The results imply a much higher average cold gas fraction than exists in z 0 galaxies. (3) We identify AGN candidates using a variety of techniques (X-ray properties, IR power-law, and IR-to-optical excess) and classify about one-third of the massive galaxies at z=1-3 as AGN hosts. The AGN fraction rises with redshift and is 40% at z=2-3. A significant fraction of the AGN candidates have disky structures although they host massive black holes.
Concept and Design of the Hybrid Sensor Bus System for Telecommunication Satellites
NASA Astrophysics Data System (ADS)
Hurni, Andreas; Tiefenbeck, Christoph; Manhart, Markus; Heyer, Heinz-Volker; Plattner, Markus; Putzer, Philipp; Roßner, Max; Koch, Alexander W.; Furano, Gianluca; McKenzie, Iain; Lam, King
2012-08-01
The Hybrid Sensor Bus (HSB) is a system for sensor interrogation in telecommunication satellites, which will be developed in the frame of the ESA ARTES program. The main target of the HSB system is the replacement of classical point-to-point wired sensors by sensors connected on bus networks. This will save mass and reduces efforts in assembly, integration and testing (AIT). The HSB system is able to manage an electrical I2C and a fiber-optical sensor network. The system consists of an intelligent power module, an electrical and a fiber-optical interrogator module in cold redundancy. Additional features of the HSB system are its modularity and the adaptability to different satellite platforms. The implementation of a HSB system allows platform manufacturers to build a more cost efficient satellite.This paper presents the concept and the design status of the HSB system.
In vitro reconstitution of chaperone-mediated human RISC assembly.
Naruse, Ken; Matsuura-Suzuki, Eriko; Watanabe, Mariko; Iwasaki, Shintaro; Tomari, Yukihide
2018-01-01
To silence target mRNAs, small RNAs and Argonaute (Ago) proteins need to be assembled into RNA-induced silencing complexes (RISCs). Although the assembly of Drosophila melanogaster RISC was recently reconstituted by Ago2, the Dicer-2/R2D2 heterodimer, and five chaperone proteins, the absence of a reconstitution system for mammalian RISC assembly has posed analytical challenges. Here we describe reconstitution of human RISC assembly using Ago2 and five recombinant chaperone proteins: Hsp90β, Hsc70, Hop, Dnaja2, and p23. Our data show that ATP hydrolysis by both Hsp90β and Hsc70 is required for RISC assembly of small RNA duplexes but not for that of single-stranded RNAs. The reconstitution system lays the groundwork for further studies of small RNA-mediated gene silencing in mammals. © 2018 Naruse et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco
2015-01-01
Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298
Mixing Hot and Cold Water Streams at a T-Junction
ERIC Educational Resources Information Center
Sharp, David; Zhang, Mingqian; Xu, Zhenghe; Ryan, Jim; Wanke, Sieghard; Afacan, Artin
2008-01-01
A simple mixing of a hot- and cold-water stream at a T-junction was investigated. The main objective was to use mass and energy balance equations to predict mass low rates and the temperature of the mixed stream after the T-junction, and then compare these with the measured values. Furthermore, the thermocouple location after the T-junction and…
Dhar, Hena; Swarnkar, Mohit Kumar; Gulati, Arvind; Singh, Anil Kumar; Kasana, Ramesh Chand
2015-02-19
Paenibacillus sp. strain IHB B 3415 is a cellulase-producing psychrotrophic bacterium isolated from a soil sample from the cold deserts of Himachal Pradesh, India. Here, we report an 8.44-Mb assembly of its genome sequence with a G+C content of 50.77%. The data presented here will provide insights into the mechanisms of cellulose degradation at low temperature. Copyright © 2015 Dhar et al.
Cold-mode Accretion: Driving the Fundamental Mass-Metallicity Relation at z ~ 2
NASA Astrophysics Data System (ADS)
Kacprzak, Glenn G.; van de Voort, Freeke; Glazebrook, Karl; Tran, Kim-Vy H.; Yuan, Tiantian; Nanayakkara, Themiya; Allen, Rebecca J.; Alcorn, Leo; Cowley, Michael; Labbé, Ivo; Spitler, Lee; Straatman, Caroline; Tomczak, Adam
2016-07-01
We investigate the star formation rate (SFR) dependence on the stellar mass and gas-phase metallicity relation at z = 2 with MOSFIRE/Keck as part of the ZFIRE survey. We have identified 117 galaxies (1.98 ≤ z ≤ 2.56), with 8.9 ≤ log(M/M ⊙) ≤ 11.0, for which we can measure gas-phase metallicities. For the first time, we show a discernible difference between the mass-metallicity relation, using individual galaxies, when dividing the sample by low (<10 M ⊙ yr-1) and high (>10 M ⊙ yr-1) SFRs. At fixed mass, low star-forming galaxies tend to have higher metallicity than high star-forming galaxies. Using a few basic assumptions, we further show that the gas masses and metallicities required to produce the fundamental mass-metallicity relation and its intrinsic scatter are consistent with cold-mode accretion predictions obtained from the OWLS hydrodynamical simulations. Our results from both simulations and observations are suggestive that cold-mode accretion is responsible for the fundamental mass-metallicity relation at z = 2 and it demonstrates the direct relationship between cosmological accretion and the fundamental properties of galaxies.
Atom-by-atom assembly of defect-free one-dimensional cold atom arrays.
Endres, Manuel; Bernien, Hannes; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D
2016-11-25
The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements. Copyright © 2016, American Association for the Advancement of Science.
The Mu2e Solenoid Cold Mass Position Monitor System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.
The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less
The Mu2e Solenoid Cold Mass Position Monitor System
Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.; ...
2018-01-23
The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less
Outer crust of nonaccreting cold neutron stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen
The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equationmore » of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.« less
Defining the next generation munitions handler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassiday, B.K.; Koury, G.J.; Pin, F.G.
1995-07-01
RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop-Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the start ofmore » the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper.« less
Development of a High Performance, Low-Profile Translation Table with Wire Feedthrough
NASA Technical Reports Server (NTRS)
Few, Alex
2016-01-01
NEAScout, a 6U cubesat, will use an 85 sq m solar sail to travel to a near-earth asteroid for observation. Over the course of the 3-year mission, a combination of reaction wheels, cold gas reaction control system, and a slow rotisserie roll about the solar sail's normal axis were expected to handle attitude control and adjust for imperfections in the deployed sail. As the design for NEAScout matured, one of the critical design parameters, the offset in the center of mass and center of pressure (CP/CM offset), proved to be sub-optimal. After significant mission and control analysis, the CP/CM offset was addressed and a new subsystem was introduced to NEAScout. This system, called the Active Mass Translator (AMT), would reside near the geometric center of NEAScout and adjust the CM by moving one portion of the flight system relative to the other. The AMT was given limited design space-about 17 mm of the vehicle's assembly height-and was required to generate +/-10 cm by +/-5 cm translation to sub-millimeter accuracy. Furthermore, the design must accommodate a large wire bundle of small gage, single strand wire and coax cables fed through the center of the mechanism. The bend radius, bend resistance, and the exposure to deep space environment complicates the AMT design and operation and necessitated a unique design to mitigate risks of wire bundle damage, binding, and cold-welding during operation. This paper will outline the design constraints for the AMT, discuss the methods and reasoning for design, and identify the lessons learned through the design downselect process and breadboarding for designing low-profile translation stages with feedthrough capabilities.
Probing the nature of dark matter through the metal enrichment of the intergalactic medium
NASA Astrophysics Data System (ADS)
Bremer, Jonas; Dayal, Pratika; Ryan-Weber, Emma V.
2018-06-01
We focus on exploring the metal enrichment of the intergalactic medium (IGM) in cold and warm (1.5 and 3 keV) dark matter (DM) cosmologies, and the constraints this yields on the DM particle mass, using a semi-analytic model, DELPHI, that jointly tracks the DM and baryonic assembly of galaxies at z ≃ 4-20 including both supernova (SN) and (a range of) reionization feedback (models). We find that while M_{UV}≳ -15 galaxies contribute half of all IGM metals in the cold dark matter (CDM) model by z ≃ 4.5, given the suppression of low-mass haloes, larger haloes with M_{UV}≲ -15 provide about 80 per cent of the IGM metal budget in 1.5 keV warm dark matter (WDM) models using two different models for the metallicity of the interstellar medium. Our results also show that the only models compatible with two different high-redshift data sets, provided by the evolving ultraviolet luminosity function (UV LF) at z ≃ 6-10 and IGM metal density, are standard CDM and 3 keV WDM that do not include any reionization feedback; a combination of the UV LF and the Díaz et al. point provides a weaker constraint, allowing CDM and 3 and 1.5 keV WDM models with SN feedback only, as well as CDM with complete gas suppression of all haloes with v_{circ} ≲ 30 km s^{-1}. Tightening the error bars on the IGM metal enrichment, future observations, at z ≳ 5.5, could therefore represent an alternative way of shedding light on the nature of DM.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Watson, Judith J.; Tutterow, Robin D.
1993-01-01
A multidisciplinary conceptual study was conducted to define a reusable lunar transfer vehicle (LTV) aerobrake which could be launched on a Space Shuttle of Titan 4 and assembled on orbit at Space Station Freedom. A major objective was to design an aerobrake, with integrated structure and thermal protection systems, which has a mass less than 20 percent (9040 lb) of the LTV lunar return mass. The aerobrake segmentation concepts, the structural concepts, a joint concept for assembly, and a structural design with analysis of the aerobrake are described. Results show that a 50-foot diameter LTV aerobrake can be designed for on-orbit assembly which will achieve the 20 percent mass budget.
First assembly times and equilibration in stochastic coagulation-fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Orsogna, Maria R.; Department of Mathematics, CSUN, Los Angeles, California 91330-8313; Lei, Qi
2015-07-07
We develop a fully stochastic theory for coagulation and fragmentation (CF) in a finite system with a maximum cluster size constraint. The process is modeled using a high-dimensional master equation for the probabilities of cluster configurations. For certain realizations of total mass and maximum cluster sizes, we find exact analytical results for the expected equilibrium cluster distributions. If coagulation is fast relative to fragmentation and if the total system mass is indivisible by the mass of the largest allowed cluster, we find a mean cluster-size distribution that is strikingly broader than that predicted by the corresponding mass-action equations. Combinations ofmore » total mass and maximum cluster size under which equilibration is accelerated, eluding late-stage coarsening, are also delineated. Finally, we compute the mean time it takes particles to first assemble into a maximum-sized cluster. Through careful state-space enumeration, the scaling of mean assembly times is derived for all combinations of total mass and maximum cluster size. We find that CF accelerates assembly relative to monomer kinetic only in special cases. All of our results hold in the infinite system limit and can be only derived from a high-dimensional discrete stochastic model, highlighting how classical mass-action models of self-assembly can fail.« less
Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators
NASA Technical Reports Server (NTRS)
Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)
2002-01-01
Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.
NASA Technical Reports Server (NTRS)
Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis
2014-01-01
We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.
Chen, Xin; Zhang, Jin; Liu, Qingzhong; Guo, Wei; Zhao, Tiantian; Ma, Qinghua; Wang, Guixi
2014-01-01
The genus Corylus is an important woody species in Northeast China. Its products, hazelnuts, constitute one of the most important raw materials for the pastry and chocolate industry. However, limited genetic research has focused on Corylus because of the lack of genomic resources. The advent of high-throughput sequencing technologies provides a turning point for Corylus research. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive database for the Corylus heterophylla Fisch floral buds. The C. heterophylla Fisch floral buds transcriptome was sequenced using the Illumina paired-end sequencing technology. We produced 28,930,890 raw reads and assembled them into 82,684 contigs. A total of 40,941 unigenes were identified, among which 30,549 were annotated in the NCBI Non-redundant (Nr) protein database and 18,581 were annotated in the Swiss-Prot database. Of these annotated unigenes, 25,311 and 10,514 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. We could map 17,207 unigenes onto 128 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database. Additionally, based on the transcriptome, we constructed a candidate cold tolerance gene set of C. heterophylla Fisch floral buds. The expression patterns of selected genes during four stages of cold acclimation suggested that these genes might be involved in different cold responsive stages in C. heterophylla Fisch floral buds. The transcriptome of C. heterophylla Fisch floral buds was deep sequenced, de novo assembled, and annotated, providing abundant data to better understand the C. heterophylla Fisch floral buds transcriptome. Candidate genes potentially involved in cold tolerance were identified, providing a material basis for future molecular mechanism analysis of C. heterophylla Fisch floral buds tolerant to cold stress.
Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar.
Sinclair, Brent J; Chown, Steven L
2005-03-01
Multiple freeze-thaw cycles are common in alpine, polar and temperate habitats. We investigated the effects of five consecutive cycles of approx. -5 degrees C on the freeze-tolerant larvae of Pringleophaga marioni Viette (Lepidoptera: Tineidae) on sub-Antarctic Marion Island. The likelihood of freezing was positively correlated with body mass, and decreased from 70% of caterpillars that froze on initial exposure to 55% of caterpillars that froze on subsequent exposures; however, caterpillars retained their freeze tolerance and did not appear to switch to a freeze-avoiding strategy. Apart from an increase in gut water, there was no difference in body composition of caterpillars frozen 0 to 5 times, suggesting that the observed effects were not due to freezing, but rather to exposure to cold per se. Repeated cold exposure did not result in mortality, but led to decreased mass, largely accounted for by a decreased gut mass caused by cessation of feeding by caterpillars. Treatment caterpillars had fragile guts with increased lipid content, suggesting damage to the gut epithelium. These effects persisted for 5 days after the final exposure to cold, and after 30 days, treatment caterpillars had regained their pre-exposure mass, whereas their control counterparts had significantly gained mass. We show that repeated cold exposure does occur in the field, and suggest that this may be responsible for the long life cycle in P. marioni. Although mean temperatures are increasing on Marion Island, several climate change scenarios predict an increase in exposures to sub-zero temperatures, which would result in an increased generation time for P. marioni. Coupled with increased predation from introduced house mice on Marion Island, this could have severe consequences for the P. marioni population.
The Prolate Dark Matter Halo of the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Hayashi, Kohei; Chiba, Masashi
2014-07-01
We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi & Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.
The prolate dark matter halo of the Andromeda galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp
We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for itsmore » dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.« less
Relation between halo spin and cosmic-web filaments at z ≃ 3
NASA Astrophysics Data System (ADS)
González, Roberto E.; Prieto, Joaquin; Padilla, Nelson; Jimenez, Raul
2017-02-01
We investigate the spin evolution of dark matter haloes and their dependence on the number of connected filaments from the cosmic web at high redshift (spin-filament relation hereafter). To this purpose, we have simulated 5000 haloes in the mass range 5 × 109 h-1 M⊙ to 5 × 1011 h-1 M⊙ at z = 3 in cosmological N-body simulations. We confirm the relation found by Prieto et al. (2015) where haloes with fewer filaments have larger spin. We also found that this relation is more significant for higher halo masses, and for haloes with a passive (no major mergers) assembly history. Another finding is that haloes with larger spin or with fewer filaments have their filaments more perpendicularly aligned with the spin vector. Our results point to a picture in which the initial spin of haloes is well described by tidal torque theory and then gets subsequently modified in a predictable way because of the topology of the cosmic web, which in turn is given by the currently favoured Lambda cold dark matter (LCDM) model. Our spin-filament relation is a prediction from LCDM that could be tested with observations.
Monitoring xenon purity in the LUX detector with a mass spectrometry system
NASA Astrophysics Data System (ADS)
Balajthy, Jon; LUX Experiment Collaboration
2015-04-01
The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. To monitor for radioactive impurities such as krypton and impurities which limit charge yield such as oxygen, LUX uses a xenon sampling system consisting of a mass spectrometer and a liquid nitrogen cold trap. The cold trap separates the gaseous impurities from a small sample of xenon and allows them to pass to the mass spectrometer for analysis. We report here on results from the LUX xenon sampling program. We also report on methods to enhance the sensitivity of the cold trap technique in preparation for the next-generation LUX-ZEPLIN experiment which will have even more stringent purity requirements.
Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L.
2015-01-01
ABSTRACT Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. PMID:25987736
Method of fabricating a cooled electronic system
Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E
2014-02-11
A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.
LoCuSS: The infall of X-ray groups on to massive clusters
NASA Astrophysics Data System (ADS)
Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; McGee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C.
2018-07-01
Galaxy clusters are expected to form hierarchically in a Λ cold dark matter (ΛCDM) universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass haloes. Galaxy clusters assemble late, doubling their masses since z ˜ 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters (
Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco
2015-02-01
Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
NASA Technical Reports Server (NTRS)
Bohm-Vitense, Erika; Querci, Monique
1987-01-01
The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.
Tian, Xin; Liu, Ying; Huang, Zhigang; Duan, Huaping; Tong, Jianhua; He, Xiaoling; Gu, Weihong; Ma, Hao; Xiao, Langtao
2015-03-01
Cold stress adversely affects the growth and development of seedling of spring soybean. Revealing responses in seedling to cold stress at proteomic level will help us to breed cold-tolerant spring soybean cultivars. In this study, to understand the responses, a proteomic analysis on the leaves of seedlings of one cold-tolerant soybean cultivar and one cold-sensitive soybean cultivar at 5°C for different times (12 and 24 h) was performed, with some proteomic results being further validated by physiological and biochemical analysis. Our results showed that 57 protein spots were found to be significantly changed in abundance and identified by MALDI-TOF/TOF MS. All the identified proteins were found to be involved in 13 metabolic pathways and cellular processes, including photosynthesis, protein folding and assembly, cell rescue and defense, cytoskeletal proteins, transcription and translation regulation, amino acid and nitrogen metabolism, protein degradation, storage proteins, signal transduction, carbohydrate metabolism, lipid metabolism, energy metabolism, and unknown. Based on the majority of the identified cold-responsive proteins, the effect of cold stress on seedling leaves of the two spring soybean cultivars was discussed. The reason that soybean cv. Guliqing is more cold-tolerant than soybean cv. Nannong 513 was due to its more protein, lipid and polyamine biosynthesis, more effective sulfur-containing metabolite recycling, and higher photosynthetic rate, as well as less ROS production and lower protein proteolysis and energy depletion under cold stress. Such a result will provide more insights into cold stress responses and for further dissection of cold tolerance mechanisms in spring soybean.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Lin, Yi; Zhang, Xue-Ying; Wang, De-Hua
2015-06-01
Cold commonly affects growth and reproductive development in small mammals. Here, we test the hypothesis that low ambient temperature will affect growth and puberty onset, associated with altered hypothalamic Kiss-1 gene expression and serum leptin concentration in wild rodents. Male Brandt's voles ( Lasiopodomys brandtii) were exposed to cold (4 ± 1 °C) and warm (23 ± 1 °C) conditions from the birth and sacrificed on different developmental stages (day 26, day 40, day 60, and day 90, respectively). Brandt's voles increased the thermogenic capacity of brown adipose tissue, mobilized body fat, decreased serum leptin levels, and delayed the reproductive development especially on day 40 in the cold condition. They increased food intake to compensate for the high energy demands in the cold. The hypothalamic Kiss-1 gene expression on day 26 was decreased, associated with lower wet testis mass and testis testosterone concentration on day 40, in the cold-exposed voles compared to that in the warm. Serum leptin was positively correlated with body fat, testis mass, and testosterone concentration. These data suggested that cold exposure inhibited hypothalamic Kiss-1 gene expression during the early stage of development, decreased serum leptin concentration, and delayed reproductive development in male Brandt's voles.
Galaxy and Mass Assembly (GAMA): the GAMA galaxy group catalogue (G3Cv1)
NASA Astrophysics Data System (ADS)
Robotham, A. S. G.; Norberg, P.; Driver, S. P.; Baldry, I. K.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Loveday, J.; Merson, A.; Peacock, J. A.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Pimbblet, K. A.; Phillipps, S.; Popescu, C. C.; Prescott, M.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2011-10-01
Using the complete Galaxy and Mass Assembly I (GAMA-I) survey covering ˜142 deg2 to rAB= 19.4, of which ˜47 deg2 is to rAB= 19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been tested extensively on one family of mock GAMA lightcones, constructed from Λ cold dark matter N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14 388 galaxy groups (with multiplicity ≥2), including 44 186 galaxies out of a possible 110 192 galaxies, implying ˜40 per cent of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with five or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin. The G3Cv1 catalogue will be made publicly available as and when the relevant GAMA redshifts are made available at .
Methods for batch fabrication of cold cathode vacuum switch tubes
Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM
2011-05-10
Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.
An index of anomalous convective instability to detect tornadic and hail storms
NASA Astrophysics Data System (ADS)
Qian, Weihong; Leung, Jeremy Cheuk-Hin; Luo, Weimeng; Du, Jun; Gao, Jidong
2017-12-01
In this article, the synoptic-scale spatial structures for raising tornadic and hail storms are compared by analyzing the total and anomalous variable fields from the troposphere to the stratosphere. 15 cases of tornado outbreaks and 20 cases of hail storms that occurred in the central United States during 1980-2011 were studied. The anomalous temperature-height field shows that a tornadic or hail storm usually occurs at the boundary of anomalous warm and cold air masses horizontally in the troposphere. In one side, an anomalous warm air mass in the mid-low troposphere and an anomalous cold air mass in the stratosphere are vertically separated by a positive center of height anomalies at the upper troposphere. In another side, an opposite vertical pattern shows that an anomalous cold air mass in the mid-low troposphere and an anomalous warm air mass in the stratosphere are separated by a negative center of height anomalies at the upper troposphere. Therefore, two pairs of adjacent anomalous warm/cold centers and one pair of anomalous high/low centers combining together form a major tornadic or hail storm paradigm, which can be physically considered as the storage of anomalous potential energy (APE) to generate severe weather. To quantitatively measure the APE, we define an index of anomalous convective instability (ACI) which is a difference of integrating temperature anomalies based on two vertically opposite anomalous air masses. The APE transformation to anomalous kinetic energy, which reduces horizontal and vertical gradients of temperature anomalies, produces anomalous rising and sinking flows in the lower-layer anomalous warm and cold air mass sides, respectively. The intensity of ACI index for tornadic storm cases is 1.5 times larger than that of hail storm cases in average. Thus, this expression of anomalous variables is better than total variables used in the traditional synoptic chart and the ACI index is better than other indices to detect potential tornadic and hail storms in order to understand the environmental conditions affecting severe weather in analytical and model output datasets.
Exploring SMBH assembly with semi-analytic modelling
NASA Astrophysics Data System (ADS)
Ricarte, Angelo; Natarajan, Priyamvada
2018-02-01
We develop a semi-analytic model to explore different prescriptions of supermassive black hole (SMBH) fuelling. This model utilizes a merger-triggered burst mode in concert with two possible implementations of a long-lived steady mode for assembling the mass of the black hole in a galactic nucleus. We improve modelling of the galaxy-halo connection in order to more realistically determine the evolution of a halo's velocity dispersion. We use four model variants to explore a suite of observables: the M•-σ relation, mass functions of both the overall and broad-line quasar population, and luminosity functions as a function of redshift. We find that `downsizing' is a natural consequence of our improved velocity dispersion mappings, and that high-mass SMBHs assemble earlier than low-mass SMBHs. The burst mode of fuelling is sufficient to explain the assembly of SMBHs to z = 2, but an additional steady mode is required to both assemble low-mass SMBHs and reproduce the low-redshift luminosity function. We discuss in detail the trade-offs in matching various observables and the interconnected modelling components that govern them. As a result, we demonstrate the utility as well as the limitations of these semi-analytic techniques.
Early assembly of the most massive galaxies.
Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J
2009-04-02
The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.
Assembly of a Vacuum Chamber: A Hands-On Approach to Introduce Mass Spectrometry
ERIC Educational Resources Information Center
Bussie`re, Guillaume; Stoodley, Robin; Yajima, Kano; Bagai, Abhimanyu; Popowich, Aleksandra K.; Matthews, Nicholas E.
2014-01-01
Although vacuum technology is essential to many aspects of modern physical and analytical chemistry, vacuum experiments are rarely the focus of undergraduate laboratories. We describe an experiment that introduces students to vacuum science and mass spectrometry. The students first assemble a vacuum system, including a mass spectrometer. While…
The Dependence of Galaxy Clustering on Stellar-mass Assembly History for LRGs
NASA Astrophysics Data System (ADS)
Montero-Dorta, Antonio D.; Pérez, Enrique; Prada, Francisco; Rodríguez-Torres, Sergio; Favole, Ginevra; Klypin, Anatoly; Cid Fernandes, Roberto; González Delgado, Rosa M.; Domínguez, Alberto; Bolton, Adam S.; García-Benito, Rubén; Jullo, Eric; Niemiec, Anna
2017-10-01
We analyze the spectra of 300,000 luminous red galaxies (LRGs) with stellar masses {M}* ≳ {10}11 {M}⊙ from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). By studying their star formation histories, we find two main evolutionary paths converging into the same quiescent galaxy population at z˜ 0.55. Fast-growing LRGs assemble 80% of their stellar mass very early on (z˜ 5), whereas slow-growing LRGs reach the same evolutionary state at z˜ 1.5. Further investigation reveals that their clustering properties on scales of ˜1-30 Mpc are, at a high level of significance, also different. Fast-growing LRGs are found to be more strongly clustered and reside in overall denser large-scale structure environments than slow-growing systems, for a given stellar-mass threshold. Our results show a dependence of clustering on a property that is directly related to the evolution of galaxies, I.e., the stellar-mass assembly history, for a homogeneous population of similar mass and color. In a forthcoming work, we will address the halo connection in the context of galaxy assembly bias.
The Global and Radial Stellar Mass Assembly of Milky Way-sized Galaxies
NASA Astrophysics Data System (ADS)
Avila-Reese, Vladimir; González-Samaniego, Alejandro; Colín, Pedro; Ibarra-Medel, Héctor; Rodríguez-Puebla, Aldo
2018-02-01
We study the global and radial stellar mass assembly of eight zoomed-in Milky Way (MW)-sized galaxies produced in hydrodynamics cosmological simulations. The disk-dominated galaxies (four) show a fast initial stellar mass growth in the innermost parts, driven mostly by in situ star formation (SF), but since z ∼ 2‑1, the SF has entered a long-term quenching phase. The outer regions follow this trend but more gently, as they are more external. As a result, the radial stellar mass growth is highly inside-out due to both inside-out structural growth and inside-out SF quenching. The half-mass radius evolves fast; for instance, {R}0.5(z = 1) < 0.5 {R}0.5 (z = 0). Two other runs resemble lenticular galaxies. One also shows a pronounced inside-out growth, and the other one presents a nearly uniform radial mass assembly. The other two galaxies suffered late major mergers. Their normalized radial mass growth histories (MGHs) are very close, but with periods of outside-in assembly during or after the mergers. For all of the simulations, the archaeological radial MGHs calculated from the z = 0 stellar particle age distribution are similar to current MGHs, which shows that the mass assembly by ex situ stars and the radial mass transport do not significantly change their radial mass distributions. Our results agree qualitatively with observational inferences from the fossil record method applied to a survey of local galaxies and from look-back observations of progenitors of MW-sized galaxies. However, the inside-out growth mode is more pronounced, and the {R}0.5 growth is faster in simulations than in observational inferences.
Gravitational detection of a low-mass dark satellite galaxy at cosmological distance.
Vegetti, S; Lagattuta, D J; McKean, J P; Auger, M W; Fassnacht, C D; Koopmans, L V E
2012-01-18
The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found using a method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9 ± 0.1) × 10(8) M dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where M denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be 1.1(+0.6)(-0.4), with an average mass fraction of 3.3(+3.6)(-1.8) per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.
Opto-mechanical design of the MTG FCI spectral separation assembly
NASA Astrophysics Data System (ADS)
Riguet, François; Brousse, Emmanuel; Carel, Jean-Louis; Cottenye, Justine; Harmann, David; Joncour, Marc; Makhlouf, Houssine; Mouricaud, Daniel; Oussalah, Meihdi; Rodolfo, Jacques
2015-09-01
The Spectral Separation Assembly is a key component of the Flexible Combined Imager, an instrument that will be on-board Meteosat Third Generation. It splits the input beam coming from the telescope into five spectral groups, for a total of 16 channels, from 0.4 to 13.3 μm. It comprises a set of four dichroics separators followed by four collimating optics for the infrared spectral groups, which feed the cold imaging optics. The visible spectral group is directly imaged on a detector. This paper presents the optical design of the assembly, the mechanical mounting of the optical components, and the coatings developed for the dichroics, mirrors and lenses.
Li, Qingyuan; Lei, Sheng; Du, Kebing; Li, Lizhi; Pang, Xufeng; Wang, Zhanchang; Wei, Ming; Fu, Shao; Hu, Limin; Xu, Lin
2016-01-01
Camellia is a well-known ornamental flower native to Southeast of Asia, including regions such as Japan, Korea and South China. However, most species in the genus Camellia are cold sensitive. To elucidate the cold stress responses in camellia plants, we carried out deep transcriptome sequencing of ‘Jiangxue’, a cold-tolerant cultivar of Camellia japonica, and approximately 1,006 million clean reads were generated using Illumina sequencing technology. The assembly of the clean reads produced 367,620 transcripts, including 207,592 unigenes. Overall, 28,038 differentially expressed genes were identified during cold acclimation. Detailed elucidation of responses of transcription factors, protein kinases and plant hormone signalling-related genes described the interplay of signal that allowed the plant to fine-tune cold stress responses. On the basis of global gene regulation of unsaturated fatty acid biosynthesis- and jasmonic acid biosynthesis-related genes, unsaturated fatty acid biosynthesis and jasmonic acid biosynthesis pathways were deduced to be involved in the low temperature responses in C. japonica. These results were supported by the determination of the fatty acid composition and jasmonic acid content. Our results provide insights into the genetic and molecular basis of the responses to cold acclimation in camellia plants. PMID:27819341
Price, Edwin R; Sirsat, Tushar S; Sirsat, Sarah K G; Kang, Gurdeep; Keereetaweep, Jantana; Aziz, Mina; Chapman, Kent D; Dzialowski, Edward M
2017-08-01
We investigated the ability of juvenile American alligators (Alligator mississippiensis) to acclimate to temperature with respect to growth rate. We hypothesized that alligators would acclimate to cold temperature by increasing the metabolic capacity of skeletal muscles and the heart. Additionally, we hypothesized that lipid membranes in the thigh muscle and liver would respond to low temperature, either to maintain fluidity (via increased unsaturation) or to maintain enzyme reaction rates (via increased docosahexaenoic acid). Alligators were assigned to one of 3 temperature regimes beginning at 9 mo of age: constant warm (30°C), constant cold (20°C), and daily cycling for 12h at each temperature. Growth rate over the following 7 mo was highest in the cycling group, which we suggest occurred via high digestive function or feeding activity during warm periods and energy-saving during cold periods. The warm group also grew faster than the cold group. Heart and liver masses were proportional to body mass, while kidney was proportionately larger in the cold group compared to the warm animals. Whole-animal metabolic rate was higher in the warm and cycling groups compared to the cold group - even when controlling for body mass - when assayed at 30°C, but not at 20°C. Mitochondrial oxidative phosphorylation capacity in permeabilized fibers of thigh muscle and heart did not differ among treatments. Membrane fatty acid composition of the brain was largely unaffected by temperature treatment, but adjustments were made in the phospholipid headgroup composition that are consistent with homeoviscous adaptation. Thigh muscle cell membranes had elevated polyunsaturated fatty acids in the cold group relative to the cycling group, but this was not the case for thigh muscle mitochondrial membranes. Liver mitochondria from cold alligators had elevated docosahexaenoic acid, which might be important for maintenance of reaction rates of membrane-bound enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kang, Yungmo
2005-10-04
An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.
Making the cold Kuiper belt in a planetary instability migration model
NASA Astrophysics Data System (ADS)
Gomes, Rodney S.
2017-06-01
Numerical integrations of the equations of motion of Jupiter, Saturn, three ice cores and a disk of planetesimals are undertaken. Two of the ice planets stand for Uranus and Neptune and a third one is expected to be ejected from the solar system. The planets start in compact cold orbits and each one is in mean motion resonance with its neighbor(s). The disk of planetesimals is placed just outside the outermost planet and is extended to 45 au. Five hundred integrations are done for each of four masses assigned to the disk, which are 25, 30, 35 and 40 Earth masses. The integrations are extended to 100 My. After that, I choose the successful runs in which there are four planets left in closed orbits around the Sun and I separate the good runs among the successful ones, defined by semi-major axes ranges around and not too far from the real ones. Among these good runs, I further choose by visual inspection those that yield an orbital distribution of planetesimals at the Kuiper belt region that resembles the real cold Kuiper belt. I extend these runs to 1 Gy and, after that, to 4.5 Gy. These last integrations for 3.5 Gy are done after replacing the orbits of the planets in the end of the 1 Gy integrations by their current orbits, changing the semi-major axes of the planetesimals so as to keep the same mean motion ratio with Neptune and assigning null masses for the planetesimals. Orbital distributions of the cold Kuiper belt obtained in some of the runs at 4.5 Gy are quite similar to that of the real cold Kuiper belt. The mass in the Kuiper belt region can be dynamically eroded to up to 90% of the original mass. The main conclusion is that the cold Kuiper belt is compatible with a past planetary instability phase even though in some of these runs Neptune's semi-major axis and eccentricity attained values simultaneously larger than 20 au and 0.2 for over 1 My.
Double diffusion in the frontal zones of the Yellow and East China Seas in winter
NASA Astrophysics Data System (ADS)
Oh, K.; Lee, S.
2017-12-01
Where the cold, fresh water of the Yellow Sea (YS) and the warm, salty water of the East China Sea (ECS) meet, northern and southern fronts are formed in the southeastern YS and the northwestern ECS, respectively. Strong thermohaline fronts are formed on the northern front, and a strong thermocline and a temperature reversal phenomenon are represented in this front. To understand the water structure of this thermohaline zone, we examined double diffusion in the frontal zones in February 2003 using hydrographic data. In the northern front, the warm, salty Cheju Warm Current Water (CWCW) moved northwards along the bottom layer and the cold, fresh Yellow Sea Cold Water (YSCW) flowed southward in the upper layer. As a result, strong thermohaline fronts forms in the area where the two water masses met, and the slope was developed downward across the front. In this area, a strong thermocline and temperature reversal structures were present. The cold, fresh Korean Coastal Water (KCW) was also found in the upper layer near the thermocline, and has a low-temperature, low-salinity more than surrounding water. When cold, fresh water is located over warm, salty water, heat diffuses through the interface between the two water masses, and then the diffusive-convection can be expected to occur. On the other hand, when warm, salty water overlays cold, fresh water, heat in the upper layer is preferentially transferred downward, and the salt-fingering occurs. The diffusive-convection occurs predominantly in the northern thermohaline front, where the cold, fresh YSCW is situated above the warm, salty CWCW and has the effect of strengthening stratification, so that the water column maintains a physically stable structure. In addition, this phenomenon seems to play a role in maintaining the reversal structure. The salt-fingering occurs in upper layers of the northern front where the cold, fresh YSCW is located over the most cold, fresh KCW. Near the northern thermo-halocline zone, the salt-fingering occurs simultaneously with the diffusive-convection, because three water masses, YSCW, KCW and CWCW, interact in that area. Therefore, it can be seen that the water structure of the northern frontal zone in winter is influenced mainly by the cold, fresh YSCW, the most cold, fresh KCW, and the warm, salty CWCW.
Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L
2015-07-01
Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. © 2015. Published by The Company of Biologists Ltd.
2. VIEW TO THE SOUTHWEST OF THE MAIN EMAD BUILDING ...
2. VIEW TO THE SOUTHWEST OF THE MAIN E-MAD BUILDING WITH THE COLD BAY ON THE EAST (LEFT) AND THE HOT BAY ON THE WEST (RIGHT). - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV
Status of the rainbow trout genome reference sequence assembly
USDA-ARS?s Scientific Manuscript database
Rainbow trout (Oncorhynchus mykiss) are the most cultivated cold water fish in the U.S. In addition to interests associated with aquaculture and sport fisheries, the rainbow trout serves as a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ...
Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers
Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron
2016-01-01
Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536
NASA Technical Reports Server (NTRS)
Park, Brian V. (Inventor); Smith, Jr., Malcolm C. (Inventor); McGrath, Ralph D. (Inventor); Gilley, Michael D. (Inventor); Criscuolo, Lance (Inventor); Nelson, John L. (Inventor)
1996-01-01
A refrigerator is provided which combines the benefits of superinsulation materials with thermoelectric devices and phase change materials to provide an environmentally benign system that is energy efficient and can maintain relatively uniform temperatures for extended periods of time with relatively low electrical power requirements. The refrigerator includes a thermoelectric assembly having a thermoelectric device with a hot sink and a cold sink. The superinsulation materials include a plurality of vacuum panels. The refrigerator is formed from an enclosed structure having a door. The vacuum panels may be contained within the walls of the enclosed structure and the door. By mounting the thermoelectric assembly on the door, the manufacturer of the enclosed structure is simplified and the overall R rating of the refrigerator increased. Also an electrical motor and propellers may be mounted on the door to assist in the circulation of air to improve the efficiency of the cold sink and the hot sink. A propeller and/or impeller is preferably mounted within the refrigerator to assist in establishing the desired air circulation flow path.
Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers
NASA Astrophysics Data System (ADS)
Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron
2016-02-01
Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.
fire in the field: simulating the threshold of galaxy formation
NASA Astrophysics Data System (ADS)
Fitts, Alex; Boylan-Kolchin, Michael; Elbert, Oliver D.; Bullock, James S.; Hopkins, Philip F.; Oñorbe, Jose; Wetzel, Andrew; Wheeler, Coral; Faucher-Giguère, Claude-André; Kereš, Dušan; Skillman, Evan D.; Weisz, Daniel R.
2017-11-01
We present a suite of 15 cosmological zoom-in simulations of isolated dark matter haloes, all with masses of Mhalo ≈ 1010 M⊙ at z = 0, in order to understand the relationship among halo assembly, galaxy formation and feedback's effects on the central density structure in dwarf galaxies. These simulations are part of the Feedback in Realistic Environments (fire) project and are performed at extremely high resolution (mbaryon = 500 M⊙, mdm = 2500 M⊙). The resultant galaxies have stellar masses that are consistent with rough abundance matching estimates, coinciding with the faintest galaxies that can be seen beyond the virial radius of the Milky Way (M*/M⊙ ≈ 105 - 107). This non-negligible spread in stellar mass at z = 0 in haloes within a narrow range of virial masses is strongly correlated with central halo density or maximum circular velocity Vmax, both of which are tightly linked to halo formation time. Much of this dependence of M* on a second parameter (beyond Mhalo) is a direct consequence of the Mhalo ˜ 1010 M⊙ mass scale coinciding with the threshold for strong reionization suppression: the densest, earliest-forming haloes remain above the UV-suppression scale throughout their histories while late-forming systems fall below the UV-suppression scale over longer periods and form fewer stars as a result. In fact, the latest-forming, lowest-concentration halo in our suite fails to form any stars. Haloes that form galaxies with M⋆ ≳ 2 × 106 M⊙ have reduced central densities relative to dark-matter-only simulations, and the radial extent of the density modifications is well-approximated by the galaxy half-mass radius r1/2. Lower-mass galaxies do not modify their host dark matter haloes at the mass scale studied here. This apparent stellar mass threshold of M⋆ ≈ 2 × 106 - 2 × 10- 4 Mhalo is broadly consistent with previous work and provides a testable prediction of fire feedback models in Λcold dark matter.
Swanson, David L; Garland, Theodore
2009-01-01
Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.
NASA Astrophysics Data System (ADS)
Y Zhang, S.; Pan, W.; Wei, C. B.; Wu, J. H.
2017-12-01
Helium centrifugal cold compressors are utilized to pump gaseous helium from saturated liquid helium tank to obtain super-fluid helium in cryogenic refrigeration system, which is now being developed at TIPC, CAS. Active magnetic bearing (AMB) is replacing traditional oil-fed bearing as the optimal supporting assembly for cold compressor because of its many advantages: free of contact, high rotation speed, no lubrication and so on. In this paper, five degrees of freedom for AMB are developed for the helium centrifugal cold compressor application. The structure parameters of the axial and radial magnetic bearings as well as hardware and software of the electronic control system is discussed in detail. Based on modal analysis and critical speeds calculation, a control strategy combining PID arithmetic with other phase compensators is proposed. Simulation results demonstrate that the control method not only stables AMB system but also guarantees good performance of closed-loop behaviour. The prior research work offers important base and experience for test and application of AMB experimental platform for system centrifugal cold compressor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, M. A.; Pan, H.; Preece, R. M.
2014-01-29
Two 2.7-m long solenoid magnets with a cold mass of 1400 kg were fabricated in between 2007 and 2010. The magnet cryostat outside diameter is ∼1.4 meters and the cryostat length is ∼2.73 meters. The magnet warm bore is 0.4 meters. The magnet was designed to be cooled using three 1.5 W two-stage coolers. In both magnets, three coolers could not keep the cryostat filled with liquid helium. The temperatures of the shield and the tops of the HTS leads were too warm. A 140 W single stage cooler was added to magnet 2 to cool the HTS leads, themore » shield and the cold mass support intercepts. When the magnet 2 was retested in 2010, the net cooling at 4.2 K was −1.5 W with first-stage temperatures of the four coolers at ∼42 K. The tops of the HTS leads were <50 K, but the shield and cold mass support intercepts remained too warm. The solenoid cryostat and shield were modified during 2011 and 2012 to reduce the 4.2 K heat load and increase the cooling. This magnet was tested in 2012, with five 1.5 W two-stage coolers and the single stage cooler. The changes made in the magnet are described in this report. As a result of the cryostat and shield changes, and adding 3.0 W of cooling at 4.2 K, the net 4.2 K cooling changed from −1.6 W to +5.0 W. About half of the change in net cooling to this magnet was due changes that reduced the shield temperature. This report demonstrates the importance of running the shield cold (∼40 K) and reducing the heat loads from all sources on both the shield and the cold mass.« less
Armendariz, Alfredo; Leith, David; Boundy, Maryanne; Goodman, Randall; Smith, Les; Carlton, Gary
2003-01-01
Aircraft engines emit an aerosol plume during startup in extremely cold weather that can drift into areas occupied by flightline ground crews. This study tested a personal sampler used to assess exposure to particles in the plume under challenging field conditions. Area and personal samples were taken at two U.S. Air Force (USAF) flightlines during the winter months. Small tube-and-wire electrostatic precipitators (ESPs) were mounted on a stationary stand positioned behind the engines to sample the exhaust. Other ESPs were worn by ground crews to sample breathing zone concentrations. In addition, an aerodynamic particle sizer 3320 (APS) was used to determine the size distribution of the particles. Samples collected with the ESP were solvent extracted and analyzed with gas chromatography-mass spectrometry. Results indicated that the plume consisted of up to 75 mg/m(3) of unburned jet fuel particles. The APS showed that nearly the entire particle mass was respirable, because the plumes had mass median diameters less than 2 micro m. These tests demonstrated that the ESP could be used at cold USAF flightlines to perform exposure assessments to the cold start particles.
Astronomical Constraints on Quantum Cold Dark Matter
NASA Astrophysics Data System (ADS)
Spivey, Shane; Musielak, Z.; Fry, J.
2012-01-01
A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.
Inaba, Ryoichi; Kurokawa, Junichi; Mirbod, Seyed Mohammad
2009-07-01
To help making comfortable workplaces and to prevent health disorders induced by the exposure to moderate cold in two different groups of out-door workers, we conducted a survey to compare subjective symptoms and cold prevention measures in winter between traffic control workers and construction workers. The subjects of this study were 98 male traffic control workers and 149 male workers engaged in building construction. Work loads of traffic control workers and construction workers were estimated at RMR1-2 and RMR2-4, respectively. All subjects were asked to complete a self-administered questionnaire covering age, occupational career, working figure, present illness, past history of diseases, individual preventive measures to the cold, subjective symptoms in the winter (43 items) and subjective symptoms occurred during daytime working in the winter (6 items). In two parts of the construction workplaces (the place where a morning assembly was held and on the 7th floor of the construction site) dry bulb, wet bulb and globe temperatures were measured in January. Windchill Index (kcal/cm,(2) x h) was calculated by the measured dry bulb temperature and wind velocity. Mean values of dry bulb temperature between 9:00 and 16:30 in the place where a morning assembly was held for three days were between 4.8 +/- 1.2 degrees C at 9:00 am and 9.3 +/- 1.1 degrees C at noon. Mean values of Windchill Index in the place where a morning assembly was held were between 490.8+/-23.9 kcal/cm(2) x h at 9:30 am and 608.2+/-47.3 kcal/cm(2) x h at 2:30 pm. Occupational career, monthly working days, daily working hours, one way commuting hours, and daily smoking numbers of the traffic control workers were significantly shorter than the construction workers (p<0.01). There were no significant differences in the prevalence of chillness in the arms and legs between the traffic control workers (5.1%) and the construction workers (0.7%). Prevalence of wearing a warm underwear, body warmer, warm trousers, underpants, warm socks, shoe warmer and muffler in the traffic control workers were significantly higher than the construction workers. The subjective symptoms in winter complained most frequently were shoulder stiffness (51.0%), finger cold sensation (50.0%) and neck stiffness (48.0%) in the traffic control workers, and were easy to get fatigued (49.0%), lumbago (48.3%) and finger cold sensation (47.7%) in the construction workers. On the basis of the results obtained, it is clearly shown that the two groups are at the risk of disorders due to their working environment. Therefore, these workers are needed to undergo occupational health programs for prevention of cold exposure disorders. Applications of preventive countermeasures for both groups are discussed.
Thermoelectric generator with hinged assembly for fins
Purdy, David L.; Shapiro, Zalman M.; Hursen, Thomas F.; Maurer, Gerould W.
1976-11-02
A cylindrical casing has a central shielded capsule of radioisotope fuel. A plurality of thermonuclear modules are axially arranged with their hot junctions resiliently pressed toward the shield and with their cold junctions adjacent a transition member having fins radiating heat to the environment. For each module, the assembly of transition member and fins is hinged to the casing for swinging to permit access to and removal of such module. A ceramic plate having gold layers on opposite faces prevents diffusion bonding of the hot junction to the shield.
Sympathetic Innervation of Cold-Activated Brown and White Fat in Lean Young Adults
Mangner, Tom J.; Leonard, William R.; Kumar, Ajay; Granneman, James G.
2017-01-01
Recent work in rodents has demonstrated that basal activity of the local sympathetic nervous system is critical for maintaining brown adipocyte phenotypes in classic brown adipose tissue (BAT) and white adipose tissue (WAT). Accordingly, we sought to assess the relationship between sympathetic innervation and cold-induced activation of BAT and WAT in lean young adults. Methods: Twenty adult lean normal subjects (10 women and 10 men; mean age ± SD, 23.3 ± 3.8 y; body mass index, 23.7 ± 2.5 kg/m2) underwent 11C-meta-hydroxyephedrin (11C-HED) and 15O-water PET imaging at rest and after exposure to mild cold (16°C) temperature. In addition, 18F-FDG images were obtained during the cold stress condition to assess cold-activated BAT mass. Subjects were divided into 2 groups (high BAT and low BAT) based on the presence of 18F-FDG tracer uptake. Blood flow and 11C-HED retention index (RI, an indirect measure of sympathetic innervation) were calculated from dynamic PET scans at the location of BAT and WAT. Whole-body daily energy expenditure (DEE) during rest and cold stress was measured by indirect calorimetry. Tissue level oxygen consumption (MRO2) was determined and used to calculate the contribution of cold-activated BAT and WAT to daily DEE. Results: 18F-FDG uptake identified subjects with high and low levels of cold-activated BAT mass (high BAT, 96 ± 37 g; low-BAT, 16 ± 4 g). 11C-HED RI under thermoneutral conditions significantly predicted 18F-FDG uptake during cold stress (R2 = 0.68, P < 0.01). In contrast to the significant increase of 11C-HED RI during cold in BAT (2.42 ± 0.85 vs. 3.43 ± 0.93, P = 0.02), cold exposure decreased the 11C-HED RI in WAT (0.44 ± 0.22 vs. 0.41 ± 0.18) as a consequence of decreased perfusion (1.22 ± 0.20 vs. 1.12 ± 0.16 mL/100 g/min). The contribution of WAT to whole-body DEE was approximately 150 kcal/d at rest (149 ± 52 kcal/d), which decreased to approximately 100 kcal/d during cold (102 ± 47 kcal/d). Conclusion: The level of sympathetic innervation, as determined by 11C-HED RI, can predict levels of functional BAT. Overall, blood flow is the best independent predictor of 11C-HED RI and 18F-FDG uptake across thermoneutral and cold conditions. In contrast to BAT, cold stress reduces blood flow and 18F-FDG uptake in subcutaneous WAT, indicating that the physiologic response is to reduce heat loss rather than to generate heat. PMID:27789721
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.
2010-12-01
The cause for and time evolution of the seismically observed African and Pacific slow anomalies (i.e., superplumes) are still unclear with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Ma and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma ago) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree-1 structure before the Pangea formation). Here, we construct a plate motion history back to 450 Ma and use it as time-dependent surface boundary conditions in 3-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure as well as the surface and core-mantle boundary heat flux. Our results for the mantle structures suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of the African superplume structure can be formed before ~240 Ma (i.e., ~100 Ma after the assembly of Pangea). The evolution of mantle structure has implications for heat flux at the surface and core-mantle boundary (CMB). Our results show that while the plate motion controls the surface heat flux, the major cold downwellings control the core-mantle boundary heat flux. A notable feature in surface heat flux from our models is that the surface heat flux peaks at ~100 Ma ago but decreases for the last 100 Ma due to the breakup of Pangea and its subsequent plate evolution. The CMB heat flux in the equatorial regions shows two minima during period 320-250 Ma and period 120-84 Ma. The first minimum clearly results from the disappearance of a major cold downwelling above the CMB below the Pangea after the assembly of Pangea ends the subduction and convergence between Gondwana and Laurussia. The second minimum arises because the break-up of Pangea leads to subduction of much smaller and younger oceanic lithosphere in the equatorial regions of the CMB. Considering the recent suggestion that CMB heat flux in the equatorial regions controls the frequency of magnetic polarity reversals (Olson et al., 2010), our results have important implications for the Kaiman Reversal Superchron and Cretaceous Normal Superchron.
A new dynamical index for classification of cold surge types over East Asia
NASA Astrophysics Data System (ADS)
Park, Tae-Won; Ho, Chang-Hoi; Jeong, Jee-Hoon; Heo, Jin-Woo; Deng, Yi
2015-11-01
The cold surges over East Asia can be classified into wave-train type and blocking type according to their dynamic origins. In the present study, two dynamic indices are proposed to objectively identify cold surge types using potential temperature ( θ) on the dynamic tropopause at 2-potential vorticity units (2-PVU) surface. The two indices are designed to represent primary characteristics of the two types of cold surge. The wave-train index ( WI) is defined as a difference of anomalous θ on the 2-PVU surface between the western North Pacific and northeast China, which captures a southward (northward) intrusion of cold (warm) air mass related to the trough-ridge pattern. The blocking index ( BI) is defined as a difference of anomalous θ between the subarctic region and northeast China, which indicates air mass overturning related to a reversal of the usual meridional θ gradient commonly observed in the occurrence of blocking type cold surge. Composite analyses based on the distribution of the WI and BI clearly demonstrate the dynamic evolutions of corresponding cold surge types. The wave-train cold surge is associated with a southeastward expansion of the Siberian High and northerly wind near surface, which is caused by growing baroclinic waves. During the blocking cold surge, a geopotential height dipole indicating the subarctic blocking and deepening of East Asian coastal trough induces a southward expansion of the Siberian High and northeasterly wind. Compared to the wave-train type, the blocking cold surge exhibits a longer duration and stronger intensity. In the new framework of these dynamic indices, we can detect a third type of cold surge when both the wave-train and the blocking occur together. In addition, we can exclude the events that do not have the essential features of the upper tropospheric disturbances or the subarctic anticyclonic circulation, which are responsible for cold surge occurrence, using the new indices.
Chen, Kong Y.; Laughlin, Maren R.; Haft, Carol R.; Hu, Houchun Harry; Bredella, Miriam A.; Enerbäck, Sven; Kinahan, Paul E.; van Marken Lichtenbelt, Wouter; Lin, Frank I.; Sunderland, John J.; Virtanen, Kirsi A.; Wahl, Richard L.
2016-01-01
Human brown adipose tissue (BAT) presence, metabolic activity and estimated mass are typically measured by imaging [18F]fluorodeoxyglucose (FDG) uptake in response to cold exposure in regions of the body expected to contain BAT, using positron emission tomography combined with x-ray computed tomography (FDG-PET/CT). Efforts to describe the epidemiology and biology of human BAT are hampered by diverse experimental practices, making it difficult to directly compare results among laboratories. An expert panel was assembled by the National Institute of Diabetes and Digestive and Kidney Diseases on November 4, 2014 to discuss minimal requirements for conducting FDG-PET/CT experiments of human BAT, data analysis, and publication of results. This resulted in Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0). Since there are no fully-validated best practices at this time, panel recommendations are meant to enhance comparability across experiments, but not to constrain experimental design or the questions that can be asked. PMID:27508870
Portable pallet weighing apparatus
NASA Technical Reports Server (NTRS)
Day, R. M. (Inventor)
1984-01-01
An assembly for use with several like units in weighing the mass of a loaded cargo pallet supported by its trunnions has a bridge frame for positioning the assembly on a transportation frame carrying the pallet while straddling one trunnion of the pallet and its trunnion lock, and a cradle assembly for incrementally raising the trunnion. The mass at the trunnion is carried as a static load by a slidable bracket mounted upon the bridge frame for supporting the cradle assembly. The bracket applies the static loading to an electrical load cell symmetrically positioned between the bridge frame and the bracket. The static loading compresses the load cell, causing a slight deformation and a potential difference at load cell terminals which is proportional in amplitude to the mass of the pallet at the trunnion.
NASA Technical Reports Server (NTRS)
Lau, N.-C.; Lau, K.-M.
1984-01-01
The evolution of extratropical transient waves as they propagate eastward from the Eurasian land mass toward the Pacific during selected cold surge events in the winter Monsoon Experiment (MONEX) is studied. The outstanding cold surge episodes during MONEX are first identified, and the salient synoptic features related to these events are described using composite streamline charts. The structure of rapidly varying disturbances accompanying the cold surges and the associated energetics are examined, and the behavior of those fluctuations over relatively longer time scales is addressed.
Liang, Yen-Peng; He, Yun-Jui; Lee, Yin-Hsuan; Chan, Yi-Tsu
2015-03-21
Three unsymmetrical, 60°-bended bisterpyridine ligands with varying phenylene spacer lengths have been synthesized via the Suzuki-Miyaura coupling reactions. Their self-assembly processes were found to be strongly dependent on the ligand geometry. Upon complexation with Zn(II) ions, only 2,4''-di(4'-terpyridinyl)-1,1':4',1''-terphenyl underwent self-selection to give a trinuclear metallomacrocycle with perfect heteroleptic connectivity and the other two afforded a mixture of constitutional isomers. The metallosupramolecular assemblies were characterized by NMR spectroscopy, electrospray mass spectrometry (ESI MS), and single-crystal X-ray diffraction. In particular, the identification of isomeric architecture was accomplished using tandem mass spectrometry (MS(2)) coupled with traveling wave ion mobility mass spectrometry (TWIM MS).
DEMONSTRATION BULLETIN: COLD TOP EX-SITU VITRIFICATION PROCESS - GEOTECH DEVELOPMENT CORPORATION
The Cold Top Vitrification process, developed by Geotech Development Corporation, is an ex-situ, submerged-electrode, resistance-melting technology. The technology is designed to transform heavy metal contaminated soil into a glassy, amorphous, non-leachable mass composed of inte...
Preface: Subsurface, surface and atmospheric processes in cold regions hydrology
USDA-ARS?s Scientific Manuscript database
This special section presents papers from three sessions at the 24th General Assembly of the International Union of Geodesy and Geophysics (IUGG), held in Perugia, Italy, in July 2007: ‘Interactions between snow, vegetation and the atmosphere’, ‘Hydrology in mountain regions’ and ‘Climate-permafrost...
The nature of assembly bias - III. Observational properties
NASA Astrophysics Data System (ADS)
Lacerna, Ivan; Padilla, Nelson; Stasyszyn, Federico
2014-10-01
We analyse galaxies in groups in the Sloan Digital Sky Survey (SDSS) and find a weak but significant assembly-type bias, where old central galaxies have a higher clustering amplitude (61 ± 9 per cent) at scales >1 h-1 Mpc than young central galaxies of equal host halo mass (Mh ˜ 1011.8 h- 1 M⊙). The observational sample is volume limited out to z = 0.1 with Mr - 5 log (h) ≤ -19.6. We construct a mock catalogue of galaxies that shows a similar signal of assembly bias (46 ± 9 per cent) at the same halo mass. We then adapt the model presented by Lacerna & Padilla (Paper I) to redefine the overdensity peak height, which traces the assembly bias such that galaxies in equal density peaks show the same clustering regardless of their stellar age, but this time using observational features such as a flux limit. The proxy for peak height, which is proposed as a better alternative than the virial mass, consists in the total mass given by the mass of neighbour host haloes in cylinders centred at each central galaxy. The radius of the cylinder is parameterized as a function of stellar age and virial mass. The best-fitting sets of parameters that make the assembly bias signal lower than 5-15 per cent for both SDSS and mock central galaxies are similar. The idea behind the parameterization is not to minimize the bias, but it is to use this method to understand the physical features that produce the assembly bias effect. Even though the tracers of the density field used here differ significantly from those used in Paper I, our analysis of the simulated catalogue indicates that the different tracers produce correlated proxies, and therefore the reason behind assembly bias is the crowding of peaks in both simulations and the SDSS.
NASA Astrophysics Data System (ADS)
Čiuldienė, D.; Aleinikovienė, J.; Muraškienė, M.; Marozas, V.; Armolaitis, K.
2017-01-01
This study was carried out in alien warmth-tolerant forest plantations of red oak ( Quercus rubra), common beech ( Fagus sylvatica) and European larch ( Larix decidua). We compared the changes in foliar litterfall mass and biochemical composition after five months of cold period. The mean mass of fresh foliar litterfall collected in late autumn was 30% higher in red oak compared to the larch and beech plantations. After the cold period, the reduction of foliar litterfall mass did not exceed 10% in any of the studied plantations. The fresh foliar litterfall of red oak was the richest in cellular fibre and easily decomposable glucose and nutrients such as P and Mg, larch was distinguished by the highest lignin, N, K and Ca concentrations, while beech fresh foliar litterfall was the poorest in the aforementioned nutrients. After the cold period, the changes in the biochemical composition of foliar litterfall revealed different patterns. In the spring, the beech and red oak foliar litterfall was the richest in N, P and Ca, meanwhile the larch foliar litterfall still had the highest concentration of lignin but, in contrast to the autumn, was the poorest in nutrients. After the cold period Lignin: N, C: N and C: P ratios reached critical values indicating that the foliar litterfall of beech and red oak had started to decompose. The highest lignin concentration and the highest and most stable Lignin: N, C: N, C: P and N: P ratios after the cold period indicated that the slowest foliar litterfall decomposition took place in the larch plantation.
A parallel algorithm for generation and assembly of finite element stiffness and mass matrices
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.
1991-01-01
A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.
NASA Astrophysics Data System (ADS)
Rivera-Ingraham, A.; Ristorcelli, I.; Juvela, M.; Montillaud, J.; Men'shchikov, A.; Malinen, J.; Pelkonen, V.-M.; Marston, A.; Martin, P. G.; Pagani, L.; Paladini, R.; Paradis, D.; Ysard, N.; Ward-Thompson, D.; Bernard, J.-P.; Marshall, D. J.; Montier, L.; Tóth, L. V.
2017-05-01
Context. The onset of star formation is intimately linked with the presence of massive unstable filamentary structures. These filaments are therefore key for theoretical models that aim to reproduce the observed characteristics of the star formation process in the Galaxy. Aims: As part of the filament study carried out by the Herschel Galactic Cold Cores Key Programme, here we study and discuss the filament properties presented in GCC VII (Paper I) in context with theoretical models of filament formation and evolution. Methods: A conservatively selected sample of filaments located at a distance D< 500 pc was extracted from the GCC fields with the getfilaments algorithm. The physical structure of the filaments was quantified according to two main components: the central (Gaussian) region of the filament (core component), and the power-law-like region dominating the filament column density profile at larger radii (wing component). The properties and behaviour of these components relative to the total linear mass density of the filament and the column density of its environment were compared with the predictions from theoretical models describing the evolution of filaments under gravity-dominated conditions. Results: The feasibility of a transition from a subcritical to supercritical state by accretion at any given time is dependent on the combined effect of filament intrinsic properties and environmental conditions. Reasonably self-gravitating (high Mline,core) filaments in dense environments (AV≳ 3 mag) can become supercritical on timescales of t 1 Myr by accreting mass at constant or decreasing width. The trend of increasing Mline,tot (Mline,core and Mline,wing) and ridge AV with background for the filament population also indicates that the precursors of star-forming filaments evolve coevally with their environment. The simultaneous increase of environment and filament AV explains the observed association between dense environments and high Mline,core values, and it argues against filaments remaining in constant single-pressure equilibrium states. The simultaneous growth of filament and background in locations with efficient mass assembly, predicted in numerical models of filaments in collapsing clouds, presents a suitable scenario for the fulfillment of the combined filament mass-environment criterium that is in quantitative agreement with Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Self-assembled ordered carbon-nanotube arrays and membranes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham
2004-11-01
Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growthmore » and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.« less
Influence of minor geometric features on Stirling pulse tube cryocooler performance
NASA Astrophysics Data System (ADS)
Fang, T.; Spoor, P. S.; Ghiaasiaan, S. M.; Perrella, M.
2017-12-01
Minor geometric features and imperfections are commonly introduced into the basic design of multi-component systems to simplify or reduce the manufacturing expense. In this work, the cooling performance of a Stirling type cryocooler was tested in different driving powers, cold-end temperatures and inclination angles. A series of Computational Fluid Dynamics (CFD) simulations based on a prototypical cold tip was carried out. Detailed CFD model predictions were compared with the experiment and were used to investigate the impact of such apparently minor geometric imperfections on the performance of Stirling type pulse tube cryocoolers. Predictions of cooling performance and gravity orientation sensitivity were compared with experimental results obtained with the cryocooler prototypes. The results indicate that minor geometry features in the cold tip assembly can have considerable negative effects on the gravity orientation sensitivity of a pulse tube cryocooler.
COLD-WATER CORALS AND HYDROCHEMISTRY - is there a unifying link?
NASA Astrophysics Data System (ADS)
Flögel, Sascha; Rüggeberg, Andres; Mienis, Furu; Dullo, Wolf-Christian
2010-05-01
Physical and chemical parameters were measured in five different regions of the Northeast Atlantic with known occurrences of cold-water coral reefs and mounds and in the Mediterranean, where these corals form living carpets over existing morphologies. In this study we analyzed 282 bottom water samples regarding delta13CDIC, delta18O, and DIC. The hydrochemical data reveal characteristic patterns and differences for cold-water coral sites with living coral communities and ongoing reef and mound growth at the Irish and Norwegian sites. While the localities in the Mediterranean, in the Gulf of Cadiz, and off Mauritania show only patchy coral growth on mound-like reliefs and various substrates. The analysis of delta13C/delta18O reveals distinct clusters for the different regions and the respective bottom water masses bathing the delta18O, and especially between delta13CDIC and DIC shows that DIC is a parameter with high sensitivity to the mixing of bottom water masses. It varies distinctively between sites with living reefs/mounds and sites with restricted patchy growth or dead corals. Results suggest that DIC and delta13CDIC can provide additional insights into the mixing of bottom water masses. Prolific cold-water coral growth forming giant biogenic structures plot into a narrow geochemical window characterized by a variation of delta13CDIC between 0.45 and 0.79 per mille being associated with the water mass having a density of sigma-theta of 27.5±0.15 kg m-3.
Interrogating viral capsid assembly with ion mobility-mass spectrometry
NASA Astrophysics Data System (ADS)
Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.
2011-02-01
Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.
Expression of ferritin-like protein in Listeria monocytogenes after cold and freezing stress.
Miladi, Hanene; Soukri, Abdelaziz; Bakhrouf, Amina; Ammar, Emna
2012-11-01
The cold shock protein family consists of the transfer of the foodborne pathogen Listeria monocytogenes from 37 to 4 and -20 °C and was characterized by the sharp induction of a low molecular mass protein. This major cold shock protein ferritin-like protein (Flp) has an important role in regulation of various microbial physiological processes. Flp have a molecular mass of about 18 kDa, as observed on SDS-PAGE. The purification procedure including ammonium sulfate fractionation was used. Monospecific polyclonal antibodies raised in rabbits against the purified new Flp immunostained a single 18-kDa Flp band in extracts from different cytoplasmic proteins blotted onto nitrocellulose. A 411-bp cDNA fragment that corresponds to an internal region of an flp gene was obtained by RT-PCR. Our result indicated a surexpression of major cold shock protein and an important increase in flp mRNA amount after a downshift temperature especially at -20 °C.
Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star
NASA Technical Reports Server (NTRS)
Barry, Richard K.; Muraki, Y.; Han, C.; Bennett, D. P.; Gaudi, B. S.
2011-01-01
We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of mp = 10.4 +/- M(Earth) and orbits a star of Mstar = 0.56 +/- 0.09 M(Sun) at a semi-major axis of a = 3.2 + 1.9/-0.5 AU, and an orbital period of 7.6 +7.7/-1.5 yrs. The planet and host star mass measurements are due to the measurement of the microlensing parallax effect. This measurement was primarily due to the orbital motion of the Earth, but the analysis also demonstrates the capability measure micro lensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a failed gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets
Insulation Testing Using Cryostat Apparatus with Sleeve
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Augustynowicz, S. D.
1999-01-01
The method and equipment of testing continuously rolled insulation materials is presented in this paper. Testing of blanket and molded products is also facilitated. Materials are installed around a cylindrical copper sleeve using a wrapping machine. The sleeve is slid onto the vertical cold mass of the cryostat. The gap between the cold mass and the sleeve measures less than 1 mm. The cryostat apparatus is a liquid nitrogen boiloff calorimeter system that enables direct measurement of the apparent thermal conductivity (k-value) of the insulation system at any vacuum level between 5 x 10(exp -5) and 760 torr. Sensors are placed between layers of the insulation to provide complete temperature-thickness profiles. The temperatures of the cold mass (maintained at 77.8 kelvin (K)), the sleeve (cold boundary temperature (CBT)), the insulation outer surface (warm boundary temperature (WBT)), and the vacuum can (maintained at 313 K by a thermal shroud) are measured. Plots of CBT, WBT, and layer temperature profiles as functions of vacuum level show the transitions between the three dominant heat transfer modes. For this cryostat apparatus, the measureable heat gain is from 0.2 to 20 watts. The steady-state measurement of k-value is made when all temperatures and the boiloff rate are stable.
NASA Astrophysics Data System (ADS)
Lovell, Mark R.; Bose, Sownak; Boyarsky, Alexey; Crain, Robert A.; Frenk, Carlos S.; Hellwing, Wojciech A.; Ludlow, Aaron D.; Navarro, Julio F.; Ruchayskiy, Oleg; Sawala, Till; Schaller, Matthieu; Schaye, Joop; Theuns, Tom
2017-07-01
We study galaxy formation in sterile neutrino dark matter models that differ significantly from both cold and from 'warm thermal relic' models. We use the eagle code to carry out hydrodynamic simulations of the evolution of pairs of galaxies chosen to resemble the Local Group, as part of the APOSTLE simulations project. We compare cold dark matter (CDM) with two sterile neutrino models with 7 keV mass: one, the warmest among all models of this mass (LA120) and the other, a relatively cold case (LA10). We show that the lower concentration of sterile neutrino subhaloes compared to their CDM counterparts makes the inferred inner dark matter content of galaxies like Fornax (or Magellanic Clouds) less of an outlier in the sterile neutrino cosmologies. In terms of the galaxy number counts, the LA10 simulations are indistinguishable from CDM when one takes into account halo-to-halo (or 'simulation-to-simulation') scatter. In order for the LA120 model to match the number of Local Group dwarf galaxies, a higher fraction of low-mass haloes is required to form galaxies than is predicted by the eagle simulations. As the census of the Local Group galaxies nears completion, this population may provide a strong discriminant between cold and warm dark matter models.
Voluntary water intake during and following moderate exercise in the cold.
Mears, Stephen A; Shirreffs, Susan M
2014-02-01
Exercising in cold environments results in water losses, yet examination of resultant voluntary water intake has focused on warm conditions. The purpose of the study was to assess voluntary water intake during and following exercise in a cold compared with a warm environment. Ten healthy males (22 ± 2 years, 67.8 ± 7.0 kg, 1.77 ± 0.06 m, VO₂peak 60.5 ± 8.9 ml·kg⁻¹·min⁻¹) completed two trials (7-8 days). In each trial subjects sat for 30 min before cycling at 70% VO₂peak (162 ± 27W) for 60 min in 25.0 ± 0.1 °C, 50.8 ± 1.5% relative humidity (RH; warm) or 0.4 ± 1.0 °C, 68.8 ± 7.5% RH (cold). Subjects then sat for 120 min at 22.2 ± 1.2 °C, 50.5 ± 8.0% RH. Ad libitum drinking was allowed during the exercise and recovery periods. Urine volume, body mass, serum osmolality, and sensations of thirst were measured at baseline, postexercise and after 60 and 120 min of the recovery period. Sweat loss was greater in the warm trial (0.96 ± 0.18 l v 0.48 ± 0.15 l; p < .0001) but body mass losses over the trials were similar (1.15 ± 0.34% (cold) v 1.03 ± 0.26% (warm)). More water was consumed throughout the duration of the warm trial (0.81 ± 0.42 l v 0.50 ± 0.49 l; p = .001). Cumulative urine output was greater in the cold trial (0.81 ± 0.46 v 0.54 ± 0.31 l; p = .036). Postexercise serum osmolality was higher compared with baseline in the cold (292 ± 2 v 287 ± 3 mOsm.kg⁻¹, p < .0001) and warm trials (288 ± 5 v 285 ± 4 mOsm·kg⁻¹; p = .048). Thirst sensations were similar between trials (p > .05). Ad libitum water intake adjusted so that similar body mass losses occurred in both trials. In the cold there appeared to a blunted thirst response.
Star formation in early-type galaxies: the role of stellar winds and kinematics.
NASA Astrophysics Data System (ADS)
Pellegrini, Silvia; Negri, Andrea; Ciotti, Luca
2015-08-01
Early-Type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae (SNIa) and the thermalization of stellar motions. Recent high resolution 2D hydrodynamical simulations (Negri et al. 2014) showed that ordered rotation in the stellar component alters significantly the evolution of the hot ISM, and results in the formation of a centrifugally supported cold equatorial disc. This agrees well with the recent evidence that approximately 50% of massive ETGs host significant quantities of cold gas (Morganti et al. 2006; Young et al. 2014), often in settled configurations, sharing the same kinematics of the stars. In particular, in a systematic investigation of the ATLAS3D sample, the most massive fast-rotating ETGs always have kinematically aligned gas, which suggests an internal origin for it, and molecular gas is detected only in fast rotators (Davis et al. 2011). The observed cold gas seems also to provide material for low level star formation (SF) activity (Combes et al. 2007, Davis et al. 2014). Interestingly, in the ATLAS3D sample, SF and young stellar populations are detected only in fast rotators (Sarzi et al. 2013). In a recent work we investigated whether and how SF takes place in the cold gas disc typically produced in rotating ETGs by our previous 2D simulations, by adding to them the possibility for the gas to form stars (Negri et al. 2015). We also inserted the injection of mass, momentum and energy appropriate for the newly (and continuously) forming stellar population. We found that subsequent generations of stars are formed, and that most of the extended and massive cold disc is consumed by this process, leaving at the present epoch cold gas masses that compare well with those observed. The mass in secondary generations of stars resides mostly in a disc, and could be related to a younger, more metal rich disky stellar component indeed observed in fast rotator ETGs (Cappellari et al. 2013). Most of the mass in newly formed stars formed a few Gyr ago; the SF rate at the present epoch is low (≤0.1 M⊙/yr) and agrees well with that observed, at least for ETGs of stellar mass <1011 M⊙.
Is Cold Gas Removed from Galaxies in Filaments and Tendrils?
NASA Astrophysics Data System (ADS)
Crone Odekon, Mary; Shah, Ebrahim; Hall, Ryan; Cane, Thomas; Maloney, Erin; Hallenbeck, Gregory; Haynes, Martha P.; Koopmann, Rebecca A.; APPSS Team, Undergraduate ALFALFA Team, ALFALFA Team
2018-01-01
We present results from an ALFALFA HI study to examine whether the cold gas reservoirs of galaxies are inhibited or enhanced in large-scale filaments, and we discuss implications for follow-up work using the new Arecibo Pisces-Perseus Supercluster survey (APPSS). From the ALFALFA survey, we find that the HI deficiency for galaxies in the range 10^8.5-10^10.5 solar masses decreases with distance from the filament spine, suggesting that galaxies are cut off from cold gas, possibly by heating or by dynamical detachment from the smaller-scale cosmic web. This contrasts with previous results for larger galaxies in the HI Parkes All-Sky Survey. We discuss the prospects for elucidating this apparent dependence on galaxy mass with data from the APPSS, which will extend to smaller masses. We also find that the most gas-rich galaxies at fixed local density and stellar mass are those in small, correlated ``tendril” structures within voids: although galaxies in tendrils are in significantly denser environments, on average, than galaxies in voids, they are not redder or more HI deficient. This work has been supported by NSF grants AST-1211005 and AST-1637339.
Identifying wide, cold planets within 8pc
NASA Astrophysics Data System (ADS)
Deacon, Niall; Kraus, Adam; Crossfield, Ian
2014-12-01
Direct imaging exoplanet studies have recently unveiled a previously-unexpected population of massive planets (up to 15 M_Jup) in wide orbits (>100AU). Although most of these discoveries have been around younger stars and have been of similar temperatures to field brown dwarfs, one object (WD 0806-661B), is the coldest planet known outside our solar system. We propose a survey of all stars and brown dwarfs within 8pc to identify massive planetary companions in the 150-1500AU separation range. We will 1) Measure the fraction of wide planetary mass companions to stars in the Solar neighbourhood. 2) Identify all planets within 8 parsecs with masses above 8 Jupiter masses in our chosen projected separation range with lower mass limits for closer and younger stars. 3) Identify approximately 8 planets, four of which will have temperatures below 300K making them ideal targets to study water clouds in cold atmospheres with both JWST and the next generation of ground-based extremely large telescopes. Our survey will be the most complete survey for wide planets to-date and will provide both a measurement of the wide planet population and a legacy of cold, well constrained targets for future observatories.
The Properties of the Massive Star-forming Galaxies with an Outside-in Assembly Mode
NASA Astrophysics Data System (ADS)
Wang, Enci; Kong, Xu; Wang, Huiyuan; Wang, Lixin; Lin, Lin; Gao, Yulong; Liu, Qing
2017-08-01
Previous findings show that massive ({M}* > {10}10 {M}⊙ ) star-forming (SF) galaxies usually have an “inside-out” stellar mass assembly mode. In this paper, we have for the first time selected a sample of 77 massive SF galaxies with an “outside-in” assembly mode (called the “targeted sample”) from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. For comparison, two control samples are constructed from the MaNGA sample matched in stellar mass: a sample of 154 normal SF galaxies and a sample of 62 quiescent galaxies. In contrast to normal SF galaxies, the targeted galaxies appear to be smoother and more bulge-dominated and have a smaller size and higher concentration, star formation rate, and gas-phase metallicity as a whole. However, they have a larger size and lower concentration than quiescent galaxies. Unlike the normal SF sample, the targeted sample exhibits a slightly positive gradient of the 4000 Å break and a pronounced negative gradient of Hα equivalent width. Furthermore, the median surface mass density profile is between those of the normal SF and quiescent samples, indicating that the gas accretion of quiescent galaxies is not likely to be the main approach for the outside-in assembly mode. Our results suggest that the targeted galaxies are likely in the transitional phase from normal SF galaxies to quiescent galaxies, with rapid ongoing central stellar mass assembly (or bulge growth). We discuss several possible formation mechanisms for the outside-in mass assembly mode.
Flow instability in particle-bed nuclear reactors
NASA Astrophysics Data System (ADS)
Kerrebrock, Jack L.
The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.
Flow instability in particle-bed nuclear reactors
NASA Technical Reports Server (NTRS)
Kerrebrock, Jack L.
1993-01-01
The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.
Method for analyzing the mass of a sample using a cold cathode ionization source mass filter
Felter, Thomas E.
2003-10-14
An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.
Sympathetic Innervation of Cold-Activated Brown and White Fat in Lean Young Adults.
Muzik, Otto; Mangner, Tom J; Leonard, William R; Kumar, Ajay; Granneman, James G
2017-05-01
Recent work in rodents has demonstrated that basal activity of the local sympathetic nervous system is critical for maintaining brown adipocyte phenotypes in classic brown adipose tissue (BAT) and white adipose tissue (WAT). Accordingly, we sought to assess the relationship between sympathetic innervation and cold-induced activation of BAT and WAT in lean young adults. Methods: Twenty adult lean normal subjects (10 women and 10 men; mean age ± SD, 23.3 ± 3.8 y; body mass index, 23.7 ± 2.5 kg/m 2 ) underwent 11 C-meta-hydroxyephedrin ( 11 C-HED) and 15 O-water PET imaging at rest and after exposure to mild cold (16°C) temperature. In addition, 18 F-FDG images were obtained during the cold stress condition to assess cold-activated BAT mass. Subjects were divided into 2 groups (high BAT and low BAT) based on the presence of 18 F-FDG tracer uptake. Blood flow and 11 C-HED retention index (RI, an indirect measure of sympathetic innervation) were calculated from dynamic PET scans at the location of BAT and WAT. Whole-body daily energy expenditure (DEE) during rest and cold stress was measured by indirect calorimetry. Tissue level oxygen consumption (MRO 2 ) was determined and used to calculate the contribution of cold-activated BAT and WAT to daily DEE. Results: 18 F-FDG uptake identified subjects with high and low levels of cold-activated BAT mass (high BAT, 96 ± 37 g; low-BAT, 16 ± 4 g). 11 C-HED RI under thermoneutral conditions significantly predicted 18 F-FDG uptake during cold stress ( R 2 = 0.68, P < 0.01). In contrast to the significant increase of 11 C-HED RI during cold in BAT (2.42 ± 0.85 vs. 3.43 ± 0.93, P = 0.02), cold exposure decreased the 11 C-HED RI in WAT (0.44 ± 0.22 vs. 0.41 ± 0.18) as a consequence of decreased perfusion (1.22 ± 0.20 vs. 1.12 ± 0.16 mL/100 g/min). The contribution of WAT to whole-body DEE was approximately 150 kcal/d at rest (149 ± 52 kcal/d), which decreased to approximately 100 kcal/d during cold (102 ± 47 kcal/d). Conclusion: The level of sympathetic innervation, as determined by 11 C-HED RI, can predict levels of functional BAT. Overall, blood flow is the best independent predictor of 11 C-HED RI and 18 F-FDG uptake across thermoneutral and cold conditions. In contrast to BAT, cold stress reduces blood flow and 18 F-FDG uptake in subcutaneous WAT, indicating that the physiologic response is to reduce heat loss rather than to generate heat. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Practical identification of moisture sources in building assemblies using infrared thermography
NASA Astrophysics Data System (ADS)
McIntosh, Gregory B.; Colantonio, Antonio
2015-05-01
Water, in its various phases, in any environment other than desert (hot or cold) conditions, is the single most destructive element that causes deterioration of materials and failure of building assemblies. It is the key element present in the formation of mold and fungi that lead to indoor air quality problems. Water is the primary element that needs to be managed in buildings to ensure human comfort, health and safety. Under the right thermodynamic conditions the detection of moisture in its various states is possible through the use of infrared thermography for a large variety of building assemblies and materials. The difficulty is that moisture is transient and mobile from one environment to another via air movement, vapor pressure or phase change. Building materials and enclosures provide both repositories and barriers to this moisture movement. In real life steady state conditions do not exist for moisture within building materials and enclosures. Thus the detection of moisture is in a constant state of transition. Sometimes you will see it and sometimes you will not. Understanding the limitations at the time of inspection will go a long way to mitigating unsatisfied clients or difficult litigation. Moisture detection can be observed by IRT via three physical mechanisms; latent heat absorption or release during phase change; a change in conductive heat transfer; and a change in thermal capacitance. Complicating the three methodologies is the factor of variable temperature differentials and variable mass air flow on, through and around surfaces being inspected. Building enclosures come in variable assembly types and are designed to perform differently in different environmental regions. Sources for moisture accumulation will vary for different environmental conditions. Detection methodologies will change for each assembly type in different ambient environments. This paper will look at the issue of the methodologies for detection of the presence of moisture and determination of the various sources from which it accumulates in building assemblies. The end objective for IRT based moisture detection inspections is not to just identify that moisture is present but to determine its extent and source. Accurate assessment of the source(s) and root cause of the moisture is critical to the development of a permanent solution to the problem.
Instrument Packages for the Cold, Dark, High Radiation Environments
NASA Technical Reports Server (NTRS)
Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.
2011-01-01
We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.
NASA Astrophysics Data System (ADS)
Camilli, R.; Macelloni, L.; Asper, V.; Woolsey, M.; Williams, J.; Diercks, A.; Lutken, C. B.; Sleeper, K.
2009-12-01
A chemical and bathymetric survey was conducted in June 2009 at a known gas hydrate site approximately 900 meters deep in the Gulf of Mexico Mississippi Canyon 118 block. This survey used the EagleRay autonomous underwater vehicle equipped with a TETHYS in-situ mass spectrometer and EM 2000 multibeam sonar. Results indicate previously unobserved active sea floor methane seeps that correlate with bathymetric depressions and a geologic fault. These data suggest linkage of the methane cold seeps to an underlying thermogenic hydrocarbon reservoir.
The SSU processome interactome in Saccharomyces cerevisiae reveals novel protein subcomplexes.
Vincent, Nicholas G; Charette, J Michael; Baserga, Susan J
2018-01-01
Ribosome assembly is an evolutionarily conserved and energy intensive process required for cellular growth, proliferation, and maintenance. In yeast, assembly of the small ribosomal subunit (SSU) requires approximately 75 assembly factors that act in coordination to form the SSU processome, a 6 MDa ribonucleoprotein complex. The SSU processome is required for processing, modifying, and folding the preribosomal RNA (rRNA) to prepare it for incorporation into the mature SSU. Although the protein composition of the SSU processome has been known for some time, the interaction network of the proteins required for its assembly has remained poorly defined. Here, we have used a semi-high-throughput yeast two-hybrid (Y2H) assay and coimmunoprecipitation validation method to produce a high-confidence interactome of SSU processome assembly factors (SPAFs), providing essential insight into SSU assembly and ribosome biogenesis. Further, we used glycerol density-gradient sedimentation to reveal the presence of protein subcomplexes that have not previously been observed. Our work not only provides essential insight into SSU assembly and ribosome biogenesis, but also serves as an important resource for future investigations into how defects in biogenesis and assembly cause congenital disorders of ribosomes known as ribosomopathies. © 2018 Vincent et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
The Mass, Color, and Structural Evolution of Today’s Massive Galaxies Since z ˜ 5
NASA Astrophysics Data System (ADS)
Hill, Allison R.; Muzzin, Adam; Franx, Marijn; Clauwens, Bart; Schreiber, Corentin; Marchesini, Danilo; Stefanon, Mauro; Labbe, Ivo; Brammer, Gabriel; Caputi, Karina; Fynbo, Johan; Milvang-Jensen, Bo; Skelton, Rosalind E.; van Dokkum, Pieter; Whitaker, Katherine E.
2017-03-01
In this paper, we use stacking analysis to trace the mass growth, color evolution, and structural evolution of present-day massive galaxies ({log}({M}* /{M}⊙ )=11.5) out to z = 5. We utilize the exceptional depth and area of the latest UltraVISTA data release, combined with the depth and unparalleled seeing of CANDELS to gather a large, mass-selected sample of galaxies in the NIR (rest-frame optical to UV). Progenitors of present-day massive galaxies are identified via an evolving cumulative number density selection, which accounts for the effects of merging to correct for the systematic biases introduced using a fixed cumulative number density selection, and find progenitors grow in stellar mass by ≈ 1.5 {dex} since z = 5. Using stacking, we analyze the structural parameters of the progenitors and find that most of the stellar mass content in the central regions was in place by z˜ 2, and while galaxies continue to assemble mass at all radii, the outskirts experience the largest fractional increase in stellar mass. However, we find evidence of significant stellar mass build-up at r< 3 {kpc} beyond z> 4 probing an era of significant mass assembly in the interiors of present-day massive galaxies. We also compare mass assembly from progenitors in this study to the EAGLE simulation and find qualitatively similar assembly with z at r< 3 {kpc}. We identify z˜ 1.5 as a distinct epoch in the evolution of massive galaxies where progenitors transitioned from growing in mass and size primarily through in situ star formation in disks to a period of efficient growth in r e consistent with the minor merger scenario.
Neutron Spectroscopy on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Knauer, J. P.
2012-10-01
The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.
2009-01-01
for a fundamental physical understanding of electronic properties . The Materials Processing Facility includes appa- ratuses for powder production by...situ. Facilities to process powder into bulk specimens by hot and cold isostatic pressing permit a variety of consolidation possibilities. The iso...Synthesis/ Property Measurement Facility has special emphasis on polymers, surface-film processing , and directed self-assembly. The Chemical Vapor
NASA Astrophysics Data System (ADS)
Wüster, S.; Rost, J.-M.
2018-02-01
We review Rydberg aggregates, assemblies of a few Rydberg atoms exhibiting energy transport through collective eigenstates, considering isolated atoms or assemblies embedded within clouds of cold ground-state atoms. We classify Rydberg aggregates, and provide an overview of their possible applications as quantum simulators for phenomena from chemical or biological physics. Our main focus is on flexible Rydberg aggregates, in which atomic motion is an essential feature. In these, simultaneous control over Rydberg-Rydberg interactions, external trapping and electronic energies, allows Born-Oppenheimer surfaces for the motion of the entire aggregate to be tailored as desired. This is illustrated with theory proposals towards the demonstration of joint motion and excitation transport, conical intersections and non-adiabatic effects. Additional flexibility for quantum simulations is enabled by the use of dressed dipole-dipole interactions or the embedding of the aggregate in a cold gas or Bose-Einstein condensate environment. Finally we provide some guidance regarding the parameter regimes that are most suitable for the realization of either static or flexible Rydberg aggregates based on Li or Rb atoms. The current status of experimental progress towards enabling Rydberg aggregates is also reviewed.
NASA Astrophysics Data System (ADS)
Mousnier, Aurélie; Bell, Andrew S.; Swieboda, Dawid P.; Morales-Sanfrutos, Julia; Pérez-Dorado, Inmaculada; Brannigan, James A.; Newman, Joseph; Ritzefeld, Markus; Hutton, Jennie A.; Guedán, Anabel; Asfor, Amin S.; Robinson, Sean W.; Hopkins-Navratilova, Iva; Wilkinson, Anthony J.; Johnston, Sebastian L.; Leatherbarrow, Robin J.; Tuthill, Tobias J.; Solari, Roberto; Tate, Edward W.
2018-06-01
Rhinoviruses (RVs) are the pathogens most often responsible for the common cold, and are a frequent cause of exacerbations in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Here we report the discovery of IMP-1088, a picomolar dual inhibitor of the human N-myristoyltransferases NMT1 and NMT2, and use it to demonstrate that pharmacological inhibition of host-cell N-myristoylation rapidly and completely prevents rhinoviral replication without inducing cytotoxicity. The identification of cooperative binding between weak-binding fragments led to rapid inhibitor optimization through fragment reconstruction, structure-guided fragment linking and conformational control over linker geometry. We show that inhibition of the co-translational myristoylation of a specific virus-encoded protein (VP0) by IMP-1088 potently blocks a key step in viral capsid assembly, to deliver a low nanomolar antiviral activity against multiple RV strains, poliovirus and foot and-mouth disease virus, and protection of cells against virus-induced killing, highlighting the potential of host myristoylation as a drug target in picornaviral infections.
NASA Astrophysics Data System (ADS)
Bassil, Joelle; Alem, Halima; Henrion, Gérard; Roizard, Denis
2016-04-01
Completely homogenous films formed via the layer-by-layer assembly of poly(diallyldimethylammonium chloride) (PDADMAC) and the poly(styrene sulfonate) were successfully obtained on plasma-treated poly(dimethylsiloxane) (PDMS) substrates. To modify the hydrophobicity of the PDMS surface, a cold plasma treatment was previously applied to the membrane, which led to the creation of hydrophilic groups on the surface of the membrane. PDMS wettability and surface morphology were successfully correlated with the plasma parameters. A combination of contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis was used to demonstrate that homogeneous and hydrophilic surfaces could be achieved on PDMS cold-plasma-treated membranes. The stability of the assembled PEL layer on the PDMS was evaluated using a combination of pull-off testing and X-ray photoelectron spectroscopy (XPS), which confirmed the relevance of a plasma pre-treatment as the adhesion of the polyelectrolyte multilayers was greatly enhanced when the deposition was completed on an activated PDMS surface at 80 W for 5 min.
Coolant mass flow equalizer for nuclear fuel
Betten, Paul R.
1978-01-01
The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.
USDA-ARS?s Scientific Manuscript database
Surface energy fluxes, especially the latent heat flux from evapotranspiration (ET), determine exchanges of energy and mass between the hydrosphere, atmosphere, and biosphere. There are numerous remote sensing-based energy balance approaches such as METRIC and SEBAL that use hot and cold pixels from...
The spatially resolved star formation history of CALIFA galaxies. Cosmic time scales
NASA Astrophysics Data System (ADS)
García-Benito, R.; González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; Cortijo-Ferrero, C.; López Fernández, R.; de Amorim, A. L.; Lacerda, E. A. D.; Vale Asari, N.; Sánchez, S. F.
2017-12-01
This paper presents the mass assembly time scales of nearby galaxies observed by CALIFA at the 3.5 m telescope in Calar Alto. We apply the fossil record method of the stellar populations to the complete sample of the 3rd CALIFA data release, with a total of 661 galaxies, covering stellar masses from 108.4 to 1012M⊙ and a wide range of Hubble types. We apply spectral synthesis techniques to the datacubes and process the results to produce the mass growth time scales and mass weighted ages, from which we obtain temporal and spatially resolved information in seven bins of galaxy morphology (E, S0, Sa, Sb, Sc, and Sd) and six bins of stellar mass and stellar mass surface density. We use three different tracers of the spatially resolved star formation history (mass assembly curves, ratio of half mass to half light radii, and mass-weighted age gradients) to test if galaxies grow inside-out, and its dependence with galaxy stellar mass, stellar mass surface density, and morphology. Our main results are as follows: (a) the innermost regions of galaxies assemble their mass at an earlier time than regions located in the outer parts; this happens at any given stellar mass (M⋆), stellar mass surface density (Σ⋆), or Hubble type, including the lowest mass systems in our sample. (b) Galaxies present a significant diversity in their characteristic formation epochs for lower-mass systems. This diversity shows a strong dependence of the mass assembly time scales on Σ⋆ and Hubble type in the lower-mass range (108.4 to 1010.4), but a very mild dependence in higher-mass bins. (c) The lowest half mass radius (HMR) to half light radius (HLR) ratio is found for galaxies between 1010.4 and 1011.1M⊙, where galaxies are 25% smaller in mass than in light. Low-mass galaxies show the largest ratio with HMR/HLR 0.89. Sb and Sbc galaxies present the lowest HMR/HLR ratio (0.74). The ratio HMR/HLR is always, on average, below 1, indicating that galaxies grow faster in mass than in light. (d) All galaxies show negative ⟨log age⟩ M gradients in the inner 1 HLR. The profile flattens (slope less negative) with increasing values of Σ⋆. There is no significant dependence on M⋆ within a particular Σ⋆ bin, except for the lowest bin, where the gradients becomes steeper. (e) Downsizing is spatially preserved as a function of M⋆ and Σ⋆, but it is broken for E and SO where the outer parts are assembled in later epochs than Sa galaxies. These results suggest that independently of their stellar mass, stellar mass surface density, and morphology, galaxies form inside-out on average.
Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers
NASA Astrophysics Data System (ADS)
Arata, Shohei; Yajima, Hidenobu; Nagamine, Kentaro
2018-04-01
Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of ˜3 × 107 M⊙, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of ≲ 0.1 pc and the galactic disc simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with ≳104 M⊙ within ˜ 2 Myr. Only the massive cold clouds with ≳ 103 M⊙ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. We find that the clump formation is more efficient in the prograde-prograde merger than the prograde-retrograde case due to the difference in the degree of shear flow. In addition, we investigate the dependence of cloud mass function on metallicity and H2 abundance, and show that the cases with low metallicities (≲10-2 Z⊙) or high H2 abundance (≳10-3) cannot form massive cold clouds with ≳103 M⊙.
Brusilowskij, Boris; Dzyuba, Egor V; Troff, Ralf W; Schalley, Christoph A
2011-12-07
3,3'-Bis(pyridin-[n]-ylethynyl)biphenyl (n = 3, 4) and the corresponding 2,2'-bipyridines assemble with (dppp)Pt(II) triflate into metallo-supramolecular polygons. Depending on the position of the terminal pyridine N atoms, the assembly reaction leads to different equilibrium products. With the slow ligand exchange on Pt(II) complexes, the equilibrium is reached on a many-hour time-scale. During the assembly process, larger polygons form under kinetic control. This was confirmed by time-dependent (1)H and (31)P NMR spectroscopy in line with complementary ESI mass spectrometric experiments. The constitutional difference in the pyridine N-atom position is reflected in the tandem mass spectra of the complex ions. In addition, a highly specific fragmentation process of mass-selected M(3)L(3) ions was observed, which proceeds through a ring contraction yielding smaller M(2)L(2) ions.
Stengel, Florian; Aebersold, Ruedi; Robinson, Carol V.
2012-01-01
Protein assemblies are critical for cellular function and understanding their physical organization is the key aim of structural biology. However, applying conventional structural biology approaches is challenging for transient, dynamic, or polydisperse assemblies. There is therefore a growing demand for hybrid technologies that are able to complement classical structural biology methods and thereby broaden our arsenal for the study of these important complexes. Exciting new developments in the field of mass spectrometry and proteomics have added a new dimension to the study of protein-protein interactions and protein complex architecture. In this review, we focus on how complementary mass spectrometry-based techniques can greatly facilitate structural understanding of protein assemblies. PMID:22180098
Snow mass and river flows modelled using GRACE total water storage observations
NASA Astrophysics Data System (ADS)
Wang, S.
2017-12-01
Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS and temperature data for river flow or flood forecasting. The model can be particularly useful for regions with spare observation networks, and can be used in combination with other available methods to help improve the accuracy in river flow and flood forecasting over cold regions.
Deville, Anne-Sophie; Labaude, Sophie; Robin, Jean-Patrice; Béchet, Arnaud; Gauthier-Clerc, Michel; Porter, Warren; Fitzpatrick, Megan; Mathewson, Paul; Grémillet, David
2014-10-15
Most studies analyzing the effects of global warming on wild populations focus on gradual temperature changes, yet it is also important to understand the impact of extreme climatic events. Here we studied the effect of two cold spells (January 1985 and February 2012) on the energetics of greater flamingos (Phoenicopterus roseus) in the Camargue (southern France). To understand the cause of observed flamingo mass mortalities, we first assessed the energy stores of flamingos found dead in February 2012, and compared them with those found in other bird species exposed to cold spells and/or fasting. Second, we evaluated the monthly energy requirements of flamingos across 1980-2012 using the mechanistic model Niche Mapper. Our results show that the body lipids of flamingos found dead in 2012 corresponded to 2.6±0.3% of total body mass, which is close to results found in woodcocks (Scolopax rusticola) that died from starvation during a cold spell (1.7±0.1%), and much lower than in woodcocks which were fed throughout this same cold spell (13.0±2%). Further, Niche Mapper predicted that flamingo energy requirements were highest (+6-7%) during the 1985 and 2012 cold spells compared with 'normal' winters. This increase was primarily driven by cold air temperatures. Overall, our findings strongly suggest that flamingos starved to death during both cold spells. This study demonstrates the relevance of using mechanistic energetics modelling and body condition analyses to understand and predict the impact of extreme climatic events on animal energy balance and winter survival probabilities. © 2014. Published by The Company of Biologists Ltd.
Mass Determination of Entire Amyloid Fibrils by Using Mass Spectrometry.
Doussineau, Tristan; Mathevon, Carole; Altamura, Lucie; Vendrely, Charlotte; Dugourd, Philippe; Forge, Vincent; Antoine, Rodolphe
2016-02-12
Amyloid fibrils are self-assembled protein structures with important roles in biology (either pathogenic or physiological), and are attracting increasing interest in nanotechnology. However, because of their high aspect ratio and the presence of some polymorphism, that is, the possibility to adopt various structures, their characterization is challenging and basic information such as their mass is unknown. Here we show that charge-detection mass spectrometry, recently developed for large self-assembled systems such as viruses, provides such information in a straightforward manner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lei, Fan; Kheir, Michael M.; Wang, Xin-Pei; Chai, Yu-Shuang; Yuan, Zhi-Yi; Lu, Xi; Xing, Dong-Ming; Du, Feng; Du, Li-Jun
2013-01-01
The purpose of this study was to assess the effects of berberine (BBR) on thermoregulation in mice exposed to hot (40°C) and cold (4°C) environmental conditions. Four groups of mice were assembled with three different dosages of BBR (0.2, 0.4, and 0.8 mg/kg) and normal saline (control). In room temperature, our largest dosage of BBR (0.8 mg/kg) can reduce rectal temperatures (Tc) of normal mice. In hot conditions, BBR can antagonize the increasing core body temperature and inhibit the expression of HSP70 and TNFα in mice; conversely, in cold conditions, BBR can antagonize the decreasing core body temperature and enhance the expression of TRPM8. This study demonstrates the dual ability of BBR in maintaining thermal balance, which is of great relevance to the regulation of HSP70, TNFα and TRPM8. PMID:23335996
Active balance system and vibration balanced machine
NASA Technical Reports Server (NTRS)
White, Maurice A. (Inventor); Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor)
2005-01-01
An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.
Li, Jin; Liu, Hailiang; Xia, Wenwen; Mu, Jianqiang; Feng, Yujie; Liu, Ruina; Yan, Panyao; Wang, Aiying; Lin, Zhongping; Guo, Yong; Zhu, Jianbo; Chen, Xianfeng
2017-01-01
Saussurea involucrata grows in high mountain areas covered by snow throughout the year. The temperature of this habitat can change drastically in one day. To gain a better understanding of the cold response signaling pathways and molecular metabolic reactions involved in cold stress tolerance, genome-wide transcriptional analyses were performed using RNA-Seq technologies. A total of 199,758 transcripts were assembled, producing 138,540 unigenes with 46.8 Gb clean data. Overall, 184,416 (92.32%) transcripts were successfully annotated. The 365 transcription factors identified (292 unigenes) belonged to 49 transcription factor families associated with cold stress responses. A total of 343 transcripts on the signal transduction (132 upregulated and 212 downregulated in at least any one of the conditions) were strongly affected by cold temperature, such as the CBL-interacting serine/threonine-protein kinase (CIPKs), receptor-like protein kinases, and protein kinases. The circadian rhythm pathway was activated by cold adaptation, which was necessary to endure the severe temperature changes within a day. There were 346 differentially expressed genes (DEGs) related to transport, of which 138 were upregulated and 22 were downregulated in at least any one of the conditions. Under cold stress conditions, transcriptional regulation, molecular transport, and signal transduction were involved in the adaptation to low temperature in S. involucrata. These findings contribute to our understanding of the adaptation of plants to harsh environments and the survival traits of S. involucrata. In addition, the present study provides insight into the molecular mechanisms of chilling and freezing tolerance. PMID:28590406
McClelland, G B; Dalziel, A C; Fragoso, N M; Moyes, C D
2005-02-01
We investigated if seasonal changes in rainbow trout muscle energetics arise in response to seasonal changes in erythrocyte properties. We assessed if skeletal muscle mitochondrial enzymes changed (1) acutely in response to changes in erythrocyte abundance, or (2) seasonally when we altered the age profile of erythrocytes. Rainbow trout were treated with pheynylhydrazine, causing a 75% reduction in hematocrit within 4 days. After erythropoiesis had returned hematocrit to normal, treated and control fish were subjected to a seasonal cold acclimation regime to assess the impact of erythrocyte age on skeletal muscle remodeling. Anemia (i.e. phenylhydrazine treatment) did not alter the specific activities (U g(-1) tissue) of mitochondrial enzymes in white or red muscle. Anemic pretreatment did not alter the normal pattern of cold-induced mitochondrial proliferation in skeletal muscle, suggesting erythrocyte age was not an important influence on seasonal remodeling of muscle. Anemia and cold acclimation both induced a 25-30% increase in relative ventricular mass. The increase in relative ventricular mass with phenylhydrazine treatment was accompanied by a 35% increase in DNA content (mg DNA per ventricle), suggesting an increase in number of cells. In contrast, the increase in ventricular mass with cold temperature acclimation occurred without a change in DNA content (mg DNA per ventricle), suggesting an increase in cell size. Despite the major increases in relative ventricular mass, neither anemia nor seasonal acclimation had a major influence on the specific activities of a suite of mitochondrial enzymes in heart. Collectively, these studies argue against a role for erythrocyte dynamics in seasonal adaptive remodeling of skeletal muscle energetics.
The ATLAS3D project - XXVII. Cold gas and the colours and ages of early-type galaxies
NASA Astrophysics Data System (ADS)
Young, Lisa M.; Scott, Nicholas; Serra, Paolo; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Weijmans, Anne-Marie
2014-11-01
We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ˜ 0.06 and H2 masses up to M(H2)/M* ˜ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ˜50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.
Mass, radius and composition of the outer crust of nonaccreting cold neutron stars
NASA Astrophysics Data System (ADS)
Hempel, Matthias; Schaffner-Bielich, Jürgen
2008-01-01
The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by including higher order corrections of the atomic binding, screening, exchange and zero-point energy. The most recent experimental nuclear data from the atomic mass table of Audi, Wapstra and Thibault from 2003 are used. Extrapolation to the drip line is utilized by various state-of-the-art theoretical nuclear models (finite range droplet, relativistic nuclear field and non-relativistic Skyrme Hartree Fock parameterizations). The different nuclear models are compared with respect to the mass and radius of the outer crust for different neutron star configurations and the nuclear compositions of the outer crust.
Design and Assembly of SPT-3G Cold Readout Hardware
NASA Astrophysics Data System (ADS)
Avva, J. S.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Thakur, R. Basu; Barron, D.; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Dobbs, M. A.; Dutcher, D.; Elleflot, T.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Hasegawa, M.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Hori, Y.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Nishino, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Rotermund, K.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.
2018-05-01
The third-generation upgrade to the receiver on the South Pole Telescope, SPT-3G, was installed at the South Pole during the 2016-2017 austral summer to measure the polarization of the cosmic microwave background. Increasing the number of detectors by a factor of 10 to ˜ 16,000 required the multiplexing factor to increase to 68 and the bandwidth of the frequency-division readout electronics to span 1.6-5.2 MHz. This increase necessitates low-thermal conductance, low-inductance cryogenic wiring. Our cold readout system consists of planar thin-film aluminum inductive-capacitive resonators, wired in series with the detectors, summed together, and connected to 4K SQUIDs by 10-μm -thick niobium-titanium (NbTi) broadside-coupled striplines. Here, we present an overview of the cold readout electronics for SPT-3G, including assembly details and characterization of electrical and thermal properties of the system. We report, for the NbTi striplines, values of R ≤ 10^{-4} Ω , L = 21 ± 1 nH , and C = 1.47± .02 nF . Additionally, the striplines' thermal conductivity is described by kA = 6.0± 0.3 T^{0.92 ± 0.04} μW mm K^{-1} . Finally, we provide projections for cross talk induced by parasitic impedances from the stripline and find that the median value of percentage cross talk from leakage current is 0.22 and 0.09% from wiring impedance.
Imaging of Rabbit VX-2 Hepatic Cancer by Cold and Thermal Neutron Radiography
NASA Astrophysics Data System (ADS)
Tsuchiya, Yoshinori; Matsubayashi, Masahito; Takeda, Tohoru; Lwin, Thet Thet; Wu, Jin; Yoneyama, Akio; Matsumura, Akira; Hori, Tomiei; Itai, Yuji
2003-11-01
Neutron radiography is based on differences in neutron mass attenuation coefficients among the elements and is a non-destructive imaging method. To investigate biomedical applications of neutron radiography, imaging of rabbit VX-2 liver cancer was performed using thermal and cold neutron radiography with a neutron imaging plate. Hepatic vessels and VX-2 tumor were clearly observed by neutron radiography, especially by cold neutron imaging. The image contrast of this modality was better than that of absorption-contrast X-ray radiography.
Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang
2017-01-01
Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures. PMID:29131867
Cui, Mingming; Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang
2017-01-01
Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures.
Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming
2013-01-01
Background Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. Results In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. Conclusions This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas. PMID:24349370
Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming
2013-01-01
Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas.
40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test. (2... Exhaust Test Procedures § 86.1343-88 Calculations; particulate exhaust emissions. (a) The final reported...
40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test. (2... Exhaust Test Procedures § 86.1343-88 Calculations; particulate exhaust emissions. (a) The final reported...
Des Marteaux, Lauren E; McKinnon, Alexander H; Udaka, Hiroko; Toxopeus, Jantina; Sinclair, Brent J
2017-05-08
Cold tolerance is a key determinant of temperate insect distribution and performance. Chill-susceptible insects lose ion and water homeostasis during cold exposure, but prior cold acclimation improves both cold tolerance and defense of homeostasis. The mechanisms underlying these processes are mostly unknown; cold acclimation is thought to enhance ion transport in the cold and/or prevent leak of water and ions. To identify candidate mechanisms of cold tolerance plasticity we generated transcriptomes of ionoregulatory tissues (hindgut and Malpighian tubules) from Gryllus pennsylvanicus crickets and compared gene expression in warm- and cold-acclimated individuals. We assembled a G. pennsylvanicus transcriptome de novo from 286 million 50-bp reads, yielding 70,037 contigs (~44% of which had putative BLAST identities). We compared the transcriptomes of warm- and cold-acclimated hindguts and Malpighian tubules. Cold acclimation led to a ≥ 2-fold change in the expression of 1493 hindgut genes (733 downregulated, 760 upregulated) and 2008 Malpighian tubule genes (1009 downregulated, 999 upregulated). Cold-acclimated crickets had altered expression of genes putatively associated with ion and water balance, including: a downregulation of V-ATPase and carbonic anhydrase in the Malpighian tubules and an upregulation of Na + -K + ATPase in the hindgut. We also observed acclimation-related shifts in the expression of cytoskeletal genes in the hindgut, including actin and actin-anchoring/stabilizing proteins, tubulin, α-actinin, and genes involved in adherens junctions organization. In both tissues, cold acclimation led to differential expression of genes encoding cytochrome P450s, glutathione-S-transferases, apoptosis factors, DNA repair, and heat shock proteins. This is the first G. pennsylvanicus transcriptome, and our tissue-specific approach yielded new candidate mechanisms of cold tolerance plasticity. Cold acclimation may reduce loss of hemolymph volume in the cold by 1) decreasing primary urine production via reduced expression of carbonic anhydrase and V-ATPase in the Malpighian tubules and 2) by increasing Na + (and therefore water) reabsorption across the hindgut via increase in Na + -K + ATPase expression. Cold acclimation may reduce chilling injury by remodeling and stabilizing the hindgut epithelial cytoskeleton and cell-to-cell junctions, and by increasing the expression of genes involved in DNA repair, detoxification, and protein chaperones.
LOCAL TADPOLE GALAXIES: DYNAMICS AND METALLICITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez Almeida, J.; Munoz-Tunon, C.; Mendez-Abreu, J.
2013-04-10
Tadpole galaxies, with a bright peripheral clump on a faint tail, are morphological types unusual in the nearby universe but very common early on. Low mass local tadpoles were identified and studied photometrically in a previous work, which we complete here analyzing their chemical and dynamical properties. We measure H{alpha} velocity curves of seven local tadpoles, representing 50% of the initial sample. Five of them show evidence for rotation ({approx}70%), and a sixth target hints at it. Often the center of rotation is spatially offset with respect to the tadpole head (three out of five cases). The size and velocitymore » dispersion of the heads are typical of giant H II regions, and three of them yield dynamical masses in fair agreement with their stellar masses as inferred from photometry. In four cases the velocity dispersion at the head is reduced with respect to its immediate surroundings. The oxygen metallicity estimated from [N II] {lambda}6583/H{alpha} often shows significant spatial variations across the galaxies ({approx}0.5 dex), being smallest at the head and larger elsewhere. The resulting chemical abundance gradients are opposite to the ones observed in local spirals, but agrees with disk galaxies at high redshift. We interpret the metallicity variation as a sign of external gas accretion (cold-flows) onto the head of the tadpole. The galaxies are low-metallicity outliers of the mass-metallicity relationship. In particular, two of the tadpole heads are extremely metal poor, with a metallicity smaller than a tenth of the solar value. These two targets are also very young (ages smaller than 5 Myr). All these results combined are consistent with the local tadpole galaxies being disks in early stages of assembling, with their star formation sustained by accretion of external metal-poor gas.« less
Single haplotype assembly of the human genome from a hydatidiform mole.
Steinberg, Karyn Meltz; Schneider, Valerie A; Graves-Lindsay, Tina A; Fulton, Robert S; Agarwala, Richa; Huddleston, John; Shiryev, Sergey A; Morgulis, Aleksandr; Surti, Urvashi; Warren, Wesley C; Church, Deanna M; Eichler, Evan E; Wilson, Richard K
2014-12-01
A complete reference assembly is essential for accurately interpreting individual genomes and associating variation with phenotypes. While the current human reference genome sequence is of very high quality, gaps and misassemblies remain due to biological and technical complexities. Large repetitive sequences and complex allelic diversity are the two main drivers of assembly error. Although increasing the length of sequence reads and library fragments can improve assembly, even the longest available reads do not resolve all regions. In order to overcome the issue of allelic diversity, we used genomic DNA from an essentially haploid hydatidiform mole, CHM1. We utilized several resources from this DNA including a set of end-sequenced and indexed BAC clones and 100× Illumina whole-genome shotgun (WGS) sequence coverage. We used the WGS sequence and the GRCh37 reference assembly to create an assembly of the CHM1 genome. We subsequently incorporated 382 finished BAC clone sequences to generate a draft assembly, CHM1_1.1 (NCBI AssemblyDB GCA_000306695.2). Analysis of gene, repetitive element, and segmental duplication content show this assembly to be of excellent quality and contiguity. However, comparison to assembly-independent resources, such as BAC clone end sequences and PacBio long reads, indicate misassembled regions. Most of these regions are enriched for structural variation and segmental duplication, and can be resolved in the future. This publicly available assembly will be integrated into the Genome Reference Consortium curation framework for further improvement, with the ultimate goal being a completely finished gap-free assembly. © 2014 Steinberg et al.; Published by Cold Spring Harbor Laboratory Press.
Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.
1977-01-01
A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.
2015-01-01
the bottom of the central trough has a shape that resembles a saddle. In July, the cold water that has a temperature lower than 10∘C covers a third of...the YSCWM The YSCWM is a large water mass covering a third of the bottom layer at its largest extension. It has relatively stable properties with low...in the wind stress and heat fluxes. In summer, ENSO has the strongest influence on the YSCWM variability. ENSO may exert influence on the third mode
Methods of Testing Thermal Insulation and Associated Test Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2004-01-01
The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.
Halo assembly bias and the tidal anisotropy of the local halo environment
NASA Astrophysics Data System (ADS)
Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.
2018-05-01
We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.
Vibration Damping Circuit Card Assembly
NASA Technical Reports Server (NTRS)
Hunt, Ronald Allen (Inventor)
2016-01-01
A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.
NASA Astrophysics Data System (ADS)
Sahai, R.; Vlemmings, W. H. T.; Nyman, L.-Å.
2017-06-01
Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the cosmic background temperature. Our new CO 1-0 data reveal heretofore unseen distant regions of this ultra-cold outflow, out to ≳120,000 au. We find that in the ultra-cold outflow, the mass-loss rate (\\dot{M}) increases with radius, similar to its expansion velocity (V)—taking V\\propto r, we find \\dot{M}\\propto {r}0.9{--2.2}. The mass in the ultra-cold outflow is ≳ 3.3 M ⊙, and the Boomerang’s main-sequence progenitor mass is ≳ 4 M ⊙. Our high angular resolution (˜ 0\\buildrel{\\prime\\prime}\\over{.} 3) CO J = 3-2 map shows the inner bipolar nebula’s precise, highly collimated shape, and a dense central waist of size (FWHM) ˜1740 au × 275 au. The molecular gas and the dust as seen in scattered light via optical Hubble Space Telescope imaging show a detailed correspondence. The waist shows a compact core in thermal dust emission at 0.87-3.3 mm, which harbors (4{--}7)× {10}-4 M ⊙ of very large (˜millimeter-to-centimeter sized), cold (˜ 20{--}30 K) grains. The central waist (assuming its outer regions to be expanding) and fast bipolar outflow have expansion ages of ≲ 1925 {years} and ≤slant 1050 {years}: the “jet-lag” (I.e., torus age minus the fast-outflow age) in the Boomerang supports models in which the primary star interacts directly with a binary companion. We argue that this interaction resulted in a common-envelope configuration, while the Boomerang’s primary was an RGB or early-AGB star, with the companion finally merging into the primary’s core, and ejecting the primary’s envelope that now forms the ultra-cold outflow.
CROW, BRENDAN T.; MATTHAY, ELLICOTT C.; SCHATZ, STEPHEN P.; DEBELISO, MARK D.; NUCKTON, THOMAS J.
2017-01-01
To determine if cold-water swimmers have substantial differences in BMI, which might have a protective effect against heat loss during swims in cold water without wetsuits, and to determine if obesity is more or less prevalent in cold-water swimmers, we compared the body mass index (BMI) values of 103 recreational open-water swimmers (mean age 54.3 ±10.8 years) to data from various population groups. Swimmers swam consistently throughout the winter months, in the San Francisco Bay (water temperature range: 9.6° C [49.3 ° F] to 12.6° C [54.7 ° F]), without wetsuits. After matching for age and sex, the average BMI of cold-water swimmers (25.9 kg/m2) was lower than the corresponding predicted U.S. average BMI (29.2 kg/m2; p<.001), the predicted California state average BMI (28.0 kg/m2; p<.001), and the predicted San Francisco city average BMI (26.6 kg/m2; p=.047). The average BMI value for cold-water swimmers (25.9 kg/m2) was not significantly different from values of North American masters pool swimmers (25.1 kg/m2; p=.15) or international masters pool swimmers (25.3 kg/m2; p=.16). 10.7% of cold-water swimmers were classified as obese (BMI > 30 kg/m2) vs. 35.7%, 25.8%, and 11.8% of the U.S., California, and San Francisco populations, respectively. The lower or similar BMI values of our swimmers suggest that successful recreational swimming in cold water is influenced by factors other than body habitus, such as acclimatization, heat production while swimming, and most importantly, limiting immersion time. The relatively low prevalence of obesity in our swimmers suggests that cold-water swimming could contribute to a healthy lifestyle. PMID:29399251
Active vibration and balance system for closed cycle thermodynamic machines
NASA Technical Reports Server (NTRS)
Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor); Qiu, Songgang (Inventor)
2004-01-01
An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.
Energy and mass balance in the three-phase interstellar medium
NASA Technical Reports Server (NTRS)
Wang, Zhong; Cowie, Lennox L.
1988-01-01
Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.
Probing the Molecular Outflows of the Coldest Known Object in the Universe: The Boomerang Nebula
NASA Astrophysics Data System (ADS)
Sahai, Raghvendra; Vlemmings, W.; Nyman, L. A.; Huggins, P.
2012-05-01
The Boomerang Nebula is the coldest known object in the Universe, and an extreme member of the class of Pre-Planetary Nebulae, objects which represent a short-lived transitional phase between the AGB and Planetary Nebula evolutionary stages. The Boomerang's estimated prodigious mass-loss rate (0.001 solar masses/year) and low-luminosity (300 Lsun) lack an explanation in terms of current paradigms for dusty mass-loss and standard evolutionary theory of intermediate-mass stars. Single-dish CO J=1-0 observations (with a 45 arcsec beam) show that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. We report on our high-resolution ALMA mapping of the CO lines in this ultra-cold nebula to determine the origin of these extreme conditions and robustly confirm current estimates of the fundamental physical properties of its ultra-cold outflow.
Eychenne, Thomas; Novikova, Elizaveta; Barrault, Marie-Bénédicte; Alibert, Olivier; Boschiero, Claire; Peixeiro, Nuno; Cornu, David; Redeker, Virginie; Kuras, Laurent; Nicolas, Pierre; Werner, Michel; Soutourina, Julie
2016-09-15
Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. © 2016 Eychenne et al.; Published by Cold Spring Harbor Laboratory Press.
Nondestructive Assay Data Integration with the SKB-50 Assemblies - FY16 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, Stephen Joseph; Fugate, Michael Lynn; Trellue, Holly Renee
2016-10-28
A project to research the application of non-destructive assay (NDA) techniques for spent fuel assemblies is underway at the Central Interim Storage Facility for Spent Nuclear Fuel (for which the Swedish acronym is Clab) in Oskarshamn, Sweden. The research goals of this project contain both safeguards and non-safeguards interests. These nondestructive assay (NDA) technologies are designed to strengthen the technical toolkit of safeguard inspectors and others to determine the following technical goals more accurately; Verify initial enrichment, burnup, and cooling time of facility declaration for spent fuel assemblies; Detect replaced or missing pins from a given spent fuel assembly tomore » confirm its integrity; and Estimate plutonium mass and related plutonium and uranium fissile mass parameters in spent fuel assemblies. Estimate heat content, and measure reactivity (multiplication).« less
NASA Technical Reports Server (NTRS)
Gibbel, Mark; Larson, Tim
1999-01-01
Due to a post launch failure of a part a new plan for the Mars Global Surveyor was developed. This new plan involved the addition of many deep thermal cycles to the Power Shunt Assemblies (PSA's). This new plan exceeds the previous acceptance cold level, and fatigue life on packaging design. This presentation reviews the experiments that were used to test the capabilities of the PSA to function in the new situation. It also reviews the analyses preformed to verify the most likely failure mechanism, and the likelihood that these failures would impact the new mission requirements.
Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I
NASA Astrophysics Data System (ADS)
Sofue, Yoshiaki
2018-05-01
We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.
Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I
NASA Astrophysics Data System (ADS)
Sofue, Yoshiaki
2018-06-01
We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.
Cold-end Subsystem Testing for the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell; Gibson, Marc; Ellis, David; Sanzi, James
2013-01-01
The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodium-potassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated cold-end fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to high-cost composite radiators in an end-to-end TDU test.
Yun, Ze; Qu, Hongxia; Wang, Hui; Zhu, Feng; Zhang, Zhengke; Duan, Xuewu; Yang, Bao; Cheng, Yunjiang; Jiang, Yueming
2016-01-14
Litchi is a non-climacteric subtropical fruit of high commercial value. The shelf life of litchi fruit under ambient conditions (AC) is approximately 4-6 days. Post-harvest cold storage prolongs the life of litchi fruit for up to 30 days with few changes in pericarp browning and total soluble solids. However, the shelf life of litchi fruits at ambient temperatures after pre-cold storage (PCS) is only 1-2 days. To better understand the mechanisms involved in the rapid fruit senescence induced by pre-cold storage, a transcriptome of litchi pericarp was constructed to assemble the reference genes, followed by comparative transcriptomic and metabolomic analyses. Results suggested that the senescence of harvested litchi fruit was likely to be an oxidative process initiated by ABA, including oxidation of lipids, polyphenols and anthocyanins. After cold storage, PCS fruit exhibited energy deficiency, and respiratory burst was elicited through aerobic and anaerobic respiration, which was regulated specifically by an up-regulated calcium signal, G-protein-coupled receptor signalling pathway and small GTPase-mediated signal transduction. The respiratory burst was largely associated with increased production of reactive oxygen species, up-regulated peroxidase activity and initiation of the lipoxygenase pathway, which were closely related to the accelerated senescence of PCS fruit.
Yun, Ze; Qu, Hongxia; Wang, Hui; Zhu, Feng; Zhang, Zhengke; Duan, Xuewu; Yang, Bao; Cheng, Yunjiang; Jiang, Yueming
2016-01-01
Litchi is a non-climacteric subtropical fruit of high commercial value. The shelf life of litchi fruit under ambient conditions (AC) is approximately 4–6 days. Post-harvest cold storage prolongs the life of litchi fruit for up to 30 days with few changes in pericarp browning and total soluble solids. However, the shelf life of litchi fruits at ambient temperatures after pre-cold storage (PCS) is only 1–2 days. To better understand the mechanisms involved in the rapid fruit senescence induced by pre-cold storage, a transcriptome of litchi pericarp was constructed to assemble the reference genes, followed by comparative transcriptomic and metabolomic analyses. Results suggested that the senescence of harvested litchi fruit was likely to be an oxidative process initiated by ABA, including oxidation of lipids, polyphenols and anthocyanins. After cold storage, PCS fruit exhibited energy deficiency, and respiratory burst was elicited through aerobic and anaerobic respiration, which was regulated specifically by an up-regulated calcium signal, G-protein-coupled receptor signalling pathway and small GTPase-mediated signal transduction. The respiratory burst was largely associated with increased production of reactive oxygen species, up-regulated peroxidase activity and initiation of the lipoxygenase pathway, which were closely related to the accelerated senescence of PCS fruit. PMID:26763309
NASA Technical Reports Server (NTRS)
Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.
2016-01-01
Hot-fire test demonstrations were successfully conducted using a cold helium pressurization system fully integrated into a liquid oxygen (LOX) / liquid methane (LCH4) propulsion system (Figure 1). Cold helium pressurant storage at near liquid nitrogen (LN2) temperatures (-275 F and colder) and used as a heated tank pressurant provides a substantial density advantage compared to ambient temperature storage. The increased storage density reduces helium pressurant tank size and mass, creating payload increases of 35% for small lunar-lander sized applications. This degree of mass reduction also enables pressure-fed propulsion systems for human-rated Mars ascent vehicle designs. Hot-fire test results from the highly-instrumented test bed will be used to demonstrate system performance and validate integrated models of the helium and propulsion systems. A pressurization performance metric will also be developed as a means to compare different active pressurization schemes.
Shen, Le; Li, Xu; Wang, Hai-tang; Yu, Xue-rong; Huang, Yu-guang
2013-12-01
To evaluate the pain-related behavioral changes in rats with bilateral chronic constriction injury(bCCI)and identify the expressions of neuropathic pain-related proteins. The bCCI models were established by ligating the sciatic nerves in female Sprague Dawley rats. Both mechanical hyperalgesia and cold hyperalgesia were evaluated through electronic von Frey and acetone method. Liquid chromatography-mass spectrometry/mass spectrometry was applied to characterize the differentially expressed proteins. Both mechanical withdrawal threshold and cold hyperalgesia threshold decreased significantly on the postoperative day 7 and 14, when compared with na ve or sham rats(P <0.05). Twenty five differentially expressed proteins associated with bilateral CCI were discovered, with eighteen of them were upregulated and seven of them downregulated. The bCCT rats have remarkably decreased mechanical and cold hyperalgesia thresholds. Twenty five neuropathic pain-related proteins are found in the spinal cord dorsal horn.
Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter
NASA Technical Reports Server (NTRS)
Bond, J. R.; Efstathiou, G.
1984-01-01
Detailed calculations of the temperature fluctuations in the cosmic background radiation for universes dominated by massive collisionless relics of the big bang are presented. An initially adiabatic constant curvature perturbation spectrum is assumed. In models with cold dark matter, the simplest hypothesis - that galaxies follow the mass distribution leads to small-scale anisotropies which exceed current observational limits if omega is less than 0.2 h to the -4/3. Since low values of omega are indicated by dynamical studies of galaxy clustering, cold particle models in which light traces mass are probably incorrect. Reheating of the pregalactic medium is unlikely to modify this conclusion. In cold particle or neutrino-dominated universes with omega = 1, presented predictions for small-scale and quadrupole anisotropies are below current limits. In all cases, the small-scale fluctuations are predicted to be about 10 percent linearly polarized.
NASA Astrophysics Data System (ADS)
Catinella, Barbara; Saintonge, Amélie; Janowiecki, Steven; Cortese, Luca; Davé, Romeel; Lemonias, Jenna J.; Cooper, Andrew P.; Schiminovich, David; Hummels, Cameron B.; Fabello, Silvia; Geréb, Katinka; Kilborn, Virginia; Wang, Jing
2018-05-01
We present the extended GALEX Arecibo SDSS Survey (xGASS), a gas fraction-limited census of the atomic hydrogen (H I) gas content of 1179 galaxies selected only by stellar mass (M⋆ = 109-1011.5 M⊙) and redshift (0.01 < z < 0.05). This includes new Arecibo observations of 208 galaxies, for which we release catalogues and H I spectra. In addition to extending the GASS H I scaling relations by one decade in stellar mass, we quantify total (atomic+molecular) cold gas fractions and molecular-to-atomic gas mass ratios, Rmol, for the subset of 477 galaxies observed with the IRAM 30 m telescope. We find that atomic gas fractions keep increasing with decreasing stellar mass, with no sign of a plateau down to log M⋆/M⊙ = 9. Total gas reservoirs remain H I-dominated across our full stellar mass range, hence total gas fraction scaling relations closely resemble atomic ones, but with a scatter that strongly correlates with Rmol, especially at fixed specific star formation rate. On average, Rmol weakly increases with stellar mass and stellar surface density μ⋆, but individual values vary by almost two orders of magnitude at fixed M⋆ or μ⋆. We show that, for galaxies on the star-forming sequence, variations of Rmol are mostly driven by changes of the H I reservoirs, with a clear dependence on μ⋆. Establishing if galaxy mass or structure plays the most important role in regulating the cold gas content of galaxies requires an accurate separation of bulge and disc components for the study of gas scaling relations.
Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska
Waythomas, C.F.; Watts, P.; Walder, J.S.
2006-01-01
Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.
Morphology and kinematics of orbital components in CALIFA galaxies across the Hubble sequence
NASA Astrophysics Data System (ADS)
Zhu, Ling; van de Ven, Glenn; Méndez-Abreu, Jairo; Obreja, Aura
2018-06-01
Based on the stellar orbit distribution derived from orbit-superposition Schwarzschild models, we decompose each of 250 representative present-day galaxies into four orbital components: cold with strong rotation, warm with weak rotation, hot with dominant random motion and counter-rotating (CR). We rebuild the surface brightness (Σ) of each orbital component and we present in figures and tables a quantification of their morphologies using the Sersic index n, concentration C = log {(Σ _{0.1R_e}/Σ _{R_e})} and intrinsic flattening qRe and qRmax, with Re the half-light-radius and Rmax the CALIFA data coverage. We find that: (1) kinematic hotter components are generally more concentrated and rounder than colder components, and (2) all components become more concentrated and thicker/rounder in more massive galaxies; they change from disk-like in low mass late-type galaxies to bulge-like in high-mass early type galaxies. Our findings suggest that Sersic n is not a good discriminator between rotating bulges and non-rotating bulges. The luminosity fraction of cold orbits fcold is well correlated with the photometrically-decomposed disk fraction fdisk as f_{cold} = 0.14 + 0.23f_{disk}. Similarly, the hot orbit fraction fhot is correlated with the bulge fraction fbulge as f_{hot} = 0.19 + 0.31f_{bulge}. The warm orbits mainly contribute to disks in low-mass late-type galaxies, and to bulges in high-mass early-type galaxies. The cold, warm, and hot components generally follow the same morphology (ɛ = 1 - qRmax) versus kinematics (σ _z^2/\\overline{V_{tot}^2}) relation as the thin disk, thick disk/pseudo bulge, and classical bulge identified from cosmological simulations.
Importance of Standardized DXA Protocol for Assessing Physique Changes in Athletes.
Nana, Alisa; Slater, Gary J; Hopkins, Will G; Halson, Shona L; Martin, David T; West, Nicholas P; Burke, Louise M
2016-06-01
The implications of undertaking DXA scans using best practice protocols (subjects fasted and rested) or a less precise but more practical protocol in assessing chronic changes in body composition following training and a specialized recovery technique were investigated. Twenty-one male cyclists completed an overload training program, in which they were randomized to four sessions per week of either cold water immersion therapy or control groups. Whole-body DXA scans were undertaken with best practice protocol (Best) or random activity protocol (Random) at baseline, after 3 weeks of overload training, and after a 2-week taper. Magnitudes of changes in total, lean and fat mass from baseline-overload, overload-taper and baseline-taper were assessed by standardization (Δmean/SD). The standard deviations of change scores for total and fat-free soft tissue mass (FFST) from Random scans (2-3%) were approximately double those observed in the Best (1-2%), owing to extra random errors associated with Random scans at baseline. There was little difference in change scores for fat mass. The effect of cold water immersion therapy on baseline-taper changes in FFST was possibly harmful (-0.7%; 90% confidence limits ±1.2%) with Best scans but unclear with Random scans (0.9%; ±2.0%). Both protocols gave similar possibly harmful effects of cold water immersion therapy on changes in fat mass (6.9%; ±13.5% and 5.5%; ±14.3%, respectively). An interesting effect of cold water immersion therapy on training-induced changes in body composition might have been missed with a less precise scanning protocol. DXA scans should be undertaken with Best.
Operational and troubleshooting experiences in the SST-1 cryogenic system
NASA Astrophysics Data System (ADS)
Mahesuria, G.; Panchal, P.; Panchal, R.; Patel, R.; Sonara, D.; Gupta, N. C.; Srikanth, G. L. N.; Christian, D.; Garg, A.; Bairagi, N.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Tank, J.; Tanna, V. L.; Pradhan, S.
2014-01-01
Recently, the cooldown and current charging campaign have been carried out towards the demonstration of the first successful plasma discharge in the steady state superconducting Tokomak (SST-1). The SST-1 machine consists of cable-in-conduit wound superconducting toroidal as well as poloidal coils, cooled using 1.3 kW at 4.5 K helium refrigerator -cum- liquefier (HRL) system. The cryo system provides the two-phase helium at 0.13 MPa at 4.5 K as well as forced-flow pressurized helium at 0.4 MPa and in addition to 7 g-s-1 liquefaction capacity required for the current leads and other cold mass at 4.5 K. The entire integrated cold masses having different thermo hydraulic resistances cooled with the SST-1 HRL in optimised process parameters. In order to maintain different levels of temperatures and to facilitate smooth and reliable cooldown, warm-up, normal operations as well as to handle abnormal events such as, quench or utilities failures etc., exergy efficient process are adopted for the helium refrigerator-cum-liquefier (HRL) with an installed equivalent capacity of 1.3 kW at 4.5 K. Using the HRL, the cold mass of about 40 tons is being routinely cooled down from ambient temperature to 4.5 K with an average cooldown rate of 0.75 - 1 K-h-1. Long-term cryogenic stable conditions were obtained within 15 days in the superconducting coils and their connecting feeders. Afterwards, all of the cold mass is warmed-up in a controlled manner to ambient temperature. In this paper, we report the recent operational results of the cryogenic system during the first plasma discharge in SST-1 as well as the troubleshooting experiences of the cryogenic plant related hardware.
1.25-mm observations of luminous infrared galaxies
NASA Technical Reports Server (NTRS)
Carico, David P.; Keene, Jocelyn; Soifer, B. T.; Neugebauer, G.
1992-01-01
Measurements at a wavelength of 1.25 mm have been obtained for 17 IRAS galaxies selected on the basis of high far-infrared luminosity. These measurements are used to estimate the lower and upper limits to the mass of cold dust in infrared galaxies. As a lower limit on dust mass, all of the galaxies can be successfully modeled without invoking any dust colder than the dust responsible for the 60 and 100 micron emission that was detected by IRAS. As an upper limit, it is possible that the dust mass in a number of the galaxies may actually be dominated by cold dust. This large difference between the lower and upper limits is due primarily to uncertainty in the long-wavelength absorption efficiency of the astrophysical dust grains.
Large-scale assembly bias of dark matter halos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazeyras, Titouan; Musso, Marcello; Schmidt, Fabian, E-mail: titouan@mpa-garching.mpg.de, E-mail: mmusso@sas.upenn.edu, E-mail: fabians@mpa-garching.mpg.de
We present precise measurements of the assembly bias of dark matter halos, i.e. the dependence of halo bias on other properties than the mass, using curved 'separate universe' N-body simulations which effectively incorporate an infinite-wavelength matter overdensity into the background density. This method measures the LIMD (local-in-matter-density) bias parameters b {sub n} in the large-scale limit. We focus on the dependence of the first two Eulerian biases b {sup E} {sup {sub 1}} and b {sup E} {sup {sub 2}} on four halo properties: the concentration, spin, mass accretion rate, and ellipticity. We quantitatively compare our results with previous worksmore » in which assembly bias was measured on fairly small scales. Despite this difference, our findings are in good agreement with previous results. We also look at the joint dependence of bias on two halo properties in addition to the mass. Finally, using the excursion set peaks model, we attempt to shed new insights on how assembly bias arises in this analytical model.« less
Expert Meeting Report. Interior Insulation Retrofit of Mass Masonry Wall Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Van Straaten, R.
2012-02-01
The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.
Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Van Straaten, R.
2012-02-01
The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.
The 1.3 GHz SRF Injector Cryomodule for VECC - designed and manufactured at TRIUMF
NASA Astrophysics Data System (ADS)
Ahammed, M.; Harmer, P.; Kishi, D.; Kolb, P.; Koveshnikov, A.; Laxdal, R.; Ma, Y.; Mondal, M.; Muller, N.; Nagimov, R.; Naik, V.; Saha, S.; Zvyagintsev, V.
2017-02-01
The combined R&D efforts of engineers and scientists from both TRIUMF and VECC have resulted in production of a superconducting Injector Cryomodule operating at 1.3 GHz. The design utilizes a unique box cryomodule with a top-loading cold mass. Liquid helium supplied at 4.4 K is converted to superfluid helium-II on board the cryomodule. A 4 K phase separator, 4 K / 2 K heat exchanger and Joule-Thompson valve are installed on the cryomodule to produce 2 K liquid helium. Two identical (by their parameters) cryomodules have been manufactured at TRIUMF. The Injector Cryomodule (ICM) has been tested and commissioned in June of 2014 and is the first cryomodule for the ARIEL e-linac at TRIUMF. The Injector Cryomodule for VECC (VECC ICM) is currently at the finishing stage of its assembly and will undergo cryogenic tests in Q1 of 2016 followed by RF and beam tests at TRIUMF before being shipped to India. The particularities of the design as well as results of the cryogenic and RF performance are presented in this paper.
The Common Cryogenic Test Facility for the ATLAS Barrel and End-Cap Toroid Magnets
NASA Astrophysics Data System (ADS)
Delruelle, N.; Haug, F.; Junker, S.; Passardi, G.; Pengo, R.; Pirotte, O.
2004-06-01
The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requirements of the magnets in the various operating scenarios.
The First ASME Code Stamped Cryomodule at SNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, M P; Crofford, M T; Douglas, D L
The first spare cryomodule for the Spallation Neutron Source (SNS) has been designed, fabricated, and tested by SNS personnel. The approach to design for this cryomodule was to hold critical design features identical to the original design such as bayonet positions, coupler positions, cold mass assembly, and overall footprint. However, this is the first SNS cryomodule that meets the pressure requirements put forth in the 10 CFR 851: Worker Safety and Health Program. The most significant difference is that Section VIII of the ASME Boiler and Pressure Vessel Code was applied to the vacuum vessel of this cryomodule. Applying themore » pressure code to the helium vessels within the cryomodule was considered. However, it was determined to be schedule prohibitive because it required a code case for materials that are not currently covered by the code. Good engineering practice was applied to the internal components to verify the quality and integrity of the entire cryomodule. The design of the cryomodule, fabrication effort, and cryogenic test results will be reported in this paper.« less
ATLAS LTCS Vertically Challenged System Lessons Learned
NASA Technical Reports Server (NTRS)
Patel, Deepak; Garrison, Matt; Ku, Jentung
2014-01-01
Re-planning of LTCS TVAC testing and supporting RTA (Receiver Telescope Assembly) Test Plan and Procedure document preparation. The Laser Thermal Control System (LTCS) is designed to maintain the lasers onboard Advanced Topographic Laser Altimeter System (ATLAS) at their operational temperatures. In order to verify the functionality of the LTCS, a thermal balance test of the thermal hardware was performed. During the first cold start of the LTCS, the Loop Heat Pipe (LHP) was unable to control the laser mass simulators temperature. The control heaters were fully on and the loop temperature remained well below the desired setpoint. Thermal analysis of the loop did not show these results. This unpredicted behavior of the LTCS was brought up to a panel of LHP experts. Based on the testing and a review of all the data, there were multiple diagnostic performed in order to narrow down the cause. The prevailing theory is that gravity is causing oscillating flow within the loop, which artificially increased the control power needs. This resulted in a replan of the LTCS test flow and the addition of a GSE heater to allow vertical operation.
NASA Astrophysics Data System (ADS)
Sasaki, H.; Matsuno, K.; Fujiwara, A.; Onuka, M.; Yamaguchi, A.; Ueno, H.; Watanuki, Y.; Kikuchi, T.
2015-11-01
The advection of warm Pacific water and the reduction of sea-ice extent in the western Arctic Ocean may influence the abundance and distribution of copepods, i.e., a key component in food webs. To understand the factors affecting abundance of copepods in the northern Bering Sea and Chukchi Sea, we constructed habitat models explaining the spatial patterns of the large and small Arctic copepods and the Pacific copepods, separately, using generalized additive models. Copepods were sampled by NORPAC net. Vertical profiles of density, temperature and salinity in the seawater were measured using CTD, and concentration of chlorophyll a in seawater was measured with a fluorometer. The timing of sea-ice retreat was determined using the satellite image. To quantify the structure of water masses, the magnitude of pycnocline and averaged density, temperature and salinity in upper and bottom layers were scored along three axes using principal component analysis (PCA). The structures of water masses indexed by the scores of PCAs were selected as explanatory variables in the best models. Large Arctic copepods were abundant in the water mass with high salinity water in bottom layer or with cold/low salinity water in upper layer and cold/high salinity water in bottom layer, and small Arctic copepods were abundant in the water mass with warm/saline water in upper layer and cold/high salinity water in bottom layers, while Pacific copepods were abundant in the water mass with warm/saline in upper layer and cold/high salinity water in bottom layer. All copepod groups were abundant in areas with deeper depth. Although chlorophyll a in upper and bottom layers were selected as explanatory variables in the best models, apparent trends were not observed. All copepod groups were abundant where the sea-ice retreated at earlier timing. Our study might indicate potential positive effects of the reduction of sea-ice extent on the distribution of all groups of copepods in the Arctic Ocean.
H2-based star formation laws in hierarchical models of galaxy formation
NASA Astrophysics Data System (ADS)
Xie, Lizhi; De Lucia, Gabriella; Hirschmann, Michaela; Fontanot, Fabio; Zoldan, Anna
2017-07-01
We update our recently published model for GAlaxy Evolution and Assembly (GAEA), to include a self-consistent treatment of the partition of cold gas in atomic and molecular hydrogen. Our model provides significant improvements with respect to previous ones used for similar studies. In particular, GAEA (I) includes a sophisticated chemical enrichment scheme accounting for non-instantaneous recycling of gas, metals and energy; (II) reproduces the measured evolution of the galaxy stellar mass function; (III) reasonably reproduces the observed correlation between galaxy stellar mass and gas metallicity at different redshifts. These are important prerequisites for models considering a metallicity-dependent efficiency of molecular gas formation. We also update our model for disc sizes and show that model predictions are in nice agreement with observational estimates for the gas, stellar and star-forming discs at different cosmic epochs. We analyse the influence of different star formation laws including empirical relations based on the hydrostatic pressure of the disc, analytic models and prescriptions derived from detailed hydrodynamical simulations. We find that modifying the star formation law does not affect significantly the global properties of model galaxies, neither their distributions. The only quantity showing significant deviations in different models is the cosmic molecular-to-atomic hydrogen ratio, particularly at high redshift. Unfortunately, however, this quantity also depends strongly on the modelling adopted for additional physical processes. Useful constraints on the physical processes regulating star formation can be obtained focusing on low-mass galaxies and/or at higher redshift. In this case, self-regulation has not yet washed out differences imprinted at early time.
Food System Trade Study for a Near-Term Mars Mission
NASA Technical Reports Server (NTRS)
Levri, Julie; Luna, Bernadette (Technical Monitor)
2000-01-01
This paper evaluates several food system options for a near-term Mars mission, based on plans for the 120-day BIO-Plex test. Food systems considered in the study are based on the International Space Station (ISS) Assembly Phase and Assembly Complete food systems. The four systems considered are: 1) ISS assembly phase food system (US portion) with individual packaging without salad production; 2) ISS assembly phase food system (US portion) with individual packaging, with salad production; 3) ISS assembly phase food system (US portion) with bulk packaging, with salad production; 4) ISS assembly complete food system (US portion) with bulk packaging with salad and refrigeration/freezing. The food system options are assessed using equivalent system mass (ESM), which evaluates each option based upon the mass, volume, power, cooling and crewtime requirements that are associated with each food system option. However, since ESM is unable to elucidate the differences in psychological benefits between the food systems, a qualitative evaluation of each option is also presented.
Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu
2018-04-01
Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum , thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.
A mass census of the nearby universe with the RESOLVE survey
NASA Astrophysics Data System (ADS)
Eckert, Kathleen
The galaxy mass function, i.e., the distribution of galaxies as a function of mass, is a useful way to characterize the galaxy population. In this work, we examine the stellar and baryonic mass function, and the velocity function of galaxies and galaxy groups for two volume-limited surveys of the nearby universe. Stellar masses are estimated from multi-band photometry, and we add cold atomic gas from measurements and a newly calibrated estimator to obtain baryonic mass. Velocities are measured from the internal motions of galaxies and groups and account for all matter within the system. We compare our observed mass and velocity functions with the halo mass function from theoretical simulations of dark matter, which predict a much more steeply rising low-mass slope than is normally observed for the galaxy mass function. We show that taking into account the cold gas mass, which dominates the directly detectable mass of low-mass galaxies, steepens the low-mass slope of the galaxy mass function. The low- mass slope of the baryonic mass function, however, is still much shallower than that of the halo mass function. The discrepancy in low-mass slope persists when examining the velocity function, which accounts for all matter in galaxies (detectable or not), suggesting that some mechanism must reduce the mass in halos or destroy them completely. We investigate the role of environment by performing group finding and examining the mass and velocity functions as a function of group halo mass. Broken down by halo mass regime, we find dips and varying low-mass slopes in the mass and velocity functions, suggesting that group formation processes such as merging and stripping, which destroy and lower the mass of low-mass satellites respectively, potentially contribute to the discrepancy in low-mass slope. In particular, we focus on the nascent group regime, groups of mass 10 11.4-12 [solar mass] with few members, which has a depressed and flat low-mass slope in the galaxy mass and velocity function. We find that nascent groups are at the peak baryonic collapse efficiency (group-integrated cold baryonic mass divided by the group halo mass), while isolated dwarfs in lower mass halos are rapidly growing in their collapsed baryonic mass and larger groups are increasingly dominated by their hot halo gas. Scatter in this collapsed baryon efficiency could indicate varying hot gas fractions in nascent groups, suggestive of a wide variety of group formation processes occurring at these scales. We point to this nascent group regime as a period of transition in group evolution, where merging and stripping remove galaxies from the population, contributing to the discrepancy in low-mass slope between observations and dark matter simulations.
Miniature quadrupole mass spectrometer having a cold cathode ionization source
Felter, Thomas E.
2002-01-01
An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.
Thermal insulation testing method and apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2004-01-01
A test apparatus and method of its use for evaluating various performance aspects of a test specimen is disclosed. A chamber within a housing contains a cold mass tank with a contact surface in contact with a first surface of a test specimen. The first surface of the test specimen is spaced from the second surface of the test specimen by a thickness. The second surface of the test specimen is maintained at a desired warm temperature. The first surface is maintained at a constant temperature by a liquid disposed within the cold mass tank. A boil-off flow rate of the gas is monitored and provided to a processor along with the temperature of the first and second surfaces of the test specimen. The processor calculates thermal insulation values of the test specimen including comparative values for heat flux and apparent thermal conductivity (k-value). The test specimen may be placed in any vacuum pressure level ranging from about 0.01 millitorr to 1,000,000 millitorr with different residual gases as desired. The test specimen may be placed under a mechanical load with the cold mass tank and another factors may be imposed upon the test specimen so as to simulate the actual use conditions.
Thermal Insulation Testing Method and Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2004-01-01
A test apparatus and method of its use for evaluating various performance aspects of a test specimen is disclosed. A chamber within a housing contains a cold mass tank with a contact surface in contact with a first surface of a test specimen. The first surface of the test specimen is spaced from the second surface of the test specimen by a thickness. The second surface of the test specimen is maintained at a a constant temperature by a liquid disposed within the cold mass tank. A boil-off flow rate of the gas is monitored and provided to a processor along with the temperature of the first and second surfaces of the test specimen. The processor calculates thermal insulation values of the test specimen including comparative values for heat flux and apparent thermal conductivity k-value). The test specimen may be placed in any vacuum pressure level ranging from about 0.01 millitorr to 1,000,000 millitorr with different residual gases as desired. The test specimen may be placed under a mechanical load with the cold mass tank and another factors may be imposed upon the test specimen so as to simulate the actual use conditions.
Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats
NASA Astrophysics Data System (ADS)
Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.
2004-06-01
The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.
Galaxy And Mass Assembly (GAMA): The M-Z relation for galaxy groups
NASA Astrophysics Data System (ADS)
Lara-López, M. A.; Hopkins, A. M.; Robotham, A.; Owers, M. S.; Colless, M.; Brough, S.; Norberg, P.; Steele, O.; Taylor, E. N.; Thomas, D.
2013-04-01
The stellar mass and metallicity are among the fundamental parameters of galaxies. An understanding of the interplay between those properties as well as their environmental dependence will give us a general picture of the physics and feedback processes ongoing in groups of galaxies. We study the relationships and environmental dependencies between the stellar mass, and gas metallicity for more than 1900 galaxies in groups up to redshift 0.35 using the Galaxy And Mass Assembly (GAMA) survey. Using a control sample of more than 28 000 star-forming field galaxies, we find evidence for a decrement of the gas metallicity for galaxies in groups.
40 CFR 86.145-82 - Calculations; particulate emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... final reported test results for the mass particulate (Mp) in grams/mile shall be computed as follows. Mp = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate...) for determination.) (2) Mp2 = Mass of particulate determined from the “stabilized” phase of the cold...
40 CFR 86.145-82 - Calculations; particulate emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... final reported test results for the mass particulate (Mp) in grams/mile shall be computed as follows. Mp = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate...) for determination.) (2) Mp2 = Mass of particulate determined from the “stabilized” phase of the cold...
NASA Technical Reports Server (NTRS)
Sahai, R.; Vlemmings, W.; Nyman, L. A.
2014-01-01
Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001 solar mass M yr (exp -1) and low-luminosity (300L ) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle O data, and reveal heretofore unseen distant regions of the ultra-cold outflow reheated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4 in). The waist shows a core-halo structure in the thermal dust emission at 0.88 millimeter, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 millimeter fluxes support the presence of about 5 x 10 (exp -4) solar mass of very large (approximately millimeter-sized), cold (approximately 30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.
Detecting cold, wide orbit planets in the solar neighbourhood
NASA Astrophysics Data System (ADS)
Deacon, Niall; Kraus, Adam
2018-05-01
Direct imaging exoplanet studies have recently unveiled a previously unexpected population of massive planets in wide orbits (>100AU). Although most of these discoveries have been around younger stars and have been of similar temperatures to field brown dwarfs, one object (WD 0806-661B), is the coldest planet known outside our solar system. In Spitzer Cycle 11 we surveyed stars and brown dwarfs within 8pc to identify massive planetary companions in the 150-1500AU separation range. Only 56 of our 196 stars were observed with two epochs of observation. We propose second epoch observations for 80 targets with first, but little or no second epoch observations. We will 1) Measure the fraction of wide planetary mass companions to stars in the Solar neighbourhood. 2) Identify approximately 5 planets, three of which will have temperatures below 300K making them ideal targets to study water clouds in cold atmospheres with both JWST and the next generation of ground-based extremely large telescopes. 3) Identify all planets around our target stars with masses above 8 Jupiter masses in our chosen projected separation range with lower mass limits for closer and younger stars. Our survey will be the most complete survey for wide planets to-date and will provide both a measurement of the wide planet population and a legacy of cold, well-constrained targets for future observations with JWST and Extremely Large Telescopes.
Shrivastava, Amulya Nidhi; Redeker, Virginie; Fritz, Nicolas; Pieri, Laura; Almeida, Leandro G.; Spolidoro, Maria; Liebmann, Thomas; Bousset, Luc; Renner, Marianne; Léna, Clément; Aperia, Anita; Melki, Ronald; Triller, Antoine
2016-01-01
α-Synuclein (α-syn) is the principal component of Lewy bodies, the pathophysiological hallmark of individuals affected by Parkinson disease (PD). This neuropathologic form of α-syn contributes to PD progression and propagation of α-syn assemblies between neurons. The data we present here support the proteomic analysis used to identify neuronal proteins that specifically interact with extracellularly applied oligomeric or fibrillar α-syn assemblies (conditions 1 and 2, respectively) (doi: 10.15252/embj.201591397[1]). α-syn assemblies and their cellular partner proteins were pulled down from neuronal cell lysed shortly after exposure to exogenous α-syn assemblies and the associated proteins were identified by mass spectrometry using a shotgun proteomic-based approach. We also performed experiments on pure cultures of astrocytes to identify astrocyte-specific proteins interacting with oligomeric or fibrillar α-syn (conditions 3 and 4, respectively). For each condition, proteins interacting selectively with α-syn assemblies were identified by comparison to proteins pulled-down from untreated cells used as controls. The mass spectrometry data, the database search and the peak lists have been deposited to the ProteomeXchange Consortium database via the PRIDE partner repository with the dataset identifiers PRIDE: PXD002256 to PRIDE: PXD002263 and doi: 10.6019/PXD002256 to 10.6019/PXD002263. PMID:26958642
Shrivastava, Amulya Nidhi; Redeker, Virginie; Fritz, Nicolas; Pieri, Laura; Almeida, Leandro G; Spolidoro, Maria; Liebmann, Thomas; Bousset, Luc; Renner, Marianne; Léna, Clément; Aperia, Anita; Melki, Ronald; Triller, Antoine
2016-06-01
α-Synuclein (α-syn) is the principal component of Lewy bodies, the pathophysiological hallmark of individuals affected by Parkinson disease (PD). This neuropathologic form of α-syn contributes to PD progression and propagation of α-syn assemblies between neurons. The data we present here support the proteomic analysis used to identify neuronal proteins that specifically interact with extracellularly applied oligomeric or fibrillar α-syn assemblies (conditions 1 and 2, respectively) (doi: 10.15252/embj.201591397[1]). α-syn assemblies and their cellular partner proteins were pulled down from neuronal cell lysed shortly after exposure to exogenous α-syn assemblies and the associated proteins were identified by mass spectrometry using a shotgun proteomic-based approach. We also performed experiments on pure cultures of astrocytes to identify astrocyte-specific proteins interacting with oligomeric or fibrillar α-syn (conditions 3 and 4, respectively). For each condition, proteins interacting selectively with α-syn assemblies were identified by comparison to proteins pulled-down from untreated cells used as controls. The mass spectrometry data, the database search and the peak lists have been deposited to the ProteomeXchange Consortium database via the PRIDE partner repository with the dataset identifiers PRIDE: PXD002256 to PRIDE: PXD002263 and doi: 10.6019/PXD002256 to 10.6019/PXD002263.
Operation Results of the Kstar Helium Refrigeration System
NASA Astrophysics Data System (ADS)
Chang, H.-S.; Fauve, E.; Park, D.-S.; Joo, J.-J.; Moon, K.-M.; Cho, K.-W.; Na, H. K.; Kwon, M.; Yang, S.-H.; Gistau-Baguer, G.
2010-04-01
The "first plasma" (100 kA of controllable plasma current for 100 ms) of KSTAR has been successfully generated in July 2008. The major outstanding feature of KSTAR compared to most other Tokamaks is that all the magnet coils are superconducting (SC), which enables higher plasma current values for a longer time duration when the nominal operation status has been reached. However, to establish the operating condition for the SC coils, other cold components, such as thermal shields, coil-supporting structures, SC buslines, and current leads also must be maintained at proper cryogenic temperature levels. A helium refrigeration system (HRS) with an exergetic equivalent cooling power of 9 kW at 4.5 K has been installed for such purposes and successfully commissioned. In this proceeding, we will report on the operation results of the HRS during the first plasma campaign of KSTAR. Using the HRS, the 300-ton cold mass of KSTAR was cooled down from ambient to the operating temperature levels of each cold component. Stable and steady cryogenic conditions, proper for the generation of the "first plasma" have been maintained for three months, after which, all of the cold mass was warmed up again to ambient temperature.
Multiciliated Cells in Animals.
Meunier, Alice; Azimzadeh, Juliette
2016-12-01
Many animal cells assemble single cilia involved in motile and/or sensory functions. In contrast, multiciliated cells (MCCs) assemble up to 300 motile cilia that beat in a coordinate fashion to generate a directional fluid flow. In the human airways, the brain, and the oviduct, MCCs allow mucus clearance, cerebrospinal fluid circulation, and egg transportation, respectively. Impairment of MCC function leads to chronic respiratory infections and increased risks of hydrocephalus and female infertility. MCC differentiation during development or repair involves the activation of a regulatory cascade triggered by the inhibition of Notch activity in MCC progenitors. The downstream events include the simultaneous assembly of a large number of basal bodies (BBs)-from which cilia are nucleated-in the cytoplasm of the differentiating MCCs, their migration and docking at the plasma membrane associated to an important remodeling of the actin cytoskeleton, and the assembly and polarization of motile cilia. The direction of ciliary beating is coordinated both within cells and at the tissue level by a combination of planar polarity cues affecting BB position and hydrodynamic forces that are both generated and sensed by the cilia. Herein, we review the mechanisms controlling the specification and differentiation of MCCs and BB assembly and organization at the apical surface, as well as ciliary assembly and coordination in MCCs. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.
Mechanical design of a 3-stage ADR for the Astro-H mission
NASA Astrophysics Data System (ADS)
James, Bryan L.; Martinez, Raul M.; Shirron, Peter; Tuttle, Jim; Francis, John J.; San Sebastian, Marcelino; Wegel, Donald C.; Galassi, Nicholas M.; McGuinness, Daniel S.; Puckett, David; Flom, Yury
2012-04-01
The X-ray micro-calorimeter array in the Soft X-ray Spectrometer (SXS) instrument on Astro-H will be cooled by a 3-stage adiabatic demagnetization refrigerator (ADR). The ADR consists of two mechanically independent assemblies. When integrated with a mounting structure and the detector assembly, they form a self-contained unit that will be inserted into the top end of a liquid helium tank. The unique configuration requires many components and sub-assemblies to be thermally isolated from their structural mount. Normally in an ADR this is limited to suspending cold salt pills within their (much warmer) magnets, but in the case of SXS, it also involves one ADR stage being supported by, but thermally isolated from, the helium tank. This paper will describe the complex thermal and mechanical design of the SXS ADR, and summarize vibration and mechanical properties tests that have been performed to validate the design.
Boron-copper neutron absorbing material and method of preparation
Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry
1991-01-01
A composite, copper clad neutron absorbing material is comprised of copper powder and boron powder enriched with boron 10. The boron 10 content can reach over 30 percent by volume, permitting a very high level of neutron absorption. The copper clad product is also capable of being reduced to a thickness of 0.05 to 0.06 inches and curved to a radius of 2 to 3 inches, and can resist temperatures of 900.degree. C. A method of preparing the material includes the steps of compacting a boron-copper powder mixture and placing it in a copper cladding, restraining the clad assembly in a steel frame while it is hot rolled at 900.degree. C. with cross rolling, and removing the steel frame and further rolling the clad assembly at 650.degree. C. An additional sheet of copper can be soldered onto the clad assembly so that the finished sheet can be cold formed into curved shapes.
Radial flow nuclear thermal rocket (RFNTR)
Leyse, Carl F.
1995-11-07
A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.
Radial flow nuclear thermal rocket (RFNTR)
Leyse, Carl F.
1995-01-01
A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.
NASA Astrophysics Data System (ADS)
Saito, Shun; Leauthaud, Alexie; Hearin, Andrew P.; Bundy, Kevin; Zentner, Andrew R.; Behroozi, Peter S.; Reid, Beth A.; Sinha, Manodeep; Coupon, Jean; Tinker, Jeremy L.; White, Martin; Schneider, Donald P.
2016-08-01
We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) `CMASS' sample at z ˜ 0.5. We introduce a novel method which accounts for the stellar mass incompleteness of CMASS as a function of redshift, and produce CMASS mock catalogues which include selection effects, reproduce the overall SMF, the projected two-point correlation function wp, the CMASS dn/dz, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of `age matching' and show that these effects are markedly different compared to the ones explored by Hearin et al. at lower stellar masses. We construct two models, one in which galaxy colour is stochastic (`AbM' model) as well as a model which contains assembly bias effects (`AgM' model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colours are not a stochastic process in high-mass haloes. Our results suggest that the colours of galaxies in high-mass haloes are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.
Chemistry with Inexpensive Materials: Spray Bottles and Plastic Bags.
ERIC Educational Resources Information Center
Zoltewicz, Susan
1993-01-01
Presents eight chemistry activities that are interesting and involve simple, easily available materials. Topics include mystery writing, valentine hearts, flame tests, evaporation race, buoyancy versus mass, determination of relative masses of gases, mole sample container, and cold and hot packs. (DDR)
Moist Climates with an Ineffective Cold Trap
NASA Astrophysics Data System (ADS)
Ding, F.; Pierrehumbert, R.
2016-12-01
The tropopause of the Earth's atmosphere behaves as a cold trap, limiting the water vapor transport from the humid sea surface to the dry regions in the atmosphere including both the upper atmosphere and the highly sub-saturated places in the free troposphere. It is hypothesized that during some period of time on Earth, the cold trap mechanism would become less effective, due to either a reduced nitrogen inventory in the atmosphere or high surface temperatures. An ineffective cold trap favors a moist upper atmosphere and will lead to rapid water loss by the ultraviolet photodissociation, which was well studied in one-dimensional models. However, the effect of an ineffective cold trap on 3D climates has not yet received much attention. Here we explore the 3D effect with an idealized general circulation model especially designed for studying condensible-rich atmospheres. We consider two scenarios based on the orbital configuration of the planet. (a) With Earth's orbital parameters, sub-saturation in the free troposphere is difficult to be produced by large-scale atmospheric flows, which implies that an ineffective cold trap also favors the onset of the runaway greenhouse. (b) For synchronous-rotating planets, water vapor is easier to be transported to the nightside, building up an atmosphere with similar column water mass as the dayside. For extrasolar habitable planets detections around M dwarfs in the future, if the water vapor contrast between the day and night side could be provided by the phase-resolved emission spectra, the contrast might be useful as a constraint for evaluating the mass of the non-condensible components in the atmosphere.
Ignition characterization of LOX/hydrocarbon propellants
NASA Technical Reports Server (NTRS)
Lawver, B. R.; Rousar, D. C.; Wong, K. Y.
1985-01-01
The results of an evaluation of the ignition characteristics of the gaseous oxygen (Gox)/Ethanol propellant combination are presented. Ignition characterization was accomplished through the analysis, design, fabrication and testing of a spark initiated torch igniter and prototype 620 lbF thruster/igniter assembly. The igniter was tested over a chamber pressure range of 74 to 197 psia and mixture ratio range of 0.778 to 3.29. Cold (-92 to -165 F) and ambient (44 to 80 F) propellant temperatures were used. Spark igniter ignition limits and thruster steady state and pulse mode, performance, cooling and stability data are presented. Spark igniter ignition limits are presented in terms of cold flow pressure, ignition chamber diameter and mixture ratio. Thruster performance is presented in terms of vacuum specific impulse versus engine mixture ratio. Gox/Ethanol propellants were shown to be ignitable over a wide range of mixture ratios. Cold propellants were shown to have a minor effect on igniter ignition limits. Thruster pulse mode capability was demonstrated with multiple pulses of 0.08 sec duration and less.
Weather and environmental hazards at mass gatherings.
Soomaroo, Lee; Murray, Virginia
2012-07-31
Introduction Reviews of mass gathering events have traditionally concentrated on crowd variables that affect the level and type of medical care needed. Weather and environmental hazards at mass gathering events have not been fully researched. This review examines these events and aims to provide future suggestions for event organisers, medical resource planners, and emergency services, including local hospital emergency departments. Methods A review was conducted using computerised data bases: MEDLINE, The Cochrane Library, HMIC and EMBASE, with Google used to widen the search beyond peer-reviewed publications, to identify grey literature. All peer-review literature articles found containing information pertaining to lessons identified from mass gathering disasters due to weather or environmental hazards leading to participant death, injury or illness were analysed and reviewed. Disasters occurring due to crowd variables were not included. These articles were read, analysed, abstracted and summarised. Results 20 articles from literature search were found detailing mass gathering disasters relating directly to weather or environmental hazards from 1988 - 2011, with only 17 cases found within peer-review literature. Two events grey literature from 2011 are due to undergo further inquiry while one article reviews an event originally occurring in 1922. Analysis of cases were categorised in to heat and cold-related events, lightning and storms and disease outbreak. Conclusions Mass gathering events have an enormous potential to place a severe strain on the local health care system, Prior health resource and environmental planning for heat & cold-related illness, lightning & storms, and disease outbreak can advance emergency preparedness and response to potential disasters. Soomaroo L, Murray V. Weather and Environmental Hazards at Mass Gatherings. PLoS Currents Disasters. 2012 Jul 31 KEYWORDS: Mass Gatherings, Disasters, Sporting Events, Festivals, Concerts, Storm, Lightning, Cyclone, Hot-weather illness, Cold-weather illness, Disease, Public Health, Syndromic Surveillance Abbreviations: ALS - Advance Life support; BLS - Basic Life support; ED - Emergency Department; EMS - Emergency Medical Services; PPR - Patient Presentation Rate.
Weather and Environmental Hazards at Mass Gatherings
Soomaroo, Lee; Murray, Virginia
2012-01-01
Introduction Reviews of mass gathering events have traditionally concentrated on crowd variables that affect the level and type of medical care needed. Weather and environmental hazards at mass gathering events have not been fully researched. This review examines these events and aims to provide future suggestions for event organisers, medical resource planners, and emergency services, including local hospital emergency departments. Methods A review was conducted using computerised data bases: MEDLINE, The Cochrane Library, HMIC and EMBASE, with Google used to widen the search beyond peer-reviewed publications, to identify grey literature. All peer-review literature articles found containing information pertaining to lessons identified from mass gathering disasters due to weather or environmental hazards leading to participant death, injury or illness were analysed and reviewed. Disasters occurring due to crowd variables were not included. These articles were read, analysed, abstracted and summarised. Results 20 articles from literature search were found detailing mass gathering disasters relating directly to weather or environmental hazards from 1988 – 2011, with only 17 cases found within peer-review literature. Two events grey literature from 2011 are due to undergo further inquiry while one article reviews an event originally occurring in 1922. Analysis of cases were categorised in to heat and cold-related events, lightning and storms and disease outbreak. Conclusions Mass gathering events have an enormous potential to place a severe strain on the local health care system, Prior health resource and environmental planning for heat & cold-related illness, lightning & storms, and disease outbreak can advance emergency preparedness and response to potential disasters. Citation: Soomaroo L, Murray V. Weather and Environmental Hazards at Mass Gatherings. PLoS Currents Disasters. 2012 Jul 31 Keywords: Mass Gatherings, Disasters, Sporting Events, Festivals, Concerts, Storm, Lightning, Cyclone, Hot-weather illness, Cold-weather illness, Disease, Public Health, Syndromic Surveillance Abbreviations: ALS – Advance Life support; BLS – Basic Life support; ED – Emergency Department; EMS – Emergency Medical Services; PPR – Patient Presentation Rate PMID:22953242
Modular transportable superconducting magnetic energy systems
NASA Technical Reports Server (NTRS)
Lieurance, Dennis; Kimball, Foster; Rix, Craig
1995-01-01
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.
Modular transportable superconducting magnetic energy systems
NASA Astrophysics Data System (ADS)
Lieurance, Dennis; Kimball, Foster; Rix, Craig
1995-04-01
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.
Low-Cost Cold-Gas RCS for the Sloshsat Small Satellite
NASA Astrophysics Data System (ADS)
Adler, S.; Warshavsky, A.; Peretz, A.
2002-01-01
Cold gas thrusters usually provide an inexpensive, highly reliable, low-power consuming, non contaminating, and safe auxiliary propulsion means for small spacecraft. A low-cost cold-gas Reaction Control System (RCS) has been designed and developed to provide linear acceleration and rotation control of the SLOSHSAT satellite for liquid-slosh experimentation. This ESA-sponsored mini-spacecraft will be launched by the Space Shuttle and ejected into space from its hitchhiker bay. The RCS was designed and developed according to man rated safety standards, as required by NASA. The RCS comprises four identical spherical carbon/epoxy-wound stainless steel tanks, which store 1.6 kg of nitrogen at 600 bars, corresponding to a maximum rated temperature of 70°C. The relatively high pressure enables economic utilization of the limited space available in small satellites. The tanks are of a "leak before burst" design, which was subjected to a comprehensive finite-element stress analysis. They were developed and tested in accordance with MIL-STD-1522A, with a proof pressure and a minimum burst pressure of 1000 and 1700 bars, respectively. Each tank has an internal volume of 0.97 l, and is equipped with an attached accessories assembly, that includes a pyrovalve and a filter. The RCS was supplied with the tanks prepressurized and sealed to 473 bars (at 20°C). The whole system is pressurized only after the satellite is in its orbit, by activating the tank's pyrovalve. This unique approach enables to supply a sealed RCS system and propellant loading activities are not necessary before launch. Additionally, this approach has safety advantages that were meaningful to meet the NASA safety requirements. The pyrovalve includes a RAFAEL-developed initiator, which complies with MIL-STD-1576, and passed all required testing, including ESD tests with the resistor removed, as demanded by NASA for approval. The pyrovalve is of a "self seal" design, which includes a sealing mechanism, that seals the system from contamination during the pyrovalve actuation. The test port valve allows proof-pressure and leakage testing of the assembled system. The tanks and their accessories were subjected to extensive qualification testing and met the requirements of a stringent acceptance test procedure. The N2 propellant is supplied to twelve 0.8-N thrusters, at a steady regulated pressure of 15.5 bars. Accurate regulated pressure is obtained by a two stage regulating system, which accepts pressure input range of 600 to 40 bar. The thrusters were especially developed to meet the specific program requirements. They will normally be operated in pairs. For safety reasons and redundancy two relief valves are mounted downstream of the regulators. Each valve can handle the total flow with a minimum pressure rise, which defines the Maximum Operating Pressure (MEOP) in the low-pressure section of the system. The pressure surge phenomenon that follows the pyrovalve actuation was precisely analyzed, and tested in simulated conditions. A surge damper is successfully applied to the gas pipeline, significantly lowering the pressure surge. The sensitivity of the regulated pressure to the pulse modulation of the thrusters was examined. Due to the lock pressure of the regulators, and the difference between the static and dynamic regulated pressure levels, the average pressure was found to depend on the pulse duty cycle. This phenomenon was investigated and a model that predicts the pressure level according to the mass flow rate and pulse modulation was established. A breadboard test system, that completely simulates the pneumatic nature of the SLOSHSAT RCS, was constructed and used for ground test evaluation of the RCS performance in various modes of operation (continuous and pulses of various duty cycles). Computerized data acquisition and data reduction was used for pressure, temperature and mass flow measurements at several locations in the system. The breadboard system was also used for development experiments and investigation of various transient and steady state phenomena to enable successful performance prediction for operation in space. In order to establish appropriate assembly procedures for the RCS in the limited space allocated for it in the SLOSHSAT, a mock-up of the final satellite configuration, an Assembly and Testing System (ATS), was constructed. The complete RCS integrated in the ATS was subjected to vibration tests, followed by proof pressure, leakage and performance tests, as a part of the RCS qualification. All RCS components, except for the thrusters, are off-the-shelf items, adapted for space application by meeting stringent NASA/ESA man-rated mission requirements. A cooperative effort between FOKKER-SPACE and NLR of the Netherlands and RAFAEL of Israel enabled a very efficient RCS architecture that satisfies the limiting volume constraints. This approach made it possible to attain a man-rated, space-qualified cold-gas propulsion system with low-cost and safety and high- reliability attributes.
Charge detection mass spectrometry: Instrumentation & applications to viruses
NASA Astrophysics Data System (ADS)
Pierson, Elizabeth E.
For over three decades, electrospray ionization (ESI) has been used to ionize non-covalent complexes and subsequently transfer the intact ion into the gas phase for mass spectrometry (MS) analysis. ESI generates a distribution of multiple charged ions, resulting in an m/z spectrum comprised of a series of peaks, known as a charge state envelope. To obtain mass information, the number of charges for each peak must be deduced. For smaller biological analytes like peptides, the charge states are sufficiently resolved and this process is straightforward. For macromolecular complexes exceeding ~100 kDa, this process is complicated by the broadening and shifting of charge states due to incomplete desolvation, salt adduction, and inherent mass heterogeneity. As the analyte mass approaches the MDa regime, the m/z spectrum is often comprised of a broad distribution of unresolved charge states. In such cases, mass determination is precluded. Charge detection mass spectrometry (CDMS) is an emerging MS technique for determining the masses of heterogeneous, macromolecular complexes. In CDMS, the m/z and z of single ions are measured concurrently so that mass is easily calculated. With this approach, deconvolution of an m/z spectrum is unnecessary. This measurement is carried out by passing macroions through a conductive cylinder. The induced image charge on the cylindrical detector provides information about m/z and z: the m/z is related to its time-of-flight through the detector, and the z is related to the intensity of the image charge. We have applied CDMS to study the self-assembly of virus capsids. Late-stage intermediates in the assembly of hepatitis B virus, a devastating human pathogen, have been identified. This is the first time that such intermediates have been detected and represent a significant advancement towards understanding virus capsid assembly. CDMS has also been used to identify oversized, non-icosahedral polymorphs in the assembly of woodchuck hepatitis virus capsids. Finally, CDMS has been used to characterize the purity of adeno-associated viral vectors for potential gene therapy applications.
A hydrodynamic treatment of the tilted cold dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah P.
1993-01-01
A standard hydrodynamic code coupled with a particle-mesh code is used to compute the evolution of a tilted cold dark matter (TCDM) model containing both baryonic matter and dark matter. Six baryonic species are followed, with allowance for both collisional and radiative ionization in every cell. The mean final Zel'dovich-Sunyaev y parameter is estimated to be (5.4 +/- 2.7) x 10 exp -7, below currently attainable observations, with an rms fluctuation of about (6.0 +/- 3.0) x 10 exp -7 on arcmin scales. The rate of galaxy formation peaks at a relatively late epoch (z is about 0.5). In the case of mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of 10 exp 9.1 solar masses, with a reasonable fit to the Schechter luminosity function if the baryon mass to blue light ratio is about 4. It is shown that a bias factor of 2 required for the model to be consistent with COBE DMR signals is probably a natural outcome in the present multiple component simulations.
NASA Astrophysics Data System (ADS)
Simons, Raymond C.; Kassin, Susan A.; Trump, Jonathan R.; Weiner, Benjamin J.; Heckman, Timothy M.; Barro, Guillermo; Koo, David C.; Guo, Yicheng; Pacifici, Camilla; Koekemoer, Anton; Stephens, Andrew W.
2016-10-01
We present results from a survey of the internal kinematics of 49 star-forming galaxies at z˜ 2 in the CANDELS fields with the Keck/MOSFIRE spectrograph, Survey in the near-Infrared of Galaxies with Multiple position Angles (SIGMA). Kinematics (rotation velocity V rot and gas velocity dispersion {σ }g) are measured from nebular emission lines which trace the hot ionized gas surrounding star-forming regions. We find that by z˜ 2, massive star-forming galaxies ({log} {M}* /{M}⊙ ≳ 10.2) have assembled primitive disks: their kinematics are dominated by rotation, they are consistent with a marginally stable disk model, and they form a Tully-Fisher relation. These massive galaxies have values of {V}{rot}/{σ }g that are factors of 2-5 lower than local well-ordered galaxies at similar masses. Such results are consistent with findings by other studies. We find that low-mass galaxies ({log} {M}* /{M}⊙ ≲ 10.2) at this epoch are still in the early stages of disk assembly: their kinematics are often dominated by gas velocity dispersion and they fall from the Tully-Fisher relation to significantly low values of V rot. This “kinematic downsizing” implies that the process(es) responsible for disrupting disks at z˜ 2 have a stronger effect and/or are more active in low-mass systems. In conclusion, we find that the period of rapid stellar mass growth at z˜ 2 is coincident with the nascent assembly of low-mass disks and the assembly and settling of high-mass disks.
Nguyen, Thai Phuong; Chang, Wei-Chang; Lai, Yen-Chih; Hsiao, Ta-Chih; Tsai, De-Hao
2017-10-01
In this work, we develop an aerosol-based, time-resolved ion mobility-coupled mass characterization method to investigate colloidal assembly of graphene oxide (GO)-silver nanoparticle (AgNP) hybrid nanostructure on a quantitative basis. Transmission electron microscopy (TEM) and zeta potential (ZP) analysis were used to provide visual information and elemental-based particle size distributions, respectively. Results clearly show a successful controlled assembly of GO-AgNP by electrostatic-directed heterogeneous aggregation between GO and bovine serum albumin (BSA)-functionalized AgNP under an acidic environment. Additionally, physical size, mass, and conformation (i.e., number of AgNP per nanohybrid) of GO-AgNP were shown to be proportional to the number concentration ratio of AgNP to GO (R) and the selected electrical mobility diameter. An analysis of colloidal stability of GO-AgNP indicates that the stability increased with its absolute ZP, which was dependent on R and environmental pH. The work presented here provides a proof of concept for systematically synthesizing hybrid colloidal nanomaterials through the tuning of surface chemistry in aqueous phase with the ability in quantitative characterization. Graphical Abstract Colloidal assembly of graphene oxide-silver nanoparticle hybrids characterized by aerosol differential mobility-coupled mass analyses.
Advanced Metalworking Solutions For Naval Systems That Go In Harm’s Way
2015-01-01
destroyers USS Momsen (DDG 92) and USS Preble (DDG 88) are underway in formation. U.S. Navy photo Front cover: Ingalls Shipbuilding welding photo...applies a variety of innovative welding technologies to address the challenges associated with joining weapon system components. Joining Technologies...friction stir welding process to manufacture edge-cooled naval electronic cold plate assemblies. The modular, high- performance, and scalable
Preliminary Design Guide for Arctic Equipment
1989-05-01
areas that need to be addressed. The components of the various assemblies that Metals , plastics and elastomers make up the subject piece of equipment...polyester elastomer . Allow sufficient length for contraction (- 10- in./in, per IF). Do not allow long, unsup- ported lengths of hose . Lubricants Viscosity...this compressed air cools upon several manufacturers offer teflon hoses with expansion and contact with a cold surface, the braided stainless steel
Hyson, Peter; Shapiro, Joshua A; Wien, Michelle W
2015-10-08
Exiguobacterium sp. strain BMC-KP was isolated as part of a student environmental sampling project at Bryn Mawr College, PA. Sequencing of bacterial DNA assembled a 3.32-Mb draft genome. Analysis suggests the presence of genes for tolerance to cold and toxic metals, broad carbohydrate metabolism, and genes derived from phage. Copyright © 2015 Hyson et al.
Singlet particles as cold dark matter in a noncommutative space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettefaghi, M. M.
2009-03-15
We extend the noncommutative (NC) standard model to incorporate singlet particles as cold dark matter. In the NC space-time, the singlet particles can be coupled to the U(1) gauge field in the adjoint representation. We study the relic density of the singlet particles due to the NC induced interaction. Demanding either the singlet fermion or the singlet scalar to serve as cold dark matter and the NC induced interactions to be relevant to the dark matter production, we obtain the corresponding relations between the NC scale and the dark matter masses, which are consistent with some existing bounds.
Cold light dark matter in extended seesaw models
NASA Astrophysics Data System (ADS)
Boulebnane, Sami; Heeck, Julian; Nguyen, Anne; Teresi, Daniele
2018-04-01
We present a thorough discussion of light dark matter produced via freeze-in in two-body decays A→ B DM . If A and B are quasi-degenerate, the dark matter particle has a cold spectrum even for keV masses. We show this explicitly by calculating the transfer function that encodes the impact on structure formation. As examples for this setup we study extended seesaw mechanisms with a spontaneously broken global U(1) symmetry, such as the inverse seesaw. The keV-scale pseudo-Goldstone dark matter particle is then naturally produced cold by the decays of the quasi-degenerate right-handed neutrinos.
Schneider, Valerie A; Graves-Lindsay, Tina; Howe, Kerstin; Bouk, Nathan; Chen, Hsiu-Chuan; Kitts, Paul A; Murphy, Terence D; Pruitt, Kim D; Thibaud-Nissen, Françoise; Albracht, Derek; Fulton, Robert S; Kremitzki, Milinn; Magrini, Vincent; Markovic, Chris; McGrath, Sean; Steinberg, Karyn Meltz; Auger, Kate; Chow, William; Collins, Joanna; Harden, Glenn; Hubbard, Timothy; Pelan, Sarah; Simpson, Jared T; Threadgold, Glen; Torrance, James; Wood, Jonathan M; Clarke, Laura; Koren, Sergey; Boitano, Matthew; Peluso, Paul; Li, Heng; Chin, Chen-Shan; Phillippy, Adam M; Durbin, Richard; Wilson, Richard K; Flicek, Paul; Eichler, Evan E; Church, Deanna M
2017-05-01
The human reference genome assembly plays a central role in nearly all aspects of today's basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health. © 2017 Schneider et al.; Published by Cold Spring Harbor Laboratory Press.
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)
2003-01-01
A process for testing compaction of a swaged heater for an anode sub-assembly of a Hollow Cathode Assembly (HCA), in which a test sample is cleaned, its mass measured before and after immersion in kerosene for 24 hours, and a compaction percentage calculated. A swaged heater is rejected if the compaction percentage exceeds 84%, plus or minus 4%.
Checking the compatibility of the cold Kuiper belt with a planetary instability migration model
NASA Astrophysics Data System (ADS)
Gomes, Rodney; Nesvorný, David; Morbidelli, Alessandro; Deienno, Rogerio; Nogueira, Erica
2018-05-01
The origin of the orbital structure of the cold component of the Kuiper belt is still a hot subject of investigation. Several features of the solar system suggest that the giant planets underwent a phase of global dynamical instability, but the actual dynamical evolution of the planets during the instability is still debated. To explain the structure of the cold Kuiper belt, Nesvorny (2015, AJ 150,68) argued for a "soft" instability, during which Neptune never achieved a very eccentric orbit. Here we investigate the possibility of a more violent instability, from an initially more compact fully resonant configuration of 5 giant planets. We show that the orbital structure of the cold Kuiper belt can be reproduced quite well provided that the cold population formed in situ, with an outer edge between 44 - 45 au and never had a large mass.
NASA Technical Reports Server (NTRS)
Cousins, D.; Akin, D. L.
1989-01-01
Measurements of the level and pattern of moments applied in the manual assembly of a space structure were made in extravehicular activity (EVA) and neutral buoyancy simulation (NBS). The Experimental Assembly of Structures in EVA program included the repeated assembly of a 3.6 m tetrahedral truss structure in EVA on STS-61B after extensive neutral buoyancy crew training. The flight and training structures were of equivalent mass and geometry to allow a direct correlation between EVA and NBS performance. A stereo photographic motion camera system was used to reconstruct in three dimensions rotational movements of structural beams during assembly. Moments applied in these manual handling tasks were calculated on the basis of the reconstructed movements taking into account effects of inertia, drag and virtual mass. Applied moments of 2.0 Nm were typical for beam rotations in EVA. Corresponding applied moments in NBS were typically up to five times greater. Moments were applied as impulses separated by several seconds of coasting in both EVA and NBS. Decelerating impulses were only infrequently observed in NBS.
Sashital, Dipali G; Greeman, Candacia A; Lyumkis, Dmitry; Potter, Clinton S; Carragher, Bridget; Williamson, James R
2014-01-01
Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3′ domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3′-domain is unanchored and the 5′-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells. DOI: http://dx.doi.org/10.7554/eLife.04491.001 PMID:25313868
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pond, R.B.; Matos, J.E.
1996-05-01
As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, aremore » not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.« less
Isocurvature cold dark matter fluctuations
NASA Technical Reports Server (NTRS)
Efstathiou, G.; Bond, J. R.
1986-01-01
According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.
Microchannel laminated mass exchanger and method of making
Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA
2003-03-18
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
Microchannel laminated mass exchanger and method of making
Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun
2000-01-01
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
Microchannel laminated mass exchanger and method of making
Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA
2002-03-05
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
Development Status of the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Pearson, Jon Boise; Godfoy, Thomas
2012-01-01
This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at GRC.
Development Status of the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M; Pearson, Jon Boise; Godfroy, Thomas
2012-01-01
This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at NASA GRC.
The International Space Station human life sciences experiment implementation process
NASA Technical Reports Server (NTRS)
Miller, L. J.; Haven, C. P.; McCollum, S. G.; Lee, A. M.; Kamman, M. R.; Baumann, D. K.; Anderson, M. E.; Buderer, M. C.
2001-01-01
The selection, definition, and development phases of a Life Sciences flight research experiment has been consistent throughout the past decade. The implementation process, however, has changed significantly within the past two years. This change is driven primarily by the shift from highly integrated, dedicated research missions on platforms with well defined processes to self contained experiments with stand alone operations on platforms which are being concurrently designed. For experiments manifested on the International Space Station (ISS) and/or on short duration missions, the more modular, streamlined, and independent the individual experiment is, the more likely it is to be successfully implemented before the ISS assembly is completed. During the assembly phase of the ISS, science operations are lower in priority than the construction of the station. After the station has been completed, it is expected that more resources will be available to perform research. The complexity of implementing investigations increases with the logistics needed to perform the experiment. Examples of logistics issues include- hardware unique to the experiment; large up and down mass and volume needs; access to crew and hardware during the ascent or descent phases; maintenance of hardware and supplies with a limited shelf life,- baseline data collection schedules with lengthy sessions or sessions close to the launch or landing; onboard stowage availability, particularly cold stowage; and extensive training where highly proficient skills must be maintained. As the ISS processes become better defined, experiment implementation will meet new challenges due to distributed management, on-orbit resource sharing, and adjustments to crew availability pre- and post-increment. c 2001. Elsevier Science Ltd. All rights reserved.
Rowland, Lisa J; Alkharouf, Nadim; Darwish, Omar; Ogden, Elizabeth L; Polashock, James J; Bassil, Nahla V; Main, Dorrie
2012-04-02
There has been increased consumption of blueberries in recent years fueled in part because of their many recognized health benefits. Blueberry fruit is very high in anthocyanins, which have been linked to improved night vision, prevention of macular degeneration, anti-cancer activity, and reduced risk of heart disease. Very few genomic resources have been available for blueberry, however. Further development of genomic resources like expressed sequence tags (ESTs), molecular markers, and genetic linkage maps could lead to more rapid genetic improvement. Marker-assisted selection could be used to combine traits for climatic adaptation with fruit and nutritional quality traits. Efforts to sequence the transcriptome of the commercial highbush blueberry (Vaccinium corymbosum) cultivar Bluecrop and use the sequences to identify genes associated with cold acclimation and fruit development and develop SSR markers for mapping studies are presented here. Transcriptome sequences were generated from blueberry fruit at different stages of development, flower buds at different stages of cold acclimation, and leaves by next-generation Roche 454 sequencing. Over 600,000 reads were assembled into approximately 15,000 contigs and 124,000 singletons. The assembled sequences were annotated and functionally mapped to Gene Ontology (GO) terms. Frequency of the most abundant sequences in each of the libraries was compared across all libraries to identify genes that are potentially differentially expressed during cold acclimation and fruit development. Real-time PCR was performed to confirm their differential expression patterns. Overall, 14 out of 17 of the genes examined had differential expression patterns similar to what was predicted from their reads alone. The assembled sequences were also mined for SSRs. From these sequences, 15,886 blueberry EST-SSR loci were identified. Primers were designed from 7,705 of the SSR-containing sequences with adequate flanking sequence. One hundred primer pairs were tested for amplification and polymorphism among parents of two blueberry populations currently being used for genetic linkage map construction. The tetraploid mapping population was based on a cross between the highbush cultivars Draper and Jewel (V. darrowii is also in the background of 'Jewel'). The diploid mapping population was based on a cross between an F1 hybrid of V. darrowii and diploid V. corymbosum and another diploid V. corymbosum. The overall amplification rate of the SSR primers was 68% and the polymorphism rate was 43%. These results indicate that this large collection of 454 ESTs will be a valuable resource for identifying genes that are potentially differentially expressed and play important roles in flower bud development, cold acclimation, chilling unit accumulation, and fruit development in blueberry and related species. In addition, the ESTs have already proved useful for the development of SSR and EST-PCR markers, and are currently being used for construction of genetic linkage maps in blueberry.
2012-01-01
Background There has been increased consumption of blueberries in recent years fueled in part because of their many recognized health benefits. Blueberry fruit is very high in anthocyanins, which have been linked to improved night vision, prevention of macular degeneration, anti-cancer activity, and reduced risk of heart disease. Very few genomic resources have been available for blueberry, however. Further development of genomic resources like expressed sequence tags (ESTs), molecular markers, and genetic linkage maps could lead to more rapid genetic improvement. Marker-assisted selection could be used to combine traits for climatic adaptation with fruit and nutritional quality traits. Results Efforts to sequence the transcriptome of the commercial highbush blueberry (Vaccinium corymbosum) cultivar Bluecrop and use the sequences to identify genes associated with cold acclimation and fruit development and develop SSR markers for mapping studies are presented here. Transcriptome sequences were generated from blueberry fruit at different stages of development, flower buds at different stages of cold acclimation, and leaves by next-generation Roche 454 sequencing. Over 600,000 reads were assembled into approximately 15,000 contigs and 124,000 singletons. The assembled sequences were annotated and functionally mapped to Gene Ontology (GO) terms. Frequency of the most abundant sequences in each of the libraries was compared across all libraries to identify genes that are potentially differentially expressed during cold acclimation and fruit development. Real-time PCR was performed to confirm their differential expression patterns. Overall, 14 out of 17 of the genes examined had differential expression patterns similar to what was predicted from their reads alone. The assembled sequences were also mined for SSRs. From these sequences, 15,886 blueberry EST-SSR loci were identified. Primers were designed from 7,705 of the SSR-containing sequences with adequate flanking sequence. One hundred primer pairs were tested for amplification and polymorphism among parents of two blueberry populations currently being used for genetic linkage map construction. The tetraploid mapping population was based on a cross between the highbush cultivars Draper and Jewel (V. darrowii is also in the background of 'Jewel'). The diploid mapping population was based on a cross between an F1 hybrid of V. darrowii and diploid V. corymbosum and another diploid V. corymbosum. The overall amplification rate of the SSR primers was 68% and the polymorphism rate was 43%. Conclusions These results indicate that this large collection of 454 ESTs will be a valuable resource for identifying genes that are potentially differentially expressed and play important roles in flower bud development, cold acclimation, chilling unit accumulation, and fruit development in blueberry and related species. In addition, the ESTs have already proved useful for the development of SSR and EST-PCR markers, and are currently being used for construction of genetic linkage maps in blueberry. PMID:22471859
Engine balance apparatus and accessory drive device
NASA Technical Reports Server (NTRS)
Brogdon, James William (Inventor); Gill, David Keith (Inventor)
2000-01-01
A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons such as those engines used in automobiles, aircrafts, boats, piston-driven compressors, piston-driven slider crank mechanisms, etc. The present balancing mechanism may comprise a first balance mass non-rotatably affixed to the crankshaft and a second balance mass rotatably supported on the crankshaft. A driver assembly is affixed to crankshaft to cause the second balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components.
Krol, M; Huner, N P; Williams, J P; Maissan, E
1988-02-01
Etiolated seedlings developed at cold-hardening temperatures (5°C) exhibited etioplasts with considerable vesiculation of internal membranes compared to etioplasts developed at 20°C regardless of the osmotic concentration employed during sample preparation. This vesiculation disappeared during exposure to continuous light at 5°C. This transformation of 5°C and 20°C etioplasts to chloroplasts under continuous light at 5° and 20°C respectively proceeded normally with the initial development of non-appressed lamellae and the subsequent appearance of granal stacks. However, chloroplasts developed at 5°C exhibited fewer lamellae per granum than chloroplasts developed at 20°C.Although the polypeptide complements of etioplasts and chloroplasts developed at 5° or 20°C were not significantly different, monomeric light harvesting complex (LHCII3) was assembled into oligomeric light harvesting complex (LHCII1) during chloroplast biogenesis at 20°C (oligomer:monomer =1.8) whereas monomeric LHCII predominated at 5°C (oligomer:monomer =0.3). Low temperature fluorescence emission spectra of isolated thylakoids indicated that both the F685/F735 and F695/F735 were significantly higher after greening at 5°C than at 20°C. In addition, chloroplast biogenesis at 5°C was associated with a low ratio of trans-Δ3-hexadecenoic acid (0.5) in phosphatidylglycerol whereas at 20°C biogenesis was associated with a high ratio (1.6). Comparative kinetics indicated that the maximization of the trans-Δ3-hexadecenoic acid level precedes the assembly of monomeric LHCII into oligomeric LHCII during biogenesis at 20°C. It is suggested that low developmental temperatures modulate the assembly of LHCII by reducing the trans-Δ3-hexadecenoic acid content of phosphatidylglycerol such that monomeric or some intermediate form of LHCII predominates.
Genomes of Novel Microbial Lineages Assembled from the Sub-Ice Waters of Lake Baikal
Cabello-Yeves, Pedro J.; Zemskaya, Tamara I.; Rosselli, Riccardo; Coutinho, Felipe H.; Zakharenko, Alexandra S.; Blinov, Vadim V.
2017-01-01
ABSTRACT We present a metagenomic study of Lake Baikal (East Siberia). Two samples obtained from the water column under the ice cover (5 and 20 m deep) in March 2016 have been deep sequenced and the reads assembled to generate metagenome-assembled genomes (MAGs) that are representative of the microbes living in this special environment. Compared with freshwater bodies studied around the world, Lake Baikal had an unusually high fraction of Verrucomicrobia. Other groups, such as Actinobacteria and Proteobacteria, were in proportions similar to those found in other lakes. The genomes (and probably cells) tended to be small, presumably reflecting the extremely oligotrophic and cold prevalent conditions. Baikal microbes are novel lineages recruiting very little from other water bodies and are distantly related to other freshwater microbes. Despite their novelty, they showed the closest relationship to genomes discovered by similar approaches from other freshwater lakes and reservoirs. Some of them were particularly similar to MAGs from the Baltic Sea, which, although it is brackish, connected to the ocean, and much more eutrophic, has similar climatological conditions. Many of the microbes contained rhodopsin genes, indicating that, in spite of the decreased light penetration allowed by the thick ice/snow cover, photoheterotrophy could be widespread in the water column, either because enough light penetrates or because the microbes are already adapted to the summer ice-less conditions. We have found a freshwater SAR11 subtype I/II representative showing striking synteny with Pelagibacter ubique strains, as well as a phage infecting the widespread freshwater bacterium Polynucleobacter. IMPORTANCE Despite the increasing number of metagenomic studies on different freshwater bodies, there is still a missing component in oligotrophic cold lakes suffering from long seasonal frozen cycles. Here, we describe microbial genomes from metagenomic assemblies that appear in the upper water column of Lake Baikal, the largest and deepest freshwater body on Earth. This lake is frozen from January to May, which generates conditions that include an inverted temperature gradient (colder up), decrease in light penetration due to ice, and, especially, snow cover, and oligotrophic conditions more similar to the open-ocean and high-altitude lakes than to other freshwater or brackish systems. As could be expected, most reconstructed genomes are novel lineages distantly related to others in cold environments, like the Baltic Sea and other freshwater lakes. Among them, there was a broad set of streamlined microbes with small genomes/intergenic spacers, including a new nonmarine Pelagibacter-like (subtype I/II) genome. PMID:29079621
Genomes of Novel Microbial Lineages Assembled from the Sub-Ice Waters of Lake Baikal.
Cabello-Yeves, Pedro J; Zemskaya, Tamara I; Rosselli, Riccardo; Coutinho, Felipe H; Zakharenko, Alexandra S; Blinov, Vadim V; Rodriguez-Valera, Francisco
2018-01-01
We present a metagenomic study of Lake Baikal (East Siberia). Two samples obtained from the water column under the ice cover (5 and 20 m deep) in March 2016 have been deep sequenced and the reads assembled to generate metagenome-assembled genomes (MAGs) that are representative of the microbes living in this special environment. Compared with freshwater bodies studied around the world, Lake Baikal had an unusually high fraction of Verrucomicrobia Other groups, such as Actinobacteria and Proteobacteria , were in proportions similar to those found in other lakes. The genomes (and probably cells) tended to be small, presumably reflecting the extremely oligotrophic and cold prevalent conditions. Baikal microbes are novel lineages recruiting very little from other water bodies and are distantly related to other freshwater microbes. Despite their novelty, they showed the closest relationship to genomes discovered by similar approaches from other freshwater lakes and reservoirs. Some of them were particularly similar to MAGs from the Baltic Sea, which, although it is brackish, connected to the ocean, and much more eutrophic, has similar climatological conditions. Many of the microbes contained rhodopsin genes, indicating that, in spite of the decreased light penetration allowed by the thick ice/snow cover, photoheterotrophy could be widespread in the water column, either because enough light penetrates or because the microbes are already adapted to the summer ice-less conditions. We have found a freshwater SAR11 subtype I/II representative showing striking synteny with Pelagibacter ubique strains, as well as a phage infecting the widespread freshwater bacterium Polynucleobacter IMPORTANCE Despite the increasing number of metagenomic studies on different freshwater bodies, there is still a missing component in oligotrophic cold lakes suffering from long seasonal frozen cycles. Here, we describe microbial genomes from metagenomic assemblies that appear in the upper water column of Lake Baikal, the largest and deepest freshwater body on Earth. This lake is frozen from January to May, which generates conditions that include an inverted temperature gradient (colder up), decrease in light penetration due to ice, and, especially, snow cover, and oligotrophic conditions more similar to the open-ocean and high-altitude lakes than to other freshwater or brackish systems. As could be expected, most reconstructed genomes are novel lineages distantly related to others in cold environments, like the Baltic Sea and other freshwater lakes. Among them, there was a broad set of streamlined microbes with small genomes/intergenic spacers, including a new nonmarine Pelagibacter -like (subtype I/II) genome. Copyright © 2017 American Society for Microbiology.
Exploring the imaging properties of thin lenses for cryogenic infrared cameras
NASA Astrophysics Data System (ADS)
Druart, Guillaume; Verdet, Sebastien; Guerineau, Nicolas; Magli, Serge; Chambon, Mathieu; Grulois, Tatiana; Matallah, Noura
2016-05-01
Designing a cryogenic camera is a good strategy to miniaturize and simplify an infrared camera using a cooled detector. Indeed, the integration of optics inside the cold shield allows to simply athermalize the design, guarantees a cold pupil and releases the constraint on having a high back focal length for small focal length systems. By this way, cameras made of a single lens or two lenses are viable systems with good optical features and a good stability in image correction. However it involves a relatively significant additional optical mass inside the dewar and thus increases the cool down time of the camera. ONERA is currently exploring a minimalist strategy consisting in giving an imaging function to thin optical plates that are found in conventional dewars. By this way, we could make a cryogenic camera that has the same cool down time as a traditional dewar without an imagery function. Two examples will be presented: the first one is a camera using a dual-band infrared detector made of a lens outside the dewar and a lens inside the cold shield, the later having the main optical power of the system. We were able to design a cold plano-convex lens with a thickness lower than 1mm. The second example is an evolution of a former cryogenic camera called SOIE. We replaced the cold meniscus by a plano-convex Fresnel lens with a decrease of the optical thermal mass of 66%. The performances of both cameras will be compared.
Transcriptomic characterization of temperature stress responses in larval zebrafish.
Long, Yong; Li, Linchun; Li, Qing; He, Xiaozhen; Cui, Zongbin
2012-01-01
Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28 °C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16 °C) or heat (34 °C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish.
Native Mass Spectrometry: What is in the Name?
NASA Astrophysics Data System (ADS)
Leney, Aneika C.; Heck, Albert J. R.
2017-01-01
Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein-protein and protein-ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as "native MS," has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure-function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by "native MS," when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions.
ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, B.
2011-08-15
Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top ofmore » each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.« less
xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies
NASA Astrophysics Data System (ADS)
Saintonge, Amélie; Catinella, Barbara; Tacconi, Linda J.; Kauffmann, Guinevere; Genzel, Reinhard; Cortese, Luca; Davé, Romeel; Fletcher, Thomas J.; Graciá-Carpio, Javier; Kramer, Carsten; Heckman, Timothy M.; Janowiecki, Steven; Lutz, Katharina; Rosario, David; Schiminovich, David; Schuster, Karl; Wang, Jing; Wuyts, Stijn; Borthakur, Sanchayeeta; Lamperti, Isabella; Roberts-Borsani, Guido W.
2017-12-01
We introduce xCOLD GASS, a legacy survey providing a census of molecular gas in the local universe. Building on the original COLD GASS survey, we present here the full sample of 532 galaxies with CO (1–0) measurements from the IRAM 30 m telescope. The sample is mass-selected in the redshift interval 0.01< z< 0.05 from the Sloan Digital Sky Survey (SDSS) and therefore representative of the local galaxy population with {M}* > {10}9 {M}ȯ . The CO (1–0) flux measurements are complemented by observations of the CO (2–1) line with both the IRAM 30 m and APEX telescopes, H I observations from Arecibo, and photometry from SDSS, WISE, and GALEX. Combining the IRAM and APEX data, we find that the ratio of CO (2–1) to CO (1–0) luminosity for integrated measurements is {r}21=0.79+/- 0.03, with no systematic variations across the sample. The CO (1–0) luminosity function is constructed and best fit with a Schechter function with parameters {L}{CO}* =(7.77+/- 2.11)× {10}9 {{K}} {km} {{{s}}}-1 {{pc}}2, {φ }* =(9.84+/- 5.41)× {10}-4 {{Mpc}}-3, and α =-1.19+/- 0.05. With the sample now complete down to stellar masses of 109 {M}ȯ , we are able to extend our study of gas scaling relations and confirm that both molecular gas fractions ({f}{{{H}}2}) and depletion timescale ({t}{dep}({{{H}}}2)) vary with specific star formation rate (or offset from the star formation main sequence) much more strongly than they depend on stellar mass. Comparing the xCOLD GASS results with outputs from hydrodynamic and semianalytic models, we highlight the constraining power of cold gas scaling relations on models of galaxy formation.
Spindelböck, Joachim P; Cook, Zoë; Daws, Matthew I; Heegaard, Einar; Måren, Inger E; Vandvik, Vigdis
2013-09-01
Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season.
Spindelböck, Joachim P.; Cook, Zoë; Daws, Matthew I.; Heegaard, Einar; Måren, Inger E.; Vandvik, Vigdis
2013-01-01
Background and Aims Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Methods Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Key Results Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Conclusions Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season. PMID:23884396
The formation and assembly history of the Milky Way revealed by its globular cluster population
NASA Astrophysics Data System (ADS)
Kruijssen, J. M. Diederik; Pfeffer, Joel L.; Reina-Campos, Marta; Crain, Robert A.; Bastian, Nate
2018-06-01
We use the age-metallicity distribution of 96 Galactic globular clusters (GCs) to infer the formation and assembly history of the Milky Way (MW), culminating in the reconstruction of its merger tree. Based on a quantitative comparison of the Galactic GC population to the 25 cosmological zoom-in simulations of MW-mass galaxies in the E-MOSAICS project, which self-consistently model the formation and evolution of GC populations in a cosmological context, we find that the MW assembled quickly for its mass, reaching {25, 50}% of its present-day halo mass already at z = {3, 1.5} and half of its present-day stellar mass at z = 1.2. We reconstruct the MW's merger tree from its GC age-metallicity distribution, inferring the number of mergers as a function of mass ratio and redshift. These statistics place the MW's assembly rate among the 72th-94th percentile of the E-MOSAICS galaxies, whereas its integrated properties (e.g. number of mergers, halo concentration) match the median of the simulations. We conclude that the MW has experienced no major mergers (mass ratios >1:4) since z ˜ 4, sharpening previous limits of z ˜ 2. We identify three massive satellite progenitors and constrain their mass growth and enrichment histories. Two are proposed to correspond to Sagittarius (few 108M⊙) and Canis Major (˜109 M⊙). The third satellite has no known associated relic and was likely accreted between z = 0.6-1.3. We name this enigmatic galaxy Kraken and propose that it is the most massive satellite (M* ˜ 2 × 109 M⊙) ever accreted by the MW. We predict that ˜40% of the Galactic GCs formed ex-situ (in galaxies with masses M* = 2 × 107-2 × 109 M⊙), with 6 ± 1 being former nuclear clusters.
COLD-MODE ACCRETION: DRIVING THE FUNDAMENTAL MASS–METALLICITY RELATION AT z ∼ 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya
2016-07-20
We investigate the star formation rate (SFR) dependence on the stellar mass and gas-phase metallicity relation at z = 2 with MOSFIRE/Keck as part of the ZFIRE survey. We have identified 117 galaxies (1.98 ≤ z ≤ 2.56), with 8.9 ≤ log( M / M {sub ⊙}) ≤ 11.0, for which we can measure gas-phase metallicities. For the first time, we show a discernible difference between the mass–metallicity relation, using individual galaxies, when dividing the sample by low (<10 M {sub ⊙} yr{sup −1}) and high (>10 M {sub ⊙} yr{sup −1}) SFRs. At fixed mass, low star-forming galaxies tendmore » to have higher metallicity than high star-forming galaxies. Using a few basic assumptions, we further show that the gas masses and metallicities required to produce the fundamental mass–metallicity relation and its intrinsic scatter are consistent with cold-mode accretion predictions obtained from the OWLS hydrodynamical simulations. Our results from both simulations and observations are suggestive that cold-mode accretion is responsible for the fundamental mass–metallicity relation at z = 2 and it demonstrates the direct relationship between cosmological accretion and the fundamental properties of galaxies.« less
Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.
1961-12-01
An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)
NASA Technical Reports Server (NTRS)
Silk, Joseph; Stebbins, Albert
1993-01-01
A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.
The Next Generation Fornax Survey (NGFS). II. The Central Dwarf Galaxy Population
NASA Astrophysics Data System (ADS)
Eigenthaler, Paul; Puzia, Thomas H.; Taylor, Matthew A.; Ordenes-Briceño, Yasna; Muñoz, Roberto P.; Ribbeck, Karen X.; Alamo-Martínez, Karla A.; Zhang, Hongxin; Ángel, Simón; Capaccioli, Massimo; Côté, Patrick; Ferrarese, Laura; Galaz, Gaspar; Grebel, Eva K.; Hempel, Maren; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan; Paolillo, Maurizio; Powalka, Mathieu; Richtler, Tom; Roediger, Joel; Rong, Yu; Sánchez-Janssen, Ruben; Spengler, Chelsea
2018-03-01
We present a photometric study of the dwarf galaxy population in the core region (≲r vir/4) of the Fornax galaxy cluster based on deep u‧g‧i‧ photometry from the Next Generation Fornax Cluster Survey. All imaging data were obtained with the Dark Energy Camera mounted on the 4 m Blanco telescope at the Cerro Tololo Interamerican Observatory. We identify 258 dwarf galaxy candidates with luminosities ‑17 ≲ M g‧ ≲ ‑8 mag, corresponding to typical stellar masses of 9.5≳ {log}{{ \\mathcal M }}\\star /{M}ȯ ≳ 5.5, reaching ∼3 mag deeper in point-source luminosity and ∼4 mag deeper in surface brightness sensitivity compared to the classic Fornax Cluster Catalog. Morphological analysis shows that the dwarf galaxy surface-brightness profiles are well represented by single-component Sérsic models with average Sérsic indices of < n{> }u\\prime ,g\\prime ,i\\prime =(0.78{--}0.83)+/- 0.02 and average effective radii of < {r}e{> }u\\prime ,g\\prime ,i\\prime =(0.67{--}0.70)+/- 0.02 {kpc}. Color–magnitude relations indicate a flattening of the galaxy red sequence at faint galaxy luminosities, similar to the one recently discovered in the Virgo cluster. A comparison with population synthesis models and the galaxy mass–metallicity relation reveals that the average faint dwarf galaxy is likely older than ∼5 Gyr. We study galaxy scaling relations between stellar mass, effective radius, and stellar mass surface density over a stellar mass range covering six orders of magnitude. We find that over the sampled stellar mass range several distinct mechanisms of galaxy mass assembly can be identified: (1) dwarf galaxies assemble mass inside the half-mass radius up to {log}{{ \\mathcal M }}\\star ≈ 8.0, (2) isometric mass assembly occurs in the range 8.0 ≲ {log}{{ \\mathcal M }}\\star /{M}ȯ ≲ 10.5, and (3) massive galaxies assemble stellar mass predominantly in their halos at {log}{{ \\mathcal M }}\\star ≈ 10.5 and above.
Evolution of Mass and Velocity Field in the Cosmic Web: Comparison between Baryonic and Dark Matter
NASA Astrophysics Data System (ADS)
Zhu, Weishan; Feng, Long-Long
2017-03-01
We investigate the evolution of the cosmic web since z = 5 in grid-based cosmological hydrodynamical simulations, focusing on the mass and velocity fields of both baryonic and cold dark matter. The tidal tensor of density is used as the main method for web identification, with λ th = 0.2-1.2. The evolution trends in baryonic and dark matter are similar, although moderate differences are observed. Sheets appear early, and their large-scale pattern may have been set up by z = 3. In terms of mass, filaments supersede sheets as the primary collapsing structures from z ˜ 2-3. Tenuous filaments assembled with each other to form prominent ones at z < 2. In accordance with the construction of the frame of the sheets, the cosmic divergence velocity, v div, was already well-developed above 2-3 Mpc by z = 3. Afterwards, the curl velocity, v curl, grew dramatically along with the rising of filaments, becoming comparable to v div, for <2-3 Mpc at z = 0. The scaling of v curl can be described by the hierarchical turbulence model. The alignment between the vorticity and the eigenvectors of the shear tensor in the baryonic matter field resembles that in the dark matter field, and is even moderately stronger between {\\boldsymbol{ω }} and {{\\boldsymbol{e}}}1, and ω and {{\\boldsymbol{e}}}3. Compared with dark matter, there is slightly less baryonic matter found residing in filaments and clusters, and its vorticity developed more significantly below 2-3 Mpc. These differences may be underestimated because of the limited resolution and lack of star formation in our simulation. The impact of the change of dominant structures in overdense regions at z ˜ 2-3 on galaxy formation and evolution is shortly discussed.
Variable Cold-Induced Brown Adipose Tissue Response to Thyroid Hormone Status
Hasselgren, Per-Olof; Glasgow, Allison; Doyle, Ashley N.; Lee, Alice J.; Fox, Peter; Gautam, Shiva; Hennessey, James V.; Kolodny, Gerald M.
2017-01-01
Background: In addition to its role in adaptive thermogenesis, brown adipose tissue (BAT) may protect from weight gain, insulin resistance/diabetes, and metabolic syndrome. Prior studies have shown contradictory results regarding the influence of thyroid hormone (TH) levels on BAT volume and activity. The aim of this pilot study was to gain further insights regarding the effect of TH treatment on BAT function in adult humans by evaluating the BAT mass and activity prospectively in six patients, first in the hypothyroid and then in the thyrotoxic phase. Methods: The study subjects underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) scanning after cold exposure to measure BAT mass and activity while undergoing treatment for differentiated thyroid cancer, first while hypothyroid following TH withdrawal at the time of the radioactive iodine treatment and then three to six months after starting TH suppressive treatment when they were iatrogenically thyrotoxic. Thermogenic and metabolic parameters were measured in both phases. Results: All study subjects had detectable BAT under cold stimulation in both the hypothyroid and thyrotoxic state. The majority but not all (4/6) subjects showed an increase in detectable BAT volume and activity under cold stimulation between the hypothyroid and thyrotoxic phase (total BAT volume: 72.0 ± 21.0 vs. 87.7 ± 16.5 mL, p = 0.25; total BAT activity 158.1 ± 72.8 vs. 189.0 ± 55.5 SUV*g/mL, p = 0.34). Importantly, circulating triiodothyronine was a stronger predictor of energy expenditure changes compared with cold-induced BAT activity. Conclusions: Iatrogenic hypothyroidism lasting two to four weeks does not prevent cold-induced BAT activation, while the use of TH to induce thyrotoxicosis does not consistently increase cold-induced BAT activity. It remains to be determined which physiological factors besides TH play a role in regulating BAT function. PMID:27750020
Variable Cold-Induced Brown Adipose Tissue Response to Thyroid Hormone Status.
Gavrila, Alina; Hasselgren, Per-Olof; Glasgow, Allison; Doyle, Ashley N; Lee, Alice J; Fox, Peter; Gautam, Shiva; Hennessey, James V; Kolodny, Gerald M; Cypess, Aaron M
2017-01-01
In addition to its role in adaptive thermogenesis, brown adipose tissue (BAT) may protect from weight gain, insulin resistance/diabetes, and metabolic syndrome. Prior studies have shown contradictory results regarding the influence of thyroid hormone (TH) levels on BAT volume and activity. The aim of this pilot study was to gain further insights regarding the effect of TH treatment on BAT function in adult humans by evaluating the BAT mass and activity prospectively in six patients, first in the hypothyroid and then in the thyrotoxic phase. The study subjects underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) scanning after cold exposure to measure BAT mass and activity while undergoing treatment for differentiated thyroid cancer, first while hypothyroid following TH withdrawal at the time of the radioactive iodine treatment and then three to six months after starting TH suppressive treatment when they were iatrogenically thyrotoxic. Thermogenic and metabolic parameters were measured in both phases. All study subjects had detectable BAT under cold stimulation in both the hypothyroid and thyrotoxic state. The majority but not all (4/6) subjects showed an increase in detectable BAT volume and activity under cold stimulation between the hypothyroid and thyrotoxic phase (total BAT volume: 72.0 ± 21.0 vs. 87.7 ± 16.5 mL, p = 0.25; total BAT activity 158.1 ± 72.8 vs. 189.0 ± 55.5 SUV*g/mL, p = 0.34). Importantly, circulating triiodothyronine was a stronger predictor of energy expenditure changes compared with cold-induced BAT activity. Iatrogenic hypothyroidism lasting two to four weeks does not prevent cold-induced BAT activation, while the use of TH to induce thyrotoxicosis does not consistently increase cold-induced BAT activity. It remains to be determined which physiological factors besides TH play a role in regulating BAT function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-09-01
This case study describes the University of Minnesota’s Cloquet Residential Research Facility (CRRF) in northern Minnesota, which features more than 2,500 ft2 of below-grade space for building systems foundation hygrothermal research. Here, the NorthernSTAR Building America Partnership team researches ways to improve the energy efficiency of the building envelope, including wall assemblies, basements, roofs, insulation, and air leakage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yu; Benson, Andrew; Mao, Yao -Yuan
Many properties of the Milky Way's (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed finalmore » $${M}_{\\mathrm{vir}}\\sim {10}^{12.1}\\,{M}_{\\odot }$$, we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass–metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Finally, observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.« less
The connection between the host halo and the satellite galaxies of the Milky Way
Lu, Yu; Benson, Andrew; Mao, Yao -Yuan; ...
2016-10-11
Many properties of the Milky Way's (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed finalmore » $${M}_{\\mathrm{vir}}\\sim {10}^{12.1}\\,{M}_{\\odot }$$, we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass–metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Finally, observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.« less
Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation
NASA Astrophysics Data System (ADS)
Motte, F.; Bontemps, S.; Schneider, N.; Schilke, P.; Menten, K. M.
2008-05-01
As Th. Henning said at the conference, cold precursors of high-mass stars are now ``hot topics''. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class~0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Ghaffarian, Reza; Shapiro, Andrew; Napala, Phil A.; Martin, Patrick A.
2005-01-01
Flip-chip interconnect electronic package boards have been assembled, underfilled, non-destructively evaluated and subsequently subjected to extreme temperature thermal cycling to assess the reliability of this advanced packaging interconnect technology for future deep space, long-term, extreme temperature missions. In this very preliminary study, the employed temperature range covers military specifications (-55 C to 100 C), extreme cold Martian (-120 C to 115 C) and asteroid Nereus (-180 C to 25 C) environments. The resistance of daisy-chained, flip-chip interconnects were measured at room temperature and at various intervals as a function of extreme temperature thermal cycling. Electrical resistance measurements are reported and the tests to date have not shown significant change in resistance as a function of extreme temperature thermal cycling. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work has been carried out to understand the reliability of flip-chip interconnect packages under extreme temperature applications (-190 C to 85 C) via continuously monitoring the daisy chain resistance. Adaptation of suitable diagnostic techniques to identify the failure mechanisms is in progress. This presentation will describe the experimental test results of flip-chip testing under extreme temperatures.
NASA Astrophysics Data System (ADS)
Yan, Ru; He, Wei; Zhai, Tianhua; Ma, Houyi
2018-06-01
Seeing that amino trimethylene phosphonic acid (ATMP) possesses very strong complexation ability to metal ions and the phosphonic acid group has good affinity for the oxidized iron surface, herein a simple and rapid film-forming method (one-step assembly method) was developed to construct the ATMP-Zn complex conversion layers (ATMP-Zn layers for short) on the cold-rolled steel (CRS) substrate. Zinc ions were found to participate in the formation process of ATMP-based composite film, which made the Zn-containing ATMP film significantly different in appearance, thickness, microstructure and film-forming mechanisms from the Zn-free ATMP film. There was mainly iron (ш) phosphonate in the Zn-free ATMP film, whereas there were Zn2+-ATMP complex and a certain amount of ZnO in the ATMP-Zn composite film. In addition, electrochemical test results clearly indicate that corrosion resistance of ATMP-Zn composite film was greatly enhanced due to the presence of Zn component. Moreover, the corrosion resistance performance could be controlled by adjusting film-forming time, pH and ATMP concentration in the film-forming solutions. The present study provides a new method for the design and fabrication of high-quality environmentally-friendly conversion layers.
Powder-metallurgical preparation of A15 superconductors
NASA Astrophysics Data System (ADS)
Wilhelm, Manfred; Wohlleben, Karl; Springer, Engelbert; Mrowiec, Klaus; Schaper, Wilfried; Wecker, Joachim
1985-08-01
The powder-metallurgical preparation of Cu-Nb3Sn microcomposite superconductors was investigated in order to economize in the manufacture of the conductors and to improve their mechanical and electrical properties. Conditions during high temperature extrusion are optimized by adding Al or Ti as reducing agents, also with a view to the following cold forming. Current densities well above 10,000 A/sq cm at 15T are obtained by applying coarse-grained Nb powder and incorporating small quantities of Ta or Ti. The current carrying behavior of the conductors was determined as a function of the degree of mechanical deformation, the cold forming technique, and the heat treatment conditions. Wires containing an internal tin source as well as bundled assemblies for high current applications were manufactured. Long wires can be produced.
NASA Technical Reports Server (NTRS)
Gibbel, Mark; Larson, Timothy
2000-01-01
An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Ueno and J. Lstiburek
2015-09-01
Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a "control" vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only hadmore » slight issues, such as rusted fasteners and sheathing grain raise.« less
Modular transportable superconducting magnetic Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieurance, D.; Kimball, F.; Rix, C.
1994-12-31
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given applicationmore » should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.« less
High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Walker, Kara L.; Anderson, William G.
2009-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.
mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold
Labbé, Sébastien M.; Mouchiroud, Mathilde; Caron, Alexandre; Secco, Blandine; Freinkman, Elizaveta; Lamoureux, Guillaume; Gélinas, Yves; Lecomte, Roger; Bossé, Yohan; Chimin, Patricia; Festuccia, William T.; Richard, Denis; Laplante, Mathieu
2016-01-01
In response to cold, brown adipose tissue (BAT) increases its metabolic rate and expands its mass to produce heat required for survival, a process known as BAT recruitment. The mechanistic target of rapamycin complex 1 (mTORC1) controls metabolism, cell growth and proliferation, but its role in regulating BAT recruitment in response to chronic cold stimulation is unknown. Here, we show that cold activates mTORC1 in BAT, an effect that depends on the sympathetic nervous system. Adipocyte-specific mTORC1 loss in mice completely blocks cold-induced BAT expansion and severely impairs mitochondrial biogenesis. Accordingly, mTORC1 loss reduces oxygen consumption and causes a severe defect in BAT oxidative metabolism upon cold exposure. Using in vivo metabolic imaging, metabolomics and transcriptomics, we show that mTORC1 deletion impairs glucose and lipid oxidation, an effect linked to a defect in tricarboxylic acid (TCA) cycle activity. These analyses also reveal a severe defect in nucleotide synthesis in the absence of mTORC1. Overall, these findings demonstrate an essential role for mTORC1 in the regulation of BAT recruitment and metabolism in response to cold. PMID:27876792
Bioimpedance Identifies Body Fluid Loss after Exercise in the Heat: A Pilot Study with Body Cooling
Gatterer, Hannes; Schenk, Kai; Laninschegg, Lisa; Schlemmer, Philipp; Lukaski, Henry; Burtscher, Martin
2014-01-01
Purpose Assessment of post-exercise changes in hydration with bioimpedance (BI) is complicated by physiological adaptations that affect resistance (R) and reactance (Xc) values. This study investigated exercise-induced changes in R and Xc, independently and in bioelectrical impedance vector analysis, when factors such as increased skin temperature and blood flow and surface electrolyte accumulation are eliminated with a cold shower. Methods Healthy males (n = 14, 24.1±1.7 yr; height (H): 182.4±5.6 cm, body mass: 72.3±6.3 kg) exercised for 1 hr at a self-rated intensity (15 BORG) in an environmental chamber (33°C and 50% relative humidity), then had a cold shower (15 min). Before the run BI, body mass, hematocrit and Posm were measured. After the shower body mass was measured; BI measurements were performed continuously every 20 minutes until R reached a stable level, then hematocrit and Posm were measured again. Results Compared to pre-trial measurements body mass decreased after the run and Posm, Hct, R/H and Xc/H increased (p<0.05) with a corresponding lengthening of the impedance vector along the major axis of the tolerance ellipse (p<0.001). Changes in Posm were negatively related to changes in body mass (r = −0.564, p = 0.036) and changes in Xc/H (r = −0.577, p = 0.041). Conclusions Present findings showed that after a bout of exercise-induced dehydration followed by cold shower the impedance vector lengthened that indicates fluid loss. Additionally, BI values might be useful to evaluate fluid shifts between compartments as lower intracellular fluid loss (changed Xc/R) indicated greater Posm increase. PMID:25279660
NASA Astrophysics Data System (ADS)
Tward, E.; Nguyen, T.; Godden, J.; Toma, G.
2004-06-01
A high capacity miniature pulse tube cooler for space that is scaled from the High Efficiency Cryocooler (HEC) is being developed. The low mass (1.5 kg) integral pulse tube cryocooler can provide large cooling power over a wide temperature range (e.g., 5 W at 95 K). The cooler is designed to be compatible with the existing HEC flight electronics. A small back-to-back flexure compressor drives a pulse tube cold head which is integrated with the compressor. The cooler has been tested with both linear and coaxial cold heads. A description of the cooler and its performance in both linear and coaxial cold head versions is presented.
Three-dimensional instabilities of mantle convection with multiple phase transitions
NASA Technical Reports Server (NTRS)
Honda, S.; Yuen, D. A.; Balachandar, S.; Reuteler, D.
1993-01-01
The effects of multiple phase transitions on mantle convection are investigated by numerical simulations that are based on three-dimensional models. These simulations show that cold sheets of mantle material collide at junctions, merge, and form a strong downflow that is stopped temporarily by the transition zone. The accumulated cold material gives rise to a strong gravitational instability that causes the cold mass to sink rapidly into the lower mantle. This process promotes a massive exchange between the lower and upper mantles and triggers a global instability in the adjacent plume system. This mechanism may be cyclic in nature and may be linked to the generation of superplumes.
Cold-End Subsystem Testing for the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Mazwell; Gibson, Marc; Ellis, David; Sanzi, James
2013-01-01
The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodiumpotassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated coldend fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to highcost composite radiators in an end-to-end TDU test.
Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin
2015-01-01
Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future. PMID:26403200
Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin
2015-09-25
Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future.
Zhou, Aimin; Ma, Hongping; Liu, Enhui; Jiang, Tongtong; Feng, Shuang; Gong, Shufang; Wang, Jingang
2017-04-17
Dianthus spiculifolius , a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation.
Zhou, Aimin; Ma, Hongping; Liu, Enhui; Jiang, Tongtong; Feng, Shuang; Gong, Shufang; Wang, Jingang
2017-01-01
Dianthus spiculifolius, a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation. PMID:28420173
Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun
2013-01-01
Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.
NASA Technical Reports Server (NTRS)
Lake, M. S.; Bush, H. G.
1986-01-01
A study was conducted to define an annular ring, discrete roller assembly concept for the space station transverse boom rotary joint. The concept was analyzed using closed-form and finite element techniques, to size structural members for a range of joint diameters and to determine necessary equivalent stiffnesses for the roller assemblies. Also, a mass study of the system was conducted to determine its practicality, and maximum loads in the joint were identified. To obtain the optimum balance between high stiffness and low structural mass in the design of the rotary joint, it is necessary to maximize the diameter of the annular ring within operational constraints (i.e., shuttle cargo bay size). Further, a rotary joint designed with the largest possible ring diameter will result in minimum operational loads in both the roller assemblies and the transition truss members while also allowing minimum design stiffnesses for the roller assemblies.
Monoatomic and cluster beam effect on ToF-SIMS spectra of self-assembled monolayers on gold
NASA Astrophysics Data System (ADS)
Tuccitto, N.; Torrisi, V.; Delfanti, I.; Licciardello, A.
2008-12-01
Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Au n-) in comparison with the molecular ions (M -) and clusters (M xAu y-) by using Bi +, Bi 3+, Bi 5+ beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.
The Dual Origin Of Stellar Halos
NASA Astrophysics Data System (ADS)
Zolotov, Adi
In the dominant Lambda+Cold Dark Matter cosmological paradigm, galaxy stellar halos are thought to form hierarchically from multiple accretion events, starting from the first structures to collapse in the Universe. This dissertation aims to make the first detailed theoretical predictions for the origin of galactic stellar halos. We focus on understanding the physical processes involved in halo formation using high-resolution, N-body + Smooth Particle Hydrodynamic simulations of disk galaxies in a cosmological context. These self-consistent simulations are used to study the competing importance of dissipative processes and dissipationless mergers in the formation of stellar halos. The relative contribution of each mechanism, and its specific role in assembling the inner and outer regions of halos is explored, as a function of galaxy mass and merging history. We show that the presence of both accreted and in situ stars in halos is a generic feature of galaxy formation. For L* galaxies, the relative contribution of each stellar population to a halo is shown to be a function of a galaxy's accretion history. Galaxies with recent mergers, like M31, will host relatively few in situ stars, while galaxies with more quiescent recent histories, like the Milky Way, will likely have a larger relative contribution from an in situ population. We show that in situ halo stars are more [alpha/Fe]-rich than accreted stars at the high [Fe/H] end of a halo's metallicity distribution function. In lower mass galaxies, M ˜ 1010 M, in situ stars dominate the stellarmass of halos. In these galaxies, in situ halo stars are, on average, younger and more metal-rich than accreted halo stars. Because in situ stars are dominant, these trends result in halos that are more metal-rich than simple accretion models predict. The halos of low mass galaxies do not extend out to the virial radii of the primary, as they do in more massive galaxies. We find that the ratio of luminous-halo mass to total galaxy mass decreases from ˜ 1% in L* galaxies to ˜ 0.2% in 1010 M mass galaxies.
Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon
NASA Astrophysics Data System (ADS)
Fauzi, R. R.; Hidayat, R.
2018-05-01
Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.
Convection venting lensed reflector-type compact fluorescent lamp system
Pelton, B.A.; Siminovitch, M.
1997-07-29
Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.
Convection venting lensed reflector-type compact fluorescent lamp system
Pelton, Bruce A.; Siminovitch, Michael
1997-01-01
Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.
A hydrodynamic treatment of the cold dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah
1992-01-01
The evolution of structure in a postrecombination Friedmann-Robertson-Walker universe containing both gaseous baryons and cold dark matter (CDM) is studied by means of an Eulerian code coupled with a standard particle-mesh code. Ionization state and radiative opacity are calculated in detail, and the hydrodynamic simulations make it possible to compute properties of gas distribution on scales larger than three cell sizes. The model yields a soft X-ray background consistent with the latest cosmic nucleosynthesis values, and can accurately reproduce the galaxy-galaxy two-point correlation. The rate of galaxy formation peaks at a relatively late epoch. With regard to mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of m(b) = 10 exp 9.2 solar masses with a reasonable fit to the Schecter luminosity function if the baryon mass to blue light ratio is approximately 4. Overall, the simulations provide strong support for the CMD scenario. Of particular interest is that, while the baryons are not biased on scales greater than 1/h Mpc, the galaxies are, and that the 'galaxies' have a correlation function of the required slope and the correct amplitude.
Is a massive tau neutrino just what cold dark matter needs?
NASA Technical Reports Server (NTRS)
Dodelson, Scott; Gyuk, Geza; Turner, Michael S.
1994-01-01
The cold dark matter (CDM) scenario for structure formation in the Universe is very attractive and has many successes; however, when its spectrum of density perturbations is normalized to the COBE anisotropy measurement the level of inhomogeneity predicted on small scales is too large. This can be remedied by a tau neutrino of mass 1 MeV - 10MeV and lifetime 0.1 sec - 100 sec whose decay products include electron neutrinos because it allows the total energy density in relativistic particles to be doubled without interfering with nucleosynthesis. The anisotropies predicted on the degree scale for 'tau CDM' are larger than standard CDM. Experiments at e(sup +/-) collides may be able to probe such a mass range.
cDNA sequence and expression of a cold-responsive gene in Citrus unshiu.
Hara, M; Wakasugi, Y; Ikoma, Y; Yano, M; Ogawa, K; Kuboi, T
1999-02-01
A cDNA clone encoding a protein (CuCOR19), the sequence of which is similar to Poncirus COR19, of the dehydrin family was isolated from the epicarp of Citrus unshiu. The molecular mass of the predicted protein was 18,980 daltons. CuCOR19 was highly hydrophilic and contained three repeating elements including Lys-rich motifs. The gene expression in leaves increased by cold stress.
Analysis of hydrogen isotope mixtures
Villa-Aleman, Eliel
1994-01-01
An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.
Hu, Shi-Nan; Zhu, Ying-Yang; Lin, Lin; Zheng, Wei-Hong; Liu, Jin-Song
2017-03-01
Seasonal changes in temperature and photoperiod are important environmental cues used by small birds to adjust their body mass ( M b ) and thermogenesis. However, the relative importance of these cues with respect to seasonal adjustments in M b and thermogenesis is difficult to distinguish. In particular, the effects of temperature and photoperiod on energy metabolism and thermoregulation are not well known in many passerines. To address this problem, we measured the effects of temperature and photoperiod on M b , energy intake, resting metabolic rate (RMR), organ mass and physiological and biochemical markers of metabolic activity in the Chinese bulbul ( Pycnonotus sinensis ). Groups of Chinese bulbuls were acclimated in a laboratory to the following conditions: (1) warm and long photoperiod, (2) warm and short photoperiod, (3) cold and long photoperiod, and (4) cold and short photoperiod, for 4 weeks. The results indicate that Chinese bulbuls exhibit adaptive physiological regulation when exposed to different temperatures and photoperiods. M b , RMR, gross energy intake and digestible energy intake were higher in cold-acclimated than in warm-acclimated bulbuls, and in the short photoperiod than in the long photoperiod. The resultant flexibility in energy intake and RMR allows Chinese bulbuls exposed to different temperatures and photoperiods to adjust their energy balance and thermogenesis accordingly. Cold-acclimated birds had heightened state-4 respiration and cytochrome c oxidase activity in their liver and muscle tissue compared with warm-acclimated birds indicating the cellular mechanisms underlying their adaptive thermogenesis. Temperature appears to be a primary cue for adjusting energy budget and thermogenic ability in Chinese bulbuls; photoperiod appears to intensify temperature-induced changes in energy metabolism and thermoregulation. © 2017. Published by The Company of Biologists Ltd.
The role of different ion species in the cessation of magnetic reconnection
NASA Astrophysics Data System (ADS)
Tenfjord, P.; Hesse, M.
2017-12-01
Ions of ionospheric, plasmaspheric, or plasma mantle origin mass-load the source plasma resulting in the reduction of the Alfvén velocity and reconnection rate. Among other parameters, the mass-loading effect is impacted by the gyroradii of the cold ions, which are much smaller than those of the hotter ions. Consequently the cold ions are magnetized down to smaller spatial scales compared to the hotter population. It is therefore likely that the magnitude and timescales of reconnection rate reductions are impacted not only by the mass density in the inflow region, but also by the nature of the ion species and their temperatures. Using Particle-In-Cell (PIC) simulations with time-dependent inflow of different ion species and different densities, we investigate possible mechanisms for the cessation of magnetic reconnection. We describe how protons and higher mass ions get captured by the reconnection process, and whether and when they slow down the reconnection process. Furthermore, we investigate in detail how the electron diffusion region responds to the rate changes imposed by varying inflow populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbricatore, P.; Ambrosio, G.; Cheban, S.
The Mu2e Transport Solenoid consists of 52 coils arranged in 27 coil modules that form the S-shaped cold mass. Each coil is wound from Al-stabilized NbTi superconductor. The coils are supported by an external structural aluminum shell machined from a forged billet. Most of the coil modules house two coils, with the axis of each coil oriented at an angle of approximately 5° with respect to each other. The coils are indirectly cooled with LHe circulating in tubes welded on the shell. In order to enhance the cooling capacity, pure aluminum sheets connect the inner bore of the coils tomore » the cooling tubes. The coils are placed inside the shell by the means of a shrink-fit procedure. A full-size prototype, with all the features of the full assembly, was successfully manufactured in a collaboration between INFN Genova and Fermilab. In order to ensure an optimal mechanical prestress at the coil-shell interface, the coils are inserted into the shell through a shrink-fitting process. We present the details of the prototype with the design choices as validated by the structural analysis. In conclusion, the fabrication steps are described as well.« less
Mu2e transport solenoid prototype design and manufacturing
Fabbricatore, P.; Ambrosio, G.; Cheban, S.; ...
2016-02-08
The Mu2e Transport Solenoid consists of 52 coils arranged in 27 coil modules that form the S-shaped cold mass. Each coil is wound from Al-stabilized NbTi superconductor. The coils are supported by an external structural aluminum shell machined from a forged billet. Most of the coil modules house two coils, with the axis of each coil oriented at an angle of approximately 5° with respect to each other. The coils are indirectly cooled with LHe circulating in tubes welded on the shell. In order to enhance the cooling capacity, pure aluminum sheets connect the inner bore of the coils tomore » the cooling tubes. The coils are placed inside the shell by the means of a shrink-fit procedure. A full-size prototype, with all the features of the full assembly, was successfully manufactured in a collaboration between INFN Genova and Fermilab. In order to ensure an optimal mechanical prestress at the coil-shell interface, the coils are inserted into the shell through a shrink-fitting process. We present the details of the prototype with the design choices as validated by the structural analysis. In conclusion, the fabrication steps are described as well.« less
Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell
2014-01-01
Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823
LHC interaction region quadrupole cryostat design
NASA Astrophysics Data System (ADS)
Nicol, T. H.; Darve, Ch.; Huang, Y.; Page, T. M.
2002-05-01
The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.
Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors.
Vovrosh, Jamie; Voulazeris, Georgios; Petrov, Plamen G; Zou, Ji; Gaber, Youssef; Benn, Laura; Woolger, David; Attallah, Moataz M; Boyer, Vincent; Bongs, Kai; Holynski, Michael
2018-01-31
Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10 -10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.
Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.
Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin
2017-05-10
Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.
The mass transportation problem in Illinois : a final report
DOT National Transportation Integrated Search
1959-06-01
Prepared by the State Mass Transportation Commission for the Honorable William G. Stratton, Governor of Illinois and the Honorable Members of the 71st General Assembly. The study contains the findings and recommendations of the Illinois State Mass Tr...
Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure
NASA Astrophysics Data System (ADS)
Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.
2010-02-01
Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.
A High-Mass Cold Core in the Auriga-California Giant Molecular Cloud
NASA Astrophysics Data System (ADS)
Magnus McGehee, Peregrine; Paladini, Roberta; Pelkonen, Veli-Matti; Toth, Viktor; Sayers, Jack
2015-08-01
The Auriga-California Giant Molecular Cloud is noted for its relatively low star formation rate, especially at the high-mass end of the Initial Mass Function. We combine maps acquired by the Caltech Submillimeter Observatory's Multiwavelength Submillimeter Inductance Camera [MUSIC] in the wavelength range 0.86 to 2.00 millimeters with Planck and publicly-available Herschel PACS and SPIRE data in order to characterize the mass, dust properties, and environment of the bright core PGCC G163.32-8.41.
Spin morphologies and heat dissipation in spherical assemblies of magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Anand, Manish; Carrey, Julian; Banerjee, Varsha
2016-09-01
Aggregates of magnetic nanoparticles (MNPs) exhibit unusual properties due to the interplay of small system size and long-range dipole-dipole interactions. Using the micromagnetic simulation software oommf, we study the spin morphologies and heat dissipation in micron-size spherical assemblies of MNPs. In particular, we examine the sensitivity of these properties to the dipolar strength, manipulated by the interparticle separation. As oommf is not designed for such a study, we have incorporated a novel scaling protocol for this purpose. We believe that it is essential for all studies where volume fractions are varied. Our main results are as follows: (i) Dense assemblies exhibit strong dipolar effects which yield local magnetic order in the core but not on the surface, where moments are randomly oriented. (ii) The probability distribution of ground-state energy exhibits a long high-energy tail for surface spins in contrast to small tails for the core spins. Consequently, there is a wide variation in the energy of surface spins but not the core spins. (iii) There is strong correlation between ground-state energy and heating properties on application of an oscillating magnetic field h (t ) =hocos2 π f t : the particles in the core heat uniformly, while those on the surface exhibit a wide range from cold to intensely hot. (iv) Specific choices of ho and f yield characteristic spatial heat distributions, e.g., hot surface and cold core, or vice versa. (iv) For all values of ho and f that we consider, heating was maximum at a specific volume fraction. These results are especially relevant in the context of contemporary applications such as hyperthermia and chemotherapy, and also for novel materials such as smart polymer beads and superspin glasses.
Izard, T; Aevarsson, A; Allen, M D; Westphal, A H; Perham, R N; de Kok, A; Hol, W G
1999-02-16
The pyruvate dehydrogenase multienzyme complex (Mr of 5-10 million) is assembled around a structural core formed of multiple copies of dihydrolipoyl acetyltransferase (E2p), which exhibits the shape of either a cube or a dodecahedron, depending on the source. The crystal structures of the 60-meric dihydrolipoyl acyltransferase cores of Bacillus stearothermophilus and Enterococcus faecalis pyruvate dehydrogenase complexes were determined and revealed a remarkably hollow dodecahedron with an outer diameter of approximately 237 A, 12 large openings of approximately 52 A diameter across the fivefold axes, and an inner cavity with a diameter of approximately 118 A. Comparison of cubic and dodecahedral E2p assemblies shows that combining the principles of quasi-equivalence formulated by Caspar and Klug [Caspar, D. L. & Klug, A. (1962) Cold Spring Harbor Symp. Quant. Biol. 27, 1-4] with strict Euclidean geometric considerations results in predictions of the major features of the E2p dodecahedron matching the observed features almost exactly.
Turbine blade vibration dampening
Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.
1997-07-08
The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.
Turbine blade vibration dampening
Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.
1997-07-08
The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.
Nuclear imaging of the fuel assembly in ignition experimentsa)
NASA Astrophysics Data System (ADS)
Grim, G. P.; Guler, N.; Merrill, F. E.; Morgan, G. L.; Danly, C. R.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C.; Clark, D. S.; Hinkel, D. E.; Jones, O. S.; Raman, K. S.; Izumi, N.; Fittinghoff, D. N.; Drury, O. B.; Alger, E. T.; Arnold, P. A.; Ashabranner, R. C.; Atherton, L. J.; Barrios, M. A.; Batha, S.; Bell, P. M.; Benedetti, L. R.; Berger, R. L.; Bernstein, L. A.; Berzins, L. V.; Betti, R.; Bhandarkar, S. D.; Bionta, R. M.; Bleuel, D. L.; Boehly, T. R.; Bond, E. J.; Bowers, M. W.; Bradley, D. K.; Brunton, G. K.; Buckles, R. A.; Burkhart, S. C.; Burr, R. F.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Castro, C.; Celliers, P. M.; Cerjan, C. J.; Chandler, G. A.; Choate, C.; Cohen, S. J.; Collins, G. W.; Cooper, G. W.; Cox, J. R.; Cradick, J. R.; Datte, P. S.; Dewald, E. L.; Di Nicola, P.; Di Nicola, J. M.; Divol, L.; Dixit, S. N.; Dylla-Spears, R.; Dzenitis, E. G.; Eckart, M. J.; Eder, D. C.; Edgell, D. H.; Edwards, M. J.; Eggert, J. H.; Ehrlich, R. B.; Erbert, G. V.; Fair, J.; Farley, D. R.; Felker, B.; Fortner, R. J.; Frenje, J. A.; Frieders, G.; Friedrich, S.; Gatu-Johnson, M.; Gibson, C. R.; Giraldez, E.; Glebov, V. Y.; Glenn, S. M.; Glenzer, S. H.; Gururangan, G.; Haan, S. W.; Hahn, K. D.; Hammel, B. A.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Haynam, C.; Hermann, M. R.; Herrmann, H. W.; Hicks, D. G.; Holder, J. P.; Holunga, D. M.; Horner, J. B.; Hsing, W. W.; Huang, H.; Jackson, M. C.; Jancaitis, K. S.; Kalantar, D. H.; Kauffman, R. L.; Kauffman, M. I.; Khan, S. F.; Kilkenny, J. D.; Kimbrough, J. R.; Kirkwood, R.; Kline, J. L.; Knauer, J. P.; Knittel, K. M.; Koch, J. A.; Kohut, T. R.; Kozioziemski, B. J.; Krauter, K.; Krauter, G. W.; Kritcher, A. L.; Kroll, J.; Kyrala, G. A.; Fortune, K. N. La; LaCaille, G.; Lagin, L. J.; Land, T. A.; Landen, O. L.; Larson, D. W.; Latray, D. A.; Leeper, R. J.; Lewis, T. L.; LePape, S.; Lindl, J. D.; Lowe-Webb, R. R.; Ma, T.; MacGowan, B. J.; MacKinnon, A. J.; MacPhee, A. G.; Malone, R. M.; Malsbury, T. N.; Mapoles, E.; Marshall, C. D.; Mathisen, D. G.; McKenty, P.; McNaney, J. M.; Meezan, N. B.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. S.; Moran, M. J.; Moreno, K.; Moses, E. I.; Munro, D. H.; Nathan, B. R.; Nelson, A. J.; Nikroo, A.; Olson, R. E.; Orth, C.; Pak, A. E.; Palma, E. S.; Parham, T. G.; Patel, P. K.; Patterson, R. W.; Petrasso, R. D.; Prasad, R.; Ralph, J. E.; Regan, S. P.; Rinderknecht, H.; Robey, H. F.; Ross, G. F.; Ruiz, C. L.; Séguin, F. H.; Salmonson, J. D.; Sangster, T. C.; Sater, J. D.; Saunders, R. L.; Schneider, M. B.; Schneider, D. H.; Shaw, M. J.; Simanovskaia, N.; Spears, B. K.; Springer, P. T.; Stoeckl, C.; Stoeffl, W.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.; Traille, A. J.; Wonterghem, B. Van; Wallace, R. J.; Weaver, S.; Weber, S. V.; Wegner, P. J.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wood, R. D.; Young, B. K.; Zacharias, R. A.; Zylstra, A.
2013-05-01
First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium-tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models' prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%-25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo; Dvorkin, Cora
We study the effect of the supersonic baryon-cold-dark-matter (CDM) flow, which has recently been shown to have a large effect on structure formation during the dark ages 10 {approx}< z {approx}< 1000, on the abundance of luminous, low-mass satellite galaxies around galaxies like the Milky Way. As the supersonic baryon-CDM flow significantly suppresses both the number of halos formed and the amount of baryons accreted onto such halos of masses 10{sup 6} < M{sub halo}/M{sub Sun} < 10{sup 8} at z {approx}> 10, a large effect results on the stellar luminosity function before reionization. As halos of these masses aremore » believed to have very little star formation after reionization due to the effects of photoheating by the ultraviolet background, this effect persists to the present day. We calculate that the number of low-mass 10{sup 6} < M{sub halo}/M{sub Sun} < 5 Multiplication-Sign 10{sup 7} halos that host luminous satellite galaxies today is typically suppressed by 50%, with values ranging up to 90% in regions where the initial supersonic velocity is high. We show that this previously ignored cosmological effect resolves some of the tension between the observed and predicted number of low-mass satellites in the Milky Way, reducing the need for other mass-dependent star-formation suppression before reionization.« less
Huo, Chenmin; Zhang, Baowen; Wang, Hui; Wang, Fawei; Liu, Meng; Gao, Yingjie; Zhang, Wenhua; Deng, Zhiping; Sun, Daye; Tang, Wenqiang
2016-04-01
To understand the early signaling steps that regulate cold responses in rice, two-dimensional difference gel electrophoresis (2-D DIGE)(1)was used to study early cold-regulated proteins in rice seedlings. Using mass spectrometry, 32 spots, which represent 26 unique proteins that showed an altered expression level within 5 min of cold treatment were identified. Among these proteins, Western blot analyses confirmed that the cellular phospholipase D α1 (OsPLDα1) protein level was increased as early as 1 min after cold treatment. Genetic studies showed that reducing the expression ofOsPLDα1makes rice plants more sensitive to chilling stress as well as cold acclimation increased freezing tolerance. Correspondingly, cold-regulated proteomic changes and the expression of the cold-responsive C repeat/dehydration-responsive element binding 1 (OsDREB1) family of transcription factors were inhibited in thepldα1mutant. We also found that the expression ofOsPLDα1is directly regulated by OsDREB1A. This transcriptional regulation ofOsPLDα1could provide positive feedback regulation of the cold signal transduction pathway in rice. OsPLDα1 hydrolyzes phosphatidylcholine to produce the signal molecule phosphatidic acid (PA). By lipid-overlay assay, we demonstrated that the rice cold signaling proteins, MAP kinase 6 (OsMPK6) and OsSIZ1, bind directly to PA. Taken together, our results suggest that OsPLDα1 plays a key role in transducing cold signaling in rice by producing PA and regulatingOsDREB1s' expression by OsMPK6, OsSIZ1, and possibly other PA-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Seifert, John G; Frost, Jeremy; St Cyr, John A
2017-01-01
Breathing cold air can lead to bronchoconstriction and peripheral vasoconstriction, both of which could impact muscular performance by affecting metabolic demands during exercise. Successful solutions dealing with these physiological changes during exercise in the cold has been lacking; therefore, we investigated the influence of a heat and moisture exchange mask during exercise in the cold. There were three trial arms within this study: wearing the heat and moisture exchange mask during the rest periods in the cold, no-mask application during the rest periods in the cold, and a trial at room temperature (22°C). Eight subjects cycled in four 35 kJ sprint sessions with each session separated by 20 min rest period. Workload was 4% of body mass. Mean sprint times were faster with heat and moisture exchange mask and room temperature trial than cold, no-mask trial (133.8 ± 8.6, 134.9 ± 8.8, and 138.0 ± 8.4 s (p = 0.001)). Systolic blood pressure and mean arterial pressure were greater during the cold trial with no mask (15% and 13%, respectively), and heart rate was 10 bpm less during the third rest or recovery period during cold, no mask compared to the heat and moisture exchange mask and room temperature trials. Subjects demonstrated significant decreases in vital capacity and peak expiratory flow rate during the cold with no mask applied during the rest periods. These negative responses to cold exposure were alleviated by the use of a heat and moisture exchange mask worn during the rest intervals by minimizing cold-induced temperature stress on the respiratory system with subsequent maintenance of cardiovascular function.
Fang, Yi-Kai; Huang, Kuo-Yang; Huang, Po-Jung; Lin, Rose; Chao, Mei; Tang, Petrus
2015-12-01
Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted disease in the world. This infection affects millions of individuals worldwide annually. Although direct sexual contact is the most common mode of transmission, increasing evidence indicates that T. vaginalis can survive in the external environment and can be transmitted by contaminated utensils. We found that the growth of T. vaginalis under cold conditions is greatly inhibited, but recovers after placing these stressed cells at the normal cultivation temperature of 37 °C. However, the mechanisms by which T. vaginalis regulates this adaptive process are unclear. An expressed sequence tag (EST) database generated from a complementary DNA library of T. vaginalis messenger RNAs expressed under cold-culture conditions (4 °C, TvC) was compared with a previously published normal-cultured EST library (37 °C, TvE) to assess the cold-stress responses of T. vaginalis. A total of 9780 clones were sequenced from the TvC library and were mapped to 2934 genes in the T. vaginalis genome. A total of 1254 genes were expressed in both the TvE and TvC libraries, and 1680 genes were only found in the TvC library. A functional analysis showed that cold temperature has effects on many cellular mechanisms, including increased H2O2 tolerance, activation of the ubiquitin-proteasome system, induction of iron-sulfur cluster assembly, and reduced energy metabolism and enzyme expression. The current study is the first large-scale transcriptomic analysis in cold-stressed T. vaginalis and the results enhance our understanding of this important protist. Copyright © 2014. Published by Elsevier B.V.
Metal with a memory provides useful tool for Skylab astronauts
NASA Technical Reports Server (NTRS)
Smith, G. A.
1975-01-01
Extendible booms used to convey film cassettes weighing 56.7 kg (125 lb) between the Airlock Module and the Apollo Telescope Mount are described along with the dispensing mechanism. Problems encountered with the mechanism during the test program are discussed. These problems were mainly associated with operation in cold temperature, lubrication, and the motor/gearhead assembly. Another set of problems which arose during crew training in the MSFC water tank is also discussed.
Stoichiometric Control of Multiple Different Tectons in Coordination-Driven Self-assembly
Lee, Junseong; Ghosh, Koushik; Stang, Peter J.
2009-01-01
We present a general strategy for the synthesis of stable, multi-component fused polygon complexes where coordination-driven self-assembly allows for single supramolecular species can be formed from multi-component self-assembly and the shape of the obtained polygons can be controlled by simply changing the ratio of individual components. The compounds are characterized by Multinuclear NMR, ESI Mass spectrometry. PMID:19663439
NASA Astrophysics Data System (ADS)
Masaki, Shogo; Hikage, Chiaki; Takada, Masahiro; Spergel, David N.; Sugiyama, Naoshi
2013-08-01
We develop a novel abundance matching method to construct a mock catalogue of luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), using catalogues of haloes and subhaloes in N-body simulations for a Λ-dominated cold dark matter model. Motivated by observations suggesting that LRGs are passively evolving, massive early-type galaxies with a typical age ≳5 Gyr, we assume that simulated haloes at z = 2 (z2-halo) are progenitors for LRG-host subhaloes observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG `stars'. We then identify the subhaloes containing these stars to z = 0.3 (SDSS redshift) in descending order of the masses of z2-haloes until the comoving number density of the matched subhaloes becomes comparable to the measured number density of SDSS LRGs, bar{n}_LRG=10^{-4} h^3 Mpc^{-3}. Once the above prescription is determined, our only free parameter is the number density of haloes identified at z = 2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalogue, the distributions of central and satellite LRGs and their internal motions in each host halo at z = 0.3. While the SDSS LRGs are galaxies selected by the magnitude and colour cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalogue reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected autocorrelation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing) and the non-linear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum. The mock catalogue generated based on our method can be used for removing or calibrating systematic errors in the cosmological interpretation of LRG clustering measurements as well as for understanding the nature of LRGs such as their formation and assembly histories.
Kodak Mirror Assembly Tested at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
2003-01-01
The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, an MSFC employee is inspecting one of many segments of the mirror assembly for flaws. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
Transceiver optics for interplanetary communications
NASA Astrophysics Data System (ADS)
Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.
2017-11-01
In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.
End of the trend: Cold desert ecosystem responses to climate variability
NASA Astrophysics Data System (ADS)
Gooseff, M. N.; Barrett, J. E.; Truhlar, A.; Adams, B.; Doran, P. T.; Fountain, A. G.; Lyons, W. B.; McKnight, D. M.; Priscu, J. C.; Takacs-Vesbach, C. D.; Virginia, R. A.; Wall, D. H.
2013-12-01
The McMurdo Dry Valleys (MDVs) of Antarctica represent a cold desert ecosystem defined by extensive soils (i.e., not ice-covered), glacier meltwater streams, and closed-basin, ice-covered lakes. Despite cold temperatures and very little precipitation, a vibrant ecosystem exists across these landscape units. Previous work in the MDVs documented significant responses of local aquatic and terrestrial ecosystems to a decadal cooling trend prior to 2000. However, an exceptionally high melt year occurred in 2002, influencing stream flow, lake dynamics and terrestrial ecosystems. Here we describe interannual variation in Dry Valley ecosystems, focusing on the contrasts in drivers of ecological responses pre- and post 2002, i.e., the flood year. In streams, ash-free dry mass (AFDM) and chlorophyll-a concentration in black Nostoc-dominated microbial mats were observed to decrease prior to 2002, and AFDM has been increasing since. Three MDV lakes were decreasing in volume and increasing in total chlorophyll-a mass in the photic zones prior to 2002 and have been increasing volume and decreasing total chlorophyll-a mass since. Soil nematode communities were decreasing in abundance prior to 2002, and show no significant trend since, but increased variability. Since 2002, the MDV ecosystem has ceased responding to only a decadal cooling trend and is responding to several high-flow years with new trajectories in some cases and changed interannual variability in others.
NASA Technical Reports Server (NTRS)
Hanford, Anthony J.
2004-01-01
This document provides values at the assembly level for the subsystems described in the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric (Hanford, 2004). Hanford (2004) summarizes the subordinate computational values for the Advanced Life Support Research and Technology Development (ALS R&TD) Metric at the subsystem level, while this manuscript provides a summary at the assembly level. Hanford (2004) lists mass, volume, power, cooling, and crewtime for each mission examined by the ALS R&TD Metric according to the nominal organization for the Advanced Life Support (ALS) elements. The values in the tables below, Table 2.1 through Table 2.8, list the assemblies, using the organization and names within the Advanced Life Support Sizing Analysis Tool (ALSSAT) for each ALS element. These tables specifically detail mass, volume, power, cooling, and crewtime. Additionally, mass and volume are designated in terms of values associated with initial hardware and resupplied hardware just as they are within ALSSAT. The overall subsystem values are listed on the line following each subsystem entry. These values are consistent with those reported in Hanford (2004) for each listed mission. Any deviations between these values and those in Hanford (2004) arise from differences in when individual numerical values are rounded within each report, and therefore the resulting minor differences should not concern even a careful reader. Hanford (2004) u es the uni ts kW(sub e) and kW(sub th) for power and cooling, respectively, while the nomenclature below uses W(sub e) and W(sub th), which is consistent with the native units within ALSSAT. The assemblies, as specified within ALSSAT, are listed in bold below their respective subsystems. When recognizable assembly components are not listed within ALSSAT, a summary of the assembly is provided on the same line as the entry for the assembly. Assemblies with one or more recognizable components are further described by the indented entries below them. See Yeh, et al. (2002), Yeh, et al. (2003), and Yeh, et al. (2004) for details about ALSSAT organization. Except for the dry food mass listed within the Food Processing, Packaging, and Storage within the Food Subsystem, total values for assemblies would be the sum of their components. The Dry Food Mass, however, is that portion of the food system that was neglected during the computation of the Fiscal Year 2004 ALS R&TD Metric. It is listed here to provide a reference, but it is otherwise ignored in the overall totals. See Hanford (2004) for details of this process and supporting rationale. When applicable, the technology label from ALSSAT is listed in the second column, and the associated abbreviations are listed below in Section 4. For more details of the technologies assumed for each mission, please see Hanford (2004) for descriptions of each subsystem and an overall life support system schematic.
Dabić, Dario; Brkljačić, Lidija; Tandarić, Tana; Žinić, Mladen; Vianello, Robert; Frkanec, Leo; Kobetić, Renata
2018-01-01
Gels formed by self-assembly of small organic molecules are of wide interest as dynamic soft materials with numerous possible applications, especially in terms of nanotechnology for functional and responsive biomaterials, biosensors, and nanowires. Four bis-oxalamides were chosen to show if electrospray ionization mass spectrometry (ESI-MS) could be used as a prediction of a good gelator and also to shed light on the gelation processes. By inspecting the gelation of several solvent, we showed that bis(amino acid)oxalamide 1 proved to be the most efficient, also being able of forming the largest observable assemblies in the gas phase. The formation of singly charged assemblies holding from one up to six monomer units is the outcome of the strong intermolecular H-bonds, particularly among terminal carboxyl groups. The variation of solvents from polar aprotic towards polar protic did not have any significant effects on the size of the assemblies. The addition of a salt such as NaOAc or Mg(OAc) 2 , depending on the concentration, altered the assembling. Computational analysis at the DFT level aided in the interpretation of the observed trends and revealed that individual gelator molecules spontaneously assemble to higher aggregates, but the presence of the Na + cation disrupts any gelator organization since it becomes significantly more favorable for gelator molecules to bind Na + cations up to the 3:1 ratio than to self-assemble, being fully in line with experimental observations reported here. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Dabić, Dario; Brkljačić, Lidija; Tandarić, Tana; Žinić, Mladen; Vianello, Robert; Frkanec, Leo; Kobetić, Renata
2018-01-01
Gels formed by self-assembly of small organic molecules are of wide interest as dynamic soft materials with numerous possible applications, especially in terms of nanotechnology for functional and responsive biomaterials, biosensors, and nanowires. Four bis-oxalamides were chosen to show if electrospray ionization mass spectrometry (ESI-MS) could be used as a prediction of a good gelator and also to shed light on the gelation processes. By inspecting the gelation of several solvent, we showed that bis(amino acid)oxalamide 1 proved to be the most efficient, also being able of forming the largest observable assemblies in the gas phase. The formation of singly charged assemblies holding from one up to six monomer units is the outcome of the strong intermolecular H-bonds, particularly among terminal carboxyl groups. The variation of solvents from polar aprotic towards polar protic did not have any significant effects on the size of the assemblies. The addition of a salt such as NaOAc or Mg(OAc)2, depending on the concentration, altered the assembling. Computational analysis at the DFT level aided in the interpretation of the observed trends and revealed that individual gelator molecules spontaneously assemble to higher aggregates, but the presence of the Na+ cation disrupts any gelator organization since it becomes significantly more favorable for gelator molecules to bind Na+ cations up to the 3:1 ratio than to self-assemble, being fully in line with experimental observations reported here. [Figure not available: see fulltext.
Miniature Internal Combustion Engine-Generator for High Energy Density Portable Power
2008-12-01
Operation on JP-8 from cold startup to steady operation has been demonstrated at the 300 W scale. Miniature engine/generators can be acoustically silenced...design that uses a spring for energy storage . MICE is a high Q system, operating at the resonant frequency of the spring-mass system with very low...development • Demonstrated 94% efficiency of 300 W linear alternator • Demonstrated full operation of MICE generator from cold startup to net power output
Deep Arctic Ocean warming during the last glacial cycle
Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.
2012-01-01
In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.
A miniature pulse tube cryocooler used in a superspectral imager
NASA Astrophysics Data System (ADS)
Jiang, Zhenhua; Wu, Yinong
2017-05-01
In this paper, we describe a hihg0 frequency pulse tube cryocooler used in a superspectral imager to be launched in 2020. The superspectral imager is a field-dividing optical imaging system and uses 14 sets of integrated IR detector cryocooler dewar assembly. For the requirements of less heat loss an smaller size, each set is highly integrated by directly mounting the IR dectector's sapphire substrate on the pulse tube's cold tip, and welding the dewar's housing to the flange of the cold finger. Driven by a pair of moving magnet linear motors, the dual-opposed piston compressor of the croycooler is running at 120Hz. Filled with customized stainless screens in the regenerator, the cryolooler reaches 8.1% carnot efficiency at the cooling power of 1W@80K with 34Wac input power.
Factors associated with dysmenorrhea among workers in French poultry slaughterhouses and canneries.
Messing, K; Saurel-Cubizolles, M J; Bourgine, M; Kaminski, M
1993-05-01
The food and agriculture industry employs 15% of the female industrial work force in France. Workers in this industry are exposed to a variety of environmental and organizational constraints: cold, uncomfortable postures, assembly-line work, irregular schedules. In 1987 to 1988, a medical examination and questionnaire were administered to 726 menstruating women who had not been pregnant during the 2 previous years, as part of a study of French workers in 17 poultry slaughterhouses and 6 canning factories. Dysmenorrhea during the previous year was more prevalent among younger women and smokers, and less prevalent among users of oral contraceptives. After adjustment for nonoccupational variables, dysmenorrhea was significantly related to several parameters expressing cold exposure and physical work load. Other parameters such as job satisfaction and hours of domestic work were not associated with dysmenorrhea.
Urbarova, Ilona; Karlsen, Bård Ove; Okkenhaug, Siri; Seternes, Ole Morten; Johansen, Steinar D.; Emblem, Åse
2012-01-01
Marine bioprospecting is the search for new marine bioactive compounds and large-scale screening in extracts represents the traditional approach. Here, we report an alternative complementary protocol, called digital marine bioprospecting, based on deep sequencing of transcriptomes. We sequenced the transcriptomes from the adult polyp stage of two cold-water sea anemones, Bolocera tuediae and Hormathia digitata. We generated approximately 1.1 million quality-filtered sequencing reads by 454 pyrosequencing, which were assembled into approximately 120,000 contigs and 220,000 single reads. Based on annotation and gene ontology analysis we profiled the expressed mRNA transcripts according to known biological processes. As a proof-of-concept we identified polypeptide toxins with a potential blocking activity on sodium and potassium voltage-gated channels from digital transcriptome libraries. PMID:23170083
Improvement of thermal performance of gamma-type stirling engine
NASA Astrophysics Data System (ADS)
Saenyot, Khanuengchat; Chamdee, Peerapong; Raksrithong, Pawin; Locharoenrat, Kitsakorn; Lekchaum, Sarai
2018-06-01
The gamma-type stirling engine was designed and fabricated using three main types of the materials for the engine assembly in order to get better the heat transfer between the cold and hot sides of the engine cylinders. Stainless steel and brass were applied for the hot cylinder, whereas aluminum was used for the cold cylinder. We have achieved the indicated work, engine speed and indicated power of 71.64 mJ, 599 rpm and 0.71 J/s, respectively. Furthermore, we were able to accomplish the constant temperature difference of 300 K with the thermal efficiency of 40 %. The improvement of the engine performance was confirmed by the heat flow simulation via the Solidwork program. Our inexpensive home-made engine is expected to be very useful for the people in the rural areas where the electricity is unable to reach them.
PHARAO flight model: optical on ground performance tests
NASA Astrophysics Data System (ADS)
Lévèque, T.; Faure, B.; Esnault, F. X.; Grosjean, O.; Delaroche, C.; Massonnet, D.; Escande, C.; Gasc, Ph.; Ratsimandresy, A.; Béraud, S.; Buffe, F.; Torresi, P.; Larivière, Ph.; Bernard, V.; Bomer, T.; Thomin, S.; Salomon, C.; Abgrall, M.; Rovera, D.; Moric, I.; Laurent, Ph.
2017-11-01
PHARAO (Projet d'Horloge Atomique par Refroidissement d'Atomes en Orbite), which has been developed by CNES, is the first primary frequency standard specially designed for operation in space. PHARAO is the main instrument of the ESA mission ACES (Atomic Clock Ensemble in Space). ACES payload will be installed on-board the International Space Station (ISS) to perform fundamental physics experiments. All the sub-systems of the Flight Model (FM) have now passed the qualification process and the whole FM of the cold cesium clock, PHARAO, is being assembled and will undergo extensive tests. The expected performances in space are frequency accuracy less than 3.10-16 (with a final goal at 10-16) and frequency stability of 10-13 τ-1/2. In this paper, we focus on the laser source performances and the main results on the cold atom manipulation.
Magnetic compound refractive lens for focusing and polarizing cold neutron beams.
Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R
2007-03-01
Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.
Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome
MacMillan, Heath A.; Knee, Jose M.; Dennis, Alice B.; Udaka, Hiroko; Marshall, Katie E.; Merritt, Thomas J. S.; Sinclair, Brent J.
2016-01-01
Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance. PMID:27357258
Observation of Solvent Penetration during Cold Denaturation of E. coli Phosphofructokinase-2
Ramírez-Sarmiento, César A.; Baez, Mauricio; Wilson, Christian A.M.; Babul, Jorge; Komives, Elizabeth A.; Guixé, Victoria
2013-01-01
Phosphofructokinase-2 is a dimeric enzyme that undergoes cold denaturation following a highly cooperative N2 2I mechanism with dimer dissociation and formation of an expanded monomeric intermediate. Here, we use intrinsic fluorescence of a tryptophan located at the dimer interface to show that dimer dissociation occurs slowly, over several hours. We then use hydrogen-deuterium exchange mass spectrometry experiments, performed by taking time points over the cold denaturation process, to measure amide exchange throughout the protein during approach to the cold denatured state. As expected, a peptide corresponding to the dimer interface became more solvent exposed over time at 3°C; unexpectedly, amide exchange increased throughout the protein over time at 3°C. The rate of increase in amide exchange over time at 3°C was the same for each region and equaled the rate of dimer dissociation measured by tryptophan fluorescence, suggesting that dimer dissociation and formation of the cold denatured intermediate occur without appreciable buildup of folded monomer. The observation that throughout the protein amide exchange increases as phosphofructokinase-2 cold denatures provides experimental evidence for theoretical predictions that cold denaturation primarily occurs by solvent penetration into the hydrophobic core of proteins in a sequence-independent manner. PMID:23708365
Observation of solvent penetration during cold denaturation of E. coli phosphofructokinase-2.
Ramírez-Sarmiento, César A; Baez, Mauricio; Wilson, Christian A M; Babul, Jorge; Komives, Elizabeth A; Guixé, Victoria
2013-05-21
Phosphofructokinase-2 is a dimeric enzyme that undergoes cold denaturation following a highly cooperative N2 2I mechanism with dimer dissociation and formation of an expanded monomeric intermediate. Here, we use intrinsic fluorescence of a tryptophan located at the dimer interface to show that dimer dissociation occurs slowly, over several hours. We then use hydrogen-deuterium exchange mass spectrometry experiments, performed by taking time points over the cold denaturation process, to measure amide exchange throughout the protein during approach to the cold denatured state. As expected, a peptide corresponding to the dimer interface became more solvent exposed over time at 3°C; unexpectedly, amide exchange increased throughout the protein over time at 3°C. The rate of increase in amide exchange over time at 3°C was the same for each region and equaled the rate of dimer dissociation measured by tryptophan fluorescence, suggesting that dimer dissociation and formation of the cold denatured intermediate occur without appreciable buildup of folded monomer. The observation that throughout the protein amide exchange increases as phosphofructokinase-2 cold denatures provides experimental evidence for theoretical predictions that cold denaturation primarily occurs by solvent penetration into the hydrophobic core of proteins in a sequence-independent manner. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lei, Yanbin; Yao, Tandong; Yang, Kun; Sheng, Yongwei; Kleinherenbrink, Marcel; Yi, Shuang; Bird, Broxton W.; Zhang, Xiaowen; Zhu, La; Zhang, Guoqing
2017-01-01
The recent growth and deepening of inland lakes in the Tibetan Plateau (TP) may be a salient indicator of the consequences of climate change. The seasonal dynamics of these lakes is poorly understood despite this being potentially crucial for disentangling contributions from glacier melt and precipitation, which are all sensitive to climate, to lake water budget. Using in situ observations, satellite altimetry and gravimetry data, we identified two patterns of lake level seasonality. In the central, northern, and northeastern TP, lake levels are characterized by considerable increases during warm seasons and decreases during cold seasons, which is consistent with regional mass changes related to monsoon precipitation and evaporation. In the northwestern TP, however, lake levels exhibit dramatic increases during both warm and cold seasons, which deviate from regional mass changes. This appears to be more connected with high spring snowfall and large summer glacier melt. The variable lake level response to different drivers indicates heterogeneous sensitivity to climate change between the northwestern TP and other regions.
Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J
2013-01-01
Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.
NASA Astrophysics Data System (ADS)
Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.
2016-07-01
CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.
Advanced radial inflow turbine rotor program: Design and dynamic testing
NASA Technical Reports Server (NTRS)
Rodgers, C.
1976-01-01
The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).
Li, Xiaopeng; Chan, Yi-Tsu; Casiano-Maldonado, Madalis; Yu, Jing; Carri, Gustavo A; Newkome, George R; Wesdemiotis, Chrys
2011-09-01
The self-assembly of Zn(II) ions and bis(terpyridine) (tpy) ligands carrying 120° or 180° angles between their metal binding sites was utilized to prepare metallosupramolecular libraries with the
Ghoshal, P. K.; Pastor, O.; Kashy, D.; ...
2014-12-18
The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coilmore » case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.« less
Characterization of exoplanets from their formation. III. The statistics of planetary luminosities
NASA Astrophysics Data System (ADS)
Mordasini, C.; Marleau, G.-D.; Mollière, P.
2017-12-01
Context. This paper continues a series in which we predict the main observable characteristics of exoplanets based on their formation. In Paper I we described our global planet formation and evolution model that is based on the core accretion paradigm. In Paper II we studied the planetary mass-radius relationship with population syntheses. Aims: In this paper we present an extensive study of the statistics of planetary luminosities during both formation and evolution. Our results can be compared with individual directly imaged extrasolar (proto)planets and with statistical results from surveys. Methods: We calculated three populations of synthetic planets assuming different efficiencies of the accretional heating by gas and planetesimals during formation. We describe the temporal evolution of the planetary mass-luminosity relation. We investigate the relative importance of the shock and internal luminosity during formation, and predict a statistical version of the post-formation mass vs. entropy "tuning fork" diagram. Because the calculations now include deuterium burning we also update the planetary mass-radius relationship in time. Results: We find significant overlap between the high post-formation luminosities of planets forming with hot and cold gas accretion because of the core-mass effect. Variations in the individual formation histories of planets can still lead to a factor 5 to 20 spread in the post-formation luminosity at a given mass. However, if the gas accretional heating and planetesimal accretion rate during the runaway phase is unknown, the post-formation luminosity may exhibit a spread of as much as 2-3 orders of magnitude at a fixed mass. As a key result we predict a flat log-luminosity distribution for giant planets, and a steep increase towards lower luminosities due to the higher occurrence rate of low-mass (M ≲ 10-40 M⊕) planets. Future surveys may detect this upturn. Conclusions: Our results indicate that during formation an estimation of the planetary mass may be possible for cold gas accretion if the planetary gas accretion rate can be estimated. If it is unknown whether the planet still accretes gas, the spread in total luminosity (internal + accretional) at a given mass may be as large as two orders of magnitude, therefore inhibiting the mass estimation. Due to the core-mass effect even planets which underwent cold accretion can have large post-formation entropies and luminosities, such that alternative formation scenarios such as gravitational instabilities do not need to be invoked. Once the number of self-luminous exoplanets with known ages and luminosities increases, the resulting luminosity distributions may be compared with our predictions.
Na, Na; Shi, Ruixia; Long, Zi; Lu, Xin; Jiang, Fubin; Ouyang, Jin
2014-10-01
In this study, the real-time analysis of self-assembled nucleobases was employed by Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS). With the analysis of three nucleobases including 6-methyluracil (6MU), uracil (U) and thymine (T) as examples, different orders of clusters centered with different metal ions were recorded in both positive and negative modes. Compared with the results obtained by traditional electrospray ionization mass spectrometry (ESI-MS) under the same condition, more clusters with high orders, such as [6MU7+Na](+), [6MU15+2NH4](2+), [6MU10+Na](+), [T7+Na](+), and [T15+2NH4](2+) were detected by V-EASI-MS, which demonstrated the soft ionization ability of V-EASI for studying the non-covalent interaction in a self-assembly process. Furthermore, with the injection of K(+) to the system by a syringe pumping, the real-time monitoring of the formation of nucleobases clusters was achieved by the direct extraction of samples from the system under the Venturi effect. Therefore, the effect of cations on the formation of clusters during self-assembly of nucleobases was demonstrated, which was in accordance with the reports. Free of high voltage, heating or radiation during the ionization, this technique is much soft and suitable for obtaining the real-time information of the self-assembly system, which also makes it quite convenient for extraction samples from the reaction system. This "easy and soft" ionization technique has provided a potential pathway for monitoring and controlling the self-assembly processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Sinha, Somya; Raxwal, Vivek K.; Joshi, Bharat; Jagannath, Arun; Katiyar-Agarwal, Surekha; Goel, Shailendra; Kumar, Amar; Agarwal, Manu
2015-01-01
Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5–15 DAP) and late stages (20–30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as “core cold-inducible” transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene expression profiles of selected transcripts by qPCR and found a high degree of concordance between the two analyses. To our knowledge this is the first report of transcriptome sequencing of cold-stressed B. juncea siliques. The data generated in this study would be a valuable resource for not only understanding the cold stress signaling pathway but also for introducing cold hardiness in B. juncea. PMID:26579175
The Planck Catalogue of Galactic Cold Clumps : Looking at the early stages of star-formation
NASA Astrophysics Data System (ADS)
Montier, Ludovic
2015-08-01
The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.I will briefly describe the colour detection method used to extract the Galactic cold sources, i.e., the Cold Core Colour Detection Tool (CoCoCoDeT, Montier et al. 2010), and its application to the Planck data. I will discuss the statistical distribution of the properties of the PGCC sources (in terms of dust temperature, distance, mass, density and luminosity), which illustrates that the PGCC catalogue spans a large variety of environments and objects, from molecular clouds to cold cores, and covers various stages of evolution. The Planck catalogue is a very powerful tool to study the formation and the evolution of prestellar objects and star-forming regions.I will finally present an overview of the Herschel Key Program Galactic Cold Cores (PI. M.Juvela), which allowed us to follow-up about 350 Planck Galactic Cold Clumps, in various stages of evolution and environments. With this program, the nature and the composition of the 5' Planck sources have been revealed at a sub-arcmin resolution, showing very different configurations, such as starless cold cores or multiple Young Stellar objects still embedded in their cold envelope.
Ngas Multi-Stage Coaxial High Efficiency Cooler (hec)
NASA Astrophysics Data System (ADS)
Nguyen, T.; Toma, G.; Jaco, C.; Raab, J.
2010-04-01
This paper presents the performance data of the single and two-stage High Efficiency Cooler (HEC) tested with coaxial cold heads. The single stage coaxial cold head has been optimized to operate at temperatures of 40 K and above. The two-stage parallel cold head configuration has been optimized to operate at 30 K and above and provides a long-life, low mass and efficient two-stage version of the Northrop Grumman Aerospace Systems (NGAS) flight qualified single stage HEC cooler. The HEC pulse tube cryocoolers are the latest generation of flight coolers with heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years. This paper presents the performance data of the one and two-stage versions of this cooler under a wide range of heat rejection temperature, cold head temperature and input power.
De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.
Liu, Xiaowen; Dekker, Lennard J M; Wu, Si; Vanduijn, Martijn M; Luider, Theo M; Tolić, Nikola; Kou, Qiang; Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira; Paša-Tolić, Ljiljana; Pevzner, Pavel A
2014-07-03
There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.
Dyson, Beth C.; Miller, Matthew A.E.; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G.
2016-01-01
Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing. PMID:27440755
Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S
2018-02-01
Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust quantitative image reconstruction and biomarker analysis, there may be an expanded role for SPECT/CT imaging in renal masses and other pathologic conditions.
Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS
NASA Technical Reports Server (NTRS)
Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.
2012-01-01
Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample-standard bracketing. As cold plasma conditions can amplify matrix effects, experiments were conducted to test the matrix tolerance of measurements; the use of clean, matrix-matched samples and standards is critical. Limitations of the cold-plasma high-resolution MC-ICP-MS methodology with respect to matrix tolerance are discussed and compared with the limitations of TIMS methodologies.
NASA Astrophysics Data System (ADS)
Dutton, Aaron A.; van den Bosch, Frank C.
2012-03-01
We combine constraints on the galaxy-dark matter connection with structural and dynamical scaling relations to investigate the angular momentum content of disc galaxies. For haloes with masses in the interval 1011.3 M⊙≲Mvir≲ 1012.7 M⊙ we find that the galaxy spin parameters are basically independent of halo mass with ?. This is significantly lower than for relaxed Λcold dark matter (ΛCDM) haloes, which have an average spin parameter ?. The average ratio between the specific angular momentum of disc galaxies and their host dark matter haloes is therefore ?. This calls into question a standard assumption made in the majority of all (semi-analytical) models for (disc) galaxy formation, namely that ?. Using simple disc formation models we show that it is particularly challenging to understand why ? is independent of halo mass, while the galaxy formation efficiency (ɛGF; proportional to the ratio of galaxy mass to halo mass) reveals a strong halo mass dependence. We argue that the empirical scaling relations between ɛGF, ? and halo mass require both feedback (i.e. galactic outflows) and angular momentum transfer from the baryons to the dark matter (i.e. dynamical friction). Most importantly, the efficiency of angular momentum loss needs to decrease with increasing halo mass. Such a mass dependence may reflect a bias against forming stable discs in high-mass, low-spin haloes or a transition from cold-mode accretion in low-mass haloes to hot-mode accretion at the massive end. However, current hydrodynamical simulations of galaxy formation, which should include these processes, seem unable to reproduce the empirical relation between ɛGF and ?. We conclude that the angular momentum build-up of galactic discs remains poorly understood.
Lu, Jonathan; Trnka, Michael J; Roh, Soung-Hun; Robinson, Philip J J; Shiau, Carrie; Fujimori, Danica Galonic; Chiu, Wah; Burlingame, Alma L; Guan, Shenheng
2015-12-01
Native electrospray-ionization mass spectrometry (native MS) measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact protein assemblies. However, native spectra derived from these assemblies are often partially obscured by low signal-to-noise as well as broad peak shapes because of residual solvation and adduction after the electrospray process. The wide peak widths together with the fact that sequential charge state series from highly charged ions are closely spaced means that native spectra containing multiple species often suffer from high degrees of peak overlap or else contain highly interleaved charge envelopes. This situation presents a challenge for peak detection, correct charge state and charge envelope assignment, and ultimately extraction of the relevant underlying mass values of the noncovalent assemblages being investigated. In this report, we describe a comprehensive algorithm developed for addressing peak detection, peak overlap, and charge state assignment in native mass spectra, called PeakSeeker. Overlapped peaks are detected by examination of the second derivative of the raw mass spectrum. Charge state distributions of the molecular species are determined by fitting linear combinations of charge envelopes to the overall experimental mass spectrum. This software is capable of deconvoluting heterogeneous, complex, and noisy native mass spectra of large protein assemblies as demonstrated by analysis of (1) synthetic mononucleosomes containing severely overlapping peaks, (2) an RNA polymerase II/α-amanitin complex with many closely interleaved ion signals, and (3) human TriC complex containing high levels of background noise. Graphical Abstract ᅟ.
The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey
NASA Astrophysics Data System (ADS)
Tortora, C.; Napolitano, N. R.; Roy, N.; Radovich, M.; Getman, F.; Koopmans, L. V. E.; Verdoes Kleijn, G. A.; Kuijken, K. H.
2018-01-01
We study the dark matter (DM) assembly in the central regions of massive early-type galaxies up to z ∼ 0.65. We use a sample of ∼3800 massive (log M⋆/M⊙ > 11.2) galaxies with photometry and structural parameters from 156 deg2 of the Kilo Degree Survey (KiDS), and spectroscopic redshifts and velocity dispersions from Sloan Digital Sky Survey (SDSS). We obtain central total-to-stellar mass ratios, Mdyn/M⋆, and DM fractions, by determining dynamical masses, Mdyn, from Jeans modelling of SDSS aperture velocity dispersions and stellar masses, M⋆, from KiDS galaxy colours. We first show how the central DM fraction correlates with structural parameters, mass and density proxies, and demonstrate that most of the local correlations are still observed up to z ∼ 0.65; at fixed M⋆, local galaxies have larger DM fraction, on average, than their counterparts at larger redshift. We also interpret these trends with a non-universal initial mass function (IMF), finding a strong evolution with redshift, which contrast independent observations and is at odds with the effect of galaxy mergers. For a fixed IMF, the galaxy assembly can be explained, realistically, by mass and size accretion, which can be physically achieved by a series of minor mergers. We reproduce both the Re-M⋆ and Mdyn/M⋆-M⋆ evolution with stellar and dark mass changing at a different rate. This result suggests that the main progenitor galaxy is merging with less massive systems, characterized by a smaller Mdyn/M⋆, consistently with results from halo abundance matching.
Forouzan, Farzane; Jalali, Mohammad Amin; Ziaaddini, Mahdi; Hashemi Rad, Hamid
2018-05-28
Psix saccharicola (Mani) (Hymenoptera: Platygastridae) is a solitary egg parasitoid of the pistachio green stink bug, Acrosternum arabicum (Wagner) (Hemiptera: Pentatomidae), which is one of the most important pests of pistachio in Iran. Augmentation of P. saccharicola field populations using mass-reared individuals may provide an alternative to conventional pesticide use for pistachio green stink bug control. Cold storage is an important component of mass-rearing protocols for optimum timing of host egg parasitization and potentially extended storage of P. saccharicola pupae prior to adult emergence. The impact of cold storage on A. arabicum eggs for various time intervals at 4.0°C was investigated. Results indicated that host eggs stored at 4.0°C for up to 60 d could be exploited by P. sacchricola, whereas no offspring were produced when eggs were stored for 120 d. The emergence rates of the F1 and F2 generations declined with increased host egg storage time. Both sex ratio and survival rate of the F2 generation decreased as the refrigeration time of host eggs increased. The impact of cold storage on P. saccharicola pupae was evaluated. Reared pupae of P. saccharicola were held for 1 wk at three temperatures and compared with a control (27 ± 1°C). Psix saccharicola pupae were tolerant to cold storage at 8 and 12°C. Cold storage adversely affected mean adult emergence at 4°C, which decreased following low temperature exposure. Furthermore, mean percentage survivorship was unaffected by storage at low temperatures in the F1 generation, but was reduced at 4°C. The sex ratio of the F1 generation became more male-biased when held at lower storage temperatures. The highest female proportion was observed at 12°C.
Zheng, Yao-Rong; Stang, Peter J.
2009-01-01
The direct observation of dynamic ligand exchange beween Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable isotope labeling (1H/2D) of the pyridyl donors and electrospray ionization mass spectrometry (ESI-MS) together with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established based on quantitative mass spectral results. Further investigation showed that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counter anions. PMID:19243144
Zheng, Yao-Rong; Stang, Peter J
2009-03-18
The direct observation of dynamic ligand exchange between Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable (1)H/(2)D isotope labeling of the pyridyl donors and electrospray ionization mass spectrometry combined with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established on the basis of quantitative mass spectral results. Further investigation has shown that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counteranions.
Intensity of Cold Water and its effects on marine culturing farms along the southeast coast of Korea
NASA Astrophysics Data System (ADS)
Lee, Yong-Hwa; Shim, JeongHee; Choi, Yang-Ho; Kim, Sang-Woo; Shim, Jeong-Min
2017-04-01
To understand the characteristics and strength of the cold water that has caused damage to marine-culturing farms around Guryongpo, in the southeast coast of Korea, surface and water column temperatures were collected from temperature loggers deployed at a sea squirt farm during August-November 2007 and from a Real-time Information System for aquaculture environments operated by NIFS during July-August 2015 and 2016. During the study period, surface temperature at Guryongpo decreased sharply when south/southwestern winds prevailed (the 18-26th of August and 20-22nd of September 2007 and the 13-15th of July 2015) as a result of upwelling. However, the deep-water (20-30m) temperature increased during periods of strong north/northeasterly winds (the 5-7th and 16-18th of September 2007) as a result of downwelling. Among the cold water events that occurred at Guryongpo, the mass death of cultured fish followed strong cold water events (surface temperatures below 10℃) that were caused by more than two days of successive south/southeastern winds with maximum speeds higher than 5 m/s. A Cold Water Index (CWI) was defined and calculated using maximum wind speed and direction as measured daily at Pohang Meteorological Observatory. When the average CWI over two days (CWI2d) was higher than 100, mass fish mortality occurred. The four-day average CWI (CWI4d) showed a high negative correlation with surface temperature from July-August in the Guryongpo area (R2 = 0.5), suggesting that CWI is a good index for predicting strong cold water events and massive mortality. In October 2007, the sea temperature at a depth of 30 m showed a high fluctuation that ranged from 7-23℃, with frequency and spectrum coinciding with tidal levels at Ulsan, affected by the North Korean Cold Current. If temperature variations at the depth of fish cages also regularly fluctuate within this range, damage may be caused to the fish industry along the southeast coast of Korea.
Chlorine condenser-evaporator simulation
NASA Astrophysics Data System (ADS)
Muraveva, E. A.
2017-10-01
Refrigeration machines are an integral part of chemical engineering. Coldness in mechanical engineering is used to improve the properties of steels, to stabilize the shape and size of steel parts, to restore the dimensions of worn steel hardened parts, to fasten the parts to be machined during cutting and grinding, to ensure fixed planting during assembly, bending pipelines, deep drawing and stamping parts from sheet materials, in the manufacture and processing of rubber parts, with solid anodizing of aluminum alloy parts.
Targeting Midbodies in Ovarian Cancer Stem Cells as a Therapeutic Strategy
2013-10-01
functional spindle assembly. Nat. Cell Biol. 13, 1406–1414. Ori-McKenney, K.M., Jan, L.Y., and Jan, Y.-N. (2012). Golgi outposts shape dendrite morphology...1899. Yadav, S., and Linstedt, A.D. (2011). Golgi positioning. Cold Spring Harb. Perspect . Biol. 3, 3. Zhang, H., Squirrell, J.M., and White, J.G. (2008...implications for recy- cling endosome function . This new liaison has additional impli- cations for a variety of biological processes including cilia
2014-06-11
typically of a few 10-11 torr using oil-free magnetically suspended turbomolecular pumps backed with dry scroll pumps . A cold finger assembled from...on line and in situ utilizing a Faraday cup mounted inside a differentially pumped chamber on an ultrahigh vacuum compatible translation state. The...down to a base pressure typically of a few 10-11 torr using oil-free magnetically suspended turbomolecular pumps backed with dry scroll pumps . A
Worldwide Emerging Environmental Issues Affecting the U.S. Military. April 2006 Report
2006-04-01
Knowledge and Security Some of the most prominent discussions are as follows: - Dissolving coral reef shells are explained by greater increases in CO2...levels within oceanic waters. Especially vulnerable are cold sea corals and recently discovered planktonic organisms. Increases of CO2 reduce pH...leading to acidification . The panelists at the EGU Assembly suggested that 1/3 of all CO2 is absorbed into oceans and that it has recently been
Unmanned Evaluation of Mares Abyss 22 Navy Open Circuit Scuba Regulator for Cold Water Diving
2011-05-05
regulator is shown above the water. Note the blue mouthpiece adaptor, white oral static pressure pick-up ring , and gray routing block attached for...e.g., an inflation whip or a second-stage octopus ), submersible pressure gage, or gas-integrated computer were connected to the first stage. As...adaptor (shown in blue ) inward into the second-stage assembly, Figure 9 indicates typical 9 internal second-stage icing experienced during Phase
An Examination of the Role of Communication Problems in Preventable Medical Adverse Events
2002-04-01
Eglin AFB Librarians, helped me assemble the articles for the literature review. Next, Lt Col Meghan Pilger not only gave me access to the case files...Carmen C. Birk, “The Patient Safety Mandate—Rebuilding the Trust and Creating a Report System,” Legal Medicine 2001, 7-15. 4 Lt Col Meghan Pilger ...continuation of a previous problem. Several physicians attributed her “ear aches” to infections, colds , or allergies. Providers discovered and diagnosed
McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.
2010-12-21
Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.
NEPTUNE'S WILD DAYS: CONSTRAINTS FROM THE ECCENTRICITY DISTRIBUTION OF THE CLASSICAL KUIPER BELT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Rebekah I.; Murray-Clay, Ruth, E-mail: rdawson@cfa.harvard.edu
2012-05-01
Neptune's dynamical history shaped the current orbits of Kuiper Belt objects (KBOs), leaving clues to the planet's orbital evolution. In the 'classical' region, a population of dynamically 'hot' high-inclination KBOs overlies a flat 'cold' population with distinct physical properties. Simulations of qualitatively different histories for Neptune, including smooth migration on a circular orbit or scattering by other planets to a high eccentricity, have not simultaneously produced both populations. We explore a general Kuiper Belt assembly model that forms hot classical KBOs interior to Neptune and delivers them to the classical region, where the cold population forms in situ. First, wemore » present evidence that the cold population is confined to eccentricities well below the limit dictated by long-term survival. Therefore, Neptune must deliver hot KBOs into the long-term survival region without excessively exciting the eccentricities of the cold population. Imposing this constraint, we explore the parameter space of Neptune's eccentricity and eccentricity damping, migration, and apsidal precession. We rule out much of parameter space, except where Neptune is scattered to a moderately eccentric orbit (e > 0.15) and subsequently migrates a distance {Delta}a{sub N} = 1-6 AU. Neptune's moderate eccentricity must either damp quickly or be accompanied by fast apsidal precession. We find that Neptune's high eccentricity alone does not generate a chaotic sea in the classical region. Chaos can result from Neptune's interactions with Uranus, exciting the cold KBOs and placing additional constraints. Finally, we discuss how to interpret our constraints in the context of the full, complex dynamical history of the solar system.« less
Chaudhary, Saurabh; Sharma, Prakash C.
2015-01-01
Seabuckthorn (Hippophae rhamnoides L.), an important plant species of Indian Himalayas, is well known for its immense medicinal and nutritional value. The plant has the ability to sustain growth in harsh environments of extreme temperatures, drought and salinity. We employed DeepSAGE, a tag based approach, to identify differentially expressed genes under cold and freeze stress in seabuckthorn. In total 36.2 million raw tags including 13.9 million distinct tags were generated using Illumina sequencing platform for three leaf tissue libraries including control (CON), cold stress (CS) and freeze stress (FS). After discarding low quality tags, 35.5 million clean tags including 7 million distinct clean tags were obtained. In all, 11922 differentially expressed genes (DEGs) including 6539 up regulated and 5383 down regulated genes were identified in three comparative setups i.e. CON vs CS, CON vs FS and CS vs FS. Gene ontology and KEGG pathway analysis were performed to assign gene ontology term to DEGs and ascertain their biological functions. DEGs were mapped back to our existing seabuckthorn transcriptome assembly comprising of 88,297 putative unigenes leading to the identification of 428 cold and freeze stress responsive genes. Expression of randomly selected 22 DEGs was validated using qRT-PCR that further supported our DeepSAGE results. The present study provided a comprehensive view of global gene expression profile of seabuckthorn under cold and freeze stresses. The DeepSAGE data could also serve as a valuable resource for further functional genomics studies aiming selection of candidate genes for development of abiotic stress tolerant transgenic plants. PMID:25803684
Chaudhary, Saurabh; Sharma, Prakash C
2015-01-01
Seabuckthorn (Hippophae rhamnoides L.), an important plant species of Indian Himalayas, is well known for its immense medicinal and nutritional value. The plant has the ability to sustain growth in harsh environments of extreme temperatures, drought and salinity. We employed DeepSAGE, a tag based approach, to identify differentially expressed genes under cold and freeze stress in seabuckthorn. In total 36.2 million raw tags including 13.9 million distinct tags were generated using Illumina sequencing platform for three leaf tissue libraries including control (CON), cold stress (CS) and freeze stress (FS). After discarding low quality tags, 35.5 million clean tags including 7 million distinct clean tags were obtained. In all, 11922 differentially expressed genes (DEGs) including 6539 up regulated and 5383 down regulated genes were identified in three comparative setups i.e. CON vs CS, CON vs FS and CS vs FS. Gene ontology and KEGG pathway analysis were performed to assign gene ontology term to DEGs and ascertain their biological functions. DEGs were mapped back to our existing seabuckthorn transcriptome assembly comprising of 88,297 putative unigenes leading to the identification of 428 cold and freeze stress responsive genes. Expression of randomly selected 22 DEGs was validated using qRT-PCR that further supported our DeepSAGE results. The present study provided a comprehensive view of global gene expression profile of seabuckthorn under cold and freeze stresses. The DeepSAGE data could also serve as a valuable resource for further functional genomics studies aiming selection of candidate genes for development of abiotic stress tolerant transgenic plants.
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Hopkins, A. M.; Sharp, R. G.; Brough, S.; Taylor, E.; Bland-Hawthorn, J.; Maraston, C.; Tuffs, R. J.; Popescu, C. C.; Wijesinghe, D.; Jones, D. H.; Croom, S.; Sadler, E.; Wilkins, S.; Driver, S. P.; Liske, J.; Norberg, P.; Baldry, I. K.; Bamford, S. P.; Loveday, J.; Peacock, J. A.; Robotham, A. S. G.; Zucker, D. B.; Parker, Q. A.; Conselice, C. J.; Cameron, E.; Frenk, C. S.; Hill, D. T.; Kelvin, L. S.; Kuijken, K.; Madore, B. F.; Nichol, B.; Parkinson, H. R.; Pimbblet, K. A.; Prescott, M.; Sutherland, W. J.; Thomas, D.; van Kampen, E.
2011-08-01
The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than 50 yr, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy and Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF-star formation rate dependency is discovered, which shows that highly star-forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations suggesting a variation of or evolution in the IMF.
Symmetry energy in cold dense matter
NASA Astrophysics Data System (ADS)
Jeong, Kie Sang; Lee, Su Houng
2016-01-01
We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.
MULTIDARK-GALAXIES: data release and first results
NASA Astrophysics Data System (ADS)
Knebe, Alexander; Stoppacher, Doris; Prada, Francisco; Behrens, Christoph; Benson, Andrew; Cora, Sofia A.; Croton, Darren J.; Padilla, Nelson D.; Ruiz, Andrés N.; Sinha, Manodeep; Stevens, Adam R. H.; Vega-Martínez, Cristian A.; Behroozi, Peter; Gonzalez-Perez, Violeta; Gottlöber, Stefan; Klypin, Anatoly A.; Yepes, Gustavo; Enke, Harry; Libeskind, Noam I.; Riebe, Kristin; Steinmetz, Matthias
2018-03-01
We present the public release of the MULTIDARK-GALAXIES: three distinct galaxy catalogues derived from one of the Planck cosmology MULTIDARK simulations (i.e. MDPL2, with a volume of (1 h-1 Gpc)3 and mass resolution of 1.5 × 109 h-1 M⊙) by applying the semi-analytic models GALACTICUS, SAG, and SAGE to it. We compare the three models and their conformity with observational data for a selection of fundamental properties of galaxies like stellar mass function, star formation rate, cold gas fractions, and metallicities - noting that they sometimes perform differently reflecting model designs and calibrations. We have further selected galaxy subsamples of the catalogues by number densities in stellar mass, cold gas mass, and star formation rate in order to study the clustering statistics of galaxies. We show that despite different treatment of orphan galaxies, i.e. galaxies that lost their dark-matter host halo due to the finite-mass resolution of the N-body simulation or tidal stripping, the clustering signal is comparable, and reproduces the observations in all three models - in particular when selecting samples based upon stellar mass. Our catalogues provide a powerful tool to study galaxy formation within a volume comparable to those probed by ongoing and future photometric and redshift surveys. All model data consisting of a range of galaxy properties - including broad-band SDSS magnitudes - are publicly available.
Yun, Xiao; Quarini, Giuseppe L
2017-03-13
We demonstrate a method for the study of the heat and mass transfer and of the freezing phenomena in a subcooled brine environment. Our experiment showed that, under the proper conditions, ice can be produced when water is introduced to a bath of cold brine. To make ice form, in addition to having the brine and water mix, the rate of heat transfer must bypass that of mass transfer. When water is introduced in the form of tiny droplets to the brine surface, the mode of heat and mass transfer is by diffusion. The buoyancy stops water from mixing with the brine underneath, but as the ice grows thicker, it slows down the rate of heat transfer, making ice more difficult to grow as a result. When water is introduced inside the brine in the form of a flow, a number of factors are found to influence how much ice can form. Brine temperature and concentration, which are the driving forces of heat and mass transfer, respectively, can affect the water-to-ice conversion ratio; lower bath temperatures and brine concentrations encourage more ice to form. The flow rheology, which can directly affect both the heat and mass transfer coefficients, is also a key factor. In addition, the flow rheology changes the area of contact of the flow with the bulk fluid.
Iran and Iraq - the proliferation challenge. Strategic research report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, F.R.
1996-04-15
Worldwide proliferation of weapons of mass destruction and ballistic missiles has been on the rise since the end of the Cold War. This escalation has brought a new set of challenges to post-Cold War strategists and policymakers. This study focus on the impact of nuclear proliferation in the Middle East. It assesses the possibility of Iran`s and Iraq`s ability to develop a nuclear capability within the next twenty to thirty years. United States` strategy and policy to counter this potential is also considered.
2008-01-01
required soldiers to traverse knee to neck deep 14°C water. Recently, the proliferation of wilderness activities such as mountain climbing, backcountry...Red Cross Cold Water Survival Curves (Figure 2). While useful as a “ rule of thumb” estimate of hypothermia survival, models such as Molnar’s [8] are...low body fat (e.g. body builders) are an exception to this rule . The advantage of having a little more mass can be demonstrated by CESM by
Zhang, Zuobing; Chen, Bojian; Yuan, Lin; Niu, Cuijuan
2015-03-01
Chinese soft-shelled turtle, Pelodiscus sinensis, is widely cultured in East and Southeast Asian countries. It frequently encounters the stress of abrupt temperature changes, which leads to mass death in most cases. However, the mechanism underlying the stress-elicited death remains unknown. We have suspected that the stress impaired the immune function of Chinese soft-shelled turtle, which could result in the mass death, as we noticed that there was a clinical syndrome of infection in dead turtles. To test our hypothesis, we first performed bioinformatic annotation of several pro-inflammatory molecules (IL-1β, TNFα, IL-6, IL-12β) of Chinese soft-shelled turtle. Then, we treated the turtles in six groups, injected with Aeromonas hydrophila before acute cold stress (25 °C) and controls, after acute cold stress (15 °C) and controls as well as after the temperature was restored to 25 °C and controls, respectively. Subsequently, real-time PCR for several pro-inflammatory cytokines (IL-1β, TNFα, IL-6, IL-12β, IL-8 and IFNγ) was performed to assess the turtle immune function in spleen and intestine, 24 hours after the injection. We found that the mRNA expression levels of the immune molecules were all enhanced after acute cold stress. This change disappeared when the temperature was restored back to 25 °C. Our results suggest that abrupt temperature drop did not suppress the immune function of Chinese soft-shelled turtle in response to germ challenge after abrupt temperature drop. In contrast, it may even increase the expression of various cytokines at least, within a short time after acute cold stress. Copyright © 2014 Elsevier Ltd. All rights reserved.
2014-01-01
Background The relative importance of different sources of air pollution for cardiovascular disease is unclear. The aims were to compare the associations between acute myocardial infarction (AMI) hospitalisations in Gothenburg, Sweden and 1) the long-range transported (LRT) particle fraction, 2) the remaining particle fraction, 3) geographical air mass origin, and 4) influence of local dispersion during 1985–2010. Methods A case-crossover design was applied using lag0 (the exposure the same day as hospitalisation), lag1 (exposure one day prior hospitalisation) and 2-day cumulative average exposure (CA2) (mean of lag0 and lag1). The LRT fractions included PMion (sum of sulphate, nitrate and ammonium) and soot measured at a rural site. The difference between urban PM10 (particulate matter with an aerodynamic diameter smaller than 10 μm) and rural PMion was a proxy for locally generated PM10 (PMrest). The daily geographical origin of air mass was estimated as well as days with limited or effective local dispersion. The entire year was considered, as well as warm and cold periods, and different time periods. Results In total 28 215 AMI hospitalisations occurred during 26 years. PM10, PMion, PMrest and soot did not influence AMI for the entire year. In the cold period, the association was somewhat stronger for PMrest than for urban PM10; the strongest associations were observed during 1990–2000 between AMI and CA2 of PMrest (6.6% per inter-quartile range (IQR), 95% confidence interval 2.1 to 11.4%) and PM10 (4.1%, 95% CI 0.2% − 8.2%). Regarding the geographical air mass origins there were few associations. Days with limited local dispersion showed an association with AMI in the cold period of 2001–2010 (6.7%, 95% CI 0.0% − 13.0%). Conclusions In the cold period, locally generated PM and days with limited local dispersion affected AMI hospitalisations, indicating importance of local emissions from e.g. traffic. PMID:25069830
Henriksson, Otto; Lundgren, Peter; Kuklane, Kalev; Holmér, Ingvar; Naredi, Peter; Bjornstig, Ulf
2012-02-01
In the prehospital care of a cold and wet person, early application of adequate insulation is of utmost importance to reduce cold stress, limit body core cooling, and prevent deterioration of the patient's condition. Most prehospital guidelines on protection against cold recommend the removal of wet clothing prior to insulation, and some also recommend the use of a waterproof vapor barrier to reduce evaporative heat loss. However, there is little scientific evidence of the effectiveness of these measures. Using a thermal manikin with wet clothing, this study was conducted to determine the effect of wet clothing removal or the addition of a vapor barrier on thermal insulation and evaporative heat loss using different amounts of insulation in both warm and cold ambient conditions. A thermal manikin dressed in wet clothing was set up in accordance with the European Standard for assessing requirements of sleeping bags, modified for wet heat loss determination, and the climatic chamber was set to -15 degrees Celsius (°C) for cold conditions and +10°C for warm conditions. Three different insulation ensembles, one, two or seven woollen blankets, were chosen to provide different levels of insulation. Five different test conditions were evaluated for all three levels of insulation ensembles: (1) dry underwear; (2) dry underwear with a vapor barrier; (3) wet underwear; (4) wet underwear with a vapor barrier; and (5) no underwear. Dry and wet heat loss and thermal resistance were determined from continuous monitoring of ambient air temperature, manikin surface temperature, heat flux and evaporative mass loss rate. Independent of insulation thickness or ambient temperature, the removal of wet clothing or the addition of a vapor barrier resulted in a reduction in total heat loss of 19-42%. The absolute heat loss reduction was greater, however, and thus clinically more important in cold environments when little insulation is available. A similar reduction in total heat loss was also achieved by increasing the insulation from one to two blankets or from two to seven blankets. Wet clothing removal or the addition of a vapor barrier effectively reduced evaporative heat loss and might thus be of great importance in prehospital rescue scenarios in cold environments with limited insulation available, such as in mass-casualty situations or during protracted evacuations in harsh conditions.