Science.gov

Sample records for cold multi-proton-pair transfer

  1. Transfer-type products accompanying cold fusion reactions

    SciTech Connect

    Adamian, G.G.; Antonenko, N.V.

    2005-12-15

    Production of nuclei heavier than the target is treated for projectile-target combinations used in cold fusion reactions leading to superheavy nuclei. These products are related to transfer-type or to asymmetry-exit-channel quasifission reactions. The production of isotopes in the transfer-type reactions emitting of {alpha} particles with large energies is discussed.

  2. Clean, cold, and liquid-free laser transfer of biomaterials

    NASA Astrophysics Data System (ADS)

    Kononenko, T. V.; Nagovitsyn, I. A.; Chudinova, G. K.; Mihailescu, I. N.

    2011-04-01

    Blister-based laser induced forward transfer (BB-LIFT) is proposed as a promising tool for clean, cold and liquid-free local transfer of various organic substances. The feature of the given technique is that ejection of the material from the target results from non-destructive blistering of a thin metal film covering a transparent support. Applicability of the BB-LIFT driven by nanosecond laser pulses for micro-patterning of few organic Langmuir films was examined. Clean laser transfer with negligible material heating has been demonstrated for the nanoaggregated porphyrin films under optimized processing conditions. However, laser transfer of biopolymers, which form elastic and durable films at the target, meets essential problems and requires new solutions.

  3. Charge transfer in cold Yb++Rb collisions

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Buchachenko, Alexei A.; Yakovleva, Svetlana A.; Belyaev, Andrey K.

    2013-05-01

    Charge-transfer cold Yb++ Rb collision dynamics is investigated theoretically using high-level ab initio potential energy curves, dipole moment functions, and nonadiabatic coupling matrix elements. Within the scalar-relativistic approximation, the radiative transitions from the entrance A1Σ+ to the ground X1Σ+ state are found to be the only efficient charge-transfer pathway. The spin-orbit coupling does not open other efficient pathways, but alters the potential energy curves and the transition dipole moment for the A-X pair of states. The radiative, as well as the nonradiative, charge-transfer cross sections calculated within the 10-3-10 cm-1 collision energy range exhibit all features of the Langevin ion-atom collision regime, including a rich structure associated with centrifugal barrier tunneling (orbiting) resonances. Theoretical rate coefficients for two Yb isotopes agree well with those measured by immersing Yb+ ions in an ultracold Rb ensemble in a hybrid trap. Possible origins of discrepancy in the product distributions and relations to previously studied similar processes are discussed.

  4. Mountain cold-trapping increases transfer of persistent organic pollutants from atmosphere to cows' milk.

    PubMed

    Shunthirasingham, Chubashini; Wania, Frank; MacLeod, Matthew; Lei, Ying Duan; Quinn, Cristina L; Zhang, Xianming; Scheringer, Martin; Wegmann, Fabio; Hungerbühler, Konrad; Ivemeyer, Silvia; Heil, Fritz; Klocke, Peter; Pacepavicius, Grazina; Alaee, Mehran

    2013-08-20

    Concentrations of long-lived organic contaminants in snow, soil, lake water, and vegetation have been observed to increase with altitude along mountain slopes. Such enrichment, called "mountain cold-trapping", is attributed to a transition from the atmospheric gas phase to particles, rain droplets, snowflakes, and Earth's surface at the lower temperatures prevailing at higher elevations. Milk sampled repeatedly from cows that had grazed at three different altitudes in Switzerland during one summer was analyzed for a range of persistent organic pollutants. Mountain cold-trapping significantly increased air-to-milk transfer factors of most analytes. As a result, the milk of cows grazing at higher altitudes was more contaminated with substances that have regionally uniform air concentrations (hexachlorobenzene, α-hexachlorocyclohexane, endosulfan sulfate). For substances that have sources, and therefore higher air concentrations, at lower altitudes (polychlorinated biphenyls, γ-hexachlorocyclohexane), alpine milk has lower concentrations, but not as low as would be expected without mountain cold-trapping. Differences in the elevational gradients in soil concentrations and air-to-milk transfer factors highlight that cold-trapping of POPs in pastures is mostly due to increased gas-phase deposition as a result of lower temperatures causing higher uptake capacity of plant foliage, whereas cold-trapping in soils more strongly depends on wet and dry particle deposition. Climatic influences on air-to-milk transfer of POPs needs to be accounted for when using contamination of milk lipids to infer contamination of the atmosphere. PMID:23885857

  5. Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review

    NASA Astrophysics Data System (ADS)

    Yin, Shuo; Meyer, Morten; Li, Wenya; Liao, Hanlin; Lupoi, Rocco

    2016-06-01

    Cold spraying is increasingly attracting attentions from both scientific and industrial communities due to its unique `low-temperature' coating build-up process and its potential applications in the additive manufacturing across a variety of industries. The existing studies mainly focused on the following subjects: particle acceleration and heating, coating build-up, coating formation mechanism, coating properties, and coating applications, among which particle acceleration and heating can be regarded as the premise of the other subjects because it directly determines whether particles have sufficient energy to deposit and form the coating. Investigations on particle acceleration and heating behavior in cold spraying have been widely conducted both numerically and experimentally over decades, where many valuable conclusions were drawn. However, existing literature on this topic is vast; a systematical summery and review work is still lack so far. Besides, some curtail issues involved in modeling and experiments are still not quite clear, which needs to be further clarified. Hence, a comprehensive summary and review of the literature are very necessary. In this paper, the gas flow, particle acceleration, and heat transfer behavior in the cold spray process are systematically reviewed. Firstly, a brief introduction is given to introduce the early analytical models for predicting the gas flow and particle velocity in cold spraying. Subsequently, special attention is directed towards the application of computational fluid dynamics technique for cold spray modeling. Finally, the experimental observations and measurements in cold spraying are summarized.

  6. Investigation of cold-to-hot transfer and thermal separation zone through nano step geometries

    NASA Astrophysics Data System (ADS)

    Mahdavi, Amir-Mehran; Roohi, Ehsan

    2015-07-01

    Nanosteps form once nanochannels of various diameters connect to each other. The focus of this paper is to investigate the heat transfer and hydro/thermal field behavior in nanostep geometries using direct simulation Monte Carlo. The effects of the hydrodynamics separation on the pressure field and heat lines are reported, i.e., we show that the length of the hydrodynamics separation zone is different from the positive pressure gradient and thermal separation zones. Interestingly, cold to hot transfer is observed when the wall temperatures and inlet temperature are close to each other. We show that cold to hot heat transfer appears due to the interplay between the higher order term of the heat flux formula, which is a function of the second derivate of the velocity, with the Fourier term; the cold to hot transfer effect is omitted as the wall temperature or Knudsen number increases. In addition, the impact of different parameters, such as pressure ratio, Knudsen number, and wall temperature adjacent to the separation zone, are investigated. The dependence of the mass flow rate and the length of the separation zone on the wall temperature and the channel pressure ratio is considered. We show that Knudsen minimum is not observed in the step geometry for both isothermal and non-isothermal wall conditions.

  7. Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer satellite (COLD-SAT) feasibility study

    NASA Astrophysics Data System (ADS)

    Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.; Dennis, Mark F.; Martin, Timothy A.

    1990-06-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) is an experimental spacecraft launched from an expendable launch vehicle which is designed to investigate the systems and technologies required for efficient, effective, and reliable management of cryogenic fluid in the reduced gravity space environment. The COLD-SAT program will provide the necessary data base and provide low-g proving of fluid and thermal models of cryogenic storage, transfer, and resupply concepts and processes. A conceptual approach was developed and an overview of the results of the 24 month COLD-SAT Phase A feasibility is described which includes: (1) a definition of the technology needs and the accompanying experimental 3 month baseline mission; (2) a description of the experiment subsystem, major features and rationale for satisfaction of primary and secondary experiment requirements using liquid hydrogen as the test fluid; and (3) a presentation of the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment with emphasis on areas of greatest challenge.

  8. Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer satellite (COLD-SAT) feasibility study

    NASA Technical Reports Server (NTRS)

    Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.; Dennis, Mark F.; Martin, Timothy A.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) is an experimental spacecraft launched from an expendable launch vehicle which is designed to investigate the systems and technologies required for efficient, effective, and reliable management of cryogenic fluid in the reduced gravity space environment. The COLD-SAT program will provide the necessary data base and provide low-g proving of fluid and thermal models of cryogenic storage, transfer, and resupply concepts and processes. A conceptual approach was developed and an overview of the results of the 24 month COLD-SAT Phase A feasibility is described which includes: (1) a definition of the technology needs and the accompanying experimental 3 month baseline mission; (2) a description of the experiment subsystem, major features and rationale for satisfaction of primary and secondary experiment requirements using liquid hydrogen as the test fluid; and (3) a presentation of the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment with emphasis on areas of greatest challenge.

  9. In the shadow of giants: Superpower arms transfers and Third World conflict during the Cold War

    SciTech Connect

    Kinsella, D.T.

    1993-01-01

    This is an investigation of the impact of superpower arms transfers on interstate rivalry in the Third World during the Cold War. The study is anchored in a theoretical framework which conceives of interstate rivalry as the basis for the development of security complexes in the international system. In the case of Third World rivalries, these security complexes tend to be local in scope. The superpower security complex was global. The theoretical framework emphasizes the tendency of one security complex to encroach upon another. This study focuses on the extent to which the Cold War was externalized through the process of superpower arms transfers to local rivals. The empirical investigation consists of statistical analysis of four enduring rivalries in the Third World: those between the Arab states and Israel, Iran and Iraq, India and Pakistan, and Ethiopia and Somalia. The author employs a time-series methodology - vector autoregression - which permits a rather rigorous discrimination between cause and effect. A rigorous methodology is essential to decipher the relationship between arms transfer and interstate conflict since there is reason to suspect that causality may be mutual. Historical narratives for each of of the four rivalries facilitate an interpretation of the statistical results, but also serve to highlight anomalies. The results suggest that the impact of superpower arms transfers was most pronounced in the Middle East and the Persian Gulf. Soviet arms transfers to Egypt and Syria tended to exacerbate the Arab-Israeli rivalry. In the case of the Iran-Iraq rivalry, it was American arms transfers to Iran that were influential, but the effect appears to have been a restraining one. An action-reaction dynamic in superpower arms transfers is evident in both these cases. The statistical results are not enlightening for either the India-Pakistan or Ethiopia-Somalia rivalries. Some theoretical refinements to the security-complexes framework are suggested.

  10. Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT)

    NASA Technical Reports Server (NTRS)

    Schuster, John R.; Russ, Edwin J.; Wachter, Joseph P.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) will perform subcritical liquid hydrogen handling experiments under low gravity conditions to provide engineering data for future space transportation missions. Comprising the four Class 1 enabling experiments are tank press control, tank chilldown, tank no-vent fill, and liquid acquisition device fill/refill. The nine Class 2 enhancing experiments are tanker thermal performance, pressurization, low-gravity setting and outflow, liquid acquisition device performance, transfer line chilldown, outflow subcooling, low-gravity vented fill, fluid dumping, and advanced instrumentation. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 1300 km circular orbit by an Atlas commercial launch vehicle, and will perform experiments in a semi-autonomous mode for a period of up to six months. The three-axis controlled spacecraft bus provides electric power, control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(exp -6) to 10(exp -4) g. It is desired to understand the effects that low acceleration levels might have on the heat and mass transfer processes involved in some of the experiments. The experiment module contains the three liquid hydrogen tanks, valves, pressurization and pumping equipment, and instrumentation. Within the highly insulated tanks are specialized fluid management equipment that might be used in future space transportation systems. At launch all the liquid hydrogen for the experiments is contained in the largest tank, which has helium-purged insulation to prevent cryo-pumping of air on the launch pad. The tank is loaded by the hydrogen tanking system used for the Centaur upper stage of the Atlas. After reaching orbit the two smaller tanks become receivers for fluid transfers, and when tanked, become the vessels for performing many of the experiments.

  11. ``Cold Denaturation'' induces inversion of dipole and spin transfer in chiral peptide monolayers

    NASA Astrophysics Data System (ADS)

    Sarkar, Soumyajit; Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Gavrilov, Yulian; Mathew, Shinto; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    Using a combination of several experimental and computational techniques, we show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear conformation upon cooling, due to interaction with neighboring molecules in a self-assembled monolayer (SAM) structure. This process is similar to the known ``cold denaturation'' in peptides, but here the SAM plays the role of the solvent. Our DFT-based first principles calculations show that the structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by an associated change in the spin channel that is preferred in electron transfer through the molecules. This is also experimentally observed via a new solid state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  12. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique

    NASA Astrophysics Data System (ADS)

    Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R.

    2014-06-01

    The cold metal transfer (CMT) process was explored as a weld overlay technique for synthesizing Al-Si-Mn alloy coating on a commercially pure Al plate. The effect of welding speed on the bead geometry, deposition rate, and the dilution were studied and the best parameter was used to synthesize the coatings. The CMT process can be used to produce thick coatings (>2.5 mm) without porosity and with low dilution levels. The Vickers hardness number of the Al substrate increased from 28 in the bulk to 57 in the coating. It is suggested that the CMT process can be an effective and energy-efficient technique for depositing thick coatings and is useful in weld repair of aluminum alloy components.

  13. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    PubMed Central

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-01-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536

  14. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    NASA Astrophysics Data System (ADS)

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-02-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  15. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    NASA Astrophysics Data System (ADS)

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant

    2016-08-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  16. Spent Nuclear Fuel Dry Transfer System Cold Demonstration Project Final Report

    SciTech Connect

    Christensen, Max R; McKinnon, M. A.

    1999-12-01

    The spent nuclear fuel dry transfer system (DTS) provides an interface between large and small casks and between storage-only and transportation casks. It permits decommissioning of reactor pools after shutdown and allows the use of large storage-only casks for temporary onsite storage of spent nuclear fuel irrespective of reactor or fuel handling limitations at a reactor site. A cold demonstration of the DTS prototype was initiated in August 1996 at the Idaho National Engineering and Environmental Laboratory (INEEL). The major components demonstrated included the fuel assembly handling subsystem, the shield plug/lid handling subsystem, the cask interface subsystem, the demonstration control subsystem, a support frame, and a closed circuit television and lighting system. The demonstration included a complete series of DTS operations from source cask receipt and opening through fuel transfer and closure of the receiving cask. The demonstration included both normal operations and recovery from off-normal events. It was designed to challenge the system to determine whether there were any activities that could be made to jeopardize the activities of another function or its safety. All known interlocks were challenged. The equipment ran smoothly and functioned as designed. A few "bugs" were corrected. Prior to completion of the demonstration testing, a number of DTS prototype systems were modified to apply lessons learned to date. Additional testing was performed to validate the modifications. In general, all the equipment worked exceptionally well. The demonstration also helped confirm cost estimates that had been made at several points in the development of the system.

  17. Achieving High Strength Joint of Pure Copper Via Laser-Cold Metal Transfer Arc Hybrid Welding

    NASA Astrophysics Data System (ADS)

    Chen, Yulong; Chen, Cong; Gao, Ming; Zeng, Xiaoyan

    2016-06-01

    Fiber laser-cold metal transfer arc hybrid welding of pure copper was studied. Weld porosity was tested by X-ray nondestructive testing. Microstructure and fracture features were observed by scanning electron microscopy. Mechanical properties were evaluated by cross weld tensile test. Full penetrated and continuous welds were obtained by hybrid welding once the laser power reached 2 kW, while they could not be obtained by laser welding alone, even though the laser power reached 5 kW. The ultimate tensile strength (UTS), the yield strength (YS), and the elongation of the best hybrid weld material were up to 227, 201 MPa, and 21.5 pct, respectively. The joint efficiencies in UTS and YS of hybrid weld were up to 84 and 80 pct of the BM, respectively. The fracture location changes from the fusion zone to the heat-affected zone with the increase of laser power. Besides, the mechanisms of process stability and porosity suppression were clarified by laser-arc interaction and pool behavior. The strengthening mechanism was discussed by microstructure characteristics.

  18. Towards thermal design optimization of tubular digesters in cold climates: a heat transfer model.

    PubMed

    Perrigault, Thibault; Weatherford, Vergil; Martí-Herrero, Jaime; Poggio, Davide

    2012-11-01

    A cold climate, low cost, tubular digester is monitored and temperatures from different parts of the slurry, greenhouse, and adobe walls are presented, discussing the thermal performance of the digester. The slurry exhibits a vertical gradient of 6°C, with a mean value of 24.5°C, while the ambient temperature varies from 10°C to 30°C, showing the efficiency of the system as a solar heat collector with thermal inertia. A simple time-dependent thermal model is developed using inputs of solar radiation, wind velocity, ambient temperature, and digester geometry. The model outputs include temperatures of the slurry, the biogas, its holding membrane and the greenhouse air, wall and cover. Radiative, convective and conductive heat transfer phenomena are considered between all system elements. The model has 0.47°C (2%) standard error for the average slurry temperature. This model can be used to predict the influence of geometry and materials on the performance of the digester. PMID:22989653

  19. Suppression of angular momentum transfer in cold collisions of transition metal atoms in ground States with nonzero orbital angular momentum.

    PubMed

    Hancox, Cindy I; Doret, S Charles; Hummon, Matthew T; Krems, Roman V; Doyle, John M

    2005-01-14

    The Zeeman relaxation rate in cold collisions of Ti(3d(2)4s(2) 3F2) with He is measured. We find that collisional transfer of angular momentum is dramatically suppressed due to the presence of the filled 4s(2) shell. The degree of electronic interaction anisotropy, which is responsible for Zeeman relaxation, is estimated to be about 200 times smaller in the Ti-He complex than in He complexes with typical non-S-state atoms.

  20. Feasibility study for a Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT) satellite

    NASA Technical Reports Server (NTRS)

    Rybak, S. C.; Willen, G. S.; Follett, W. H.; Hanna, G. J.; Cady, E. C.; Distefano, E.; Meserole, J. S.

    1990-01-01

    This feasibility study presents the conceptual design of a spacecraft for performing a series of cryogenic fluid management flight experiments. This spacecraft, the Cryogenic On-Orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite, will use liquid hydrogen as the test fluid, be launched on a Delta expendable launch vehicle, and conduct a series of experiments over a two to three month period. These experiments will investigate the physics of subcritical cryogens in the low gravity space environment to characterize their behavior and to correlate the data with analytical and numerical models of in-space cryogenic fluid management systems. Primary technologies addressed by COLD-SAT are: (1) pressure control; (2) chilldown; (3) no-vent fill; (4) liquid acquisition device fill; (5) pressurization; (6) low-g fill and drain; (7) liquid acquisition device expulsion; (8) line chilldown; (9) thermodynamic state control; and (10) fluid dumping.

  1. Wetting and Interfacial Characteristics of Mg AZ61 Alloy/Galvanized Steel in Cold Metal Transfer Process

    NASA Astrophysics Data System (ADS)

    Lin, Qiaoli; Yang, Fan; Cao, Rui; Chen, Jianhong; Guo, Tingbiao

    2015-09-01

    The dynamic sessile drop method was used to study the wetting behavior of galvanized steel by molten Mg AZ61 alloy under cold metal transfer condition. The interfacial microstructures were also analyzed by using scanning electron microscope and energy dispersive spectrometry. The observed results showed that the wetting behavior was directly determined by the wire feed speed (or the heat input). The Al-Fe intermetallic layer and Zn-rich zone were observed both at the interface and at the close of triple line. The formations of these interfacial characteristics satisfy the thermodynamic characteristic of Mg-Al/Fe and Mg-Zn/Fe systems.

  2. A portable cryostat for the cold transfer of polarized solid HD targets: HDice-I

    SciTech Connect

    Bass, C. D.; Bade, C.; Blecher, M.; Caracappa, A.; D'Angelo, A.; Deur, A.; Dezern, G.; Glueckler, H.; Hanretty, C.; Ho, D.; Honig, A.; Kageya, T.; Khandaker, M.; Laine, V.; Lincoln, F.; Lowry, M. M.; Mahon, J. C.; O'Connell, T.; Pap, M.; Peng, P.; Preedom, B.; Sandorfi, A. M.; Seyfarth, H.; Stroeher, H.; Thorn, C. E.; Wei, X.; Whisnant, C. S.

    2014-02-01

    We developed a device with moveable liquid nitrogen and liquid helium volumes that is capable of reaching over 2 m into the coldest regions of a cryostat or dilution refrigerator and reliably extracting or installing a target of solid, polarized hydrogen deuteride (HD). This Transfer Cryostat incorporates a cylindrical neodymium rare-earth magnet that is configured as a Halbach dipole, which is maintained at 77 K and produces a 0.1 T field around the HD target. Multiple layers provide a hermetic 77 K-shield as the device is used to maintain a target at 2 K during a transfer between cryostats. Our tests with frozen-spin HD show very little polarization loss for either H (-1±2%, relative) or D (0±3%, relative) over typical transfer periods. Multiple target transfers with this apparatus have shown an overall reliability of about 95% per transfer, which is a significant improvement over earlier versions of the device.

  3. A portable cryostat for the cold transfer of polarized solid HD targets: HDice-I

    SciTech Connect

    Bass, Christopher D.; Sandorfi, Andy M.; Bade, C.; Blecher, M.; Caracappa, A.; D'Angelo, A.; Deur, A.; Dezern, G.; Glueckler, H.; Hanretty, C.; Ho, D.; Kageya, T.; Khandaker, M.; Laine, V.; Lincoln, F.; Lowry, M. M.; Mahon, J. C.; Connell, T. O.; Peng, P.; Preedom, B.; Seyfarth, H.; Stroeher, H.; Thorn, C. E.; Wei, X.; Whisnant, C. S.

    2014-02-01

    A device has been developed with moveable liquid nitrogen and liquid helium volumes that is capable of reaching over two meters into the coldest regions of a cryostat or dilution refrigerator and reliably extracting or installing a target of solid, polarized hydrogen deuteride (HD). This Transfer Cryostat incorporates a cylindrical neodymium rare-earth magnet that is configured as a Halbach dipole, which is maintained at 77 K and produces a 0.1 T field around the HD target. Multiple layers provide a hermetic 77 K-shield as the device is used to maintain a target at 2 K during a transfer between cryostats. Tests with frozen-spin HD show negligible polarization loss for either H or D over typical transfer periods. Multiple target transfers with this apparatus have shown an overall reliability of about 95% per transfer, which is a significant improvement over earlier versions of the device.

  4. High Reynolds number heat transfer to the cold walls of a model scramjet

    NASA Technical Reports Server (NTRS)

    Paull, A.; Morris, N. A.; Morgan, R. G.; Stalker, R. J.

    1987-01-01

    The results of simultaneous heat transfer and pressure measurements at the walls of three different configurations of a model scramjet are presented. The heat transfer results are compared with results empirically predicted from the pressure measurements. It is shown that the measured heat transfer rate is comparable with, or lower than, that predicted for a laminar boundary layer. A mathematical model is proposed for the film-cooling effect observed when a hydrogen fuel is injected along a wall of the scramjet. In this mathematical model, the heat transfer rate is shown to be insensitive to the velocity profile in the insulating layer of fuel. The model suggests that the cooling layer is turbulent and that 90 percent of the fuel is mixed with the air.

  5. Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube

    NASA Astrophysics Data System (ADS)

    Kostov, Konstantin G.; Machida, Munemasa; Prysiazhnyi, Vadym; Honda, Roberto Y.

    2015-04-01

    This work proposes an experimental configuration for the generation of a cold atmospheric pressure plasma jet at the downstream end of a long flexible plastic tube. The device consists of a cylindrical dielectric chamber where an insulated metal rod that serves as high-voltage electrode is inserted. The chamber is connected to a long (up to 4 m) commercial flexible plastic tube, equipped with a thin floating Cu wire. The wire penetrates a few mm inside the discharge chamber, passes freely (with no special support) along the plastic tube and terminates a few millimeters before the tube end. The system is flushed with Ar and the dielectric barrier discharge (DBD) is ignited inside the dielectric chamber by a low frequency ac power supply. The gas flow is guided by the plastic tube while the metal wire, when in contact with the plasma inside the DBD reactor, acquires plasma potential. There is no discharge inside the plastic tube, however an Ar plasma jet can be extracted from the downstream tube end. The jet obtained by this method is cold enough to be put in direct contact with human skin without an electric shock. Therefore, by using this approach an Ar plasma jet can be generated at the tip of a long plastic tube far from the high-voltage discharge region, which provides the safe operation conditions and device flexibility required for medical treatment.

  6. Methane fluxes during the cold season: distribution and mass transfer in the snow cover of bogs

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Shnyrev, N. A.

    2015-08-01

    Fluxes and profile distribution of methane in the snow cover and different landscape elements of an oligotrophic West-Siberian bog (Mukhrino Research Station, Khanty-Mansiisk autonomous district) have been studied during a cold season. Simple models have been proposed for the description of methane distribution in the inert snow layer, which combine the transport of the gas and a source of constant intensity on the soil surface. The formation rates of stationary methane profiles in the snow cover have been estimated (characteristic time of 24 h). Theoretical equations have been derived for the calculation of small emission fluxes from bogs to the atmosphere on the basis of the stationary profile distribution parameters, the snow porosity, and the effective methane diffusion coefficient in the snow layer. The calculated values of methane emission significantly (by 2-3 to several tens of times) have exceeded the values measured under field conditions by the closed chamber method (0.008-0.25 mg C/(m2 h)), which indicates the possibility of underestimating the contribution of the cold period to the annual emission cycle of bog methane.

  7. Fluid and mass transfer into the cold mantle wedge of subduction zones: budgets and seismic constraints

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Hacker, B. R.; Van Keken, P. E.; Nakajima, J.; Kita, S.

    2015-12-01

    Dehydration of subducting plates should hydrate the shallow overlying mantle wedge where mantle is cold. In the shallow mantle wedge hydrous phases, notably serpentines, chlorite, brucite and talc should be stable to form a significant reservoir for H2O. Beneath this cold nose thermal models suggest only limited slab dehydration occurs at depths less than ca. 80 km except in warm subduction zones, but fluids may flow updip from deeper within the subducting plate to hydrate the shallow mantle. We estimate the total water storage capacity in cold noses, at temperatures where hydrous phases are stable, to be roughly 2-3% the mass of the global ocean. At modern subduction flux rates its full hydration could be achieved in 50-100 Ma if all subducting water devolatilized in the upper 100 km flows into the wedge; these estimates have at least a factor of two uncertainty. To investigate the extent to which wedge hydration actually occurs we compile and generate seismic images of forearc mantle regions. The compilation includes P- and S-velocity images with good sampling below the Moho and above the downgoing slab in forearcs, from active-source imaging, local earthquake tomography and receiver functions, while avoiding areas of complex tectonics. Well-resolved images exist for Cascadia, Alaska, the Andes, Central America, North Island New Zealand, and Japan. We compare the observed velocities to those predicted from thermal-petrologic models. Among these forearcs, Cascadia stands out as having upper-mantle seismic velocities lower than overriding crust, consistent with high (>50%) hydration. Most other forearcs show Vp close to 8.0 km/s and Vp/Vs of 1.73-1.80. We compare these observations to velocities predicted from thermal-mineralogical models. Velocities are slightly slower than expected for dry peridotite and allow 10-20% hydration, but also could also be explained as relict accreted rock, or delaminated, relaminated, or offscraped crustal material mixed with mantle

  8. Charge transfer in cold collisions of rubidium atoms with calcium and ytterbium ions

    NASA Astrophysics Data System (ADS)

    Yakovleva, S. A.; Belyaev, A. K.; Buchachenko, A. A.

    2014-12-01

    Low-energy collisions of the Ca and Yb cations with Rb atoms are investigated theoretically using accurate ab initio potential energy curves and coupling matrix elements to elucidate the dominant charge transfer mechanisms. The cross sections calculated at collision energies above 10-5 cm-1 exhibit the features typical to Langevin ion-atom collision regime, including a rich structure associated with the centrifugal barrier tunnelling (orbiting) resonances. It is shown that the dominant process in Yb+ + Rb collisions is the radiative charge transfer, while in the case of Ca+ + Rb collisions nonadiabatic transitions due to spin-orbit coupling dominate. Theoretical results are in a good agreement with available experimental data.

  9. "Hot or cold": how do charge transfer states at the donor-acceptor interface of an organic solar cell dissociate?

    PubMed

    Bässler, Heinz; Köhler, Anna

    2015-11-21

    Electron transfer from an excited donor to an acceptor in an organic solar cell (OSC) is an exothermic process, determined by the difference in the electronegativities of donor and acceptor. It has been suggested that the associated excess energy facilitates the escape of the initially generated electron-hole pair from their mutual coulomb well. Recent photocurrent excitation spectroscopy on conjugated polymer/PCBM cells challenged this view. In this perspective we shall briefly outline the strengths and weaknesses of relevant experimental approaches and concepts. We shall enforce the notion that the charge separating state is a vibrationally cold charge transfer (CT) state. It can easily dissociate provided that (i) there is electrostatic screening at the interface and (ii) the charge carriers are delocalized, e.g. if the donor is a well ordered conjugated polymer. Both effects diminish the coulomb attraction and assure that the in-built electric field existing in the OSC under short current condition is already sufficient to separate most the CT states. The remaining CT excitations relax towards tail states of the disorder controlled density of states distribution, such as excimer forming states, that are more tightly bound and have longer lifetimes.

  10. Cold Weather Wind Turbines: A Joint NASA/NSF/DOE Effort in Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Bubenheim, David; Chiang, Erick; Goldman, Peter; Kohout, Lisa; Norton, Gary; Kliss, Mark (Technical Monitor)

    1997-01-01

    Renewable energy sources and their integration with other power sources to support remote communities is of interest for Mars applications as well as Earth communities. The National Science Foundation (NSF), NASA, and the Department of Energy (DOE) have been jointly supporting development of a 100 kW cold weather wind turbine through grants and SBIRs independently managed by each agency but coordinated by NASA. The NSF grant addressed issues associated with the South Pole application and a 3 kW direct drive unit is being tested there in anticipation of the 100 kW unit operation. The DOE-NREL contract focused on development of the 100 kW direct drive generator. The NASA SBIR focused on the development of the 100 kW direct drive wind turbine. The success of this effort has required coordination and team involvement of federal agencies and the industrial partners. Designs of the wind turbine and component performance testing results will be presented. Plans for field testing of wind turbines, based on this design, in village energy systems in Alaska and in energy production at the South Pole Station will be discussed. Also included will be a discussion of terrestrial and space use of hybrid energy systems, including renewable energy sources, such as the wind turbine, to support remote communities.

  11. COLD-SAT: Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is entering an era of expanded space activity. Space-based transportation systems will carry cargo and humans from low earth orbit to geosynchronous orbit, to lunar bases, and to the Martian surface. Support of these future missions will require new, long lived, on-orbit systems using subcritical cryogens for propellants and life support systems. Such on-orbit systems present low gravity fluid management challenges of long term storage and efficient fluid transfer and supply techniques. Development of these cryogenic systems requires on-orbit experimentation to demonstrate the capability of performing these fluid management tasks and to obtain the engineering data base required to correlate analytical tools used for system design.

  12. E-Field Asymmetry and Energy Transfer in Cold Fusion Heating

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot

    2004-03-01

    A many-body Bloch-deuteron field in a metal is a quantized matter field which forms when deuterons occupy shallow potential wells exceeding of the order of 10^4 potential wells.(T. A. Chubb, Proc. ICCF10, in press; see http://www.lenr-canr.org) The deuterons are merged by coordinate exchange, which takes place when wave function overlap occurs. The matter field minimizes total energy. Singlet pairings are subject to the short range nuclear potential and can collapse to nuclear dimension. The transition becomes irreversible if energy is transferred from the many-body system. The change into Bloch ^4He^+^+ is accompanied by a change in quantum of mass and charge, steepening the gradient of ion charge beyond the classical tuning point of the bound system. If the E-field is higher on one boundary of the ion system than on the opposing boundary, there is a net momentum impulse applied to the metal's electron system, which scatters electrons. Conversion of nuclear fluctuations into reactions is facilitated if the many-body deuteron system occupies a surface region.

  13. Cryogenic on-orbit liquid depot storage acquisition and transfer (COLD-SAT) experiment subsystem instrumentation and wire harness design report

    NASA Technical Reports Server (NTRS)

    Edwards, Lawrence G.

    1994-01-01

    Subcritical cryogens such as liquid hydrogen (LH2) and liquid oxygen (LO2) are required for space based transportation propellant, reactant, and life support systems. Future long-duration space missions will require on-orbit systems capable of long-term cryogen storage and efficient fluid transfer capabilities. COLD-SAT, which stands for cryogenic orbiting liquid depot-storage acquisition and transfer, is a free-flying liquid hydrogen management flight experiment. Experiments to determine optimum methods of fluid storage and transfer will be performed on the COLD-SAT mission. The success of the mission is directly related to the type and accuracy of measurements made. The instrumentation and measurement techniques used are therefore critical to the success of the mission. This paper presents the results of the COLD-SAT experiment subsystem instrumentation and wire harness design effort. Candidate transducers capable of fulfilling the COLD-SAT experiment measurement requirements are identified. Signal conditioning techniques, data acquisition requirements, and measurement uncertainty analysis are presented. Electrical harnessing materials and wiring techniques for the instrumentation designed to minimize heat conduction to the cryogenic tanks and provide optimum measurement accuracy are listed.

  14. A 1. 5--4 Kelvin detachable cold-sample transfer system: Application to inertially confined fusion with spin-polarized hydrogens fuels

    SciTech Connect

    Alexander, N.; Barden, J.; Fan, Q.; Honig, A.

    1990-01-01

    A compact cold-transfer apparatus for engaging and retrieving samples at liquid helium temperatures (1.5--4K), maintaining the samples at such temperatures for periods of hours, and subsequently inserting them in diverse apparatuses followed by disengagement, is described. The properties of several thermal radiation-insulating shrouds, necessary for very low sample temperatures, are presented. The immediate intended application is transportable target-shells containing highly spin-polarized deuterons in solid HD or D{sub 2} for inertially confined fusion (ICF) experiments. The system is also valuable for unpolarized high-density fusion fuels, as well as for other applications which are discussed. 9 refs., 6 figs.

  15. Method and apparatus for transferring cold seawater upward from the lower depths of the ocean to improve the efficiency of ocean thermal energy conversion systems

    SciTech Connect

    Finley, W.T.

    1982-01-19

    A method and apparatus for transferring cold seawater from lower ocean depths upward toward sea level for use in ocean thermal energy conversion systems is disclosed wherein an in situ desalination process is utilized to create a density differential between the desalinated water and the surrounding seawater. The desalinated water being of a lesser density than the surrounding seawater, rises naturally upward through a conduit and is utilized as a heat transfer medium in the ocean thermal energy conversion system. The desalinated water, which is a byproduct of the energy conversion system, may be utilized for domestic consumption or alternatively dispersed into the near surface region (Photic zone) of the ocean to increase the nutrient concentration therein.

  16. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    NASA Astrophysics Data System (ADS)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.; Zinner, N. T.

    2016-04-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly perfect state transfer.

  17. Cold Sores

    MedlinePlus

    ... delivered directly to your desktop! more... What Are Cold Sores? Article Chapters What Are Cold Sores? Cold ... January 2012 Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores ...

  18. Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT) Experiment Conceptual Design and Feasibility Study

    NASA Technical Reports Server (NTRS)

    Kramer, Edward (Editor)

    1998-01-01

    The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.

  19. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  20. Quenching of liquid carbon under intensive heat transfer to the cold diamond substrate: Molecular-dynamic simulation

    NASA Astrophysics Data System (ADS)

    Dozhdikov, V. S.; Basharin, A. Yu; Levashov, P. R.

    2015-11-01

    Quenching of liquid carbon (T = 6600 K) on a cold diamond substrate at T = 300 K in conditions close to the experimental laser melting of dispersed graphite on the substrate of natural diamond is investigated using molecular dynamics (MD) simulations. Quenching was carried out for two types of boundary conditions on the side opposite to the diamond substrate. The simulations confirmed the experimental result of the formation of amorphous carbon under such conditions. The calculations showed that the destruction of the diamond substrate did not take place because of its very high thermal conductivity. The estimation of the cooling rate of liquid carbon was done, the result is 1015 K/s. Temperature profiles in different layers of liquid carbon were restored to reproduce the detailed picture of the quenching process. We evaluated the radial distribution functions (RDF), the distribution of carbon atom bond fractions sp1-sp2-sp3, the average bond length and the azimuthal angles distributions for amorphous carbon atoms. This analysis confirmed that the amorphous carbon obtained by quenching in MD-simulations had a graphite-like structure.

  1. Cold Stress

    MedlinePlus

    ... be at risk of cold stress. Extreme cold weather is a dangerous situation that can bring on ... the country. In regions relatively unaccustomed to winter weather, near freezing temperatures are considered factors for cold ...

  2. Common Cold

    MedlinePlus

    ... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest Drinking ...

  3. Improvement of Cold Season Land Precipitation Retrievals Through The Use Of WRF Simulations and High Frequency Microwave Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ferraro, R. R.; Gopalan, K.; Tao, W.; Shi, J. J.

    2009-12-01

    As we move from the TRMM to GPM era, more emphasis will be placed on a larger regime of precipitation in mid- and high-latitudes, including light rain, mixed-phase precipitation and snowfall. In these areas, a large and highly variable portion of the total annual precipitation is snow. There is a wealth of observational evidence of brightness temperature depression from frozen hydrometeor scattering at the high frequency from aircraft and spacecraft microwave instruments. Research on the development of snowfall retrieval over land has become increasing important in the last few years (Chen and Staelin, 2003; Kongoli et al., 2004; Skofronick-Jackson et al., 2004, Noh et al., 2006; Aonashi et al., 2007; Liu, 2008; Grecu and Olson, 2008; Kim et al., 2008). However, there is still a considerable amount of work that needs to be done to develop global snowfall detection and retrieval algorithms. This paper describes the development and testing of snowfall models and retrieval algorithms using WRF snowfall simulations and high frequency radiative transfer models for snowfall events took place in January 2007 over Ontario, Canada.

  4. Common cold

    MedlinePlus

    ... been tried for colds, such as vitamin C, zinc supplements, and echinacea. Talk to your health care ... nih.gov/pubmed/22962927 . Singh M, Das RR. Zinc for the common cold. Cochrane Database of Systematic ...

  5. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  6. Cold injuries.

    PubMed

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  7. Cold intolerance

    MedlinePlus

    Some causes of cold intolerance are: Anemia Anorexia nervosa Blood vessel problems, such as Raynaud phenomenon Chronic severe illness General poor health Underactive thyroid ( hypothyroidism ) Problem with the hypothalamus (a part ...

  8. Two-Dimensional Heat Transfer Modeling of the Formosa Ridge Offshore SW Taiwan: Implication for Fluid Migrating Paths of a Cold Seep Site

    NASA Astrophysics Data System (ADS)

    Tsai, Y.; Chi, W.; Liu, C.; Shyu, C.

    2011-12-01

    The Formosa Ridge, a small ridge located on the passive China continental slope offshore southwestern Taiwan, is an active cold seep site. Large and dense chemosynthetic communities were found there by the ROV Hyper-Dolphin during the 2007 NT0705 cruise. A vertical blank zone is clearly observed on all the seismic profiles across the cold seep site. This narrow zone is interpreted to be the fluid conduit of the seep site. Previous studies suggest that cold sea water carrying large amount of sulfate could flow into the fluid system from flanks of the ridge, and forms a very effective fluid circulation system that emits both methane and hydrogen sulfide to feed the unusual chemosynthetic communities observed at the Formosa Ridge cold seep site. Here we use thermal signals to study possible fluid flow migration paths. In 2008 and 2010, we have collected vdense thermal probe data at this site. We also study the temperatures at Bottom-Simulating Reflectors (BSRs) based on methane hydrate phase diagram. We perform 2D finite element thermal conductive simulations to study the effects of bathymetry on the temperature field in the ridge, and compare the simulation result with thermal probe and BSR-derived datasets. The boundary conditions include insulated boundaries on both sides, and we assign a fix temperature at the bottom of the model using an average regional geothermal gradient. Sensitivity tests and thermal probe data from a nearby region give a regional background geothermal gradient of 0.04 to 0.05 °C/m. The outputs of the simulation runs include geothermal gradient and temperature at different parts of the model. The model can fit the geothermal gradient at a distance away from the ridge where there is less geophysics evidence of fluid flow. However our model over-predicts the geothermal gradient by 50% at the ridge top. We also compare simulated temperature field and found that under the flanks of the ridge the temperature is cooled by 2 °C compared with the

  9. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  10. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  11. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  12. Computing rotational energy transfers of OD-/OH- in collisions with Rb: isotopic effects and inelastic rates at cold ion-trap conditions

    NASA Astrophysics Data System (ADS)

    González-Sánchez, L.; Gianturco, F. A.; Carelli, F.; Wester, R.

    2015-12-01

    We report close-coupling (CC) quantum dynamics calculations for collisional excitation/de-excitation of the lowest four rotational levels of OD- and of OH- interacting with Rb atoms in a cold ion trap. The calculations are carried out over a range of energies capable of yielding the corresponding rates for state-changing events over a rather broad interval of temperatures which cover those reached in earlier cold trap experiments. They involved sympathetic cooling of the molecular anion through a cloud of laser-cooled Rb atoms, an experiment which is currently being run again through a Heidelberg-Innsbruck collaboration. The significance of isotopic effects is analysed by comparing both systems and the range of temperatures examined in the calculations is extended up to 400 K, starting from a few mK. Both cross sections and rates are found to be markedly larger than in the case of OD-/OH- interacting the He atoms under the same conditions, and the isotopic effects are also seen to be rather significant at the energies examined in the present study. Such findings are discussed in the light of the observed trap losses of molecular anions.

  13. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  14. Why Being Cold Might Foster a Cold

    MedlinePlus

    ... medlineplus.gov/news/fullstory_159805.html Why Being Cold Might Foster a Cold Healthy body temperature boosts ability of immune system ... proving Mom right: Your odds of avoiding a cold get better if you bundle up and stay ...

  15. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  16. Chilling Out with Colds

    MedlinePlus

    ... most common cold virus, but more than 200 viruses can cause colds. Because there are so many, ... to help you feel better. Take that, cold viruses! continue How Kids Catch Colds Mucus (say: MYOO- ...

  17. Coping with Cold Sores

    MedlinePlus

    ... Here's Help White House Lunch Recipes Coping With Cold Sores KidsHealth > For Kids > Coping With Cold Sores ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  18. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

    PubMed

    Williams, Caroline M; McCue, Marshall D; Sunny, Nishanth E; Szejner-Sigal, Andre; Morgan, Theodore J; Allison, David B; Hahn, Daniel A

    2016-09-14

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  19. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

    PubMed

    Williams, Caroline M; McCue, Marshall D; Sunny, Nishanth E; Szejner-Sigal, Andre; Morgan, Theodore J; Allison, David B; Hahn, Daniel A

    2016-09-14

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories.

  20. Photoassociation of cold atoms with chirped laser pulses: Time-dependent calculations and analysis of the adiabatic transfer within a two-state model

    SciTech Connect

    Luc-Koenig, E.; Masnou-Seeuws, F.; Kosloff, R.; Vatasescu, M.

    2004-09-01

    This theoretical paper presents numerical calculations for the photoassociation of ultracold cesium atoms with a chirped laser pulse and a detailed analysis of the results. In contrast with earlier work, the initial state is represented by a stationary continuum wave function. In the chosen example, it is shown that an important population transfer is achieved to {approx_equal}15 vibrational levels in the vicinity of the v=98 bound level in the external well of the 0{sub g}{sup -}(6s+6p{sub 3/2}) potential. Such levels lie in the energy range swept by the instantaneous frequency of the pulse, thus defining a 'photoassociation window'. Levels outside this window may be significantly excited during the pulse, but no population remains there after the pulse. Finally, the population transfer to the last vibrational levels of the ground a {sup 3}{sigma}{sub u}{sup +}(6s+6s) state is significant, making stable molecules. The results are interpreted in the framework of a two-state model as an adiabatic inversion mechanism, efficient only within the photoassociation window. The large value found for the photoassociation rate suggests promising applications. The present chirp has been designed in view of creating in the excited state a vibrational wave packet that is focusing at the barrier of the double-well potential.

  1. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  2. Cloning and characterization of a cowpea seed lipid transfer protein cDNA: expression analysis during seed development and under fungal and cold stresses in seedlings' tissues.

    PubMed

    Carvalho, A O; Souza-Filho, G A; Ferreira, B S; Branco, A T; Araújo, I S; Fernandes, K V S; Retamal, C A; Gomes, V M

    2006-01-01

    Lipid transfer proteins (LTPs) are antimicrobial peptides (AMPs) involved in the defense of plants against pathogens. Our group has previously characterized and purified a LTP from cowpea (Vigna unguiculata (L.) Walp.) seeds which caused the inhibition of growth of fungal pathogens in vitro. The aim of this work was to obtain the cDNA encoding the cowpea LTP and after cloning, to use the cDNA as a probe for studying its expression profile during the development of cowpea seeds. In this work, the N-terminal sequence of the mature LTP peptide from cowpea was used to produce a degenerated oligonucleotide. This primer allowed the amplification of the LTP cDNA by RT-PCR from mRNA of cowpea seeds. The sequence analysis of the cloned cDNA, named VULTP, showed 494 bp which encoded a polypeptide of 91 amino acids. The deduced peptide presented high homology of similarity to plant LTPs of Vigna radiata var. radiate (94%), Prunus domestica (82%) and Zea mays (72%). The expression profile of the VULTP gene in cowpea was analyzed by Northern blot and revealed that the transcript is not accumulated in adult tissues. Conversely, VULTP mRNA is early and strongly accumulated during seed development. The results obtained to seedling of cowpea demonstrate that the VULTP gene presents differential expression in response to different stress. Further studies will be conducted to try to gain better understanding about the physiological role of this gene in cowpea.

  3. Cough & Cold Medicine Abuse

    MedlinePlus

    ... I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  4. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  5. Vitamin C and colds

    MedlinePlus

    Colds and vitamin C ... is that vitamin C can cure the common cold . However, research about this claim is conflicting. Although ... vitamin C may help reduce how long a cold lasts. They do not protect against getting a ...

  6. COLD-SAT dynamic model

    NASA Technical Reports Server (NTRS)

    Adams, Neil S.; Bollenbacher, Gary

    1992-01-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  7. Cold energy

    SciTech Connect

    Wallace, John P.

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  8. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  9. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  10. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking lots of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  11. Cold knife cone biopsy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003910.htm Cold knife cone biopsy To use the sharing features on this page, please enable JavaScript. A cold knife cone biopsy (conization) is surgery to remove ...

  12. Cold Sores (Orofacial Herpes)

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Cold Sores (Orofacial Herpes) Information for adults A A ... face, known as orofacial herpes simplex, herpes labialis, cold sores, or fever blisters, is a common, recurrent ...

  13. Cold Fronts in Cold Dark Matter Clusters

    NASA Astrophysics Data System (ADS)

    Nagai, Daisuke; Kravtsov, Andrey V.

    2003-04-01

    Recently, high-resolution Chandra observations revealed the existence of very sharp features in the X-ray surface brightness and temperature maps of several clusters. These features, called cold fronts, are characterized by an increase in surface brightness by a factor >~2 over 10-50 kpc accompanied by a drop in temperature of a similar magnitude. The existence of such sharp gradients can be used to put interesting constraints on the physics of the intracluster medium (ICM) if their mechanism and longevity are well understood. Here, we present results of a search for cold fronts in high-resolution simulations of galaxy clusters in cold dark matter models. We show that sharp gradients with properties similar to those of observed cold fronts naturally arise in cluster mergers when the shocks heat gas surrounding the merging subcluster, while its dense core remains relatively cold. The compression induced by supersonic motions and shock heating during the merger enhance the amplitude of gas density and temperature gradients across the front. Our results indicate that cold fronts are nonequilibrium transient phenomena and can be observed for a period of less than a billion years. We show that the velocity and density fields of gas surrounding the cold front can be very irregular, which would complicate analyses aiming to put constraints on the physical conditions of the ICM in the vicinity of the front.

  14. Cough and Cold Medicine Abuse

    MedlinePlus

    ... and Cold Medicine Abuse DrugFacts: Cough and Cold Medicine Abuse Email Facebook Twitter Revised May 2014 Some ... diverted for abuse. How Are Cough and Cold Medicines Abused? Cough and cold medicines are usually consumed ...

  15. Probing Cold Dense Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Subedi, R.; Shneor, R.; Monaghan, P.; Anderson, B. D.; Aniol, K.; Annand, J.; Arrington, J.; Benaoum, H.; Benmokhtar, F.; Boeglin, W.; Chen, J.-P.; Choi, Seonho; Cisbani, E.; Craver, B.; Frullani, S.; Garibaldi, F.; Gilad, S.; Gilman, R.; Glamazdin, O.; Hansen, J.-O.; Higinbotham, D. W.; Holmstrom, T.; Ibrahim, H.; Igarashi, R.; de Jager, C. W.; Jans, E.; Jiang, X.; Kaufman, L. J.; Kelleher, A.; Kolarkar, A.; Kumbartzki, G.; LeRose, J. J.; Lindgren, R.; Liyanage, N.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; Mazouz, M.; Meekins, D.; Michaels, R.; Moffit, B.; Perdrisat, C. F.; Piasetzky, E.; Potokar, M.; Punjabi, V.; Qiang, Y.; Reinhold, J.; Ron, G.; Rosner, G.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Širca, S.; Slifer, K.; Solvignon, P.; Sulkosky, V.; Urciuoli, G. M.; Voutier, E.; Watson, J. W.; Weinstein, L. B.; Wojtsekhowski, B.; Wood, S.; Zheng, X.-C.; Zhu, L.

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  16. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  17. The COLD-SAT program

    NASA Technical Reports Server (NTRS)

    Bailey, William J.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition and Transfer (COLD-SAT) satellite is an experimental spacecraft launched from an expendable launch vehicle which is designed to investigate the systems and technologies required for efficient and reliable management of cryogenic fluid in the reduced-gravity space environment. Future applications such as Space Station, Space Transportation Vehicle (STV), external tank (ET), aft cargo carrier (ACC) propellant scavenging, storage depots, and lunar and interplanetary missions, among others, have provided the impetus to pursue this technology in a timely manner to support the design efforts. A refined conceptual approach has been developed and an overview of the COLD-SAT program is described which includes the following: (1) a definition of the technology needs and the accompanying experimental six-month baseline mission; (2) a description of the experiment subsystem, major features, and rationale for satisfaction of primary and secondary experiment requirements using LH2 as the test fluid; and (3) a presentation of the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment with emphasis on those areas which posed the greatest technical challenge.

  18. Micro-Kelvin cold molecules.

    SciTech Connect

    Strecker, Kevin E.; Chandler, David W.

    2009-10-01

    We have developed a novel experimental technique for direct production of cold molecules using a combination of techniques from atomic optical and molecular physics and physical chemistry. The ability to produce samples of cold molecules has application in a broad spectrum of technical fields high-resolution spectroscopy, remote sensing, quantum computing, materials simulation, and understanding fundamental chemical dynamics. Researchers around the world are currently exploring many techniques for producing samples of cold molecules, but to-date these attempts have offered only limited success achieving milli-Kelvin temperatures with low densities. This Laboratory Directed Research and Development project is to develops a new experimental technique for producing micro-Kelvin temperature molecules via collisions with laser cooled samples of trapped atoms. The technique relies on near mass degenerate collisions between the molecule of interest and a laser cooled (micro-Kelvin) atom. A subset of collisions will transfer all (nearly all) of the kinetic energy from the 'hot' molecule, cooling the molecule at the expense of heating the atom. Further collisions with the remaining laser cooled atoms will thermally equilibrate the molecules to the micro-Kelvin temperature of the laser-cooled atoms.

  19. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  20. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  1. Cold stress and the cold pressor test.

    PubMed

    Silverthorn, Dee U; Michael, Joel

    2013-03-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This activity is easily adapted to an inquiry format that asks students to go to the scientific literature to learn about the test and then design a protocol for carrying out the test in classmates. The data collected are ideal for teaching graphical presentation of data and statistical analysis.

  2. Heat transfer in pipes

    NASA Technical Reports Server (NTRS)

    Burbach, T.

    1985-01-01

    The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

  3. Cold Sores (HSV-1)

    MedlinePlus

    ... Help a Friend Who Cuts? Cold Sores (HSV-1) KidsHealth > For Teens > Cold Sores (HSV-1) Print A A A Text Size What's in ... person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don't just show ...

  4. Hot and cold fusion

    SciTech Connect

    Not Available

    1990-08-01

    This article presents an overview of research in cold fusion research and development in cold fusion at the Tokomak Fusion Test Reactor at the Princeton Plasma Physics Lab, and at the inertial containment facility at Lawrence Livermore National Lab. is described.

  5. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  6. Improvements in Cold-Plate Fabrication

    NASA Technical Reports Server (NTRS)

    Zaffetti, Mark A.; Taddey, Edmund P.; Laurin, Michael B.; Chabebe, Natalia

    2012-01-01

    Five improvements are reported in cold-plate fabrication. This cold plate is part of a thermal control system designed to serve on space missions. The first improvement is the merging of the end sheets of the cold plate with the face sheets of the structural honeycomb panel. The cold plate, which can be a brazed assembly, uses the honeycomb face sheet as its end sheet. Thus, when the honeycomb panel is fabricated, the face sheet that is used is already part of the cold plate. In addition to reducing weight, costs, and steps, the main benefit of this invention is that it creates a more structurally sound assembly. The second improvement involves incorporation of the header into the closure bar to pass the fluid to a lower layer. Conventional designs have used a separate header, which increases the geometry of the system. The improvement reduces the geometry, thus allowing the cold plate to fit into smaller area. The third improvement eliminates the need of hose, tube, or manifold to supply the cooling fluid externally. The external arrangement can be easily damaged and is vulnerable to leakage. The new arrangement incorporates an internal fluid transfer tube. This allows the fluid to pass from one cold plate to the other without any exposed external features. The fourth improvement eliminates separate fabrication of cold plate(s) and structural members followed by a process of attaching them to each other. Here, the structural member is made of material that can be brazed just as that of the cold plate. Now the structural member and the cold plate can be brazed at the same time, creating a monolithic unit, and thus a more structurally sound assembly. Finally, the fifth improvement is the elimination of an additional welding step that can damage the braze joints. A tube section, which is usually welded on after the braze process, is replaced with a more structurally sound configuration that can be brazed at the same time as the rest of the cold plate.

  7. Cold Shock Syndrome in Anacystis nidulans.

    PubMed

    Rao, V S; Brand, J J; Myers, J

    1977-05-01

    The phenomenon of cold shock in Anacystis nidulans has been explored further in terms of loss of viability and immediate and subsequent metabolic effects. Cold shock was observed also in two closely related strains in which unsaturated fatty acid contents are also known to be low and temperature-dependent. Loss of viability was maximum for cells grown at temperatures above 40 C (<10(-4) survivors after 5 min at 0 C) but became negligibly small for cells grown below 34 C. Development of the cold-sensitive condition after transfer 25 --> 39 C was slow and comparable to rate of growth; development of the insensitive condition after transfer 39 --> 25 C was rapid, implying rapid in situ alteration. An immediate metabolic effect, observed as a decrease in rate of photosynthetic O(2) evolution measured at growth temperature, was less severe than loss of viability. Continued light incubation under growth conditions led to slow decay in rate of O(2) evolution accompanied by loss of membrane chlorophyll. The multiple effects which comprise the cold shock syndrome appear to be membrane-related phenomena and thereby provide an experimental probe of normal membrane function.

  8. The cold reading technique.

    PubMed

    Dutton, D L

    1988-04-15

    For many people, belief in the paranormal derives from personal experience of face-to-face interviews with astrologers, palm readers, aura and Tarot readers, and spirit mediums. These encounters typically involve cold reading, a process in which a reader makes calculated guesses about a client's background and problems and, depending on the reaction, elaborates a reading which seems to the client so uniquely appropriate that it carries with it the illusion of having been produced by paranormal means. The cold reading process is shown to depend initially on the Barnum effect, the tendency for people to embrace generalized personality descriptions as idiosyncratically their own. Psychological research into the Barnum effect is critically reviewed, and uses of the effect by a professional magician are described. This is followed by detailed analysis of the cold reading performances of a spirit medium. Future research should investigate the degree to which cold readers may have convinced themselves that they actually possess psychic or paranormal abilities.

  9. Cold wave lotion poisoning

    MedlinePlus

    Thioglycolate poisoning ... Below are symptoms of cold wave lotion poisoning in different parts of the body. EYES, EARS, NOSE, AND THROAT Mouth irritation Burning and redness of the eyes Possibly serious damage to ...

  10. Colds and flus - antibiotics

    MedlinePlus

    Fashner J, Ericson K, Werner S. Treatment of the common cold in children and adults. Am Fam Physician. 2012; ... gov/pubmed/22962927 . Melio FR, Berge LR. Upper respiratory tract infections. In: Marx JA, Hockberger RS, Walls RM, et ...

  11. Cold Hardening in Citrus Stems

    PubMed Central

    Yelenosky, George

    1975-01-01

    Stem cold hardening developed to different levels in citrus types tested in controlled environments. Exotherms indicated ice spread was more uniform and rapid in unhardened than in cold-hardened stems. All attempts to inhibit the functioning of citrus leaves resulted in less cold hardening in the stems. Citrus leaves contribute a major portion of cold hardening in the wood. PMID:16659340

  12. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    Designed to help teachers deal with students in a cold environment, this article explains cold physiology and fundamental laws of heat; describes 14 common cold injuries and their current treatment; and lists a number of useful teaching techniques for cold environments. (SB)

  13. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Instructors who teach outdoors in an environment so cold as to cause injury must satisfy program objectives while avoiding cold injury to themselves and students, help students focus on learning instead of discomfort, and alleviate some students' intense fear of the cold. Dealing with the cold successfully requires a thorough knowledge of:…

  14. Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions.

    PubMed

    Juszczak, Ilona; Cvetkovic, Jelena; Zuther, Ellen; Hincha, Dirk K; Baier, Margarete

    2016-01-01

    Temperature variations impact on the balance between photosynthetic electron transport and electron-consuming assimilation reactions and transiently increase generation of reactive oxygen species (ROS). Previous studies demonstrated that the expression of C-repeat binding factors (CBFs), which activate cold acclimation reactions, respond to chloroplast ROS signals and that cold deacclimation is partly halted for days after the transfer of acclimated plants to optimal growth conditions in four Arabidopsis accessions from cold-continental habitats. We hypothesized that these accessions differ from others in the regulation of the plastid antioxidant system (PAS). In the present study, we compared the expression intensity of the 12 most prominent PAS genes for peroxidases, superoxide dismutase and low molecular weight antioxidant regenerating enzymes in 10 Arabidopsis accessions with regulation of CBF and COR (cold regulated genes) transcript levels and cold-regulated metabolite levels prior to cold, after 2 week long cold acclimation and during the first 3 days of deacclimation. In the accessions with prolonged activation of cold responses, by trend, weaker induction of various cold-inducible PAS genes and stronger decreases in the expression of negatively cold-regulated PAS genes were observed. Low PAS gene expression delayed the post-cold decrease in H2O2 levels after transfer of the plants from cold to optimal growth conditions. We conclude that weaker expression of various PAS genes in the cold is an adapted strategy of the Arabidopsis accessions N14, N13, Ms-0, and Kas-1 to avoid full inactivation of cold-responses in the first days after the end of the cold period. PMID:27014325

  15. Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions

    PubMed Central

    Juszczak, Ilona; Cvetkovic, Jelena; Zuther, Ellen; Hincha, Dirk K.; Baier, Margarete

    2016-01-01

    Temperature variations impact on the balance between photosynthetic electron transport and electron-consuming assimilation reactions and transiently increase generation of reactive oxygen species (ROS). Previous studies demonstrated that the expression of C-repeat binding factors (CBFs), which activate cold acclimation reactions, respond to chloroplast ROS signals and that cold deacclimation is partly halted for days after the transfer of acclimated plants to optimal growth conditions in four Arabidopsis accessions from cold-continental habitats. We hypothesized that these accessions differ from others in the regulation of the plastid antioxidant system (PAS). In the present study, we compared the expression intensity of the 12 most prominent PAS genes for peroxidases, superoxide dismutase and low molecular weight antioxidant regenerating enzymes in 10 Arabidopsis accessions with regulation of CBF and COR (cold regulated genes) transcript levels and cold-regulated metabolite levels prior to cold, after 2 week long cold acclimation and during the first 3 days of deacclimation. In the accessions with prolonged activation of cold responses, by trend, weaker induction of various cold-inducible PAS genes and stronger decreases in the expression of negatively cold-regulated PAS genes were observed. Low PAS gene expression delayed the post-cold decrease in H2O2 levels after transfer of the plants from cold to optimal growth conditions. We conclude that weaker expression of various PAS genes in the cold is an adapted strategy of the Arabidopsis accessions N14, N13, Ms-0, and Kas-1 to avoid full inactivation of cold-responses in the first days after the end of the cold period. PMID:27014325

  16. Progress toward cold antihydrogen

    SciTech Connect

    Gabrielse, G.; Estrada, J.; Peil, S.; Roach, T.; Tan, J. N.; Yesley, P.

    1999-12-10

    The production and study of cold antihydrogen will require the manipulation of dense and cold, single component plasmas of antiprotons and positrons. The undertaking will build upon the experience of the nonneutral plasma physics community. Annihilations of the antimatter particles in the plasmas can be imaged, offering unique diagnostic opportunities not available to this community when electrons and protons are used. The techniques developed by our TRAP collaboration to capture and cool antiprotons will certainly be used by our expanded ATRAP collaboration, and by the competing ATHENA Collaboration, both working at the nearly completed AD facility of CERN. We recently demonstrated a new techniques for accumulating cold positrons directly into a cryogenic vacuum system. The closest we have come to low energy antihydrogen so far is to confine cold positrons and cold antiprotons within the same trap structure and vacuum container. Finally, we mention that stored electrons have been cooled to 70 mK, the first time that elementary particles have been cooled below 4 K. In such an apparatus it should be possible to study highly magnetized plasmas of electrons or positrons at this new low temperature.

  17. Cold sea survival.

    NASA Technical Reports Server (NTRS)

    Veghte, J. H.

    1972-01-01

    Two prototype three-man life rafts were evaluated during the winter months in Arctic waters off Kodiak Island, Alaska, to assess potential survival problems and determine tolerance limits. Each raft incorporated thermal characteristics specifically designed for cold water. Water and air temperatures varied from 0 to +2 C and -5 to +4 C respectively. All subjects were removed upon reaching subjective tolerance. The results showed that none of the clothing assemblies was adequate to maintain a person in comfort even with dry boarding. No significant biochemical shifts in the blood or urine were found. The TUL raft was found to be superior in its thermal characteristics and afforded better subject protection. General tolerance for cold water immersion, wet and dry, and cold water raft exposures are depicted graphically, based on previously reported data.

  18. Assessment of cold stress.

    PubMed

    Holmér, I

    1991-01-01

    Cold stress may be present in terms of a risk for skin surface cooling (wind chill), extremity cooling and whole body cooling. Measures of cold stress differ for the various situations. The most common approach, however, has been to apply more or less complex formulas for heat balance calculations. The combined effect of several climatic factors (air temperature, mean radiant temperature, humidity and air velocity) and the activity level determines the cooling power of the environment. The cooling power can be easily converted into a required insulation value, that applies both to parts of the body and to the body as a whole. The value provides information about cold stress in two ways; (a) by specifying necessary behavioural adjustments in terms of required activity level and clothing insulation level, and (b) by quantifying the thermal imbalance and tolerance time, when protection worn does not provide sufficient insulation.

  19. Cold asymmetrical fermion superfluids

    SciTech Connect

    Caldas, Heron

    2003-12-19

    The recent experimental advances in cold atomic traps have induced a great amount of interest in fields from condensed matter to particle physics, including approaches and prospects from the theoretical point of view. In this work we investigate the general properties and the ground state of an asymmetrical dilute gas of cold fermionic atoms, formed by two particle species having different densities. We have show in a recent paper, that a mixed phase composed of normal and superfluid components is the energetically favored ground state of such a cold fermionic system. Here we extend the analysis and verify that in fact, the mixed phase is the preferred ground state of an asymmetrical superfluid in various situations. We predict that the mixed phase can serve as a way of detecting superfluidity and estimating the magnitude of the gap parameter in asymmetrical fermionic systems.

  20. Expert Cold Structure Development

    NASA Astrophysics Data System (ADS)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  1. Teaching "In Cold Blood."

    ERIC Educational Resources Information Center

    Berbrich, Joan D.

    1967-01-01

    The Truman Capote nonfiction novel, "In Cold Blood," which reflects for adolescents the immediacy of the real world, illuminates (1) social issues--capital punishment, environmental influence, and the gap between the "haves" and "have-nots," (2) moral issues--the complexity of man's nature, the responsibility of one man for another, and the place…

  2. Recent Cold War Studies

    ERIC Educational Resources Information Center

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  3. Cold War Propaganda.

    ERIC Educational Resources Information Center

    Bennett, Paul W.

    1988-01-01

    Briefly discusses the development of Cold War propaganda in the United States, Canada, and the USSR after 1947. Presents two movie reviews and a Canadian magazine advertisement of the period which illustrate the harshness of propaganda used by both sides in the immediate postwar years. (GEA)

  4. Cold Facts about Viruses.

    ERIC Educational Resources Information Center

    Pea, Celeste; Sterling, Donna R.

    2002-01-01

    Provides ways for students to demonstrate their understanding of scientific concepts and skills. Describes a mini-unit around the cold in which students can relate humans to viruses. Includes activities and a modified simulation that provides questions to guide students. Discusses ways that allows students to apply prior knowledge, take ownership…

  5. Cold spray nozzle design

    DOEpatents

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  6. Slurry fired heater cold-flow modelling

    SciTech Connect

    Moujaes, S.F.

    1983-07-01

    This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

  7. Prescription Drugs and Cold Medicines

    MedlinePlus

    ... Abuse » Prescription Drugs & Cold Medicines Prescription Drugs & Cold Medicines Email Facebook Twitter What is Prescription Drug Abuse: ... treatment of addiction. Read more Safe Disposal of Medicines Disposal of Unused Medicines: What You Should Know ( ...

  8. Thermoregulatory modeling for cold stress.

    PubMed

    Xu, Xiaojiang; Tikuisis, Peter

    2014-07-01

    Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview. PMID:24944030

  9. Thermoregulatory modeling for cold stress.

    PubMed

    Xu, Xiaojiang; Tikuisis, Peter

    2014-07-01

    Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview.

  10. COLD-SAT feasibility study safety analysis

    NASA Technical Reports Server (NTRS)

    Mchenry, Steven T.; Yost, James M.

    1991-01-01

    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.

  11. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  12. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  13. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  14. Remedies for Common Cold Symptoms

    PubMed Central

    Miller, Penny F.

    1991-01-01

    Individuals suffering from intolerable symptoms of the common cold can now be advised of safe and effective products for symptomatic relief. This article describes and discusses four categories of drugs used to treat the common cold. To simplify the product selection process for family physicians, suggestions are included for possible ingredients for treatments of specific cold symptoms. PMID:21234087

  15. When blood runs cold: cold agglutinins and cardiac surgery.

    PubMed

    Findlater, Rhonda R; Schnell-Hoehn, Karen N

    2011-01-01

    Cold agglutinins are particular cold-reactive antibodies that react with red blood cells when the blood temperature drops below normal body temperature causing increased blood viscosity and red blood cell clumping. Most individuals with cold agglutinins are not aware of their presence, as these antibodies have little effect on daily living, often necessitating no treatment. However, when those with cold agglutinins are exposed to hypothermic situations or undergo procedures such as cardiopulmonary bypass with hypothermia during cardiac surgery, lethal complications of hemolysis, microvascular occlusion and organ failure can occur. By identifying those suspected of possessing cold agglutinins through a comprehensive nursing assessment and patient history, cold agglutinin screening can be performed prior to surgery to determine a diagnosis of cold agglutinin disease. With a confirmed diagnosis of cold agglutinin disease, the plan of care can be focused on measures to maintain the patient's blood temperature above the thermal amplitude throughout their hospitalization including the use of normothermic cardiopulmonary bypass with warm myocardial preservation techniques to prevent these fatal complications. Using a case report approach, the authors review the mechanism, clinical manifestations, detection and nursing management of a patient with cold agglutinins undergoing scheduled cardiac surgery. Cold agglutinin disease is rare. However, the risk to patients warrants an increased awareness of cold agglutinins and screening for those who are suspected of carrying these antibodies. PMID:21630629

  16. WISPy cold dark matter

    NASA Astrophysics Data System (ADS)

    Arias, Paola; Cadamuro, Davide; Goodsell, Mark; Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2012-06-01

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches — exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques — can probe large parts of this parameter space in the foreseeable future.

  17. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  18. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  19. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  20. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  1. Cold denaturation of encapsulated ubiquitin.

    PubMed

    Pometun, Maxim S; Peterson, Ronald W; Babu, Charles R; Wand, A Joshua

    2006-08-23

    Theoretical considerations suggest that protein cold denaturation can potentially provide a means to explore the cooperative substructure of proteins. Protein cold denaturation is generally predicted to occur well below the freezing point of water. Here NMR spectroscopy of ubiquitin encapsulated in reverse micelles dissolved in low viscosity alkanes is used to follow cold-induced unfolding to temperatures below -25 degrees C. Comparison of cold-induced structural transitions in a variety of reverse micelle-buffer systems indicate that protein-surfactant interactions are negligible and allow the direct observation of the multistate cold-induced unfolding of the protein.

  2. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  3. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon E.; Melendez, David T.

    2011-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  4. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    . The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

  5. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    and melter conditions. The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

  6. Cold climate wetlands: design and performance.

    PubMed

    Wallace, S; Parkin, G; Cross, C

    2001-01-01

    Constructed wetlands are gaining widespread use as a simple, low cost means of wastewater treatment. Introduction of constructed wetlands technology into the northern United States has been limited by the ability of conventional wetland systems to operate without freezing during the winter. A design approach using subsurface-flow constructed wetlands covered with an insulating mulch layer has been demonstrated to prevent freezing. However, introduction of a mulch layer will affect oxygen transfer rates, pollutant removal performance, and plant establishment. These factors must be addressed for successful application of constructed wetlands technology in cold climates.

  7. From Cold War to cold vessels

    SciTech Connect

    Melrath, C.

    1996-09-01

    This article describes a former Soviet weapons plant which is converted to produce cryogenic vessels and other peaceful cylinders. In 1995, Byelocorp Scientific Inc. (BSI), a New York-based firm that specializes in transferring technologies developed in the former Soviet Union, began converting a huge military defense plant in Kazakhstan into civilian-industrial use. The nearly 750,000-square-foot factory in Almaty, the capital of the former Soviet republic, was previously used to manufacture torpedo shells and ballistic rocket casings. The old defense plant, which was known as Gidromash, will now manufacture cylinders of a kinder, gentler variety--cryogenic vessels. The Kazakhstan operation is being managed jointly with Supco Srl., an Italian manufacturing, engineering, and construction company. With financing from the US Department of Defense, BSI, Supco, and the Kazakhstan government, a new joint venture called Byelkamit (a combination of Byelocorp, Kazakhstan, America, and Italy) was established.

  8. Experimental hypothermia and cold perception.

    PubMed

    Hoffman, R G; Pozos, R S

    1989-10-01

    Twelve subjects clothed in flotation suits were immersed in 10 degrees C cold water and their surface temperatures at the back and groin, as well as core temperatures, were continuously monitored. Subjects were unable to reliably assess how cold they were, with the highest correlation observed between perceived temperature and actual temperature reaching only 0.51. This was felt to be partially due to the uneven distribution of surface temperatures seen in this experiment and in most cold water immersions. Rapid cooling in cold water also produced the perceptual phenomenon of "overshooting" previously observed in cold air studies, characterized by sudden temperature drops being perceived as cold sensations of greater magnitude. The results suggest that subjects who are rapidly cooled in water may have considerable difficulty separating feelings of cold from feelings of pain and discomfort, which can have serious implications in survival situations and highlights the subjective and highly variable nature of cold perception. Perceived cold sensation may be a very poor, and possibly dangerous, predictor in cold water immersion situations.

  9. A swirl flow evaporative cold plate

    NASA Technical Reports Server (NTRS)

    Niggemann, R. E.; Greenlee, W. J.; Hill, D. G.; Ellis, W.; Marshall, P.

    1985-01-01

    A forced flow evaporative cold plate is under development for future application to the thermal bus concept being pursued by NASA for Space Station Thermal Control. The vaporizer is a swirl-flow device employing a spiral tube coil geometry sandwiched between conductive metal plates upon which electric components could be mounted. This concept is based on the inherent phase separation that occurs in a two phase stream in curvilinear flow. This is a zero 'g' design with one 'g' all-attitude capability and is capable of high heat transfer coefficients, good isothermality, and the ability to function at heat fluxes approaching 5w/sq cm on the cold plates (10w/sq cm on the tube wall) with Freon 114. The advantages of this design over other two phase evaporator approaches are high heat flux capability, simplified control requirements, insensitivity to micro-gravity oscillations, and inexpensive manufacturability. The program included design, fabrication, and test of such a cold plate utilizing an existing test stand developed for two-phase thermal management system (TPTMS) testing. Test results analysis and conclusions are included.

  10. The Isis cold moderators

    SciTech Connect

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  11. Exertion-induced fatigue and thermoregulation in the cold.

    PubMed

    Young, A J; Castellani, J W

    2001-04-01

    Cold exposure facilitates body heat loss which can reduce body temperature, unless mitigated by enhanced heat conservation or increased heat production. When behavioral strategies inadequately defend body temperature, vasomotor and thermogenic responses are elicited, both of which are modulated if not mediated by sympathetic nervous activation. Both exercise and shivering increase metabolic heat production which helps offset body heat losses in the cold. However, exercise also increases peripheral blood flow, in turn facilitating heat loss, an effect that can persist for some time after exercise ceases. Whether exercise alleviates or exacerbates heat debt during cold exposure depends on the heat transfer coefficient of the environment, mode of activity and exercise intensity. Prolonged exhaustive exercise leading to energy substrate depletion could compromise maintenance of thermal balance in the cold simply by precluding continuation of further exercise and the associated thermogenesis. Hypoglycemia impairs shivering, but this appears to be centrally mediated, rather than a limitation to peripheral energy metabolism. Research is equivocal regarding the importance of muscle glycogen depletion in explaining shivering impairments. Recent research suggests that when acute exercise leads to fatigue without depleting energy stores, vasoconstrictor responses to cold are impaired, thus body heat conservation becomes degraded. Fatigue that was induced by chronic overexertion sustained over many weeks, appeared to delay the onset of shivering until body temperature fell lower than when subjects were rested, as well as impair vasoconstrictor responses. When heavy physical activity is coupled with underfeeding for prolonged periods, the resulting negative energy balance leads to loss of body mass, and the corresponding reduction in tissue insulation, in turn, compromises thermal balance by facilitating conductive transfer of body heat from core to shell. The possibility that

  12. Cold isopressing method

    DOEpatents

    Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi

    2003-01-01

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  13. Experiments in cold fusion

    SciTech Connect

    Palmer, E.P.

    1986-03-28

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

  14. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  15. A Cold and Wet Mars

    NASA Astrophysics Data System (ADS)

    Fairén, A. G.; Davila, A. F.; Duport, L. G.; Uceda, E. R.; Lim, D. S.; Amils, R.; McKay, C. P.

    2008-03-01

    Here we consider the hypothesis that cold and hypersaline liquid solutions have been stable on the surface of Mars under subzero mean temperatures and for relatively extended periods of time, completing a hydrogeological cycle in a water-enriched but cold planet.

  16. 2. Detail of tower foundation with lightning transfer wire, southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Detail of tower foundation with lightning transfer wire, southeast corner - Cold Mountain Fire Lookout Station, Lookout Tower, Krassel District, Frank Church River of No Return Wilderness, Dixie, Idaho County, ID

  17. TRANSFER STUDY.

    ERIC Educational Resources Information Center

    GREIVE, DONALD E.

    THIS 1967 STUDY AT LORAIN COUNTY COMMUNITY COLLEGE (LCCC) WAS UNDERTAKEN TO DISCOVER (1) THE PERCENTAGE OF CREDIT HOURS IN A UNIVERSITY PARALLEL PROGRAM ACCEPTED BY TRANSFER INSTITUTIONS, (2) THE STUDENT'S GPA BEFORE AND AFTER TRANSFER, AND (3) HOW MANY COLLEGES ACCEPTED LCCC'S TRANSFERS. INSTITUTIONS TO WHICH LCCC STUDENTS HAD HAD THEIR…

  18. Charge Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Dennerl, Konrad

    2010-12-01

    Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.

  19. Cold-Weather Sports and Your Family

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Cold-Weather Sports and Your Family KidsHealth > For Parents > Cold- ... once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, ...

  20. COLD-SAT orbital experiment configured for Atlas launch

    NASA Technical Reports Server (NTRS)

    Shuster, J. R.; Bennett, F. O.; Wachter, J. P.

    1989-01-01

    The design and requirements for the proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer (COLD-SAT) satellite experiment, which is to be launched by Atlas I, are examined. The COLD-SAT experiments are categorized as class I and II; class I involves technology related to space transportation missions and class II represents alternative fluid management operations and data. The hardware for the COLD-SAT experiments consists of three hydrogen tanks contained in the experimental module; the experimental module is connected to a three-axis-controlled spacecraft bus, and thrusters are positioned on the forward and aft ends of the spacecraft and on the cylindrical portion of the experimental module. The components and systems of the experiment module and the types of experiments that can be conducted in each tank are described. Diagrams of the spacecraft configuration are provided.

  1. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  2. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  3. Exergy Transfer Characteristics on Low Temperature Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Wu, S. Y.; Yuan, X. F.; Li, Y. R.; Peng, L.

    By analyzing exergy transfer process of the low temperature heat exchangers operating below the surrounding temperature, the concept of exergy transfer coefficient is put forward and the expressions which involving relevant variables for the exergy transfer coefficient, the heat transfer units number and the ratio of cold to hot fluids heat capacity rate, etc. are derived. Taking the parallel flow, counter flow and cross flow low temperature heat exchangers as examples, the numerical results of exergy transfer coefficient are given and the comparison of exergy transfer coefficient with heat transfer coefficient is analyzed.

  4. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  5. Zitterbewegung in Cold Atoms

    NASA Astrophysics Data System (ADS)

    Penteado, Poliana; Egues, J. Carlos

    2013-03-01

    In condensed matter systems, the coupling between spatial and spin degrees of freedom through the spin-orbit (SO) interaction offers the possibility of manipulating the electron spin via its orbital motion. The proposal by Datta and Das of a `spin transistor' for example, highlights the use of the SO interaction to control the electron spin via electrical means. Recently, arrangements of crossed lasers and magnetic fields have been used to trap and cool atoms in optical lattices and also to create light-induced gauge potentials, which mimic the SO interactions in real solids. In this work, we investigate the Zitterbewegung in cold atoms by starting from the effective SO Hamiltonian derived in Ref.. Cross-dressed atoms as effective spins can provide a proper setting in which to observe this effect, as the relevant parameter range of SO strengths may be more easily attainable in this context. We find a variety of peculiar Zitterbewegung orbits in real and pseudo-spin spaces, e.g., cycloids and ellipses - all of which obtained with realistic parameters. This work is supported by FAPESP, CAPES and CNPq.

  6. Versatile cold atom target apparatus

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Hofmann, Christoph S.; Litsch, Dominic; DePaola, Brett D.; Weidemueller, Matthias

    2012-07-15

    We report on a compact and transportable apparatus that consists of a cold atomic target at the center of a high resolution recoil ion momentum spectrometer. Cold rubidium atoms serve as a target which can be operated in three different modes: in continuous mode, consisting of a cold atom beam generated by a two-dimensional magneto-optical trap, in normal mode in which the atoms from the beam are trapped in a three-dimensional magneto-optical trap (3D MOT), and in high density mode in which the 3D MOT is operated in dark spontaneous optical trap configuration. The targets are characterized using photoionization.

  7. Plants in a cold climate.

    PubMed Central

    Smallwood, Maggie; Bowles, Dianna J

    2002-01-01

    Plants are able to survive prolonged exposure to sub-zero temperatures; this ability is enhanced by pre-exposure to low, but above-zero temperatures. This process, known as cold acclimation, is briefly reviewed from the perception of cold, through transduction of the low-temperature signal to functional analysis of cold-induced gene products. The stresses that freezing of apoplastic water imposes on plant cells is considered and what is understood about the mechanisms that plants use to combat those stresses discussed, with particular emphasis on the role of the extracellular matrix. PMID:12171647

  8. The COLD-SAT experiment for cryogenic fluid management technology

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, J. P.; Vento, D. M.

    1990-01-01

    The COLD-SAT spacecraft design experiments are described. COLD-SAT will be placed into an initial 1300 km circular orbit by an Atlas commercial launch vehicle. Electric power, experiment control and data management, attitude control, and propulsive accelarations for the experiments will be provided by the three-axis-controlled spacecraft bus. To provide data on the effects that low gravity levels might have on the heat and mass transfer processes involved, low levels of accelaration will be created. The COLD-SAT experiment will be configured into a module. The spacecraft experiment module will include three liquid hydrogen tanks; fluid transfer, pressurization and venting equipment; and instrumentation. Since the largest tank has helium-purged MLI to prevent ingress and freezing of air on the launchpad, it will contain all the liquid hydrogen at the point of launching. The hydrogen tanking system used for the Centaur upper stage of the Atlas will load and top off this tank. Atlas, with its liquid hydrogen upper stage, large payload fairing, and large launch margin, simplifies COLD-SAT design and integration.

  9. Lightweight, Rack-Mountable Composite Cold Plate/Shelves

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Ruemmele, Warren; Nguyen, Hai D.; Andish, Kambiz; McCalley, Sean

    2004-01-01

    Rack-mountable composite-material structural components that would serve as both shelves and cold plates for removing heat from electronic or other equipment mounted on the shelves have been proposed as lightweight alternatives to all-metal cold plate/shelves now in use. A proposed cold plate/shelf would include a highly thermally conductive face sheet containing oriented graphite fibers bonded to an aluminum honeycomb core, plus an extruded stainless-steel substructure containing optimized flow passages for a cooling fluid, and an inlet and outlet that could be connected to standard manifold sections. To maximize heat-transfer efficiency, the extruded stainless-steel substructure would be connected directly to the face sheet. On the basis of a tentative design, the proposed composite cold plate/shelf would weigh about 38 percent less than does an all-aluminum cold plate in use or planned for use in some spacecraft and possibly aircraft. Although weight is a primary consideration, the tentative design offers the additional benefit of reduction of thickness to half that of the all-aluminum version.

  10. Motion and Arrest of a Molten Liquid on Cold Substrates

    NASA Astrophysics Data System (ADS)

    Tavakoli-Dastjerdi, Faryar

    Spreading of liquid drop on cold solid substrates followed by solidification involves heat transfer, fluid dynamics, and phase change physics. Coupling of these physical phenomena, although present in many industrial applications and nature, renders the physical understanding of the process challenging. Here, the key aspects of molten liquid spreading and solidifying on cold solid substrate are examined experimentally and theoretically. A novel hypothesis of spreading solidifying drops on cold solid substrates is introduced that emphasizes on early stages of the drop solidification at the solid-liquid-gas interface. The derived equations of the drop motion and arrest, stemmed from the development of the presented hypothesis, are in accord with obtained empirical results. The hypothesis is then thoroughly tested with new sets of experiments: i) Drop impact experiments, ii) Inclined plate experiments. In addition, the solidification of static supercooled drops and the initiation mechanism of an intermittent stage (recalescence) are addressed. Also, a peculiar delay-freezing property of hydrophobic surfaces is examined under varying liquid flow rates and substrate temperatures. Moreover, a new phenomenon of cold-induced spreading of water drops on hydrophobic surfaces due to premature condensation followed by thin-film formation at the trijunction is explored and the effect of physical parameters such as relative humidity, the substrate temperature, initial contact angle, surface roughness, and drop volume are investigated. This study will significantly advance the current understanding of dynamic interaction between molten liquid and cold solid substrates.

  11. The small covering factor of cold accretion streams

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Kereš, Dušan

    2011-03-01

    Theoretical models of galaxy formation predict that galaxies acquire most of their baryons via cold mode accretion. Observations of high-redshift galaxies, while showing ubiquitous outflows, have so far not revealed convincing traces of the predicted cold streams, which has been interpreted as a challenge for the current models. Using high-resolution, zoom-in smooth particle hydrodynamics simulations of Lyman break galaxy (LBG) haloes combined with ionizing radiative transfer, we quantify the covering factor of the cold streams at z= 2-4. We focus specifically on Lyman limit systems (LLSs) and damped Lyα absorbers (DLAs), which can be probed by absorption spectroscopy using a background galaxy or quasar sightline, and which are closely related to low-ionization metal absorbers. We show that the covering factor of these systems is relatively small and decreases with time. At z= 2, the covering factor of DLAs within the virial radius of the simulated galaxies is ˜3 per cent (˜1 per cent within twice this projected distance), and arises principally from the galaxy itself. The corresponding values for LLSs are ˜10 and 4 per cent. Because of their small covering factor compared to the order unity covering fraction expected for galactic winds, the cold streams are naturally dominated by outflows in stacked spectra. We conclude that the existing observations are consistent with the predictions of cold mode accretion, and outline promising kinematic and chemical diagnostics to separate out the signatures of galactic accretion and feedback.

  12. Measuring the Cold Mask Offset

    NASA Astrophysics Data System (ADS)

    Roye, E.; Krist, J.; Schultz, A. B.; Wiklind, T.

    2003-04-01

    An unexpected increase in measured thermal background during the Cycle 11 early calibration program caused speculation that the cold mask position could have shifted since Cycle 7. To address this concern, a single orbit NICMOS program was executed (Program ID: 9704) to obtain deep PSF images of the star LHS1846 in all three cameras. Analysis of this data using the Phase Retrieval software package revealed a minimal amount of cold mask shift since Cycle 7 and provided new, more accurate cold mask values for the Tiny Tim PSF modeling software. It was concluded that the cold mask position was not the cause of increased thermal background observed during the Cycle 11 early calibration program. Increased thermal background has since been determined to be the result of increased thermal load on the HST aft shroud due to the addition of ACS and NCS during SM3b.

  13. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  14. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    DOEpatents

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  15. Garlic for the common cold.

    PubMed

    Lissiman, Elizabeth; Bhasale, Alice L; Cohen, Marc

    2014-01-01

    Background Garlic is alleged to have antimicrobial and antiviral properties that relieve the common cold, among other beneficial effects. There is widespread usage of garlic supplements. The common cold is associated with significant morbidity and economic consequences. On average, children have six to eight colds per year and adults have two to four.Objectives To determine whether garlic (Allium sativum) is effective for the prevention or treatment of the common cold, when compared to placebo, no treatment or other treatments.Search methods We searched CENTRAL (2014, Issue 7),OLDMEDLINE (1950 to 1965),MEDLINE (January 1966 to July week 5, 2014), EMBASE(1974 to August 2014) and AMED (1985 to August 2014).Selection criteria Randomised controlled trials of common cold prevention and treatment comparing garlic with placebo, no treatment or standard treatment.Data collection and analysis Two review authors independently reviewed and selected trials from searches, assessed and rated study quality and extracted relevant data.Main results In this updated review, we identified eight trials as potentially relevant from our searches. Again, only one trial met the inclusion criteria.This trial randomly assigned 146 participants to either a garlic supplement (with 180 mg of allicin content) or a placebo (once daily)for 12 weeks. The trial reported 24 occurrences of the common cold in the garlic intervention group compared with 65 in the placebo group (P value < 0.001), resulting in fewer days of illness in the garlic group compared with the placebo group (111 versus 366). The number of days to recovery from an occurrence of the common cold was similar in both groups (4.63 versus 5.63). Only one trial met the inclusion criteria, therefore limited conclusions can be drawn. The trial relied on self reported episodes of the common cold but was of reasonable quality in terms of randomisation and allocation concealment. Adverse effects included rash and odour. Authors' conclusions

  16. Garlic for the common cold.

    PubMed

    Lissiman, Elizabeth; Bhasale, Alice L; Cohen, Marc

    2014-11-11

    Background Garlic is alleged to have antimicrobial and antiviral properties that relieve the common cold, among other beneficial effects. There is widespread usage of garlic supplements. The common cold is associated with significant morbidity and economic consequences. On average, children have six to eight colds per year and adults have two to four.Objectives To determine whether garlic (Allium sativum) is effective for the prevention or treatment of the common cold, when compared to placebo, no treatment or other treatments.Search methods We searched CENTRAL (2014, Issue 7),OLDMEDLINE (1950 to 1965),MEDLINE (January 1966 to July week 5, 2014), EMBASE(1974 to August 2014) and AMED (1985 to August 2014).Selection criteria Randomised controlled trials of common cold prevention and treatment comparing garlic with placebo, no treatment or standard treatment.Data collection and analysis Two review authors independently reviewed and selected trials from searches, assessed and rated study quality and extracted relevant data.Main results In this updated review, we identified eight trials as potentially relevant from our searches. Again, only one trial met the inclusion criteria.This trial randomly assigned 146 participants to either a garlic supplement (with 180 mg of allicin content) or a placebo (once daily)for 12 weeks. The trial reported 24 occurrences of the common cold in the garlic intervention group compared with 65 in the placebo group (P value < 0.001), resulting in fewer days of illness in the garlic group compared with the placebo group (111 versus 366). The number of days to recovery from an occurrence of the common cold was similar in both groups (4.63 versus 5.63). Only one trial met the inclusion criteria, therefore limited conclusions can be drawn. The trial relied on self reported episodes of the common cold but was of reasonable quality in terms of randomisation and allocation concealment. Adverse effects included rash and odour. Authors' conclusions

  17. Effect of Feeding Rate on the Cold Cap Configuration in a Laboratory-Scale Melter

    SciTech Connect

    Dixon, Derek R.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-02-25

    High level waste melter feed is converted into glass in a joule heated melter, where it forms a floating layer of reacting feed, called the cold cap. After the glass-forming phase becomes connected, evolving gases produce bubbles that form a foam layer under the cold cap. The bubbles coalesce into cavities that escape around the edges of the cold cap. The foam layer insulates the cold cap from the heat transferred from the molten glass below. More information is needed about the formation and behavior of the foam layer to control, limit and possibly avoid foaming, thus allowing for a higher rate of melting. The cold cap behavior was investigated in a laboratory scale assembly with a sealed silica-glass crucible. A high alumina waste simulant was fed into the crucible and the feed charging rate was varied from 3 to 7 mL min-1. After a fixed amount of time (35 min), feed charging was stopped and the crucible was removed from the furnace and quenched on a copper block to preserve the structure of the cold cap and foam during cooling. During the rapid quenching, thermal cracking of the glass and cold cap allowed it to be broken up into sections for analysis. The effect of the charging rate on the height, area and volume of the cold cap was determined. The size of the bubbles collected in the foam layer under the cold cap increased as the cold cap expanded. Under the cold cap, the bubbles coalesced into oblong cavities. These cavities allowed the evolved gases to escape around the edges of the cold cap through the molten glass into the melter plenum.

  18. Cold and lonely: does social exclusion literally feel cold?

    PubMed

    Zhong, Chen-Bo; Leonardelli, Geoffrey J

    2008-09-01

    Metaphors such as icy stare depict social exclusion using cold-related concepts; they are not to be taken literally and certainly do not imply reduced temperature. Two experiments, however, revealed that social exclusion literally feels cold. Experiment 1 found that participants who recalled a social exclusion experience gave lower estimates of room temperature than did participants who recalled an inclusion experience. In Experiment 2, social exclusion was directly induced through an on-line virtual interaction, and participants who were excluded reported greater desire for warm food and drink than did participants who were included. These findings are consistent with the embodied view of cognition and support the notion that social perception involves physical and perceptual content. The psychological experience of coldness not only aids understanding of social interaction, but also is an integral part of the experience of social exclusion. PMID:18947346

  19. On-orbit low gravity cryogenic scientific investigations using the COLD-SAT Satellite

    NASA Technical Reports Server (NTRS)

    Bailey, W. J.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition and Transfer (COLD-SAT) Satellite is an experimental spacecraft designed to investigate the systems and technologies required for an efficient, effective, and reliable management of cryogenic fluids in reduced-gravity space environment. This paper defines the technology needs and the accompanying experimental three-month baseline mission of the COLD-SAT Satellite; describes the experiment subsystems, major features, and rationale for satisfying primary and secondary experimental requirements, using LH2 as the test fluid; and presents the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment.

  20. Spectroscopy with cold and ultra-cold neutrons

    NASA Astrophysics Data System (ADS)

    Abele, Hartmut; Jenke, Tobias; Konrad, Gertrud

    2015-05-01

    We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10-4 level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newton's gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  1. Mathematical modeling of cold cap

    SciTech Connect

    Pokorny, Richard; Hrma, Pavel R.

    2012-10-13

    The ultimate goal of studies of cold cap behavior in glass melters is to increase the rate of glass processing in an energy-efficient manner. Regrettably, mathematical models, which are ideal tools for assessing the responses of melters to process parameters, have not paid adequate attention to the cold cap. In this study, we consider a cold cap resting on a pool of molten glass from which it receives a steady heat flux while temperature, velocity, and extent of conversion are functions of the position along the vertical coordinate. A one-dimensional (1D) mathematical model simulates this process by solving the differential equations for mass and energy balances with appropriate boundary conditions and constitutive relationships for material properties. The sensitivity analyses on the effects of incoming heat fluxes to the cold cap through its lower and upper boundaries show that the cold cap thickness increases as the heat flux from above increases, and decreases as the total heat flux increases. We also discuss the effects of foam, originating from batch reactions and from redox reactions in molten glass and argue that models must represent the foam layer to achieve a reliable prediction of the melting rate as a function of feed properties and melter conditions.

  2. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  3. "Transfer Shock" or "Transfer Ecstasy?"

    ERIC Educational Resources Information Center

    Nickens, John M.

    The alleged characteristic drop in grade point average (GPA) of transfer students and the subsequent rise in GPA was investigated in this study. No statistically significant difference was found in first term junior year GPA between junior college transfers and native Florida State University students after the variance accounted for by the…

  4. Vibrational Cooling of Photoassociated Homonuclear Cold Molecules

    NASA Astrophysics Data System (ADS)

    Passagem, Henry; Ventura, Paulo; Tallant, Jonathan; Marcassa, Luis

    2015-05-01

    In this work, we produce vibrationally cold homonuclear Rb molecules using spontaneous optical pumping. The vibrationally cooled molecules are produced in three steps. In the first step, we use a photoassociation laser to produce molecules in high vibrational levels of the singlet ground state. Then in a second step, a 50 W broadband laser at 1071 nm, which bandwidth is about 2 nm, is used to transfer the molecules to lower vibrational levels via optical pumping through the excited state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels below ν = 35 . The molecules can be further cooled using a broadband light source near 685 nm. In order to obtain such broadband source, we have used a 5 mW superluminescent diode, which is amplified in a tapered amplifier using a double pass configuration. After the amplification, the spectrum is properly shaped and we end up with about 90 mW distributed in the 682-689 nm range. The final vibrational distribution is probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm operating at 4KHz. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  5. Flow and cold heat-storage characteristics of phase-change emulsion in a coiled double-tube heat exchanger

    SciTech Connect

    Inaba, H.; Morita, S.

    1995-05-01

    This paper dealt with the flow and cold heat-storage characteristics of the oil (tetradecane, C{sub 14}H{sub 30}, freezing point 278.9 K)/water emulsion as a latent heat-storage material having a low melting point. A coiled double-tube heat exchanger was used for the cold heat storage experiment. The pressure drop, the heat transfer coefficient, and the finishing time of cold heat storage in the coiled tube were measured as experimental parameters. It was understood that the flow behavior of the emulsion as a non-Newtonian fluid had an important role in the present cold heat storage. The useful nondimensional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient, and the cold heat storage time were derived in terms of modified Dean number and heat capacity ratio. 11 refs., 13 figs., 1 tab.

  6. Cold welded laser mirror assembly

    SciTech Connect

    Chaffee, E.G.

    1989-02-07

    A gas laser apparatus is described comprising: (a) a gas laser tube having a bore extending between cathode and anode ends; (b) the laser tube terminating at each end with a bellows assembly operative to extend the length of the tube bore; (c) each bellows assembly comprising: (i) an adjustably positionable metal bellows secured to a selected end of the tube; (ii) a tubular pedestal secured at one end to the bellows to form an extension thereof and at the opposite end providing a mirror mount surface; (iii) a mirror secured to the surface; (iv) a cold weld material located between the mirror and mirror mount surface; and (v) retaining means secured to the pedestal encasing the outer portion of the mirror and operative to apply pressure to the cold weld material to establish a cold weld seal between the mirror and mirror mount surface to retain the mirror on and prevent shifting of the mirror with respect to the mirror mount surface.

  7. The COLD-SAT Experiment for Cryogenic Fluid Management Technology

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, J. P.; Vento, D. M.

    1990-01-01

    Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.

  8. Research on work roll thermal crown in cold rolling mill

    NASA Astrophysics Data System (ADS)

    Song, Lei; Shen, Mingang; Chen, Xuebo; Wang, Junsheng

    2013-05-01

    The factors which have influence on the work roll thermal crown in cold strip rolling are discussed. The heat transferring in three directions (radial axis and circumference) were considered for calculating the work roll thermal deformation. Therefore, it is a three dimensions unstable system for the work roll temperature calculation. The plastic deformation work and friction heat are calculated by the divided element and digital integration method. The simplified calculation model is built for the heat transferring along work roll. There are four zones for work roll heat transferring: roll gap zone air cooling zone emulsion zone rolls contact zone. The heat transferring between the zones is decided by the temperature difference. The inter temperature field and thermal deformation of work roll can be calculated by two-dimension finite difference method. The work roll temperature and thermal crown of actual application cold rolling mill are analyzed by the model. By the comparison between calculated values and measured values, the work roll thermal calculation model can meet the accuracy requirement of on-line control.

  9. Antihydrogen Formation using Cold Plasmas

    SciTech Connect

    Madsen, N.; Bowe, P.D.; Hangst, J.S.; Amoretti, M.; Carraro, C.; Macri, M.; Testera, G.; Variola, A.; Amsler, C.; Johnson, I.; Pruys, H.; Regenfus, C.; Bonomi, G.; Bouchta, A.; Doser, M.; Kellerbauer, A.; Landua, R.; Cesar, C.L.; Charlton, M.; Joergensen, L.V.

    2004-10-20

    Antihydrogen, the antimatter counterpart of the hydrogen atom, can be formed by mixing cold samples of antiprotons and positrons. In 2002 the ATHENA collaboration succeeded in the first production of cold antihydrogen. By observing and imaging the annihilation products of the neutral, non-confined, antihydrogen atoms annihilating on the walls of the trap we can observe the production in quasi-real-time and study the dynamics of the formation mechanism. The formation mechanism strongly influences the final state of the formed antihydrogen atoms, important for future spectroscopic comparison with hydrogen. This paper briefly summarizes the current understanding of the antihydrogen formation in ATHENA.

  10. Comparative analysis of gene expression in response to cold stress in diverse rice genotypes.

    PubMed

    Moraes de Freitas, Gabriela Peres; Basu, Supratim; Ramegowda, Venkategowda; Braga, Eugenia Bolacel; Pereira, Andy

    2016-02-26

    Cold stress is a major factor affecting rice (Oryza sativa) growth and productivity, limiting its distribution worldwide. Rice production is affected primarily due to its vulnerability to cold stress at seedling stage, as well as reproductive stage leading to spikelet sterility. We report here the analysis of 21 diverse rice genotypes from the USDA mini-core collection for cold tolerance and categorized their tolerance levels on the basis of reduction in growth measured by root and shoot length. The screening identified 12 cold tolerant genotypes from which six tolerant genotypes were characterized at the vegetative stage for cold tolerance and gas-exchange parameters. Two tolerant and two sensitive genotypes were used further for gene expression analysis. Lipid Transfer Protein (LTP) genes showed a clear difference in expression between cold tolerant and sensitive genotypes suggesting that they are good candidates for engineering cold tolerance in rice. Nipponbare was identified as a cold tolerant genotype with stress tolerance mechanism potentially operating via both ABA dependent and independent pathways. PMID:26855133

  11. Effect of Feeding Rate on the Cold Cap Configuration in a Laboratory-Scale Melter - 13362

    SciTech Connect

    Dixon, Derek R.; Schweiger, Michael J.; Hrma, Pavel

    2013-07-01

    High-level-waste melter feed is converted into glass in a joule-heated melter, where it forms a floating layer of reacting feed, called the cold cap. After the glass-forming phase becomes connected, evolving gases produce bubbles that form a foam layer under the feed. The bubbles coalesce into cavities, from which most of the gases are released around the edges of the cold cap while gases also escape through small shafts in the reacting feed. The foam layer insulates the cold cap from the heat transferred from the molten glass below. The cold cap behavior was investigated in a laboratory-scale assembly with a fused silica crucible. A high-alumina waste simulant was fed into the crucible and the feed charging rate was varied from 3 to 7 mL min{sup -1}. After a fixed amount of time (35 min), feed charging was stopped and the crucible was removed from the furnace and quenched on a copper block to preserve the structure of the cold cap during cooling. During the rapid quenching, thermal cracking of the glass and cold cap allowed it to be broken up into sections for analysis. The effect of the charging rate on the height, area and volume of the cold cap was determined. The size of the bubbles collected in the foam layer under the feed increased as the cold cap expanded and the relationship between these bubbles and temperature will be determined for input into a mathematical model. (authors)

  12. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Larchar, Steven W.; Henderson, Gena; Tran, Donald; Barth, Tim

    2012-01-01

    Problem Introduction: 1. Prevent Cold Plate Damage in Space Shuttle. 1a. The number of cold plate problems had increased from an average of 16.5 per/year between 1990 through 2000, to an average of 39.6 per year between 2001through 2005. 1b. Each complete set of 80 cold plates cost approximately $29 million, an average of $362,500 per cold plate. 1c It takes four months to produce a single cold plate. 2. Prevent Cold Plate Damage in Future Space Vehicles.

  13. Cryoprotectin: a plant lipid-transfer protein homologue that stabilizes membranes during freezing.

    PubMed Central

    Hincha, Dirk K

    2002-01-01

    Plants from temperate and cold climates are able to increase their freezing tolerance during exposure to low non-freezing temperatures. It has been shown that several genes are induced in a coordinated manner during this process of cold acclimation. The functional role of most of the corresponding cold-regulated proteins is not yet known. We summarize our knowledge of those cold-regulated proteins that are able to stabilize membranes during a freeze-thaw cycle. Special emphasis is placed on cryoprotectin, a lipid-transfer protein homologue that was isolated from cold-acclimated cabbage leaves and that protects isolated chloroplast thylakoid membranes from freeze-thaw damage. PMID:12171654

  14. Cold plasma decontamination of foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. This flexible sanitizing method uses electricity and a carrier gas such as air, oxygen, nitrogen or helium; antimicrobi...

  15. The Cold Blooded Killer: Hypothermia.

    ERIC Educational Resources Information Center

    Keller, Rosanne

    Part of a series of home literacy readers with conversational text and sketches, this booklet depicts the subarctic Alaskan environment where cold makes extreme demands on body metabolism. Body temperature must be maintained above 80F (26.7C). A condition of too little body-heat is termed hypo- ('deficit') thermia ('heat'). Hypothermia is the…

  16. Cold War Geopolitics: Embassy Locations.

    ERIC Educational Resources Information Center

    Vogeler, Ingolf

    1995-01-01

    Asserts that the geopolitics of the Cold War can be illustrated by the diplomatic ties among countries, particularly the superpowers and their respective allies. Describes a classroom project in which global patterns of embassy locations are examined and compared. Includes five maps and a chart indicating types of embassy locations. (CFR)

  17. Images of the Cold War.

    ERIC Educational Resources Information Center

    Chomsky, Noam

    1989-01-01

    The conventional U.S. picture traces the Cold War to Soviet violation of wartime agreements, while the U.S.S.R. defends its actions as responses to American violations and foreign adventurism. An understanding of how ideology is shaped by national self-interest will help students see beyond propaganda and myth in interpreting past and current…

  18. Cold fusion; Myth versus reality

    SciTech Connect

    Rabinowitz, M. )

    1990-01-01

    Experiments indicate that several different nuclear reactions are taking place. Some of the experiments point to D-D fusion with a cominant tritium channel as one of the reactions. The article notes a similarity between Prometheus and the discoveries of cold fusion.

  19. "Stone Cold": Worthy of Study?

    ERIC Educational Resources Information Center

    Douthwaite, Alison

    2015-01-01

    This article draws on my experiences of teaching "Stone Cold" to respond to a blog post suggesting that the novel holds little educational value. I argue that the novel's narrative style helps to foster criticality while its subject matter can help students see the relevance of literature to the world around them. Relating this to…

  20. Cold denaturation of monoclonal antibodies

    PubMed Central

    Lazar, Kristi L; Patapoff, Thomas W

    2010-01-01

    The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs. PMID:20093856

  1. Combustion heated cold sealed TEC

    SciTech Connect

    Yarygin, V.I.; Klepikov, V.V.; Meleta, Y.A.; Mikheyev, A.S.; Yarygin, D.V.; Wolff, L.R.

    1997-12-31

    The development of a thermionic domestic boiler system using natural gas, which as performed under an ECS-project in 1992 to 1994 by a Russian-Dutch team of researchers, will be continued again. Thanks to financial support on the part of the Netherlands Organization for Scientific Research (NWO), the major effort in 1997 to 1999 will be focused on the development, manufacture and testing of an improved, easier to fabricate, more repairable and less expensive combustion heated TEC with a longer life-time. The achievement of the aim of this project will make it possible to expand the field of the terrestrial thermionics application and to embark on the commercialization stage. This report discusses the concept of the combustion heated Cold Seal TEC. A Cold Seal TEC will be developed and tested, in which the rubber O-ring seal will electrically insulate the hot shell from the collector heat pipe. The Cold Seal TEC will use a noble gas + cesium as the working medium (the idea of such a TEC was first proposed in 1973 by Professor Musa from Romania). In its cold state, the cesium will short circuit the emitter and the collector. During operation, the interelectrode space will be filled with cesium vapor. The upper part of a Cold Seal TEC will be filled with a noble gas. This noble gas will prevent the O-ring seal from being attacked by the cesium. The TEC output characteristics will be considerably improved by using electrode materials that were developed earlier in the course of an ECS-project for the development of low temperature TEC electrodes.

  2. EDITORIAL: Focus on Cold and Ultracold Molecules FOCUS ON COLD AND ULTRACOLD MOLECULES

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Ye, Jun

    2009-05-01

    Cold and ultracold molecules are the next wave of ultracold physics, giving rise to an exciting array of scientific opportunities, including many body physics for novel quantum phase transitions, new states of matter, and quantum information processing. Precision tests of fundamental physical laws benefit from the existence of molecular internal structure with exquisite control. The study of novel collision and reaction dynamics will open a new chapter of quantum chemistry. Cold molecules bring together researchers from a variety of fields, including atomic, molecular, and optical physics, chemistry and chemical physics, quantum information science and quantum simulations, condensed matter physics, nuclear physics, and astrophysics, a truly remarkable synergy of scientific explorations. For the past decade there have been steady advances in direct cooling techniques, from buffer-gas cooling to cold molecular beams to electro- and magneto-molecular decelerators. These techniques have allowed a large variety of molecules to be cooled for pioneering studies. Recent amazing advances in experimental techniques combining the ultracold and the ultraprecise have furthermore brought molecules to the point of quantum degeneracy. These latter indirect cooling techniques magnetically associate atoms from a Bose-Einstein condensate and/or a quantum degenerate Fermi gas, transferring at 90% efficiency highly excited Fano-Feshbach molecules, which are on the order of 10 000 Bohr radii in size, to absolute ground state molecules just a few Bohr across. It was this latter advance, together with significant breakthroughs in internal state manipulations, which inspired us to coordinate this focus issue now, and is the reason why we say the next wave of ultracold physics has now arrived. Whether directly or indirectly cooled, heteronuclear polar molecules offer distinct new features in comparison to cold atoms, while sharing all of their advantages (purity, high coherence

  3. Vitamin C and the Common Cold Revisited.

    ERIC Educational Resources Information Center

    Travis, H. Richard

    1984-01-01

    Various studies indicate that Vitamin C does not prevent or cure a cold, but it may ameliorate symptoms in some individuals. The development of a balanced life-style is more effective towards cold prevention. (DF)

  4. Helium Find Thaws the Cold Fusion Trail.

    ERIC Educational Resources Information Center

    Pennisi, E.

    1991-01-01

    Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)

  5. Herpes Simplex (Cold Sores and Genital Herpes)

    MedlinePlus

    ... Select a Language: Fact Sheet 508 Herpes Simplex (Cold Sores and Genital Herpes) WHAT IS HERPES? HSV ... virus 1 (HSV1) is the common cause of cold sores (oral herpes) around the mouth. HSV2 normally ...

  6. Tips to Protect Workers in Cold Environments

    MedlinePlus

    ... Anti-Retaliation Tips To Protect Workers In Cold Environments Prolonged exposure to freezing or cold temperatures may ... 321-OSHA. Freedom of Information Act | Privacy & Security Statement | Disclaimers | Important Web Site Notices | International | Contact Us ...

  7. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  8. Formation of superheavy nuclei in cold fusion reactions

    SciTech Connect

    Feng Zhaoqing; Jin Genming; Li Junqing; Scheid, Werner

    2007-10-15

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus, and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118, and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  9. The cold equation of state of tantalum

    SciTech Connect

    Greeff, Carl W; Rudin, Sven P; Corckett, Scott D; Wills, John M

    2009-01-01

    In high-pressure isentropic compression experiments (ICE), the pressure is dominated by the cold curve. In order to obtain an accurate semi-empirical cold curve for Ta, we calculate the thermal pressure from ab initio phonon and electronic excitation spectra. The cold curve is then inferred from ultrasonic and shock data. Our empirical cold pressure is compared to density functional calculations and found to be closer to GGA results at low pressure and to approach LDA at high pressure.

  10. Cold moderators for pulsed neutron sources

    SciTech Connect

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs.

  11. Vernalizing cold is registered digitally at FLC.

    PubMed

    Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I; Dean, Caroline; Howard, Martin

    2015-03-31

    A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor flowering locus C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure.

  12. Is It a Cold or an Allergy?

    MedlinePlus

    ... C AT I O N S IS IT A Cold OR AN Allergy  ? COLD Common Slight Sometimes Rare or never Usual Common Common Common Rare 3 to 14 days Cold ■■ Antihistamines ■■ Decongestants ■■ Nonsteroidal anti-inflammatory medicines ■■ Wash your ...

  13. Catching a Cold When It's Warm

    MedlinePlus

    ... our exit disclaimer . Subscribe Catching a Cold When It’s Warm What’s the Deal with Summertime Sniffles? Most ... be more unfair than catching a cold when it’s warm? How can cold symptoms arise when it’s ...

  14. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... National Park Service Meeting of the Cold War Advisory Committee for the Cold War Theme Study AGENCY... with the Federal Advisory Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will conduct a teleconference meeting on August 3, 2012. Members of...

  15. [Technology Transfer.

    ERIC Educational Resources Information Center

    Latker, Norman J.

    Some authorities on technolgoy transfer feel that industry is not fully capitalizing on the inventive output of universities and nonprofit organizations. From the point of view of the government, the stakes are high. The magnitude of federal support of research and development in these organizations demands evidence of useful results if it is to…

  16. Cold injury in early infancy.

    PubMed

    Cohen, I J

    1977-04-01

    Sixteen cases of neonatal cold injury, five of them fatal, were seen in the winter of 1974-75. The affected infants, who weighed from 2.5 to 3 kg. had developed symptoms when the ambient termperature was below 10 C. Few of them were referred as cases of hypothermia. Refusal to eat was the most common complaint and less often edema and/or apathy. No correlation was found between death and ethnic origin, sex, duration of illness or minimum temperature. Admission weight, however, tended to be lower in the infants who died. The consistent finding of thrombocytopenia and the suspected bleeding phenomena suggested that disseminated intravascular coagulation may have been a factor in the unfavorable outcome of some of the cases. Evidence supporting such a hypothesis and proposals for the prevention. Diagnosis and treatment of neonatal cold injury are presented. PMID:326724

  17. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.

  18. Ultra-cold molecule production.

    SciTech Connect

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-12-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled.

  19. Medical problems from cold exposure

    SciTech Connect

    Dembert, M.L.

    1982-01-01

    Problems resulting from cold exposure can be successfully treated when a coordinated emergency medical transport system and appropriate equipment are available, as well as medical personnel knowledgeable in the management of frostbite and hypothermia. Clinical suspicion of these disorders is essential. Profoundly hypothermic individuals with no recordable vital signs have been resuscitated after controlled, rapid rewarming measures and the use of emergency life-support systems.

  20. Acclimatization to cold in humans

    NASA Technical Reports Server (NTRS)

    Kaciuba-Uscilko, Hanna; Greenleaf, John E.

    1989-01-01

    This review focuses on the responses and mechanisms of both natural and artificial acclimatization to a cold environment in mammals, with specific reference to human beings. The purpose is to provide basic information for designers of thermal protection systems for astronauts during intra- and extravehicular activities. Hibernation, heat production, heat loss, vascular responses, body insulation, shivering thermogenesis, water immersion, exercise responses, and clinical symptoms and hypothermia in the elderly are discussed.

  1. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  2. A cold and wet Mars

    NASA Astrophysics Data System (ADS)

    Fairén, Alberto G.

    2010-07-01

    Water on Mars has been explained by invoking controversial and mutually exclusive solutions based on warming the atmosphere with greenhouse gases (the "warm and wet" Mars) or on local thermal energy sources acting in a global freezing climate (the "cold and dry" Mars). Both have critical limitations and none has been definitively accepted as a compelling explanation for the presence of liquid water on Mars. Here is considered the hypothesis that cold, saline and acidic liquid solutions have been stable on the sub-zero surface of Mars for relatively extended periods of time, completing a hydrogeological cycle in a water-enriched but cold planet. Computer simulations have been developed to analyze the evaporation processes of a hypothetical martian fluid with a composition resulting from the acid weathering of basalt. This model is based on orbiter- and lander-observed surface mineralogy of Mars, and is consistent with the sequence and time of deposition of the different mineralogical units. The hydrological cycle would have been active only in periods of dense atmosphere, as having a minimum atmospheric pressure is essential for water to flow, and relatively high temperatures (over ˜245 K) are required to trigger evaporation and snowfall; minor episodes of limited liquid water on the surface could have occurred at lower temperatures (over ˜225 K). During times with a thin atmosphere and even lesser temperatures (under ˜225 K), only transient liquid water can potentially exist on most of the martian surface. Assuming that surface temperatures have always been maintained below 273 K, Mars can be considered a "cold and wet" planet for a substantial part of its geological history.

  3. A Cold Strontium Ion Source

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Lyon, Mary; Blaser, Kelvin; Harper, Stuart; Durfee, Dallin

    2010-03-01

    We present a cold ion source for strontium 87. The source is based off of a standard Low-Velocity-Intense-Source (LVIS) for strontium using permanent magnets in place of anti-Helmholtz coils. Atoms from the LVIS are then ionized in a two photon process as they pass a 20kV anode plate. The result is a mono-energetic beam of ions whose velocity is tunable. Applications for the ions include spectroscopy and ion interferometry.

  4. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  5. Mars: Always Cold, Sometimes Wet?

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; McKay, Christoper P.

    2003-01-01

    A synthesis of a diverse suite of observations of H2O-related landforms that are possible Mars analogs from terrestrial polar regions (Devon Island in the Arctic; the Dry Valleys of Antarctica) put into question any requirement for extended episode(s) of warm and wet climate in Mars past. Geologically transient episodes of localized H2O cycling, forced by exogenic impacts, enhanced endogenic heat flow, and/or orbit-driven short-term local environmental change under an otherwise cold, low pressure (=10(exp 2) mbar) global climate, may be sufficient to account for the martian surface's exposed record of aqueous activity. A Mars that was only sometimes locally warm and wet while remaining climatically cold throughout its history is consistent with results (difficulties) encountered in modeling efforts attempting to support warm martian climate hypotheses. Possible analogs from terrestrial cold climate regions for the recent gully features on Mars also illustrate how transient localized aqueous activity might, under specific circumstances, also occur on Mars under the present frigid global climatic regime.

  6. Axion cold dark matter revisited

    NASA Astrophysics Data System (ADS)

    Visinelli, L.; Gondolo, P.

    2010-01-01

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae [1], and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma = (85 ± 3) μeV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma < 15 meV provided a specific value of the initial misalignment angle θi is chosen in correspondence to a given value of its mass ma. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi.

  7. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature.

    PubMed

    Almeida, M Camila; Hew-Butler, Tamara; Soriano, Renato N; Rao, Sara; Wang, Weiya; Wang, Judy; Tamayo, Nuria; Oliveira, Daniela L; Nucci, Tatiane B; Aryal, Prafulla; Garami, Andras; Bautista, Diana; Gavva, Narender R; Romanovsky, Andrej A

    2012-02-01

    We studied N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride (M8-B), a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (T(b)) in Trpm8(+/+) mice and rats, but not in Trpm8(-/-) mice, thus suggesting an on-target action. Intravenous administration of M8-B was more effective in decreasing T(b) in rats than intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect T(b) at either a constantly high or a constantly low ambient temperature (T(a)), but the same dose readily decreased T(b) if rats were kept at a high T(a) during the M8-B infusion and transferred to a low T(a) immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail-skin temperatures <23°C, the magnitude of the M8-B-induced decrease in T(b) was inversely related to skin temperature, thus suggesting that M8-B blocks thermal (cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail-skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system.

  8. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    SciTech Connect

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design.

  9. Physiological characteristics of cold acclimatization in man

    NASA Astrophysics Data System (ADS)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Nayar, H. S.

    1981-09-01

    Studies were conducted on 15 healthy young soldiers to evaluate the effect of a cold acclimatization schedule on the thermoregulatory and metabolic activity on exposure to acute cold stress. These men were exposed to cold (10‡C) for 4 h daily wearing only shorts for 21 days, in a cold chamber. They were subjected to a standard cold test at 10 ± 1‡C the day 1, 6, 11 and 21. The subjects were made to relax in a thermoneutral room (26 28‡C) for 1 h and their heart rate, blood pressure, oxygen consumption, oral temperature, mean skin temperature, mean body temperature, peripheral temperatures, and shivering activity were recorded. Then they were exposed to 10‡C and measurements were repeated at 30 min intervals, for 2 h. The cold induced vasodilatation (CIVD), cold pressor response and thermoregulatory efficiency tests were measured initially and at the end of acclimatization schedule. The data show that the procedure resulted in elevated resting metabolism, less fall in body temperature during acute cold stress, reduction in shivering, improvement in CIVD and thermoregulatory efficiency and less rise in BP and HR during cold pressor response. The data suggest the possibility of cold acclimatization in man by repeated exposure to moderately severe cold stress.

  10. Cold Pools in the Columbia Basin

    SciTech Connect

    Whiteman, Charles D.; Zhong, Shiyuan; Shaw, William J.; Hubbe, John M.; Bian, Xindi; Mittelstadt, J.

    2001-01-01

    Persistent midwinter cold air pools produce multi-day periods of cold, dreary weather in valleys and basins. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures below freezing while the air above is warmer, freezing precipitation often occurs with consequent effects on transportation and safety. Forecasting the buildup and breakdown of these cold pools is difficult because the physical mechanisms leading to their formation, maintenance, and destruction have received little study. This paper provides a succinct meteorological definition of a cold pool, develops a climatology of Columbia Basin cold pools, and analyzes remote and in situ temperature and wind sounding data for two winter cold pool episodes that were accompanied by fog and stratus, illustrating many of the physical mechanisms affecting cold pool evolution.

  11. Preliminary thermal design of the COLD-SAT spacecraft

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  12. Initial-state splitting kernels in cold nuclear matter

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Grigory; Ringer, Felix; Vitev, Ivan

    2016-09-01

    We derive medium-induced splitting kernels for energetic partons that undergo interactions in dense QCD matter before a hard-scattering event at large momentum transfer Q2. Working in the framework of the effective theory SCETG, we compute the splitting kernels beyond the soft gluon approximation. We present numerical studies that compare our new results with previous findings. We expect the full medium-induced splitting kernels to be most relevant for the extension of initial-state cold nuclear matter energy loss phenomenology in both p+A and A+A collisions.

  13. Bedrock fracture by ice segregation in cold regions.

    PubMed

    Murton, Julian B; Peterson, Rorik; Ozouf, Jean-Claude

    2006-11-17

    The volumetric expansion of freezing pore water is widely assumed to be a major cause of rock fracture in cold humid regions. Data from experiments simulating natural freezing regimes indicate that bedrock fracture results instead from ice segregation. Fracture depth and timing are also numerically simulated by coupling heat and mass transfer with a fracture model. The depth and geometry of fractures match those in Arctic permafrost and ice-age weathering profiles. This agreement supports a conceptual model in which ice segregation in near-surface permafrost leads progressively to rock fracture and heave, whereas permafrost degradation leads episodically to melt of segregated ice and rock settlement.

  14. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  15. Cold Fusion Has Now Come Out of the Cold

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2003-10-01

    The phenomenon called cold fusion or LENR (Low-Energy-Nuclear-Reaction) has now achieved a level of reproducibility and understanding that warrants re-examination of the claims. A summary of what is known and want is being done worldwide to obtain more knowledge will be given. Rather than disappearing as better data are obtained, the effects are becoming more reproducible and of greater magnitude. Justification for this claim can be obtained at www.LENR-CANR.org. The phenomenon is too important to ignore any longer even though it conflicts with conventional theory.

  16. Transfer reactions with heavy elements

    SciTech Connect

    Hoffman, D.C.

    1986-04-01

    Transfer reactions for several transuranium elements are studied. (/sup 248/Cm, /sup 249/Bk, /sup 249/CF, /sup 254/Es), /sup 16,18/O, /sup 20,22/Ne, and /sup 40,48/Ca projectiles are used. The production of neutron-rich heavy actinides is enhanced by the use of neutron-rich projectiles /sup 18/O and /sup 22/Ne. The maxima of the isotopic distributions occur at only 2 to 3 mass numbers larger for /sup 48/Ca than for /sup 40/Ca reactions with /sup 248/Cm. The cross sections decrease rapidly with the number of nucleons transferred. The use of neutron-rich targets favors the production of neutron-rich isotopes. ''Cold'' heavy targets are produced. Comparisons with simple calculations of the product excitation energies assuming binary transfers indicate that the maxima of the isotopic distributions occur at the lightest product isotope for which the energy exceeds the reaction barrier. The cross sections for transfer of the same nucleon clusters appear to be comparable for a wide variety of systems. 23 refs., 4 figs., 4 tabs.

  17. Host turbine heat transfer overview

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.

    1984-01-01

    Improved methods of predicting airfoil local metal temperatures require advances in the understanding of the physics and methods of analytically predicting the following four aerothermal loads: hot gas flow over airfoils, heat transfer rates on the gas-side of airfoils, cooling air flow inside airfoils, and heat transfer rates on the coolant-side of airfoils. A systematic building block research approach is being pursued to investigate these four areas of concern from both the experimental and analytical sides. Experimental approaches being pursued start with fundamental experiments using simple shapes and flat plates in wind tunnels, progress to more realistic cold and hot cascade tests using airfoils, continue to progress in large low-speed rigs and turbines and warm turbines, and finally, combine all the interactive effects in tests using real engines or real engine type turbine rigs. Analytical approaches being pursued also build from relatively simple steady two dimensional inviscid flow and boundary layer heat transfer codes to more advanced steady two and three dimensional viscous flow and heat transfer codes. These advanced codes provide more physics to model better the interactive effects and the true real-engine environment.

  18. Plan now for cold-weather operation of cooling towers

    SciTech Connect

    Michell, F.L.; Drew, D.H.

    1996-06-01

    This article describes what a midwestern utility has done to keep natural-draft towers running when faced with long bouts of high winds and single-digit temperatures. Severe ice buildup is the biggest threat. American Electric Power Co. (AEP) has six crossflow and eight counterflow natural-draft hyperbolic cooling towers in operation today. In the crossflow designs, subject of this discussion, the fill sections are more exposed to wind and cold. Their design circulating-water flow rates range from 220,000 to 600,000 gal/min; they serve 600-, 800-, and 1,300-MW coal-fired generating units. The towers are located in the Midwest and experience long periods of sub-freezing conditions during the winter months. High winds accompanied by single-digit temperatures often prevail for days at a time. During the record cold spell in January 1994, average temperatures as low as {minus}20 F occurred throughout AEP`s service area. Fill bypass systems have been incorporated into the design of AEP`s natural-draft cooling towers, and can pass between 25 and 50% of full-rated circulating-water flow. These systems prevent ice formation within the fill sections (heat-transfer media) by recirculating water directly to the tower cold-water basin during winter startup, when heat content of the circulating water is relatively low.

  19. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  20. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  1. Rapid cold hardening and expression of heat shock protein genes in the B-biotype Bemisia tabaci.

    PubMed

    Wang, Haihong; Lei, Zhongren; Li, Xue; Oetting, Ronald D

    2011-02-01

    This paper describes the rapid cold hardening processes of the sweetpotato whitefly, Bemisia tabaci (Gennadius). It was found that all developmental stages of B. tabaci have the capacity of rapid cold hardening and the length of time required to induce maximal cold hardiness at 0 °C varies with stage. There was only 18.3% survival when adult whiteflies were transferred directly from 26 °C to -8.5 °C for 2 h. However, exposure to 0 °C for 1 h before transfer to -8.5 °C increased the survival to 81.2%. The whiteflies show "prefreeze" mortality when they were exposed to temperatures above the supercooling point (SCP), although the range of SCP of whiteflies is -26 °C to -29 °C. The rapid cold hardening had no effect on SCP and reduced the lower lethal temperature of adults from -9 °C to -11 °C. Rapid cold-hardened adults had a similar lifespan as the control group but deposited fewer eggs than nonhardened individuals. The expression profiles during cold hardening and recovery from this process revealed that HSP90 did not respond to cold stress. However, HSP70 and HSP20 were significantly induced by cold with different temporal expression patterns. These results suggest that the rapid cold hardening response is possibly advantageous to whiteflies that are often exposed to drastic temperature fluctuations in spring or autumn in northern China, and the expression of HSP70 and HSP20 may be associated with the cold tolerance of B. tabaci.

  2. International workshop on cold neutron sources

    SciTech Connect

    Russell, G.J.; West, C.D. )

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  3. TRPA1 Contributes to Cold Hypersensitivity

    PubMed Central

    Camino, Donato del; Murphy, Sarah; Heiry, Melissa; Barrett, Lee B.; Earley, Taryn J.; Cook, Colby A.; Petrus, Matt J.; Zhao, Michael; D'Amours, Marc; Deering, Nate; Brenner, Gary J.; Costigan, Michael; Hayward, Neil J.; Chong, Jayhong A.; Fanger, Christopher M.; Woolf, Clifford J.; Patapoutian, Ardem; Moran, Magdalene M.

    2010-01-01

    TRPA1 is a non-selective cation channel expressed by nociceptors. While it is widely accepted that TRPA1 serves as a broad irritancy receptor for a variety of reactive chemicals, its role in cold sensation remains controversial. Here, we demonstrate that mild cooling markedly increases agonist-evoked rat TRPA1 currents. In the absence of an agonist, even noxious cold only increases current amplitude slightly. These results suggest that TRPA1 is a key mediator of cold hypersensitivity in pathological conditions where reactive oxygen species and pro-inflammatory activators of the channel are present, but likely plays a comparatively minor role in acute cold sensation. Supporting this, cold hypersensitivity can be induced in wild-type but not Trpa1-/- mice by subcutaneous administration of a TRPA1 agonist. Furthermore, the selective TRPA1 antagonist HC-030031 reduces cold hypersensitivity in rodent models of inflammatory and neuropathic pain. PMID:21068322

  4. Piezoelectric Actuators On A Cold Finger

    NASA Technical Reports Server (NTRS)

    Kuo, Chin-Po; Garba, John A.; Glaser, Robert J.

    1995-01-01

    Developmental system for active suppression of vibrations of cold finger includes three piezoelectric actuators bonded to outer surface. Actuators used to suppress longitudinal and lateral vibrations of upper end of cold finger by applying opposing vibrations. Cold finger in question is part of a cryogenic system associated with an infrared imaging detector. When fully developed, system would be feedback sensor/control/actuator system automatically adapting to changing vibrational environment and suppresses pressure-induced vibrations by imposing compensatory vibrations via actuators.

  5. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  6. COLD-SAT: An orbital cryogenic hydrogen technology experiment

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, Joseph P.; Powers, Albert G.

    1989-01-01

    The COLD-SAT spacecraft will perform subcritical liquid hydrogen storage and transfer experiments under low-gravity conditions to provide engineering data for future space transportation missions. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 460 km circular orbit by an Atlas I commercial launch vehicle. After deployment, the three-axis-controlled spacecraft bus will provide electric power, experiment control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(-6) to 10(-4)g. These accelerations are an important aspect of some of the experiments, as it is desired to know the effects that low gravity levels might have on the heat and mass transfer processes involved. The experiment module will contain the three liquid hydrogen tanks, valves, pressurization equipment, and instrumentation. At launch all the hydrogen will be in the largest tank, which has helium-purged MLI and is loaded and topped off by the hydrogen tanking system used for the Centaur upper stage of the Atlas. The two smaller tanks will be utilized in orbit for performing some of the experiments. The experiments are grouped into two classes on the basis of their priority, and include six regarded as enabling technology and nine regarded as enhancing technology.

  7. COLD-SAT: A technology satellite for cryogenic experimentation

    NASA Technical Reports Server (NTRS)

    Arif, H.; Kroeger, E. W.

    1989-01-01

    NASA-Lewis (LeRC) is involved in the development and validation of analytical models which describe the fluid dynamic and thermodynamic processes associated with the storage, acquisition and transfer of subcritical cryogenic fluids in low gravity. Four concurrent studies, including one in-house at LeRC, are underway to determine the feasibility of performing model validation experiments aboard a free-flying spacecraft (S/C) called Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT), using liquid hydrogen as the cryogen. The technology requirements for the experiments are described along with the initial LeRC concepts for the S/C and an experiment subsystem comprising of cryogenic tankage (a supply dewar and three receiver tanks), gas pressurization bottles (both helium and autogenous hydrogen), their associated plumbing, and instrumentation for data collection. Experiments were categorized into enabling/high priority Class 1 technologies and component/system Class 2 demonstrations. As initially envisioned by LeRC, COLD-SAT would have had a 1997 launch aboard a Delta-2 for a 6 month active lifetime in a 925 km orbit with a pseudo-inertial attitude.

  8. COLD-SAT - A technology satellite for cryogenic experimentation

    NASA Technical Reports Server (NTRS)

    Arif, H.; Kroeger, E. W.

    1990-01-01

    NASA-Lewis (LeRC) is involved in the development and validation of analytical models which describe the fluid dynamic and thermodynamic processes associated with the storage, acquisition and transfer of subcritical cryogenic fluids in low gravity. Four concurrent studies, including one in-house at LeRC, are underway to determine the feasibility of performing model validation experiments aboard a free-flying spacecraft (S/C) called Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT), using liquid hydrogen as the cryogen. The technology requirements for the experiments are described along with the initial LeRC concepts for the S/C and an experiment subsystem comprising of cryogenic tankage (a supply dewar and three receiver tanks), gas pressurization bottles (both helium and autogenous hydrogen), their associated plumbing, and instrumentation for data collection. Experiments were categorized into enabling/high priority Class 1 technologies and component/system Class 2 demonstrations. As initially envisioned by LeRC, COLD-SAT would have had a 1997 launch aboard a Delta-2 for a 6 month active lifetime in a 925 km orbit with a pseudo-inertial attitude.

  9. COLD-SAT - An orbital cryogenic hydrogen technology experiment

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, Joseph P.; Powers, Albert G.

    1989-01-01

    The COLD-SAT spacecraft will perform subcritical liquid hydrogen storage and transfer experiments under low-gravity conditions to provide engineering data for future space transportation missions. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 460 km circular orbit by an Atlas I commercial launch vehicle. After deployment, the three-axis-controlled spacecraft bus will provide electric power, experiment control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10 (-6) to 10(-4) g. These accelerations are an important aspect of some of the experiments, as it is desired to know the effects that low gravity levels might have on the heat and mass transfer processes involved. The experiment module will contain the three liquid hydrogen tanks, valves, pressurization equipment, and instrumentation. At launch all the hydrogen will be in the largest tank, which has helium-purged MLI and is loaded and topped off by the hydrogen tanking system used for the Centaur upper stage of the Atlas. The two smaller tanks will be utilized in orbit for performing some of the experiments. The experiments are grouped into two classes on the basis of their priority, and include six regarded as enabling technology and nine regarded as enhancing technology.

  10. Are cold flows detectable with metal absorption lines?

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Slyz, Adrianne; Devriendt, Julien; Pichon, Christophe

    2011-05-01

    Cosmological simulations have shown that dark matter haloes are connected to each other by large-scale filamentary structures. Cold gas flowing within this ‘cosmic web’ is believed to be an important source of fuel for star formation at high redshift. However, the presence of such filamentary gas has never been observationally confirmed despite the fact that its covering fraction within massive haloes at high redshift is predicted to be significant (˜25 per cent). In this Letter, we investigate in detail whether such cold gas is detectable using low-ionization metal absorption lines, such as C IIλ1334, as this technique has a proven observational record for detecting gaseous structures. Using a large statistical sample of galaxies from the MARENOSTRUM N-body+ adaptive mesh refinement (AMR) cosmological simulation, we find that the typical covering fraction of the dense, cold gas in 1012 M⊙ haloes at z˜ 2.5 is lower than expected (˜5 per cent). In addition, the absorption signal by the interstellar medium of the galaxy itself turns out to be so deep and so broad in velocity space that it completely drowns that of the filamentary gas. A detectable signal might be obtained from a cold filament exactly aligned with the line of sight, but this configuration is so unlikely that it would require surveying an overwhelmingly large number of candidate galaxies to tease it out. Finally, the predicted metallicity of the cold gas in filaments is extremely low (≤10-3 Z⊙). If this result persists when higher resolution runs are performed, it would significantly increase the difficulty of detecting filamentary gas inflows using metal lines. However, even if we assume that filaments are enriched to Z⊙, the absorption signal that we compute is still weak. We are therefore led to conclude that it is extremely difficult to observationally prove or disprove the presence of cold filaments as the favourite accretion mode of galaxies using low-ionization metal absorption

  11. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms.

    PubMed

    Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin

    2015-07-01

    Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype.

  12. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  13. Cold H I in faint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Patra, Narendra Nath; Chengalur, Jayaram N.; Karachentsev, Igor D.; Kaisin, Serafim S.; Begum, Ayesha

    2016-03-01

    We present the results of a study of the amount and distribution of cold atomic gas, as well its correlation with recent star formation in a sample of extremely faint dwarf irregular galaxies. Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) and its extension, FIGGS2. We use two different methods to identify cold atomic gas. In the first method, line-of-sight H I spectra were decomposed into multiple Gaussian components and narrow Gaussian components were identified as cold H I. In the second method, the brightness temperature (TB ) is used as a tracer of cold H I. We find that the amount of cold gas identified using the TB method is significantly larger than the amount of gas identified using Gaussian decomposition. We also find that a large fraction of the cold gas identified using the TB method is spatially coincident with regions of recent star formation, although the converse is not true. That is only a small fraction of the regions with recent star formation are also covered by cold gas. For regions where the star formation and the cold gas overlap, we study the relationship between the star formation rate density and the cold H I column density. We find that the star formation rate density has a power-law dependence on the H I column density, but that the slope of this power law is significantly flatter than that of the canonical Kennicutt-Schmidt relation.

  14. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  15. Medical Evaluation for Exposure Extremes: Cold.

    PubMed

    Fudge, Jessie R; Bennett, Brad L; Simanis, Juris P; Roberts, William O

    2015-09-01

    Risk of injury in cold environments is related to a combination of athlete preparedness, preexisting medical conditions, and the body's physiologic response to environmental factors, including ambient temperature, windchill, and wetness. The goal of this section is to decrease the risk of hypothermia, frostbite, and nonfreezing cold injuries as well as to prevent worsening of preexisting conditions in cold environments using a preparticipation screening history, examination, and counseling. Cold weather exercise can be done safely with education, proper preparation, and appropriate response to changing weather conditions.

  16. Medical Evaluation for Exposure Extremes: Cold.

    PubMed

    Fudge, Jessie R; Bennett, Brad L; Simanis, Juris P; Roberts, William O

    2015-12-01

    Risk of injury in cold environments is related to a combination of athlete preparedness, preexisting medical conditions, and the body's physiologic response to environmental factors, including ambient temperature, windchill, and wetness. The goal of this section is to decrease the risk of hypothermia, frostbite, and nonfreezing cold injuries as well as to prevent worsening of preexisting conditions in cold environments using a preparticipation screening history, examination, and counseling. Cold weather exercise can be done safely with education, proper preparation, and appropriate response to changing weather conditions.

  17. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  18. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  19. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  20. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  1. A role for jasmonates in the release of dormancy by cold stratification in wheat.

    PubMed

    Xu, Qian; Truong, Thy T; Barrero, Jose M; Jacobsen, John V; Hocart, Charles H; Gubler, Frank

    2016-05-01

    Hydration at low temperatures, commonly referred to as cold stratification, is widely used for releasing dormancy and triggering germination in a wide range of species including wheat. However, the molecular mechanism that underlies its effect on germination has largely remained unknown. Our previous studies showed that methyl-jasmonate, a derivative of jasmonic acid (JA), promotes dormancy release in wheat. In this study, we found that cold-stimulated germination of dormant grains correlated with a transient increase in JA content and expression of JA biosynthesis genes in the dormant embryos after transfer to 20 (o)C. The induction of JA production was dependent on the extent of cold imbibition and precedes germination. Blocking JA biosynthesis with acetylsalicylic acid (ASA) inhibited the cold-stimulated germination in a dose-dependent manner. In addition, we have explored the relationship between JA and abscisic acid (ABA), a well-known dormancy promoter, in cold regulation of dormancy. We found an inverse relationship between JA and ABA content in dormant wheat embryos following stratification. ABA content decreased rapidly in response to stratification, and the decrease was reversed by addition of ASA. Our results indicate that the action of JA on cold-stratified grains is mediated by suppression of two key ABA biosynthesis genes, TaNCED1 and TaNCED2.

  2. A role for jasmonates in the release of dormancy by cold stratification in wheat.

    PubMed

    Xu, Qian; Truong, Thy T; Barrero, Jose M; Jacobsen, John V; Hocart, Charles H; Gubler, Frank

    2016-05-01

    Hydration at low temperatures, commonly referred to as cold stratification, is widely used for releasing dormancy and triggering germination in a wide range of species including wheat. However, the molecular mechanism that underlies its effect on germination has largely remained unknown. Our previous studies showed that methyl-jasmonate, a derivative of jasmonic acid (JA), promotes dormancy release in wheat. In this study, we found that cold-stimulated germination of dormant grains correlated with a transient increase in JA content and expression of JA biosynthesis genes in the dormant embryos after transfer to 20 (o)C. The induction of JA production was dependent on the extent of cold imbibition and precedes germination. Blocking JA biosynthesis with acetylsalicylic acid (ASA) inhibited the cold-stimulated germination in a dose-dependent manner. In addition, we have explored the relationship between JA and abscisic acid (ABA), a well-known dormancy promoter, in cold regulation of dormancy. We found an inverse relationship between JA and ABA content in dormant wheat embryos following stratification. ABA content decreased rapidly in response to stratification, and the decrease was reversed by addition of ASA. Our results indicate that the action of JA on cold-stratified grains is mediated by suppression of two key ABA biosynthesis genes, TaNCED1 and TaNCED2. PMID:27140440

  3. A role for jasmonates in the release of dormancy by cold stratification in wheat

    PubMed Central

    Xu, Qian; Truong, Thy T.; Barrero, Jose M.; Jacobsen, John V.; Hocart, Charles H.; Gubler, Frank

    2016-01-01

    Hydration at low temperatures, commonly referred to as cold stratification, is widely used for releasing dormancy and triggering germination in a wide range of species including wheat. However, the molecular mechanism that underlies its effect on germination has largely remained unknown. Our previous studies showed that methyl-jasmonate, a derivative of jasmonic acid (JA), promotes dormancy release in wheat. In this study, we found that cold-stimulated germination of dormant grains correlated with a transient increase in JA content and expression of JA biosynthesis genes in the dormant embryos after transfer to 20 oC. The induction of JA production was dependent on the extent of cold imbibition and precedes germination. Blocking JA biosynthesis with acetylsalicylic acid (ASA) inhibited the cold-stimulated germination in a dose-dependent manner. In addition, we have explored the relationship between JA and abscisic acid (ABA), a well-known dormancy promoter, in cold regulation of dormancy. We found an inverse relationship between JA and ABA content in dormant wheat embryos following stratification. ABA content decreased rapidly in response to stratification, and the decrease was reversed by addition of ASA. Our results indicate that the action of JA on cold-stratified grains is mediated by suppression of two key ABA biosynthesis genes, TaNCED1 and TaNCED2. PMID:27140440

  4. Development of Holistic Three-Dimensional Models for Cold Spray Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Zahiri, S. H.; Phan, T. D.; Masood, S. H.; Jahedi, M.

    2014-08-01

    A three-dimensional, computational fluid dynamics (CFD) model is developed to estimate cold spray gas conditions. This model is calibrated and validated with respect to thermal history of a substrate exposed to the cold spray supersonic jet. The proposed holistic model is important to track state of gas and particles from injection point to the substrate surface with significant benefits for optimization of very rapid "nanoseconds" cold spray deposition. The three-dimensional model is developed with careful attention with respect to computation time to benefit broader cold spray industry with limited access to supercomputers. The k-ɛ-type CFD model is evaluated using measured temperature for a titanium substrate exposed to cold spray nitrogen at 800 °C and 3 MPa. The model important parameters are detailed including domain meshing method with turbulence, and dissipation coefficients during spraying. Heat transfer and radiation are considered for the de Laval nozzle used in experiments. The calibrated holistic model successfully estimated state of the gas for chosen high temperature and high pressure cold spray parameters used in this study. Further to this, the holistic model predictions with respect to the substrate maximum temperature had a good agreement with earlier findings in the literature.

  5. EDITORIAL: Focus on Cold and Ultracold Molecules FOCUS ON COLD AND ULTRACOLD MOLECULES

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Ye, Jun

    2009-05-01

    Cold and ultracold molecules are the next wave of ultracold physics, giving rise to an exciting array of scientific opportunities, including many body physics for novel quantum phase transitions, new states of matter, and quantum information processing. Precision tests of fundamental physical laws benefit from the existence of molecular internal structure with exquisite control. The study of novel collision and reaction dynamics will open a new chapter of quantum chemistry. Cold molecules bring together researchers from a variety of fields, including atomic, molecular, and optical physics, chemistry and chemical physics, quantum information science and quantum simulations, condensed matter physics, nuclear physics, and astrophysics, a truly remarkable synergy of scientific explorations. For the past decade there have been steady advances in direct cooling techniques, from buffer-gas cooling to cold molecular beams to electro- and magneto-molecular decelerators. These techniques have allowed a large variety of molecules to be cooled for pioneering studies. Recent amazing advances in experimental techniques combining the ultracold and the ultraprecise have furthermore brought molecules to the point of quantum degeneracy. These latter indirect cooling techniques magnetically associate atoms from a Bose-Einstein condensate and/or a quantum degenerate Fermi gas, transferring at 90% efficiency highly excited Fano-Feshbach molecules, which are on the order of 10 000 Bohr radii in size, to absolute ground state molecules just a few Bohr across. It was this latter advance, together with significant breakthroughs in internal state manipulations, which inspired us to coordinate this focus issue now, and is the reason why we say the next wave of ultracold physics has now arrived. Whether directly or indirectly cooled, heteronuclear polar molecules offer distinct new features in comparison to cold atoms, while sharing all of their advantages (purity, high coherence

  6. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    SciTech Connect

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  7. Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions.

    PubMed

    Gibble, Kurt

    2013-05-01

    Frequency shifts from background-gas collisions currently contribute significantly to the inaccuracy of atomic clocks. Because nearly all collisions with room-temperature background gases that transfer momentum eject the cold atoms from the clock, the interference between the scattered and unscattered waves in the forward direction dominates these frequency shifts. We show they are ≈ 10 times smaller than in room-temperature clocks and that van der Waals interactions produce the cold-atom background-gas shift. General considerations allow the loss of the Ramsey fringe amplitude to bound this frequency shift. PMID:23683186

  8. Age and Ethnic Differences in Cold Weather and Contagion Theories of Colds and Flu

    ERIC Educational Resources Information Center

    Sigelman, Carol K.

    2012-01-01

    Age and ethnic group differences in cold weather and contagion or germ theories of infectious disease were explored in two studies. A cold weather theory was frequently invoked to explain colds and to a lesser extent flu but became less prominent with age as children gained command of a germ theory of disease. Explanations of how contact with…

  9. Investigation of cold filling receiver panels and piping in molten-nitrate-salt central-receiver solar power plants

    SciTech Connect

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.

    1994-12-31

    Cold filling refers to flowing a fluid through piping or tubes that are at temperatures below the fluid`s freezing point. Since the piping and areas of the receiver in a molten-nitrate salt central-receiver solar power plant must be electrically heated to maintain their temperatures above the nitrate salt freezing point (430{degrees}F, 221{degrees}C), considerable energy could be used to maintain such temperatures during nightly shut down and bad weather. Experiments and analyses have been conducted to investigate cold filling receiver panels and piping as a way of reducing parasitic electrical power consumption and increasing the availability of the plant. The two major concerns with cold filling are: (1) how far can the molten salt penetrate cold piping before freezing closed and (2) what thermal stresses develop during the associated thermal shock. Cold fill experiments were conducted by flowing molten salt at 550{degrees}F (288{degrees}C) through cold panels, manifolds, and piping to determine the feasibility of cold filling the receiver and piping. The transient thermal responses were measured and heat transfer coefficients were calculated from the data. Nondimensional analysis is presented which quantifies the thermal stresses in a pipe or tube undergoing thermal shock. In addition, penetration distances were calculated to determine the distance salt could flow in cold pipes prior to freezing closed.

  10. Status of cold fusion (2010).

    PubMed

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  11. Status of cold fusion (2010)

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  12. Cold-Rydberg-gas dynamics

    SciTech Connect

    Walz-Flannigan, A.; Guest, J.R.; Choi, J.-H.; Raithel, G.

    2004-06-01

    Using state-selective field ionization, the state distributions of Rydberg atoms in cold Rydberg gases are measured for various initially excited Rydberg levels, populations, and evolution times. We provide direct experimental evidence for l-changing collisions that we previously observed indirectly [S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, Phys. Rev. Lett. 86, 3993 (2001)]. We also observe n-mixing and find that its effects are largely in agreement with recent theoretical work on n-changing collisions between electrons and Rydberg atoms, thus enabling an estimation of the electron temperature. Unexpectedly large populations of atoms are found in states with principal quantum numbers much lower than that of the initially excited atoms. We explain this observation by collisions between high-l Rydberg atoms, which are highly polar and can collide due to static electric-dipole forces between them.

  13. The cold-fog test

    SciTech Connect

    Chisholm, W.A.; Ringler, K.G.; Erven, C.C.

    1996-10-01

    The electrical performance of outdoor insulation degrades severely during combinations of factors that include surface contamination (C), ice (I), fog (F) and an ambient temperature that rises through 0 C (T{sub 0{degree}}). Failures at operating voltage on 115-kV, 230-kV and 500-kV systems occur with increasing probability under these conditions. A new CFT{sub 0{degree}} or cold-fog test method has been developed to reproduce the flashovers at all three voltage levels. Three options are identified for improving CFT{sub 0{degree}} performance: use of semi-conductive glazes, substitution of silicone for porcelain and use of silicone coatings on existing porcelain insulators.

  14. Cold warriors target arms control

    SciTech Connect

    Isaacs, J.

    1995-09-01

    While disagreements over the conflict in Bosnia have strained US relations with Western Europe and Russia, these divisions will pale in comparison to the tensions that will arise if recent congressional arms control decisions become law. If the Republicans who dominate Congress are successful, a series of arms control agreements painstakingly negotiated by Republican and Democratic presidents could be consigned to the ash heap. This list includes the Start I and Start II nuclear reduction agreements, the 1972 Anti-Ballistic Missile (ABM) Treaty and the ongoing negotiations to achieve a comprehensive test ban (CTB) by 1996. US leadership in the post-Cold War era will undermined as the international community, already skeptical about this country`s direction, will question the ability of the executive branch to surmount isolantionist impulses.

  15. Compensating for cold war cancers.

    PubMed

    Parascandola, Mark J

    2002-07-01

    Although the Cold War has ended, thousands of workers involved in nuclear weapons production are still living with the adverse health effects of working with radioactive materials, beryllium, and silica. After a series of court battles, the U.S. government passed the Energy Employees Occupational Illness Act in October 2000 to financially assist workers whose health has been compromised by these occupational exposures. Now work is underway to set out guidelines for determining which workers will be compensated. The National Institute for Occupational Safety and Health has been assigned the task of developing a model that can scientifically make these determinations, a heavy task considering the controversies that lie in estimating low-level radiation risks and the inadequate worker exposure records kept at many of the plants.

  16. Neandertal cold adaptation: physiological and energetic factors.

    PubMed

    Steegmann, A Theodore; Cerny, Frank J; Holliday, Trenton W

    2002-01-01

    European Neandertals employed a complex set of physiological cold defenses, homologous to those seen in contemporary humans and nonhuman primates. While Neandertal morphological patterns, such as foreshortened extremities and low relative surface-area, may have explained some of the variance in cold resistance, it is suggested the adaptive package was strongly dependent on a rich array of physiological defenses. A summary of the environmental cold conditions in which the Neandertals lived is presented, and a comparative ethnographic model from Tierra del Fuego is used. Muscle and subcutaneous fat are excellent "passive" insulators. Neandertals were quite muscular, but it is unlikely that they could maintain enough superficial body fat to offer much cold protection. A major, high-energy metabolic adaptation facilitated by modest amounts of highly thermogenic brown adipose tissue (BAT) is proposed. In addition, Neandertals would have been protected by general mammalian cold defenses based on systemic vasoconstriction and intensified by acclimatization, aerobic fitness, and localized cold--induced vasodilation. However, these defenses are energetically expensive. Based on contemporary data from circumpolar peoples, it is estimated that Neandertals required 3,360 to 4,480 kcal per day to support strenuous winter foraging and cold resistance costs. Several specific genetic cold adaptations are also proposed--heat shock protein (actually, stress shock protein), an ACP*1 locus somatic growth factor, and a specialized calcium metabolism not as yet understood. PMID:12203812

  17. Electrodeposition process reduces cost of cold plates

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1980-01-01

    Efficient nickel heat-exchanger cold plates can be fabricated less expensively than stainless steel plates. If adapted to mass production, it is estimated that nickel cold plates might be made for about 30 percent less than stainless-steel plates.

  18. Cold plasma processing technology makes advances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  19. Cold head maintenance with minimal service interruption

    NASA Astrophysics Data System (ADS)

    Radovinsky, A. L.; Michael, P. C.; Zhukovsky, A.; Forton, E.; Paradis, Y.; Nuttens, V.; Minervini, J. V.

    2015-12-01

    Turn-key superconducting magnet systems are increasingly conduction-cooled by cryogenerators. Gifford-McMahon systems are reliable and cost effective, but require annual maintenance. A usual method of servicing is replacing the cold head of the cryocooler. It requires a complicated design with a vacuum chamber separate from the main vacuum of the cryostat, as well as detachable thermal contacts, which add to the thermal resistance of the cooling heat path and reduce the reliability of the system. We present a rapid warm-up scheme to bring the cold head body, which remains rigidly affixed to the cold mass, to room temperature, while the cold mass remains at cryogenic temperature. Electric heaters thermally attached to the cold head stations are used to warm them up, which permits conventional cold head maintenance with no danger of contaminating the inside of the cold head body. This scheme increases the efficiency of the cooling system, facilitates annual maintenance of the cold head and returning the magnet to operation in a short time.

  20. The Origins of the Cold War.

    ERIC Educational Resources Information Center

    Paterson, Thomas G.

    1986-01-01

    Briefly reviews conventional reasoning about the start of the Cold War. Describes contemporary revisionist views of the Cold War and the reasons they arose. Maintains that American leaders exaggerated the Soviet ideological and military threat, spurring an American arms build-up which ultimately led to the present-day arms race. (JDH)

  1. Is It a Cold or the Flu?

    MedlinePlus

    IS IT A Cold OR THE Flu ? SYMPTOMS FEVER HEADACHE GENERAL ACHES, PAINS FATIGUE, WEAKNESS EXTREME EXHAUSTION STUFFY NOSE SNEEZING SORE THROAT CHEST ... P L I C AT I O N S COLD Rare Rare Slight Sometimes Never Common Usual Common ...

  2. Peripheral cold acclimatization in Antarctic scuba divers.

    PubMed

    Bridgman, S A

    1991-08-01

    Peripheral acclimatization to cold in scuba divers stationed at the British Antarctic Survey's Signy Station was investigated during a year in Antarctica. Five divers and five non-diver controls underwent monthly laboratory tests of index finger immersion in cold water for 30 min. Index finger pulp temperature and time of onset of cold-induced vasodilatation (CIVD) were measured. Pain was recorded with verbal and numerical psychophysical subjective pain ratings. Average finger temperatures and median finger pain from 6-30 min of immersion, maximum finger temperatures during the first CIVD cycle, and finger temperatures at the onset of CIVD were calculated. Comparison of the variables recorded from divers and non-divers were performed with analysis of variance. No significant differences were found among the variables recorded from divers and non-divers. From a review of the literature, divers have responses typical of non-cold-adapted Caucasians. There is, therefore, no evidence that Signy divers peripherally acclimatized to cold. We suggest that these findings occur because either the whole body cooling which divers undergo inhibits peripheral acclimatization or because of insufficiently frequent or severe cold exposure while diving. Further basic studies on the duration, frequency and severity of cold exposure necessary to induce peripheral cold acclimatization are required before this question can be satisfactorily answered.

  3. Lessons on the Cold War. Lesson Plan.

    ERIC Educational Resources Information Center

    Cunningham, Susan J.

    1994-01-01

    Contends that the end of the Cold War requires teachers to change their teaching methods and content. Presents six lessons, most with three individual student activities, that trace the Cold War from the pre-World War I era through the end of the Vietnam War. (CFR)

  4. Cold, Ice, and Snow Safety (For Parents)

    MedlinePlus

    ... to Know About Zika & Pregnancy Cold, Ice, and Snow Safety KidsHealth > For Parents > Cold, Ice, and Snow Safety Print A A A Text Size What's ... a few. Plus, someone has to shovel the snow, right? Once outdoors, however, take precautions to keep ...

  5. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  6. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  7. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  8. Cold plasma as a food processing technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma uses energetic, reactive gases to inactivate contaminating microbes on a variety of foods, such as meats, poultry and fruits and vegetables. The primary modes of action are reactive chemical species and ultraviolet light. Various cold plasma systems are under development, operating at am...

  9. Cognitive Egocentrism Differentiates Warm and Cold People.

    PubMed

    Boyd, Ryan L; Bresin, Konrad; Ode, Scott; Robinson, Michael D

    2013-02-01

    Warmth-coldness is a fundamental dimension of social behavior. Cold individuals are egocentric in their social relations, whereas warm individuals are not. Previous theorizing suggests that cognitive egocentrism underlies social egocentrism. It was hypothesized that higher levels of interpersonal coldness would predict greater cognitive egocentrism. Cognitive egocentrism was assessed in basic terms through tasks wherein priming a lateralized self-state biased subsequent visual perceptions in an assimilation-related manner. Such effects reflect a tendency to assume that the self's incidental state provides meaningful information concerning the external world. Cognitive egocentrism was evident at high, but not low, levels of interpersonal coldness. The findings reveal a basic difference between warm and cold people, encouraging future research linking cognitive egocentrism to variability in relationship functioning.

  10. Biotechnology of Cold-Active Proteases

    PubMed Central

    Joshi, Swati; Satyanarayana, Tulasi

    2013-01-01

    The bulk of Earth’s biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review. PMID:24832807

  11. Cognitive Egocentrism Differentiates Warm and Cold People.

    PubMed

    Boyd, Ryan L; Bresin, Konrad; Ode, Scott; Robinson, Michael D

    2013-02-01

    Warmth-coldness is a fundamental dimension of social behavior. Cold individuals are egocentric in their social relations, whereas warm individuals are not. Previous theorizing suggests that cognitive egocentrism underlies social egocentrism. It was hypothesized that higher levels of interpersonal coldness would predict greater cognitive egocentrism. Cognitive egocentrism was assessed in basic terms through tasks wherein priming a lateralized self-state biased subsequent visual perceptions in an assimilation-related manner. Such effects reflect a tendency to assume that the self's incidental state provides meaningful information concerning the external world. Cognitive egocentrism was evident at high, but not low, levels of interpersonal coldness. The findings reveal a basic difference between warm and cold people, encouraging future research linking cognitive egocentrism to variability in relationship functioning. PMID:23564985

  12. Social science in the Cold War.

    PubMed

    Engerman, David C

    2010-06-01

    This essay examines ways in which American social science in the late twentieth century was--and was not--a creature of the Cold War. It identifies important work by historians that calls into question the assumption that all social science during the Cold War amounts to "Cold War social science." These historians attribute significant agency to social scientists, showing how they were enmeshed in both long-running disciplinary discussions and new institutional environments. Key trends in this scholarship include a broadening historical perspective to see social scientists in the Cold War as responding to the ideas of their scholarly predecessors; identifying the institutional legacies of World War II; and examining in close detail the products of extramural--especially governmental--funding. The result is a view of social science in the Cold War in which national security concerns are relevant, but with varied and often unexpected impacts on intellectual life.

  13. Social science in the Cold War.

    PubMed

    Engerman, David C

    2010-06-01

    This essay examines ways in which American social science in the late twentieth century was--and was not--a creature of the Cold War. It identifies important work by historians that calls into question the assumption that all social science during the Cold War amounts to "Cold War social science." These historians attribute significant agency to social scientists, showing how they were enmeshed in both long-running disciplinary discussions and new institutional environments. Key trends in this scholarship include a broadening historical perspective to see social scientists in the Cold War as responding to the ideas of their scholarly predecessors; identifying the institutional legacies of World War II; and examining in close detail the products of extramural--especially governmental--funding. The result is a view of social science in the Cold War in which national security concerns are relevant, but with varied and often unexpected impacts on intellectual life. PMID:20718280

  14. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bullock, Kimberly R.

    1995-01-01

    The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.

  15. Transcriptomic analysis of cold response in tomato fruits identifies dehydrin as a marker of cold stress.

    PubMed

    Weiss, J; Egea-Cortines, M

    2009-01-01

    Tomato is sensitive to cold during vegetative growth, fruit set, development, and ripening. We have characterized the effect of cold stress (6xC for up to 48 h) on the transcriptome of Micro-Tom tomato fruits during ripening by subtractive PCR. The cold stress caused modifications in gene expression of housekeeping genes. From a total of 38 genes up-regulated by cold, only one clone - a dehydrin homologue - was related to previously identified cold-stress genes. Phylogenetic analysis showed its clustering with other cold-induced dehydrins, and increased distances from dehydrins activated by abscisic acid. Quantitative expression analysis of tomato dehydrin showed it was activated by cold treatment in leaves and fruits. As dehydrin is a member of the Sl-CBF1 regulon from tomato, we analyzed the cold-responsive transcription factor Sl-CBF1 in mature leaves and ripening fruits stored at 6xC. Leaves of Micro-Tom showed high basal levels of the transcription factor Sl-CBF1, compared to fruits. Cold treatment caused increased levels of Sl-CBF1 expression in leaves but not in fruits of Micro-Tom and Demisem (a commercial cultivar). Tomato dehydrin can be used as a transcriptional marker of cold stress in leaves and ripening fruits. However, our results indicate that the cold response activation of dehydrin gene in tomato fruits is the consequence of an alternative pathway, different from the Sl-CBF1 regulon. PMID:19875881

  16. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger

    NASA Astrophysics Data System (ADS)

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P < 0.001), preferred hot thermal stimulation ( P = 0.006), and wore heavier clothing during daily life ( P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures ( T max) ( P = 0.040), smaller amplitude ( P = 0.029), and delayed onset time of CIVD ( P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  17. Working smarter on cold cases: identifying factors associated with successful cold case investigations.

    PubMed

    Davis, Robert C; Jensen, Carl J; Burgette, Lane; Burnett, Kathryn

    2014-03-01

    Cold case squads have garnered much attention; however, they have yet to undergo significant empirical scrutiny. In the present study, the authors interviewed investigators and reviewed 189 solved and unsolved cold cases in Washington, D.C., to determine whether there are factors that can predict cold case solvability. In the interviews, new information from witnesses or information from new witnesses was cited as the most prevalent reason for case clearance. The case reviews determined that there were factors in each of the following domains that predicted whether cases would be solved during cold case investigations: Crime Context, Initial Investigation Results, Basis for Opening Cold Case, and Cold Case Investigator Actions. The results suggest that it is possible to prioritize cold case work based on the likelihood of investigations leading to clearances. PMID:24502665

  18. Comparing and contrasting nuclei and cold atomic gases

    NASA Astrophysics Data System (ADS)

    Zinner, N. T.; Jensen, A. S.

    2013-05-01

    The experimental revolution in ultracold atomic gas physics over the past decades has brought tremendous amounts of new insight to the world of degenerate quantum systems. Here we compare and contrast the developments of cold atomic gases with the physics of nuclei since many concepts, techniques, and nomenclatures are common to both fields. However, nuclei are finite systems with interactions that are typically much more complicated than those of ultracold atomic gases. The similarities and differences must therefore be carefully addressed for a meaningful comparison and to facilitate fruitful crossdisciplinary activity. We first consider condensates of bosonic and paired systems of fermionic particles with the mean-field description, but take great care to point out potential problems in the limit of small particle numbers. Along the way we review some of the basic results of Bose-Einstein condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) theory, as well as the BCS-BEC crossover and the Fermi gas in the unitarity limit, all within the context of ultracold atoms. Subsequently, we consider the specific example of an atomic Fermi gas from a nuclear physics perspective, comparing degrees of freedom, interactions, and relevant length and energy scales of cold atoms and nuclei. Next we address some attempts in nuclear physics to transfer the concepts of condensates in nuclei that can in principle be built from bosonic alpha-particle constituents. We also consider Efimov physics, a prime example of nuclear physics transferred to cold atoms, and consider which systems are more likely to show interesting bound state spectra. Finally, we address some recent studies of the BCS-BEC crossover in light nuclei and compare them to the concepts used in ultracold atomic gases. While many-body concepts such as BEC or BCS states are applicable in both subfields, we find that the interactions and finite particle numbers in nuclei can obscure the clear meaning they have in cold

  19. Some Chinese folk prescriptions for wind-cold type common cold.

    PubMed

    Hai-Long, Zhai; Shimin, Chen; Yalan, Lu

    2015-07-01

    Although self-limiting, the common cold (gǎn mào) is highly prevalent. There are no effective antivirals to cure the common cold and few effective measures to prevent it, However, for thousands years, Chinese people have treated the common cold with natural herbs, According to the traditional Chinese medicine (TCM) theory ( zhōng yī lǐ lùn), the common cold is considered as an exterior syndrome, which can be further divided into the wind-cold type ( fēng hán xíng), the wind-heat type ( fēng rè xíng), and the summer heat dampness type ( shǔ rè xíng). Since the most common type of common cold caught in winter and spring is the wind-cold type, the article introduced some Chinese folk prescriptions for the wind-cold type common cold with normal and weak physique, respectively. For thousands of years, Chinese folk prescriptions for the common cold, as complementary and alternative medicine (CAM; bǔ chōng yǔ tì dài yī xué), have been proven to be effective, convenient, cheap, and most importantly, safe. The Chinese folk prescriptions ( zhōng guó mín jiān chǔ fāng) for the wind-cold type common cold are quite suitable for general practitioners or patients with the wind-cold type common cold, to treat the disease. Of course, their pharmacological features and mechanisms of action need to be further studied.

  20. 13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL TO COLD CALIBRATION TEST STAND BASEMENT, SHOWING HARD WIRE CONNECTION (INSTRUMENTATION AND CONTROL). - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  1. Colds and the flu - what to ask your doctor - child

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000250.htm Colds and the flu - what to ask your doctor - ... enable JavaScript. Many different germs, called viruses, cause colds. Symptoms of the common cold include: Runny nose ...

  2. Cold, Flu, or Allergy? Know the Difference for Best Treatment

    MedlinePlus

    ... Human Services Latest Issue This Issue Features Sweet Stuff Cold, Flu, or Allergy? Health Capsules Genetic Clues ... infection, middle ear infection, asthma search Features Sweet Stuff Cold, Flu, or Allergy? Wise Choices Links Cold, ...

  3. When Working in Cold, Be Prepared and Be Aware

    MedlinePlus

    ... Recommend on Facebook Tweet Share Compartir Some cold weather dangers are obvious, but others are harder to ... the cold, there are many risks. Some cold weather dangers are obvious, but others are harder to ...

  4. 1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND COLD CALIBRATION BLOCKHOUSE IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  5. 2. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION BLOCKHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION BLOCKHOUSE, COLD CALIBRATION TEST STAND FOR FL ENGINE FOR SATURN V. EXHAUST DUCT IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  6. 5. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION OBSERVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION OBSERVATION BUNKER BACKGROUND, COLD CALIBRATION TOWER. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  7. Increased resistance of Escherichia coli to acrylic acid and to copper ions after cold-shock.

    PubMed

    Whiting, G C; Rowbury, R J

    1995-04-01

    The effects of cold-shock on the resistance of plasmid-free and plasmid-carrying Escherichia coli to acrylate and copper ions have been tested. Such shock, produced by transfer from 37 to 5 degrees C, with 60 min incubation at the lower temperature, significantly enhanced the resistance of all the tested strains to both inhibitors. Such resistances may have arisen because the inhibitory agents are less able, due to porin changes, to penetrate into the organisms after cold-shock. It is more likely, however, that inhibitor penetration is unaffected but that cold-shocked organisms are better able to repair the damage caused (e.g. to membranes, DNA or cellular enzymes) by the inhibitors.

  8. Low gravity transfer line chilldown

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Collins, Frank G.; Kawaji, Masahiro

    1992-01-01

    The progress to date is presented in providing predictive capabilities for the transfer line chilldown problem in low gravity environment. A low gravity experimental set up was designed and flown onboard the NASA/KC-135 airplane. Some results of this experimental effort are presented. The cooling liquid for these experiments was liquid nitrogen. The boiling phenomenon was investigated in this case using flow visualization techniques as well as recording wall temperatures. The flow field was established by injecting cold liquid in a heated tube whose temperature was set above saturation values. The tubes were vertically supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.

  9. Ultrasensitive cold-electron bolometer

    NASA Astrophysics Data System (ADS)

    Agulo, Ian Jasper Ayagan

    2007-08-01

    The Cold-Electron Bolometer (CEB) is an ultrasensitive device designed for the detection of cosmic microwave background radiation. The key to its sensitivity is the electron cooling of the absorber by the superconductor-insulator-normal metal (SIN) tunnel junction. At a voltage near and below the superconducting gap, the electrons in the absorber are cooled well below the phonon temperature of the normal metal. This translates to the enhanced sensitivity of the CEB. This thesis describes the work we have done on the optimization of electron cooling of the normal metal absorber, and our measurement of the sensitivity of the CEB. We have optimized the electron cooling of the absorber by SIN tunnel junctions. The best electron cooling was achieved when normal metal traps were added in proximity to the superconducting electrodes in addition to the advanced geometry of the superconducting electrodes. With these modifications, we have decreased the electron temperature by 198 mK. With just the advanced geometry, the electron temperature drop was 129 mK. With just a simple geometry, the drop in temperature was 56 mK. The noise equivalent power (NEP) of the CEB was also measured at 100 mK to be at the level of 10 -18 W/Hz 1/2 at 1 kHz. The NEP was obtained by measuring the noise of the CEB, and then dividing that by its power responsivity, dV/dP. The main limitation in our measurements was the noise component from the amplifier. Finally, we have made measurements on the temperature sensitivity of the SIN tunnel junctions. We have compared the sensitivity between single and ten SIN junctions in series and found that it increases proportionally to the number of junctions. The best temperature responsivity obtained for 10 junctions was approximately 15 mV/mK. Using such thermometer, we have been able to measure the temperature stability of the Oxford Instruments cryogenfree refrigerator to be ±250 mK for a period of 8 hours. The resolution of the thermometer was measured to

  10. Protection of feet in cold exposure.

    PubMed

    Kuklane, Kalev

    2009-07-01

    The paper summarizes the research on cold protection of feet. There exist several conflicting requirements for the choice of the best suited footwear for cold exposure. These conflicts are related to various environmental factors, protection needs and user comfort issues. In order to reduce such conflicts and simplify the choice of proper footwear the paper suggests dividing the cold into specific ranges that are related to properties and state of water and its possibility to penetrate into, evaporate from or condensate in footwear. The thermo-physiological background and reactions in foot are briefly explained, and main problems and risks related to cold injuries, mechanical injuries and slipping discussed. Footwear thermal insulation is the most important factor for protection against cold. The issues related to measuring the insulation and the practical use of measured values are described, but also the effect of socks, and footwear size. Other means for reducing heat losses, such as PCM and electrical heating are touched. The most important variable that affects footwear thermal insulation and foot comfort is moisture in footwear. In combination with motion they may reduce insulation and thus protection against cold by 45%. The paper includes recommendations for better foot comfort in cold.

  11. Repairing Student Misconceptions in Heat Transfer Using Inquiry-Based Activities

    ERIC Educational Resources Information Center

    Prince, Michael; Vigeant, Margot; Nottis, Katharyn

    2016-01-01

    Eight inquiry-based activities, described here in sufficient detail for faculty to adopt in their own courses, were designed to teach students fundamental concepts in heat transfer. The concept areas chosen were (1) factors affecting the rate vs. amount of heat transfer, (2) temperature vs. perceptions of hot and cold, (3) temperature vs. energy…

  12. Trends in Technology Transfer.

    ERIC Educational Resources Information Center

    Starnick, Jurgen

    1988-01-01

    Various forms of technology transfer in Europe and North America are discussed including research contracts, cooperative research centers, and personnel transfer. Examples of approaches to technology transfer are given and the establishment of personnel transfer is discussed. Preconditions for successful technology transfer in the future are…

  13. Teaching for Transfer.

    ERIC Educational Resources Information Center

    Drake, Ruth

    This paper describes the transfer of skills and knowledge from the classroom to outside the classroom. The action research focused on transfer, how to facilitate transfer, and why to concentrate on transfer, and it included a definition for the different levels and rates of transfer. Seventh and eighth grade students were not using existing…

  14. Technology transfer within NASA

    NASA Technical Reports Server (NTRS)

    St.cyr, William

    1992-01-01

    Viewgraphs on technology transfer within NASA are provided. Assessment of technology transfer process, technology being transfered, issues and barriers, and observations and suggestions are addressed. Topics covered include: technology transfer within an organization (and across organization lines/codes) and space science/instrument technology and the role of universities in the technology development/transfer process.

  15. Technology Transfer: Marketing Tomorrow's Technology

    NASA Technical Reports Server (NTRS)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  16. Cold storage of rat hepatocyte spheroids.

    PubMed

    Liu, Hongling; Yu, Yue; Glorioso, Jaime; Mao, Shennen; Rodysil, Brian; Amiot, Bruce P; Rinaldo, Piero; Nyberg, Scott L

    2014-01-01

    Cell-based therapies for liver disease rely on a high-quality supply of hepatocytes and a means for storage during transportation from site of isolation to site of usage. Unfortunately, frozen cryopreservation is associated with unacceptable loss of hepatocyte viability after thawing. The purpose of this study was to optimize conditions for cold storage of rat hepatocyte spheroids without freezing. Rat hepatocytes were isolated by a two-step perfusion method; hepatocyte spheroids were formed during 48 h of rocked culture in serum-free medium (SFM). Spheroids were then maintained in rocked culture at 37 °C (control condition) or cold stored at 4 °C for 24 or 48 h in six different cold storage solutions: SFM alone; SFM + 1 mM deferoxamine (Def); SFM + 1 μM cyclosporin A (CsA); SFM + 1 mM Def + 1 μM CsA, University of Wisconsin (UW) solution alone, UW + 1 mM Def. Performance metrics after cold storage included viability, gene expression, albumin production, and functional activity of cytochrome P450 enzymes and urea cycle proteins. We observed that cold-induced injury was reduced significantly by the addition of the iron chelator (Def) to both SFM and UW solution. Performance metrics (ammonia detoxification, albumin production) of rat hepatocyte spheroids stored in SFM + Def for 24 h were significantly increased from SFM alone and approached those in control conditions, while performance metrics after cold storage in SFM alone or cold storage for 48 h were both significantly reduced. A serum-free medium supplemented with Def allowed hepatocyte spheroids to tolerate 24 h of cold storage with less than 10% loss in viability and functionality. Further research is warranted to optimize a solution for extended cold storage of hepatocyte spheroids.

  17. Heat, cold, noise, and vibration

    SciTech Connect

    Horvath, S.M.; Bedi, J.F. )

    1990-03-01

    Exposure to a cold environment induces a number of physiological alterations, the most serious being hypothermia. This state can occur in all individuals, but the very young and the elderly are more susceptible. Environmental and industrially generated high ambient temperature can place further stress on aged individuals and workers, resulting in a complex symptom picture. Morbidity and death may result from such exposures. Causative factors have been identified. Noise exposure induces hearing losses above those secondary to the aging process. Psychophysiological effects during noise exposure are considered to result from the sympathetic activity secondary to a general stress reaction. Vibration from the use of power tools results in Raynaud's phenomenon. However, modification of power tools has reduced the symptoms associated with vibration exposure. Termination of exposure to vibration appears eventually to reduce symptoms related to white-finger spasms. Interaction between these stressors has not been clarified because of the complex effects of each. The need for additional information about the response to these stressors is evident. 38 references.

  18. Neutron interferometry with cold stage

    NASA Astrophysics Data System (ADS)

    Mineeva, Taisiya; Arif, M.; Huber, M. G.; Shahi, C. B.; Clark, C. W.; Cory, D. G.; Nsofini, J.; Sarenac, D.; Pushin, D. A.

    Neutron interferometry (NI) is amongst the most precise methods for characterizing neutron interactions by measuring the relative difference between two neutron paths, one of which contains a sample-of-interest. Because neutrons carry magnetic moment and are deeply penetrating, they are excellent probes to investigate properties of magnetic materials. The advantage of NI is its unique sensitivity which allows to directly measure magnetic and structural transitions in materials. Up to now NI has been sparingly used in material research due to its sensitivity to environmental noise. However, recent successes in implementing Quantum Error Correction principles lead to an improved NI design making it robust against mechanical vibrations. Following these advances, a new user facility at the National Institute for Standards and Technology was built to study condensed matter applications, biology and quantum physics. Incorporating cold sample stage inside NI is the first of its kind experiment which can be carried out on large range of temperatures down to 4K. Upon successful realization, it will open new frontiers to characterize magnetic domains, phase transitions and spin properties in a variety of materials such as, for example, iron-based superconductors and spintronic materials. Supported in part by CERC, CIFAR, NSERC and CREATE.

  19. Detection of Cold Antihydrogen Annihilation

    SciTech Connect

    Zhang, Z.; Goldenbaum, F.; Grzonka, D.; Oelert, W.; Sefzick, T.

    2005-10-26

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s-2s transition between the hydrogen and the antihydrogen atom.The experimental studies are performed at two separate installations, ATRAP-I, a system with severe space limitation, where routinely antihydrogen was produced and ATRAP-II, which will start full operation within the next AD running period. ATRAP-II includes a much larger solenoid allowing the installation of an extended detection system as well as an optimized Ioffe trap. The antihydrogen annihilation detector system consists of several layers of scintillating fibers, counts the antihydrogen atoms and determines the annihilation vertex of the atoms. This diagnostic element will allow to optimize the production of cold antihydrogen sufficiently to permit the optical observations and measurements.Measurements are in progress to check the performance and specifications of the antihydrogen annihilation detector. Extensive Monte Carlo simulations concerning the track reconstruction have been started and will be continued using the program GEANT4.

  20. Spin squeezing a cold molecule

    NASA Astrophysics Data System (ADS)

    Bhattacharya, M.

    2015-12-01

    In this article we present a concrete proposal for spin squeezing the cold ground-state polar paramagnetic molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider a single, noninteracting molecule with angular momentum greater than 1 /2 . Starting from an experimentally relevant effective Hamiltonian, we identify an adiabatic regime where different combinations of static electric and magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993), 10.1103/PhysRevA.47.5138], the uniform field Hamiltonian proposed by Law et al. [C. K. Law, H. T. Ng, and P. T. Leung, Phys. Rev. A 63, 055601 (2001), 10.1103/PhysRevA.63.055601], and a model of field propagation in a Kerr medium considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989), 10.1103/PhysRevA.39.2969]. We then consider the situation in which nonadiabatic effects are quite large and show that the effective Hamiltonian supports spin squeezing even in this case. We provide analytical expressions as well as numerical calculations, including optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects such as the orientation-to-alignment transition.

  1. Cold dust in hot regions

    SciTech Connect

    Sreenilayam, Gopika; Fich, Michel; Ade, Peter; Bintley, Dan; Chapin, Ed; Chrysostomou, Antonio; Jenness, Tim; Dunlop, James S.; Holland, Wayne S.; Ivison, Rob; Gibb, Andy; Halpern, Mark; Scott, Douglas; Greaves, Jane S.; Robson, Ian

    2014-03-01

    We mapped five massive star-forming regions with the SCUBA-2 camera on the James Clerk Maxwell Telescope. Temperature and column density maps are obtained from the SCUBA-2 450 and 850 μm images. Most of the dense clumps we find have central temperatures below 20 K, with some as cold as 8 K, suggesting that they have no internal heating due to the presence of embedded protostars. This is surprising, because at the high densities inferred from these images and at these low temperatures such clumps should be unstable, collapsing to form stars and generating internal heating. The column densities at the clump centers exceed 10{sup 23} cm{sup –2}, and the derived peak visual extinction values are from 25 to 500 mag for β = 1.5-2.5, indicating highly opaque centers. The observed cloud gas masses range from ∼10 to 10{sup 3} M {sub ☉}. The outer regions of the clumps follow an r {sup –2.36±0.35} density distribution, and this power-law structure is observed outside of typically 10{sup 4} AU. All these findings suggest that these clumps are high-mass starless clumps and most likely contain high-mass starless cores.

  2. Cold Dust in Hot Regions

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Gopika; Fich, Michel; Ade, Peter; Bintley, Dan; Chapin, Ed; Chrysostomou, Antonio; Dunlop, James S.; Gibb, Andy; Greaves, Jane S.; Halpern, Mark; Holland, Wayne S.; Ivison, Rob; Jenness, Tim; Robson, Ian; Scott, Douglas

    2014-03-01

    We mapped five massive star-forming regions with the SCUBA-2 camera on the James Clerk Maxwell Telescope. Temperature and column density maps are obtained from the SCUBA-2 450 and 850 μm images. Most of the dense clumps we find have central temperatures below 20 K, with some as cold as 8 K, suggesting that they have no internal heating due to the presence of embedded protostars. This is surprising, because at the high densities inferred from these images and at these low temperatures such clumps should be unstable, collapsing to form stars and generating internal heating. The column densities at the clump centers exceed 1023 cm-2, and the derived peak visual extinction values are from 25 to 500 mag for β = 1.5-2.5, indicating highly opaque centers. The observed cloud gas masses range from ~10 to 103 M ⊙. The outer regions of the clumps follow an r -2.36 ± 0.35 density distribution, and this power-law structure is observed outside of typically 104 AU. All these findings suggest that these clumps are high-mass starless clumps and most likely contain high-mass starless cores.

  3. Cold vacuum drying facility site evaluation report

    SciTech Connect

    Diebel, J.A.

    1996-03-11

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone.

  4. Cold agglutinin-mediated autoimmune hemolytic anemia.

    PubMed

    Berentsen, Sigbjørn; Randen, Ulla; Tjønnfjord, Geir E

    2015-06-01

    Cold antibody types account for about 25% of autoimmune hemolytic anemias. Primary chronic cold agglutinin disease (CAD) is characterized by a clonal lymphoproliferative disorder. Secondary cold agglutinin syndrome (CAS) complicates specific infections and malignancies. Hemolysis in CAD and CAS is mediated by the classical complement pathway and is predominantly extravascular. Not all patients require treatment. Successful CAD therapy targets the pathogenic B-cell clone. Complement modulation seems promising in both CAD and CAS. Further development and documentation are necessary before clinical use. We review options for possible complement-directed therapy.

  5. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  6. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  7. Effect of Nozzle Material on Downstream Lateral Injection Cold Spray Performance

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Leblanc-Robert, S.; Fernández, R.; Farjam, A.; Jodoin, B.

    2016-08-01

    In cold gas dynamic spraying, the gas nature, process stagnation pressure and temperature, and the standoff distance are known to be important parameters that affect the deposition efficiency and coating quality. This investigation attempts to elucidate the effect of nozzle material on coatings produced using a downstream lateral injection cold spray system. Through experimentation, it is shown that the nozzle material has a substantial effect on deposition efficiency and particle velocity. It is proposed that the effects are related to complex interaction between the particles and the internal nozzle walls. The results obtained lead to the conclusion that during the particle/nozzle wall contact, a nozzle with higher thermal diffusivity transfers more heat to the particles. This heat transfer results in lower critical velocities and therefore higher deposition efficiencies, despite a noticeable reduction of particle velocities which is also attributed to particle-nozzle interactions.

  8. Superfluid Helium On-Orbit Transfer (SHOOT) operatons

    NASA Technical Reports Server (NTRS)

    Kittel, P.; Dipirro, M. J.

    1988-01-01

    The in-flight tests and the operational sequences of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment are outlined. These tests include the transfer of superfluid helium at a variety of rates, the transfer into cold and warm receivers, the operation of an extravehicular activity coupling, and tests of a liquid acquisition device. A variety of different types of instrumentation will be required for these tests. These include pressure sensors and liquid flow meters that must operate in liquid helium, accurate thermometry, two types of quantity gauges, and liquid-vapor sensors.

  9. Genetic mechanisms underlying the pathogenicity of cold-stressed Salmonella enterica serovar typhimurium in cultured intestinal epithelial cells.

    PubMed

    Shah, Jigna; Desai, Prerak T; Weimer, Bart C

    2014-11-01

    Salmonella encounters various stresses in the environment and in the host during infection. The effects of cold (5°C, 48 h), peroxide (5 mM H2O2, 5 h) and acid stress (pH 4.0, 90 min) were tested on pathogenicity of Salmonella. Prior exposure of Salmonella to cold stress significantly (P < 0.05) increased adhesion and invasion of cultured intestinal epithelial (Caco-2) cells. This increased Salmonella-host cell association was also correlated with significant induction of several virulence-associated genes, implying an increased potential of cold-stressed Salmonella to cause an infection. In Caco-2 cells infected with cold-stressed Salmonella, genes involved in the electron transfer chain were significantly induced, but no simultaneous significant increase in expression of antioxidant genes that neutralize the effect of superoxide radicals or reactive oxygen species was observed. Increased production of caspase 9 and caspase 3/7 was confirmed during host cell infection with cold-stressed Salmonella. Further, a prophage gene, STM2699, induced in cold-stressed Salmonella and a spectrin gene, SPTAN1, induced in Salmonella-infected intestinal epithelial cells were found to have a significant contribution in increased adhesion and invasion of cold-stressed Salmonella in epithelial cells.

  10. Tissue heat transfer in water: lessons from the Korean divers.

    PubMed

    Rennie, D W

    1988-10-01

    The factors which influence tissue heat transfer and temperature gradients from body core to skin surface are reviewed in the context of studies on Korean diving women. The resistance to heat transfer imposed by resting muscle is shown to be 2-3 times as great as that imposed by overlying fat and skin. However, exercising muscle imposes very little resistance to heat flux because of the increase in convective heat transfer. Accordingly, the limiting resistance to heat flow is shifted to subcutaneous fat and skin during exercise in cold water. Hypothetical examples are given of how important the subcutaneous fat can be in maintaining a high core-to-water temperature gradient in cold water and the same validated by examples from the literature. Last, hypothetical examples are given of the role cutaneous blood flow must play in controlling heat flux and temperature gradients across the subcutaneous fat layer.

  11. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression.

    PubMed

    Lee, Byeong-ha; Lee, Hojoung; Xiong, Liming; Zhu, Jian-Kang

    2002-06-01

    To study low-temperature signaling in plants, we previously screened for cold stress response mutants using bioluminescent Arabidopsis plants that express the firefly luciferase reporter gene driven by the stress-responsive RD29A promoter. Here, we report on the characterization and cloning of one mutant, frostbite1 (fro1), which shows reduced luminescence induction by cold. fro1 plants display reduced cold induction of stress-responsive genes such as RD29A, KIN1, COR15A, and COR47. fro1 leaves have a reduced capacity for cold acclimation, appear water-soaked, leak electrolytes, and accumulate reactive oxygen species constitutively. FRO1 was isolated through positional cloning and found to encode a protein with high similarity to the 18-kD Fe-S subunit of complex I (NADH dehydrogenase, EC 1.6.5.3) in the mitochondrial electron transfer chain. Confocal imaging shows that the FRO1:green fluorescent protein fusion protein is localized in mitochondria. These results suggest that cold induction of nuclear gene expression is modulated by mitochondrial function.

  12. Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster.

    PubMed

    Kelty, J D.; Lee, R E.

    1999-08-01

    Over a decade ago it was hypothesized that the rapid cold hardening process allows an organism's overall cold tolerance to track changes in environmental temperature, as would occur in nature during diurnal thermal cycles. Although a number of studies have since focused on characterizing the rapid cold hardening process and on elucidating the physiological mechanisms upon which it is based, the ecological relevance of this phenomenon has received little attention. We present evidence that in Drosophila melanogaster rapid cold hardening can be induced during cooling at rates which occur naturally, and that the protection afforded in such a manner benefits the organism at ecologically relevant temperatures. Drosophila melanogaster cooled at natural rates (0.05 and 0.1 degrees C min(-1)) exhibited significantly higher survival after one hour of exposure to -7 and -8 degrees C than did those directly transferred to these temperatures or those cooled at 0.5, or 1.0 degrees C min(-1). Protection accrued throughout the cooling process (e.g., flies cooled to 0 degrees C were more cold tolerant than those cooled to 11 degrees C). Whereas D. melanogaster cooled at 1.0 degrees C min(-1) had a critical thermal minimum (i.e., the temperature at which torpor occurred) of 6.5+/-0.6 degrees C, those cooled at an ecologically relevant rate of 0.1 degrees C min(-1) had a significantly lower value of 3.9+/-0.9 degrees C. PMID:12770302

  13. Cold fiber solid-phase microextraction device based on thermoelectric cooling of metal fiber.

    PubMed

    Haddadi, Shokouh Hosseinzadeh; Pawliszyn, Janusz

    2009-04-01

    A new cold fiber solid-phase microextraction device was designed and constructed based on thermoelectric cooling. A three-stage thermoelectric cooler (TEC) was used for cooling a copper rod coated with a poly(dimethylsiloxane) (PDMS) hollow fiber, which served as the solid-phase microextraction (SPME) fiber. The copper rod was mounted on a commercial SPME plunger and exposed to the cold surface of the TEC, which was enclosed in a small aluminum box. A heat sink and a fan were used to dissipate the generated heat at the hot side of the TEC. By applying an appropriate dc voltage to the TEC, the upper part of the copper rod, which was in contact to the cold side of the TEC, was cooled and the hollow fiber reached a lower temperature through heat transfer. A thermocouple was embedded in the cold side of the TEC for indirect measurement of the fiber temperature. The device was applied in quantitative analysis of off-flavors in a rice sample. Hexanal, nonanal, and undecanal were chosen as three off-flavors in rice. They were identified according to their retention times and analyzed by GC-flame ionization detection instrument. Headspace extraction conditions (i.e., temperature and time) were optimized. Standard addition calibration graphs were obtained at the optimized conditions and the concentrations of the three analytes were calculated. The concentration of hexanal was also measured using a conventional solvent extraction method (697+/-143ng/g) which was comparable to that obtained from the cold fiber SPME method (644+/-8). Moreover, the cold fiber SPME resulted in better reproducibility and shorter analysis time. Cold fiber SPME with TEC device can also be used as a portable device for field sampling.

  14. Photosynthetic microorganisms in cold environments

    NASA Astrophysics Data System (ADS)

    Kviderova, Jana; Hajek, Josef; Elster, Josef; Bartak, Milos; Vaczi, Peter; Nedbalova, Linda

    and their physiological processes are inactive. If hydrated, they are physiologically active even at subzero temperatures (Kappen et al., 1996). Although living in cold environments, the growth optimum temperature of typical phycobiont Trebouxia (Chlorophyta) sp. is above 15 ° C, so these algae are considered to be rather psychrotolerant. Acknowledgement The work was supported from projects GA AS CR Nos. KJB 601630808 and KJ KJB600050708, CAREX and long-term institutional research plan of the Institute of Botany AS CR AV0Z600050516 and the Masaryk University. Prof. Martin Backor (Safarik University in Kosice) is kindly ac-knowledged for providing the strains Trebouxia erici and T. glomerata (Backor). References Elster, J. , Benson, E.E. Life in the polar terrestrial environment with a focus on algae and cyanobacteria, in Fuller, B.J., Lane, N. , Benson, E.E. (Eds), Life in the Frozen State. CRC Press, pp. 111-150, 2004. Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M. , Hestmark, G. Cold resistance and metabolic activity of lichens below 0 ° C. Adv. Space Res. 18, 119-128, 1996. Kviderova, J. Characterization of the community of snow algae and their photochemical performance in situ in the Giant Mountains, Czech Republic. Arct. Antarct. Alp. Res. accepted, 2010. Nedbalova, L., Kocianova, M. , Lukavsky, J. Ecology of snow algae in the Giant Mountains and their relation to cryoseston in Europe. Opera Corcontica 45, 59-68, 2008.

  15. A search for cold water rings

    NASA Technical Reports Server (NTRS)

    Cheney, R. E.

    1981-01-01

    SAR imagery obtained by Seasat in the Sargasso Sea during 1978 is examined for cold ring signatures. One orbit on August 26 is thought to have imaged the edge of a cold ring, although the ring's position was not well known at the time. During another orbit on September 23, drifting buoy and expendable bathythermography data furnished conclusive evidence that the ring was centered directly in the SAR swath. Although some suggestive patterns are visible in the images, it is not clear that cold rings can be identified by SAR, even though dynamically similar features, such as the Gulf Stream and warm rings, can be accurately detected. The suggestion is made that cold rings may be imaged inadequately because of their lack of surface temperature gradient.

  16. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  17. Cold-induced changes in amphibian oocytes

    SciTech Connect

    Angelier, N.; Moreau, N.A.; N'Da, E.A.; Lautredou, N.F. )

    1989-08-01

    Female Pleurodeles waltl newts (Amphibia, urodele), usually raised at 20 degrees C, were submitted to low temperatures; oocytes responded to this cold stress by drastic changes both in lampbrush chromosome structure and in protein pattern. Preexisting lateral loops of lampbrush chromosomes were reduced in size and number, while cold-induced loops which were tremendously developed, occurred on defined bivalents of the oocyte at constant, reproducible sites. A comparison of protein patterns in control and stressed oocytes showed two main differences: in stressed oocytes, overall protein synthesis was reduced, except for a set of polypeptides, the cold-stress proteins; second, there was a striking inversion of the relative amount of beta- and gamma-actin found in the oocyte nucleus before and after cold stress. Whereas beta-actin was the predominant form in control oocytes, gamma-actin became the major form in stressed oocytes.

  18. Cold vacuum drying facility design requirements

    SciTech Connect

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  19. Soap Bubbles on a Cold Day.

    ERIC Educational Resources Information Center

    Waiveris, Charles

    1994-01-01

    Discusses the effects of blowing bubbles in extremely cold weather. Describes the freezing conditions of the bubbles and some physical properties. Suggests using the activity with all ages of students. (MVL)

  20. Cold acclimation in food-restricted rats.

    PubMed

    Puerta, M L; Abelenda, M

    1987-01-01

    Food intake, body weight and brown adipose tissue (BAT) mass and composition of rats exposed at 6 degrees C either with food ad libitum or food-restricted were compared with those of rats in the thermoneutral zone, with food ad libitum. Cold acclimation with food ad libitum increases food intake and prevents body weight gains. IBAT (interscapular BAT) increases its mass and changes its composition after 3 weeks of cold exposure. Cold acclimation with food restriction produces a progressive decrease in body weight. IBAT mass increases after 3 weeks but changes in composition occur sooner. It is concluded that the overfeeding that accompanies cold acclimation is not necessary for non-shivering thermogenesis in BAT.

  1. The Cold War: A Yearbook Perspective.

    ERIC Educational Resources Information Center

    Graebner, William

    1986-01-01

    Shows how the photographs, valedictorian addresses, nicknames, cartoons and other material contained in high school yearbook can yield information regarding the world views of Americans at the start of the Cold War. (JDH)

  2. Halting Hypothermia: Cold Can Be Dangerous

    MedlinePlus

    ... who spends much time outdoors in very cold weather can get hypothermia. But hypothermia can happen anywhere— ... just outside and not just in bitter winter weather. It can strike when temperatures are cool—for ...

  3. Compatible Transfusion Therapy for Paroxysmal Cold Hemoglobinuria

    ERIC Educational Resources Information Center

    Rausen, Aaron R.; And Others

    1975-01-01

    Presented are case histories of two children, ages 2 and 4 years, with paroxysmal cold hemoglobinuria (PCH, a syndrome characterized by acute intravascular hemoglobin dissolution and hemoglobin in the urine). (Author/CL)

  4. Caring for Your Child's Cold or Flu

    MedlinePlus

    ... Print Share Caring for Your Child’s Cold or Flu Page Content ​Unfortunately, there's no cure for the ... Liquid Medicine Safely for more information. Prevent & Treatment: Flu vaccine Children 6 months or older should get ...

  5. Cold-War Echoes in American Children.

    ERIC Educational Resources Information Center

    Winn, Ira Jay

    1984-01-01

    The author believes a cold war ideology permeates our culture and poisons the minds of youth. The challenge to education is to awaken people to a historical and global perspective and raise public consciousness of the necessity for peace. (MD)

  6. Cold and wet at the roots of U.S. Cordilleran high elevation

    NASA Astrophysics Data System (ADS)

    Berry, M. A.; Lowry, A. R.; Schutt, D.; Kanda, R. V. S.; Buehler, J. S.

    2015-12-01

    Mechanisms for high elevation and large-scale deformation of the western U.S. Cordillera have long been a source of controversy. Lowry and Pérez-Gussinyé (2011) suggested abundant quartz in the Cordilleran crust, evidenced by low seismic velocity ratio vP/vS, might be one clue. Here we examine thermal transfer processes to look for additional insight. We calculate temperature at the Moho by modeling the conductive 1D geotherm from observed surface heat flow, and compare these estimates to measurements derived from Pn velocity tomography and mineral physics (Schutt et al., 2015). Moho temperature is moderately sensitive to assumptions regarding crustal radiogenic heating and thermal conductivity, but differences between modeled and measured temperatures exceed the range consistent with reasonable variations in these parameters. Residual (measured minus modeled) Moho temperatures are "cold" in regions deformed during the Laramide flat-slab subduction event. A simple model of transient cooling by cold subducting slab at the base of the lithosphere chills the Moho by a small fraction (<20%) of the observed anomaly. Intriguingly, the "cold-Moho anomaly" strongly correlates (R = 0.71) to high elevation (opposite the relationship expected) and also correlates with crustal vP/vS, which in turn correlates to surface heat flow. Recent analyses (Guerri et al., 2015) suggest low crustal vP/vS and density may signal hydration. Geotherm models are sensitive to assumed advective thermal transfer, and we modeled advection consistent with lithospheric extensional strain (i.e., increasing with depth). If instead volatile transfer dominates advection, geotherm modeling predicts a better match of surface heat flow to Moho temperature. We hypothesize that the "cold-Moho anomaly" actually reflects enhanced volatile flux and advective heat transfer from fluids derived from Laramide subduction, and associated volumetric expansion of the crust contributes to high elevation.

  7. Stochastic gravitational wave background from cold dark matter halos

    SciTech Connect

    Carbone, Carmelita; Baccigalupi, Carlo; Matarrese, Sabino

    2006-03-15

    The current knowledge of cosmological structure formation suggests that Cold Dark Matter (CDM) halos possess a nonspherical density profile, implying that cosmic structures can be potential sources of gravitational waves via power transfer from scalar perturbations to tensor metric modes in the nonlinear regime. By means of a previously developed mathematical formalism and a triaxial collapse model, we numerically estimate the stochastic gravitational-wave background generated by CDM halos during the fully nonlinear stage of their evolution. Our results suggest that the energy density associated with this background is comparable to that produced by primordial tensor modes at frequencies {nu}{approx_equal}10{sup -18}-10{sup -17} Hz if the energy scale of inflation is V{sup 1/4}{approx_equal}1-2x10{sup 15} GeV, and that these gravitational waves could give rise to several cosmological effects, including secondary CMB anisotropy and polarization.

  8. Toxicity evaluation and hazard review Cold Smoke

    SciTech Connect

    Archuleta, M.M.; Stocum, W.E.

    1993-12-01

    Cold Smoke is a dense white smoke produced by the reaction of titanium tetrachloride and aqueous ammonia aerosols. Early studies on the toxicity of this nonpyrotechnically generated smoke indicated that the smoke itself is essentially non-toxic (i.e. exhibits to systemic toxicity or organ damage due to exposure) under normal deployment conditions. The purpose of this evaluation was to review and summarize the recent literature data available on the toxicity of Cold Smoke, its chemical constituents, and its starting materials.

  9. Properties of the Central American cold surge

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.; Reding, Philip J.; Zhang, Yuxia

    1993-01-01

    The Central American cold surge (CACS) is a frontal incursion from the United States into Central America and resembles the East Asian cold surge. They occur more frequently than analyzed by NMC or by published results, based on our observations between 1979 and 1990. Climatology and structure are quantified, based on surface and upper air stations throughout Central America and satellite products from GOES visible and infrared sensors and SSM/I precipitable water and rain rate sensors.

  10. Probing Nuclear Structure by Cold Emission Processes

    SciTech Connect

    Delion, D. S.

    2008-01-24

    Cold emission processes (one and two-proton emission, alpha-decay, heavy cluster emission and cold binary or ternary fission) are presently among important tools to investigate the structure of rare nuclei far from the stability line. We analyze the coupling between collective excitations of the emitted fragments and the relative motion, in terms of the coupled channels technique. It turns out that partial decay widths to excited states of emitted fragments are very sensitive to the nuclear structure details.

  11. Human adaptation to repeated cold immersions.

    PubMed Central

    Golden, F S; Tipton, M J

    1988-01-01

    1. The present investigation was designed to examine human adaptation to intermittent severe cold exposure and to assess the effect of exercise on any adaptation obtained. 2. Sixteen subjects were divided into two equal groups. Each subject performed ten head-out immersions; two into thermoneutral water which was then cooled until they shivered vigorously, and eight into water at 15 degrees C for 40 min. During the majority of the 15 degrees C immersions, one group (dynamic group) exercised whilst the other (static group) rested. 3. Results showed that both groups responded to repeated cold immersions with a reduction in their initial responses to cold. The time course of these reductions varied, however, between responses. 4. Only the static group developed a reduced metabolic response to prolonged resting immersion. 5. It is concluded that repeated resting exposure to cold was the more effective way of producing an adaptation. The performance of exercise during repeated exposure to cold prevented the development of an adaptive reduction in the metabolic response to cold during a subsequent resting immersion. In addition, many of the adaptations obtained during repeated resting exposure were overridden or masked during a subsequent exercising immersion. PMID:3411500

  12. Genetic AVP deficiency abolishes cold-induced diuresis but does not attenuate cold-induced hypertension.

    PubMed

    Sun, Zhongjie

    2006-06-01

    Chronic cold exposure causes hypertension and diuresis. The aim of this study was to determine whether vasopressin (AVP) plays a role in cold-induced hypertension and diuresis. Two groups of Long-Evans (LE) and two groups of homozygous AVP-deficient Brattleboro (VD) rats were used. Blood pressure (BP) was not different among the four groups during a 2-wk control period at room temperature (25 degrees C, warm). After the control period, one LE group and one VD group were exposed to cold (5 degrees C); the remaining groups were kept at room temperature. BP and body weight were measured weekly during exposure to cold. Food intake, water intake, urine output, and urine osmolality were measured during weeks 1, 3, and 5 of cold exposure. At the end of week 5, all animals were killed and blood was collected for measurement of plasma AVP. Kidneys were removed for measurement of renal medulla V2 receptor mRNA and aquaporin-2 (AQP-2) protein expression. BP of LE and VD rats increased significantly by week 2 of cold exposure and reached a high level by week 5. BP elevations developed at approximately the same rate and to the same degree in LE and VD rats. AVP deficiency significantly increased urine output and solute-free water clearance and decreased urine osmolality. Chronic cold exposure increased urine output and solute-free water clearance and decreased urine osmolality in LE rats, indicating that cold exposure caused diuresis in LE rats. Cold exposure failed to affect these parameters in VD rats, suggesting that the AVP system is responsible for cold-induced diuresis. Cold exposure did not alter plasma AVP in LE rats. Renal medulla V2 receptor mRNA and AQP-2 protein expression levels were decreased significantly in the cold-exposed LE rats, suggesting that cold exposure inhibited renal V2 receptors and AVP-inducible AQP-2 water channels. We conclude that 1) AVP may not be involved in the pathogenesis of cold-induced hypertension, 2) the AVP system plays a critical role

  13. Experiences issues with plastic parts at cold temperatures

    NASA Technical Reports Server (NTRS)

    Sandor, Mike; Agarwal, Shri

    2005-01-01

    Missions to MARS/planets/asteroids require electronic parts to operate and survive at extreme cold conditions. At extreme cold temperatures many types of cold related failures can occur. Office 514 is currently evaluating plastic parts under various cold temperature conditions and applications. Evaluations, screens, and qualifications are conducted on flight parts.

  14. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  15. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  16. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  17. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  18. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  19. US conventional arms transfer policy. Strategy research project

    SciTech Connect

    Langhorst, R.H.

    1996-04-15

    Millions of people around the world have been killed by conventional arms since the end of World War II. If increasing access to conventional arms is partly responsible for political and military aggression in post-Cold War Europe, what should be the United States` response. This study explores the new US Conventional Arms Transfer Policy of February 1995 in terms of ends1 ways and means and its linkages to US National Security and National Military Strategies. Analysis focuses mainly on post- Cold War Europe, providing examples of multilateral arms control successes and recommendations for US policy implementation.

  20. New description of Io's cold plasma torus

    NASA Astrophysics Data System (ADS)

    Herbert, Floyd; Schneider, Nicholas M.; Dessler, A. J.

    2008-01-01

    Despite more than 25 years of study of the Io plasma torus, its generation, dynamics, and even its spatial structure are still poorly understood, especially in the case of the inner, cold region of the torus. To remedy this lack, we analyzed ground-based coronagraphic images of the torus in S+ 6371 Å emission. We derived cold torus properties by modeling and removing these images' inherent line-of-sight integration and atmospheric blurring, using new deconvolution techniques, obtaining high-spatial-resolution estimates of the three-dimensional (3-D) S+ distributions. From these 3-D distributions, we discovered that the cold torus is washer-shaped, with a roughly constant vertical thickness ≤0.25 Jovian radius (RJ), and a radial width that varies from 0.6 to 0.9 RJ. The cold torus is separated by a 0.1-0.2 RJ-wide low-density region, or "gap," from the "ribbon" region which lies just outside it. The small, approximately constant washer height implies an ion parallel temperature (T∥) of ˜3 eV, compared with a ribbon T∥ that varies from about 20 to 50 eV as a function of Jovian magnetic longitude (λIII). The washer has a distinct inner edge, not seen before, whose jovicentric distance varies with λIII so as to create the variable cold torus width. Thus this inner edge is concentric with neither Jupiter nor the rest of the torus. We also confirm the existence of a tilt between the midplanes of the ribbon and cold torus, with an orientation that cannot be produced by the magnetic mirror force acting on ion temperature anisotropy. The structure and composition of the gap and cold torus are best explained by a model in which a small amount of warm S+ plasma diffuses inwards while radiatively cooling. While still warm, its distribution over a large scale height keeps its density small, forming the gap. After sufficient cooling, it collapses to the centrifugal equator, where its higher density and continued inward diffusion make it more visible as the cold torus

  1. How cold pool triggers deep convection?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2014-05-01

    The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed

  2. Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii*

    PubMed Central

    Valledor, Luis; Furuhashi, Takeshi; Hanak, Anne-Mette; Weckwerth, Wolfram

    2013-01-01

    Chlamydomonas reinhardtii is one of the most important model organisms nowadays phylogenetically situated between higher plants and animals (Merchant et al. 2007). Stress adaptation of this unicellular model algae is in the focus because of its relevance to biomass and biofuel production. Here, we have studied cold stress adaptation of C. reinhardtii hitherto not described for this algae whereas intensively studied in higher plants. Toward this goal, high throughput mass spectrometry was employed to integrate proteome, metabolome, physiological and cell-morphological changes during a time-course from 0 to 120 h. These data were complemented with RT-qPCR for target genes involved in central metabolism, signaling, and lipid biosynthesis. Using this approach dynamics in central metabolism were linked to cold-stress dependent sugar and autophagy pathways as well as novel genes in C. reinhardtii such as CKIN1, CKIN2 and a hitherto functionally not annotated protein named CKIN3. Cold stress affected extensively the physiology and the organization of the cell. Gluconeogenesis and starch biosynthesis pathways are activated leading to a pronounced starch and sugar accumulation. Quantitative lipid profiles indicate a sharp decrease in the lipophilic fraction and an increase in polyunsaturated fatty acids suggesting this as a mechanism of maintaining membrane fluidity. The proteome is completely remodeled during cold stress: specific candidates of the ribosome and the spliceosome indicate altered biosynthesis and degradation of proteins important for adaptation to low temperatures. Specific proteasome degradation may be mediated by the observed cold-specific changes in the ubiquitinylation system. Sparse partial least squares regression analysis was applied for protein correlation network analysis using proteins as predictors and Fv/Fm, FW, total lipids, and starch as responses. We applied also Granger causality analysis and revealed correlations between proteins and

  3. Asymptomatic myocardial ischemia following cold provocation

    SciTech Connect

    Shea, M.J.; Deanfield, J.E.; deLandsheere, C.M.; Wilson, R.A.; Kensett, M.; Selwyn, A.P.

    1987-09-01

    Cold is thought to provoke angina in patients with coronary disease either by an increase in myocardial demand or an increase in coronary vascular resistance. We investigated and compared the effects of cold pressor stimulation and symptom-limited supine bicycle exercise on regional myocardial perfusion in 35 patients with stable angina and coronary disease and in 10 normal subjects. Regional myocardial perfusion was assessed with positron emission tomography and rubidium-82. Following cold pressor stimulation 24 of 35 patients demonstrated significant abnormalities of regional myocardial perfusion with reduced cation uptake in affected regions of myocardium: 52 +/- 9 to 43 +/- 9 (p less than 0.001 vs normal subjects). Among these 24 patients only nine developed ST depression and only seven had angina. In contrast, 29 of 35 patients underwent supine exercise, and abnormal regional myocardial perfusion occurred in all 29, with a reduction in cation intake from 48 +/- 10 to 43 +/- 14 (p less than 0.001 vs normal subjects). Angina was present in 27 of 29 and ST depression in 25 of 29. Although the absolute decrease in cation uptake was somewhat greater following cold as opposed to exercise, the peak heart rate after cold was significantly lower than that after exercise (82 +/- 12 vs 108 +/- 16 bpm, p less than 0.05). Peak systolic blood pressures after cold and exercise were similar (159 +/- 24 vs 158 +/- 28). Thus, cold produces much more frequent asymptomatic disturbances of regional myocardial perfusion in patients with stable angina and coronary disease than is suggested by pain or ECG changes.

  4. Cold War Paradigms and the Post-Cold War High School History Curriculum.

    ERIC Educational Resources Information Center

    McAninch, Stuart A.

    1995-01-01

    Discusses how Cold War ideological models provide a way to examine the U.S. role in world affairs. Discusses and compares on the writings of Paul Gagnon and Noam Chomsky on this topic. Concludes that students should stand outside both models to develop a meaningful perspective on the U.S. role during the Cold War. (CFR)

  5. Cold-hearted or cool-headed: physical coldness promotes utilitarian moral judgment

    PubMed Central

    Nakamura, Hiroko; Ito, Yuichi; Honma, Yoshiko; Mori, Takuya; Kawaguchi, Jun

    2014-01-01

    In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1) participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2) participants had a high-level construal mindset and focused on abstract goals (e.g., save many); or (3) there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the “cool-headed” deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being “cold-hearted,” reduced empathetic concern, and facilitated utilitarian moral judgments. PMID:25324800

  6. Cold Hole Over Jupiter's Pole

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations with two NASA telescopes show that Jupiter has an arctic polar vortex similar to a vortex over Earth's Antarctica that enables depletion of Earth's stratospheric ozone.

    These composite images of Jupiter's north polar region from the Hubble Space Telescope (right) and the Infrared Telescope Facility (left) show a quasi-hexagonal shape that extends vertically from the stratosphere down into the top of the troposphere. A sharp temperature drop, compared to surrounding air masses, creates an eastward wind that tends to keep the polar atmosphere, including the stratospheric haze, isolated from the rest of the atmosphere.

    The linear striations in the composite projections are artifacts of the image processing. The area closest to the pole has been omitted because it was too close to the edge of the planet in the original images to represent the planet reliably.

    The composite on the right combines images from the Wide Field and Planetary Camera 2 of the Hubble Space Telescope taken at a wavelength of 890 nanometers, which shows stratospheric haze particles.

    The sharp boundary and wave-like structure of the haze layer suggest a polar vortex and a similarity to Earth's stratospheric polar clouds. Images of Jupiter's thermal radiation clinch that identification. The composite on the left, for example, is made from images taken with Jet Propulsion Laboratory's Mid-Infrared Large-Well Imager at NASA's Infrared Telescope Facility at a wavelength of 17 microns. It shows polar air mass that is 5 to 6 degrees Celsius (9 to 10 degrees Fahrenheit) colder than its surroundings, with the same border as the stratospheric haze. Similar observations at other infrared wavelengths show the cold air mass extends at least as high as the middle stratosphere down to the top of the troposphere.

    These images were taken Aug. 11 through Aug. 13, 1999, near a time when Jupiter's north pole was most visible from Earth. Other Infrared Telescope Facility images at

  7. Experiments in cold atom optics towards precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Aveline, David C.

    Atom optics has been a highly active field of research with many scientific breakthroughs over the past two decades, largely due to successful advances in laser technology, microfabrication techniques, and the development of laser cooling and trapping of neutral atoms. This dissertation details several atom optics experiments with the motivation to develop tools and techniques for precision atom wave interferometry. It provides background information about atom optics and the fundamentals behind laser cooling and trapping, including basic techniques for cold gas thermometry and absorptive detection of atoms. A brief overview of magnetic trapping and guiding in tight wire-based traps is also provided before the experimental details are presented. We developed a novel laser source of 780 nm light using frequency-doubled 1560 nm fiber amplifier. This laser system provided up to a Watt of tunable frequency stabilized light for two Rb laser cooling and trapping experiments. One system generates Bose-Einstein condensates in an optical trap while the second is based on atom chip magnetic traps. The atom chip system, detailed in this thesis, was designed and built to develop the tools necessary for transport and loading large numbers of cold atoms and explore the potential for guided atom interferometry. Techniques and results from this experiment are presented, including an efficient magnetic transport and loading method to deliver cold atom to atom chip traps. We also developed a modeling tool for the magnetic fields formed by coiled wire geometries, as well as planar wire patterns. These models helped us design traps and determine adiabatic transportation of cold atoms between macro-scale traps and micro-traps formed on atom chips. Having achieved near unity transfer efficiency, we demonstrated that this approach promises to be a consistent method for loading large numbers of atoms into micro-traps. Furthermore, we discuss an in situ imaging technique to investigate

  8. Age and ethnic differences in cold weather and contagion theories of colds and flu.

    PubMed

    Sigelman, Carol K

    2012-02-01

    Age and ethnic group differences in cold weather and contagion or germ theories of infectious disease were explored in two studies. A cold weather theory was frequently invoked to explain colds and to a lesser extent flu but became less prominent with age as children gained command of a germ theory of disease. Explanations of how contact with other people causes disease were more causally sophisticated than explanations of how cold weather causes it. Finally, Mexican American and other minority children were more likely than European American children to subscribe to cold weather theories, a difference partially but not wholly attributable to ethnic group differences in parent education. Findings support the value of an intuitive or naïve theories perspective in understanding developmental and sociocultural differences in concepts of disease and in planning health education to help both children and their parents shed misconceptions so that they can focus on effective preventive actions.

  9. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    SciTech Connect

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  10. Assessment of cold stress in outdoor work.

    PubMed

    Anttonen, H; Virokannas, H

    1994-01-01

    The evaluation of cold stress in working life was done in 13, mainly outdoor, occupations and 143 workers using local temperatures, body cooling and thermal sensations. The subjects in the study were young, healthy men and they wore the type of winter clothing generally used in those ambient temperatures (+6...-29 degrees C), for in a work load of from 112 to 480 W. Local temperatures on finger skin indicated that manual dexterity was often reduced in outdoor work. A risk of frostbite was frequently found on the cheek and the wind chill index predicted the risk quite well. Body cooling was often temporarily too high when measured by heat debt and mean skin temperature. Thermal sensations were cool or cold occasionally in 28% of the workers interviewed. The insulation of clothing worn was often lower than the IREQmin-value recommends. The results showed that in outdoor work in winter time cold stress frequently reduced (70%) working ability at least for a short period. Mean skin temperature seems to be, in practice, a useful indicator for body cooling and the IREQmin-value was suitable, especially in light work, to indicate body cooling. A very sensitive factor for the expression of cold stress was finger temperature, at least as an indicator of finger dexterity. Due to the adverse health effects found the cold stress should also be evaluated more systematically in occupational health and safety with health examinations, with protective clothing and technical preventive means. PMID:8049001

  11. Assessment of cold stress in outdoor work.

    PubMed

    Anttonen, H; Virokannas, H

    1994-01-01

    The evaluation of cold stress in working life was done in 13, mainly outdoor, occupations and 143 workers using local temperatures, body cooling and thermal sensations. The subjects in the study were young, healthy men and they wore the type of winter clothing generally used in those ambient temperatures (+6...-29 degrees C), for in a work load of from 112 to 480 W. Local temperatures on finger skin indicated that manual dexterity was often reduced in outdoor work. A risk of frostbite was frequently found on the cheek and the wind chill index predicted the risk quite well. Body cooling was often temporarily too high when measured by heat debt and mean skin temperature. Thermal sensations were cool or cold occasionally in 28% of the workers interviewed. The insulation of clothing worn was often lower than the IREQmin-value recommends. The results showed that in outdoor work in winter time cold stress frequently reduced (70%) working ability at least for a short period. Mean skin temperature seems to be, in practice, a useful indicator for body cooling and the IREQmin-value was suitable, especially in light work, to indicate body cooling. A very sensitive factor for the expression of cold stress was finger temperature, at least as an indicator of finger dexterity. Due to the adverse health effects found the cold stress should also be evaluated more systematically in occupational health and safety with health examinations, with protective clothing and technical preventive means.

  12. Cold atmospheric plasma in cancer therapy

    SciTech Connect

    Keidar, Michael; Shashurin, Alex; Volotskova, Olga; Ann Stepp, Mary; Srinivasan, Priya; Sandler, Anthony; Trink, Barry

    2013-05-15

    Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10{sup 8} electrons, the electrical field in the head vicinity is about 10{sup 7} V/m, and the electron density of the streamer column is about 10{sup 19} m{sup −3}. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

  13. Two cold-season derechoes in Europe

    NASA Astrophysics Data System (ADS)

    Gatzen, Christoph; Púčik, Tomas; Ryva, David

    2011-06-01

    In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.

  14. Cold plasma inactivation of chronic wound bacteria.

    PubMed

    Mohd Nasir, N; Lee, B K; Yap, S S; Thong, K L; Yap, S L

    2016-09-01

    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here.

  15. Characterising Cold Weather for the UK mainland

    NASA Astrophysics Data System (ADS)

    Fradley, Kate; Dacre, Helen; Ambaum, Maarten

    2016-04-01

    Excess Winter Mortality is a peak in the population's mortality rate during winter months and is correlated with low outdoor temperatures. Excess Winter Mortality has adverse impacts, including increased demand on health services. The management of resources for such increased demands maybe improved through incorporation of weather forecasting information to advanced warnings. For the UK, prolonged cold periods are associated with easterly advection, and high pressure systems. Characterisation of the synoptic conditions associated with cold periods is important to understand forecast performance. Principal Component Analysis has been used with mean sea level pressure from 35 years of ERA interim reanalysis to capture synoptic variability on a continuous scale. Cold events in the North and South of the UK mainland have been identified as having different synoptic variability using this method. Furthermore extending the Principal Component Analysis to investigate the skill of forecasts has identified systematic under prediction of some cold weather synoptic conditions. Ensemble forecasts are used to quantify the uncertainty associated with these cold weather synoptic conditions. This information maybe be used to improve the value of existing weather warnings.

  16. Rapid cold hardening increases cold and chilling tolerances more than acclimation in the adults of the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae).

    PubMed

    Ju, Rui-Ting; Xiao, Yu-Yu; Li, Bo

    2011-11-01

    The sycamore lace bug, Corythucha ciliata is a new, invasive pest of Platanus trees in China. Although C. ciliata is often subjected to acute low temperatures in early winter and spring in northern and eastern China, the cold tolerance of C. ciliata has not been well studied. The objectives of this study were to determine whether adults of C. ciliata are capable of rapid cold hardening (RCH), and to compare the benefits of RCH vs. cold acclimation (ACC) in the laboratory. When the adult females incubated at 26°C were transferred directly to the discriminating temperature (-12°C) for 2 h, survival was only 22%. However, exposure to 0°C for 4 h before transfer to -12°C for 2 h induced RCH, i.e., increased survival to 68%. RCH could also be induced by gradual cooling of the insects at rates between 0.1 and 0.25°C min(-1). The protection against cold shock obtained through RCH at 0°C for 4 h was lost within 1h if the adults were returned to 26°C before exposure to -12°C. Survival at both -12 and -5°C was greater for RCH-treated than for ACC-treated adults (for ACC, adults were kept at 15°C for 5 days), and the lethal temperature (2 h exposure) was lower for RCH-treated than for ACC-treated adults. The results suggest that RCH may help C. ciliata survive the acute low temperatures that often occur in early winter and early spring in northern and eastern China.

  17. Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter.

    PubMed

    Rizzello, Antonia; Romano, Alessandro; Kottra, Gabor; Acierno, Raffaele; Storelli, Carlo; Verri, Tiziano; Daniel, Hannelore; Maffia, Michele

    2013-04-23

    Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. PMID:23569229

  18. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments

    PubMed Central

    Dziewit, Lukasz; Bartosik, Dariusz

    2014-01-01

    Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such “short-term” evolution is often enabled by plasmids—extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species

  19. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments.

    PubMed

    Dziewit, Lukasz; Bartosik, Dariusz

    2014-01-01

    Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such "short-term" evolution is often enabled by plasmids-extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries.

  20. Scaling up: human genetics as a Cold War network.

    PubMed

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology.

  1. Scaling up: human genetics as a Cold War network.

    PubMed

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. PMID:24954362

  2. Normal modes of confined cold ionic systems

    SciTech Connect

    Schiffer, J.P.; Dubin, D.H.

    1995-08-01

    The normal modes of a cloud of confined ions forming a strongly-correlated plasma were investigated. The results of molecular-dynamics simulations were compared to predictions of a cold fluid mode. Mode frequencies are observed to shift slightly compared to the cold fluid predictions, and the modes are also observed to damp in time. Simulations also reveal a set of torsional oscillations which have no counterpart in cold fluid theory. The frequency shift, damping, and torsional effects are compared to a model that treats trapped plasmas as a visco-elastic spheroid. It may be possible to measure high-frequency bulk and shear moduli of a strongly-correlated plasma from mode excitation experiments on trapped non-neutral plasmas. An example of the results of the calculation is presented.

  3. COLD-PCR: Applications and Advantages.

    PubMed

    Zuo, Zhuang; Jabbar, Kausar J

    2016-01-01

    Co-amplification at lower denaturation temperature-based polymerase chain reaction (COLD-PCR) is a single-step amplification method that results in the enhancement of both known and unknown minority alleles during PCR, irrespective of mutation type and position. This method is based on exploitation of the critical temperature, Tc, at which mutation-containing DNA is preferentially melted over wild type. COLD-PCR can be a good strategy for mutation detection in specimens with high nonneoplastic cell content, small specimens in which neoplastic cells are difficult to micro-dissect and therefore enrich, and whenever a mutation is suspected to be present but is undetectable using conventional PCR and sequencing methods. We describe in this chapter our COLD-PCR-based pyrosequencing method for KRAS mutation detection in various clinical samples using DNA extracted from either fresh or fixed paraffin-embedded tissue specimens.

  4. Improved cold-neutron prompt gamma spectrometer

    SciTech Connect

    Lindstrom, R.M.; Paul, R.L.; Heald, A.E.; Langland, J.K.

    1996-12-31

    The cold-neutron prompt-gamma activation analysis (PGAA) spectrometer at the National Institute of Standard and Technology (NIST) has been rebuilt to take advantage of the newly installed LH{sub 2} cold neutron source at the NIST reactor. The new source, a 32-cm-o.d., 2-cm-thick spherical shell of liquid hydrogen, produces a higher neutron density at longer wave-length than did the D{sub 2}O ice source that has been in use since 1987. At the PGAA spectrometer, located 41 m from the cold source on neutron guide NG7, the effective neutron fluence rate (using s, = 98.6 b for gold) was measured to be 8 x 10{sup 8} cm{sup -2}{center_dot}s{sup -1}, a factor of 3 higher at the same reactor power (20 MW) than before.

  5. Radio frequency field assisted cold collisions

    NASA Astrophysics Data System (ADS)

    Ding, Yijue; D'Incao, Jose; Greene, Chris

    2016-05-01

    The radio frequency (RF) field is a promising but less developed tool to control cold collisions. From the few-body perspective, we study cold atom collisions in an external magnetic field and a single-color RF field. We employ the multi-channel quantum defect theory and the hyperspherical toolkit to solve the two-body and three-body Schrödinger equations. Our results show that RF fields can effectively control the two-body scattering length through Feshbach resonances. Such RF induced Feshbach resonances can be applied to quenching experiments or spinor condensates. Analogous to photo association, RF fields can also associate cold atoms into molecules with a reasonable rate. Moreover, we will discuss the feasibility of using RF fields to control three-body recombination, which may improve the experimental timescale by suppressing three-body losses. This work is supported by the US National Science Foundation.

  6. Storage of Heat, Cold and Electricity.

    PubMed

    Stamatiou, Anastasia; Ammann, Andreas; Abdon, Andreas; Fischer, Ludger J; Gwerder, Damian; Worlitschek, Jörg

    2015-01-01

    A promising energy storage system is presented based on the combination of a heat pump, a heat engine, a hot and a cold storage. It can be operated as a pure bulk electricity storage (alternative to Pumped Heat Electrical Storage (PHES)/Compressed Air Energy Storage (CAES)) or as combined storage of heat, cold and electricity. Both variations have been evaluated using a steady state, thermodynamic model and two promising concepts are proposed: A transcritical CO(2) cycle for the pure electricity storage and a subcritical NH(3) cycle for combined storage of electricity, heat and cold. Parametric studies are used to evaluate the influence of different parameters on the roundtrip efficiency of the storage system. PMID:26842329

  7. Sympathetic cooling of nanospheres with cold atoms

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  8. Resource Prospector Propulsion Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Pederson, Kevin; Dervan, Melanie; Holt, Kimberly; Jernigan, Frankie; Trinh, Huu; Flores, Sam

    2014-01-01

    For the past year, NASA Marshall Space Flight Center and Johnson Space Center have been working on a government version of a lunar lander design for the Resource Prospector Mission. A propulsion cold flow test system, representing an early flight design of the propulsion system, has been fabricated. The primary objective of the cold flow test is to simulate the Resource Prospector propulsion system operation through water flow testing and obtain data for anchoring analytical models. This effort will also provide an opportunity to develop a propulsion system mockup to examine hardware integration to a flight structure. This paper will report the work progress of the propulsion cold flow test system development and test preparation. At the time this paper is written, the initial waterhammer testing is underway. The initial assessment of the test data suggests that the results are as expected and have a similar trend with the pretest prediction. The test results will be reported in a future conference.

  9. Storage of Heat, Cold and Electricity.

    PubMed

    Stamatiou, Anastasia; Ammann, Andreas; Abdon, Andreas; Fischer, Ludger J; Gwerder, Damian; Worlitschek, Jörg

    2015-01-01

    A promising energy storage system is presented based on the combination of a heat pump, a heat engine, a hot and a cold storage. It can be operated as a pure bulk electricity storage (alternative to Pumped Heat Electrical Storage (PHES)/Compressed Air Energy Storage (CAES)) or as combined storage of heat, cold and electricity. Both variations have been evaluated using a steady state, thermodynamic model and two promising concepts are proposed: A transcritical CO(2) cycle for the pure electricity storage and a subcritical NH(3) cycle for combined storage of electricity, heat and cold. Parametric studies are used to evaluate the influence of different parameters on the roundtrip efficiency of the storage system.

  10. Cold gas in cluster cores: global stability analysis and non-linear simulations of thermal instability

    NASA Astrophysics Data System (ADS)

    Choudhury, Prakriti Pal; Sharma, Prateek

    2016-04-01

    We perform global linear stability analysis and idealized numerical simulations in global thermal balance to understand the condensation of cold gas from hot/virial atmospheres (coronae), in particular the intracluster medium (ICM). We pay particular attention to geometry (e.g. spherical versus plane-parallel) and the nature of the gravitational potential. Global linear analysis gives a similar value for the fastest growing thermal instability modes in spherical and Cartesian geometries. Simulations and observations suggest that cooling in haloes critically depends on the ratio of the cooling time to the free-fall time (tcool/tff). Extended cold gas condenses out of the ICM only if this ratio is smaller than a threshold value close to 10. Previous works highlighted the difference between the nature of cold gas condensation in spherical and plane-parallel atmospheres; namely, cold gas condensation appeared easier in spherical atmospheres. This apparent difference due to geometry arises because the previous plane-parallel simulations focused on in situ condensation of multiphase gas but spherical simulations studied condensation anywhere in the box. Unlike previous claims, our non-linear simulations show that there are only minor differences in cold gas condensation, either in situ or anywhere, for different geometries. The amount of cold gas depends on the shape of tcool/tff; gas has more time to condense if gravitational acceleration decreases towards the centre. In our idealized plane-parallel simulations with heating balancing cooling in each layer, there can be significant mass/energy/momentum transfer across layers that can trigger condensation and drive tcool/tff far beyond the critical value close to 10.

  11. Advanced Heat Transfer and Thermal Storage Fluids

    SciTech Connect

    Moens, L.; Blake, D.

    2005-01-01

    The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

  12. The use of cold plasma technology to reduce carryover in screening assays.

    PubMed

    Akhlaq, Mohammed; Rosethorne, Elizabeth M; Sattikar, Afrah; Kent, Toby C

    2013-08-01

    The accurate transfer of biological reagents represents a fundamental step in the drug screening process, and the elimination of carryover is critical for the generation of accurate measurements of biological activity. The introduction of automated liquid robotics into screening laboratories has transformed the drug screening process, enabling accurate and reproducible transfer of liquids to become a high-throughput activity, but has also introduced a new challenge for drug discoverers: to establish screening workflows that limit analyte carryover for the generation of high-quality screening data. The widespread use of pipetting tips on automated liquid handlers often necessitates the use of optimized wash protocols for removing contaminants and frequently requires the use and disposal of large quantities of organic solvents. Furthermore, many chemical and biological reagents are recalcitrant to removal from pipetting tips by treatment with organic solvents. The use of cold atmospheric plasma technology provides an alternative approach for removal of contaminants and offers many advantages over traditional decontamination protocols commonly used during biological screening. This report describes the evaluation of a cold plasma tip-cleaning system for reducing carryover in a range of biological screening assays requiring the transfer of low molecular weight compound, nucleic acid, and bacterial liquid transfers. The validation of this technology for biological screening assays is presented, and the impact of this technology for screening workflows is discussed.

  13. Cold-induced thermoregulation and biological aging.

    PubMed

    Florez-Duquet, M; McDonald, R B

    1998-04-01

    Aging is associated with diminished cold-induced thermoregulation (CIT). The mechanisms accounting for this phenomenon have yet to be clearly elucidated but most likely reflect a combination of increased heat loss and decreased metabolic heat production. The inability of the aged subject to reduce heat loss during cold exposure is associated with diminished reactive tone of the cutaneous vasculature and, to a lesser degree, alterations in the insulative properties of body fat. Cold-induced metabolic heat production via skeletal muscle shivering thermogenesis and brown adipose tissue nonshivering thermogenesis appears to decline with age. Few investigations have directly linked diminished skeletal muscle shivering thermogenesis with the age-related reduction in cold-induced thermoregulatory capacity. Rather, age-related declines in skeletal muscle mass and metabolic activity are cited as evidence for decreased heat production via shivering. Reduced mass, GDP binding to brown fat mitochondria, and uncoupling protein (UCP) levels are cited as evidence for attenuated brown adipose tissue cold-induced nonshivering thermogenic capacity during aging. The age-related reduction in brown fat nonshivering thermogenic capacity most likely reflects altered cellular signal transduction rather than changes in neural and hormonal signaling. The discussion in this review focuses on how alterations in CIT during the life span may offer insight into possible mechanisms of biological aging. Although the preponderance of evidence presented here demonstrates that CIT declines with chronological time, the mechanism reflecting this attenuated function remains to be elucidated. The inability to draw definitive conclusions regarding biological aging and CIT reflects the lack of a clear definition of aging. It is unlikely that the mechanisms accounting for the decline in cold-induced thermoregulation during aging will be determined until biological aging is more precisely defined. PMID

  14. Cold-induced thermoregulation and biological aging.

    PubMed

    Florez-Duquet, M; McDonald, R B

    1998-04-01

    Aging is associated with diminished cold-induced thermoregulation (CIT). The mechanisms accounting for this phenomenon have yet to be clearly elucidated but most likely reflect a combination of increased heat loss and decreased metabolic heat production. The inability of the aged subject to reduce heat loss during cold exposure is associated with diminished reactive tone of the cutaneous vasculature and, to a lesser degree, alterations in the insulative properties of body fat. Cold-induced metabolic heat production via skeletal muscle shivering thermogenesis and brown adipose tissue nonshivering thermogenesis appears to decline with age. Few investigations have directly linked diminished skeletal muscle shivering thermogenesis with the age-related reduction in cold-induced thermoregulatory capacity. Rather, age-related declines in skeletal muscle mass and metabolic activity are cited as evidence for decreased heat production via shivering. Reduced mass, GDP binding to brown fat mitochondria, and uncoupling protein (UCP) levels are cited as evidence for attenuated brown adipose tissue cold-induced nonshivering thermogenic capacity during aging. The age-related reduction in brown fat nonshivering thermogenic capacity most likely reflects altered cellular signal transduction rather than changes in neural and hormonal signaling. The discussion in this review focuses on how alterations in CIT during the life span may offer insight into possible mechanisms of biological aging. Although the preponderance of evidence presented here demonstrates that CIT declines with chronological time, the mechanism reflecting this attenuated function remains to be elucidated. The inability to draw definitive conclusions regarding biological aging and CIT reflects the lack of a clear definition of aging. It is unlikely that the mechanisms accounting for the decline in cold-induced thermoregulation during aging will be determined until biological aging is more precisely defined.

  15. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  16. Application of Heat Pipes in Cold Region

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masataka

    Recently, there has been put into practical use of heat pipes as space application, electronics cooling, and waste heat recovery. Especially, the low temperature heat pipe which can be used in below atmospheric temperature are also actively developed and applied in terrestrial field. These are based on utilization of natural energy in cold region. This paper is described about application of snow melting and deicing system on a road and roof, snow damage prevention system for electric pole branch wire, artificial permafrost storage system as a reverse utilization of cold atmosphere, and cryo-anchor applied in Alaska and northern Canada.

  17. Chemical abundances in cold, dark interstellar clouds.

    PubMed

    Irvine, W M; Ohishi, M; Kaifu, N

    1991-05-01

    The Sun may well have formed in the type of interstellar cloud currently referred to as a cold, dark cloud. We present current tabulations of the totality of known interstellar molecules and of the subset which have been identified in cold clouds. Molecular abundances are given for two such clouds which show interesting chemical differences in spite of strong physical similarities, Taurus Molecular Cloud 1 (TMC-1) and Lynd's 134N (L134N, also referred to as L183). These regions may be at different evolutionary stages.

  18. Cold-fusion television show angers APS

    NASA Astrophysics Data System (ADS)

    Cartwright, Jon

    2009-06-01

    Cold fusion has been controversial since its inception on 23 March 1989, when chemists Martin Fleischmann and Stanley Pons at the University of Utah in the US announced that they had achieved a sustained nuclear-fusion reaction at room temperature. Two decades on, a US television documentary about the field has stirred up fresh debate after it linked the American Physical Society (APS) to an evaluation of some cold-fusion results by Robert Duncan, a physicist and vice chancellor of the University of Missouri.

  19. Alcohol cold starting - A theoretical study

    NASA Technical Reports Server (NTRS)

    Browning, L. H.

    1983-01-01

    Two theoretical computer models have been developed to study cold starting problems with alcohol fuels. The first model, a droplet fall-out and sling-out model, shows that droplets must be smaller than 50 microns to enter the cylinder under cranking conditions without being slung-out in the intake manifold. The second model, which examines the fate of droplets during the compression process, shows that the heat of compression can be used to vaporize small droplets (less than 50 microns) producing flammable mixtures below freezing ambient temperatures. While droplet size has the greater effect on startability, a very high compression ratio can also aid cold starting.

  20. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    PubMed

    Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao

    2013-01-01

    The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R 0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates.

  1. Cold Temperatures Increase Cold Hardiness in the Next Generation Ophraella communa Beetles

    PubMed Central

    Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao

    2013-01-01

    The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%–4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates. PMID:24098666

  2. Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust.

    PubMed

    Cui, Feng; Wang, Hongsheng; Zhang, Hanying; Kang, Le

    2014-10-01

    Anoxia and rapid cold hardening (RCH) can increase the cold tolerance of many animals. However, mechanisms underlying these two kinds of stresses remain unclear. In this study, we aimed to explore the relationship of acclimation to cold stress with acclimation to anoxic stress in the migratory locust, Locusta migratoria. RCH at 0°C for 3h promoted the survival of cold stress-exposed locusts. Anoxic hypercapnia (CO2 anoxic treatment) for 40 min exerted an effect similar to that of RCH. Anoxic hypercapnia within 1h can all promote the cold hardiness of locusts. We investigated the transcript levels of six heat shock protein (Hsp) genes, namely, Hsp20.5, Hsp20.6, Hsp20.7, Hsp40, Hsp70, and Hsp90. Four genes, namely, Hsp90, Hsp40, Hsp20.5, and Hsp20.7, showed differential responses to RCH and anoxic hypercapnia treatments. Under cold stress, locusts exposed to the two regimens showed different responses for Hsp90, Hsp20.5, and Hsp20.7. However, the varied responses disappeared after recovery from cold stress. Compared with the control group, the transcript levels of six Hsp genes were generally downregulated in locusts subjected to anoxic hypercapnia or/and RCH. These results indicate that anoxic stress and RCH have different mechanisms of regulating the transcription of Hsp family members even if the two treatments exerted similar effects on cold tolerance of the migratory locust. However, Hsps may not play a major role in the promotion of cold hardiness by the two treatments.

  3. Conventional Middle East arms control: Impact of the end of the cold war. Study project report

    SciTech Connect

    Johnson, L.L.; Johnsen, W.T.

    1993-03-31

    The end of the Gulf War brought to the forefront concern for dangers posed by unrestrained militarization of the Middle East. In response, on 29 May 1991 President Bush unveiled a comprehensive Middle East arms control policy in a speech at the U.S. Air Force Academy. A key element of the policy banned the sale of the most dangerous conventional weapons to the region. Although the major arms suppliers (which also happen to be the five permanent members of the U.N. Security Council) have held a series of high level meetings to discuss options for restricting sales to the region, all continue conventional arms transfers to the Middle East and are likely to continue to do so. This paper contends that the end of the Cold War put additional economic pressure on the major suppliers to export arms to the Middle East; and, their interests are so compelling that the suppliers are unlikely to support President Bush's proposal. This position is supported by analyzing the interests that influence major arms suppliers to sell arms abroad. The format for this analysis includes an assessment of: each country's interest in selling arms during the Cold War; the impact of the Cold War's end on those interests; and whether the post Cold War interests conflict with President Bush's conventional arms control proposal. The paper concludes with recommendations for US policy in the region.

  4. Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions

    PubMed Central

    Zuther, Ellen; Juszczak, Ilona; Ping Lee, Yang; Baier, Margarete; Hincha, Dirk K.

    2015-01-01

    During low temperature exposure, Arabidopsis thaliana and many other plants from temperate climates increase in freezing tolerance in a process termed cold acclimation. However, the correct timing and rate of deacclimation, resulting in loss of freezing tolerance and initiation of growth is equally important for plant fitness and survival. While the molecular basis of cold acclimation has been investigated in detail, much less information is available about deacclimation. We have characterized the responses of 10 natural accessions of Arabidopsis thaliana that vary widely in their freezing tolerance, to deacclimation conditions. Sugar, proline and transcript levels declined sharply over three days in all accessions after transfer of cold acclimated plants to ambient temperatures, while freezing tolerance only declined in tolerant accessions. Correlations between freezing tolerance and the expression levels of COR genes and the content of glucose, fructose and sucrose, as well as many correlations among transcript and solute levels, that were highly significant in cold acclimated plants, were lost during deacclimation. Other correlations persisted, indicating that after three days of deacclimation, plant metabolism had not completely reverted back to the non-acclimated state. These data provide the basis for further molecular and genetic studies to unravel the regulation of deacclimation. PMID:26174584

  5. Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan

    2016-05-01

    HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.

  6. Identification of a novel thylakoid protein gene involved in cold acclimation in cyanobacteria.

    PubMed

    Li, Weizhi; Gao, Hong; Yin, Chuntao; Xu, Xudong

    2012-09-01

    In cyanobacteria, genes involved in cold acclimation can be upregulated in response to cold stress with or without light. By inactivating 17 such genes in Synechocystis sp. PCC 6803, slr0815 (ccr2) was identified to be a novel gene required for survival at 15 °C. It was upregulated by cold stress in the light. Upon exposure to low temperature, a ccr2-null mutant showed greatly reduced photosynthetic and respiratory activities within 12 h relative to the wild-type. At 48 h, the photosystem (PS)II-mediated electron transport in the mutant was reduced to less than one-third of the wild-type level, and the duration of electron transfer from the Q(B) binding site of PSII to PSI was increased to about eight times the wild-type level, whereas the PSI-mediated electron transport remained unchanged. Using an antibody against GFP, a Ccr2-GFP fusion protein was localized to the thylakoid membrane rather than the cytoplasmic and outer membranes. Homologues to Ccr2 can be found in most cyanobacteria, algae and higher plants with sequenced genomes. Ccr2 is probably representative of a group of novel thylakoid proteins involved in acclimation to cold or other stresses.

  7. Self-regulating characteristics of a cold neutron source with a closed-thermosiphon

    NASA Astrophysics Data System (ADS)

    Kawai, T.; Utsuro, M.; Maeda, Y.; Ebisawa, T.; Akiyoshi, T.; Yamaoka, H.; Okamoto, S.

    1989-04-01

    This report describes self-regulating properties of the Kyoto University Reactor (KUR) Cold Neutron Source (CNS), which is cooled by a closed-thermosiphon loop of hydrogen, as are most of the CNS constructed recently. The circular moderator transfer tube is in a plane inclined about 14° to the horizontal plane. The hydrogen-helium cryogenic system of the CNS shows a self-regulating characteristic under thermal disturbances, if they are smaller than about 30% of the practical allowable heat load, 300 W at 25 K in our case. This self-regulating characteristic has been confirmed from Bode's diagram of the hydrogen pressure response in the reservoir tank to the heat load modulation. Due to this property, the liquid level in the moderator cell is kept almost constant during long term operation of the reactor. Measurements of the vertical distribution of the cold neutron flux from the moderator cell showed that a sufficient amount of liquid was stored in the cell and the ratio of the fraction of cold neutrons in the cold moderator to that in the ambient moderator was measured to be about 20 where the wavelengths are longer than 6 Å using liquid hydrogen as a moderator.

  8. Design and Analyisi of a Self-centered Cold Mass Support for the MICE Coupling Magnet

    SciTech Connect

    Wang, Li; Pan, Heng; Wu, Hong; Li, S. Y.; Guo, Xing Long; Zheng, Shi Xian; Green, Michael A.

    2011-05-04

    The Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils in seven modules, which are magnetically hooked together since there is no iron to shield the coils and the return flux. The RF coupling coil (RFCC) module consists of a superconducting coupling solenoid mounted around four conventional conducting 201.25 MHz closed RF cavities. The coupling coil will produce up to a 2.2 T magnetic field on the centerline to keep the beam within the RF cavities. The peak magnetic force on the coupling magnet from other magnets in MICE is up to 500 kN in longitudinal direction, which will be transferred to the base of the RF coupling coil (RFCC) module through a cold mass support system. A self-centered double-band cold mass support system with intermediate thermal interruption is applied to the coupling magnet, and the design is introduced in detail in this paper. The thermal and structural analysis on the cold mass support assembly has been carried out using ANSYS. The present design of the cold mass support can satisfy with the stringent requirements for the magnet center and axis azimuthal angle at 4.2 K and fully charged.

  9. Changes in electron transport pathways in endoplasmic reticulum of rapeseed in response to cold.

    PubMed

    de Virville, Jacques Davy; Cochet, Françoise; Tasseva, Guergana; Moreau, François; Zachowski, Alain

    2008-10-01

    We studied changes induced by cold on electron transfer pathways (linked to NADH or NADPH oxidation) in endoplasmic reticulum of rapeseed hypocotyls (Brassica napus L.) from a freezing-sensitive variety (ISL) and freezing-tolerant variety (Tradition). Plantlets were grown at 22 degrees C then submitted to a cold shock of 13 or 35 days at 4 degrees C. We measured the content in NADH, NADPH, NAD and NADP of the hypocotyls and the redox power was estimated by the reduced versus oxidized nucleotide ratio. The contents in cytochromes b (5) and P-450, electron acceptors of NADH and NADPH respectively, were determined by differential spectrophotometry. Finally, activity of both NADH-cytochrome b (5) reductase (E.C.1.6.2.2) and NADPH cytochrome P-450 reductase (E.C.1.6.2.4) was determined by reduction of exogenous cytochrome c. Results show that during cold shock, along with an increase of linolenic acid content, there was a general activation of the NADPH pathway which was observed more quickly in Tradition plantlets than in ISL ones. Due to transfer of electrons that can occur between NADPH reductase and cytochrome b (5), this could favor fatty acid desaturation in Tradition, explaining why linolenic acid accumulation was more pronounced in this variety. Besides, more cytochrome P-450 accumulated in ISL that could compete for electrons needed by the FAD3 desaturase, resulting in a relative slower enrichment in 18:3 fatty acid in these plantlets.

  10. Mathematical model for strip surface roughness of stainless steel in cold rolling process

    NASA Astrophysics Data System (ADS)

    Chen, Jinshan; Li, Changsheng; Zhu, Tao; Han, Wenlong; Cao, Yong

    2013-05-01

    Surface roughness control is one of the most important subjects during producing stainless steel strips. In this paper, under the conditions of introducing to the concepts of transferring ratio and genetic factor and through the further theoretical analysis, a set of theoretical models about strip surface roughness were put forward in stainless steel cold tandem rolling. Meanwhile, the lubrication experiment in cold rolling process of SUS430 stainless steel strip was carried out in order to comprehensively study surface roughness. The effect of main factors on transferring ratio and genetic factor was analyzed quantitatively, such as reduction, initial thickness, deformation resistance, emulsion technological parameters and so on. Attenuation function equations used for describing roll surface roughness were set up, and also strip surface roughness at the entry of last mill was solved approximately. Ultimately, mathematical model on strip surface roughness for cold tandem rolling of stainless steel was built, and then it was used into the practical production. A great number of statistical results show that experimental data is in excellent agreement with the given regression equations, and exactly, the relative deviation on roughness between calculated and measured is less than 6.34%.

  11. Hematological variations at rest and during maximal and submaximal exercise in a cold (0°C) environment

    NASA Astrophysics Data System (ADS)

    Vogelaere, P.; Brasseur, M.; Quirion, A.; Leclercq, R.; Laurencelle, L.; Bekaert, S.

    1990-03-01

    The affect of negative thermal stress on hematological variables at rest, and during submaximal (sub ex) and maximal exercise (max ex) were observed for young males who volunteered in two experimental sessions, performed in cold (0°C) and in normal room temperature (20°C). At rest, hematological variables such as RBC and derivates Hb and Hct were significantly increased ( P<0.05) during cold stress exposure, while plasma volume decreased. The findings of this study suggest that the major factor inducing hypovolemia during low thermal stress can be imputed to local plasma water-shift mechanisms and especially to a transient shift of plasma water from intrato extravascular compartments. Rest values for WBC and platelets (Pla) were also slightly increased during cold stress exposure. However this increase can partly be related to hemoconcentration but also to the cold induced hyperventilation activating the lung circulation. Maximal exhaustive exercise induced, in both experimental temperatures, significant ( P<0.05) increments of RBC, Hb, Hct, and WBC while plasma volume decreased. However, Pla increase was less marked. On the other hand, cold stress raised slightly the observed variations of the different hematological variables. Submaximal exercise induced a similar, though non-significant, pattern for the different hematological variables in both experimental conditions. Observed plasma volume (Δ PV%) reduction appears during exercise. However cold stress induced resting plasma volume variations that are transferred at every exercise level. Neither exercise nor cold inducement significantly modified the hematological indices (MCH, MCV, MCHC). In conclusion hematological variables are affected by cold stress exposure, even when subjects perform a physical activity.

  12. Neutron measurements in search of cold fusion

    SciTech Connect

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs.

  13. EVALUATION OF THE COLD PIPE PRECHARGER

    EPA Science Inventory

    The article gives results of an evaluation of the performance of the cold pipe precharger, taking a more rigorous approach than had been previously taken. The approach required detailed descriptions of electrical characteristics, electro-hydrodynamics, and charging theory. The co...

  14. Common colds on Tristan da Cunha

    PubMed Central

    Shibli, M.; Gooch, S.; Lewis, H. E.; Tyrrell, D. A. J.

    1971-01-01

    Eight epidemics of respiratory disease have been observed among islanders of Tristan da Cunha. They seem to be initiated by the arrival of ships and transmission seemed to occur as a result of close human contact but could not always be traced. Islanders suffered from less colds than those in less isolated communities. PMID:5282927

  15. Decontamination of foods by cold plasma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel nonthermal food processing technology for meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium to inactivate microbes without the use of conventional antimicrobial chemical agents. ...

  16. Ultra-Cold Atoms on Optical Lattices

    ERIC Educational Resources Information Center

    Ghosh, Parag

    2009-01-01

    The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…

  17. Cold Climates Heat Pump Design Optimization

    SciTech Connect

    Abdelaziz, Omar; Shen, Bo

    2012-01-01

    Heat pumps provide an efficient heating method; however they suffer from sever capacity and performance degradation at low ambient conditions. This has deterred market penetration in cold climates. There is a continuing effort to find an efficient air source cold climate heat pump that maintains acceptable capacity and performance at low ambient conditions. Systematic optimization techniques provide a reliable approach for the design of such systems. This paper presents a step-by-step approach for the design optimization of cold climate heat pumps. We first start by describing the optimization problem: objective function, constraints, and design space. Then we illustrate how to perform this design optimization using an open source publically available optimization toolbox. The response of the heat pump design was evaluated using a validated component based vapor compression model. This model was treated as a black box model within the optimization framework. Optimum designs for different system configurations are presented. These optimum results were further analyzed to understand the performance tradeoff and selection criteria. The paper ends with a discussion on the use of systematic optimization for the cold climate heat pump design.

  18. [A girl with a cold foot].

    PubMed

    Rouwet, E V; Ten Raa, S; Verhagen, H J M

    2016-01-01

    A 14-year-old girl presented with a progressively cold, pale foot. Pedal pulses were absent and there was sensory and motor loss. CT angiography revealed a thromboembolic occlusion of the crural arteries and a popliteal artery entrapment. Following thromboembolectomy with popliteal artery patch angioplasty and release of the gastrocnemius muscle, the girl fully recovered.

  19. Strip edge cracking simulation in cold rolling

    SciTech Connect

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  20. COLD-SAT Dynamic Model Computer Code

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.; Adams, N. S.

    1995-01-01

    COLD-SAT Dynamic Model (CSDM) computer code implements six-degree-of-freedom, rigid-body mathematical model for simulation of spacecraft in orbit around Earth. Investigates flow dynamics and thermodynamics of subcritical cryogenic fluids in microgravity. Consists of three parts: translation model, rotation model, and slosh model. Written in FORTRAN 77.

  1. Cold Arctic Mesopause Project (CAMP): Scientific objectives

    NASA Technical Reports Server (NTRS)

    Bjorn, L.

    1982-01-01

    During late summer 1978 a rocket campaign was carried out at Esrange. The ion chemistry and composition at and around the extremely cold arctic mesopause, particularly in connection with observations of noctilucent clouds (NLC) was studied. Several plasma parameters were measured, for example, density of electrons and positive ions and composition of both positive and negative ions.

  2. The Cold War and Revisionist Historiography

    ERIC Educational Resources Information Center

    Hogeboom, Willard L.

    1970-01-01

    An important historiographic controversy exists between those who blame the Soviets for the origins of the Cold War (orthodox) and those who blame the U. S. (revisionist--New Left). While the latter criticize the orthodox historians' methods, they are often guilty of semilar biases and simplifications. (JB)

  3. Structural Assembly for Cold Plate Cooling

    NASA Technical Reports Server (NTRS)

    Zaffetti, Mark A. (Inventor); Taddey, Edmund P. (Inventor)

    2014-01-01

    A device including a structural member having a heat spreader and an electronic device mounted directly to a first surface of the heat spreader of the structural member. The device also includes a cold plate mounted directly to the first surface of the heat spreader of the structural member.

  4. Calcinosis in juvenile dermatomyositis mimicking cold abscess.

    PubMed

    Nagar, Rajendra P; Bharati, Joyita; Sheriff, Abraar; Priyadarshini, Praytusha; Chumber, Sunil; Kabra, S K

    2016-01-01

    We report a case of dystrophic calcification presenting as soft cystic swelling in a patient with juvenile dermatomyositis. A 15-year-old boy with lumbosacral cystic swelling, which was considered a cold abscess clinically, was evaluated for nonresponse to antitubercular therapy. The cystic swelling had liquefied calcium with a well circumscribed calcified wall on imaging, which was subsequently excised. PMID:27586213

  5. Confronting Common Folklore: Catching a Cold

    ERIC Educational Resources Information Center

    Keeley, Page

    2012-01-01

    Almost every child has experienced the sniffly, stuffy, and achy congestion of the common cold. In addition, many have encountered the "old wives tales" that forge a link between personal actions and coming down with this common respiratory infection. Much of this health folklore has been passed down from generation to generation (e.g., getting a…

  6. Variational approach to cold fermionic atom superfluidity

    NASA Astrophysics Data System (ADS)

    Parish, Meera; Mihaila, Bogdan; Blagoev, Krastan; Gaudio, Sergio; Timmermans, Eddy; Szymanska, Marzena; Littlewood, Peter

    2004-03-01

    We study a system of ultra-cold, dilute, fermionic atoms close to a Feshbach resonance. By using a variational approach, we avoid making the approximation of preformed molecular pairs. This enables us to follow the crossover from BCS to Blatt-Schafroth pairs.

  7. Cold weather properties and performance of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel made from vegetable oil or animal fat that can be employed in compression-ignition (diesel) engines. Biodiesel is more prone to start-up and operability problems during cold weather than conventional diesel fuels (petrodiesel). This work reviews impacts that exposu...

  8. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... containing a specially hydrated pliable silicate gel capable of forming to the contour of the body and that provides cold therapy for body surfaces. (b) Classification. Class I (general controls). The device...

  9. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... containing a specially hydrated pliable silicate gel capable of forming to the contour of the body and that provides cold therapy for body surfaces. (b) Classification. Class I (general controls). The device...

  10. Cold plasma technology close-up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This month’s column discusses cold plasma, an emerging technology that has potential applications as an antimicrobial process for fresh and fresh-cut fruits and vegetables, low-moisture foods, and food contact surfaces. Brendan A. Niemira, the coauthor of this month’s column, is the research leader ...

  11. Common cold - how to treat at home

    MedlinePlus

    ... get enough sleep, and stay away from secondhand smoke. Wheezing can be a common symptom of a cold if you have asthma. Use your rescue inhaler as prescribed if you are wheezing. See your provider immediately if it becomes hard to breathe.

  12. Cold-night responses in grapevine inflorescences.

    PubMed

    Sawicki, Mélodie; Ait Barka, Essaid; Clément, Christophe; Gilard, Françoise; Tcherkez, Guillaume; Baillieul, Fabienne; Vaillant-Gaveau, Nathalie; Jacquard, Cédric

    2015-10-01

    Cold nights impact grapevine flower development and fruit set. Regulation at the female meiosis stepmay be of considerable importance for further understanding on how flower reacts to cold stress. In this study, the impact of chilling temperature (0 °C overnight) on carbon metabolism was investigated in the inflorescencesof two cultivars, Pinot noir (Pinot) and Gewurztraminer (Gewurtz.). Fluctuations in photosynthetic activity and carbohydrate metabolism were monitored by analyzing gas exchanges, simultaneous photosystem I and II activities, andcarbohydrate content. Further, the expression of PEPc, PC, FNR, ISO, OXO, AGPase, amylases and invertase genes, activities of various enzymes, as well as metabolomic analysis were attained. Results showed that the chilling night has different impacts depending on cultivars. Thus, in Gewurtz., net photosynthesis (Pn) was transiently increased whereas, in Pinot, the Pn increase was persistent and concomitant with an inhibition of respiration. However, during the days following the cold night, photosynthetic activity was decreased, and the cyclic electron flow was inhibited in Gewurtz., suggesting lower efficient energy dissipation. Likewise, metabolomic analysis revealed that several metabolites contents (namely alanine, GABA, lysine and succinate)were distinctly modulated in the two cultivars. Taking together, these results reflect a photosynthetic metabolism alteration or internal CO2 conductance in Gewurtz. explaining partly why Pinot is less susceptible to cold stress. PMID:26398796

  13. Transfer of Learning Transformed

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2013-01-01

    Instruction is motivated by the assumption that students can transfer their learning, or apply what they have learned in school to another setting. A common problem arises when the expected transfer does not take place, what has been referred to as the inert knowledge problem. More than an academic inconvenience, the failure to transfer is a major…

  14. Transfer of Learning.

    ERIC Educational Resources Information Center

    1999

    This document contains four symposium papers on transfer of learning. In "Learning Transfer in a Social Service Agency: Test of an Expectancy Model of Motivation" (Reid A. Bates) structural equation modeling is used to test the validity of a valence-instrumentality-expectancy approach to motivation to transfer learning. "The Relationship between…

  15. Transfer Index: One Definition.

    ERIC Educational Resources Information Center

    Heinselman, James L.

    A transfer index of the proportion of students in California's community colleges transferring to the University of California (UC) and the California State University (CSU) system for fall 1982, 1983, and 1984 is presented in this report. Introductory material provides one definition of an appropriate index of transfer rates, i.e., the ratio of…

  16. Cold Atmosphere Plasma in Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2012-10-01

    Plasma is an ionized gas that is typically generated in high-temperature laboratory conditions. Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Areas of potential application of cold atmospheric plasmas (CAP) include dentistry, drug delivery, dermatology, cosmetics, wound healing, cellular modifications, and cancer treatment. Various diagnostic tools have been developed for characterization of CAP including intensified charge-coupled device cameras, optical emission spectroscopy and electrical measurements of the discharge propertied. Recently a new method for temporally resolved measurements of absolute values of plasma density in the plasma column of small-size atmospheric plasma jet utilizing Rayleigh microwave scattering was proposed [1,2]. In this talk we overview state of the art of CAP diagnostics and understanding of the mechanism of plasma action of biological objects. The efficacy of cold plasma in a pre-clinical model of various cancer types (long, bladder, and skin) was recently demonstrated [3]. Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. For instance a strong selective effect was observed; the resulting 60--70% of lung cancer cells were detached from the plate in the zone treated with plasma, whereas no detachment was observed in the treated zone for the normal lung cells under the same treatment conditions. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration

  17. Preserving Alaska's early Cold War legacy.

    SciTech Connect

    Hoffecker, J.; Whorton, M.

    1999-03-08

    The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

  18. LADEE Propulsion System Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.

    2013-01-01

    Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012

  19. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    SciTech Connect

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  20. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  1. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  2. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.

    PubMed

    Frazier, Melanie R; Harrison, Jon F; Kirkton, Scott D; Roberts, Stephen P

    2008-07-01

    We use a factorial experimental design to test whether rearing at colder temperatures shifts the lower thermal envelope for flight of Drosophila melanogaster Meigen to colder temperatures. D. melanogaster that developed in colder temperatures (15 degrees C) had a significant flight advantage in cold air compared to flies that developed in warmer temperatures (28 degrees C). At 14 degrees C, cold-reared flies failed to perform a take-off flight approximately 47% of the time whereas warm-reared flies failed approximately 94% of the time. At 18 degrees C, cold- and warm-reared flies performed equally well. We also compared several traits in cold- and warm-developing flies to determine if cold-developing flies had better flight performance at cold temperatures due to changes in body mass, wing length, wing loading, relative flight muscle mass or wing-beat frequency. The improved ability to fly at low temperatures was associated with a dramatic increase in wing area and an increase in wing length (after controlling for wing area). Flies that developed at 15 degrees C had approximately 25% more wing area than similarly sized flies that developed at 28 degrees C. Cold-reared flies had slower wing-beat frequencies than similarly sized flies from warmer developmental environments, whereas other traits did not vary with developmental temperature. These results demonstrate that developmental plasticity in wing dimensions contributes to the improved flight performance of D. melanogaster at cold temperatures, and ultimately, may help D. melanogaster live in a wide range of thermal environments.

  3. Cough and Cold Medicine (DXM and Codeine Syrup)

    MedlinePlus

    ... Medicine (DXM and Codeine Syrup) Cough and Cold Medicine (DXM and Codeine Syrup) Street names: Candy, Drank, Robo Print What Are Cough and Cold Medicines? Also known as: robotripping, robo, tussin, triple c, ...

  4. Actively controlling coolant-cooled cold plate configuration

    DOEpatents

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  5. 12. COLD CALIBRATION BLOCKHOUSE BASEMENT VIEW FROM LEFT TO RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. COLD CALIBRATION BLOCKHOUSE BASEMENT VIEW FROM LEFT TO RIGHT, CABLE TRAYS, RACKS, CABLE CONNECTION TERMINALS. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  6. 1. COLD FLOW LABORATORY, VIEW TOWARDS EAST. Glenn L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. COLD FLOW LABORATORY, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  7. 2. COLD FLOW LABORATORY, VIEW TOWARDS NORTH. Glenn L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. COLD FLOW LABORATORY, VIEW TOWARDS NORTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  8. MISR Browse Images: Cold Land Processes Experiment (CLPX)

    Atmospheric Science Data Center

    2013-04-02

    MISR Browse Images: Cold Land Processes Experiment (CLPX) These MISR Browse ... series of images over the region observed during the NASA Cold Land Processes Experiment (CLPX). CLPX involved ground, airborne, and ...

  9. Is there an en route folding intermediate for Cold shock proteins?

    PubMed

    Huang, Lei; Shakhnovich, Eugene I

    2012-05-01

    Cold shock proteins (Csps) play an important role in cold shock response of a diverse number of organisms ranging from bacteria to humans. Numerous studies of the Csp from various species showed that a two-state folding mechanism is conserved and the transition state (TS) appears to be very compact. However, the atomic details of the folding mechanism of Csp remain unclear. This study presents the folding mechanism of Csp in atomic detail using an all-atom Go model-based simulations. Our simulations predict that there may exist an en route intermediate, in which β strands 1-2-3 are well ordered and the contacts between β1 and β4 are almost developed. Such an intermediate might be too unstable to be detected in the previous fluorescence energy transfer experiments. The transition state ensemble has been determined from the P(fold) analysis and the TS appears even more compact than the intermediate state.

  10. Dynamic infrared imaging for analysis of fingertip temperature after cold water stimulation and neurothermal modeling study.

    PubMed

    Zhang, Heng-Di; He, Ying; Wang, Xue; Shao, Hong-Wei; Mu, Li-Zhong; Zhang, Jun

    2010-07-01

    The human hand is considered to be the terminus of the nervous system. It contains numerous capillary vessels, and it plays an important role in the regulation of the autonomic nervous system. We have used infrared thermography and ultrasound Doppler flowmetry to investigate characteristics of the temperature variation of the hand and the blood flow after cold stimuli. We have also developed an image processing algorithm to measure temperature of various parts of the hand via sequential thermal images. Measured results show that local cold stimuli will induce oscillation of temperature, which may be due to neuroregulation during rewarming. Finally, in order to explain the mechanism of autonomic nervous system (ANS) regulation we have developed an ANS regulation model on the basis of the knowledge of the physiology and bioheat transfer. The results computed using our model are in good agreement with the experimental results.

  11. Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray

    NASA Astrophysics Data System (ADS)

    Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2013-10-01

    This work explores the manufacturability of pyramidal fin arrays produced using the cold spray process. Near-net shaped pyramidal fin arrays of various sizes and fin densities were manufactured using masks made of commercially available steel wire mesh. The feedstock powders used to produce the fins are characterized using scanning electron microscopy. Obstruction of the masks was investigated. The standoff distances between the substrate, mesh, and nozzle were empirically determined. Fin array characterization was performed using digital microscopy. The fin arrays' heat transfer performance was assessed experimentally for a range of Reynolds number relevant to the application sought. The fins produced using the cold spray process outperform traditional straight (rectangular) fins at the same fin density and it is hypothesized that this is due to increased fluid mixing and turbulence.

  12. Closed cycle cryocooler for low temperature electronics circuits: Cold end test

    NASA Astrophysics Data System (ADS)

    Pirtle, F. W.

    1983-08-01

    A fabricated MACOR cold end including a metallic coating to prevent helium permeation and a fabricated die post displacer support bearing were combined with a compressor and motor which are standard CTI-CRYOGENICS products. A mechanical test was performed on the test cryocooler to determine that the mechanical test was performed on the test cryocooler to determine that the MACOR displacer was successfully guided by the die post bearing. Thermodynamic tests were conducted to determine the lowest temperature of the 4th (coldest) stage as a function of operating speed, helium charge pressure, 4th stage electrical heat load, and transfer tube diameter. Cooldown and steady state results are reported. Results indicate a low temperature limit of approximately 95K with the current test hardware. Although this represents an improvement from 122K during the program, a resizing will be necessary to reach 10K. The die post displacer support bearing and the MACOR cold finger construction are mechanically satisfactory.

  13. Proceedings: International Symposium on Thermal Engineering and Science for Cold Regions

    NASA Astrophysics Data System (ADS)

    Lunardini, V. J.; Bowen, S. L.

    This document contains a collection of papers from the Fourth International Symposium on Thermal Engineering and Science for Cold Regions. Topics covered include: some topics on melting heat transfer problems; osmotic model of ice segregation; thermosyphon applications in cold regions; an analytic study of liquid solidification in low Peclet number forced flows inside a parallel plate channel concerning axial heat conduction; freezing within laminar fast-growing thermally developing region of a uniform heat flux cooled parallel plate duct; the morphology of ice layers in curved rectangular channels; effect of heat conductor plates on ice formation near a wall; freezing characteristics of water flow in a horizontal cooled tube with the separated region; stability of thick ice formation in pipes; experiments and analysis of pipe freezing; experimental study of freezing of water in a closed circular tube with pressure increasing; and effects of a porous medium in a flow passage with miter bend.

  14. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  15. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  16. Formation of molecular ions by radiative association of cold trapped atoms and ions

    NASA Astrophysics Data System (ADS)

    Dulieu, Olivier; da Silva, Humberto, Jr.; Aymar, Mireille; Raoult, Maurice

    2015-05-01

    Radiative emission during cold collisions between trapped laser-cooled Rb atoms and alkaline-earth ions (Ca+ , Sr+ , Ba+) and Yb+ are studied theoretically, using accurate effective-core-potential based quantum chemistry calculations of potential energy curves and transition dipole moments of the related molecular ions. Radiative association of molecular ions is predicted to occur for all systems with a cross section two to ten times larger than the radiative charge transfer one. Partial and total rate constants are also calculated and compared to available experiments. Narrow shape resonances are expected, which could be detectable at low temperature with an experimental resolution at the limit of the present standards. Vibrational distributions show that the final molecular ions are not created in their ground state level. Supported by the Marie-Curie ITN ``COMIQ: Cold Molecular Ions at the Quantum limit'' of the EU (#607491).

  17. Cutaneous microvascular response during local cold exposure - the effect of female sex hormones and cold perception.

    PubMed

    Cankar, Ksenija; Music, Mark; Finderle, Zare

    2016-11-01

    It is generally known that differences exist between males and females with regard to sensitivity to cold. Similar differences even among females in different hormonal balance might influence microvascular response during cold provocation testing. The aim of the present study was to measure sex hormone levels, cold and cold pain perception thresholds and compare them to cutaneous laser-Doppler flux response during local cooling in both the follicular and luteal phases of the menstrual cycle. In the luteal phase a more pronounced decrease in laser-Doppler flux was observed compared to follicular phase during local cooling at 15°C (significant difference by Dunnett's test, p<0.05). In addition, statistically significant correlations between progesterone level and laser-Doppler flux response to local cooling were observed during the follicular (R=-0.552, p=0.0174) and during the luteal phases (R=0.520, p=0.0271). In contrast, the correlation between estradiol level and laser-Doppler flux response was observed only in the follicular phase (R=-0.506, p=0.0324). Our results show that individual sensitivity to cold influences cutaneous microvascular response to local cooling; that microvascular reactivity is more pronounced during the luteal phase of the menstrual cycle; and that reactivity correlates with hormone levels. The effect of specific sex hormone levels is related to the cold-provocation temperature. PMID:27430896

  18. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  19. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  20. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  1. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  2. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  3. MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE

    SciTech Connect

    Slater, Charles O; Primm, Trent; Pinkston, Daniel; Cook, David Howard; Selby, Douglas L; Ferguson, Phillip D; Bucholz, James A; Popov, Emilian L

    2009-03-01

    The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

  4. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  5. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  6. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  7. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  8. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  9. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the...

  10. Computer Output Laser Disk (COLD) Systems--COM Replacement Units.

    ERIC Educational Resources Information Center

    Bolnick, Franklin I.

    1993-01-01

    Explains the COLD (Computer Output Laser Disk) system and describes current applications. Use of the COLD system to replace COM (Computer Output Microfilm) is discussed; advantages and disadvantages of the COLD system are considered; optical disks OD-WORM (Optical Disk-Write Once Read Many) versus CD-ROM are compared; and equipment and software…

  11. Ultra-cold methods for polarized atomic hydrogen

    SciTech Connect

    Luppov, V. G.; Arnold, J. D.; Blinov, B. B.; Gladycheva, S. E.; Krisch, A. D.; Lin, A. M. T.; Raymond, R. S.; Bychkov, M. A.; Fimushkin, V. V.; Mochalov, V. V.; Semenov, P. A.

    1998-01-20

    Using the ultra-cold electron-spin-polarized atomic hydrogen technique, one can produce a slow monochromatic beam for use as a polarized jet target. We will first review the development of the ultra-cold technique and then discuss the recent progress on Michigan's Mark-II ultra-cold proton-spin-polarized hydrogen jet target.

  12. Can You Get Genital Herpes from a Cold Sore?

    MedlinePlus

    ... Cuts? Can You Get Genital Herpes From a Cold Sore? KidsHealth > For Teens > Can You Get Genital Herpes From a Cold Sore? Print A A A Text Size Can you get genital herpes from a cold sore? – Lucy* Yes — it is possible to get ...

  13. Some Like It Hot, Some like It Cold

    ERIC Educational Resources Information Center

    Silberman, Robert G.

    2004-01-01

    In order to find the right combination to construct a cold pack for athletic injuries, students mix liquids and solids in a calorimeter, and use a thermometer to ascertain whether the chemical reaction is hot or cold. Many formulae for chemical reactions are given, the first of which is used for commercial cold packs.

  14. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the...

  15. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the...

  16. The End of the Cold War, 1961-1991.

    ERIC Educational Resources Information Center

    Schulzinger, Robert D.

    1994-01-01

    Provides an overview of Cold War years from President Kennedy's inauguration to end of Soviet Union on December 31, 1991. Recommends six questions to provide a structure for studying or teaching about the Cold War era. Concludes that the Cold War remains one of the premier forces in shaping the world during the second half of the 20th century.…

  17. Cold or Allergies: Which Is It? (For Parents)

    MedlinePlus

    ... Zika & Pregnancy A Cold or Allergies: Which Is It? KidsHealth > For Parents > A Cold or Allergies: Which Is It? Print A A A Text Size My son ... common cold can be so much alike that it's sometimes hard to tell the two apart. But ...

  18. Thermal-Hydraulic Mockup Tests with Two-Phase Thermosyphon for Cold Neutron Source

    SciTech Connect

    Lee, C.H.; Chan, Y.K.; Lee, D.J.; Chang, C.J.; Hong, W.T.

    2002-07-01

    The improvement and utilization promotion project of the Taiwan Research Reactor (TRR-II) is carrying out at the Institute of Nuclear Energy Research (INER). The Cold Neutron Source (CNS) with a two-phase thermosyphon will be installed in the heavy water reactor of TRR-II. The hydrogen cold loop of TRR-II CNS consists of a cylindrical moderator cell, a single transfer tube, and a condenser. The thermal-hydraulic characteristics of a two-phase thermosyphon are investigated against the variations of mass inventory, tube geometry and heat loads. The thermal-hydraulic experiments have been performed using a full-scale mockup loop and a Freon-11 as a working fluid. The scaling approach is that the mass-fluxes of the liquid and the vapor in the Wallis correlation are identical between hydrogen and Freon-11. So, the same density ratio and a scaling heat load are applied to the loop. The flooding limitations as a function of initial Freon-11 inventory, transfer tube diameter, transfer tube geometry, and heat loads are presented. (authors)

  19. Artificial hybridization of rubber-bearing guayule with cold-tolerant Parthenium ligulatum

    SciTech Connect

    Hashemi, A.; Estilai, A.; West, J.E.; Waines, J.G. Univ. of California, Davis )

    1988-02-01

    Caespitose and cold-tolerant plants of Parthenium ligulatum (Jones) Barneby (Asteraceae) from a native population in the Uinta Basin, Utah, were uprooted, potted, and transferred to a greenhouse in California. Approximately two years after transfer, the plants flowered and subsequently were crossed to diploid guayule (Parthenium argentatum Gray), the rubber-bearing species, native to the state of Durango, Mexico. Only female guayule {times} male P. ligulatum crosses produced F{sub 1} hybrids. Only crosses involving guayule as female parent and F{sub 1} plants as male parent produced backcross (BC{sub 1}) plants. Hybrid plants were variable with respect to their growth habit, inflorescence, and leaf shape. Both parents and F{sub 1} hybrids had 2n = 36 chromosomes. Unlike the parents, however, meiosis was irregular in the hybrids which showed a range of 0-5 and an average of 2.1 univalents at metaphase I. Hybrids averages 0.87 laggards at anaphase I and 0.83 micronuclei at the tetrad stage. The crossability of guayule and P. ligulatum, the high degree of chromosome pairing of the F{sub 1} hybrids, and the production of BC{sub 1} plants indicate that the two species are related in spite of their of distinct morphological and ecological differences. This study suggests that the cold-tolerance trait of P. ligulatum may be transferred to guayule through interspecific hybridization followed by backcrossing.

  20. Numerical Study of a Cold Particle Submitted to Mixed Convection

    NASA Astrophysics Data System (ADS)

    Le Bot, Cédric

    2011-05-01

    During material forming process (metal, glass, polymer), one stage is the solidification of the material, from a bulk melt part. Occurrence of solid particles in the melt material may alter the properties of the final product, as aggregation of particles potentially induces a local weakness (bad shape, mechanical or thermal properties, for example). Considering one particle, a wide range of thermal and dynamic phenomena can be observed: a particle settling is mainly due to Archimedes forces. Free convection due to gravity effects can increase the fluid flow (which is defined as an assisting flow) or may limit it (defined as an opposing flow). A high fluid-particle relative velocity also implies forced convection. The competition between the two thermal phenomena (so-called mixed convection) widely influences the particle transport. Many works have studied the fluid velocity field induced by a cylinder or a spherical particle in a isothermal medium, and have highlighted transitions of flow regime (a laminar flow at low velocity, a deviation in the particle transport at a moderate velocity and various flow structures at a high velocity). Some studies have taken into account heat transfer between the particle and the fluid, and focused on the thermal effects upon the particle fluid velocity. Experiments are difficult (or impossible) to lead, since some materials (like metals for example) do not allow visualizing the particle in the melt fluid. We propose in the present study to carry out the numerical 3D-simulation of a cold particle submitted to a fluid flow, in order to link the fluid-particle thermal transfer and the fluid flow properties. A volume of fluid method is used, on a fixed Cartesian grid to determine the particle transport, the fluid flow and heat transfers in both the fluid and the particle. The domain must be large enough to avoid wall effects. The mixed convection is quantified by the Richardson number (Ri). The aim of this paper will consist in

  1. Cold Treatment Breaks Dormancy but Jeopardizes Flower Quality in Camellia japonica L.

    PubMed

    Berruti, Andrea; Christiaens, Annelies; Keyser, Ellen De; Labeke, Marie-Christine Van; Scariot, Valentina

    2015-01-01

    Camellia japonica L. is an evergreen shrub whose cultivars are of great ornamental value. In autumn, after flower bud differentiation, dormancy is initiated. As in many other spring flowering woody ornamentals, winter low temperatures promote dormancy release of both flower and vegetative buds. However, warm spells during late autumn and winter can lead to unfulfilled chilling requirements leading to erratic and delayed flowering. We hypothesized that storing plants at no light and low temperature could favor dormancy breaking and lead to early and synchronized flowering in response to forcing conditions in C. japonica 'Nuccio's Pearl'. Plants with fully developed floral primordia were stored at dark, 7°C, and RH > 90% for up to 8 weeks. To monitor endodormancy release during the storage, we evaluated the content of abscisic acid (ABA) in flower buds and the expression profiles of five putative genes related to dormancy and cold acclimation metabolism in leaves and flower buds. In addition, the expression of four anthocyanin biosynthesis pathway genes was profiled in flower buds to assess the effect of the treatment on flower pigment biosynthesis. At 0, 4, 6, and 8 weeks of cold treatment, 10 plants were transferred to the greenhouse and forced to flower. Forced plant flower qualities and growth were observed. The ABA content and the expression profiles of two dormancy-related genes (CjARP and CjDEH) suggested that dormancy breaking occurred after 6-8 weeks of cold treatment. Overall, plants treated for 6-8 weeks showed earlier vegetative sprouting, enhanced, and homogeneous flowering with reduced forcing time. Prolonged cold treatments also reduced flower size and longevity, anthocyanin content, and pigment biosynthesis-related gene transcripts. In conclusion, the cold treatment had a promotive effect on dormancy breaking but caused severe drawbacks on flower quality. PMID:26617623

  2. Cold Treatment Breaks Dormancy but Jeopardizes Flower Quality in Camellia japonica L.

    PubMed Central

    Berruti, Andrea; Christiaens, Annelies; Keyser, Ellen De; Labeke, Marie-Christine Van; Scariot, Valentina

    2015-01-01

    Camellia japonica L. is an evergreen shrub whose cultivars are of great ornamental value. In autumn, after flower bud differentiation, dormancy is initiated. As in many other spring flowering woody ornamentals, winter low temperatures promote dormancy release of both flower and vegetative buds. However, warm spells during late autumn and winter can lead to unfulfilled chilling requirements leading to erratic and delayed flowering. We hypothesized that storing plants at no light and low temperature could favor dormancy breaking and lead to early and synchronized flowering in response to forcing conditions in C. japonica ‘Nuccio’s Pearl’. Plants with fully developed floral primordia were stored at dark, 7°C, and RH > 90% for up to 8 weeks. To monitor endodormancy release during the storage, we evaluated the content of abscisic acid (ABA) in flower buds and the expression profiles of five putative genes related to dormancy and cold acclimation metabolism in leaves and flower buds. In addition, the expression of four anthocyanin biosynthesis pathway genes was profiled in flower buds to assess the effect of the treatment on flower pigment biosynthesis. At 0, 4, 6, and 8 weeks of cold treatment, 10 plants were transferred to the greenhouse and forced to flower. Forced plant flower qualities and growth were observed. The ABA content and the expression profiles of two dormancy-related genes (CjARP and CjDEH) suggested that dormancy breaking occurred after 6–8 weeks of cold treatment. Overall, plants treated for 6–8 weeks showed earlier vegetative sprouting, enhanced, and homogeneous flowering with reduced forcing time. Prolonged cold treatments also reduced flower size and longevity, anthocyanin content, and pigment biosynthesis-related gene transcripts. In conclusion, the cold treatment had a promotive effect on dormancy breaking but caused severe drawbacks on flower quality. PMID:26617623

  3. Effects of L-citrulline diet on stress-induced cold hypersensitivity in mice

    PubMed Central

    Kobayashi, Yoshinori; Narita, Kazuki; Chiba, Kotaro; Takemoto, Hiroaki; Morita, Masahiko; Morishita, Koji

    2014-01-01

    Background: L-citrulline is an amino acid discovered in watermelon (Citrullus lanatus, Cucurbitaceae) and is a known component of the nitric oxide (NO) cycle that plays an important role in adjusting blood circulation and supplying NO and a key component of the endothelium-derived relaxing factor. Objective: The objective of this study is to evaluate the effect of L-citrulline on a newly established stress-induced cold hypersensitivity mouse model. Materials and Methods: When normal mice were forced to swim in water at 25°C for 15 min, their core body temperature dropped to 28.9°C, and then quickly recovered to normal temperature after the mice were transferred to a dry cage at room temperature (25°C). A 1-h immobilization before swimming caused the core body temperature to drop to ca. 24.1°C (4.8°C lower than normal mice), and the speed of core body temperature recovery dropped to 57% of the normal control. We considered this delay in recovery from hypothermia to be a sign of stress-induced cold hypersensitivity. Similar cold hypersensitivity was induced by administration of 50 mM L-NG-nitroarginine methyl ester, a NO synthesis inhibitor. Results: In this study, we showed that recovery speed from the stress-induced hypothermia remarkably improved in mice fed a 1% L-citrulline-containing diet for 20 days. Furthermore, the nonfasting blood level of L-arginine and L-citrulline increased significantly in the L-citrulline diet group, and higher serum nitrogen oxide levels were observed during recovery from the cold. Conclusions: These results suggested that oral L-citrulline supplementation strengthens vascular endothelium function and attenuates stress-induced cold hypersensitivity by improving blood circulation. PMID:25276066

  4. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  5. Cold Pool and Surface Flux Interactions in Different Environments

    NASA Astrophysics Data System (ADS)

    Grant, L. D.; van den Heever, S. C.

    2015-12-01

    Cold pools play important roles in tropical and midlatitude deep convective initiation and organization through their influence on near-surface kinematic and thermodynamic fields. Because temperature, moisture, and winds are perturbed within cold pools, cold pools can also impact surface sensible and latent heat fluxes. In turn, surface fluxes both within the cold pool and in the environment can modify the characteristics of cold pools and their evolution, with subsequent implications for convective initiation and organization. The two-way interaction between cold pools and surface energy fluxes has not been well studied and is likely to vary according to the environment and surface type. The goal of this study is therefore to investigate the mechanisms by which surface fluxes and cold pools interact in environmental conditions ranging from tropical oceanic to dry continental. This goal will be accomplished using high-resolution (grid spacings as fine as 10 m), idealized, 2D simulations of isolated cold pools; such modeling experiments have proven useful for investigating cold pools and their dynamics in many previous studies. In the proposed experiments, the surface flux formulation, surface type, and environmental conditions will be systematically varied. The impact of surface fluxes on various cold pool characteristics and their evolution, including the buoyancy, maximum vertical velocity, and moisture distribution, will be analyzed and presented. Results suggest that the mechanisms by which surface fluxes and cold pools interact vary substantially with the environment. Additionally, the indirect effects of surface fluxes on turbulent entrainment rates into the cold pool are found to play an important role in cold pool evolution. These results suggest that surface fluxes can impact the timing and manner in which cold pools initiate convection, and that their effects may be important to incorporate into cold pool parameterizations for climate simulations.

  6. Lunar Cold Trap Contamination by Landing Vehicles

    NASA Technical Reports Server (NTRS)

    Shipley, Scott T.; Metzger, Philip T.; Lane, John E.

    2014-01-01

    Tools have been developed to model and simulate the effects of lunar landing vehicles on the lunar environment (Metzger, 2011), mostly addressing the effects of regolith erosion by rocket plumes and the fate of the ejected lunar soil particles (Metzger, 2010). These tools are being applied at KSC to predict ejecta from the upcoming Google Lunar X-Prize Landers and how they may damage the historic Apollo landing sites. The emerging interest in lunar mining poses a threat of contamination to pristine craters at the lunar poles, which act as "cold traps" for water and may harbor other valuable minerals Crider and Vondrak (2002). The KSC Granular Mechanics and Regolith Operations Lab tools have been expanded to address the probability for contamination of these pristine "cold trap" craters.

  7. Large spin magnetism with cold atoms

    NASA Astrophysics Data System (ADS)

    Laburthe-Tolra, Bruno

    2016-05-01

    The properties of quantum gases made of ultra-cold atoms strongly depend on the interactions between atoms. These interactions lead to condensed-matter-like collective behavior, so that quantum gases appear to be a new platform to study quantum many-body physics. In this seminar, I will focus on the case where the atoms possess an internal (spin) degrees of freedom. The spin of atoms is naturally larger than that of electrons. Therefore, the study of the magnetic properties of ultra-cold gases allows for an exploration of magnetism beyond the typical situation in solid-state physics where magnetism is associated to the s = 1/2 spin of the electron. I will describe three specific cases: spinor Bose-Einstein condensates, where spin-dependent contact interactions introduce new quantum phases and spin dynamics; large spin magnetic atoms where strong dipole-dipole interactions lead to exotic quantum magnetism; large spin Fermi gases.

  8. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  9. Outer crust of nonaccreting cold neutron stars

    SciTech Connect

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-03-15

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  10. Referred thermal sensations: warmth versus cold.

    PubMed

    Green, B G

    1978-09-01

    The present study investigates further the phenomenon of thermal referral, in which thermal sensations are "referred" to the site of nearby tactile stimuli. First demonstrated with three stimulators (Green, B.G. Perception and Psychophysics, 1977, 22, 331-337), the present experiments show that referral also occurs between two contact stimuli. Measurements with two stimulators reveal that (1) on the arm and fingers, warmth refers more strongly that cold, and (2) referral of warmth is affected relatively little by increasing the distance between stimulators; (3) on the fingertips, referral is greater when the thermal sensation refers away from rather than toward the first digit; and (4) the pattern or referral across fingers differs for warmth and cold and appears unrelated to the pattern of peripheral innervation. The phenomenon of referral illustrates that information about locus gathered through the tactile sense is available to the thermal senses, which means that information about stimulus locus and quality can be carried on separate nerve fibers.

  11. Rapid cold hardening: a gut feeling.

    PubMed

    Worland, M R; Convey, P; Luke ov, A

    2000-01-01

    This study examined the rate of cold hardening of a field population of Antarctic springtails and the effect of eating food with particular levels of ice nucleating activity on the animal's whole body freezing point. The SCPs of samples of c. 20, freshly collected, Cryptopygus antarcticus were measured hourly over a 32 hour collection period using differential scanning calorimetry and related to habitat temperature. The mean SCP of the springtails increased from -24 to -10 degree C during which time the habitat temperature warmed slowly from -2.5 to +2.5 degree C. In laboratory experiments, previously starved, cold tolerant springtails were fed on selected species of algae with measured SCP's but there was no clear correlation between the SCP of food and that of the animals after feeding. Microscopic examination of faecal pellets and guts from springtails showed that algal cells were completely destroyed during digestion.

  12. Cold atom quantum sensors for space

    NASA Astrophysics Data System (ADS)

    Singh, Yeshpal

    2016-07-01

    Quantum sensors based on cold atoms offer the opportunity to perform highly accurate measurements of physical phenomena related to time, gravity and rotation. The deployment of such technologies in the microgravity environment of space may enable further enhancement of their performance, whilst permitting the detection of these physical phenomena over much larger scales than is possible with a ground-based instrument. In this talk, I will present an overview of the activities of the UK National Quantum Hub in Sensors and Metrology in developing cold atoms technology for space. Our activities are focused in two main areas: optical clocks and atom interferometers. I will also discuss our contributions to recent initiatives including STE-QUEST and AI-GOAT, the ESA/NASA initiative aiming at an atom interferometer gravitational wave detector in space.

  13. Cold condensation of dust in the ISM.

    PubMed

    Rouillé, Gaël; Jäger, Cornelia; Krasnokutski, Serge A; Krebsz, Melinda; Henning, Thomas

    2014-01-01

    The condensation of complex silicates with pyroxene and olivine composition under conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 microm band of the interstellar silicates and the 10 microm band of the low-temperature siliceous condensates can be noted.

  14. Cold in-situ recycling evaluation

    SciTech Connect

    1996-12-01

    In 1984 the New Mexico State Highway and Transportation Department began using Cold Insitu Recycling for the rehabilitation of asphalt concrete pavements. This paper reports the results of a comprehensive evaluation of the method from the standpoint of pavement performance and cost. The evaluation was performed by selecting and investigating by physical tests, condition inspections and review of other data, 45 projects located throughout the state of New Mexico. It is concluded that performance will generally exceed the 10 year service life assumed during design. Costs were evaluated in comparison to a mill and overlay rehabilitation method with an equal structural coefficient on the basis of construction costs and estimated maintenance costs during the design life. It is clear from this study that the use of cold insitu recycling is cost effective and provides excellent performance for a service life that is yet to be determined, certainly exceeding ten years.

  15. Axion cold dark matter in nonstandard cosmologies

    SciTech Connect

    Visinelli, Luca; Gondolo, Paolo

    2010-03-15

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  16. Common cold outbreaks: A network theory approach

    NASA Astrophysics Data System (ADS)

    Vishkaie, Faranak Rajabi; Bakouie, Fatemeh; Gharibzadeh, Shahriar

    2014-11-01

    In this study, at first we evaluated the network structure in social encounters by which respiratory diseases can spread. We considered common-cold and recorded a sample of human population and actual encounters between them. Our results show that the database structure presents a great value of clustering. In the second step, we evaluated dynamics of disease spread with SIR model by assigning a function to each node of the structural network. The rate of disease spread in networks was observed to be inversely correlated with characteristic path length. Therefore, the shortcuts have a significant role in increasing spread rate. We conclude that the dynamics of social encounters' network stands between the random and the lattice in network spectrum. Although in this study we considered the period of common-cold disease for network dynamics, it seems that similar approaches may be useful for other airborne diseases such as SARS.

  17. Automatic Flatness Control of Cold Rolling Mill

    NASA Astrophysics Data System (ADS)

    Anbe, Yoshiharu; Sekiguchi, Kunio

    One of the subjects of cold rolling is a flatness of the rolled strip. Conventionally, measured strip flatness was approximated by polynomial (2th, 4th, 6th) equation across the entire strip width. This made it difficult to deal with desired loose edge or any desired flatness across the entire strip width. Also conventional flatness control was done for the entire strip width, so if there is a different flatness error among drive side and work side, conventional flatness control can not control properly. We propose independent strip flatness control among drive side and work side, and also automatic flatness control (AFC) system with arbitrary desired strip flatness. Also some applied results to cold mill are shown.

  18. Coupling cold atoms with mechanical oscillators

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Valencia, Jose; Geraci, Andrew; Eardley, Matthew; Kitching, John

    2014-05-01

    Macroscopic systems, coupled to quantum systems with well understood coherence properties, can enable the study of the boundary between quantum microscopic phenomena and macroscopic systems. Ultra-cold atoms can be probed and manipulated with micro-mechanical resonators that provide single-spin sensitivity and sub-micron spatial resolution, facilitating studies of decoherence and quantum control. In the future, hybrid quantum systems consisting of cold atoms interfaced with mechanical devices may have applications in quantum information science. We describe our experiment to couple laser-cooled Rb atoms to a magnetic cantilever tip. This cantilever is precisely defined on the surface of a chip with lithography and the atoms are trapped at micron-scale distances from this chip. To match cantilever mechanical resonances, atomic magnetic resonances are tuned with a magnetic field.

  19. Cold condensation of dust in the ISM.

    PubMed

    Rouillé, Gaël; Jäger, Cornelia; Krasnokutski, Serge A; Krebsz, Melinda; Henning, Thomas

    2014-01-01

    The condensation of complex silicates with pyroxene and olivine composition under conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 microm band of the interstellar silicates and the 10 microm band of the low-temperature siliceous condensates can be noted. PMID:25302393

  20. Heavily cold worked metals: structures and properties

    SciTech Connect

    Hansen, N.

    1999-07-01

    Large strain deformation of metals and alloys leads to a microstructural subdivision on a fine scale. Subdividing features are dislocation boundaries and high angle boundaries. Key microstructural parameters are the spacing between such boundaries and their angle of misorientation. These parameters have been characterized by TEM including Kikuchi pattern analysis of metals deformed to very large strains. By the way of examples, pure metals have been studied after deformation by cold rolling and after Cyclic-Extrusion-Compression (CEC) and Equal Channel Angular (ECA) deformation. It has also been examined how addition of fine particles affects the microstructure evolution. These experiments show a significant effect of materials and process parameters on microstructure and local crystallography which is reflected in the flow stress of the cold worked metal.

  1. Hyperosmolar cold storage kidney preservative solution.

    PubMed

    Masuda, J Y; Bleich, R N; Beckerman, J H

    1975-04-01

    A hyperosmolar kidney preservative solution which can maintain kidneys from experimental animals viable for up to 72 hours is described. Using the criterion of a one-month failure rate, the cold storage preservation method was found to be superior to machine preservation methods. Sachs' solution was found to be superior to all other cold storage solutions. The most important aspect of the hyperosmolar kidney preservative solution appears to be its ability to maintain normal intracellular electrolyte composition and to prevent cellular damage due to swelling. The present formula requires that the basic solution and a magnesium chloride additive solution be prepared separately and combined before use. A stable combined solution is proposed which can be sterilized by membrane filtration. PMID:1130414

  2. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  3. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D.

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  4. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  5. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  6. Cold fusion catalyzed by muons and electrons

    SciTech Connect

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  7. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  8. CO2 laser cold cathode research results

    NASA Technical Reports Server (NTRS)

    Hochuli, U.

    1973-01-01

    The construction and processing of four test lasers are discussed, and the test results are assessed. Tests show that the best performance was obtained from cathodes made from internally oxidized Ag-Cu alloys or pure Cu. Due to the cold cathode technology developments, sealed-off 1 w CO2 lasers with gas volumes of only 50 cu cm were duplicated, and have performed satisfactorily for more than 6000 hours.

  9. Microwave devices: Carbon nanotubes as cold cathodes

    NASA Astrophysics Data System (ADS)

    Teo, Kenneth B. K.; Minoux, Eric; Hudanski, Ludovic; Peauger, Franck; Schnell, Jean-Philippe; Gangloff, Laurent; Legagneux, Pierre; Dieumegard, Dominique; Amaratunga, Gehan A. J.; Milne, William I.

    2005-10-01

    To communicate, spacecraft and satellites rely on microwave devices, which at present are based on relatively inefficient thermionic electron sources that require heating and cannot be switched on instantaneously. Here we describe a microwave diode that uses a cold-cathode electron source consisting of carbon nanotubes and that operates at high frequency and at high current densities. Because it weighs little, responds instantaneously and has no need of heating, this miniaturized electron source should prove valuable for microwave devices used in telecommunications.

  10. Microwave devices: carbon nanotubes as cold cathodes.

    PubMed

    Teo, Kenneth B K; Minoux, Eric; Hudanski, Ludovic; Peauger, Franck; Schnell, Jean-Philippe; Gangloff, Laurent; Legagneux, Pierre; Dieumegard, Dominique; Amaratunga, Gehan A J; Milne, William I

    2005-10-13

    To communicate, spacecraft and satellites rely on microwave devices, which at present are based on relatively inefficient thermionic electron sources that require heating and cannot be switched on instantaneously. Here we describe a microwave diode that uses a cold-cathode electron source consisting of carbon nanotubes and that operates at high frequency and at high current densities. Because it weighs little, responds instantaneously and has no need of heating, this miniaturized electron source should prove valuable for microwave devices used in telecommunications.

  11. Spatial distribution of cold antihydrogen formation.

    PubMed

    Madsen, N; Amoretti, M; Amsler, C; Bonomi, G; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Macri, M; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; van der Werf, D P; Yamazaki, Y; Zurlo, N

    2005-01-28

    Antihydrogen is formed when antiprotons are mixed with cold positrons in a nested Penning trap. We present experimental evidence, obtained using our antihydrogen annihilation detector, that the spatial distribution of the emerging antihydrogen atoms is independent of the positron temperature and axially enhanced. This indicates that antihydrogen is formed before the antiprotons are in thermal equilibrium with the positron plasma. This result has important implications for the trapping and spectroscopy of antihydrogen.

  12. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect

    Krahn, D.E.

    1998-02-23

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  13. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, Donald P.

    1985-01-01

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  14. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, D.P.

    1984-06-05

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  15. Fundamental Study of Direct Contact Cold Energy Release by Flowing Hot Air through Ice Particles Packed Layer

    NASA Astrophysics Data System (ADS)

    Aoyama, Sigeo; Inaba, Hideo

    This paper has dealt with the direct contact heat exchange characteristics between ice particles (average ice particle diameter : 3.10mm) packed in the rectangular cold energy storage vessel and flowing hot air as a heat transfer medium. The hot air bubbles ascended in the fluidized ice particles layer, and they were cooled down directly by melting ice particles. The temperature efficiency increased as Reynolds number Re increased because the hot air flowing in the layer became active. The dehumidity efficiency increased with an increase in modified Stefan number and Re, since the heat capacity of inlet air and heat transfer coefficient increased. Finally, some empirical correlations for temperature efficiency, dehumidity efficiency and the completion time of cold energy release were derived in terms of various nondimensional parameters.

  16. Calculating proper transfer prices

    SciTech Connect

    Dorkey, F.C. ); Jarrell, G.A. )

    1991-01-01

    This article deals with developing a proper transfer pricing method. Decentralization is as American as baseball. While managers laud the widespread benefits of both decentralization and baseball, they often greet the term transfer price policy with a yawn. Since transfer prices are as critical to the success of decentralized firms as good pitchers are to baseball teams, this is quite a mistake on the part of our managers. A transfer price is the price charged to one division for a product or service that another division produced or provided. In many, perhaps most, decentralized organizations, the transfer pricing policies actually used are grossly inefficient and sacrifice the potential advantages of decentralization. Experience shows that far too many companies have transfer pricing policies that cost them significantly in foregone growth and profits.

  17. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  18. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  19. Probing properties of cold radiofrequency plasma with polymer probe

    NASA Astrophysics Data System (ADS)

    Bormashenko, E.; Chaniel, G.; Multanen, V.

    2015-01-01

    The probe intended for the characterization of cold plasma is introduced. The probe allows the estimation of Debye length of cold plasma. The probe is based on the pronounced modification of surface properties (wettability) of polymer films by cold plasmas. The probe was tested with the cold radiofrequency inductive air plasma discharge. The Debye length and the concentration of charge carriers were estimated for various gas pressures. The reported results coincide reasonably with the corresponding values established by other methods. The probe makes possible measurement of characteristics of cold plasmas in closed chambers.

  20. Liquid deuterium cold source in graphite thermal column

    NASA Astrophysics Data System (ADS)

    Utsuro, M.; Kawai, T.; Maeda, Y.; Yamaoka, H.; Akiyoshi, T.; Okamoto, S.

    1989-01-01

    A liquid deuterium cold source with a non-spherical moderator chamber of about 4 litres was installed into the graphite thermal column of 5 MW Kyoto University Reactor (KUR). Three cold neutron holes and one very cold neutron hole are provided in the graphite for beam extractions. The operation tests with hydrogen liquefied in the condenser showed satisfactory performances and high gain factors of cold and very cold neutrons of more than 20 and 10, respectively. Neutron measurements with the deuterium moderator are now in progress.