Sample records for cold neutron moderator

  1. High brilliant thermal and cold moderator for the HBS neutron source project Jülich

    NASA Astrophysics Data System (ADS)

    Cronert, T.; Dabruck, J. P.; Doege, P. E.; Bessler, Y.; Klaus, M.; Hofmann, M.; Zakalek, P.; Rücker, U.; Lange, C.; Butzek, M.; Hansen, W.; Nabbi, R.; Brückel, T.

    2016-09-01

    The proposed High Brilliance Neutron Source (HBS), recognized within the Helmholtz Association of German Research Centres, will optimize the entire chain from particle source through particle accelerator, target, moderator, reflector, shielding, beam extraction, beam transport all the way to the detector, utilizing the nuclear Be(p,n) or Be(d,n) reaction in the lower MeV energy range. A D2O moderating reflector prototype (MRP) and a cold source were constructed and build according to MCNP parameter studies. The MRP was tested in a feasibility study at the TREFF instrument at MLZ (Garching). Cold beam extraction from the flux maximum within the moderator based on liquid para H2 and other cold moderators will be tested by energy spectroscopy via TOF-method. Different ratios of liquid ortho/para H2 will be fed to the cold moderator. The ratio will be controlled by feeding from reservoires of natural liquid H2 and a storage loop with an ortho/para converter and determined via online heat capacity measurement.

  2. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE.

    PubMed

    Seo, P-N; Bowman, J D; Gericke, M; Gillis, R C; Greene, G L; Leuschner, M B; Long, J; Mahurin, R; Mitchell, G S; Penttila, S I; Peralta, G; Sharapov, E I; Wilburn, W S

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world.

  3. Implementation of a small-angle scattering model in MCNPX for very cold neutron reflector studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grammer, Kyle B.; Gallmeier, Franz X.

    Current neutron moderator media do not sufficiently moderate neutrons below the cold neutron regime into the very cold neutron (VCN) regime that is desirable for some physics applications. Nesvizhevsky et al [1] have demonstrated that nanodiamond powder efficiently reflect VCN via small angle scattering. He suggests that these effects could be exploited to boost the neutron output of a VCN moderator. Simulation studies of nanoparticle reflectors are being investigated as part of the development of a VCN source option for the SNS second target station. We are pursuing an expansion of the MCNPX code by implementation of an analytical small-anglemore » scattering function [2], which is adaptable by scattering particle sizes, distributions, and packing fractions in order to supplement currently existing scattering kernels. The analytical model and preliminary studies using MCNPX will be discussed.« less

  4. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    NASA Astrophysics Data System (ADS)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2002-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universität München, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2O-reflector tank at 400 mm from the reactor core axis close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 l of liquid deuterium at 25 K, and in the structures, is evacuated by a two-phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10° from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the lifetime of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2) to the deuterium (D 2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long-term change of the hydrogen content in the deuterium is avoided by storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3Ni 2, the other one with 150 kg of ZrCo 0.8Ni 0.2. Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in <6 min at a pressure <3 bar. The new reactor will have 13 beam tubes, 4 of which are looking at the CNS, including two for very cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the

  5. International workshop on cold neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more ofmore » a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.« less

  6. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  7. Outer crust of nonaccreting cold neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equationmore » of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.« less

  8. Introducing single-crystal scattering and optical potentials into MCNPX: Predicting neutron emission from a convoluted moderator

    DOE PAGES

    Gallmeier, F. X.; Iverson, E. B.; Lu, W.; ...

    2016-01-08

    Neutron transport simulation codes are an indispensable tool used for the design and construction of modern neutron scattering facilities and instrumentation. It has become increasingly clear that some neutron instrumentation has started to exploit physics that is not well-modelled by the existing codes. Particularly, the transport of neutrons through single crystals and across interfaces in MCNP(X), Geant4 and other codes ignores scattering from oriented crystals and refractive effects, and yet these are essential ingredients for the performance of monochromators and ultra-cold neutron transport respectively (to mention but two examples). In light of these developments, we have extended the MCNPX codemore » to include a single-crystal neutron scattering model and neutron reflection/refraction physics. Furthermore, we have also generated silicon scattering kernels for single crystals of definable orientation with respect to an incoming neutron beam. As a first test of these new tools, we have chosen to model the recently developed convoluted moderator concept, in which a moderating material is interleaved with layers of perfect crystals to provide an exit path for neutrons moderated to energies below the crystal s Bragg cut off at locations deep within the moderator. Studies of simple cylindrical convoluted moderator systems of 100 mm diameter and composed of polyethylene and single crystal silicon were performed with the upgraded MCNPX code and reproduced the magnitude of effects seen in experiments compared to homogeneous moderator systems. Applying different material properties for refraction and reflection, and by replacing the silicon in the models with voids, we show that the emission enhancements seen in recent experiments are primarily caused by the transparency of the silicon/void layers. Finally the convoluted moderator experiments described by Iverson et al. were simulated and we find satisfactory agreement between the measurement and the results of

  9. The Los ALamos Neutron Science Center Hydrogen Moderator System

    NASA Astrophysics Data System (ADS)

    Jarmer, J. J.; Knudson, J. N.

    2006-04-01

    At the Los Alamos Neutron Science Center (LANSCE), spallation neutrons are produced by an 800-MeV proton beam interacting with tungsten targets. Gun-barrel-type penetrations through the heavy concrete and steel shielding that surround the targets collimate neutrons to form neutron beams used for scattering experiments. Two liquid hydrogen moderators of one-liter volume each are positioned adjacent to the neutron-production targets. Some of the neutrons that pass through a moderator interact with or scatter from protons in the hydrogen. The neutron-proton interaction reduces the energy or moderates neutrons to lower energies. Lower energy "moderated" neutrons are the most useful for some neutron scattering experiments. We provide a description of the LANSCE hydrogen-moderator system and its cryogenic performance with proton beams of up to 125 micro-amp average current.

  10. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  11. Designing of the 14 MeV neutron moderator for BNCT

    NASA Astrophysics Data System (ADS)

    Cheng, Dao-Wen; Lu, Jing-Bin; Yang, Dong; Liu, Yu-Min; Wang, Hui-Dong; Ma, Ke-Yan

    2012-09-01

    In boron neutron capture therapy (BNCT), the ratio of the fast neutron flux to the neutron flux in the tumor (RFNT) must be less than 3%. If a D-T neutron generator is used in BNCT, the 14 MeV neutron moderator must be optimized to reduce the RFNT. Based on the neutron moderation theory and the simulation results, tungsten, lead and diamond were used to moderate the 14 MeV neutrons. Satisfying RFNT of less than 3%, the maximum neutron flux in the tumor was achieved with a three-layer moderator comprised of a 3 cm thick tungsten layer, a 14 cm thick lead layer and a 21 cm thick diamond layer.

  12. The crystal acceleration effect for cold neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braginetz, Yu. P., E-mail: aiver@pnpi.spb.ru; Berdnikov, Ya. A.; Fedorov, V. V., E-mail: vfedorov@pnpi.spb.ru

    A new mechanism of neutron acceleration is discussed and studied experimentally in detail for cold neutrons passing through the accelerated perfect crystal with the energies close to the Bragg one. The effect arises due to the following reason. The crystal refraction index (neutron-crystal interaction potential) for neutron in the vicinity of the Bragg resonance sharply depends on the parameter of deviation from the exact Bragg condition, i.e. on the crystal-neutron relative velocity. Therefore the neutrons enter into accelerated crystal with one neutron-crystal interaction potential and exit with the other. Neutron kinetic energy cannot vary inside the crystal due to itsmore » homogeneity. So after passage through such a crystal neutrons will be accelerated or decelerated because of the different energy change at the entrance and exit crystal boundaries.« less

  13. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source.

    PubMed

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed.

  14. Imaging of Rabbit VX-2 Hepatic Cancer by Cold and Thermal Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yoshinori; Matsubayashi, Masahito; Takeda, Tohoru; Lwin, Thet Thet; Wu, Jin; Yoneyama, Akio; Matsumura, Akira; Hori, Tomiei; Itai, Yuji

    2003-11-01

    Neutron radiography is based on differences in neutron mass attenuation coefficients among the elements and is a non-destructive imaging method. To investigate biomedical applications of neutron radiography, imaging of rabbit VX-2 liver cancer was performed using thermal and cold neutron radiography with a neutron imaging plate. Hepatic vessels and VX-2 tumor were clearly observed by neutron radiography, especially by cold neutron imaging. The image contrast of this modality was better than that of absorption-contrast X-ray radiography.

  15. The performance of the upgraded Los Alamos Neutron Source

    NASA Astrophysics Data System (ADS)

    Ito, Takeyasu; LANL UCN Source Collaboration

    2017-09-01

    Los Alamos National Laboratory has been operating an ultracold (UCN) source based on a solid deuterium (SD2) UCN converter driven by spallation neutrons for over 10 years. It has recently been successfully upgraded, by replacing the cryostat that contains the cold neutron moderator, SD2 volume, and vertical UCN guide. The horizontal UCN guide that transports UCN out of the radiation shield was also replaced. The new design reflects lessons learned from the 10+ year long operation of the previous version of the UCN source and is optimized to maximize the cold neutron flux at the SD2 volume, featuring a close coupled cold neutron moderator, and maximize the transport of the UCN to experiments. During the commissioning of the upgraded UCN source, data were collected to measure its performance, including cold neutron spectra as a function of the cold moderator temperature, and the UCN density in a vessel outside the source. In this talk, after a brief overview of the design of the upgraded source, the results of the performance tests and comparison to prediction will be presented. This work was funded by LANL LDRD.

  16. Physical particularities of nuclear reactors using heavy moderators of neutrons

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-12-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using 233U as a fissile nuclide and 232Th and 231Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  17. Physical particularities of nuclear reactors using heavy moderators of neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N.

    2016-12-15

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program packagemore » for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.« less

  18. Design of an ultrathin cold neutron detector

    NASA Astrophysics Data System (ADS)

    Osovizky, A.; Pritchard, K.; Yehuda-Zada, Y.; Ziegler, J.; Binkley, E.; Tsai, P.; Thompson, A.; Hadad, N.; Jackson, M.; Hurlbut, C.; Baltic, G. M.; Majkrzak, C. F.; Maliszewskyj, N. C.

    2018-06-01

    We describe the design and performance of an ultrathin (<2 mm) cold neutron detector consisting of 6LiF:ZnS(Ag) scintillator in which wavelength shifting fibers have been embedded to conduct scintillation photons out of the medium to a silicon photomultiplier photosensor. The counter has a neutron sensitive volume of 12 mm wide × 30 mm high × 1.4 mm deep. Twenty-four 0.5 mm diameter wavelength shifting fibers conduct the scintillation light out of the plane of the detector and are concentrated onto a 3 mm × 3 mm silicon photomultiplier. The detector is demonstrated to possess a neutron detection efficiency of 93% for 3.27 meV neutrons with a gamma ray rejection ratio on the order of 10-7.

  19. SIKA—the multiplexing cold-neutron triple-axis spectrometer at ANSTO

    NASA Astrophysics Data System (ADS)

    Wu, C.-M.; Deng, G.; Gardner, J. S.; Vorderwisch, P.; Li, W.-H.; Yano, S.; Peng, J.-C.; Imamovic, E.

    2016-10-01

    SIKA is a new cold-neutron triple-axis spectrometer receiving neutrons from the cold source CG4 of the 20MW Open Pool Australian Light-water reactor. As a state-of-the-art triple-axis spectrometer, SIKA is equipped with a large double-focusing pyrolytic graphite monochromator, a multiblade pyrolytic graphite analyser and a multi-detector system. In this paper, we present the design, functions, and capabilities of SIKA, and discuss commissioning experimental results from powder and single-crystal samples to demonstrate its performance.

  20. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms.

    PubMed

    Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin

    2015-07-01

    Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype. © 2014 Scandinavian Plant Physiology Society.

  1. Measurement of the Neutron Lifetime with Ultra-cold Neutrons Stored in a Magneto-gravitational Trap

    NASA Astrophysics Data System (ADS)

    Ezhov, V. F.; Andreev, A. Z.; Ban, G.; Bazarov, B. A.; Geltenbort, P.; Glushkov, A. G.; Knyazkov, V. A.; Kovrizhnykh, N. A.; Krygin, G. B.; Naviliat-Cuncic, O.; Ryabov, V. L.

    2018-05-01

    We report a measurement of the neutron lifetime using ultra-cold neutrons stored in a magneto-gravitational trap made of permanent magnets. Neutrons surviving in the trap after fixed storage times have been counted and the trap losses have continuously been monitored during storage by detecting neutrons leaking from the trap. The value of the neutron lifetime resulting from this measurement is τ n = (878.3 ± 1.6stat ± 1.0syst) s. A unique feature of this experiment is the monitoring of leaking neutrons providing a robust control of the main systematic loss.

  2. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    DOE PAGES

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore » is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less

  3. Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dris, Zakaria bin, E-mail: zakariadris@gmail.com; Centre for Nuclear Energy, Universiti Tenaga Nasional; Mohamed, Abdul Aziz bin

    2016-01-22

    A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried outmore » using a neutron spectrometer.« less

  4. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  5. Developments in neutron beam devices and an advanced cold source for the NIST research reactor

    NASA Astrophysics Data System (ADS)

    Williams, Robert E.; Rowe, J. Michael

    2002-01-01

    The last 5 yr has been a period of steady growth in instrument capabilities and utilization at the National Institute of Standards and Technology Center for Neutron Research. Since the installation of the liquid hydrogen cold source in 1995, all of the instruments originally planned for the Cold Neutron Research Facility have been completed and made available to users, and three new thermal neutron instruments have been installed. Currently, an advanced cold source is being fabricated that will better couple the reactor core and the existing network of neutron guides. Many improvements are also being made in neutron optics to enhance the beam characteristics of certain instruments. For example, optical filters will be installed that will increase the fluxes at the two 30-m SANS instruments by as much as two. Sets of MgF 2 biconcave lenses have been developed for SANS that have demonstrated a significant improvement in resolution over conventional pinhole collimation. The recently commissioned high-flux backscattering spectrometer incorporates a converging guide, a large spherically focusing monochromator and analyzer, and a novel phase space transform chopper, to achieve very high intensity while maintaining excellent energy resolution. Finally, a prototype low background, doubly focusing neutron monochromator is nearing completion that will be the heart of a new cold neutron spectrometer, as well as two new thermal neutron triple axis spectrometers.

  6. A possible approach to 14MeV neutron moderation: A preliminary study case.

    PubMed

    Flammini, D; Pilotti, R; Pietropaolo, A

    2017-07-01

    Deuterium-Tritium (D-T) interactions produce almost monochromatic neutrons with about 14MeV energy. These neutrons are used in benchmark experiments as well as for neutron cross sections assessment in fusion reactors technology. The possibility to moderate 14MeV neutrons for purposes beyond fusion is worth to be studied in relation to projects of intense D-T sources. In this preliminary study, carried out using the MCNP Monte Carlo code, the moderation of 14MeV neutrons is approached foreseeing the use of combination of metallic materials as pre-moderator and reflectors coupled to standard water moderators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    NASA Astrophysics Data System (ADS)

    Arimoto, Y.; Higashi, N.; Igarashi, Y.; Iwashita, Y.; Ino, T.; Katayama, R.; Kitaguchi, M.; Kitahara, R.; Matsumura, H.; Mishima, K.; Nagakura, N.; Oide, H.; Otono, H.; Sakakibara, R.; Shima, T.; Shimizu, H. M.; Sugino, T.; Sumi, N.; Sumino, H.; Taketani, K.; Tanaka, G.; Tanaka, M.; Tauchi, K.; Toyoda, A.; Tomita, T.; Yamada, T.; Yamashita, S.; Yokoyama, H.; Yoshioka, T.

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with 6Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  8. Neutron Imaging at LANSCE—From Cold to Ultrafast

    DOE PAGES

    Nelson, Ronald Owen; Vogel, Sven C.; Hunter, James F.; ...

    2018-02-23

    In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE), covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center), Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutronsmore » and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR) facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns), time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.« less

  9. Neutron Imaging at LANSCE—From Cold to Ultrafast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ronald Owen; Vogel, Sven C.; Hunter, James F.

    In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE), covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center), Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutronsmore » and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR) facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns), time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.« less

  10. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    DOE PAGES

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.; ...

    2016-06-14

    We identified candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared tomore » the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm 2 to 20 × 20 mm 2. Furthermore, this increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. Our first effort decoupled group moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.« less

  11. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    NASA Astrophysics Data System (ADS)

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L.

    2016-06-01

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm2 to 20 × 20 mm2. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments' sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  12. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.

    We identified candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared tomore » the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm 2 to 20 × 20 mm 2. Furthermore, this increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. Our first effort decoupled group moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.« less

  13. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less

  14. Solid methane in neutron radiation: Cryogenic moderators and cometary cryo volcanism

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Lawson, C. R.; Jenkins, D. M.; Ridley, C. J. T.; Haynes, D. J.

    2017-12-01

    The effect of ionizing radiation on solid methane has previously been an area of interest in the astrophysics community. In the late 1980s this interest was further boosted by the possibility of using solid methane as a moderating medium in spallation neutron sources. Here we present test results of solid methane moderators commissioned at the ISIS neutron source, and compare them with a model based on the theory of thermal explosion. Good agreement between the moderator test data and our model suggests that the process of radiolysis defect recombination happens at two different temperature ranges: the ;lower temperature; recombination process occurs at around 20 K, with the ;higher temperature; process taking place between 50 and 60 K. We discuss consequences of this mechanism for the designing and operation of solid methane moderators used in advanced neutron sources. We also discuss the possible role of radiolysis defect recombination processes in cryo-volcanism on comets, and suggest an application based on this phenomenon.

  15. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallmeier, F. X., E-mail: gallmeierfz@ornl.gov; Lu, W.; Riemer, B. W.

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis comparedmore » to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm{sup 2} to 20 × 20 mm{sup 2}. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.« less

  16. A portable time of flight system for thermal and cold neutron applications

    NASA Astrophysics Data System (ADS)

    Benenson, R. E.; Chen-Mayer, H. H.; Sharov, V.

    1996-08-01

    A very small Fermi-type neutron chopper fashioned by cutting slots in a boron nitride cylinder was developed for use with a source of thermal and cold (subthermal velocity) neutrons. The original goal was to characterize spectra emerging from glass capillary fibers of less than 1 mm diameter, but other applications became apparent. For approximately 1 m flight paths, conventional nuclear electronics had to be adapted to the millisecond flight times. Both time-to-amplitude converter and multiscaling time-data storage methods were used. Data corrections for the particular geometry are reviewed and applied to the present geometry. Among examples of its potential use, the spectrum of a newly installed cold source was measured.

  17. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, P. -N.; Barron-Palos, L.; Bowman, J. D.

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beammore » with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.« less

  18. Optimization of the Army’s Fast Neutron Moderator for Radiography

    DTIC Science & Technology

    2013-02-26

    thermal neutron flux from a commercially available high-energy D-T neutron generator. This paper details the steps taken to increase exposure rates...experiment was to have increased thermal neutron flux rates and shorter exposure times than previously achieved. Additional technology developments...This reduced the thermalizing efficiency of the moderator at higher energies, resulted in a large loss of neutron flux at the image plane, and

  19. Testing Moderating Detection Systems with {sup 252}Cf-Based Reference Neutron Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.

    Calibration measurements were carried out on a probe designed to measure ambient dose equivalent in accordance with ICRP Pub 60 recommendations. It consists of a cylindrical {sup 3}He proportional counter surrounded by a 25-cm-diameter spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV. The instrument was used to measure the dose rate in four separate neutron fields: unmoderated {sup 252}Cf, D{sub 2}O-moderated {sup 252}Cf, polyethylene-moderated {sup 252}Cf, and WEP neutron howitzer with {sup 252}Cf at its center. Dose equivalent measurements were performed at source-detector centerline distances from 50 tomore » 200 cm. The ratio of air-scatter- and room-return-corrected ambient dose equivalent rates to ambient dose equivalent rates calculated with the code MCNP are tabulated.« less

  20. Test of the SO(6) selection rule in 196Pt using cold-neutron capture

    NASA Astrophysics Data System (ADS)

    Jolie, J.; Régis, J.-M.; Wilmsen, D.; Saed-Samii, N.; Pfeiffer, M.; Warr, N.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G. S.; De France, G.; Urban, W.; Drouet, F.; Vancraeyenest, A.; Bruce, A. M.; Roberts, O. J.; Fraile, L. M.; Paziy, V.; Ignatov, A.; Kröll, Th.; Ivanova, D.; Kisyov, S.; Lalkovski, S.; Podolyak, Zs.; Regan, P. H.; Wilson, E.; Korten, W.; Ur, C. A.; Lica, R.; Marginean, N.

    2015-02-01

    At the PF1B cold-neutron beam line of the Institut Laue Langevin, the EXILL&FATIMA array, consisting of EXOGAM Ge detectors and fast LaBr3(Ce) scintillators, was used to perform fast electronic timing measurements after the 195Pt(n, γ) reaction using a highly collimated cold-neutron beam. An upper lifetime limit was obtained for the third 0+ state in 196Pt. As this state is the lowest state of the σ = N - 2 set of SO(6) states, the selection rule which forbids E2 transitions to the lower lying σ = N could be tested.

  1. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.

    PubMed

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-12-01

    In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Commissioning of cryogenic system for China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  3. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    PubMed

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  4. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    NASA Astrophysics Data System (ADS)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  5. Study of neutron shielding collimators for curved beamlines at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Santoro, V.; DiJulio, D. D.; Ansell, S.; Cherkashyna, N.; Muhrer, G.; Bentley, P. M.

    2018-06-01

    The European Spallation Source is being constructed in Lund, Sweden and is planned to be the world’s brightest pulsed spallation neutron source for cold and thermal neutron beams (≤ 1 eV). The facility uses a 2 GeV proton beam to produce neutrons from a tungsten target. The neutrons are then moderated in a moderator assembly consisting of both liquid hydrogen and water compartments. Surrounding the moderator are 22 beamports, which view the moderator’s outside surfaces. The beamports are connected to long neutron guides that transport the moderated neutrons to the sample position via reflections. As well as the desired moderated neutrons, fast neutrons coming directly from the target can find their way down the beamlines. These can create unwanted sources of background for the instruments. To mitigate such a kind of background, several instruments will use curved guides to lose direct line-of-sight (LoS) to the moderator and the target. In addition instruments can also use shielding collimators to reduce the amount of fast neutrons further traveling down the guide due to albedo reflections or streaming. Several different materials have been proposed for this purpose. We present the results of a study of different options for collimators and identify the optimal choices that balance cost, background and activation levels.

  6. Characterization of plastic and boron carbide additive manufactured neutron collimators

    NASA Astrophysics Data System (ADS)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  7. Radiative capture of cold neutrons by protons and deuteron photodisintegration with twisted beams

    NASA Astrophysics Data System (ADS)

    Afanasev, Andrei; Serbo, Valeriy G.; Solyanik, Maria

    2018-05-01

    We consider two basic nuclear reactions: capture of neutrons by protons, n + p → γ + d, and its time-reversed counterpart, photodisintegration of the deuteron, γ + d → n + p. In both of these cases we assume that the incoming beam of neutrons or photons is ‘twisted’ by having an azimuthal phase dependence, i.e., it carries an additional angular momentum along its direction of propagation. Taking a low-energy limit of these reactions, we derive relations between corresponding transition amplitudes and cross sections with plane-wave beams and twisted beams. Implications for experiments with twisted cold neutrons and twisted photon beams are discussed.

  8. Spectra of solar proton ground level events using neutron monitor and neutron moderated detector recordings

    NASA Technical Reports Server (NTRS)

    Stoker, P. H.

    1985-01-01

    Recordings on relativistic solar flare protons observed at Sanae, Antarctic, show that the percentage increase in counting rates of the neutron moderated detector (4NMD) is larger than the percentage increase in counting rates of the 3NM64 neutron monitor. These relative increases are described by solar proton differential spectra j sub s(P) = AP(beta). The power beta is determined for each event and the hardnesses of the temporal variations of beta, found for the ground level events (GLE) of 7 May, 1978 and 22 November, 1977.

  9. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.

  10. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, David

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the coldmore » source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation

  11. Moderator design studies for a new neutron reference source based on the D-T fusion reaction

    NASA Astrophysics Data System (ADS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  12. Moderator design studies for a new neutron reference source based on the D–T fusion reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramaticallymore » in recent years. Neutron generators based on deuterium-tritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14.6 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2 to 5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.« less

  13. Photon attenuation and neutron moderation correction factors for the inspection of cargo containers with tagged neutrons

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Perot, B.; Viesti, G.; Valkovic, V.; Sudac, D.; Bernard, S.; Mariani, A.; Szabo, J.-L.; Sannie, G.; Lunardon, M.; Bottosso, C.; Moretto, S.; Pesente, S.; Peerani, P.; Sequeira, V.; Salvato, M.

    2007-11-01

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) inspection system uses 14 MeV neutrons produced by the D(T,n α) reaction to detect explosives in cargo containers. Fast-neutron-induced reactions inside the container produce gamma rays, which are detected in coincidence with the associated alpha particle. The definition of the neutron path and the time-of-flight measurement allow positioning the source of the gamma ray inside the container, while the chemical composition of the target material is correlated with the energy spectrum of the coincident gamma rays. However, in case of dense cargo, neutron moderation and photon attenuation inside the container make difficult the reconstruction of the material composition from the measured gamma-ray energy spectrum. An analytical method has been developed and validated against experimental data, which allows obtaining the chemical carbon-to-oxygen and carbon-to-nitrogen ratios of the inspected items from the gamma-ray energy spectra. The principle of the method is presented along with validation tests.

  14. Efficiency of Moderated Neutron Lithium Glass Detectors Using Monte Carlo Techniques

    NASA Astrophysics Data System (ADS)

    James, Brian

    2011-10-01

    Due to national security concerns over the smuggling of special nuclear materials and the small supply of He-3 for use in neutron detectors, there is a great need for a new kind of neutron detector. Using Monte Carlo techniques I have been studying the use of lithium glass in varying configurations for neutron detectors. My research has included the effects of using a detector with two thin sheets of lithium at varying distances apart. I have also researched the effects of varying amounts of shielding a californium source with varying amounts of water. This is important since shielding would likely be used to make nuclear material more difficult to detect. The addition of one sheet of lithium-6 glass on the front surface of the detector significantly improves the efficiency for the detection of neutrons from a moderated fission source.

  15. The cold neutron chopper spectrometer at the Spallation Neutron Source—A review of the first 8 years of operation

    DOE PAGES

    Ehlers, G.; Podlesnyak, A. A.; Kolesnikov, A. I.

    2016-09-13

    The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. In addition, experiments are being routinely performed with the sample at extreme conditions: T ≲ 0.05 K, p ≳ 2 GPa, and B = 8more » T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.« less

  16. Radiation damage caused by cold neutrons in boron doped CMOS active pixel sensors

    NASA Astrophysics Data System (ADS)

    Linnik, B.; Bus, T.; Deveaux, M.; Doering, D.; Kudejova, P.; Wagner, F. M.; Yazgili, A.; Stroth, J.

    2017-05-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are considered as an emerging technology in the field of charged particle tracking. They will be used in the vertex detectors of experiments like STAR, CBM and ALICE and are considered for the ILC and the tracker of ATLAS. In those applications, the sensors are exposed to sizeable radiation doses. While the tolerance of MAPS to ionizing radiation and fast hadrons is well known, the damage caused by low energy neutrons was not studied so far. Those slow neutrons may initiate nuclear fission of 10B dopants found in the B-doped silicon active medium of MAPS. This effect was expected to create an unknown amount of radiation damage beyond the predictions of the NIEL (Non Ionizing Energy Loss) model for pure silicon. We estimate the impact of this effect by calculating the additional NIEL created by this fission. Moreover, we show first measured data for CMOS sensors which were irradiated with cold neutrons. The empirical results contradict the prediction of the updated NIEL model both, qualitatively and quantitatively: the sensors irradiated with slow neutrons show an unexpected and strong acceptor removal, which is not observed in sensors irradiated with MeV neutrons.

  17. Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams

    DOE PAGES

    Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B.; ...

    2016-06-14

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystalmore » reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. Ultimately, this finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.« less

  18. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Surface physics with cold and thermal neutron reflectometry. Progress report, April 1, 1991--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyerl, A.

    1993-09-01

    Within the past two and one half years of the project ``Surface Physics With Cold and Thermal Neutron Reflectometry`` a new thermal neutron reflectometer was constructed at the Rhode Island Nuclear Science Center (RINSC). It was used to study various liquid and solid surfaces. Furthermore, neutron reflection experiments were be un at different laboratories in collaboration with Dr. G.P. Fetcher (at Argonne National Laboratory), Dr. T. Russell (IBM Almaden) and Drs. S.K. Satija and A. Karim (at the National Institute for Standards and Technology). The available resources allowed partial construction of an imaging system for ultracold neutrons. It is expectedmore » to provide an extremely high resolution in momentum and energy transfer in surface studies using neutron reflectometry. Much of the work reported here was motivated by the possibility of later implementation at the planned Advanced Neutron Source at Oak Ridge. In a separate project the first concrete plans for an intense source of ultracold neutrons for the Advanced Neutron Source were developed.« less

  20. Development of a moderator system for the High Brilliance Neutron Source project

    NASA Astrophysics Data System (ADS)

    Dabruck, J. P.; Cronert, T.; Rücker, U.; Bessler, Y.; Klaus, M.; Lange, C.; Butzek, M.; Hansen, W.; Nabbi, R.; Brückel, T.

    2016-11-01

    The project for an accelerator based high brilliance neutron source HBS driven by Forschungszentrum Jülich forsees the use of the nuclear Be(p,n) or Be(d,n) reaction with accelerated particles in the lower MeV energy range. The lower neutron production compared to spallation has to be compensated by improving the neutron extraction process and optimizing the brilliance. Design and optimiziation of the moderator system are conducted with MCNP and will be validated with measurements at the AKR-2 training reactor by means of a prototype assembly where, e.g., the effect of different liquid H2 ortho/para ratios will be investigated and controlled in realtime via online heat capacity measurements.

  1. Accelerator driven neutron source design via beryllium target and 208Pb moderator for boron neutron capture therapy in alternative treatment strategy by Monte Carlo method.

    PubMed

    Khorshidi, Abdollah

    2017-01-01

    The reactor has increased its area of application into medicine especially boron neutron capture therapy (BNCT); however, accelerator-driven neutron sources can be used for therapy purposes. The present study aimed to discuss an alternative method in BNCT functions by a small cyclotron with low current protons based on Karaj cyclotron in Iran. An epithermal neutron spectrum generator was simulated with 30 MeV proton energy for BNCT purposes. A low current of 300 μA of the proton beam in spallation target concept via 9Be target was accomplished to model neutron spectrum using 208Pb moderator around the target. The graphite reflector and dual layer collimator were planned to prevent and collimate the neutrons produced from proton interactions. Neutron yield per proton, energy distribution, flux, and dose components in the simulated head phantom were estimated by MCNPX code. The neutron beam quality was investigated by diverse filters thicknesses. The maximum epithermal flux transpired using Fluental, Fe, Li, and Bi filters with thicknesses of 7.4, 3, 0.5, and 4 cm, respectively; as well as the epithermal to thermal neutron flux ratio was 161. Results demonstrated that the induced neutrons from a low energy and low current proton may be effective in tumor therapy using 208Pb moderator with average lethargy and also graphite reflector with low absorption cross section to keep the generated neutrons. Combination of spallation-based BNCT and proton therapy can be especially effective, if a high beam intensity cyclotron becomes available.

  2. Mass, radius and composition of the outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Schaffner-Bielich, Jürgen

    2008-01-01

    The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by including higher order corrections of the atomic binding, screening, exchange and zero-point energy. The most recent experimental nuclear data from the atomic mass table of Audi, Wapstra and Thibault from 2003 are used. Extrapolation to the drip line is utilized by various state-of-the-art theoretical nuclear models (finite range droplet, relativistic nuclear field and non-relativistic Skyrme Hartree Fock parameterizations). The different nuclear models are compared with respect to the mass and radius of the outer crust for different neutron star configurations and the nuclear compositions of the outer crust.

  3. Measurement of the para-hydrogen concentration in the ISIS moderators using neutron transmission and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Romanelli, Giovanni; Rudić, Svemir; Zanetti, Matteo; Andreani, Carla; Fernandez-Alonso, Felix; Gorini, Giuseppe; Krzystyniak, Maciej; Škoro, Goran

    2018-04-01

    We present an experimental study to determine the para-hydrogen concentration in the hydrogen moderators at the ISIS pulsed neutron and muon source. The experimental characterisation is based on neutron transmission experiments performed on the VESUVIO spectrometer, and thermal conductivity measurements using the TOSCA para-hydrogen rig. A reliable estimation of the level of para-hydrogen concentration in the hydrogen moderators is of crucial importance in the framework of a current project to completely refurbish the first target station at ISIS. Moreover, we report a new measurement of the total neutron cross section for normal hydrogen at 15 K on the broad energy range 3 meV -10 eV suggesting a revision of the most recent nuclear libraries for incident neutron energies lower than 10 meV. Finally, we characterise systematic errors affecting the para-hydrogen level estimation due to conversion from para to ortho hydrogen, as a function of the time a batch of gas spends in every component of our gas panel and apparatus.

  4. The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    PubMed

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-10-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Helium refrigerator maintenance and reliability at the OPAL cold neutron source

    NASA Astrophysics Data System (ADS)

    Thiering, Russell; Taylor, David; Lu, Weijian

    2012-06-01

    Australia's first Cold Neutron Source (CNS) is a major asset to its nuclear research program. The CNS, and associated helium refrigerator, was commissioned in 2006 and is operated at the Open Pool Light Water nuclear Reactor (OPAL). The OPAL CNS operates a 20K, 5 kW Brayton cycle helium refrigerator. In this paper relevant experiences from helium refrigerator operation, maintenance and repair are presented along with the lessons learnt from a series of technical investigations. Turbine failure, due to volatile organic species, is discussed along with the related compressor oil degradation and oil separation efficiency.

  6. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  7. Effect of the Temperature of the Moderator on the Velocity Distribution of Neutrons with Numerical Calculations for H as Moderator

    DOE R&D Accomplishments Database

    Wigner, E. P.; Wilkins, J. E. Jr.

    1944-09-14

    In this paper we set up an integral equation governing the energy distribution of neutrons that are being slowed down uniformly throughout the entire space by a uniformly distributed moderator whose atoms are in motion with a Maxwellian distribution of velocities. The effects of chemical binding and crystal reflection are ignored. When the moderator is hydrogen, the integral equation is reduced to a differential equation and solved by numerical methods. In this manner we obtain a refinement of the dv/v{sup 2} law. (auth)

  8. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.

    PubMed

    Shan, Qing; Chu, Shengnan; Jia, Wenbao

    2015-11-01

    Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Time-resolved neutron imaging at ANTARES cold neutron beamline

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10

  10. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  11. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    NASA Astrophysics Data System (ADS)

    Fiori, F.; Marcantoni, M.

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (tensile-strength tests) of the welded interface.

  12. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    NASA Astrophysics Data System (ADS)

    Blanc, A.; de France, G.; Drouet, F.; Jentschel, M.; Köster, U.; Mancuso, C.; Mutti, P.; Régis, J. M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Vancraeyenest, A.

    2013-12-01

    One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL) campaign. In the present work, the EXILL setup and performance will be presented.

  13. Reaction-in-flight neutrons as a test of stopping power in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.; Jungman, Gerard; Schulz, A. E.; Boswell, M.; Fowler, M. M.; Grim, G.; Klein, A.; Rundberg, R. S.; Wilhelmy, J. B.; Wilson, D.; Cerjan, C.; Schneider, D.; Sepke, S. M.; Tonchev, A.; Yeamans, C.

    2015-08-01

    We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF ( En> 15 MeV) component of the neutron spectrum was found to be about 10-4 of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule, and the data are consistent with a compressed cold fuel that is moderately to strongly coupled (Γ˜ 0.6) and electron degenerate (θFermi/θe˜ 4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. We find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions, and some models are ruled out by our analysis of these experiments.

  14. Reaction-in-flight neutrons as a test of stopping power in degenerate plasmas

    DOE PAGES

    Hayes, A. C.; Jungman, Gerard; Schulz, A. E.; ...

    2015-08-06

    We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF (E n > 15 MeV) component of the neutron spectrum was found to be about 10 –4 of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule, and the data are consistent with a compressed cold fuel that is moderately to strongly coupled (Γ~more » 0.6) and electron degenerate (θ Fermi/θ e~ 4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. In conclusion, we find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions, and some models are ruled out by our analysis of these experiments.« less

  15. Neutron-beam-shaping assembly for boron neutron-capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, L.; Kashaeva, E. A.; Lezhnin, S. I.

    A neutron-beam-shaping assembly consisting of a moderator, a reflector, and an absorber is used to form a therapeutic neutron beam for the boron neutron-capture therapy of malignant tumors at accelerator neutron sources. A new structure of the moderator and reflector is proposed in the present article, and the results of a numerical simulation of the neutron spectrum and of the absorbed dose in a modified Snyder head phantom are presented. The application of a composite moderator and of a composite reflector and the implementation of neutron production at the proton energy of 2.3MeV are shown to permit obtaining a high-qualitymore » therapeutic neutron beam.« less

  16. Novel Multidimensional Cross-Correlation Data Comparison Techniques for Spectroscopic Discernment in a Volumetrically Sensitive, Moderating Type Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Hoshor, Cory; Young, Stephan; Rogers, Brent; Currie, James; Oakes, Thomas; Scott, Paul; Miller, William; Caruso, Anthony

    2014-03-01

    A novel application of the Pearson Cross-Correlation to neutron spectral discernment in a moderating type neutron spectrometer is introduced. This cross-correlation analysis will be applied to spectral response data collected through both MCNP simulation and empirical measurement by the volumetrically sensitive spectrometer for comparison in 1, 2, and 3 spatial dimensions. The spectroscopic analysis methods discussed will be demonstrated to discern various common spectral and monoenergetic neutron sources.

  17. Stable accretion from a cold disc in highly magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Tsygankov, S. S.; Mushtukov, A. A.; Suleimanov, V. F.; Doroshenko, V.; Abolmasov, P. K.; Lutovinov, A. A.; Poutanen, J.

    2017-11-01

    Aims: The aim of this paper is to investigate the transition of a strongly magnetized neutron star into the accretion regime with very low accretion rate. Methods: For this purpose, we monitored the Be-transient X-ray pulsar GRO J1008-57 throughout a full orbital cycle. The current observational campaign was performed with the Swift/XRT telescope in the soft X-ray band (0.5-10 keV) between two subsequent Type I outbursts in January and September 2016. Results: The expected transition to the propeller regime was not observed. However, transitions between different regimes of accretion were detected. In particular, after an outburst, the source entered a stable accretion state characterised by an accretion rate of 1014-1015 g s-1. We associate this state with accretion from a cold (low-ionised) disc of temperature below 6500 K. We argue that a transition to this accretion regime should be observed in all X-ray pulsars that have a certain combination of the rotation frequency and magnetic field strength. The proposed model of accretion from a cold disc is able to explain several puzzling observational properties of X-ray pulsars.

  18. Removal of gadolinium, a neutron poison from the moderator system of nuclear reactors.

    PubMed

    Rufus, A L; Kumar, Padma S; Jeena, K; Velmurugan, S

    2018-01-15

    Gadolinium as gadolinium nitrate is used as neutron poison in the moderator system for regulating and controlling the power generation of Pressurized Heavy Water Reactors (PHWR) and proposed to be used in Advanced Heavy Water Reactors (AHWR) owing to its high neutron absorption cross section. Removal of the added gadolinium nitrate (Gd 3+ and NO 3 - ) from the system after its intended use is done using ion exchange resins. In the present investigation, attempts have been made to optimize the ion exchange process for generation of low radioactive waste and maximize utilization of the ion exchange resins by employing different types of resins and different modes of operation. The investigations revealed that use of mixed bed (MB) resin column consisting of Strong Acid Cation (SAC) resin and Strong Base Anion (SBA) resin followed by SAC resin column is efficient in removing the Gd 3+ and NO 3 - from the system besides maintaining the pH of the moderator system in the desirable regime, where gadolinium does not get precipitated as its hydroxide. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. New opportunities in quasi elastic neutron scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Mezei, F.; Russina, M.

    2001-07-01

    The high energy resolution usually required in quasi elastic neutron scattering (QENS) spectroscopy is commonly achieved by the use of cold neutrons. This is one of the important research areas where the majority of current work is done on instruments on continuous reactor sources. One particular reason for this is the capability of continuous source time-of-flight spectrometers to use instrumental parameters optimally adapted for best data collection efficiency in each experiment. These parameters include the pulse repetition rate and the length of the pulses to achieve optimal balance between resolution and intensity. In addition, the disc chopper systems used provide perfect symmetrical line shapes with no tails and low background. Recent development of a set of novel techniques enhance the efficiency of cold neutron spectroscopy on existing and future spallation sources in a dramatic fashion. These techniques involve the use of extended pulse length, high intensity coupled moderators, disc chopper systems and advanced neutron optical beam delivery, and they will enable Lujan center at Los Alamos to surpass the best existing reactor instruments in time-of-flight QENS work by more than on order of magnitude in terms of beam flux on the sample. Other applications of the same techniques will allow us to combine advantages of backscattering spectroscopy on continuous and pulsed sources in order to deliver μeV resolution in a very broad energy transfer range.

  20. Commissioning of the NPDGamma Detector Array: Counting Statistics in Current Mode Operation and Parity Violation in the Capture of Cold Neutrons on B 4 C and (27) Al.

    PubMed

    Gericke, M T; Bowman, J D; Carlini, R D; Chupp, T E; Coulter, K P; Dabaghyan, M; Desai, D; Freedman, S J; Gentile, T R; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Ishimoto, S; Jones, G L; Lauss, B; Leuschner, M B; Losowski, B; Mahurin, R; Masuda, Y; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P-N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H

    2005-01-01

    The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and (27)Al are zero to with- in 2 × 10(-6) and 7 × 10(-7), respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary.

  1. Rotational Effects of Nanoparticles for Cooling down Ultracold Neutrons

    PubMed Central

    Tu, Xiaoqing; Sun, Guangai; Gong, Jian; Liu, Lijuan; Ren, Yong; Gao, Penglin; Wang, Wenzhao; Yan, H.

    2017-01-01

    Due to quantum coherence, nanoparticles have very large cross sections when scattering with very cold or Ultracold Neutrons (UCN). By calculating the scattering cross section quantum mechanically at first, then treating the nanoparticles as classical objects when including the rotational effects, we can derive the associated energy transfer. We find that rotational effects could play an important role in slowing down UCN. In consequence, the slowing down efficiency can be improved by as much as ~40%. Since thermalization of neutrons with the moderator requires typically hundreds of collisions between them, a ~40% increase of the efficiency per collision could have a significant effect. Other possible applications, such as neutrons scattering with nano shells and magnetic particles,and reducing the systematics induced by the geometric phase effect using nanoparticles in the neutron Electric Dipole Moment (nEDM), are also discussed in this paper. PMID:28294116

  2. Study on a liquid-moderator-based neutron spectrometer for BNCT-Development and experimental test of the prototype spectrometer

    NASA Astrophysics Data System (ADS)

    Tamaki, S.; Sato, F.; Murata, I.

    2017-10-01

    Boron neutron capture therapy (BNCT) is known to be an effective radiation cancer therapy that requires neutron irradiation. A neutron field generated by an accelerator-based neutron source has various energy spectra, and it is necessary to evaluate the neutron spectrum in the treatment field. However, the method used to measure the neutron spectrum in the treatment field is not well established, and many researchers are making efforts to improve the spectrometers used. In the present study, we developed a prototype of a new neutron spectrometer that can measure the neutron spectra more accurately and precisely. The spectrometer is based on the same theory as that of the Bonner sphere spectrometer, and it uses a liquid moderator and an absorber. By carrying out an experimental test of the developed spectrometer, we finally revealed the problems and necessary conditions of the prototype detector.

  3. New precision measurements of free neutron beta decay with cold neutrons

    DOE PAGES

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; ...

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  4. High intensity, pulsed thermal neutron source

    DOEpatents

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  5. Endocrine-metabolic responses to military field operations: Effects of cold and moderate altitude exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Floyd, E.; Hackney, A.C.; Hodgdon, J.A.

    1991-03-11

    Select endocrine-metabolic responses of US Marines to 4.5 day field operations (FOPS) in different environments were examined. Blood and urine samples were collected in the field immediately before and after FOPS at: (1) sea level, neutral temperatures (Ts) (SLN; n = 14), (2) sea level, cold Ts (SLC; n = 16), (3) 2,500 M altitude, neutral Ts (ALN; n = 16), and (4) 2,500 M altitude, cold Ts (ALC; n = 45). Measures examined were testosterone (T), cortisol (C), glucose (Glu), triglycerides (Tg), and urinary ketones (Uket). T decreased pre-post the FOPS in the cold conditions ({bar X}; 6.7 tomore » 5.5 hg/ml; n = 61) but did not change in neutral conditions. C increased pre-post FOPS at SLC (12.1 to 19.8 ug/dl, p < 0.01), ALN (9.3 to 13.9 ug/dl, p < 0.01), and ALC (16.7 to 19.0 ug/dl, p = 0.08). Normoglycemia was maintained under each condition. Tg decreased (p < 0.01) at SLC, ALN, and ALC ({bar X}{triangle}: {minus}59.1, {minus}102.2, {minus}93.3 mg/dl, respectively), but increased at SLN (+74.0 mg/dl). Uket increased post FOPS only at ALN and ALC ({bar X}{triangle}: 3.4 mg/dl and +11.3 mg/dl). The Uket increases were correlated to Tg decreases. Results suggest FOPS induces a slight endocrine stress response, which is augmented with moderate altitude or cold exposure. Furthermore FOPS at altitude, especially in the cold, seems to shift the body towards fat metabolism.« less

  6. Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal; Muhrer, Guenter; Daemen, Luke L

    We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.

  7. Neutron detector

    DOEpatents

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  8. The possible use of a spallation neutron source for neutron capture therapy with epithermal neutrons.

    PubMed

    Grusell, E; Condé, H; Larsson, B; Rönnqvist, T; Sornsuntisook, O; Crawford, J; Reist, H; Dahl, B; Sjöstrand, N G; Russel, G

    1990-01-01

    Spallation is induced in a heavy material by 72-MeV protons. The resulting neutrons can be characterized by an evaporation spectrum with a peak energy of less than 2 MeV. The neutrons are moderated in two steps: first in iron and then in carbon. Results from neutron fluence measurements in a perspex phantom placed close to the moderator are presented. Monte Carlo calculations of neutron fluence in a water phantom are also presented under some chosen configurations of spallation source and moderator. The calculations and measurements are in good agreement and show that, for proton currents of less than 0.5 mA, useful thermal-neutron fluences are attainable in the depth of the brain. However, the dose contribution from the unavoidable gamma background component has not been included in the present investigation.

  9. SU-E-T-108: Development of a Novel Clinical Neutron Dose Monitor for Proton Therapy Based On Twin TLD500 Chips in a Small PE Moderator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hentschel, R; Mukherjee, B

    2014-06-01

    Purpose: In proton therapy, it could be desirable to measure out-of-field fast neutron doses at critical locations near and outside the patient body. Methods: The working principle of a novel clinical neutron dose monitor is verified by MCNPX simulation. The device is based on a small PE moderator of just 5.5cm side length for easy handling covered with a thermal neutron suppression layer. In the simulation, a polystyrene phantom is bombarded with a standard proton beam. The secondary thermal neutron flux produced inside the moderator by the impinging fast neutrons from the treatment volume is estimated by pairs of α-Al2O3:Cmore » (TLD500) chips which are evaluated offline after the treatment either by TL or OSL methods. The first chip is wrapped with 0.5mm natural Gadolinium foil converting the thermal neutrons to gammas via (n,γ) reaction. The second chip is wrapped with a dummy material. The chip centers have a distance of 2cm from each other. Results: The simulation shows that the difference of gamma doses in the TLD500 chips is correlated to the mean fast neutron dose delivered to the moderator material. Different outer shielding materials have been studied. 0.5mm Cadmium shielding is preferred for cost reasons and convenience. Replacement of PE moderator material by other materials like lead or iron at any place is unfavorable. The spatial orientation of the moderator cube is uncritical. Using variance reduction techniques like splitting/Russian roulette, the TLD500 gamma dose simulation give positive differences up to distances of 0.5m from the treatment volume. Conclusion: Applicability and basic layout of a novel clinical neutron dose monitor are demonstrated. The monitor measures PE neutron doses at locations outside the patient body up to distances of 0.5m from the treatment volume. Tissue neutron doses may be calculated using neutron kerma factors.« less

  10. ICANS-XIV. The fourteenth meeting of the international collaboration on advanced neutron sources.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, J. M., ed.; Tobin, C. A., ed.

    1999-02-10

    The meeting began with a reception on Sunday evening. Monday's plenary sessions included status reports on the four operating spallation neutron sources, IPNS, ISIS, KENS, and the Lujan Center; on the INR source under construction at Troitsk; on the IBR-2 pulsed reactor at Dubna; and on proposals for five new installations. We also heard reports on spin-off activities: the ASTE tests (liquid mercury target tests at the AGS accelerator at Brookhaven), the ACoM activities (developments aimed to provide cold moderators suitable for high-power pulsed sources), and the International Workshop on Cold Moderators for Pulsed Neutron Sources, held in September 1997more » at Argonne. Jose Alonso and Bob Macek delivered enlightening invited talks overviewing linear accelerators and rings for spallation neutron sources. The rest of the meeting was devoted to targets and moderators and to instrumentation in a normal rotation of ICANS topics. There were altogether 84 oral reports and 23 poster presentations. On Tuesday and on Wednesday morning, we divided into separate series of sessions on Instrumentation and on Targets and Moderators. In the first, we had reports and discussions on instrumentation and techniques, on computer software, on instrument suites, and on new instruments and equipment. In the second series were sessions on liquid target systems, on solid target systems, on neutron production and target physics, on moderator physics and performance, and on target and moderator neutronics. The Tuesday evening meetings went on until 10:00, making for a 14-hour working day. That everyone willingly endured the long hours is a credit to the dedication of the attendees. On Wednesday afternoon, we boarded buses for the 1-hour trip to Argonne, where attendees toured IPNS and the Advanced Photon Source. Returning to Starved Rock, we enjoyed boat rides on the Illinois River and then a barbecue banquet dinner at the Lodge. All day Thursday and Friday morning, the attendees, in

  11. Hypertension Does Not Alter the Increase in Cardiac Baroreflex Sensitivity Caused by Moderate Cold Exposure

    PubMed Central

    Hintsala, Heidi E.; Kiviniemi, Antti M.; Tulppo, Mikko P.; Helakari, Heta; Rintamäki, Hannu; Mäntysaari, Matti; Herzig, Karl-Heinz; Keinänen-Kiukaanniemi, Sirkka; Jaakkola, Jouni J. K.; Ikäheimo, Tiina M.

    2016-01-01

    Exposure to cold increases blood pressure and may contribute to higher wintertime cardiovascular morbidity and mortality in hypertensive people, but the mechanisms are not well-established. While hypertension does not alter responses of vagally-mediated heart rate variability to cold, it is not known how hypertension modifies baroreflex sensitivity (BRS) and blood pressure variability during cold exposure. Our study assessed this among untreated hypertensive men during short-term exposure comparable to habitual winter time circumstances in subarctic areas. We conducted a population-based recruitment of 24 untreated hypertensive and 17 men without hypertension (age 55–65 years) who underwent a whole-body cold exposure (−10°C, wind 3 m/s, winter clothes, 15 min, standing). Electrocardiogram and continuous blood pressure were measured to compute spectral powers of systolic blood pressure and heart rate variability at low (0.04–0.15 Hz) and high frequency (0.15–0.4 Hz) and spontaneous BRS at low frequency (LF). Comparable increases in BRS were detected in hypertensive men, from 2.6 (2.0, 4.2) to 3.8 (2.5, 5.1) ms/mmHg [median (interquartile range)], and in control group, from 4.3 (2.7, 5.0) to 4.4 (3.1, 7.1) ms/mmHg. Instead, larger increase (p < 0.05) in LF blood pressure variability was observed in control group; response as median (interquartile range): 8 (2, 14) mmHg2, compared with hypertensive group [0 (−13, 20) mmHg2]. Untreated hypertension does not disturb cardiovascular protective mechanisms during moderate cold exposure commonly occurring in everyday life. Blunted response of the estimate of peripheral sympathetic modulation may indicate higher tonic sympathetic activity and decreased sympathetic responsiveness to cold in hypertension. PMID:27313543

  12. High energy neutron dosimeter

    DOEpatents

    Rai, K.S.F.

    1994-01-11

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  13. High energy neutron dosimeter

    DOEpatents

    Sun, Rai Ko S.F.

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  14. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOEpatents

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  15. Neutronic Reactor Design to Reduce Neutron Loss

    DOEpatents

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  16. Sns Moderator Poison Design and Experiment Validation of the Moderator Performance

    NASA Astrophysics Data System (ADS)

    Lu, W.; Iverson, E. B.; Ferguson, P. D.; Crabtree, J. A.; Gallmeier, F. X.; Remec, I.; Baxter, D. V.; Lavelle, C. M.

    2009-08-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory reached 180 kW in August 2007, becoming the brightest pulsed neutron source in the world. At its full power of 1.4 MW, SNS will have thermal neutron fluxes approximately an order of magnitude greater than any existing pulsed spallation source. It thus brings a serious challenge to the lifetime of the moderator poison sheets. The SNS moderators are integrated with the inner reflector plug (IRP) at a cost of $2 million a piece. A replacement of the IRP presents a significant drawback to the facility due to the activation and the operation cost. Although there are many factors limiting the lifetime of the IRP, such as radiation damage to the structural material and helium production in beryllium, the limiting factor is the lifetime of the moderator poison sheets. The current operating target system of SNS was built with thick Gd poison sheets at a projected lifetime of 3 years. A recent design based on the MCNPX calculation proposed to replace the Gd poison sheets with even thicker Cd poison sheets, aiming to extend the poison sheet lifetime from 3 to 4 years accompanied by an approximate 5% gain of the moderator performance. An experiment was carried out to verify the calculated moderator performance at the Low Energy Neutron Source (LENS), Indiana University, where the spectra of two polyethylene moderators were measured. The moderators are Cd-decoupled and are poisoned with 0.8 mm Gd and 1.2 mm Cd, respectively. The preliminary analysis of the experiment data shows that the characteristics of the measured spectra of the Gd- and Cd-poisoned moderators agree well with what the calculation predicted. A better moderator performance is observed in the Cd-poisoned moderator. The measured ratio of Cd over Gd on the moderator performance is in a reasonable agreement with the calculation. Further investigation is underway for a better understanding of the difference between the experiment and the

  17. Biomembranes research using thermal and cold neutrons

    DOE PAGES

    Heberle, Frederick A.; Myles, Dean A. A.; Katsaras, John

    2015-08-01

    In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: “whatever the radiation from Be may be, it has most remarkable properties.” Where it concerns hydrogen-rich biological materials, the “most remarkable” property is the neutron’s differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, impartingmore » sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. Furthermore, this article describes recent biomembranes research using a variety of neutron scattering techniques.« less

  18. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  19. Neutron Depth Profiling: Overview and Description of NIST Facilities

    PubMed Central

    Downing, R. G.; Lamaze, G. P.; Langland, J. K.; Hwang, S. T.

    1993-01-01

    The Cold Neutron Depth Profiling (CNDP) instrument at the NIST Cold Neutron Research Facility (CNRF) is now operational. The neutron beam originates from a 16 L D2O ice cold source and passes through a filter of 135 mm of single crystal sapphire. The neutron energy spectrum may be described by a 65 K Maxwellian distribution. The sample chamber configuration allows for remote controlled scanning of 150 × 150 mm sample areas including the varying of both sample and detector angle. The improved sensitivity over the current thermal depth profiling instrument has permitted the first nondestructive measurements of 17O profiles. This paper describes the CNDP instrument, illustrates the neutron depth profiling (NDP) technique with examples, and gives a separate bibliography of NDP publications. PMID:28053461

  20. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  1. NEUTRON SHIELDING STRUCTURE

    DOEpatents

    Mattingly, J.T.

    1962-09-25

    A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)

  2. Moderator Demonstration Facility Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producingmore » target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world

  3. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G. P.; Zhang, Y.; Xiao, J.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat loadmore » from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.« less

  4. Spectrometers for compact neutron sources

    NASA Astrophysics Data System (ADS)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  5. Real-time neutron imaging of gas turbines

    NASA Astrophysics Data System (ADS)

    Stewart, P. A. E.

    1987-06-01

    The current status of real-time neutron radiography imaging is briefly reviewed, and results of tests carried out on cold neutron sources are reported. In particular, attention is given to demonstrations of neutron radiography on a running gas turbine engine. The future role of real-time neutron imaging in engineering diagnostics is briefly discussed.

  6. The "neutron channel design"—A method for gaining the desired neutrons

    NASA Astrophysics Data System (ADS)

    Hu, G.; Hu, H. S.; Wang, S.; Pan, Z. H.; Jia, Q. G.; Yan, M. F.

    2016-12-01

    The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the "neutron channel design", is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA) combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS). One layer polyethylene (PE) moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.

  7. A cold-adapted endoglucanase from camel rumen with high catalytic activity at moderate and low temperatures: an anomaly of truly cold-adapted evolution in a mesophilic environment.

    PubMed

    Khalili Ghadikolaei, Kamran; Gharechahi, Javad; Haghbeen, Kamahldin; Akbari Noghabi, Kambiz; Hosseini Salekdeh, Ghasem; Shahbani Zahiri, Hossein

    2018-03-01

    Endoglucanases are important enzymes in plant biomass degradation. They have current and potential applications in various industrial sectors including human and animal food processing, textile, paper, and renewable biofuel production. It is assumed that the cold-active endoglucanases, with high catalytic rates in moderate and cold temperatures, can improve the cost-effectiveness of industrial processes by lowering the need for heating and, thus, energy consumption. In this study, the endoglucanase CelCM3 was procured from a camel rumen metagenome via gene cloning and expression in Escherichia coli BL21 (DE3). The maximum activity of the enzyme on carboxymethyl cellulose (CMC) was obtained at pH 5 and 30 °C with a V max and K m of 339 U/mg and 2.57 mg/ml, respectively. The enzyme with an estimated low melting temperature of 45 °C and about 50% activity at 4 °C was identified to be cold-adapted. A thermodynamic analysis corroborated that CelCM3 with an activation energy (E a ), enthalpy of activation (ΔH), and Gibb's free energy (ΔG) of, respectively, 18.47 kJ mol -1 , 16.12 kJ mol -1 , and 56.09 kJ mol -1 is a cold-active endoglucanase. In addition, CelCM3 was tolerant of metal ions, non-ionic detergents, urea, and organic solvents. Given these interesting characteristics, CelCM3 shows promise to meet the requirements of industrial applications.

  8. Neutron bursts from long laboratory sparks

    NASA Astrophysics Data System (ADS)

    Kochkin, P.; Lehtinen, N. G.; Montanya, J.; Van Deursen, A.; Ostgaard, N.

    2016-12-01

    Neutron emission in association with thunderstorms and lightning discharges was reported by different investigators from ground-based observation platforms. In both cases such emission is explained by photonuclear reaction, since high-energy gamma-rays in sufficient fluxes are routinely detected from both, lightning and thunderclouds. The required gamma-rays are presumably generated by high-energy electrons in Bremsstrahlung process after their acceleration via cold and/or relativistic runaway mechanisms. This phenomenon attracted moderate scientific attention until fast neutron bursts (up to 10 MeV) from long 1 MV laboratory sparks have been reported. Clearly, with such relatively low applied voltage the electrons are unable to accelerate to the energies required for photo/electro disintegration. Moreover, all known elementary neutron generation processes are not capable to explain this emission right away. We performed an independent laboratory experiment on long sparks with the aim to confirm or disprove the neutron emission from them. The experimental setup was assembled at High-Voltage Laboratory in Barcelona and contained a Marx generator in a cone-cone spark gap configuration. The applied voltage was as low as 800 kV and the gap distance was only 60 cm. Two ns-fast cameras were located near the gap capturing short-exposure images of the pre-breakdown phenomenon at the expected neutron generation time. A plastic scintillation detector sensitive to neutrons was covered in 11 cm of lead and placed near the spark gap. The detector was calibrated and showed good performance in neutron detection. Apart of it, voltage, currents through both electrodes, and three X-ray detectors were also monitored in sophisticated measuring system. We will give an overview of the previous experimental and theoretical work in this topic, and present the results of our new experimental campaign. The conclusions are based on good signal-to-noise ratio measurements and are

  9. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  10. Application of Diamond Nanoparticles in Low-Energy Neutron Physics

    PubMed Central

    Nesvizhevsky, Valery; Cubitt, Robert; Lychagin, Egor; Muzychka, Alexei; Nekhaev, Grigory; Pignol, Guillaume; Protasov, Konstantin; Strelkov, Alexander

    2010-01-01

    Diamond, with its exceptionally high optical nuclear potential and low absorption cross-section, is a unique material for a series of applications in VCN (very cold neutron) physics and techniques. In particular, powder of diamond nanoparticles provides the best reflector for neutrons in the complete VCN energy range. It allowed also the first observation of quasi-specular reflection of cold neutrons (CN) from disordered medium. Effective critical velocity for such a quasi-specular reflection is higher than that for the best super-mirror. Nano-diamonds survive in high radiation fluxes; therefore they could be used, under certain conditions, in the vicinity of intense neutron sources.

  11. Evaluation of the dark signal performance of different SiPM-technologies under irradiation with cold neutrons

    NASA Astrophysics Data System (ADS)

    Durini, Daniel; Degenhardt, Carsten; Rongen, Heinz; Feoktystov, Artem; Schlösser, Mario; Palomino-Razo, Alejandro; Frielinghaus, Henrich; van Waasen, Stefan

    2016-11-01

    In this paper we report the results of the assessment of changes in the dark signal delivered by three silicon photomultiplier (SiPM) detector arrays, fabricated by three different manufacturers, when irradiated with cold neutrons (wavelength λn=5 Å or neutron energy of En=3.27 meV) up to a neutron dose of 6×1012 n/cm2. The dark signals as well as the breakdown voltages (Vbr) of the SiPM detectors were monitored during the irradiation. The system was characterized at room temperature. The analog SiPM detectors, with and without a 1 mm thick Cerium doped 6Li-glass scintillator material located in front of them, were operated using a bias voltage recommended by the respective manufacturer for a proper detector performance. Iout-Vbias measurements, used to determine the breakdown voltage of the devices, were repeated every 30 s during the first hour and every 300 s during the rest of the irradiation time. The digital SiPM detectors were held at the advised bias voltage between the respective breakdown voltage and dark count mappings repeated every 4 min. The measurements were performed on the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. The two analog and one digital SiPM detector modules under investigation were respectively fabricated by SensL (Ireland), Hamamatsu Photonics (Japan), and Philips Digital Photon Counting (Germany).

  12. ORNL Neutron Sciences Annual Report for 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ian S; Horak, Charlie M; Counce, Deborah Melinda

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with themore » reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.« less

  13. Dispositional Affect Moderates the Stress-Buffering Effect of Social Support on Risk for Developing the Common Cold.

    PubMed

    Janicki Deverts, Denise; Cohen, Sheldon; Doyle, William J

    2017-10-01

    The aim was to examine whether trait positive and negative affect (PA, NA) moderate the stress-buffering effect of perceived social support on risk for developing a cold subsequent to being exposed to a virus that causes mild upper respiratory illness. Analyses were based on archival data from 694 healthy adults (M age  = 31.0 years, SD = 10.7 years; 49.0% female; 64.6% Caucasian). Perceived social support and perceived stress were assessed by self-report questionnaire and trait affect by aggregating responses to daily mood items administered by telephone interview across several days. Subsequently, participants were exposed to a virus that causes the common cold and monitored for 5 days for clinical illness (infection + objective signs of illness). Two 3-way interactions emerged-Support × Stress × PA and Support × Stress × NA. The nature of these effects was such that among persons with high trait PA or low trait NA, greater social support attenuated the risk of developing a cold when under high but not low perceived stress; this stress-buffering effect did not emerge among persons with low trait PA or high trait NA. Dispositional affect might be used to identify individuals who may be most responsive to social support and support-based interventions. © 2016 Wiley Periodicals, Inc.

  14. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema

    Carpenter, John

    2018-02-14

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  15. A Monte Carlo simulation and setup optimization of output efficiency to PGNAA thermal neutron using 252Cf neutrons

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Zhao; Tuo, Xian-Guo

    2014-07-01

    We present the design and optimization of a prompt γ-ray neutron activation analysis (PGNAA) thermal neutron output setup based on Monte Carlo simulations using MCNP5 computer code. In these simulations, the moderator materials, reflective materials, and structure of the PGNAA 252Cf neutrons of thermal neutron output setup are optimized. The simulation results reveal that the thin layer paraffin and the thick layer of heavy water moderating effect work best for the 252Cf neutron spectrum. Our new design shows a significantly improved performance of the thermal neutron flux and flux rate, that are increased by 3.02 times and 3.27 times, respectively, compared with the conventional neutron source design.

  16. Neutron Imaging Development at China Academy of Engineering Physics (CAEP)

    NASA Astrophysics Data System (ADS)

    Li, Hang; Wang, Sheng; Cao, Chao; Huo, Heyong; Tang, Bin

    Based the China Mianyang Research Reactor (CMRR) and D-T accelerator neutron source, thermal neutron, cold neutron and fast neutron imaging facilities are all installed at China Academy of Engineering Physics (CAEP). Various samples have been imaged by different energy neutrons and shown the neutron imaging application in industry, aerospace and so on. The facilities parameters and recent neutron imaging development will be shown in this paper.

  17. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  18. Ultimate energy density of observable cold baryonic matter.

    PubMed

    Lattimer, James M; Prakash, Madappa

    2005-03-25

    We demonstrate that the largest measured mass of a neutron star establishes an upper bound to the energy density of observable cold baryonic matter. An equation of state-independent expression satisfied by both normal neutron stars and self-bound quark matter stars is derived for the largest energy density of matter inside stars as a function of their masses. The largest observed mass sets the lowest upper limit to the density. Implications from existing and future neutron star mass measurements are discussed.

  19. A method to measure neutron polarization using P-even asymmetry of {gamma}-quantum emission in the neutron-nuclear interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gledenov, Yu. M.; Nesvizhevsky, V. V.; Sedyshev, P. V.

    2012-07-15

    A new method to measure polarization of cold/thermal neutrons using P-even asymmetry in nuclear reactions induced by polarized neutrons is proposed. A scheme profiting from a large correlation of the neutron spin and the circular {gamma}-quantum polarization in the reaction (n, {gamma}) of polarized neutrons with nuclei is analyzed. This method could be used, for instance, to measure the neutron-beam polarization in experiments with frequently varying configuration. We show that high accuracy and reliability of measurements could be expected.

  20. Neutron Imaging at the Oak Ridge National Laboratory: Application to Biological Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilheux, Hassina Z; Cekanova, Maria; Bilheux, Jean-Christophe

    2014-01-01

    The Oak Ridge National Laboratory Neutron Sciences Directorate (NScD) has recently installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beamline supports a broad range of user research spanning from engineering to material research, energy storage, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. The beamline performance (spatial resolution, field of view, etc.) and its utilization for biological research are presented. The NScD is also considering a proposal to build the VENUS imaging beamline (beam port 10) at the Spallation Neutron Source (SNS). Unlike CG-1D which provides cold neutrons, VENUS willmore » offer a broad range of neutron wavelengths, from epithermal to cold, and enhanced contrast mechanisms. This new capability will also enable the imaging of thicker biological samples than is currently available at CG-1D. A brief overview of the VENUS capability for biological research is discussed.« less

  1. [Assessment on the yield loss risk of longan caused by cold damage in South China].

    PubMed

    Zhao, Jun-fang; Yu, Hui-kang

    2016-02-01

    Using daily climate variables gathered from 64 meteorological stations in South China from 1961 to 2012, recognized hazard indicators about disaster grades of cold damage for longan, and methods on agricultural meteorological disasters risk and simulation technology, the yield loss risks of longan caused by cold damage in South China during different developmental periods were assessed. The results showed that during the period of physiologic differentiation of flower bud, the disasters of longan affected by mild cold damage in South China were the most common, followed by severe cold damage and moderate cold damage. The hazards caused by cold damage under different grades varied. In particular, under mild cold damage, light disaster of longan was found in Fujian, followed by Guangdong and Hainan, and Guangxi was serious. Under moderate cold damage, light disaster of longan was found in Hainan, followed by Guangdong and Guangxi, and Fujian was serious. Under severe cold damage, light disaster of longan was found in Hainan, followed by Guangdong and Guangxi, Fujian was serious. During the period of morphologic differentiation of flower bud, the disasters of longan affected by mild cold damage in South China were the most common, followed by severe cold damage and moderate cold damage, while the disasters of longan under mild, moderate and severe cold damages within this period were similar. Specifically, light disasters of longan were all found in Hainan, followed by Guangdong, Guangxi and Fujian. During the period of dormancy, the disaster of longan affected by mild cold damage in South China was the most common, followed by severe cold damage and moderate cold damage. Under mild and severe cold damage, light disaster of longan was found in Fujian, followed by Guangdong and Hainan, and Guangxi was serious. However, under moderate cold damage, light disaster of longan was found in Hainan and Guangxi, followed by Guangdong, and Fujian was serious. At the same level

  2. Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vogel, S. C.; Mocko, M.; Bourke, M. A. M.; Yuan, V.; Nelson, R. O.; Brown, D. W.; Feller, W. B.

    2013-09-01

    Many isotopes in nuclear materials exhibit strong peaks in neutron absorption cross sections in the epithermal energy range (1-1000 eV). These peaks (often referred to as resonances) occur at energies specific to particular isotopes, providing a means of isotope identification and concentration measurements. The high penetration of epithermal neutrons through most materials is very useful for studies where samples consist of heavy-Z elements opaque to X-rays and sometimes to thermal neutrons as well. The characterization of nuclear fuel elements in their cladding can benefit from the development of high resolution neutron resonance absorption imaging (NRAI), enabled by recently developed spatially-resolved neutron time-of-flight detectors. In this technique the neutron transmission of the sample is measured as a function of spatial location and of neutron energy. In the region of the spectra that borders the resonance energy for a particular isotope, the reduction in transmission can be used to acquire an image revealing the 2-dimensional distribution of that isotope within the sample. Provided that the energy of each transmitted neutron is measured by the neutron detector used and the irradiated sample possesses neutron absorption resonances, then isotope-specific location maps can be acquired simultaneously for several isotopes. This can be done even in the case where samples are opaque or have very similar transmission for thermal neutrons and X-rays or where only low concentrations of particular isotopes are present (<0.1 atom% in some cases). Ultimately, such radiographs of isotope location can be utilized to measure isotope concentration, and can even be combined to produce three-dimensional distributions using tomographic methods. In this paper we present the proof-of-principle of NRAI and transmission Bragg edge imaging performed at Flight Path 5 (FP5) at the LANSCE pulsed, moderated neutron source of Los Alamos National Laboratory. A set of urania mockup

  3. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  4. Moderate to heavy cold-weather precipitation occurrences in Tehran and the associated circulation types

    NASA Astrophysics Data System (ADS)

    Khansalari, Sakineh; Raziei, Tayeb; Mohebalhojeh, Ali Reza; Ahmadi-Givi, Farhang

    2018-02-01

    Large-scale atmospheric circulations associated with 133 moderate to heavy cold-weather precipitation events recorded at Mehrabad station in Tehran, Iran, during the period 1951-2013 are analysed. To this end, the performance of un-rotated, orthogonally rotated and obliquely rotated solutions of T-mode principal component analysis (PCA) is examined in classifying the atmospheric circulations into a few representative circulation types (CTs). The T-mode PCAs were applied to the 500-hPa geopotential height for the events in a domain from 10∘E to 70∘E and from 20∘N to 50∘N. The first six leading principal components were retained and then orthogonally and obliquely rotated using varimax and promax solutions, respectively. Statistical inter-comparison of the CTs obtained using the three solutions suggests that the obliquely rotated solution is the better choice for circulation classification in the present study. The six CTs obtained using the oblique rotation were then linked to the daily total precipitation and daily mean temperature variability at Tehran station as well as to the standardized anomalies of the daily total precipitation and mean daily temperature of a dense network of stations distributed across Iran. It is found that the CTs identified, though generally comparable in producing significant precipitation in Tehran, vary in their potential to bring cold weather and generate snowfall in Tehran specifically and in the country in general. While the first three CTs give rise to regional patterns of standardized precipitation anomalies centred in Tehran, the next three CTs leave a pronounced precipitation signature almost across the whole country. As regards the standardized temperature anomalies, with the exception of one CT that causes deep and widespread negative standardized anomalies over most parts of the country, the other CTs are characterized with a dipolar structure of a deep intrusion of cold weather to the west and prevailing warm weather

  5. Self-regulating neutron coincidence counter

    DOEpatents

    Baron, N.

    1980-06-16

    A device for accurately measuring the mass of /sup 240/Pu and /sup 239/Pu in a sample having arbitrary moderation and mixed with various contaminants. The device utilizes a thermal neutron well counter which has two concentric rings of neutron detectors separated by a moderating material surrounding the well. Neutron spectroscopic information derived by the two rings of detectors is used to measure the quantity of /sup 239/Pu and /sup 240/Pu in device which corrects for background radiation, deadtime losses of the detector and electronics and various other constants of the system.

  6. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    NASA Astrophysics Data System (ADS)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  7. Advanced energy-resolving imaging detectors for applications at pulsed neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, Bruce; White, Brian

    NOVA Scientific herein reports results from the DOE SBIR Phase IIB project. We continue to move forward to enhance the effectiveness of very high spatial and timing resolution MCP position-sensitive detectors into the epithermal or “above-thermal” neutron energy range – where NOVA’s neutron-sensitive NeuViewTM MCPs are already widely acknowledged as highly effective for cold and thermal neutron energies. As a result of these developments, these increasingly accepted neutron detection devices will be better able to perform energy-resolved neutron detection and imaging at the growing number of highly advanced pulsed neutron sources internationally, detecting individual neutrons with a spatial resolution ofmore » down to ~25 µm, and able to uniquely provide simultaneous ultrafast timing resolution of ~100 ns, for cold, thermal, and now into the epithermal range. The pulsed structure of the new and more powerful neutron beams, enables measurement of neutron energies through the time-of-flight (TOF) method. Moreover, these recent new pulsed sources have increasingly made available intense fluxes of epithermal neutrons - something previously unavailable with reactor-based neutron sources. The unique capability of MCP detectors to measure the energy of each detected neutron provides a capability to conduct experiments across a very broad neutron energy range simultaneously – encompassing cold up into the epithermal range of energies. Simultaneous detection of multiple Bragg edges, for example, can enable highly useful measurements in crystallographic structure, strain, phase, texture, and compositional distribution. Enhancement of the MCP epithermal neutron response resulting from this program, combined with an earlier and separate DOE-funded SBIR/STTR program to commercialize larger area (>100 cm 2) format cold and thermal neutron-sensitive MCP imaging detectors, has potential utility in being employed as large array detectors, replacing what is currently

  8. Voluntary water intake during and following moderate exercise in the cold.

    PubMed

    Mears, Stephen A; Shirreffs, Susan M

    2014-02-01

    Exercising in cold environments results in water losses, yet examination of resultant voluntary water intake has focused on warm conditions. The purpose of the study was to assess voluntary water intake during and following exercise in a cold compared with a warm environment. Ten healthy males (22 ± 2 years, 67.8 ± 7.0 kg, 1.77 ± 0.06 m, VO₂peak 60.5 ± 8.9 ml·kg⁻¹·min⁻¹) completed two trials (7-8 days). In each trial subjects sat for 30 min before cycling at 70% VO₂peak (162 ± 27W) for 60 min in 25.0 ± 0.1 °C, 50.8 ± 1.5% relative humidity (RH; warm) or 0.4 ± 1.0 °C, 68.8 ± 7.5% RH (cold). Subjects then sat for 120 min at 22.2 ± 1.2 °C, 50.5 ± 8.0% RH. Ad libitum drinking was allowed during the exercise and recovery periods. Urine volume, body mass, serum osmolality, and sensations of thirst were measured at baseline, postexercise and after 60 and 120 min of the recovery period. Sweat loss was greater in the warm trial (0.96 ± 0.18 l v 0.48 ± 0.15 l; p < .0001) but body mass losses over the trials were similar (1.15 ± 0.34% (cold) v 1.03 ± 0.26% (warm)). More water was consumed throughout the duration of the warm trial (0.81 ± 0.42 l v 0.50 ± 0.49 l; p = .001). Cumulative urine output was greater in the cold trial (0.81 ± 0.46 v 0.54 ± 0.31 l; p = .036). Postexercise serum osmolality was higher compared with baseline in the cold (292 ± 2 v 287 ± 3 mOsm.kg⁻¹, p < .0001) and warm trials (288 ± 5 v 285 ± 4 mOsm·kg⁻¹; p = .048). Thirst sensations were similar between trials (p > .05). Ad libitum water intake adjusted so that similar body mass losses occurred in both trials. In the cold there appeared to a blunted thirst response.

  9. Cold tuberculous abscess identified by FDG PET.

    PubMed

    Yago, Yuzo; Yukihiro, Masashi; Kuroki, Hirofumi; Katsuragawa, Yuzo; Kubota, Kazuo

    2005-09-01

    We report FDG PET of two cases of cold abscess due to Mycobacterium tuberculosis. Case 1 had colon cancer; FDG PET showed high FDG uptake in the colon lesion and low uptake in the inguinal lesion. The latter was a tuberculous cold abscess confirmed by CT/MRI and biopsy. Case 2 received radiotherapy for lung cancer and presented with suspected vertebral metastasis. Further studies revealed tuberculosis of the vertebra and a tuberculous cold abscess in the iliopsoas muscle. FDG PET showed moderate uptake in the third lumbar spine and low uptake in the abscess center of iliopsoas lesion. Both tuberculous cold abscesses showed moderate FDG uptake in the capsule and low uptake in the center. These features are unique compared with non-tuberculous abscess and typical tuberculosis lesions, which are characterized by high FDG uptake. Pathologically, tuberculous cold abscess is not accompanied by active inflammatory reaction. Our findings suggested that the FDG uptake by tuberculous lesion varies according to the grade of inflammatory activity. The new diagnostic features of tuberculous cold abscess may be useful in the evaluation of such lesions by FDG PET.

  10. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.

  11. HEAVY WATER MODERATED NEUTRONIC REACTOR

    DOEpatents

    Szilard, L.

    1958-04-29

    A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

  12. The neutronic design and performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS)

    NASA Astrophysics Data System (ADS)

    Lavelle, Christopher M.

    Neutron scattering research is performed primarily at large-scale facilities. However, history has shown that smaller scale neutron scattering facilities can play a useful role in education and innovation while performing valuable materials research. This dissertation details the design and experimental validation of the LENS TMR as an example for a small scale accelerator driven neutron source. LENS achieves competitive long wavelength neutron intensities by employing a novel long pulse mode of operation, where the neutron production target is irradiated on a time scale comparable to the emission time of neutrons from the system. Monte Carlo methods have been employed to develop a design for optimal production of long wavelength neutrons from the 9Be(p,n) reaction at proton energies ranging from 7 to 13 MeV proton energy. The neutron spectrum was experimentally measured using time of flight, where it is found that the impact of the long pulse mode on energy resolution can be eliminated at sub-eV neutron energies if the emission time distribution of neutron from the system is known. The emission time distribution from the TMR system is measured using a time focussed crystal analyzer. Emission time of the fundamental cold neutron mode is found to be consistent with Monte Carlo results. The measured thermal neutron spectrum from the water reflector is found to be in agreement with Monte Carlo predictions if the scattering kernels employed are well established. It was found that the scattering kernels currently employed for cryogenic methane are inadequate for accurate prediction of the cold neutron intensity from the system. The TMR and neutronic modeling have been well characterized and the source design is flexible, such that it is possible for LENS to serve as an effective test bed for future work in neutronic development. Suggestions for improvements to the design that would allow increased neutron flux into the instruments are provided.

  13. Neutronic reactor construction

    DOEpatents

    Huston, Norman E.

    1976-07-06

    1. A neutronic reactor comprising a moderator including horizontal layers formed of horizontal rows of graphite blocks, alternate layers of blocks having the rows extending in one direction, the remaining alternate layers having the rows extending transversely to the said one direction, alternate rows of blocks in one set of alternate layers having longitudinal ducts, the moderator further including slotted graphite tubes positioned in the ducts, the reactor further comprising an aluminum coolant tube positioned within the slotted tube in spaced relation thereto, bodies of thermal-neutron-fissionable material, and jackets enclosing the bodies and being formed of a corrosion-resistant material having a low neutron-capture cross section, the bodies and jackets being positioned within the coolant tube so that the jackets are spaced from the coolant tube.

  14. QPO Constraints on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman

    2005-01-01

    The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.

  15. Crystallization of dense neutron matter

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1974-01-01

    The equation of state for cold neutron matter at high density is studied in the t-matrix formulation, and it is shown that energetically it is convenient to have neutrons in a crystalline configuration rather than in a liquid state for values of the density exceeding 1600 Tg/cu cm. The study of the mechanical properties indicates that the system is stable against shearing stresses. A solid core in the deep interior of heavy neutron stars appears to offer the most plausible explanation of speed-ups observed in the Vela pulsar.

  16. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  17. Physiological Acceptance Criteria for Cold Weather Clothing

    DTIC Science & Technology

    1991-04-01

    subjective feelings of thermal comfort and temperature sensation were examined. Under many conditions that Navy cold weather clothing items are worn, it...is not practical to expect that the optimal level of thermal comfort can be obtained. Allowing for a moderate level of cold sensation and thermal

  18. NEUTRONIC REACTOR CONTROL ELEMENT

    DOEpatents

    Newson, H.W.

    1960-09-13

    A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.

  19. From X-Ray Telescopes to Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Khaykovich, B.; Ramsey, B.; Moncton, D. E.

    2011-01-01

    In the case of neutrons the refractive index is slightly less than unity for most elements and their isotopes. Consequently, thermal and cold neutrons can be reflected from smooth surfaces at grazing-incidence angles. Hence, the optical technologies developed for x-ray astronomy can be applied for neutron focusing. The focusing capabilities of grazing incidence neutron imaging optics have been successfully demonstrated using nickel mirrors. The mirrors were fabricated using an electroformed nickel replication process at Marshall Space Flight Center. Results of the neutron optics experiments will be presented. Challenges of the neutron imaging optics as well as possible applications of the optics will be discussed.

  20. Computer program /P1-GAS/ calculates the P-0 and P-1 transfer matrices for neutron moderation in a monatomic gas

    NASA Technical Reports Server (NTRS)

    Collier, G.; Gibson, G.

    1968-01-01

    FORTRAN 4 program /P1-GAS/ calculates the P-O and P-1 transfer matrices for neutron moderation in a monatomic gas. The equations used are based on the conditions that there is isotropic scattering in the center-of-mass coordinate system, the scattering cross section is constant, and the target nuclear velocities satisfy a Maxwellian distribution.

  1. Dose-equivalent neutron dosimeter

    DOEpatents

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  2. EXILL—a high-efficiency, high-resolution setup for γ-spectroscopy at an intense cold neutron beam facility

    NASA Astrophysics Data System (ADS)

    Jentschel, M.; Blanc, A.; de France, G.; Köster, U.; Leoni, S.; Mutti, P.; Simpson, G.; Soldner, T.; Ur, C.; Urban, W.; Ahmed, S.; Astier, A.; Augey, L.; Back, T.; Baczyk, P.; Bajoga, A.; Balabanski, D.; Belgya, T.; Benzoni, G.; Bernards, C.; Biswas, D. C.; Bocchi, G.; Bottoni, S.; Britton, R.; Bruyneel, B.; Burnett, J.; Cakirli, R. B.; Carroll, R.; Catford, W.; Cederwall, B.; Celikovic, I.; Cieplicka-Oryńczak, N.; Clement, E.; Cooper, N.; Crespi, F.; Csatlos, M.; Curien, D.; Czerwiński, M.; Danu, L. S.; Davies, A.; Didierjean, F.; Drouet, F.; Duchêne, G.; Ducoin, C.; Eberhardt, K.; Erturk, S.; Fraile, L. M.; Gottardo, A.; Grente, L.; Grocutt, L.; Guerrero, C.; Guinet, D.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Ilieva, S.; Ivanova, D.; John, B. V.; John, R.; Jolie, J.; Kisyov, S.; Krticka, M.; Konstantinopoulos, T.; Korgul, A.; Krasznahorkay, A.; Kröll, T.; Kurpeta, J.; Kuti, I.; Lalkovski, S.; Larijani, C.; Leguillon, R.; Lica, R.; Litaize, O.; Lozeva, R.; Magron, C.; Mancuso, C.; Ruiz Martinez, E.; Massarczyk, R.; Mazzocchi, C.; Melon, B.; Mengoni, D.; Michelagnoli, C.; Million, B.; Mokry, C.; Mukhopadhyay, S.; Mulholland, K.; Nannini, A.; Napoli, D. R.; Olaizola, B.; Orlandi, R.; Patel, Z.; Paziy, V.; Petrache, C.; Pfeiffer, M.; Pietralla, N.; Podolyak, Z.; Ramdhane, M.; Redon, N.; Regan, P.; Regis, J. M.; Regnier, D.; Oliver, R. J.; Rudigier, M.; Runke, J.; Rzaca-Urban, T.; Saed-Samii, N.; Salsac, M. D.; Scheck, M.; Schwengner, R.; Sengele, L.; Singh, P.; Smith, J.; Stezowski, O.; Szpak, B.; Thomas, T.; Thürauf, M.; Timar, J.; Tom, A.; Tomandl, I.; Tornyi, T.; Townsley, C.; Tuerler, A.; Valenta, S.; Vancraeyenest, A.; Vandone, V.; Vanhoy, J.; Vedia, V.; Warr, N.; Werner, V.; Wilmsen, D.; Wilson, E.; Zerrouki, T.; Zielinska, M.

    2017-11-01

    In the EXILL campaign a highly efficient array of high purity germanium (HPGe) detectors was operated at the cold neutron beam facility PF1B of the Institut Laue-Langevin (ILL) to carry out nuclear structure studies, via measurements of γ-rays following neutron-induced capture and fission reactions. The setup consisted of a collimation system producing a pencil beam with a thermal capture equivalent flux of about 108 n s-1cm-2 at the target position and negligible neutron halo. The target was surrounded by an array of eight to ten anti-Compton shielded EXOGAM Clover detectors, four to six anti-Compton shielded large coaxial GASP detectors and two standard Clover detectors. For a part of the campaign the array was combined with 16 LaBr3:(Ce) detectors from the FATIMA collaboration. The detectors were arranged in an array of rhombicuboctahedron geometry, providing the possibility to carry out very precise angular correlation and directional-polarization correlation measurements. The triggerless acquisition system allowed a signal collection rate of up to 6 × 105 Hz. The data allowed to set multi-fold coincidences to obtain decay schemes and in combination with the FATIMA array of LaBr3:(Ce) detectors to analyze half-lives of excited levels in the pico- to microsecond range. Precise energy and efficiency calibrations of EXILL were performed using standard calibration sources of 133Ba, 60Co and 152Eu as well as data from the reactions 27Al(n,γ)28Al and 35Cl(n,γ)36Cl in the energy range from 30 keV up to 10 MeV.

  3. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  4. FAST NEUTRON REACTOR

    DOEpatents

    Soodak, H.; Wigner, E.P.

    1961-07-25

    A reactor comprising fissionable material in concentration sufficiently high so that the average neutron enengy within the reactor is at least 25,000 ev is described. A natural uranium blanket surrounds the reactor, and a moderating reflector surrounds the blanket. The blanket is thick enough to substantially eliminate flow of neutrons from the reflector.

  5. Progress toward a new measurement of the neutron lifetime

    NASA Astrophysics Data System (ADS)

    Grammer, Kyle

    2015-04-01

    Free neutron decay is the simplest nuclear beta decay. A precise value for the neutron lifetime is valuable for standard model consistency tests and Big Bang Nucleosynthesis models. There is a disagreement between the measured neutron lifetime from cold neutron beam experiments and ultracold neutron storage experiments. A new measurement of the neutron lifetime using the beam method is planned at the National Institute of Standards and Technology Center for Neutron Research. Experimental improvements should result in a 1s uncertainty measurement of the neutron lifetime. The technical improvements and the path towards the new measurement will be discussed. This work is supported by DOE Office of Science, NIST, and NSF.

  6. Production of tritium, neutrons, and heat based on the transmission resonance model (TRM) for cold fusion

    NASA Astrophysics Data System (ADS)

    Bush, Robert T.

    1991-05-01

    The TRM has recently been successful in fitting calorimetric data having interesting nonlinear structure. The model appears to provide a natural description for electrolytic cold fusion in terms of ``fractals''. Extended to the time dimension, the model can apparently account for the phenomenon of heat ``bursts''. The TRM combines a transmission condition involving quantized energies and an engergy shift of a Maxwell-Boltzmann energy distribution of deuterons at the cathodic surface that appears related to the concentration overpotential (hydrogen overvoltage). The model suggest three possible regimes vis-a-vis tritium production in terms of this energy shift, and indicates why measurable tritium production in the electrolytic case will tend to be the exception rather than the rule in absence of a recipe: Below a shift of approximately 2.8 meV there is production of both tritium and measureable excess heat, with the possibility of accounting for the Bockris curve indicating about a 1% correlation between excess heat and tritium. However, over the large range from about 2.8 meV to 340 meV energy shift there is a regime of observable excess heat production but little, and probably no measurable, tritium production. The third regime is more hypothetical: It begins at an energy shift of about 1 keV and extends to the boundaries of ``hot'' fusion at about 10 keV. A new type of nucelar reaction, trint (for transmission resonance-induced neutron transfer), is suggested by the model leading to triton and neutron production. A charge distribution ``polarization conjecture'' is the basis for theoretical derivation for the low-energy limit for an energy-dependent branching ratio for D-on-D. When the values of the parameters are inserted, this expression yields an estimate for the ratio of neutron-to-triton production of about 1.64×10-9. The possibility of some three-body reactions is also suggested. A comparison of the TRM's transmission energy levels for palladium deuteride

  7. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Goett, J.J.

    1961-01-24

    A system is described which includes a neutronic reactor containing a dispersion of fissionable material in a liquid moderator as fuel and a conveyor to which a portion of the dispersion may be passed and wherein the self heat of the slurry evaporates the moderator. Means are provided for condensing the liquid moderator and returning it to the reactor and for conveying the dried fissionable material away from the reactor.

  8. Neutronic reactor thermal shield

    DOEpatents

    Wende, Charles W. J.

    1976-06-15

    1. The method of operating a water-cooled neutronic reactor having a graphite moderator which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40-60 volume percent of the mixture, in contact with the graphite moderator.

  9. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawari, Ayman; Ougouag, Abderrafi

    2014-07-08

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can bemore » easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.« less

  10. Thermal Neutron Radiography using a High-flux Compact Neutron Generator

    NASA Astrophysics Data System (ADS)

    Taylor, Michael; Sengbusch, Evan; Seyfert, Chris; Moll, Eli; Radel, Ross

    A novel neutron imaging system has been designed and constructed by Phoenix Nuclear Labs to investigate specimens when conventional X-ray imaging will not suffice. A first-generation electronic neutron generator is actively being used by the United States Army and is coupled with activation films for neutron radiography to inspect munitions and other critical defence and aerospace components. A second-generation system has been designed to increase the total neutron output from an upgraded gaseous deuterium target to 5×1011 DD n/s, generating higher neutron flux at the imaging plane and dramatically reducing interrogation time, while maintaining high spatial resolution and low geometric unsharpness. A description of the neutron generator and imaging system, including the beamline, target and detector platform, is given in this paper. State of the art neutron moderators, collimators and imaging detector components are also discussed in the context of increasing specimen throughput and optimizing image quality. Neutron radiographs captured with the neutron radiography system will be further compared against simulated images using the MCNP nuclear simulation code.

  11. Epithermal neutron formation for boron neutron capture therapy by adiabatic resonance crossing concept

    NASA Astrophysics Data System (ADS)

    Khorshidi, A.; Ghafoori-Fard, H.; Sadeghi, M.

    2014-05-01

    Low-energy protons from the cyclotron in the range of 15-30 MeV and low current have been simulated on beryllium (Be) target with a lead moderator around the target. This research was accomplished to design an epithermal neutron beam for Boron Neutron Capture Therapy (BNCT) using the moderated neutron on the average produced from 9Be target via (p, xn) reaction in Adiabatic Resonance Crossing (ARC) concept. Generation of neutron to proton ratio, energy distribution, flux and dose components in head phantom have been simulated by MCNP5 code. The reflector and collimator were designed in prevention and collimation of derivation neutrons from proton bombarding. The scalp-skull-brain phantom consisting of bone and brain equivalent material has been simulated in order to evaluate the dosimetric effect on the brain. Results of this analysis demonstrated while the proton energy decreased, the dose factor altered according to filters thickness. The maximum epithermal flux revealed using fluental, Fe and bismuth (Bi) filters with thicknesses of 9.4, 3 and 2 cm, respectively and also the epithermal to thermal neutron flux ratio was 103.85. The potential of the ARC method to replace or complement the current reactor-based supply sources of BNCT purposes.

  12. Progress toward a new measurement of the neutron lifetime

    NASA Astrophysics Data System (ADS)

    Grammer, Kyle

    2015-10-01

    Free neutron decay is the simplest nuclear beta decay. A precise value for the neutron lifetime is valuable for standard model consistency tests and Big Bang Nucleosynthesis models. There is a disagreement between the measured neutron lifetime from cold neutron beam experiments and ultracold neutron storage experiments. A new measurement of the neutron lifetime using the beam method is planned at the National Institute of Standards and Technology Center for Neutron Research. Experimental improvements should result in a 1s uncertainty measurement of the neutron lifetime. The technical improvements, recent apparatus tests, and the path towards the new measurement will be discussed. This work is supported by DOE Office of Science, NIST, and NSF.

  13. Neutron capture therapies

    DOEpatents

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  14. NECTAR—A fission neutron radiography and tomography facility

    NASA Astrophysics Data System (ADS)

    Bücherl, T.; Lierse von Gostomski, Ch.; Breitkreutz, H.; Jungwirth, M.; Wagner, F. M.

    2011-09-01

    NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/ D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.

  15. Plastic fiber scintillator response to fast neutrons

    NASA Astrophysics Data System (ADS)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-01

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  16. Plastic fiber scintillator response to fast neutrons.

    PubMed

    Danly, C R; Sjue, S; Wilde, C H; Merrill, F E; Haight, R C

    2014-11-01

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  17. Cold and heat strain during cold-weather field training with nuclear, biological, and chemical protective clothing.

    PubMed

    Rissanen, Sirkka; Rintamäki, Hannu

    2007-02-01

    The objective of this study was to quantify the thermal strain of soldiers wearing nuclear, biological, and chemical protective clothing during short-term field training in cold conditions. Eleven male subjects performed marching exercises at moderate and heavy activity levels for 60 minutes. Rectal temperature (Tre), skin temperatures, and heart rate were monitored. Ambient temperature (Ta) varied from -33 to 0 degrees C. Tre was affected by changes in metabolism, rather than in Ta. Tre increased above 38 degrees during heavy exercise even at -33 degrees C. The mean skin temperature decreased to tolerance level (25 degrees C) at Ta below -25 degrees C with moderate exercise. Finger temperature decreased below 15 degrees C (performance degradation) at Ta of -15 degrees C or cooler. The present results from the field confirm the previous results based on laboratory studies and show that risk of both heat and cold strain is evident, with cooling of extremities being most critical, while wearing nuclear, biological, and chemical protective clothing during cold-weather training.

  18. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    NASA Astrophysics Data System (ADS)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  19. Opportunities afforded by the intense nanosecond neutron pulses from a plasma focus source for neutron capture therapy and the preliminary simulation results

    NASA Astrophysics Data System (ADS)

    Giannini, G.; Gribkov, V.; Longo, F.; Ramos Aruca, M.; Tuniz, C.

    2012-11-01

    The use of short and powerful neutron pulses for boron neutron capture therapy (BNCT) can potentially increase selectivity and reduce the total dose absorbed by the patient. The biological effects of radiation depend on the dose, the dose power and the spatial distribution of the microscopic energy deposition. A dense plasma focus (DPF) device emits very short (in the nanosecond range) and extremely intense pulses of fast neutrons (2.5 or 14 MeV neutrons—from D-D or D-T nuclear reactions) and x-rays. Optimal spectra of neutrons formed for use in BNCT must contain an epithermal part to ensure a reasonable penetration depth into tissues at high enough cross-section on boron. So the powerful nanosecond pulses of fast neutrons generated by DPF must be moderated. After this moderation, the pulse duration must be shorter compared with the duration of the reaction with free radicals, that is, ⩾1 μs. In this work we focus on the development of a detailed simulation of interaction of short-pulse radiation from a DPF with the device's materials and with different types of moderators to estimate the dose power at the cells for this dynamic case. The simulation was carried out by means of the Geant4 toolkit in two main steps: the modeling of the pulsed neutron source device itself; the study of the interaction of fast mono-energetic neutrons with a moderator specific for BNCT.

  20. COMPOSITE NEUTRONIC REACTOR

    DOEpatents

    Menke, J.R.

    1963-06-11

    This patent relates to a reactor having a core which comprises an inner active region and an outer active region, each region separately having a k effective less than one and a k infinity greater than one. The inner and outer regions in combination have a k effective at least equal to one and each region contributes substantially to the k effective of the reactor core. The inner region has a low moderator to fuel ratio such that the majority of fissions occurring therein are induced by neutrons having energies greater than thermal. The outer region has a high moderator to fuel ratio such that the majority of fissions occurring therein are induced by thermal neutrons. (AEC)

  1. Cold hardiness in molluscs

    NASA Astrophysics Data System (ADS)

    Ansart, Armelle; Vernon, Philippe

    2003-05-01

    Molluscs inhabit all types of environments: seawater, intertidal zone, freshwater and land, and of course may have to deal with subzero temperatures. Ectotherm animals survive cold conditions by avoiding it by extensive supercooling (freezing avoidant species) or by bearing the freezing of their extracellular body fluids (freezing tolerant species). Although some studies on cold hardiness are available for intertidal molluscs, they are scarce for freshwater and terrestrial ones. Molluscs often exhibit intermediary levels of cold hardiness, with a moderate or low ability to supercool and a limited survival to the freezing of their tissues. Several factors could be involved: their dependence on water, their ability to enter dormancy, the probability of inoculative freezing in their environment, etc. Size is an important parameter in the development of cold hardiness abilities: it influences supercooling ability in land snails, which are rather freezing avoidant and survival to ice formation in intertidal organisms, which generally tolerate freezing.

  2. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  3. Analysis of a Neutronic Experiment on a Simulated Mercury Spallation Neutron Target Assembly Bombarded by Giga-Electron-Volt Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maekawa, Fujio; Meigo, Shin-ichiro; Kasugai, Yoshimi

    2005-05-15

    A neutronic benchmark experiment on a simulated spallation neutron target assembly was conducted by using the Alternating Gradient Synchrotron at Brookhaven National Laboratory and was analyzed to investigate the prediction capability of Monte Carlo simulation codes used in neutronic designs of spallation neutron sources. The target assembly consisting of a mercury target, a light water moderator, and a lead reflector was bombarded by 1.94-, 12-, and 24-GeV protons, and the fast neutron flux distributions around the target and the spectra of thermal neutrons leaking from the moderator were measured in the experiment. In this study, the Monte Carlo particle transportmore » simulation codes NMTC/JAM, MCNPX, and MCNP-4A with associated cross-section data in JENDL and LA-150 were verified based on benchmark analysis of the experiment. As a result, all the calculations predicted the measured quantities adequately; calculated integral fluxes of fast and thermal neutrons agreed approximately within {+-}40% with the experiments although the overall energy range encompassed more than 12 orders of magnitude. Accordingly, it was concluded that these simulation codes and cross-section data were adequate for neutronics designs of spallation neutron sources.« less

  4. Cold thermal injury from cold caps used for the prevention of chemotherapy-induced alopecia.

    PubMed

    Belum, Viswanath Reddy; de Barros Silva, Giselle; Laloni, Mariana Tosello; Ciccolini, Kathryn; Goldfarb, Shari B; Norton, Larry; Sklarin, Nancy T; Lacouture, Mario E

    2016-06-01

    The use of scalp cooling for the prevention of chemotherapy-induced alopecia (CIA) is increasing. Cold caps are placed onto the hair-bearing areas of the scalp for varying time periods before, during, and after cytotoxic chemotherapy. Although not yet reported, improper application procedures could result in adverse events (AEs). At present, there are no evidence-based scalp cooling protocols, and there is no regulatory oversight of their use. To report the occurrence of cold thermal injury (frostbite) on the scalp, following the use of cold caps for the prevention of CIA. We identified four patients who developed cold thermal injuries on the scalp following the application of cold caps. Medical records were analyzed to retrieve the demographic and clinical characteristics. The cold thermal injuries in our patients were grade 1/2 in severity and improved with topical interventions and interruption of cold cap use, although grade 1 persistent alopecia ensued in 3 patients. The true incidence of such injuries in this setting, however, remains unknown. Cold thermal injuries are likely infrequent and preventable AEs that may result from improper device application procedures during cold cap use. Although these untoward events are usually mild to moderate in severity, the potential occurrence of long-term sequelae (e.g., permanent alopecia and scarring) or the need to discontinue cold cap use, are not known. Prospective studies are needed to further elucidate the risk and standardize healthcare delivery methods, and to improve patient/supportive/healthcare provider education.

  5. Status of the Neutron Imaging and Diffraction Instrument IMAT

    NASA Astrophysics Data System (ADS)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  6. Thermal neutron calibration channel at LNMRI/IRD.

    PubMed

    Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2014-10-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Wolter Optics for Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Mildner, D. F. R.; Gubarev, M. V.

    2010-01-01

    Focusing optics based on Wolter optical geometries developed for x-ray grazing incidence beams can be designed for neutron beams. Wolter optics are formed by grazing incidence reflections from two concentric conic sections (for example, a paraboloid and a hyperboloid). This has transformed observational X-ray astronomy by increasing the sensitivity by many orders of magnitude for research in astrophysics and cosmology. To increase the collection area, many reflecting mirrors of different diameters are nested with a common focal plane. These mirrors are fabricated using nickel-electroformed replication techniques. We apply these ideas to neutron focusing using nickel mirrors. We show an initial test of a conical mirror using a beam of cold neutrons. key words: electroformed nickel replication, focusing optics, grazing angle incidence, mirror reflection, neutron focusing, Wolter optics

  8. C2D8: An eight channel CCD readout electronics dedicated to low energy neutron detection

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Clement, B.; Tourres, D.; Pignol, G.; Xi, Y.; Rebreyend, D.; Nesvizhevsky, V. V.

    2018-02-01

    Position-sensitive detectors for cold and ultra-cold neutrons (UCN) are in use in fundamental research. In particular, measuring the properties of the quantum states of bouncing neutrons requires micro-metric spatial resolution. To this end, a Charge Coupled Device (CCD) coated with a thin conversion layer that allows a real time detection of neutron hits is under development at LPSC. In this paper, we present the design and performance of a dedicated electronic board designed to read-out eight CCDs simultaneously and operating under vacuum.

  9. LIGHT WATER MODERATED NEUTRONIC REACTOR

    DOEpatents

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  10. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marland, S.

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stressmore » calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.« less

  11. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  12. Time reversal invariance - a test in free neutron decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lising, Laura Jean

    1999-01-01

    Time reversal invariance violation plays only a small role in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the T-violating ''D''-correlation in the decay of free neutrons. The triple-correlation Dσ n∙p e x p v involves three kinematic variables, the neutron spin, electron momentu, and neutrino (or proton) momentum, and changes sign under time reversal. This experiment detects the decay products of a polarized cold neutron beam with an octagonal array of scintillationmore » and solid-state detectors. Data from first run at NIST's Cold Neutron Research Facility give a D-coefficient of -0.1 ± 1.3(stat.) ± 0.7(syst) x 10 -3 This measurement has the greatest bearing on extensions to the Standard model that incorporate leptoquarks, although exotic fermion and lift-right symmetric models also allow a D as large as the present limit.« less

  13. Neutron whispering gallery

    NASA Astrophysics Data System (ADS)

    Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V.

    2010-02-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to the recently discovered gravitationally bound quantum states of neutrons . These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state. Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects.

  14. Neutron coincidence detectors employing heterogeneous materials

    DOEpatents

    Czirr, J. Bartley; Jensen, Gary L.

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  15. Analysis of neutron propagation from the skyshine port of a fusion neutron source facility

    NASA Astrophysics Data System (ADS)

    Wakisaka, M.; Kaneko, J.; Fujita, F.; Ochiai, K.; Nishitani, T.; Yoshida, S.; Sawamura, T.

    2005-12-01

    The process of neutron leaking from a 14 MeV neutron source facility was analyzed by calculations and experiments. The experiments were performed at the Fusion Neutron Source (FNS) facility of the Japan Atomic Energy Institute, Tokai-mura, Japan, which has a port on the roof for skyshine experiments, and a 3He counter surrounded with a polyethylene moderator of different thicknesses was used to estimate the energy spectra and dose distributions. The 3He counter with a 3-cm-thick moderator was also used for dose measurements, and the doses evaluated by the counter counts and the calculated count-to-dose conversion factor agreed with the calculations to within ˜30%. The dose distribution was found to fit a simple analytical expression, D(r)=Q{exp(-r/λD)}/{r} and the parameters Q and λD are discussed.

  16. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  17. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    PubMed

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  18. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  19. Precision determination of absolute neutron flux

    DOE PAGES

    Yue, A. T.; Anderson, E. S.; Dewey, M. S.; ...

    2018-06-08

    A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha–gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performedmore » to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha–gamma method and present details of how the measurement was performed including the systematic effects. We further describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.« less

  20. Precision determination of absolute neutron flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, A. T.; Anderson, E. S.; Dewey, M. S.

    A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha–gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performedmore » to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha–gamma method and present details of how the measurement was performed including the systematic effects. We further describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.« less

  1. Neutron Spectroscopy on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.

    2012-10-01

    The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.

  2. NEUTRONIC REACTOR CORE

    DOEpatents

    Thomson, W.B.; Corbin, A. Jr.

    1961-07-18

    An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.

  3. Characterization of pulsed (plasma focus) neutron source with image plate and application to neutron radiography

    NASA Astrophysics Data System (ADS)

    Andola, Sanjay; Niranjan, Ram; Shaikh, A. M.; Rout, R. K.; Kaushik, T. C.; Gupta, S. C.

    2013-02-01

    Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2±0.3) ×109 neutrons per pulse produced by D-D fusion reaction with a pulse width of 50±5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.

  4. Characterization of pulsed (plasma focus) neutron source with image plate and application to neutron radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andola, Sanjay; Niranjan, Ram; Rout, R. K.

    Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2{+-}0.3) Multiplication-Sign 10{sup 9} neutrons per pulse produced by D-D fusion reaction with a pulse width of 50{+-}5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.

  5. Cold thermal injury from cold caps used for the prevention of chemotherapy-induced alopecia

    PubMed Central

    Belum, Viswanath Reddy; de Barros Silva, Giselle; Laloni, Mariana Tosello; Ciccolini, Kathryn; Sklarin, Nancy T.; Lacouture, Mario E.

    2017-01-01

    INTRODUCTION The use of scalp cooling for the prevention of chemotherapy-induced alopecia (CIA) is increasing. Cold caps are placed onto the hair-bearing areas of the scalp for varying time periods before, during, and after cytotoxic chemotherapy cycles. Although not yet reported, improper application procedures could result in undesirable adverse events (AEs). At present, there are no evidence-based scalp cooling protocols, and there is no regulatory oversight of their use. OBJECTIVE To report the occurrence of cold thermal injury (frostbite) on the scalp, following the use of cold caps for the prevention of CIA. MATERIALS AND METHODS We identified four patients who developed cold thermal injuries on the scalp following the application of cold caps. Medical records were analyzed to retrieve the demographic, clinical, and histologic characteristics. RESULTS The cold thermal injuries in our patients were grade 1/2 in severity and improved with topical interventions, although mild persistent alopecia ensued in 3 patients. The true incidence of such injuries in this setting however, remains unknown. CONCLUSIONS Cold thermal cold injuries are likely an infrequent and preventable AE that may result from improper device application procedures during scalp cooling. Although these untoward events are usually mild to moderate in severity, the potential occurrence of long-term sequelae (e.g. permanent alopecia, scarring) are not known. Future prospective studies are needed to further elucidate the risk and standardized delivery methods, and patient/clinical education. PMID:27146710

  6. Towards high-resolution neutron imaging on IMAT

    NASA Astrophysics Data System (ADS)

    Minniti, T.; Tremsin, A. S.; Vitucci, G.; Kockelmann, W.

    2018-01-01

    IMAT is a new cold-neutron imaging facility at the neutron spallation source ISIS at the Rutherford Appleton Laboratory, U.K.. The ISIS pulsed source enables energy-selective and energy-resolved neutron imaging via time-of-flight (TOF) techniques, which are available in addition to the white-beam neutron radiography and tomography options. A spatial resolution of about 50 μm for white-beam neutron radiography was achieved early in the IMAT commissioning phase. In this work we have made the first steps towards achieving higher spatial resolution. A white-beam radiography with 18 μm spatial resolution was achieved in this experiment. This result was possible by using the event counting neutron pixel detector based on micro-channel plates (MCP) coupled with a Timepix readout chip with 55 μm sized pixels, and by employing an event centroiding technique. The prospects for energy-selective neutron radiography for this centroiding mode are discussed.

  7. (3) He Spin Filter for Neutrons.

    PubMed

    Batz, M; Baeßler, S; Heil, W; Otten, E W; Rudersdorf, D; Schmiedeskamp, J; Sobolev, Y; Wolf, M

    2005-01-01

    The strongly spin-dependent absorption of neutrons in nuclear spin-polarized (3)He opens up the possibility of polarizing neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. This paper gives a report on the neutron spin filter (NSF) development program at Mainz. The polarization technique is based on direct optical pumping of metastable (3)He atoms combined with a polarization preserving mechanical compression of the gas up to a pressure of several bar, necessary to run a NSF. The concept of a remote type of operation using detachable NSF cells is presented which requires long nuclear spin relaxation times of order 100 hours. A short survey of their use under experimental conditions, e.g. large solid-angle polarization analysis, is given. In neutron particle physics NSFs are used in precision measurements to test fundamental symmetry concepts.

  8. 3He Spin Filter for Neutrons

    PubMed Central

    Batz, M.; Baeßler, S.; Heil, W.; Otten, E. W.; Rudersdorf, D.; Schmiedeskamp, J.; Sobolev, Y.; Wolf, M.

    2005-01-01

    The strongly spin-dependent absorption of neutrons in nuclear spin-polarized 3He opens up the possibility of polarizing neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. This paper gives a report on the neutron spin filter (NSF) development program at Mainz. The polarization technique is based on direct optical pumping of metastable 3He atoms combined with a polarization preserving mechanical compression of the gas up to a pressure of several bar, necessary to run a NSF. The concept of a remote type of operation using detachable NSF cells is presented which requires long nuclear spin relaxation times of order 100 hours. A short survey of their use under experimental conditions, e.g. large solid-angle polarization analysis, is given. In neutron particle physics NSFs are used in precision measurements to test fundamental symmetry concepts. PMID:27308139

  9. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A.; André, M.; Maes, L.; Baddeley, L.; Barakat, A.; Chappell, R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R.; Welling, D.

    2015-12-01

    Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.

  10. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A. I.; Andre, M.; Maes, L.; Baddeley, L. J.; Barakat, A. R.; Chappell, C. R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R. W.; Welling, D. T.

    2015-12-01

    Low energy ions of ionospheric origin provide a significant contributon to the magnetospheric plasmapopulation. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise arise if continuous longtime observations such as the during a geomagnetic storms are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near Earth region during gemagnetic storms.

  11. Burnable absorber arrangement for fuel bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Townsend, D.B.

    1986-12-16

    This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less

  12. Cold-start characteristics of polymer electrolyte fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishler, Jeff; Mukundan, Rangachary; Wang, Yun

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  13. Investigation of some possible changes in Am-Be neutron source configuration in order to increase the thermal neutron flux using Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Basiri, H.; Tavakoli-Anbaran, H.

    2018-01-01

    Am-Be neutrons source is based on (α, n) reaction and generates neutrons in the energy range of 0-11 MeV. Since the thermal neutrons are widely used in different fields, in this work, we investigate how to improve the source configuration in order to increase the thermal flux. These suggested changes include a spherical moderator instead of common cylindrical geometry, a reflector layer and an appropriate materials selection in order to achieve the maximum thermal flux. All calculations were done by using MCNP1 Monte Carlo code. Our final results indicated that a spherical paraffin moderator, a layer of beryllium as a reflector can efficiently increase the thermal neutron flux of Am-Be source.

  14. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    NASA Astrophysics Data System (ADS)

    de France, G.; Blanc, A.; Drouet, F.; Jentschel, M.; Köster, U.; Mutti, P.; Régis, J. M.; Simpson, G.; Soldner, T.; Stezowski, O.; Ur, C. A.; Urban, W.; Vancrayenest, A.

    2014-03-01

    A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  15. Ground albedo neutrons produced by cosmic radiations

    NASA Astrophysics Data System (ADS)

    Kodama, M.

    1983-05-01

    Day-to-day variations of cosmic-ray-produced neutron fluxes near the earth's ground surface are measured by using three sets of paraffin-moderated BF3 counters, which are installed in different locations, 3 m above ground, ground level, and 20 cm under ground. Neutron flux decreases observed by these counters when snowcover exists show that there are upward-moving neutrons, that is, ground albedo neutron near the ground surface. The amount of albedo neutrons is estimated to be about 40 percent of total neutron flux in the energy range 1-10 to the 6th eV.

  16. Effect of nanodiamond fluorination on the efficiency of quasispecular reflection of cold neutrons

    NASA Astrophysics Data System (ADS)

    Nesvizhevsky, V. V.; Dubois, M.; Gutfreund, Ph.; Lychagin, E. V.; Nezvanov, A. Yu.; Zhernenkov, K. N.

    2018-02-01

    Nanomaterials, which show large reflectivity for external radiation, are of general interest in science and technology. We report a result from our ongoing research on the reflection of low-energy neutrons from powders of detonation diamond nanoparticles. Our previous work showed a large probability for quasispecular reflection of neutrons from this medium. The model of neutron scattering from nanoparticles, which we have developed, suggests two ways to increase the quasispecular reflection probability: (1) the reduction of incoherent scattering by substitution of hydrogen with fluorine inside the nanoparticles, and (2) the sharpening of the neutron optical potential step by removal of amorphous s p2 carbon from the nanoparticle shells. We present experimental results on scattering of slow neutrons from both raw and fluorinated diamond nanoparticles with amorphous s p2 carbon removed by gas-solid fluorination. These results show a clear increase in quasispecular reflection probability.

  17. The Effects of Cold Exposure on Wet Aircraft Passengers: A Review

    DTIC Science & Technology

    1994-05-01

    Gauquelin, G. Hormonal responses adrenal medulla. In Guyton A.C. Textbook ofMedi- to exercise during moderate cold exposure in young cal...The physiological responses to partial wetting and subscqumnt exposure to cold environmental conditions have not been studied. The effects of cold... responses to maintain thermal balance. Body heat balance is one of the most well regulated The preoptic area of the hypothalamus has recep- control

  18. The Los Alamos Neutron Science Center Spallation Neutron Sources

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  19. FAST NEUTRONIC REACTOR

    DOEpatents

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  20. The Outcome of Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Foucart, Francois

    2014-10-01

    Black hole-neutron star and neutron star-neutron star mergers are among the main sources of gravitational waves which will be detected in the coming years by the Advanced LIGO/VIRGO/KAGRA observatories. In some cases, these mergers can also power bright electromagnetic emissions: they are the most likely progenitors of short gamma-ray bursts, and the radioactive decay of neutron-rich material ejected by the merger can power optical/infrared transients days after the merger. Finally, they may provide important constraints on the equation of state of cold dense matter, and on the source of heavy elements in the universe. I will discuss the general relativistic simulations which are required to properly model these events, and what they have told us so far about the outcome of neutron star mergers. I will also discuss efforts to improve the physical realism of the simulations by improving the treatment of the most important effects beyond general relativistic hydrodynamics: magnetic fields, neutrinos, and the properties of nuclear matter.

  1. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  2. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE PAGES

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-10-26

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  3. METHOD OF INITIATING AND SUSTAINING AN ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    DOEpatents

    Bell, P.R.; Mackin, R.J. Jr.; Simon, A.

    1961-08-22

    A method for producing an energetic plasma for neutron production and for faeling this plasma once it is formed is described. The plasma is initially fonmed as set forth in U. S. Patent No. 2,969,308. After the plasma is formed, cold neutral particles with an energy of at least 1 Kev are injected in a radial directinn and transverse to the axis of the device. These cold particles are substituted for the molecular ion injection and are used for fueling the plasma device on a continuous regulated basis in order to maintain a reaction temperature of about 60 Kev for producing neutrons. (AE C)

  4. Evaluation of Neutron Response of Criticality Accident Alarm System Detector to Quasi-Monoenergetic 24 keV Neutrons

    NASA Astrophysics Data System (ADS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Yashima, Hiroshi

    The criticality accident alarm system (CAAS), which was recently developed and installed at the Japan Atomic Energy Agency's Tokai Reprocessing Plant, consists of a plastic scintillator combined with a cadmium-lined polyethylene moderator and thereby responds to both neutrons and gamma rays. To evaluate the neutron absorbed dose rate response of the CAAS detector, a 24 keV quasi-monoenergetic neutron irradiation experiment was performed at the B-1 facility of the Kyoto University Research Reactor. The detector's evaluated neutron response was confirmed to agree reasonably well with prior computer-predicted responses.

  5. A Comparison of Fast-Spectrum and Moderated Space Fission Reactors

    NASA Astrophysics Data System (ADS)

    Poston, David I.

    2005-02-01

    The reactor neutron spectrum is one of the fundamental design choices for any fission reactor, but the implications of using a moderated spectrum are vastly different for space reactors as opposed to terrestrial reactors. In addition, the pros and cons of neutron spectra are significantly different among many of the envisioned space power applications. This paper begins with a discussion of the neutronic differences between fast-spectrum and moderated space reactors. This is followed by a discussion of the pros and cons of fast-spectrum and moderated space reactors separated into three areas—technical risk, performance, and safety/safeguards. A mix of quantitative and qualitative arguments is presented, and some conclusions generally can be made regarding neutron spectrum and space power application. In most cases, a fast-spectrum system appears to be the better alternative (mostly because of simplicity and higher potential operating temperatures); however, in some cases, such as a low-power (<100-kWt) surface reactor, a moderated spectrum could provide a better approach. In all cases, the determination of which spectrum is preferred is a strong function of the metrics provided by the "customer"— i.e., if a certain level of performance is required, it could provide a different solution than if a certain level of safeguards is required (which in some cases could produce a null solution). The views expressed in this document are those of the author and do not necessarily reflect agreement by the Government.

  6. The neutron imaging diagnostic at NIF (invited).

    PubMed

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  7. MODFLOW 2.0: A program for predicting moderator flow patterns

    NASA Astrophysics Data System (ADS)

    Peterson, P. F.; Paik, I. K.

    1991-07-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in the operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  8. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  9. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  10. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, R. E.

    An accurate representation of the scattering of neutrons by the materials used to build cold sources at neutron scattering facilities is important for the initial design and optimization of a cold source, and for the analysis of experimental results obtained using the cold source. In practice, this requires a good representation of the physics of scattering from the material, a method to convert this into observable quantities (such as scattering cross sections), and a method to use the results in a neutron transport code (such as the MCNP Monte Carlo code). At Los Alamos, the authors have been developing thesemore » capabilities over the last ten years. The final set of cold-moderator evaluations, together with evaluations for conventional moderator materials, was released in 1994. These materials have been processed into MCNP data files using the NJOY Nuclear Data Processing System. Over the course of this work, they were able to develop a new module for NJOY called LEAPR based on the LEAP + ADDELT code from the UK as modified by D.J. Picton for cold-moderator calculations. Much of the physics for methane came from Picton`s work. The liquid hydrogen work was originally based on a code using the Young-Koppel approach that went through a number of hands in Europe (including Rolf Neef and Guy Robert). It was generalized and extended for LEAPR, and depends strongly on work by Keinert and Sax of the University of Stuttgart. Thus, their collection of cold-moderator scattering kernels is truly an international effort, and they are glad to be able to return the enhanced evaluations and processing techniques to the international community. In this paper, they give sections on the major cold moderator materials (namely, solid methane, liquid methane, and liquid hydrogen) using each section to introduce the relevant physics for that material and to show typical results.« less

  12. Energy budget, oxidative stress and antioxidant in striped hamster acclimated to moderate cold and warm temperatures.

    PubMed

    Chen, Ke-Xin; Wang, Chun-Ming; Wang, Gui-Ying; Zhao, Zhi-Jun

    2014-08-01

    The mechanism of the rate of living-free radical theory suggests that higher rate of oxidative metabolism results from greater rate of mitochondria oxidative phosphorylation, leading to a consequent increase in production of free radicals. However, the relation between metabolic rate and oxidative stress is tissue dependent in animals acclimated to cold temperatures. Here we examined oxidative stress, reflected by changes of antioxidant activity and other related markers, in striped hamsters acclimated to moderate cold (15°C), room (23°C) or warm temperature (30°C) for 6 weeks, by which either higher or lower metabolic rate was induced experimentally. Energy intake and the rate of metabolism and nonshivering thermogenesis were increased at 15°C, but decreased at 30°C compared with that at 23°C. Effects of temperatures on the markers of both oxidative stress and antioxidant activities were rarely significant. The percentages of positive correlation between the 11 tissues (brain, BAT, liver, heart, lung, kidneys, stomach, small and large intestine, caecum and skeletal muscle) were 14.5% (8/55) for catalase (CAT), 7.3% (4/55) for the capacity of inhibition of hydroxyl free radical (CIH), 5.5% (3/55) for activities of superoxide dismutase (SOD), 1.8% (1/55) for total antioxidant capacity (T-AOC), 4.3% (2/46) for H2O2 and 11.1% (4/36) for the capacity of inhibition of hydroxyl free radical (CIH). This indicated that the tissue-dependent changes of both oxidative stress and antioxidant activity were less consistent among the different tissues. Finally the data from this study were less consistent with the prediction of the mechanism of the rate of living-free radical theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. SPEAR — ToF neutron reflectometer at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Jablin, M. S.; Wang, P.; Mocko, M.; Majewski, J.

    2011-11-01

    This article discusses the Surface ProfilE Analysis Reflectometer (SPEAR), a vertical scattering geometry time-of-flight reflectometer, at the Los Alamos National Laboratory Lujan Neutron Scattering Center. SPEAR occupies flight path 9 and receives spallation neutrons from a polychromatic, pulsed (20Hz) source that pass through a liquid-hydrogen moderator at 20K coupled with a Be filter to shift their energy spectrum. The spallation neutrons are generated by bombarding a tungsten target with 800MeV protons obtained from an accelerator. The process produces an integrated neutron flux of ˜ 3.4×106 cm-2 s-1 at a proton current of 100 μA. SPEAR employs choppers and frame overlap mirrors to obtain a neutron wavelength range of 4.5-16 Å. SPEAR uses a single 200mm long 3He linear position-sensitive detector with ˜ 2 mm FWHM resolution for simultaneous studies of both specular and off-specular scattering. SPEAR's moderated neutrons are collimated into a beam which impinges from above upon a level sample with an average angle of 0.9° to the horizontal, to facilitate air-liquid interface studies. In the vertical direction, the beam converges at the sample position. The neutrons can be further collimated to the desired divergence by finely slitting the beam using a set of two 10B4C slit packages. The instrument is ideally suited to study organic and inorganic thin films with total thicknesses between 5 and 3000 Å in a variety of environments. Specifically designed sample chambers available at the instrument provide the opportunity to study biological systems at the solid-liquid interface. SPEAR's unique experimental capabilities are demonstrated by specific examples in this article. Finally, an outlook for SPEAR and perspectives on future instrumentation are discussed.

  14. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less

  15. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification

    DOE PAGES

    Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.; ...

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less

  16. Cold flow properties of biodiesel: A guide to getting an accurate analysis

    USDA-ARS?s Scientific Manuscript database

    Biodiesel has several advantages compared to conventional diesel fuel (petrodiesel). Nevertheless, biodiesel has poor cold flow properties that may restrict its use in moderate climates. It is essential that the cold flow properties of biodiesel and its blends with petrodiesel be measured as accurat...

  17. Interfacing MCNPX and McStas for simulation of neutron transport

    NASA Astrophysics Data System (ADS)

    Klinkby, Esben; Lauritzen, Bent; Nonbøl, Erik; Kjær Willendrup, Peter; Filges, Uwe; Wohlmuther, Michael; Gallmeier, Franz X.

    2013-02-01

    Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using Monte Carlo codes such as MCNPX (Waters et al., 2007 [1]) or FLUKA (Battistoni et al., 2007; Ferrari et al., 2005 [2,3]) whereas simulations of neutron transport from the moderator and the instrument response are performed by neutron ray tracing codes such as McStas (Lefmann and Nielsen, 1999; Willendrup et al., 2004, 2011a,b [4-7]). The coupling between the two simulation suites typically consists of providing analytical fits of MCNPX neutron spectra to McStas. This method is generally successful but has limitations, as it e.g. does not allow for re-entry of neutrons into the MCNPX regime. Previous work to resolve such shortcomings includes the introduction of McStas inspired supermirrors in MCNPX. In the present paper different approaches to interface MCNPX and McStas are presented and applied to a simple test case. The direct coupling between MCNPX and McStas allows for more accurate simulations of e.g. complex moderator geometries, backgrounds, interference between beam-lines as well as shielding requirements along the neutron guides.

  18. NEUTRONIC REACTOR COUNTER METHOD AND SYSTEM

    DOEpatents

    Graham, C.B.; Spiewak, I.

    1960-05-31

    An improved method is given for controlling the rate of fission in circulating-fuel neutronic reactors in which the fuel is a homogeneous liquid containing fissionable material and a neutron moderator. A change in the rate of flssion is effected by preferentially retaining apart from the circulating fuel a variable amount of either fissionable material or moderator, thereby varying the concentration of fissionable material in the fuel. In the case of an aqueous fuel solution a portion of the water may be continuously vaporized from the circulating solution and the amount of condensate, or condensate plus make-up water, returned to the solution is varied to control the fission rate.

  19. Neutron Time-of-Flight Spectroscopy

    PubMed Central

    Copley, John R. D.; Udovic, Terrence J.

    1993-01-01

    The time-of-flight technique is employed in two of the instruments at the NIST Cold Neutron Research Facility (CNRF). A pulsed monochromatic beam strikes the sample, and the energies of scattered neutrons are determined from their times-of-flight to an array of detectors. The time-of-flight method may be used in a variety of types of experiments such as studies of vibrational and magnetic excitations, tunneling spectroscopy, and quasielastic scattering studies of diffusional behavior; several examples of experiments are discussed. We also present brief descriptions of the CNRF time-of-flight instruments, including their modi operandi and some of their more pertinent parameters and performance characteristics. PMID:28053459

  20. Neutron-induced reactions in the hohlraum to study reaction in flight neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boswell, M. S.; Elliott, S. R.; Tybo, J.

    2013-04-19

    We are currently developing the physics necessary to measure the Reaction In Flight (RIF) neutron flux from a NIF capsule. A measurement of the RIF neutron flux from a NIF capsule could be used to deduce the stopping power in the cold fuel of the NIF capsule. A foil irradiated at the Omega laser at LLE was counted at the LANL low-background counting facility at WIPP. The estimated production rate of {sup 195}Au was just below our experimental sensitivity. We have made several improvements to our counting facility in recent months. These improvements are designed to increase our sensitivity, andmore » include installing two new low-background detectors, and taking steps to reduce noise in the signals.« less

  1. Measurements of the total cross section of natBe with thermal neutrons from a photo-neutron source

    NASA Astrophysics Data System (ADS)

    Liu, L. X.; Wang, H. W.; Ma, Y. G.; Cao, X. G.; Cai, X. Z.; Chen, J. G.; Zhang, G. L.; Han, J. L.; Zhang, G. Q.; Hu, J. F.; Wang, X. H.; Li, W. J.; Yan, Z.; Fu, H. J.

    2017-11-01

    The total neutron cross sections of natural beryllium in the neutron energy region of 0.007 to 0.1 eV were measured by using a time-of-flight (TOF) technique at the Shanghai Institute of Applied Physics (SINAP). The low energy neutrons were obtained by moderating the high energy neutrons from a pulsed photo-neutron source generated from a 16 MeV electron linac. The time dependent neutron background component was determined by employing the 12.8 cm boron-loaded polyethylene (PEB) (5% w.t.) to block neutron TOF path and using the Monte Carlo simulation methods. The present data was compared with the fold Harvey data with the response function of the photo-neutron source (PNS, phase-1). The present measurement of total cross section of natBe for thermal neutrons based on PNS has been developed for the acquisition of nuclear data needed for the Thorium Molten Salt Reactor (TMSR).

  2. Neutron beam effects on spin-exchange-polarized 3He.

    PubMed

    Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-08-22

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.

  3. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  4. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOEpatents

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  5. NIST Calibration of a Neutron Spectrometer ROSPEC.

    PubMed

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  6. Characterization of the new neutron imaging and materials science facility IMAT

    NASA Astrophysics Data System (ADS)

    Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried

    2018-04-01

    IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.

  7. Structure of cold nuclear matter at subnuclear densities by quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2003-09-01

    Structure of cold nuclear matter at subnuclear densities for the proton fraction x=0.5, 0.3, and 0.1 is investigated by quantum molecular dynamics (QMD) simulations. We demonstrate that the phases with slablike and rodlike nuclei, etc. can be formed dynamically from hot uniform nuclear matter without any assumptions on nuclear shape, and also systematically analyze the structure of cold matter using two-point correlation functions and Minkowski functionals. In our simulations, we also observe intermediate phases, which have complicated nuclear shapes. It has been found out that these phases can be characterized as those with negative Euler characteristic. Our result implies the existence of these kinds of phases in addition to the simple “pasta” phases in neutron star crusts and supernova inner cores. In addition, we investigate the properties of the effective QMD interaction used in the present work to examine the validity of our results. The resultant energy per nucleon ɛn of the pure neutron matter, the proton chemical μ(0)p in pure neutron matter and the nuclear surface tension Esurf are generally reasonable in comparison with other nuclear interactions.

  8. Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material

    NASA Technical Reports Server (NTRS)

    Poindexter, A. M.

    1967-01-01

    Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.

  9. Development of Grazing Incidence Optics for Neutron Imaging and Scattering

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Khaykovich, B.; Liu, D.; Ramsey, B. D.; Zavlin, V. E.; Kilaru, K.; Romaine, S.; Rosati, R. E.; Bruni, R.; Moncton, D. E.

    2012-01-01

    Because of their wave nature, thermal and cold neutrons can be reflected from smooth surfaces at grazing incidence angles, be reflected by multilayer coatings or be refracted at boundaries of different materials. The optical properties of materials are characterized by their refractive indices which are slightly less than unity for most elements and their isotopes in the case of cold and thermal neutrons as well as for x-rays. The motivation for the optics use for neutrons as well as for x-rays is to increase the signal rate and, by virtue of the optic's angular resolution, to improve the signal-to-noise level by reducing the background so the efficiency of the existing neutron sources use can be significantly enhanced. Both refractive and reflective optical techniques developed for x-ray applications can be applied to focus neutron beams. Typically neutron sources have lower brilliance compared to conventional x-ray sources so in order to increase the beam throughput the neutron optics has to be capable of capturing large solid angles. Because of this, the replicated optics techniques developed for x-ray astronomy applications would be a perfect match for neutron applications, so the electroformed nickel optics under development at the Marshall Space Flight Center (MSFC) can be applied to focus neutron beams. In this technique, nickel mirror shells are electroformed onto a figured and superpolished nickel-plated aluminum cylindrical mandrel from which they are later released by differential thermal contraction. Cylindrical mirrors with different diameters, but the same focal length, can be nested together to increase the system throughput. The throughput can be increased further with the use of the multilayer coatings deposited on the reflectivr surface of the mirror shells. While the electroformed nickel replication technique needs to be adopted for neutron focusing, the technology to coat the inside of cylindrical mirrors with neutron multilayers has to be

  10. Effects of Moderate Strength Cold Air Exposure on Blood Pressure and Biochemical Indicators among Cardiovascular and Cerebrovascular Patients

    PubMed Central

    Zhang, Xiakun; Zhang, Shuyu; Wang, Chunling; Wang, Baojian; Guo, Pinwen

    2014-01-01

    The effects of cold air on cardiovascular and cerebrovascular diseases were investigated in an experimental study examining blood pressure and biochemical indicators. Zhangye, a city in Gansu Province, China, was selected as the experimental site. Health screening and blood tests were conducted, and finally, 30 cardiovascular disease patients and 40 healthy subjects were recruited. The experiment was performed during a cold event during 27–28 April 2013. Blood pressure, catecholamine, angiotensin II (ANG-II), cardiac troponin I (cTnI), muscle myoglobin (Mb) and endothefin-1 (ET-1) levels of the subjects were evaluated 1 day before, during the 2nd day of the cold exposure and 1 day after the cold air exposure. Our results suggest that cold air exposure increases blood pressure in cardiovascular disease patients and healthy subjects via the sympathetic nervous system (SNS) that is activated first and which augments ANG-II levels accelerating the release of the norepinephrine and stimulates the renin-angiotensin system (RAS). The combined effect of these factors leads to a rise in blood pressure. In addition, cold air exposure can cause significant metabolism and secretion of Mb, cTnI and ET-1 in subjects; taking the patient group as an example, ET-1 was 202.7 ng/L during the cold air exposure, increased 58 ng/L compared with before the cold air exposure, Mb and cTnI levels remained relatively high (2,219.5 ng/L and 613.2 ng/L, increased 642.1 ng/L and 306.5 ng/L compared with before the cold air exposure, respectively) 1-day after the cold exposure. This showed that cold air can cause damage to patients’ heart cells, and the damage cannot be rapidly repaired. Some of the responses related to the biochemical markers indicated that cold exposure increased cardiovascular strain and possible myocardial injury. PMID:24583830

  11. Effects of moderate strength cold air exposure on blood pressure and biochemical indicators among cardiovascular and cerebrovascular patients.

    PubMed

    Zhang, Xiakun; Zhang, Shuyu; Wang, Chunling; Wang, Baojian; Guo, Pinwen

    2014-02-27

    The effects of cold air on cardiovascular and cerebrovascular diseases were investigated in an experimental study examining blood pressure and biochemical indicators. Zhangye, a city in Gansu Province, China, was selected as the experimental site. Health screening and blood tests were conducted, and finally, 30 cardiovascular disease patients and 40 healthy subjects were recruited. The experiment was performed during a cold event during 27-28 April 2013. Blood pressure, catecholamine, angiotensin II (ANG-II), cardiac troponin I (cTnI), muscle myoglobin (Mb) and endothefin-1 (ET-1) levels of the subjects were evaluated 1 day before, during the 2nd day of the cold exposure and 1 day after the cold air exposure. Our results suggest that cold air exposure increases blood pressure in cardiovascular disease patients and healthy subjects via the sympathetic nervous system (SNS) that is activated first and which augments ANG-II levels accelerating the release of the norepinephrine and stimulates the renin-angiotensin system (RAS). The combined effect of these factors leads to a rise in blood pressure. In addition, cold air exposure can cause significant metabolism and secretion of Mb, cTnI and ET-1 in subjects; taking the patient group as an example, ET-1 was 202.7 ng/L during the cold air exposure, increased 58 ng/L compared with before the cold air exposure, Mb and cTnI levels remained relatively high (2,219.5 ng/L and 613.2 ng/L, increased 642.1 ng/L and 306.5 ng/L compared with before the cold air exposure, respectively) 1-day after the cold exposure. This showed that cold air can cause damage to patients' heart cells, and the damage cannot be rapidly repaired. Some of the responses related to the biochemical markers indicated that cold exposure increased cardiovascular strain and possible myocardial injury.

  12. Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu

    2014-01-29

    The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within ± 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor.more » Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of ± 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.« less

  13. METHOD OF PRODUCING NEUTRONS

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1964-01-14

    This patent relates to a method of producing neutrons in which there is produced a heated plasma containing heavy hydrogen isotope ions wherein heated ions are injected and confined in an elongated axially symmetric magnetic field having at least one magnetic field gradient region. In accordance with the method herein, the amplitude of the field and gradients are varied at an oscillatory periodic frequency to effect confinement by providing proper ratios of rotational to axial velocity components in the motion of said particles. The energetic neutrons may then be used as in a blanket zone containing a moderator and a source fissionable material to produce heat and thermal neutron fissionable materials. (AEC)

  14. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Venuti, Michael; Shi, Tan; Fellers, Deion; Morris, Christopher; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the energy of UCN, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, especially for samples with a surface oxide layer, this work has the potential to separate the various damage mechanisms proposed in previous works. During the irradiation with UCN, fission events are monitored by coincidence counting between prompt gamma rays using NaI detectors. Alpha spectroscopy of the ejected actinide material is performed in a custom-built ionization chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this presentation, we will discuss our experimental setup and present the preliminary results.

  15. Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum)rubber-producing tissue

    USDA-ARS?s Scientific Manuscript database

    Natural rubber biosynthesis in guayule (Parthenium argentatum) is associated with moderately cold night temperatures. To begin to dissect the molecular events triggered by cold temperatures that govern rubber synthesis induction in guayule, the transcriptome of bark tissue, where rubber is produced...

  16. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.

  17. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control.

    PubMed

    Lee, Pei-Yi; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2014-06-01

    High energy proton beam (>8MeV) is favorable for producing neutrons with high yield. However, the produced neutrons are of high energies. These high energy neutrons can cause severe fast neutron contamination and degrade the BNCT treatment quality if they are not appropriately moderated. Hence, this study aims to briefly discuss the issue, from the viewpoint of fast neutron contamination control, whether high energy proton beam is ideal for AB-BNCT or not. In this study, D2O, PbF4, CaF2, and Fluental(™) were used standalone as moderator materials to slow down 1-, 6-, and 10-MeV parallelly incident neutrons. From the calculated results, we concluded that neutrons produced by high energy proton beam could not be easily moderated by a single moderator to an acceptable contamination level and still with reasonable epithermal neutron beam intensity. Hence, much more complicated and sophisticated designs of beam shaping assembly have to be developed when using high energy proton beams. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Gravitational waves from neutron star excitations in a binary inspiral

    NASA Astrophysics Data System (ADS)

    Parisi, Alessandro; Sturani, Riccardo

    2018-02-01

    In the context of a binary inspiral of mixed neutron star-black hole systems, we investigate the excitation of the neutron star oscillation modes by the orbital motion. We study generic eccentric orbits and show that tidal interaction can excite the f -mode oscillations of the star by computing the amount of energy and angular momentum deposited into the star by the orbital motion tidal forces via closed form analytic expressions. We study the f -mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, and we compute their imprint into the emitted gravitational waves.

  19. Effects of chronic environmental cold on growth, health, and select metabolic and immunologic responses of preruminant calves.

    PubMed

    Nonnecke, B J; Foote, M R; Miller, B L; Fowler, M; Johnson, T E; Horst, R L

    2009-12-01

    The physiological response of the preruminant calf to sustained exposure to moderate cold has not been studied extensively. Effects of cold on growth performance and health of preruminant calves as well as functional measures of energy metabolism, fat-soluble vitamin, and immune responsiveness were evaluated in the present study. Calves, 3 to 10 d of age, were assigned randomly to cold (n = 14) or warm (n = 15) indoor environments. Temperatures in the cold environment averaged 4.7 degrees C during the study. Frequent wetting of the environment and the calves was used to augment effects of the cold environment. Temperatures in the warm environment averaged 15.5 degrees C during the study. There was no attempt to increase the humidity in the warm environment. Preventative medications or vaccinations that might influence disease resistance were not administered. Nonmedicated milk replacer (20% crude protein and 20% fat fed at 0.45 kg/d) and a nonmedicated starter grain fed ad libitum were fed to all calves. Relative humidity was, on average, almost 10% higher in the cold environment. Warm-environment calves were moderately healthier (i.e., lower respiratory scores) and required less antibiotics. Scour scores, days scouring, and electrolyte costs, however, were unaffected by environmental temperature. Growth rates were comparable in warm and cold environments, although cold-environment calves consumed more starter grain and had lower blood glucose and higher blood nonesterified fatty acid concentrations. The nonesterified fatty acid and glucose values for cold-stressed calves, however, did not differ sufficiently from normal values to categorize these calves as being in a state of negative-energy balance. Levels of fat-soluble vitamin, antibody, tumor necrosis factor-alpha, and haptoglobin were unaffected by sustained exposure to moderate cold. These results support the contention that successful adaptation of the dairy calf to cold is dependent upon the availability

  20. Dense cold baryonic matter

    NASA Astrophysics Data System (ADS)

    Stavinskiy, A. V.

    2017-09-01

    A possibility of studying cold nuclear matter on the Nuclotron-NICA facility at baryonic densities characteristic of and higher than at the center of a neutron star is considered based on the data from cumulative processes. A special rare-event kinematic trigger for collisions of relativistic ions is proposed for effective selection of events accompanied by production of dense baryonic systems. Possible manifestations of new matter states under these unusual conditions and an experimental program for their study are discussed. Various experimental setups are proposed for these studies, and a possibility of using experimental setups at the Nuclotron-NICA facility for this purpose is considered.

  1. An Accelerator Neutron Source for BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability,more » and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.« less

  2. SECOND TARGET STATION MODERATOR PERFORMANCE WITH A ROTATING TARGET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Gallmeier, Franz X; Rennich, Mark J

    2016-01-01

    Oak Ridge National Laboratory manages and operates the Spallation Neutron Source and the High Flux Isotope Reactor, two of the world's most advanced neutron scattering facilities. Both facilities are funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, and are available to researchers from all over the world. Delivering cutting edge science requires continuous improvements and development of the facilities and instruments. The SNS was designed from the outset to accommodate an additional target station, or Second Target Station (STS), and an upgraded accelerator feeding proton beams to STS and the existing First Targetmore » Station (FTS). Upgrade of the accelerator and the design and construction of STS are being proposed. The presently considered STS configuration is driven with short (<1 s) proton pulses at 10 Hz repetition rate and 467 kW proton beam power, and is optimized for high intensity and high resolution long wavelength neutron applications. STS will allow installation of 22 beamlines and will expand and complement the current national neutron scattering capabilities. In 2015 the STS studies were performed for a compact tungsten target; first a stationary tungsten plate target was analyzed to considerable details and then dropped in favor of a rotating target. For both target options the proton beam footprint as small as acceptable from mechanical and heat removal aspects is required to arrive at a compact-volume neutron production zone in the target, which is essential for tight coupling of target and moderators and for achieving high-intensity peak neutron fluxes. This paper will present recent STS work with the emphasis on neutronics and moderator performance.« less

  3. Reusable shielding material for neutron- and gamma-radiation

    NASA Astrophysics Data System (ADS)

    Calzada, Elbio; Grünauer, Florian; Schillinger, Burkhard; Türck, Harald

    2011-09-01

    At neutron research facilities all around the world radiation shieldings are applied to reduce the background of neutron and gamma radiation as far as possible in order to perform high quality measurements and to fulfill the radiation protection requirements. The current approach with cement-based compounds has a number of shortcomings: "Heavy concrete" contains a high amount of elements, which are not desired to obtain a high attenuation of neutron and/or gamma radiation (e.g. calcium, carbon, oxygen, silicon and aluminum). A shielding material with a high density of desired nuclei such as iron, hydrogen and boron was developed for the redesign of the neutron radiography facility ANTARES at beam tube 4 (located at a cold neutron source) of FRM-II. The composition of the material was optimized by help of the Monte Carlo code MCNP5. With this shielding material a considerable higher attenuation of background radiation can be obtained compared to usual heavy concretes.

  4. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer.

    PubMed

    Maglieri, Robert; Licea, Angel; Evans, Michael; Seuntjens, Jan; Kildea, John

    2015-11-01

    Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation-maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors' measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. The NNS may be used to reliably measure the neutron

  5. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.

    PubMed

    Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H

    2017-02-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF 2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 10 5  n epi /cm 2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10 -13  Gy-cm 2 /φ epi , and photon dose per epithermal was 2.4 × 10 -13  Gy-cm 2 /φ epi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10 -3  cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to

  6. Analysis of energy resolution in the KURRI-LINAC pulsed neutron facility

    NASA Astrophysics Data System (ADS)

    Sano, Tadafumi; Hori, Jun-ichi; Takahashi, Yoshiyuki; Yashima, Hiroshi; Lee, Jaehong; Harada, Hideo

    2017-09-01

    In this study, we carried out Monte Carlo simulations to obtain the energy resolution of the neutron flux for TOF measurements in the KURRI-LINAC pulsed neutron facility. The simulation was performed on the moderated neutron flux from the pac-man type moderator at the energy range from 0.1 eV to 10 keV. As the result, we obtained the energy resolutions (ΔE/E) of about 0.7% to 1.3% between 0.1 eV to 10 keV. The energy resolution obtained from Monte Carlo simulation agreed with the resolution using the simplified evaluation formula. In addition, we compared the energy resolution among KURRI-LINAC and other TOF facilities, the energy dependency of the energy resolution with the pac-man type moderator in KURRI-LINAC was similar to the J-PARC ANNRI for the single-bunch mode.

  7. Cyclotron-based neutron source for BNCT

    NASA Astrophysics Data System (ADS)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  8. Detailed characterisation of the incident neutron beam on the TOSCA spectrometer

    NASA Astrophysics Data System (ADS)

    Pinna, Roberto S.; Rudić, Svemir; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix

    2017-10-01

    We report a detailed characterisation of the incident neutron beam on the TOSCA spectrometer. A bespoke time-of-flight neutron monitor has been designed, constructed and used to perform extensive spatially resolved measurements of the absolute neutron flux and its underlying time structure at the instrument sample position. The obtained data give a quantitative understanding of the current instrument beyond neutronic simulations and provide a baseline in order to assess the performance of the upgraded instrument. At an average proton current-on-target of 153 μA (ISIS Target Station 1; at the time of measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across the 3 × 3cm2 surface centred around (0,0) position) is approximately 1 . 2 × 106 neutrons cm-2s-1, while the whole beam has a homogeneous distribution across the 3 . 0 × 3 . 5cm2 sample surface. The spectra reproduced the well-known shape of the neutrons moderated by the room temperature water moderator and exhibit a neutron flux of 7 . 3 × 105 neutrons cm-2s-1Å-1 at 1 Å.

  9. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.

  10. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.

    PubMed

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.

  11. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms

    PubMed Central

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee’s physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems. PMID:25961447

  12. Modeling the Stability of Volatile Deposits in Lunar Cold Traps

    NASA Technical Reports Server (NTRS)

    Crider, D. H.; Vondrak, R. R.

    2002-01-01

    There are several mechanisms acting at the cold traps that can alter the inventory of volatiles there. Primarily, the lunar surface is bombarded by meteoroids which impact, melt, process, and redistribute the regolith. Further, solar wind and magnetospheric ion fluxes are allowed limited access onto the regions in permanent shadow. Also, although cold traps are in the permanent shadow of the Sun, there is a small flux of radiation incident on the regions from interstellar sources. We investigate the effects of these space weathering processes on a deposit of volatiles in a lunar cold trap through simulations. We simulate the development of a column of material near the surface of the Moon resulting from space weathering. This simulation treats a column of material at a lunar cold trap and focuses on the hydrogen content of the column. We model space weathering processes on several time and spatial scales to simulate the constant rain of micrometeoroids as well as sporadic larger impactors occurring near the cold traps to determine the retention efficiency of the cold traps. We perform the Monte Carlo simulation over many columns of material to determine the expectation value for hydrogen content of the top few meters of soil for comparison with Lunar Prospector neutron data.

  13. A new three-tier architecture design for multi-sphere neutron spectrometer with the FLUKA code

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Yang, Jian-Bo; Tuo, Xian-Guo; Liu, Zhi; Wang, Qi-Biao; Wang, Xu

    2016-07-01

    The current commercially, available Bonner sphere neutron spectrometer (BSS) has high sensitivity to neutrons below 20 MeV, which causes it to be poorly placed to measure neutrons ranging from a few MeV to 100 MeV. The paper added moderator layers and the auxiliary material layer upon 3He proportional counters with FLUKA code, with a view to improve. The results showed that the responsive peaks to neutrons below 20 MeV gradually shift to higher energy region and decrease slightly with the increasing moderator thickness. On the contrary, the response for neutrons above 20 MeV was always very low until we embed auxiliary materials such as copper (Cu), lead (Pb), tungsten (W) into moderator layers. This paper chose the most suitable auxiliary material Pb to design a three-tier architecture multi-sphere neutron spectrometer (NBSS). Through calculating and comparing, the NBSS was advantageous in terms of response for 5-100 MeV and the highest response was 35.2 times the response of polyethylene (PE) ball with the same PE thickness.

  14. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE PAGES

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; ...

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T ion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent T ion and DSR.

  15. Neutronic performance of high-density LEU fuels in water-moderated and water-reflected research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M.M.; Matos, J.E.

    At the Reduced Enrichment for Research and Test Reactors (RERTR) meeting in September 1994, Durand reported that the maximum uranium loading attainable with U{sub 3}Si{sub 2} fuel is about 6.0 g U/cm{sup 3}. The French Commissariat a l`Energie Atomique (CEA) plan to perform irradiation tests with 5 plates at this loading. Compagnie pour L`Etude et La Realisation de Combustibles Atomiques (CERCA) has also fabricated a few uranium nitride (UN) plates with a uranium density in the fuel meat of 7.0 g/cm{sup 3} and found that UN is compatible with the aluminum matrix at temperatures below 500 C. High density dispersionmore » fuels proposed for development include U-Zr(4 wt%)-Nb(2 wt%), U-Mo(5 wt%), and U-Mo(9 wt%). The purpose of this note is to examine the relative neutronic behavior of these high density fuels in a typical light water-reflected and water-moderated MTR-type research reactor. The results show that a dispersion of the U-Zr-Nb alloy has the most favorable neutronic properties and offers the potential for uranium densities greater than 8.0 g/cm{sup 3}. On the other hand, UN is the least reactive fuel because of the relatively large {sup 14}N(n,p) cross section. For a fixed value of k{sub eff}, the required {sup 235}U loading per fuel element is least for the U-Zr-Nb fuel and steadily increases for the U-Mo(5%), U-Mo(9%), and UN fuels. Because of volume fraction limitations, the UO{sub 2} dispersions are only useful for uranium densities below 5.0 g/cm{sup 3}. In this density range, however, UO{sub 2} is more reactive than U{sub 3}Si{sub 2}.« less

  16. Search for Time Reversal Violating Effects: R-Correlation Measurement in Neutron Decay.

    PubMed

    Bodek, K; Ban, G; Beck, M; Bialek, A; Bryś, T; Czarnecki, A; Fetscher, W; Gorel, P; Kirch, K; Kistryn, St; Kozela, A; Kuźniak, M; Lindroth, A; Naviliat-Cuncic, O; Pulut, J; Serebrov, A; Severijns, N; Stephan, E; Zejma, J

    2005-01-01

    An experiment aiming at the simultaneous determination of both transversal polarization components of electrons emitted in the decay of free neutrons begins data taking using the polarized cold neutron beam (FUNSPIN) from the Swiss Neutron Spallation Source (SINQ) at the Paul-Scherrer Institute, Villigen. A non-zero value of R due to the e(-) polarization component, which is perpendicular to the plane spanned by the spin of the decaying neutron and the electron momentum, would signal a violation of time reversal symmetry and thus physics beyond the Standard Model. Present status of the project and the results from analysis of the first data sample will be discussed.

  17. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.

    neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less

  18. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE PAGES

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...

    2015-01-27

    neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less

  19. Neutron electric dipole moment and possibilities of increasing accuracy of experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.

    The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.

  20. Body temperature and cold sensation during and following exercise under temperate room conditions in cold-sensitive young trained females.

    PubMed

    Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-11-01

    We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n  = 7) and non-cold-sensitive (Control, n  = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Enhancing the performance of a tensioned metastable fluid detector based active interrogation system for the detection of SNM in <1 m3 containers using a D-D neutron interrogation source in moderated/reflected geometries

    NASA Astrophysics Data System (ADS)

    Grimes, T. F.; Hagen, A. R.; Archambault, B. C.; Taleyarkhan, R. P.

    2018-03-01

    This paper describes the development of a SNM detection system for interrogating 1m3 cargos via the combination of a D-D neutron interrogation source (with and without reflectors) and tensioned metastable fluid detectors (TMFDs). TMFDs have been previously shown (Taleyarkhan et al., 2008; Grimes et al., 2015; Grimes and Taleyarkhan, 2016; Archambault et al., 2017; Hagen et al., 2016) to be capable of using Threshold Energy Neutron Analysis (TENA) techniques to reject the ∼2.45 MeV D-D interrogating neutrons while still remaining sensitive to >2.45 MeV neutrons resulting from fission in the target (HEU) material. In order to enhance the performance, a paraffin reflector was included around the accelerator head. This reflector was used to direct neutrons into the package to increase the fission signal, lower the energy of the interrogating neutrons to increase the fission cross-section with HEU, and, also to direct interrogating neutrons away from the detectors in order to enhance the required discrimination between interrogating and fission neutrons. Experiments performed with a 239 Pu-Be neutron source and MnO2 indicated that impressive performance gains could be made by placing a parabolic paraffin moderator between the interrogation source and an air-filled cargo container with HEU placed at the center. However, experiments with other cargo fillers (as specified in the well-known ANSI N42.41-2007 report), and with HEU placed in locations other than the center of the package indicated that other reflector geometries might be superior due to over-"focusing" and the increased solid angle effects due to the accommodation of the moderator geometry. The best performance for the worst case of source location and box fill was obtained by placing the reflector only behind the D-D neutron source rather than in front of it. Finally, it was shown that there could be significant gains in the ability to detect concealed SNM by operating the system in multiple geometric

  2. Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dioszegi I.; Vanier P.E.; Salwen C.

    2016-10-29

    Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of themore » individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.« less

  3. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  4. Compact, inexpensive, epithermal neutron source for BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, D. A.

    1999-06-10

    A new rf-focused linac structure, designed specifically to increase the acceleration efficiency and reduce the cost of linac structures in the few-MeV range, may win the role as the optimum accelerator-based epithermal neutron source for the BNCT application. This new linac structure resembles a drift tube linac (DTL) with radio frequency quadrupole (RFQ) focusing incorporated into each 'drift tube,' hence the name R lowbar f F lowbar ocused D lowbar TL, or RFD. It promises superior acceleration properties, focusing properties, and CW capabilities. We have a proposal under consideration for the development of an epithermal neutron source, based on themore » 2.5-MeV RFD linac system with an average current of 10 mA, having the following components: an ion source, a short low-energy transport system, a short RFQ linac section, an RFD linac section, an rf power system, a high-energy beam transport system, a proton beam target, and a neutron beam moderator system. We propose to develop a solid lithium target for this application in the form of a thin lithium layer on the inner surface of a truncated aluminum cone, cooled by the heavy water moderator, where the proton beam is expanded to a diameter of 3 cm and scanned along a circular path, striking the lithium layer at the cone's half-angle of 30 degrees. We propose to develop a moderator assembly designed to transmit a large fraction of the source neutrons from the target to the patient treatment port, while shifting the neutron energies to an appropriate epithermal energy spectrum and minimizing the gamma-ray dose. The status of this proposal and these plans are presented.« less

  5. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    DOEpatents

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  6. On the use of bismuth as a neutron filter

    NASA Astrophysics Data System (ADS)

    Adib, M.; Kilany, M.

    2003-02-01

    A formula is given which, for neutron energies in the range 10 -4< E<10 eV, permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of bismuth temperature and crystalline form. Computer programs have been developed which allow calculations for the Bi rhombohedral structure in its poly-crystalline form and its equivalent hexagonal close-packed structure. The calculated total neutron cross-sections for poly-crystalline Bi at different temperatures were compared with the measured values. An overall agreement is indicated between the formula fits and experimental data. Agreement was also obtained for values of Bi-single crystals, at room and liquid nitrogen temperatures. A feasibility study for use of Bi in powdered form, as a cold neutron filter, is detailed in terms of the optimum Bi-single crystal thickness, mosaic spread, temperature and cutting plane for efficient transmission of thermal-reactor neutrons, and also for rejection of the accompanying fast neutrons and gamma rays.

  7. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilheux, Hassina Z; Bilheux, Jean-Christophe; Tremsin, Anton S

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than atmore » pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.« less

  8. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    DOEpatents

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  9. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  10. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    NASA Astrophysics Data System (ADS)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  11. Characteristics and application of spherical-type activation detectors in neutron spectrum measurements at a boron neutron capture therapy (BNCT) facility

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun

    2016-03-01

    A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.

  12. Neutron detection using a water Cherenkov detector with pure water and a single PMT

    NASA Astrophysics Data System (ADS)

    Sidelnik, Iván; Asorey, Hernán; Blostein, Juan Jerónimo; Gómez Berisso, Mariano

    2017-12-01

    We present the performance of a novel neutron detector based on a water Cherenkov detector (WCD) employing pure water and a single photomultiplier tube (PMT). The experiments presented in this work were performed using 241AmBe and 252Cf neutron sources in different neutron moderator and shielding configurations. We show that fast neutrons from the 241AmBe and 241Cf sources, as well as thermal neutrons from a neutron moderator, despite having different spectral characteristics, produce essentially the same pulse histogram shape. This characteristic pulse-height histogram shapes are recorded as a clear signature of neutrons with energies lower than ≃ 11 MeV . This is verified in different experimental conditions. Our estimation of the neutron detection efficiency is at the level of (15±5)%, for fast neutrons. Since water is the material employed as active volume, the results of this study are of interest for the construction of low cost and large active volume neutron detectors for various applications. Of special importance are those related with space weather phenomena monitoring as well as those for the detection of fissile special nuclear material, including uranium or plutonium.

  13. Microstructure Evolution During Creep of Cold Worked Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Krishan Yadav, Hari; Ballal, A. R.; Thawre, M. M.; Vijayanand, V. D.

    2018-04-01

    The 14Cr–15Ni austenitic stainless steel (SS) with additions of Ti, Si, and P has been developed for their superior creep strength and better resistance to void swelling during service as nuclear fuel clad and wrapper material. Cold working induces defects such as dislocations that interact with point defects generated by neutron irradiation and facilitates recombination to make the material more resistant to void swelling. In present investigation, creep properties of the SS in mill annealed condition (CW0) and 40 % cold worked (CW4) condition were studied. D9I stainless steel was solution treated at 1333 K for 30 minutes followed by cold rolling. Uniaxial creep tests were performed at 973 K for various stress levels ranging from 175-225 MPa. CW4 samples exhibited better creep resistance as compared to CW0 samples. During creep exposure, cold worked material exhibited phenomena of recovery and recrystallization wherein new strain free grains were observed with lesser dislocation network. In contrast CW0 samples showed no signs of recovery and recrystallization after creep exposure. Partial recrystallization on creep exposure led to higher drop in hardness in cold worked sample as compared to that in mill annealed sample. Accelerated precipitation of carbides at the grain boundaries was observed during creep exposure and this phenomenon was more pronounced in cold worked sample.

  14. Performance of Large Neutron Detectors Containing Lithium-Gadolinium-Borate Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaughter, David M.; Stuart, Cory R.; Klaass, R. Fred

    2015-07-01

    This paper describes the development and testing of a neutron counter, spectrometer, and dosimeter that is compact, efficient, and accurate. A self-contained neutron detection instrument has wide applications in health physics, scientific research, and programs to detect, monitor, and control strategic nuclear materials (SNM). The 1.3 liter detector head for this instrument is a composite detector with an organic scintillator containing uniformly distributed {sup 6}Li{sub 6}{sup nat}Gd{sup 10}B{sub 3}O{sub 9}:Ce (LGB:Ce) microcrystals. The plastic scintillator acts to slow impinging neutrons and emits light proportional to the energy lost by the neutrons as they moderate in the detector body. Moderating neutronsmore » that have slowed sufficiently capture in one of the Lithium-6, Boron-10, or Gadolinium-157 atoms in the LGB:Ce scintillator, which then releases the capture energy in a characteristic cerium emission pulse. The measured captured pulses indicate the presence of neutrons. When a scintillating fluor is present in the plastic, the light pulse resulting from the neutron moderating in the plastic is paired with the LGB:Ce capture pulse to identify the energy of the neutron. About 2% of the impinging neutrons lose all of their energy in a single collision with the detector. There is a linear relationship between the pulse areas of this group of neutrons and energy. The other 98% of neutrons have a wide range of collision histories within the detector body. When these neutrons are 'binned' into energy groups, each group contains a distribution of pulse areas. This data was used to assist in the unfolding of the neutron spectra. The unfolded spectra were then validated with known spectra, at both neutron emitting isotopes and fission/accelerator facilities. Having validated spectra, the dose equivalent and dose rate are determined by applying standard, regulatory damage coefficients to the measured neutron counts for each energy bin of the spectra. Testing

  15. A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance.

    PubMed

    Wang, Yi; Hua, Jian

    2009-10-01

    Temperature has a profound effect on plant growth and development. However, the molecular mechanisms underlying this regulation are not well understood. In particular, how moderate temperature variations are perceived and transduced inside the plant cells remains obscure. In this study, we analyzed transcriptional responses to a moderate decrease in temperature (cooling) in Arabidopsis thaliana. The cooling response involves a weaker and more transient induction of cold-induced genes, such as COR15a, than cold response. This induction probably accounts for the increase in freezing tolerance by cooling acclimation. Cooling also induces some defense response genes, and their induction, but not that of COR15a, requires the salicylic acid signaling pathway. Analysis of the regulation of COR15a reveals that cooling induction is mediated through the same C repeat/dehydration-responsive (CRT/DRE) element as cold induction. Furthermore, we identified a role for CBF1 and CBF4 in transducing signals of moderate decreases in temperature. It appears that variants of the CBF signaling cascade are utilized in cold and cooling responses, and a moderate decrease in temperature may invoke an adaptive response to prepare plants to cope with a more drastic decrease in temperature.

  16. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Coplan, M.; Miller, E. C.; Thompson, Alan K.; Kowler, A. L.; Vest, Robert E.; Yue, A. T.; Koeth, T.; Al-Sheikhly, M.; Clark, Charles W.

    2015-03-01

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B4C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched 10B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

  17. Cyclotron-based neutron source for BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutronmore » collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.« less

  18. Quantitative non-destructive assay of PuBe neutron sources

    NASA Astrophysics Data System (ADS)

    Lakosi, László; Bagi, János; Nguyen, Cong Tam

    2006-02-01

    PuBe neutron sources were assayed, using a combination of high resolution γ-spectrometry (HRGS) and neutron correlation technique. In a previous publication [J. Bagi, C. Tam Nguyen, L. Lakosi, Nucl. Instr. and Meth. B 222 (2004) 242] a passive neutron well-counter was reported with 3He tubes embedded in a polyamide (TERRAMID) moderator (lined inside with Cd) surrounding the sources to be measured. Gross and coincidence neutron counting was performed, and the Pu content of the sources was found out from isotope analysis and by adopting specific (α, n) reaction yields of the Pu isotopes and 241Am in Be, based on supplier's information and literature data. The method was further developed and refined. Evaluation algorithm was more precisely worked out. The contribution of secondary (correlated) neutrons to the total neutron output was derived from the coincidence (doubles) count rate and taken into account in assessing the Pu content. A new evaluation of former results was performed. Assay was extended to other PuBe sources, and new results were added. In order to attain higher detection efficiency, a more efficient moderator was also applied, with and without Cd shielding around the assay chamber. Calibration seems possible using neutron measurements only (without γ-spectrometry), based on a correlation between the Pu amount and the coincidence-to-total ratio. It is expected that the method could be used for Pu accountancy and safeguards verification as well as identification and assay of seized, found, or not documented PuBe neutron sources.

  19. Development and characterization of high-resolution neutron pixel detectors based on Timepix read-out chips

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Zemlicka, J.; Jakubek, J.; Dudak, J.; Vavrik, D.; Köster, U.; Atkins, D.; Kaestner, A.; Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.

    2016-12-01

    Using a suitable isotope such as 6Li and 10B semiconductor hybrid pixel detectors can be successfully adapted for position sensitive detection of thermal and cold neutrons via conversion into energetic light ions. The adapted devices then typically provides spatial resolution at the level comparable to the pixel pitch (55 μm) and sensitive area of about few cm2. In this contribution, we describe further progress in neutron imaging performance based on the development of a large-area hybrid pixel detector providing practically continuous neutron sensitive area of 71 × 57 mm2. The measurements characterising the detector performance at the cold neutron imaging instrument ICON at PSI and high-flux imaging beam-line Neutrograph at ILL are presented. At both facilities, high-resolution high-contrast neutron radiography with the newly developed detector has been successfully applied for objects which imaging were previously difficult with hybrid pixel technology (such as various composite materials, objects of cultural heritage etc.). Further, a significant improvement in the spatial resolution of neutron radiography with hybrid semiconductor pixel detector based on the fast read-out Timepix-based detector is presented. The system is equipped with a thin planar 6LiF convertor operated effectively in the event-by-event mode enabling position sensitive detection with spatial resolution better than 10 μm.

  20. Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging

    PubMed Central

    Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.

    2017-01-01

    Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity. PMID:28102285

  1. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Markus; Vogel, Sven C.; Bourke, Mark Andrew M.

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron sourcemore » the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >10 10 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  2. Los Alamos National Laboratory Facility Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H + and H - beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  3. High efficiency proportional neutron detector with solid liner internal structures

    DOEpatents

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  4. Hadron-quark crossover and hot neutron stars at birth

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-02-01

    We construct a new isentropic equation of state (EOS) at finite temperature, "CRover," on the basis of the hadron-quark crossover at high density. By using the new EOS, we study the structure of hot neutron stars at birth with typical lepton fraction (Y_l=0.3-0.4) and typical entropy per baryon (hat {S}=1{-}2). Due to the gradual appearance of quark degrees of freedom at high density, the temperature T and the baryon density ρ at the center of hot neutron stars with hadron-quark crossover are found to be smaller than those without the crossover by a factor of two or more. Typical energy release due to the contraction of a hot neutron star to a cold neutron star with mass M=1.4 M_{⊙} is shown to be about 0.04 M_{⊙}, with a spin-up rate of about 14%.

  5. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  6. Neutron Environment Calculations for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Clowdsley, M. S.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Heinbockel, J. H.; Atwell, W.

    2001-01-01

    The long term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind, which varies over the solar cycle. The HZETRN high charge and energy transport code developed at NASA Langley Research Center can be used to evaluate the neutron environment on ISS. A time dependent model for the ambient environment in low earth orbit is used. This model includes GCR radiation moderated by the Earth's magnetic field, trapped protons, and a recently completed model of the albedo neutron environment formed through the interaction of galactic cosmic rays with the Earth's atmosphere. Using this code, the neutron environments for space shuttle missions were calculated and comparisons were made to measurements by the Johnson Space Center with onboard detectors. The models discussed herein are being developed to evaluate the natural and induced environment data for the Intelligence Synthesis Environment Project and eventual use in spacecraft optimization.

  7. Photodetection Characterization of SiPM Technologies for their Application in Scintillator based Neutron Detectors

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Durini, D.; Degenhardt, C.; van Waasen, S.

    2018-01-01

    Small-angle neutron scattering (SANS) experiments have become one of the most important techniques in the investigation of the properties of material on the atomic scale. Until 2001, nearly exclusively 3He-based detectors were used for neutron detection in these experiments, but due to the scarcity of 3He and its steeply rising price, researchers started to look for suitable alternatives. Scintillation based solid state detectors appeared as a prominent alternative. Silicon photomultipliers (SiPM), having single photon resolution, lower bias voltages compared to photomultiplier tubes (PMT), insensitivity to magnetic fields, low cost, possibility of modular design and higher readout rates, have the potential of becoming a photon detector of choice in scintillator based neutron detectors. The major concerns for utilizing the SiPM technology in this kind of applications are the increase in their noise performance and the decrease in their photon detection efficiency (PDE) due to direct exposure to neutrons. Here, a detailed comparative analysis of the PDE performance in the range between UV and NIR parts of the spectra for three different SiPM technologies, before and after irradiation with cold neutrons, has been carried out. For this investigation, one digital and two analog SiPM arrays were irradiated with 5Å wavelength cold neutrons and up to a dose of 6×1012 n/cm2 at the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.

  8. Lithium and boron based semiconductors for thermal neutron counting

    NASA Astrophysics Data System (ADS)

    Kargar, Alireza; Tower, Joshua; Hong, Huicong; Cirignano, Leonard; Higgins, William; Shah, Kanai

    2011-09-01

    Thermal neutron detectors in planar configuration were fabricated from LiInSe2 and B2Se3 crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron counting measurement. Pulse height spectra were collected from 241AmBe (neutron source on all samples), as well as 137Cs and 60Co gamma ray sources. In this study, the resistivity of all crystals is reported and the collected pulse height spectra are presented for fabricated devices. Note that, the 241AmBe neutron source was custom designed with polyethylene around the source as the neutron moderator, mainly to thermalize the fast neutrons before reaching the detectors. Both LiInSe2 and B2Se3 devices showed response to thermal neutrons of the 241AmBe source.

  9. Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    NASA Astrophysics Data System (ADS)

    Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.

    2017-08-01

    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.

  10. Possible Experiment for the Demonstration of Neutron Waves Interaction with Spatially Oscillating Potential

    NASA Astrophysics Data System (ADS)

    Miloi, Mădălina Mihaela; Goryunov, Semyon; Kulin, German

    2018-04-01

    A wide range of problems in neutron optics is well described by a theory based on application of the effective potential model. It was assumed that the concept of the effective potential in neutron optics have a limited region of validity and ceases to be correct in the case of the giant acceleration of a matter. To test this hypothesis a new Ultra Cold neutron experiment for the observation neutron interaction with potential structure oscillating in space was proposed. The report is focused on the model calculations of the topography of sample surface that oscillate in space. These calculations are necessary to find an optimal parameters and geometry of the planned experiment.

  11. Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading

    NASA Astrophysics Data System (ADS)

    Woracek, R.; Penumadu, D.; Kardjilov, N.; Hilger, A.; Strobl, M.; Wimpory, R. C.; Manke, I.; Banhart, J.

    2011-05-01

    Wavelength selective neutron radiography at a cold neutron reactor source was used to measure strain and determine (residual) stresses in a steel sample under plane stress conditions. We present a new technique that uses an energy-resolved neutron imaging system based on a double crystal monochromator and is equipped with a specially developed (in situ) biaxial load frame to perform Bragg edge based transmission imaging. The neutron imaging technique provides a viewing area of 7 cm by 7 cm with a spatial resolution on the order of ˜ 100 μm. The stress-induced shifts of the Bragg edge corresponding to the (110) lattice plane were resolved spatially for a ferritic steel alloy A36 (ASTM international) sample. Furthermore it is demonstrated that results agree with comparative data obtained using neutron diffraction and resistance based strain-gauge rosettes.

  12. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavelle, C. M., E-mail: christopher.lavelle@jhuapl.edu; Miller, E. C.; Coplan, M.

    2015-03-02

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portionmore » of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.« less

  13. Applications of a Fast Neutron Detector System to Verification of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Mayo, Douglas R.; Byrd, Roger C.; Ensslin, Norbert; Krick, Merlyn S.; Mercer, David J.; Miller, Michael C.; Prettyman, Thomas H.; Russo, Phyllis A.

    1998-04-01

    An array of boron-loaded plastic optically coupled to bismuth germanate scintillators has been developed to detect neutrons for measurement of special nuclear materials. The phoswiched detection system has the advantage of a high neutron detection efficiency and short die-away time. This is achieved by mixing the moderator (plastic) and the detector (^10B) at the molecular level. Simulations indicate that the neutron capture probabilities equal or exceed those of the current thermal neutron multiplicity techniques which have the moderator (polyethylene) and detectors (^3He gas proportional tubes) macroscopically separate. Experiments have been performed to characterize the response of these detectors and validate computer simulations. The fast neutron detection system may be applied to the quantitative assay of plutonium in high (α,n) backgrounds, with emphasis on safeguards and enviromental scenarios. Additional applications of the insturment, in a non-quantative mode, has been tested for possible verification activities involving dismantlement of nuclear weapons. A description of the detector system, simulations and preliminary data will be presented.

  14. Chamber for mechanical testing in H2 with observation by neutron scattering

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew; Bradley, Peter; Slifka, Andrew; Drexler, Elizabeth

    2017-06-01

    A gas-pressure chamber has been designed, constructed, and tested at a moderate pressure (3.4 MPa, 500 psi) and has the capability of mechanical loading of steel specimens for neutron scattering measurements. The chamber will allow a variety of in situ neutron scattering measurements: in particular, diffraction, quasielastic scattering, inelastic scattering, and imaging. The chamber is compatible with load frames available at the user facilities at the NIST Center for Neutron Research and Oak Ridge National Laboratory Spallation Neutron Source. A demonstration of neutron Bragg edge imaging using the chamber is presented.

  15. Assay of the Martian Regolith with Neutrons

    NASA Technical Reports Server (NTRS)

    Drake, Darrell M.; Reedy, R.; Jakowsky, B.; Clark, B.; Squyres, S.

    1998-01-01

    Different aspects of assaying Martian regolith using neutrons have been investigated. The epithermal portion of moderated neutrons spectra is dramatically effected by the presence of hydrogen (usually in the form of water). A simple analytic formula has been derived to describe the amplitude of this portion of the neutron spectrum as a function of water concentration. Several demonstration experiments have been performed and modeled with a Monte Carlo code. Results of these experiments generally agreed with the calculations to within 20%. In addition to He-3 detectors, lithium-glass scintillators and U-238 fission ion chambers were investigated to determine their applicability to space experiments.

  16. A new method of creating high intensity neutron source

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Yoshimi, A.; Yoshimura, M.

    We propose a new scheme of producing an intense neutron beam whose yields may exceed those of the existing facilities by a few to several orders of magnitude in the sub-eV region. This scheme employs a MeV gamma beam extracted from circulating quantum ions, which has been recently proposed. The gamma beam is directed to a deuteron target and the photo-disintegration process generates a neutron beam. The calculated neutron energy spectrum is nearly flat down to the neV range, and thus there exists a possibility to utilize a good quality of neutrons especially in sub-eV energy region without using a moderator.

  17. Slow neutron total cross-section, transmission and reflection calculation for poly- and mono-NaCl and PbF2 crystals

    NASA Astrophysics Data System (ADS)

    Mansy, Muhammad S.; Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.

    2016-10-01

    A detailed study about the calculation of total neutron cross-section, transmission and reflection from crystalline materials was performed. The developed computer code is approved to be sufficient for the required calculations, also an excellent agreement has been shown when comparing the code results with the other calculated and measured values. The optimal monochromator and filter parameters were discussed in terms of crystal orientation, mosaic spread, and thickness. Calculations show that 30 cm thick of PbF2 poly-crystal is an excellent cold neutron filter producing neutron wavelengths longer than 0.66 nm needed for the investigation of magnetic structure experiments. While mono-crystal filter PbF2 cut along its (1 1 1), having mosaic spread (η = 0.5°) and thickness 10 cm can only transmit thermal neutrons of the desired wavelengths and suppress epithermal and γ-rays forming unwanted background, when it is cooled to liquid nitrogen temperature. NaCl (2 0 0) and PbF2 (1 1 1) monochromator crystals having mosaic spread (η = 0.5°) and thickness 10 mm shows high neutron reflectivity for neutron wavelengths (λ = 0.114 nm and λ = 0.43 nm) when they used as a thermal and cold neutron monochromators respectively with very low contamination from higher order reflections.

  18. Liquid Li based neutron source for BNCT and science application.

    PubMed

    Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S

    2015-12-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Imaging of dynamic magnetic fields with spin-polarized neutron beams

    DOE PAGES

    Tremsin, A. S.; Kardjilov, N.; Strobl, M.; ...

    2015-04-22

    Precession of neutron spin in a magnetic field can be used for mapping of a magnetic field distribution, as demonstrated previously for static magnetic fields at neutron beamline facilities. The fringing in the observed neutron images depends on both the magnetic field strength and the neutron energy. In this paper we demonstrate the feasibility of imaging periodic dynamic magnetic fields using a spin-polarized cold neutron beam. Our position-sensitive neutron counting detector, providing with high precision both the arrival time and position for each detected neutron, enables simultaneous imaging of multiple phases of a periodic dynamic process with microsecond timing resolution.more » The magnetic fields produced by 5- and 15-loop solenoid coils of 1 cm diameter, are imaged in our experiments with ~100 μm resolution for both dc and 3 kHz ac currents. Our measurements agree well with theoretical predictions of fringe patterns formed by neutron spin precession. We also discuss the wavelength dependence and magnetic field quantification options using a pulsed neutron beamline. Furthermore, the ability to remotely map dynamic magnetic fields combined with the unique capability of neutrons to penetrate various materials (e.g., metals), enables studies of fast periodically changing magnetic processes, such as formation of magnetic domains within metals due to the presence of ac magnetic fields.« less

  20. Imaging of dynamic magnetic fields with spin-polarized neutron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, A. S.; Kardjilov, N.; Strobl, M.

    Precession of neutron spin in a magnetic field can be used for mapping of a magnetic field distribution, as demonstrated previously for static magnetic fields at neutron beamline facilities. The fringing in the observed neutron images depends on both the magnetic field strength and the neutron energy. In this paper we demonstrate the feasibility of imaging periodic dynamic magnetic fields using a spin-polarized cold neutron beam. Our position-sensitive neutron counting detector, providing with high precision both the arrival time and position for each detected neutron, enables simultaneous imaging of multiple phases of a periodic dynamic process with microsecond timing resolution.more » The magnetic fields produced by 5- and 15-loop solenoid coils of 1 cm diameter, are imaged in our experiments with ~100 μm resolution for both dc and 3 kHz ac currents. Our measurements agree well with theoretical predictions of fringe patterns formed by neutron spin precession. We also discuss the wavelength dependence and magnetic field quantification options using a pulsed neutron beamline. Furthermore, the ability to remotely map dynamic magnetic fields combined with the unique capability of neutrons to penetrate various materials (e.g., metals), enables studies of fast periodically changing magnetic processes, such as formation of magnetic domains within metals due to the presence of ac magnetic fields.« less

  1. Final design of the Energy-Resolved Neutron Imaging System “RADEN” at J-PARC

    NASA Astrophysics Data System (ADS)

    Shinohara, T.; Kai, T.; Oikawa, K.; Segawa, M.; Harada, M.; Nakatani, T.; Ooi, M.; Aizawa, K.; Sato, H.; Kamiyama, T.; Yokota, H.; Sera, T.; Mochiki, K.; Kiyanagi, Y.

    2016-09-01

    A new pulsed-neutron instrument, named the Energy-Resolved Neutron Imaging System “RADEN”, has been constructed at the beam line of BL22 in the Materials and Life Science Experimental Facility (MLF) of J-PARC. The primary purpose of this instrument is to perform energy-resolved neutron imaging experiments through the effective utilization of the pulsed nature of the neutron beam, making this the world's first instrument dedicated to pulsed neutron imaging experiments. RADEN was designed to cover a broad energy range: from cold neutrons with energy down to 1.05 meV (or wavelength up to 8.8 Å) with a good wavelength resolution of 0.20% to high-energy neutrons with energy of several tens keV (or wavelength of 10-3 Å). In addition, this instrument is intended to perform state-of-the-art neutron radiography and tomography experiments in Japan. Hence, a maximum beam size of 300 mm square and a high L/D value of up to 7500 are provided.

  2. A new class of g-modes in neutron stars

    NASA Technical Reports Server (NTRS)

    Reisenegger, Andreas; Goldreich, Peter

    1992-01-01

    Because a neutron star is born hot, its internal composition is close to chemical equilibrium. In the fluid core, this implies that the ratio of the number densities of charged particles (protons and electrons) to neutrons is an increasing function of the mass density. This composition gradient stably stratifies the matter giving rise to a Brunt-Vaisala frequency N of about 500/s. Consequently, a neutron star core provides a cavity that supports gravity modes (g-modes). These g-modes are distinct from those previously identified with the thermal stratification of the surface layers and the chemical stratification of the crust. We compute the lowest-order, quadrupolar, g-modes for cold, Newtonian, neutron star models with M/solar M = 0.581 and M/solar M = 1.405, and show that the crustal and core g-modes have similar periods. We also discuss damping mechanisms and estimate damping rates for the core g-modes. Particular attention is paid to damping due to the emission of gravitational radiation.

  3. Anisotropic neutron stars in R2 gravity

    NASA Astrophysics Data System (ADS)

    Folomeev, Vladimir

    2018-06-01

    We consider static neutron stars within the framework of R2 gravity. The neutron fluid is described by three different types of realistic equations of state (soft, moderately stiff, and stiff). Using the observational data on the neutron star mass-radius relation, it is demonstrated that the characteristics of the objects supported by the isotropic fluid agree with the observations only if one uses the soft equation of state. We show that the inclusion of the fluid anisotropy enables one also to employ more stiff equations of state to model configurations that will satisfy the observational constraints sufficiently. Also, using the standard thin accretion disk model, we demonstrate potentially observable differences, which allow us to distinguish the neutron stars constructed within the modified gravity framework from those described in Einstein's general relativity.

  4. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    NASA Astrophysics Data System (ADS)

    Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao

    2017-09-01

    By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  5. Task-dependent cold stress during expeditions in Antarctic environments

    PubMed Central

    Morris, Drew M.; Pilcher, June J.; Powell, Robert B.

    2017-01-01

    ABSTRACT This study seeks to understand the degree of body cooling, cold perception and physical discomfort during Antarctic tour excursions. Eight experienced expedition leaders across three Antarctic cruise voyages were monitored during occupational tasks: kayaking, snorkelling and zodiac outings. Subjective cold perception and discomfort were recorded using a thermal comfort assessment and skin temperature was recorded using a portable data logger. Indoor cabin temperature and outdoor temperature with wind velocity were used as measures of environmental stress. Physical activity level and clothing insulation were estimated using previous literature. Tour leaders experienced a 6°C (2°C wind chill) environment for an average of 6 hours each day. Leaders involved in kayaking reported feeling colder and more uncomfortable than other leaders, but zodiac leaders showed greater skin temperature cooling. Occupational experience did not predict body cooling or cold stress perception. These findings indicate that occupational cold stress varies by activity and measurement methodology. The current study effectively used objective and subjective measures of cold-stress to identify factors which can contribute to risk in the Antarctic tourism industry. Results suggest that the type of activity may moderate risk of hypothermia, but not discomfort, potentially putting individuals at risk for cognitive related mistakes and cold injuries. PMID:28990466

  6. Task-dependent cold stress during expeditions in Antarctic environments.

    PubMed

    Morris, Drew M; Pilcher, June J; Powell, Robert B

    2017-01-01

    This study seeks to understand the degree of body cooling, cold perception and physical discomfort during Antarctic tour excursions. Eight experienced expedition leaders across three Antarctic cruise voyages were monitored during occupational tasks: kayaking, snorkelling and zodiac outings. Subjective cold perception and discomfort were recorded using a thermal comfort assessment and skin temperature was recorded using a portable data logger. Indoor cabin temperature and outdoor temperature with wind velocity were used as measures of environmental stress. Physical activity level and clothing insulation were estimated using previous literature. Tour leaders experienced a 6°C (2°C wind chill) environment for an average of 6 hours each day. Leaders involved in kayaking reported feeling colder and more uncomfortable than other leaders, but zodiac leaders showed greater skin temperature cooling. Occupational experience did not predict body cooling or cold stress perception. These findings indicate that occupational cold stress varies by activity and measurement methodology. The current study effectively used objective and subjective measures of cold-stress to identify factors which can contribute to risk in the Antarctic tourism industry. Results suggest that the type of activity may moderate risk of hypothermia, but not discomfort, potentially putting individuals at risk for cognitive related mistakes and cold injuries.

  7. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.

    PubMed

    Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C

    2017-04-01

    Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.

  8. Forming images with thermal neutrons

    NASA Astrophysics Data System (ADS)

    Vanier, Peter E.; Forman, Leon

    2003-01-01

    Thermal neutrons passing through air have scattering lengths of about 20 meters. At further distances, the majority of neutrons emanating from a moderated source will scatter multiple times in the air before being detected, and will not retain information about the location of the source, except that their density will fall off somewhat faster than 1/r2. However, there remains a significant fraction of the neutrons that will travel 20 meters or more without scattering and can be used to create an image of the source. A few years ago, a proof-of-principle "camera" was demonstrated that could produce images of a scene containing sources of thermalized neutrons and could locate a source comparable in strength with an improvised nuclear device at ranges over 60 meters. The instrument makes use of a coded aperture with a uniformly redundant array of openings, analogous to those used in x-ray and gamma cameras. The detector is a position-sensitive He-3 proportional chamber, originally used for neutron diffraction. A neutron camera has many features in common with those designed for non-focusable photons, as well as some important differences. Potential applications include detecting nuclear smuggling, locating non-metallic land mines, assaying nuclear waste, and surveying for health physics purposes.

  9. NEUTRON REACTOR HAVING A Xe$sup 135$ SHIELD

    DOEpatents

    Stanton, H.E.

    1957-10-29

    Shielding for reactors of the type in which the fuel is a chain reacting liquid composition comprised essentially of a slurry of fissionable and fertile material suspended in a liquid moderator is discussed. The neutron reflector comprises a tank containing heavy water surrounding the reactor, a shield tank surrounding the reflector, a gamma ray shield surrounding said shield tank, and a means for conveying gaseous fission products, particularly Xe/sup 135/, from the reactor chamber to the shield tank, thereby serving as a neutron shield by capturing the thermalized neutrons that leak outwardly from the shield tank.

  10. Preventing cold-related morbidity and mortality in a changing climate

    PubMed Central

    Conlon, Kathryn C; Rajkovich, Nicholas B; White-Newsome, Jalonne L; Larsen, Larissa; Neill, Marie S O

    2011-01-01

    Winter weather patterns are anticipated to become more variable with increasing average global temperatures. Research shows that excess morbidity and mortality occurs during cold weather periods. We critically reviewed evidence relating temperature variability, health outcomes, and adaptation strategies to cold weather. Health outcomes included cardiovascular-, respiratory-, cerebrovascular-, and all-cause morbidity and mortality. Individual and contextual risk factors were assessed to highlight associations between individual- and neighborhood- level characteristics that contribute to a person’s vulnerability to variability in cold weather events. Epidemiologic studies indicate that the populations most vulnerable to variations in cold winter weather are the elderly, rural and, generally, populations living in moderate winter climates. Fortunately, cold-related morbidity and mortality are preventable and strategies exist for protecting populations from these adverse health outcomes. We present a range of adaptation strategies that can be implemented at the individual, building, and neighborhood level to protect vulnerable populations from cold-related morbidity and mortality. The existing research justifies the need for increased outreach to individuals and communities for education on protective adaptations in cold weather. We propose that future climate change adaptation research couple building energy and thermal comfort models with epidemiological data to evaluate and quantify the impacts of adaptation strategies. PMID:21592693

  11. Sensitivity studies of beam directionality, beam size, and neutron spectrum for a fission converter-based epithermal neutron beam for boron neutron capture therapy.

    PubMed

    Sakamoto, S; Kiger, W S; Harling, O K

    1999-09-01

    Sensitivity studies of epithermal neutron beam performance in boron neutron capture therapy are presented for realistic neutron beams with varying filter/moderator and collimator/delimiter designs to examine the relative importance of neutron beam spectrum, directionality, and size. Figures of merit for in-air and in-phantom beam performance are calculated via the Monte Carlo technique for different well-optimized designs of a fission converter-based epithermal neutron beam with head phantoms as the irradiation target. It is shown that increasing J/phi, a measure of beam directionality, does not always lead to corresponding monotonic improvements in beam performance. Due to the relatively low significance, for most configurations, of its effect on in-phantom performance and the large intensity losses required to produce beams with very high J/phi, beam directionality should not be considered an important figure of merit in epithermal neutron beam design except in terms of its consequences on patient positioning and collateral dose. Hardening the epithermal beam spectrum, while maintaining the specific fast neutron dose well below the inherent hydrogen capture dose, improves beam penetration and advantage depth and, as a desirable by-product, significantly increases beam intensity. Beam figures of merit are shown to be strongly dependent on beam size relative to target size. Beam designs with J/phi approximately 0.65-0.7, specific fast neutron doses of 2-2.6x10(-13) Gy cm2/n and beam sizes equal to or larger than the size of the head target produced the deepest useful penetration, highest therapeutic ratios, and highest intensities.

  12. Does acetaminophen/hydrocodone affect cold pulpal testing in patients with symptomatic irreversible pulpitis? A prospective, randomized, double-blind, placebo-controlled study.

    PubMed

    Fowler, Sara; Fullmer, Spencer; Drum, Melissa; Reader, Al

    2014-12-01

    The purpose of this prospective randomized, double-blind, placebo-controlled study was to determine the effects of a combination dose of 1000 mg acetaminophen/10 mg hydrocodone on cold pulpal testing in patients experiencing symptomatic irreversible pulpitis. One hundred emergency patients in moderate to severe pain diagnosed with symptomatic irreversible pulpitis of a mandibular posterior tooth randomly received, in a double-blind manner, identical capsules of either a combination of 1000 mg acetaminophen/10 hydrocodone or placebo. Cold testing with Endo-Ice (1,1,1,2 tetrafluoroethane; Hygenic Corp, Akron, OH) was performed at baseline and every 10 minutes for 60 minutes. Pain to cold testing was recorded by the patient using a Heft-Parker visual analog scale. Patients' reaction to the cold application was also rated. Cold testing at baseline and at 10 minutes resulted in severe pain for both the acetaminophen/hydrocodone and placebo groups. Although pain ratings decreased from 20-60 minutes, the ratings still resulted in moderate pain. Patient reaction to cold testing showed that 56%-62% had a severe reaction. Although the reactions decreased in severity over the 60 minutes, 20%-34% still had severe reactions at 60 minutes. Regarding pain and patients' reactions to cold testing, there were no significant differences between the combination acetaminophen/hydrocodone and placebo groups at any time period. A combination dose of 1000 mg of acetaminophen/10 mg of hydrocodone did not statistically affect cold pulpal testing in patients presenting with symptomatic irreversible pulpitis. Patients experienced moderate to severe pain and reactions to cold testing. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Investigation of the MTC noise estimation with a coupled neutronic/thermal-hydraulic dedicated model - 'Closing the loop'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demaziere, C.; Larsson, V.

    2012-07-01

    This paper investigates the reliability of different noise estimators aimed at determining the Moderator Temperature Coefficient (MTC) of reactivity in Pressurized Water Reactors. By monitoring the inherent fluctuations in the neutron flux and moderator temperature, an on-line monitoring of the MTC without perturbing reactor operation is possible. In order to get an accurate estimation of the MTC by noise analysis, the point-kinetic component of the neutron noise and the core-averaged moderator temperature noise have to be used. Because of the scarcity of the in-core instrumentation, the determination of these quantities is difficult, and several possibilities thus exist for estimating themore » MTC by noise analysis. Furthermore, the effect of feedback has to be negligible at the frequency chosen for estimating the MTC in order to get a proper determination of the MTC. By using an integrated neutronic/thermal- hydraulic model specifically developed for estimating the three-dimensional distributions of the fluctuations in neutron flux, moderator properties, and fuel temperature, different approaches for estimating the MTC by noise analysis can be tested individually. It is demonstrated that a reliable MTC estimation can only be provided if the core is equipped with a sufficient number of both neutron detectors and temperature sensors, i.e. if the core contain in-core detectors monitoring both the axial and radial distributions of the fluctuations in neutron flux and moderator temperature. It is further proven that the effect of feedback is negligible for frequencies higher than 0.1 Hz, and thus the MTC noise estimations have to be performed at higher frequencies. (authors)« less

  14. Neutron spectrometry and dosimetry study at two research nuclear reactors using Bonner sphere spectrometer (BSS), rotational spectrometer (ROSPEC) and cylindrical nested neutron spectrometer (NNS).

    PubMed

    Atanackovic, J; Matysiak, W; Hakmana Witharana, S S; Aslam, I; Dubeau, J; Waker, A J

    2013-01-01

    Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h⁻¹, while at MNR, these values were between 0.07 and 2.8 mSv h⁻¹ inside the beam port and <0.2 mSv h⁻¹ between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix.

  15. Sex differences in interpersonal problems: does sexual orientation moderate?

    PubMed

    Lee, Debbiesiu L; Harkless, Lynn E; Sheridan, Daniel J; Winakur, Emily; Fowers, Blaine J

    2013-01-01

    Sexual orientation was examined as a moderator in the relation between biological sex and interpersonal problems. Participants were 60 lesbians, 45 heterosexual women, 37 gay men, and 39 heterosexual men, who completed the Inventory of Interpersonal Problems-Circumplex. Sexual orientation was found to moderate one of the eight interpersonal problems under study. Heterosexual women scored significantly higher than lesbian women in Non-assertive. Although hypothesized, gay men did not differ from heterosexual men along the Dominant-Cold quadrant. Implications of these results are discussed.

  16. IMPROVEMENTS IN THE THERMAL NEUTRON CALIBRATION UNIT, TNF2, AT LNMRI/IRD.

    PubMed

    Astuto, A; Fernandes, S S; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2018-02-21

    The standard thermal neutron flux unit, TNF2, in the Brazilian National Ionizing Radiation Metrology Laboratory was rebuilt. Fluence is still achieved by moderating of four 241Am-Be sources with 0.6 TBq each. The facility was again simulated and redesigned with graphite core and paraffin added graphite blocks surrounding it. Simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The resulting neutron fluence quality in terms of intensity, spectrum and cadmium ratio was evaluated. After this step, the system was assembled based on the results obtained from the simulations and measurements were performed with equipment existing in LNMRI/IRD and by simulated equipment. This work focuses on the characterization of a central chamber point and external points around the TNF2 in terms of neutron spectrum, fluence and ambient dose equivalent, H*(10). This system was validated with spectra measurements, fluence and H*(10) to ensure traceability.

  17. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  18. Simulating the moderating effect of a lake on downwind temperatures

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Chen, E.; Sutherland, R. A.; Bartholic, J. F.

    1979-01-01

    A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.

  19. Preliminary scattering kernels for ethane and triphenylmethane at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Cantargi, F.; Granada, J. R.; Damián, J. I. Márquez

    2017-09-01

    Two potential cold moderator materials were studied: ethane and triphenylmethane. The first one, ethane (C2H6), is an organic compound which is very interesting from the neutronic point of view, in some respects better than liquid methane to produce subthermal neutrons, not only because it remains in liquid phase through a wider temperature range (Tf = 90.4 K, Tb = 184.6 K), but also because of its high protonic density together with its frequency spectrum with a low rotational energy band. Another material, Triphenylmethane is an hydrocarbon with formula C19H16 which has already been proposed as a good candidate for a cold moderator. Following one of the main research topics of the Neutron Physics Department of Centro Atómico Bariloche, we present here two ways to estimate the frequency spectrum which is needed to feed the NJOY nuclear data processing system in order to generate the scattering law of each desired material. For ethane, computer simulations of molecular dynamics were done, while for triphenylmethane existing experimental and calculated data were used to produce a new scattering kernel. With these models, cross section libraries were generated, and applied to neutron spectra calculation.

  20. Perspective Research Progress in Cold Responses of Capsella bursa-pastoris

    PubMed Central

    Noman, Ali; Kanwal, Hina; Khalid, Noreen; Sanaullah, Tayyaba; Tufail, Aasma; Masood, Atifa; Sabir, Sabeeh-ur-Rasool; Aqeel, Muhammad; He, Shuilin

    2017-01-01

    Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding. PMID:28855910

  1. Monte Carlo simulation of thermal neutron flux of americium-beryllium source used in neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Didi, Abdessamad; Dadouch, Ahmed; Bencheikh, Mohamed; Jai, Otman

    2017-09-01

    The neutron activation analysis is a method of exclusively elemental analysis. Its implementation of irradiates the sample which can be analyzed by a high neutron flux, this method is widely used in developed countries with nuclear reactors or accelerators of particle. The purpose of this study is to develop a prototype to increase the neutron flux such as americium-beryllium and have the opportunity to produce radioisotopes. Americium-beryllium is a mobile source of neutron activity of 20 curie, and gives a thermal neutron flux of (1.8 ± 0.0007) × 106 n/cm2 s when using water as moderator, when using the paraffin, the thermal neutron flux increases to (2.2 ± 0.0008) × 106 n/cm2 s, in the case of adding two solid beryllium barriers, the distance between them is 24 cm, parallel and symmetrical about the source, the thermal flux is increased to (2.5 ± 0.0008) × 106 n/cm2 s and in the case of multi-source (6 sources), with-out barriers, increases to (1.17 ± 0.0008) × 107 n/cm2 s with a rate of increase equal to 4.3 and with the both barriers flux increased to (1.37 ± 0.0008) × 107 n/cm2 s.

  2. The sensitivity of human mesenchymal stem cells to vibration and cold storage conditions representative of cold transportation

    PubMed Central

    Nikolaev, N. I.; Liu, Y.; Hussein, H.; Williams, D. J.

    2012-01-01

    In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2–8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s−2 and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s−2, peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s−2, peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage. PMID:22628214

  3. Measurement of the Neutron Beta Decay Lifetime using Magnetically Trapped Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Adamek, Evan Robert

    The neutron lifetime is an important parameter in the Standard Model of particle physics, with influences on the electroweak interaction and on Big Bang nucleosynthesis. Measurements of this quantity in cold beam experiments and in experiments using ultracold neutrons (UCN) disagree; this discrepancy may indicate that these measurements possess unaccounted-for systematic errors. The UCNtau experiment at Los Alamos Neutron Science Center (LANSCe) utilizes an asymmetrical magneto-gravitational storage volume with an in-situ vanadium detector. This setup is designed to either avoid or control many of the weaknesses that reduce systematic precision in other UCN lifetime experiments. Controlling for the many measurable errors requires detailed calculation and simulation, aided, for example, by the Geant4 Monte Carlo particle transport toolkit, which has been used to create a high fidelity model of the UCNtau experiment for modeling UCN transport, storage, and detection. Through the course of running the experiment, improvements in knowledge of particle measurement have led to improvements to the transport and to the detectors used in various parts of the experiment. With the experimental setup optimized to account for the subtleties of the measurement, the 2014-2015 beam period at LANSCe generated 85 measurement runs from which we could calculate the storage lifetime. Careful analysis of the effects of background on the vanadium detector assembly allowed for elimination of undesired signal and allowed for the extraction of a preliminary value for the neutron lifetime and the determination of areas to improve for the following run cycle.

  4. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  5. SPECTRAL CORRECTION FACTORS FOR CONVENTIONAL NEUTRON DOSE METERS USED IN HIGH-ENERGY NEUTRON ENVIRONMENTS-IMPROVED AND EXTENDED RESULTS BASED ON A COMPLETE SURVEY OF ALL NEUTRON SPECTRA IN IAEA-TRS-403.

    PubMed

    Oparaji, U; Tsai, Y H; Liu, Y C; Lee, K W; Patelli, E; Sheu, R J

    2017-06-01

    This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (En > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252Cf, 241Am-Be and 239Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6"-9") are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    NASA Astrophysics Data System (ADS)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2017-07-01

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement. These 3 mm × 3 mm detectors were fabricated from 50 μm thick freestanding and flexible 10B enriched h-BN (h-10BN) films, grown by metal organic chemical vapor deposition followed by mechanical separation from sapphire substrates. Mobility-lifetime results suggested that holes are the majority carriers in unintentionally doped h-BN. The detectors were tested under thermal neutron irradiation from californium-252 (252Cf) moderated by a high density polyethylene moderator. A thermal neutron detection efficiency of ˜53% was achieved at a bias voltage of 200 V. Conforming to traditional solid-state detectors, the realization of h-BN epilayers with enhanced electrical transport properties is the key to enable scaling up the device sizes. More specifically, the present results revealed that achieving an electrical resistivity of greater than 1014 Ωṡcm and a leakage current density of below 3 × 10-10 A/cm2 is needed to fabricate large area h-BN detectors and provided guidance for achieving high sensitivity solid state neutron detectors based on h-BN.

  7. Characterization of boron coated vitreous carbon foam for neutron detection

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Deacon, Ryan M.; Hussey, Daniel S.; Coplan, Michael; Clark, Charles W.

    2013-11-01

    Reticulated vitreous carbon (RVC) foams coated with 3-11 μm thick layers of boron carbide (B4C) are experimentally characterized for use as an active material for neutron detection. The potential advantage of this material over thin films is that it can be fabricated in any shape and its porous structure may enhance the emission surface area for ionizing charged particles following thermal neutron capture. A coated foam is also advantageous because the neutron-absorbing material is only on the surface, which is more efficient for α particle emission on a per captured neutron basis. Measurements of the B4C layer thickness of an RVC coated foam, and determination of its elemental composition, are performed using scanning electron microscopy. Neutron transmission measurements using neutron radiography are presented and α particle emission from the coated foam in response to a moderated 252Cf thermal neutron source is demonstrated.

  8. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simeoni, G. G., E-mail: ggsimeoni@outlook.com; Physics Department E13, Technical University of Munich, D-85748 Garching; Valicu, R. G.

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a uniquemore » device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.« less

  9. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    NASA Astrophysics Data System (ADS)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  10. Neutron Imaging Developments at LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  11. Neutron capture on short-lived nuclei via the surrogate (d,pγ) reaction

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.; Ratkiewicz, Andrew

    2018-05-01

    Rapid r-process nucleosynthesis is responsible for the creation of about half of the elements heavier than iron. Neutron capture on shortlived nuclei in cold processes or during freeze out from hot processes can have a significant impact on the final observed r-process abundances. We are validating the (d,pγ) reaction as a surrogate for neutron capture with measurements on 95Mo targets and a focus on discrete transitions. The experimental results have been analyzed within the Hauser-Feshbach approach with non-elastic breakup of the deuteron providing a neutron to be captured. Preliminary results support the (d,pγ) reaction as a valid surrogate for neutron capture. We are poised to measure the (d,pγ) reaction in inverse kinematics with unstable beams following the development of the experimental techniques.

  12. Realization of highly efficient hexagonal boron nitride neutron detectors

    DOE PAGES

    Maity, A.; Doan, T. C.; Li, J.; ...

    2016-08-16

    Here, we report the achievement of highly efficient 10B enriched hexagonal boron nitride (h- 10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h- 10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical “photoconductor-type” detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>10 13 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h- BNmore » was observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h- BN. Exposure to thermal neutrons from a californium-252 ( 252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h- 10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.« less

  13. Comparison of bulk and pitcher-catcher targets for laser-driven neutron production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willingale, L.; Maksimchuk, A.; Joglekar, A. S.

    2011-08-15

    Laser-driven d(d, n)-{sup 3}He beam-target fusion neutron production from bulk deuterated plastic (CD) targets is compared with a pitcher-catcher target scheme using an identical laser and detector arrangement. For laser intensities in the range of (1-3) x 10{sup 19} W cm{sup -2}, it was found that the bulk targets produced a high yield (5 x 10{sup 4} neutrons per steradian) beamed preferentially in the laser propagation direction. Numerical modeling shows the importance of considering the temperature adjusted stopping powers to correctly model the neutron production. The bulk CD targets have a high background target temperature leading to a reduced stoppingmore » power for the deuterons, which increases the probability of generating neutrons by fusion. Neutron production from the pitcher-catcher targets was not as efficient since it does not benefit from the reduced stopping power in the cold catcher target. Also, the inhibition of the deuteron acceleration by a proton rich contamination layer significantly reduces the pitcher-catcher neutron production.« less

  14. The effects of coping style on virtual reality enhanced videogame distraction in children undergoing cold pressor pain.

    PubMed

    Sil, Soumitri; Dahlquist, Lynnda M; Thompson, Caitlin; Hahn, Amy; Herbert, Linda; Wohlheiter, Karen; Horn, Susan

    2014-02-01

    This study sought to evaluate the effectiveness of virtual reality (VR) enhanced interactive videogame distraction for children undergoing experimentally induced cold pressor pain and examined the role of avoidant and approach coping style as a moderator of VR distraction effectiveness. Sixty-two children (6-13 years old) underwent a baseline cold pressor trial followed by two cold pressor trials in which interactive videogame distraction was delivered both with and without a VR helmet in counterbalanced order. As predicted, children demonstrated significant improvement in pain tolerance during both interactive videogame distraction conditions. However, a differential response to videogame distraction with or without the enhancement of VR technology was not found. Children's coping style did not moderate their response to distraction. Rather, interactive videogame distraction with and without VR technology was equally effective for children who utilized avoidant or approach coping styles.

  15. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE PAGES

    Drager, Aryeh J.; van den Heever, Susan C.

    2017-05-09

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  16. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drager, Aryeh J.; van den Heever, Susan C.

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  17. METHOD OF PRODUCING ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    DOEpatents

    Bell, P.R.; Simon, A.; Mackin, R.J. Jr.

    1961-01-24

    A method is given for producing an energetic plasma for neutron production. An energetic plasma is produced in a small magnetically confined subvolume of the device by providing a selected current of energetic molecular ions at least greater than that required for producing a current of atomic ions sufficient to achieve "burnout" of neutral particles in the subvolume. The atomic ions are provided by dissociation of the molecular ions by an energetic arc discharge within the subvolume. After burnout, the arc discharge is terminated, the magnetic fields increased, and cold fuel feed is substituted for the molecular ions. After the subvolume is filled with an energetic plasma, the size of the magnetically confined subvolume is gradually increased until the entire device is filled with an energetic neutron producing plasma. The reactions which take place in the device to produce neutrons will generate a certain amount of heat energy which may be converted by the use of a conventional heat cycle to produce electrical energy.

  18. Geant4 simulations of NIST beam neutron lifetime experiment

    NASA Astrophysics Data System (ADS)

    Valete, Daniel; Crawford, Bret; BL2 Collaboration Collaboration

    2017-09-01

    A free neutron is unstable and its decay is described by the Standard Model as the transformation of a down quark into an up quark through the weak interaction. Precise measurements of the neutron lifetime test the validity of the theory of the weak interaction and provide useful information for the predictions of the theory of Big Bang nucleosynthesis of the primordial helium abundance in the universe and the number of different types of light neutrinos Nν. The predominant experimental methods for determination of the neutron lifetime are commonly called `beam' and `bottle' methods, and the most recent uses of each method do not agree with each other within their stated uncertainties. An improved experiment of the beam technique, which uses magnetic and electric fields to trap and guide the decay protons of a beam of cold neutrons to a detector, is in progress at the National Institute of Standards and Technology, Gaithersburg, MD with a precision goal of 0.1. I acknowledge the support of the Cross-Diciplinary Institute at Gettysburg College.

  19. Theoretical and experimental physical methods of neutron-capture therapy

    NASA Astrophysics Data System (ADS)

    Borisov, G. I.

    2011-09-01

    This review is based to a substantial degree on our priority developments and research at the IR-8 reactor of the Russian Research Centre Kurchatov Institute. New theoretical and experimental methods of neutron-capture therapy are developed and applied in practice; these are: A general analytical and semi-empiric theory of neutron-capture therapy (NCT) based on classical neutron physics and its main sections (elementary theories of moderation, diffuse, reflection, and absorption of neutrons) rather than on methods of mathematical simulation. The theory is, first of all, intended for practical application by physicists, engineers, biologists, and physicians. This theory can be mastered by anyone with a higher education of almost any kind and minimal experience in operating a personal computer.

  20. THERMAL NEUTRONIC REACTOR

    DOEpatents

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  1. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    PubMed Central

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Lösche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2011-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å−1. A detailed description of this flexible instrument and its performance characteristics in various operating modes are given. PMID:21892232

  2. STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT

    DOEpatents

    Untermyer, S.

    1960-05-10

    The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.

  3. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    NASA Astrophysics Data System (ADS)

    Nowak, G.; Störmer, M.; Becker, H.-W.; Horstmann, C.; Kampmann, R.; Höche, D.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Lorenz, U.; Hall-Wilton, R.; Müller, M.; Schreyer, A.

    2015-01-01

    Due to the present shortage of 3He and the associated tremendous increase of its price, the supply of large neutron detection systems with 3He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid 10B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area 10B4C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The 10B4C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical 10B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black 3He-monitor. Thus, these converter coatings contribute to the development of 3He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative 3He-free converter elements available for large area neutron detection systems.

  4. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

    PubMed

    Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D

    2010-10-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  5. Determining the wavelength spectrum of neutrons on the NG6 beam line at NCNR

    NASA Astrophysics Data System (ADS)

    Ivanov, Juliet

    2016-09-01

    Historically, in-beam experiments and bottle experiments have been performed to determine the lifetime of a free neutron. However, these two different experimental techniques have provided conflicting results. It is crucial to precisely and accurately elucidate the neutron lifetime for Big Bang Nucleosynthesis calculations and to investigate physics beyond the Standard Model. Therefore, we aimed to understand and minimize systematic errors present in the neutron beam experiment at the NIST Center for Neutron Research (NCNR). In order to reduce the uncertainty related to wavelength dependent corrections present in previous beam experiments, the wavelength spectrum of the NCNR reactor cold neutron beam must be known. We utilized a beam chopper and lithium detector to characterize the wavelength spectrum on the NG6 beam line at the NCNR. The experimental design and techniques employed will be discussed, and our results will be presented. Future plans to utilize our findings to improve the neutron lifetime measurement at NCNR will also be described.

  6. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    DOE PAGES

    Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.; ...

    2018-01-29

    We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less

  7. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    NASA Astrophysics Data System (ADS)

    Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.

    2018-01-01

    The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .

  8. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.

    We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less

  9. The National Spallation Neutron Source (NSNS) Project

    NASA Astrophysics Data System (ADS)

    Appleton, Bill R.

    1997-05-01

    The need and justification for new sources and instrumentation in neutron science have been firmly established by numerous assessments since the early 1970s by the scientific community and the Department of Energy (DOE). In their 1996 budget, the DOE Office of Energy Research asked ORNL to lead the R&D and conceptual design effort for a next-generation spallation neutron source to be used for neutron scattering. To accomplish this, the NSNS collaboration involving five national laboratories (ANL, BNL, LANL, LBNL, and ORNL) has been formed. The NSNS reference design is for a 1-GeV linac and accumulator ring that delivers 1-MW proton beams in microsend pulses to a mercuty target; neutrons are produced by the spallation reaction, moderated, and guided into an experimental hall for neutron scattering. The design includes the necessary flexibility to upgrade the source in stages to significantly higher powers in the future and to expand the experimental capabilities. This talk will describe the origins at NSNS, the current funding status, progress on the technical design, user community input and the intended uses, and future prospects.

  10. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations.

    PubMed

    Bansal, Sheel; St Clair, J Bradley; Harrington, Constance A; Gould, Peter J

    2015-10-01

    The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool-temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed-source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool-temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3-fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed-source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed-source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold

  11. Neutron-powered precursors of kilonovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Bauswein, Andreas; Goriely, Stephane; Kasen, Daniel

    2015-01-01

    The merger of binary neutron stars (NSs) ejects a small quantity of neutron-rich matter, the radioactive decay of which powers a day to week long thermal transient known as a kilonova. Most of the ejecta remains sufficiently dense during its expansion that all neutrons are captured into nuclei during the r-process. However, recent general relativistic merger simulations by Bauswein and collaborators show that a small fraction of the ejected mass (a few per cent, or ˜10-4 M⊙) expands sufficiently rapidly for most neutrons to avoid capture. This matter originates from the shocked-heated interface between the merging NSs. Here, we show that the β-decay of these free neutrons in the outermost ejecta powers a `precursor' to the main kilonova emission, which peaks on a time-scale of ˜ few hours following merger at U-band magnitude ˜22 (for an assumed distance of 200 Mpc). The high luminosity and blue colours of the neutron precursor render it a potentially important counterpart to the gravitational wave source, that may encode valuable information on the properties of the merging binary (e.g. NS-NS versus NS-black hole) and the NS equation of state. Future work is necessary to assess the robustness of the fast-moving ejecta and the survival of free neutrons in the face of neutrino absorptions, although the precursor properties are robust to a moderate amount of leptonization. Our results provide additional motivation for short latency gravitational wave triggers and rapid follow-up searches with sensitive ground-based telescopes.

  12. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-08-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  13. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE PAGES

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; ...

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  14. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Measurement of the Parity-Violating directional Gamma-ray Asymmetry in Polarized Neutron Capture on ^35Cl

    NASA Astrophysics Data System (ADS)

    Fomin, Nadia

    2012-03-01

    The NPDGamma experiment aims to measure the parity-odd correlation between the neutron spin and the direction of the emitted photon in neutron-proton capture. A parity violating asymmetry (to be measured to 10-8) from this process can be directly related to the strength of the hadronic weak interaction between nucleons. As part of the commissioning runs on the Fundamental Neutron Physics beamline at the Spallation Neutron Source at ORNL, the gamma-ray asymmetry from the parity-violating capture of cold neutrons on ^35Cl was measured, primarily to check for systematic effects and false asymmtries. The current precision from existing world measurements on this asymmetry is at the level of 10-6 and we believe we can improve it. The analysis methodology as well as preliminary results will be presented.

  16. D-T Neutron Skyshine Experiments at JAERI/FNS

    NASA Astrophysics Data System (ADS)

    Nishitani, Takeo; Ochiai, Kentaro; Yoshida, Shigeo; Tanaka, Ryohei; Wakisaka, Masashi; Nakao, Makoto; Sato, Satoshi; Yamauchi, Michinori; Hori, Jun-Ichi; Takahashi, Akito; Kaneko, Jun-Ichi; Sawamura, Teruko

    The D-T neutron skyshine experiments have been carried out at the Fusion Neutronics Source (FNS) of JAERI with the neutron yield of ˜1.7×1011n/s. The concrete thickness of the roof and the wall of a FNS target room are 1.15 and 2 m, respectively. The FNS skyshine port with a size of 0.9 × 0.9 m2 was open during the experimental period.The radiation dose rate outside the target room was measured as far as about 550 m away from the D-T target point with a spherical rem-counter. The highest neutron dose was about 0.5 μSv/hr at a distance of 30 m from the D-T target point and the dose rate was attenuated to 0.002 μSv/hr at a distance of 550 m. The measured neutron dose distribution was analyzed with Monte Carlo code MCNP-4B and a simple line source model. The MCNP calculation overestimates the neutron dose in the distance range larger than 250 m. The neutron spectra were evaluated with a 3He detector with different thickness of polyethylene neutron moderators. Secondary gamma-rays were measured with high purity Ge detectors and NaI scintillation detectors.

  17. The Thermal Neutron Beam Option for NECTAR at MLZ

    NASA Astrophysics Data System (ADS)

    Mühlbauer, M. J.; Bücherl, T.; Genreith, C.; Knapp, M.; Schulz, M.; Söllradl, S.; Wagner, F. M.; Ehrenberg, H.

    The beam port SR10 at the neutron source FRM II of Heinz Maier-Leibnitz Zentrum (MLZ) is equipped with a moveable assembly of two uranium plates, which can be placed in front of the entrance window of the beam tube via remote control. With these plates placed in their operating position the thermal neutron spectrum produced by the neutron source FRM II is converted to fission neutrons with 1.9 MeV of mean energy. This fission neutron spectrum is routinely used for medical applications at the irradiation facility MEDAPP, for neutron radiography and tomography experiments at the facility NECTAR and for materials testing. If, however, the uranium plates are in their stand-by position far off the tip of the beam tube and the so-called permanent filter for thermal neutrons is removed, thermal neutrons originating from the moderator tank enter the beam tube and a thermal spectrum becomes available for irradiation or activation of samples. By installing a temporary flight tube the beam may be used for thermal neutron radiography and tomography experiments at NECTAR. The thermal neutron beam option not only adds a pure thermal neutron spectrum to the energy ranges available for neutron imaging at MLZ instruments but it also is an unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option for NECTAR is funded by BMBF in frame of research project 05K16VK3.

  18. Interference of fission amplitudes of neutron resonances and T-odd asymmetry for various prescission third particles in the ternary fission of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bunakov, V. E.; Kadmensky, S. S.

    Differential cross sections for reactions of the true ternary fission of nuclei that was induced by cold polarized neutrons were constructed with allowance of the effect that Coriolis interaction and the interference between fission amplitudes of neutron resonances excited in fissile nuclei upon incidentneutron capture by target nuclei exerted on angular distributions of prescission third particles (alpha particles, neutrons, or photons). It is shown that T -odd TRI- and ROT-type asymmetries for prescission alpha particles are associated with, respectively, the odd and even components of the Coriolis interaction-perturbed amplitude of angular distributions of particles belonging to the types indicated above.more » These asymmetries have angular distributions differing from each other and stemming from a nontrivial dependence of these components on the neutron-resonance spins J{sub s} and their projections K{sub s} onto the symmetry axis of the nucleus involved. It is shown that angular distributions of prescission photons and neutrons from reactions of the ternary fission of nuclei that is induced by cold polarized neutrons are determined by the effect of Coriolis forces exclusively. Therefore, the emerging T-odd asymmetries have a character of a ROT-type asymmetry and are universal for all target nuclei.« less

  19. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  20. Ames collaborative study of cosmic ray neutrons

    NASA Technical Reports Server (NTRS)

    Hewitt, J. E.; Hughes, L.; Mccaslin, J. B.; Stephens, L. D.; Rindi, A.; Smith, A. R.; Thomas, R. H.; Griffith, R. V.; Welles, C. G.; Baum, J. W.

    1976-01-01

    The results of a collaborative study to define both the neutron flux and the spectrum more precisely and to develop a dosimetry package that can be flown quickly to altitude for solar flare events are described. Instrumentation and analysis techniques were used which were developed to measure accelerator-produced radiation. The instruments were flown in the Ames Research Center high altitude aircraft. Neutron instrumentation consisted of Bonner spheres with both active and passive detector elements, threshold detectors of both prompt-counter and activation-element types, a liquid scintillation spectrometer based on pulse-shape discrimination, and a moderated BF3 counter neutron monitor. In addition, charged particles were measured with a Reuter-Stokes ionization chamber system and dose equivalent with another instrument. Preliminary results from the first series of flights at 12.5 km (41,000 ft) are presented, including estimates of total neutron flux intensity and spectral shape and of the variation of intensity with altitude and geomagnetic latitude.

  1. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koivunoro, H.; Lou, T.P.; Leung, K. N.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based onmore » D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.« less

  2. Study of the ratio of non-neutron to neutron dose components of cosmic radiation at typical commercial flight altitudes.

    PubMed

    Romero, A M; Saez-Vergara, J C; Rodriguez, R; Domínguez-Mompell, R

    2004-01-01

    CIEMAT, in close co-operation with Iberia Airlines, carried out an extensive programme of in-flight measurements, covering both hemispheres, during the years 2001 and 2002. Although the instrumentation onboard included different active devices, the results presented here were obtained from a polyethylene/tungsten-moderated rem meter (SWENDI2; Eberline) and an ionisation chamber (RSS-131; Reuter-Stokes) used for measuring the ambient dose equivalent due to the neutron and the non-neutron components of cosmic radiation, respectively. This paper presents a study of each of the dose components mentioned as a function of the vertical cut-off rigidity and the flight altitude. The ratio between the two components is also presented to determine the variations in cosmic radiation composition as a function of the aforementioned parameters. The experimental results have also been compared with those predicted by the code EPCARD3.2 for the non-neutron and the neutron components of the ambient dose equivalent.

  3. Neutron and positron techniques for fluid transfer system analysis and remote temperature and stress measurement

    NASA Astrophysics Data System (ADS)

    Stewart, P. A. E.

    1987-05-01

    Present and projected applications of penetrating radiation techniques to gas turbine research and development are considered. Approaches discussed include the visualization and measurement of metal component movement using high energy X-rays, the measurement of metal temperatures using epithermal neutrons, the measurement of metal stresses using thermal neutron diffraction, and the visualization and measurement of oil and fuel systems using either cold neutron radiography or emitting isotope tomography. By selecting the radiation appropriate to the problem, the desired data can be probed for and obtained through imaging or signal acquisition, and the necessary information can then be extracted with digital image processing or knowledge based image manipulation and pattern recognition.

  4. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels

    NASA Astrophysics Data System (ADS)

    Jiao, Z.; Michalicka, J.; Was, G. S.

    2018-04-01

    Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.

  5. A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

    NASA Astrophysics Data System (ADS)

    Schneider, E. A.; Deinert, M. R.; Cady, K. B.

    2006-10-01

    The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.

  6. Characteristics of poly- and mono-crystalline BeO and SiO2 as thermal and cold neutron filters

    NASA Astrophysics Data System (ADS)

    Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.; Mansy, M. S.

    2015-09-01

    A simple model along with a computer code "HEXA-FILTERS" is used to carry out the calculation of the total cross-sections of BeO and SiO2 having poly or mono-crystalline form as a function of neutron wavelength at room (R.T.) and liquid nitrogen (L.N.) temperatures. An overall agreement is indicated between the calculated neutron cross-sections and experimental data. Calculation shows that 25 cm thick of polycrystalline BeO cooled at liquid nitrogen temperature was found to be a good filter for neutron wavelengths longer than 0.46 nm. While, 50 cm of SiO2, with much less transmission, for neutrons with wavelengths longer than 0.85 nm. It was also found that 10 cm of BeO and 15 cm SiO2 thick mono-crystals cut along their (0 0 2) plane, with 0.5° FWHM on mosaic spread and cooled at L.N., are a good thermal neutron filter, with high effect-to-noise ratio.

  7. SU-E-T-132: Assess the Shielding of Secondary Neutrons From Patient Collimator in Proton Therapy Considering Secondary Photons Generated in the Shielding Process with Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, M; Takashina, M; Kurosu, K

    Purpose: In this study we present Monte Carlo based evaluation of the shielding effect for secondary neutrons from patient collimator, and secondary photons emitted in the process of neutron shielding by combination of moderator and boron-10 placed around patient collimator. Methods: The PHITS Monte Carlo Simulation radiation transport code was used to simulate the proton beam (Ep = 64 to 93 MeV) from a proton therapy facility. In this study, moderators (water, polyethylene and paraffin) and boron (pure {sup 10}B) were placed around patient collimator in this order. The rate of moderator and boron thicknesses was changed fixing the totalmore » thickness at 3cm. The secondary neutron and photons doses were evaluated as the ambient dose equivalent per absorbed dose [H*(10)/D]. Results: The secondary neutrons are shielded more effectively by combination moderators and boron. The most effective combination of shielding neutrons is the polyethylene of 2.4 cm thick and the boron of 0.6 cm thick and the maximum reduction rate is 47.3 %. The H*(10)/D of secondary photons in the control case is less than that of neutrons by two orders of magnitude and the maximum increase of secondary photons is 1.0 µSv/Gy with the polyethylene of 2.8 cm thick and the boron of 0.2 cm thick. Conclusion: The combination of moderators and boron is beneficial for shielding secondary neutrons. Both the secondary photons of control and those emitted in the shielding neutrons are very lower than the secondary neutrons and photon has low RBE in comparison with neutron. Therefore the secondary photons can be ignored in the shielding neutrons.This work was supported by JSPS Core-to-Core Program (No.23003). This work was supported by JSPS Core-to-Core Program (No.23003)« less

  8. Design Study of DESCANT - DEuterated SCintillator Array for Neutron Tagging

    NASA Astrophysics Data System (ADS)

    Wong, James; Garrett, P. E.

    2007-10-01

    The fusion-evaporation reaction has been a useful tool for studying nuclei. A program of such reactions is being planned to take place at the TRIUMF facility in Vancouver, Canada using the TIGRESS array of gamma-ray detectors. A particular advantage of using these reactions is that they probe nuclei at moderate-to-high angular momenta. It would be of great interest to extend the study of high-spin states to neutron-rich systems. Following the formation of the fused compound system, the highly-excited state may lose energy by ``evaporating'' particles. Neutron evaporation is the predominant decay mode from neutron-rich compound systems so neutron detectors will be required. The probability of neutrons multiple scattering is quite high so a detector array must be able to differentiate between multiple neutrons evaporating from the reaction and a single neutron scattering multiple times. To address this issue we investigate the use of a novel neutron detector array -- one based on an array of deuterated liquid scintillators as neutron detectors. Results from early feasibility tests will be presented, along with the status of our GEANT4 simulations of the array performance.

  9. Numerical Modeling of Tube Forming by HPTR Cold Pilgering Process

    NASA Astrophysics Data System (ADS)

    Sornin, D.; Pachón-Rodríguez, E. A.; Vanegas-Márquez, E.; Mocellin, K.; Logé, R.

    2016-09-01

    For new fast-neutron sodium-cooled Generation IV nuclear reactors, the candidate cladding materials for the very strong burn-up are ferritic and martensitic oxide dispersion strengthened grades. Classically, the cladding tube is cold formed by a sequence of cold pilger milling passes with intermediate heat treatments. This process acts upon the geometry and the microstructure of the tubes. Consequently, crystallographic texture, grain sizes and morphologies, and tube integrity are highly dependent on the pilgering parameters. In order to optimize the resulting mechanical properties of cold-rolled cladding tubes, it is essential to have a thorough understanding of the pilgering process. Finite Element Method (FEM) models are used for the numerical predictions of this task; however, the accuracy of the numerical predictions depends not only on the type of constitutive laws but also on the quality of the material parameters identification. Therefore, a Chaboche-type law which parameters have been identified on experimental observation of the mechanical behavior of the material is used here. As a complete three-dimensional FEM mechanical analysis of the high-precision tube rolling (HPTR) cold pilgering of tubes could be very expensive, only the evolution of geometry and deformation is addressed in this work. The computed geometry is compared to the experimental one. It is shown that the evolution of the geometry and deformation is not homogeneous over the circumference. Moreover, it is exposed that the strain is nonhomogeneous in the radial, tangential, and axial directions. Finally, it is seen that the dominant deformation mode of a material point evolves during HPTR cold pilgering forming.

  10. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-01

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for Tion and 10% for the neutron yield.

  11. Method of Operating a Neutronic Reactor

    NASA Astrophysics Data System (ADS)

    Fermi, Enrico; Szilard, Leo

    This Patent is a later,1 almost faithful, copy of Patent No. 2,708,656 (which is then not reported in the present volume). This revised version was probably prepared (by the authors) in order to correct several misprints of the previous version. As emphasized in The New York Times of May 19, 1955, Patent No. 2,708,656, an "historic Patent, covering the first nuclear reactor", is the first one on this topic issued by the U.S. Patent Office, and served as a reference for the subsequent Patents on the same subject. In this long Patent, the theory, exper- imental data and principles of construction and operation of "any" type of nuclear reactor known at that time are discussed in an extremely detailed way. Various possible fission fragments produced by the reactor, several forms of the uranium employed (metal, oxide and so on, grouped in different geometrical forms), various materials adopted as moderators, several cooling systems, different geometries of the reactors, etc. are considered accurately. The theoretical description, centered around the achievement of a self-sustaining chain reaction, is exhaustive, and great attention is devoted to any possible cause of neutron loss, to the resonance capture of neutrons and to the effect of the presence of relevant impurities in the reactor. The chain production of neutrons in the pile is described in great detail, along with the theoretical arguments underlying the exponential experiment. The problem of the variation of the multiplication factor due to the production of radioactive elements, such as xenon, is discussed extensively. In particular it is pointed out that, although the initial production of xenon lowers the multiplication factor K due to its relevant neutron absorption, it subsequently increases again due to the decay of xenon into another isotope which absorbs fewer neutrons. The building up of reactors with solid (graphite) or liquid (heavy water) moderators is discussed, as well as other possible

  12. Towards a wearable sensor system for continuous occupational cold stress assessment

    PubMed Central

    AUSTAD, Hanne; WIGGEN, Øystein; FÆREVIK, Hilde; SEEBERG, Trine M.

    2018-01-01

    This study investigated the usefulness of continuous sensor data for improving occupational cold stress assessment. Eleven volunteer male subjects completed a 90–120-min protocol in cold environments, consisting of rest, moderate and hard work. Biomedical data were measured using a smart jacket with integrated temperature, humidity and activity sensors, in addition to a custom-made sensor belt worn around the chest. Other relevant sensor data were measured using commercially available sensors. The study aimed to improve decision support for workers in cold climates, by taking advantage of the information provided by data from the rapidly growing market of wearable sensors. Important findings were that the subjective thermal sensation did not correspond to the measured absolute skin temperature and that large differences were observed in both metabolic energy production and skin temperatures under identical exposure conditions. Temperature, humidity, activity and heart rate were found to be relevant parameters for cold stress assessment, and the locations of the sensors in the prototype jacket were adequate. The study reveals the need for cold stress assessment and indicates that a generalised approached is not sufficient to assess the stress on an individual level. PMID:29353859

  13. BAMBUS: a new inelastic multiplexed neutron spectrometer for PANDA

    NASA Astrophysics Data System (ADS)

    Lim, J. A.; Siemensmeyer, K.; Čermák, P.; Lake, B.; Schneidewind, A.; Inosov, D. S.

    2015-03-01

    We report on plans for a multiplexed neutron analyser option for the PANDA spectrometer. The key design concept is to have many analysers positioned to give a large coverage in the scattering plane, and multiple arcs of these analysers to measure different energy transfers simultaneously. The main goal is to bring intensity gains and improved reciprocal-space and energy mapping capabilities to the existing cold triple-axis spectrometer.

  14. Sleep Habits and Susceptibility to Upper Respiratory Illness: the Moderating Role of Subjective Socioeconomic Status

    PubMed Central

    Prather, Aric A.; Janicki-Deverts, Denise; Adler, Nancy E.; Hall, Martica; Cohen, Sheldon

    2016-01-01

    Background Sleep is a predictor of infectious illness that may depend on one’s socioeconomic status (SES). Purpose This study aimed to investigate the moderating effects of objective and subjective SES on sleep-clinical cold risk link and test whether nasal inflammation serves as a plausible biological pathway. Methods This study combined data (n = 732) from three viral challenge studies. Measures of self-reported sleep and objective and subjective measures of SES were obtained. Participants were quarantined and administrated rhinovirus (RV) or influenza virus and monitored over 5 (RV) or 6 (influenza) days for the development of a cold. Symptom severity, including mucus production and nasal clearance time, and levels of nasal cytokines (interleukin (IL)-6 and IL-1β) were measured prior to administration and each day during the quarantined period. Results Subjective SES, but not objective SES, moderated associations between shorter sleep duration and increased likelihood of a clinical cold. Compared to ≥8-hour sleepers, ≤6-hour sleepers with low subjective SES were at increased risk for developing a cold (OR = 2.57, 95% CI 1.10–6.02). There was no association between sleep duration and colds in high subjective SES participants. Among infected individuals who reported low subjective SES, shorter sleep duration was associated with greater mucus production. There was no evidence that markers of nasal inflammation mediated the link between sleep duration and cold susceptibility among those reporting low subjective SES. Conclusion Subjective SES may reflect an important social factor for understanding vulnerability to and protection against infectious illness among short sleepers. PMID:27679462

  15. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  16. Martian Neutron Energy Spectrometer (MANES)

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Roth, D. R.; Kinnison, J. D.; Goldsten, J. O.; Fainchtein, R.; Badhwar, G.

    2000-01-01

    High energy charged particles of extragalactic, galactic, and solar origin collide with spacecraft structures and planetary atmospheres. These primaries create a number of secondary particles inside the structures or on the surfaces of planets to produce a significant radiation environment. This radiation is a threat to long term inhabitants and travelers for interplanetary missions and produces an increased risk of carcinogenesis, central nervous system (CNS) and DNA damage. Charged particles are readily detected; but, neutrons, being electrically neutral, are much more difficult to monitor. These secondary neutrons are reported to contribute 30-60% of the dose equivalent in the Shuttle and MIR station. The Martian atmosphere has an areal density of 37 g/sq cm primarily of carbon dioxide molecules. This shallow atmosphere presents fewer mean free paths to the bombarding cosmic rays and solar particles. The secondary neutrons present at the surface of Mars will have undergone fewer generations of collisions and have higher energies than at sea level on Earth. Albedo neutrons produced by collisions with the Martian surface material will also contribute to the radiation environment. The increased threat of radiation damage to humans on Mars occurs when neutrons of higher mean energy traverse the thin, dry Martian atmosphere and encounter water in the astronaut's body. Water, being hydrogeneous, efficiently moderates the high energy neutrons thereby slowing them as they penetrate deeply into the body. Consequently, greater radiation doses can be deposited in or near critical organs such as the liver or spleen than is the case on Earth. A second significant threat is the possibility of a high energy heavy ion or neutron causing a DNA double strand break in a single strike.

  17. Cold Stress

    MedlinePlus

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  18. Hypothermic general cold adaptation induced by local cold acclimation.

    PubMed

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P < 0.05) without a change either in metabolic heat production or in lower limb skin temperatures during SCAT after LCA. It was concluded that local cold adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P < 0.05). However, the hypothermic insulative general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P < 0.05) was observed but was rather related to a "T3 polar syndrome" occurring during LCA.

  19. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  20. Study of low energy neutron beam formation based on GEANT4 simulations

    NASA Astrophysics Data System (ADS)

    Avagyan, R.; Avetisyan, R.; Ivanyan, V.; Kerobyan, I.

    2017-07-01

    The possibility of obtaining thermal/epithermal energy neutron beams using external protons from cyclotron C18/18 is studied based on GEANT4 simulations. This study will be the basis of the Beam Shaped Assembly (BSA) development for future Boron Neutron Capture Therapy (BNCT). Proton induced reactions on 9Be target are considered as a neutron source, and dependence of neutron yield on target thickness is investigated. The problem of reducing the ratio of gamma to neutron yields by inserting a lead sheet after the beryllium target is studied as well. By GEANT4 modeling the optimal thicknesses of 9Be target and lead absorber are determined and the design characteristics of beam shaping assembly, including the materials and thicknesses of reflector and moderator are considered.

  1. Mineral exploration and soil analysis using in situ neutron activation

    USGS Publications Warehouse

    Senftle, F.E.; Hoyte, A.F.

    1966-01-01

    A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.

  2. Mortality related to cold and heat. What do we learn from dairy cattle?

    PubMed Central

    Cox, Bianca; Gasparrini, Antonio; Catry, Boudewijn; Delcloo, Andy; Bijnens, Esmée; Vangronsveld, Jaco; Nawrot, Tim S.

    2016-01-01

    Extreme temperatures are associated with increased mortality among humans. Because similar epidemiologic studies in animals may add to the existing evidence, we investigated the association between ambient temperature and the risk of mortality among dairy cattle. We used data on 87,108 dairy cow deaths in Belgium from 2006 to 2009, and we combined a case-crossover design with distributed lag non-linear models. Province-specific results were combined in a multivariate meta-analysis. Relative to the estimated minimum mortality temperature of 15.4 °C (75th percentile), the pooled cumulative relative risks over lag 0–25 days were 1.26 (95% CI: 1.11, 1.42) for extreme cold (1st percentile, −3.5 °C), 1.35 (95% CI: 1.19, 1.54) for moderate cold (5th percentile, −0.3 °C), 1.09 (95% CI: 1.02, 1.17) for moderate heat (95th percentile, 19.7 °C), and 1.26 (95% CI: 1.08; 1.48) for extreme heat (99th percentile, 22.6 °C). The temporal pattern of the temperature-mortality association was similar to that observed in humans, i.e. acute effects of heat and delayed and prolonged effects of cold. Seasonal analyses suggested that most of the temperature-related mortality, including cold effects, occurred in the warm season. Our study reinforces the evidence on the plausibility of causal effects in humans. PMID:27236362

  3. NOVEL CRYOGENIC ENGINEERING SOLUTIONS FOR THE NEW AUSTRALIAN RESEARCH REACTOR OPAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, S. R.; Kennedy, S. J.; Kim, S.

    In August 2006 the new 20MW low enriched uranium research reactor OPAL went critical. The reactor has 3 main functions, radio pharmaceutical production, silicon irradiation and as a neutron source. Commissioning on 7 neutron scattering instruments began in December 2006. Three of these instruments (Small Angle Neutron Scattering, Reflectometer and Time-of-flight Spectrometer) utilize cold neutrons.The OPAL Cold Neutron Source, located inside the reactor, is a 20L liquid deuterium moderated source operating at 20K, 330kPa with a nominal refrigeration capacity of 5 kW and a peak flux at 4.2meV (equivalent to a wavelength of 0.4nm). The Thermosiphon and Moderator Chamber aremore » cooled by helium gas delivered at 19.8K using the Brayton cycle. The helium is compressed by two 250kW compressors (one with a variable frequency drive to lower power consumption).A 5 Tesla BSCCO (2223) horizontal field HTS magnet will be delivered in the 2{sup nd} half of 2007 for use on all the cold neutron instruments. The magnet is cooled by a pulse tube cryocooler operating at 20K. The magnet design allows for the neutron beam to pass both axially and transverse to the field. Samples will be mounted in a 4K to 800K Gifford-McMahon (GM) cryofurnace, with the ability to apply a variable electric field in-situ. The magnet is mounted onto a tilt stage. The sample can thus be studied under a wide variety of conditions.A cryogen free 7.4 Tesla Nb-Ti vertical field LTS magnet, commissioned in 2005 will be used on neutron diffraction experiments. It is cooled by a standard GM cryocooler operating at 4.2K. The sample is mounted in a 2{sup nd} GM cryocooler (4K-300K) and a variable electric field can be applied.« less

  4. The National Spallation Neutron Source Target Station.

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.

    1997-05-01

    The technologies that are being utilized to design and build a state-of-the-art high powered (>= 1 MW), short pulsed (<= 1 μsec), and reliable spallation neutron source target station are discussed. The protons which directly and indirectly produce the neutrons will be obtained from a 1 GeV proton accelerator composed of an ion gun, rfq, linac, and storage ring. Many scientific and technical disciplines are required to produce a successful target station. These disciplines include engineering, remote handling, neutronics, materials, thermal hydraulics, shock analysis, etc. In the areas of engineering and remote handling special emphasis is being given to rapid and efficient assembly and disassembly of critical parts of the target station. In the neutronics area, emphasis is being given to neutron yield and pulse optimization from the moderators, and heating and activation rates throughout the station. Development of structural materials to withstand aggressive radiation environments and that are compatible with other materials is also an important area. Thermal hydraulics and shock analysis are being closely studied since large amounts of energy are being deposited in small volumes in relatively short time periods (< 1 μsec). These areas will be expanded upon in the paper.

  5. Boron-coated straws as a replacement for 3He-based neutron detectors

    NASA Astrophysics Data System (ADS)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  6. METHOD OF SUSTAINING A NEUTRONIC CHAIN REACTING SYSTEM

    DOEpatents

    Fermi, E.; Leverett, M.C.

    1957-11-12

    This patent relates to neutronic reactors and a method of sustainlng a chain reaction. The reactor shown in the patent for carrying out the method is the gas-cooled type comprised of a solid moderator having a plurality of passages therethrough for receiving bodies of fissionable material. In carrying out the method, the reactor is loaded by inserting in the passages fuel elements and moderator material in a proportion to sustain a chain reaction As the reproduction ratio decreases below the desired fiiaire due to impurities formed during operation of the reactor, the moderator material is gradually replaced with additional fuel material to maintain the reproduction ratio above unity.

  7. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    PubMed

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  8. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    NASA Astrophysics Data System (ADS)

    Bahl, C. R. H.; Lefmann, K.; Abrahamsen, A. B.; Rønnow, H. M.; Saxild, F.; Jensen, T. B. S.; Udby, L.; Andersen, N. H.; Christensen, N. B.; Jakobsen, H. S.; Larsen, T.; Häfliger, P. S.; Streule, S.; Niedermayer, Ch.

    2006-05-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  9. CAMEA—A novel multiplexing analyzer for neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Groitl, Felix; Graf, Dieter; Birk, Jonas Okkels; Markó, Márton; Bartkowiak, Marek; Filges, Uwe; Niedermayer, Christof; Rüegg, Christian; Rønnow, Henrik M.

    2016-03-01

    The analyzer detector system continuous angle multiple energy analysis will be installed on the cold-neutron triple-axis spectrometer RITA-2 at SINQ, PSI. CAMEA is optimized for efficiency in the horizontal scattering plane enabling rapid and detailed mapping of excitations. As a novelty the design employs a series of several sequential upward scattering analyzer arcs. Each arc is set to a different, fixed, final energy and scatters neutrons towards position sensitive detectors. Thus, neutrons with different final energies are recorded simultaneously over a large angular range. In a single data-acquisition many entire constant-energy lines in the horizontal scattering plane are recorded for a quasi-continuous angular coverage of about 60°. With a large combined coverage in energy and momentum, this will result in a very efficient spectrometer, which will be particularly suited for parametric studies under extreme conditions with restrictive sample environments (high field magnets or pressure cells) and for small samples of novel materials. In this paper we outline the concept and the specifications of the instrument currently under construction.

  10. Preliminary Analysis of the Multisphere Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Goldhagen, P.; Kniss, T.; Wilson, J. W.; Singleterry, R. C.; Jones, I. W.; VanSteveninck, W.

    2003-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the Atmospheric Ionizing Radiation (AIR) Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to greater than 10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was 8 times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56 - 201 grams per square centimeter atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  11. Hsp60 expression profiles in the reef-building coral Seriatopora caliendrum subjected to heat and cold shock regimes.

    PubMed

    Seveso, Davide; Montano, Simone; Strona, Giovanni; Orlandi, Ivan; Galli, Paolo; Vai, Marina

    2016-08-01

    Climate changes have increased the intensity/frequency of extreme thermal events, which represent serious threats to the health of reef-building corals. Since the vulnerability of corals exposed to thermal stresses are related to their ability to regulate Heat shock proteins (Hsps), we have analyzed together the time related expression profiles of the mitochondrial Hsp60 and the associated changes in tissue pigmentation in Seriatopora caliendrum subjected to 48 h of heat and cold treatments characterized by moderate (±2 °C) and severe (±6 °C) shocks. For the first time, an Hsp60 response was observed in a scleractinian coral exposed to cold stresses. Furthermore, the Hsp60 modulations and the changes in the tissue coloration were found to be specific for each treatment. A strong down-regulation at the end of the treatments was observed following both the severe shocks, but only the severe heat stress led to bleaching in concert with the lowest levels of Hsp60, suggesting that a severe heat shock can be more deleterious than an exposure to a severe cold temperature. On the contrary, a moderate cold stress seems to be more harmful than a moderate temperature increase, which could allow coral acclimation. Our results can provide a potential framework for understanding the physiological tolerance of corals under possible future climate changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons 1986

    USDA-ARS?s Scientific Manuscript database

    Soil moisture content on a horizontal scale of hectometers and at depths of decimeters can be inferred from measurements of low-energy cosmic-ray neutrons that are generated within soil, moderated mainly by hydrogen atoms, and diffused back to the atmosphere. These neutrons are sensitive to water co...

  13. Can sensation of cold hands predict Raynaud's phenomenon or paraesthesia?

    PubMed

    Carlsson, D; Wahlström, J; Burström, L; Hagberg, M; Lundström, R; Pettersson, H; Nilsson, T

    2018-05-10

    Raynaud's phenomenon and neurosensory symptoms are common after hand-arm vibration exposure. Knowledge of early signs of vibration injuries is needed. To investigate the risk of developing Raynaud's phenomenon and paraesthesia in relation to sensation of cold hands in a cohort of male employees at an engineering plant. We followed a cohort of male manual and office workers at an engineering plant in Sweden for 21 years. At baseline (1987 and 1992) and each follow-up (1992, 1997, 2002, 2008), we assessed sensation of cold, Raynaud's phenomenon and paraesthesia in the hands using questionnaires and measured vibration exposure. We calculated risk estimates with univariate and multiple logistic regression analyses and adjusted for vibration exposure and tobacco usage. There were 241 study participants. During the study period, 21 individuals developed Raynaud's phenomenon and 43 developed paraesthesia. When adjusting the risk of developing Raynaud's phenomenon for vibration exposure and tobacco use, the odds ratios were between 6.0 and 6.3 (95% CI 2.2-17.0). We observed no increased risk for paraesthesia in relation to a sensation of cold hands. A sensation of cold hands was a risk factor for Raynaud's phenomenon. At the individual level, reporting a sensation of cold hands did not appear to be useful information to predict future development of Raynaud's phenomenon given a weak to moderate predictive value. For paraesthesia, the sensation of cold was not a risk factor and there was no predictive value at the individual level.

  14. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    NASA Astrophysics Data System (ADS)

    Masuda, Akihiko; Matsumoto, Tetsuro; Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi; Yashima, Hiroshi; Nakane, Yoshihiro; Nishiyama, Jun; Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji; Harano, Hideki; Nakamura, Takashi

    2017-03-01

    Quasi-monoenergetic high-energy neutron fields induced by 7Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96-387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  15. NEUTRONIC REACTOR CONSTRUCTION

    DOEpatents

    Vernon, H.C.; Goett, J.J.

    1958-09-01

    A cover device is described for the fuel element receiving tube of a neutronic reactor of the heterogeneous, water cooled type wherein said tubes are arranged in a moderator with their longitudinal axes vertical. The cover is provided with means to support a rod-type fuel element from the bottom thereof and means to lock the cover in place, the latter being adapted for remote operation. This cover device is easily removable and seals the opening in the upper end of the fuel tube against leakage of coolant.

  16. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Danly, C.; Glebov, V. Yu.; Hurlbut, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  17. Solid polystyrene and deuterated polystyrene light output response to fast neutrons.

    PubMed

    Simpson, R; Danly, C; Glebov, V Yu; Hurlbut, C; Merrill, F E; Volegov, P L; Wilde, C

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  18. EXPERIMENTAL KETOSIS IN MAN. ’COLD KETOSIS’ COMPARED WITH POST-EXERCISE KETOSIS AND NUTRITIONAL KETOSIS.

    DTIC Science & Technology

    This investigation was designed to answer three questions: (1) Does repetition of a ketosis following a 10 mile walk cause adaptive responses; (2...Does repeated exposure to cold result in a diminished ketotic response; (3) Do women show a post-exercise ketosis like men. Protocols for the three...exercise ketosis similar to that shown by men, despite much individual variability. Prolonged moderate exercise, exposure to cold and starvation all produce similar metabolic effects. (Author)

  19. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  20. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.

    PubMed

    Yasuda, Hiroshi; Yajima, Kazuaki; Sato, Tatsuhiko; Takada, Masashi; Nakamura, Takashi

    2009-06-01

    Cosmic radiation exposure of aircraft crew, which is generally evaluated by numerical simulations, should be verified by measurements. From the perspective of radiological protection, the most contributing radiation component at aviation altitude is neutrons. Measurements of cosmic neutrons, however, are difficult in a civilian aircraft because of the limitations of space and electricity; a small, battery-operated dosimeter is required whereas larger-size instruments are generally used to detect neutrons with a broad range of energy. We thus examined the applicability of relatively new transportable neutron monitors for use in an aircraft. They are (1) a conventional rem meter with a polyethylene moderator (NCN1), (2) an extended energy-range rem meter with a tungsten-powder mixed moderator (WENDI-II), and (3) a recoil-proton scintillation rem meter (PRESCILA). These monitors were installed onto the racks of a business jet aircraft that flew two times near Japan. Observed data were compared to model calculations using a PHITS-based Analytical Radiation Model in the Atmosphere (PARMA). Excellent agreement between measured and calculated values was found for the WENDI-II. The NCN1 showed approximately half of predicted values, which were lower than those expected from its response function. The observations made with PRESCILA showed much higher than expected values; which is attributable to the presence of cosmic-ray protons and muons. These results indicate that careful attention must be paid to the dosimetric properties of a detector employed for verification of cosmic neutron dose.

  1. INTEGRAL REACTION RATES AND NEUTRON ENERGY SPECTRA IN A WELL MODERATED REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.W.; Rose, A.; Wall, T.

    1963-04-01

    Cadmium ratio measurements in the internal reflector of MOATA were made with gold, indium, tungsten, manganese, molybdenum, and copper detectors. These measurements were analyzed on the assumption that the neutron spectrum consists of a Maxwellian distribution to which is smoothly joined a 1/E slowing down spectrum, the cross sections being averaged according to the methods of Westcott. A search through recent literature suggests that the s factors for gold and indium listed by Westcott are in error. If this is accepted, then it appears that the measured epithermal spectrum is closely 1/E in form for neutron energies between 1 andmore » 600 ev. The corrections to be applied when foils of finite thickness are used in cadmium ratio measuremerts are discussed, and the spectrum derived from these measurements was used to calculate reaction rate ratios of copper: indium and copper: gold alloy foils. These ratios were compared with measured values. Values of the effective resonance integral of Pt/sup 198/ wire detectors were measured, and from these values an estimate was made of the infinitely dilute resonance integral of this isotope. (auth)« less

  2. AAV Delivery of Endothelin-1 shRNA Attenuates Cold-Induced Hypertension.

    PubMed

    Chen, Peter Gin-Fu; Sun, Zhongjie

    2017-02-01

    Cold temperatures are associated with increased prevalence of hypertension. Cold exposure increases endothelin-1 (ET1) production. The purpose of this study is to determine whether upregulation of ET1 contributes to cold-induced hypertension (CIH). In vivo RNAi silencing of the ET1 gene was achieved by adeno-associated virus 2 (AAV2) delivery of ET1 short-hairpin small interfering RNA (ET1-shRNA). Four groups of male rats were used. Three groups were given AAV.ET1-shRNA, AAV.SC-shRNA (scrambled shRNA), and phosphate-buffered saline (PBS), respectively, before exposure to a moderately cold environment (6.7 ± 2°C), while the last group was given PBS and kept at room temperature (warm, 24 ± 2°C) and served as a control. We found that systolic blood pressure of the PBS-treated and SC-shRNA-treated groups increased significantly within 2 weeks of exposure to cold, reached a peak level (145 ± 4.8 mmHg) by 6 weeks, and remained elevated thereafter. By contrast, blood pressure of the ET1-shRNA-treated group did not increase, suggesting that silencing of ET1 prevented the development of CIH. Animals were euthanized after 10 weeks of exposure to cold. Cold exposure significantly increased the left ventricle (LV) surface area and LV weight in cold-exposed rats, suggesting LV hypertrophy. Superoxide production in the heart was increased by cold exposure. Interestingly, ET1-shRNA prevented cold-induced superoxide production and cardiac hypertrophy. ELISA assay indicated that ET1-shRNA abolished the cold-induced upregulation of ET1 levels, indicating effective silencing of ET1. In conclusion, upregulation of ET1 plays a critical role in the pathogenesis of CIH and cardiac hypertrophy. AAV delivery of ET1-shRNA is an effective therapeutic strategy for cold-related cardiovascular disease.

  3. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system.more » The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.« less

  4. DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, J. L.; Haight, Robert C.; Hunt, L. F.

    2002-01-01

    Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.

  5. Real time spectrometer for thermal neutrons from radiotherapic accelerators

    NASA Astrophysics Data System (ADS)

    Mozzanica, A.; Bartesaghi, G.; Bolognini, D.; Conti, V.; Mascagna, V.; Prest, M.; Scazzi, S.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Bevilacqua, R.; Giannini, G.; Totaro, P.; Vallazza, E.

    2007-10-01

    Radiotherapy accelerators can produce high energy photon beams for deep tumour treatments. Photons with energies greater than 8 MeV produce neutrons via photoproduction. The PHONES (PHOto NEutron Source) project is developing a neutron moderator to use the photoproduced neutrons for BNCT (Boron Neutron Capture Therapy) in hospital environments. In this framework we are developing a real time spectrometer for thermal neutrons exploiting the bunch structure of the beam. Since the beam is produced by a linear accelerator, in fact, particles are sent to the patient in bunches with a rate of 150-300 Hz depending on the beam type and energy. The neutron spectrum is usually measured with integrating detectors such as bubble dosimeters or TLDs, which integrate over a time interval and an energy one. We are developing a scintillator detector to measure the neutron spectrum in real time in the interval between bunches, that is in the thermal region. The signals from the scintillator are discriminated and sampled by a dedicated clock in a Cyclone II FPGA by Altera, thus obtaining the neutron time of flight spectrum. The exploited physical process in ordinary plastic scintillators is neutron capture by H with a subsequent γ emission. The measured TOF spectrum has been compared with a BF 3 counter one. A dedicated simulation with MCNP is being developed to extract the energy spectrum from the TOF one. The paper will present the results of the prototype measurements and the status of the simulation.

  6. Bright Eu2+-activated polycrystalline ceramic neutron scintillators

    NASA Astrophysics Data System (ADS)

    Wang, C. L.; Paranthaman, M. P.; Riedel, R. A.; Hodges, J. P.; Karlic, J. J.; Veatch, R. A.; Li, L.; Bridges, C. A.

    2018-03-01

    Scintillation properties of Eu2+-doped CaF2-AlF3-6LiF (Eu:CALF) polycrystalline ceramic thermal-neutron scintillators as a function of AlF3 concentration have been studied. The emission band peaked at a wavelength of 425-431 nm is due to the presence of Eu:CaF2 micro-crystallites. The highest light output from these samples is approximately 20,000 photons per thermal neutron, which is 3 times that of a GS20 6Li-glass scintillator. The pulse-decay lifetime and light output vs. AlF3 concentration may be understood using a radiation trapping model and the formation of a Li3AlF6 phase. At lower AlF3 concentration, Al3+ ions in Eu:CaF2 passivate the hole-trapping defects and enhance the light output; whereas at higher AlF3 concentration, Al3+ ions lead to the formation of electron trapping centers in Eu:CaF2 and the Li3AlF6 phase is formed, which reduces the light output. A neutron-gamma-discrimination (NGD) ratio of 9 × 108 was obtained from Principal Component Analysis (PCA) of digital waveforms, while Fisher Linear Discriminant Analysis (FLDA) can completely separate the thermal neutrons from 60Co gamma rays within the limit of gamma event statistics used in this work. Our results suggest that Eu:CALF scintillators can potentially replace the GS20 scintillator used for thermal and cold neutron detection systems.

  7. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, E. G.

    2017-01-01

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  8. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatarik, R., E-mail: hatarik1@llnl.gov; Sayre, D. B.; Caggiano, J. A.

    2015-11-14

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature,more » static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.« less

  9. Fusion neutron irradiation of Ni-Si alloys at high temperature*1

    NASA Astrophysics Data System (ADS)

    Huang, J. S.; Guinan, M. W.; Hahn, P. A.

    1988-07-01

    Two Ni-4% Si alloys, with different cold work levels, have been irradiated with 14-MeV fusion neutrons at 623 K, and their Curie temperatures have been monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2-MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14-MeV fusion neutrons is only 6-7% of that for an identical alloy irradiated by 2-MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6-7% for the fusion neutron irradiated sample.

  10. Radio telescope search for the resonant conversion of cold dark matter axions from the magnetized astrophysical sources

    NASA Astrophysics Data System (ADS)

    Huang, Fa Peng; Kadota, Kenji; Sekiguchi, Toyokazu; Tashiro, Hiroyuki

    2018-06-01

    We study the conditions for the adiabatic resonant conversion of the cold dark matter (CDM) axions into photons in the astrophysically sourced strong magnetic fields such as those in the neutron star magnetosphere. We demonstrate the possibility that the forthcoming radio telescopes such as the SKA (Square Kilometre Array) can probe those photon signals from the CDM axions.

  11. MTS-6 detectors calibration by using 239Pu-Be neutron source.

    PubMed

    Wrzesień, Małgorzata; Albiniak, Łukasz; Al-Hameed, Hiba

    2017-10-17

    Thermoluminescent detectors, type MTS-6, containing isotope 6Li (lithium) are sensitive in the range of thermal neutron energy; the 239Pu-Be (plutonium-and-beryllium) source emits neutrons in the energy range from 1 to 11 MeV. These seemingly contradictory elements may be combined by using the paraffin moderator, a determined density of thermal neutrons in the paraffin block and a conversion coefficient neutron flux to kerma, not forgetting the simultaneous registration of the photon radiation inseparable from the companion neutron radiation. The main aim of this work is to present the idea of calibration of thermoluminescent detectors that consist of a 6Li isotope, by using 239Pu-Be neutron radiation source. In this work, MTS-6 and MTS-7 thermoluminescent detectors and a plutonium-and-beryllium (239Pu-Be) neutron source were used. Paraffin wax fills the block, acting as a moderator. The calibration idea was based on the determination of dose equivalent rate based on the average kerma rate calculated taking into account the empirically determined function describing the density of thermal neutron flux in the paraffin block and a conversion coefficient neutron flux to kerma. The calculated value of the thermal neutron flux density was 1817.5 neutrons/cm2/s and the average value of kerma rate determined on this basis amounted to 244 μGy/h, and the dose equivalent rate 610 μSv/h. The calculated value allowed for the assessment of the length of time of exposure of the detectors directly in the paraffin block. The calibration coefficient for the used batch of detectors is (6.80±0.42)×10-7 Sv/impulse. Med Pr 2017;68(6):705-710. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Core Vessel Insert Handling Robot for the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, Van B; Dayton, Michael J

    2011-01-01

    The Spallation Neutron Source provides the world's most intense pulsed neutron beams for scientific research and industrial development. Its eighteen neutron beam lines will eventually support up to twenty-four simultaneous experiments. Each beam line consists of various optical components which guide the neutrons to a particular instrument. The optical components nearest the neutron moderators are the core vessel inserts. Located approximately 9 m below the high bay floor, these inserts are bolted to the core vessel chamber and are part of the vacuum boundary. They are in a highly radioactive environment and must periodically be replaced. During initial SNS construction,more » four of the beam lines received Core Vessel Insert plugs rather than functional inserts. Remote replacement of the first Core Vessel Insert plug was recently completed using several pieces of custom-designed tooling, including a highly complicated Core Vessel Insert Robot. The design of this tool are discussed.« less

  13. Some Chinese folk prescriptions for wind-cold type common cold.

    PubMed

    Hai-Long, Zhai; Shimin, Chen; Yalan, Lu

    2015-07-01

    Although self-limiting, the common cold (gǎn mào) is highly prevalent. There are no effective antivirals to cure the common cold and few effective measures to prevent it, However, for thousands years, Chinese people have treated the common cold with natural herbs, According to the traditional Chinese medicine (TCM) theory ( zhōng yī lǐ lùn), the common cold is considered as an exterior syndrome, which can be further divided into the wind-cold type ( fēng hán xíng), the wind-heat type ( fēng rè xíng), and the summer heat dampness type ( shǔ rè xíng). Since the most common type of common cold caught in winter and spring is the wind-cold type, the article introduced some Chinese folk prescriptions for the wind-cold type common cold with normal and weak physique, respectively. For thousands of years, Chinese folk prescriptions for the common cold, as complementary and alternative medicine (CAM; bǔ chōng yǔ tì dài yī xué), have been proven to be effective, convenient, cheap, and most importantly, safe. The Chinese folk prescriptions ( zhōng guó mín jiān chǔ fāng) for the wind-cold type common cold are quite suitable for general practitioners or patients with the wind-cold type common cold, to treat the disease. Of course, their pharmacological features and mechanisms of action need to be further studied.

  14. Detecting fast and thermal neutrons with a boron loaded liquid scintillator, EJ-339A.

    PubMed

    Pino, F; Stevanato, L; Cester, D; Nebbia, G; Sajo-Bohus, L; Viesti, G

    2014-09-01

    A commercial boron-loaded liquid scintillator EJ-339 A was studied, using a (252)Cf source with/without polyethylene moderator, to examine the possibility of discriminating slow-neutron induced events in (10)B from fast-neutron events, resulting from proton recoils, and gamma-ray events. Despite the strong light quenching associated with neutron induced events in (10)B, correct classification of these events is shown to be possible with the aid of digital signal processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Adaptation to exercise in the cold.

    PubMed

    Shephard, R J

    1985-01-01

    The winter athlete has several potential tactics for sustaining body temperature in the face of severe cold. An increase in the intensity of physical activity may be counter-productive because of increased respiratory heat loss, increased air or water movement over the body surface, and a pumping of air or water beneath the clothing. Shivering can generate heat at a rate of 10 to 15 kJ/min, but it impairs skilled performance, while the resultant glycogen usage hastens the onset of fatigue and mental confusion. Non-shivering thermogenesis could arise in either brown adipose tissue or white fat. Brown adipose tissue generates heat by the action of free fatty acids in uncoupling mitochondrial electron transport, and by noradrenaline-induced membrane depolarisation and sodium pumping. The existence of brown adipose tissue in human adults is controversial, and although there are theoretical mechanisms of heat production in white fat, their contribution to the maintenance of body temperature is small. Acclimatisation to cold develops over the course of about 10 days, and in humans the primary change is an insulative, hypothermic type of response; this reflects the intermittent nature of most occupational and athletic exposures to cold. Nevertheless, with more sustained exposure to cold air or water, humans can apparently develop the humoral type of acclimatisation described in small mammals, with an increased output of noradrenaline and/or thyroxine. The associated mobilisation of free fatty acids suggests the possibility of using winter sport as a pleasant method of treating obesity. In men, a combination of moderate exercise and facial cooling induces a substantial fat loss over a 1- to 2-week period, with an associated ketonuria, proteinuria, and increase of body mass. Possible factors contributing to this fat loss include: (a) a small energy deficit; (b) the energy cost of synthesising new lean tissue; (c) energy loss through the storage and excretion of ketone

  16. Optimization study of normal conductor tokamak for commercial neutron source

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Sakai, R.; Okamoto, A.

    2017-05-01

    The optimum conceptual design of tokamak with normal conductor coils was studied for minimizing the cost for producing a given neutron flux by using a system code, PEC. It is assumed that the fusion neutrons are used for burning transuranics from the fission reactor spent fuel in the blanket and a fraction of the generated electric power is circulated to opearate the tokamak with moderate plasma fusion gain. The plasma performance was assumed to be moderate ones; {β\\text{N}}~∼ ~3{--}4 in the aspect ratio A~=~2{--}3 and {{H}98y2}~=~1 . The circulating power is an important factor affecting the cost. Though decreasing the aspect ratio is useful to raise the plasma beta and decrease the toroidal field, the maximum field in the coil starts to rise in the very low aspect ratio range and then the circulating power increases with decrease in the plasma aspect ratio A below A~∼ ~2 , while the construction cost increases with A . As a result, the cost per neutron has its minimum around A~∼ ~2.2 , namely, between ST and the conventional tokamak. The average circulating power fraction is expected to be ~51%.

  17. A Theoretical Analysis of Thermal Radiation from Neutron Stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1993-01-01

    As soon as it was realized that the direct URCA process is allowed by many modern nuclear equation of state, an analysis of its effect on the cooling of neutron stars was undertaken. A primary study showed that the occurrence of the direct URCA process makes the surface temperature of a neutron star suddenly drop by almost an order of magnitude when the cold wave from the core reaches the surface when the star is a few years old. The results of this study are published in Page and Applegate. As a work in progress, we are presently extending the above work. Improved expressions for the effect of nucleon pairing on the neutrino emissivity and specific heat are now available, and we have incorporated them in a recalculation of rate of the direct URCA process.

  18. Orthodontic archwire composition and phase analyses by neutron spectroscopy.

    PubMed

    Tian, Kun V; Festa, Giulia; Basoli, Francesco; Laganà, Giuseppina; Scherillo, Antonella; Andreani, Carla; Bollero, Patrizio; Licoccia, Silvia; Senesi, Roberto; Cozza, Paola

    2017-05-31

    Quantitative metallurgical and phase analyses employing neutron diffraction technique were conducted on two as-received commercial rectangular austenitic stainless steel orthodontic archwires, G&H and Azdent, 0.43×0.64 mm (0.017×0.025 inch). Results showed a bi-phase structure containing martensitic phase (45.67% for G&H and 6.62% for Azdent) in addition to the expected metastable austenite. The former may be a strain-induced phase-transformation arising during the cold working process of wire fabrication. Further neutron resonance capture analysis determinations provided atomic and isotopic compositions, including alloying elements in each sample, complementary to the results of traditional energy dispersive X-ray spectroscopy. Together, these results assist in relating commercial alloying recipes and processing histories with mechanical performance, strength and ductility in particular.

  19. Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    NASA Astrophysics Data System (ADS)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.

    2016-10-01

    An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

  20. Simulations of a PSD Plastic Neutron Collar for Assaying Fresh Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis

    The potential performance of a notional active coincidence collar for assaying uranium fuel based on segmented detectors constructed from the new PSD plastic fast organic scintillator with pulse shape discrimination capability was investigated in simulation. Like the International Atomic Energy Agency's present Uranium Neutron Collar for LEU (UNCL), the PSD plastic collar would also function by stimulating fission in the 235U content of the fuel with a moderated 241Am/Li neutron source and detecting instances of induced fission via neutron coincidence counting. In contrast to the moderated detectors of the UNCL, the fast time scale of detection in the scintillator eliminatesmore » statistical errors due to accidental coincidences that limit the performance of the UNCL. However, the potential to detect a single neutron multiple times historically has been one of the properties of organic scintillator detectors that has prevented their adoption for international safeguards applications. Consequently, as part of the analysis of simulated data, a method was developed by which true neutron-neutron coincidences can be distinguished from inter-detector scatter that takes advantage of the position and timing resolution of segmented detectors. Then, the performance of the notional simulated coincidence collar was evaluated for assaying a variety of fresh fuels, including some containing burnable poisons and partial defects. In these simulations, particular attention was paid to the analysis of fast mode measurements. In fast mode, a Cd liner is placed inside the collar to shield the fuel from the interrogating source and detector moderators, thereby eliminating the thermal neutron flux that is most sensitive to the presence of burnable poisons that are ubiquitous in modern nuclear fuels. The simulations indicate that the predicted precision of fast mode measurements is similar to what can be achieved by the present UNCL in thermal mode. For example, the statistical

  1. Reduction of common cold symptoms by encapsulated juice powder concentrate of fruits and vegetables: a randomised, double-blind, placebo-controlled trial.

    PubMed

    Roll, Stephanie; Nocon, Marc; Willich, Stefan N

    2011-01-01

    Dietary supplements have been suggested in the prevention of the common cold, but previous investigations have been inconsistent. The present study was designed to determine the preventive effect of a dietary supplement from fruits and vegetables on common cold symptoms. In a randomised, double-blind, placebo-controlled trial, healthcare professionals (mainly nursing staff aged 18-65 years) from a university hospital in Berlin, Germany, were randomised to four capsules of dietary supplement (Juice Plus+®) or matching placebo daily for 8 months, including a 2-month run-in period. The number of days with moderate or severe common cold symptoms within 6 months (primary outcome) was assessed by diary self-reports. We determined means and 95 % CI, and differences between the two groups were analysed by ANOVA. A total of 529 subjects were included into the primary analysis (Juice Plus+®: 263, placebo: 266). The mean age of the participants was 39·9 (sd 10·3) years, and 80 % of the participants were female. The mean number of days with moderate or severe common cold symptoms was 7·6 (95 % CI 6·5, 8·8) in the Juice Plus+® group and 9·5 (8·4, 10·6) in the placebo group (P = 0·023). The mean number of total days with any common cold symptoms was similar in the Juice Plus+® and in the placebo groups (29·4 (25·8, 33·0) v. 30·7 (27·1, 34·3), P = 0·616). Intake of a dietary supplement from fruits and vegetables was associated with a 20 % reduction of moderate or severe common cold symptom days in healthcare professionals particularly exposed to patient contact.

  2. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    NASA Astrophysics Data System (ADS)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  3. Thermal neutron cross-section and resonance integral of the 152Sm(n,γ)153Sm reaction induced by pulsed neutrons

    NASA Astrophysics Data System (ADS)

    Van Do, Nguyen; Khue, Pham Duc; Thanh, Kim Tien; Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Kye, Yong-Uk; Cho, Moo-Hyun

    2017-10-01

    We measured the thermal neutron cross-section (σ0) and resonance integral (I0) of the 152Sm(n,γ)153Sm reaction relative to that of the 197Au(n,γ)198Au reaction. Sm and Au foils with and without a cadmium cover of 0.5 mm were irradiated with moderated pulsed neutrons produced from the electron linac. The induced activities of the reaction products were determined via high energy resolution HPGe detector. The present results: σ0,Sm =212±8 b and I0,Sm =3.02±0.19 kb are consistent with most of the existing reference data.

  4. Compact D-D/D-T neutron generators and their applications

    NASA Astrophysics Data System (ADS)

    Lou, Tak Pui

    2003-10-01

    Neutron generators based on the 2H(d,n)3He and 3H(d,n)4He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >109 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 1014 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 105 n/cm2s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production

  5. Characterization of the Gamma Response of a Cadmium Capture-gated Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Hogan, Nathaniel; Rees, Lawrence; Czirr, Bart; Bastola, Suraj

    2010-10-01

    We have studied the gamma response of a newly developed capture-gated neutron spectrometer. Such spectrometers detect a dual signal from incoming neutrons, allowing for differentiation between other particles, such as gamma rays. The neutron provides a primary light pulse in either plastic or liquid scintillator through neutron-proton collisions. A capture material then delivers a second pulse as the moderated neutron captures in the intended material, which then de-excites with the release of gamma energy. The presented spectrometer alternates one centimeter thick plastic scintillators with sheets of cadmium inserted in between for neutron capture. The neutron capture in cadmium offers a release of gamma energy ˜ 9 MeV. To verify that the interaction was caused by a neutron, the response functions of both events must be well known. Due to the prior existence of many capture-gated neutron spectrometers, the proton recoil pulse has already been studied, but the capture pulse is unique to each spectrometer and must be measured. Experimental results agree with theoretical Monte-Carlo code, both suggesting that the optics and geometry of the spectrometer play a large role in its efficiency. Results prove promising for the efficiency of the spectrometer.

  6. Beryllium, zinc and lead single crystals as a thermal neutron monochromators

    NASA Astrophysics Data System (ADS)

    Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.; Mansy, M. S.

    2015-03-01

    The monochromatic features of Be, Zn and Pb single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.04 up to 0.5 nm. A computer program MONO written in "FORTRAN-77", has been adapted to carry out the required calculations. Calculations show that a 5 mm thick of beryllium (HCP structure) single crystal cut along its (0 0 2) plane having 0.6° FWHM are the optimum parameters when it is used as a monochromator with high reflected neutron intensity from a thermal neutron flux. Furthermore, at wavelengths shorter than 0.16 nm it is free from the accompanying higher order ones. Zinc (HCP structure) has the same parameters, with intensity much less than the latter. The same features are seen with lead (FCC structure) cut along its (3 1 1) plane with less reflectivity than the former. However, Pb (3 1 1) is more preferable than others at neutron wavelengths ⩽ 0.1 nm, since the glancing angle (θ ∼ 20°) is more suitable to carry out diffraction experiments. For a cold neutron flux, the first-order neutrons reflected from beryllium is free from the higher orders up to 0.36 nm. While for Zn single crystal is up to 0.5 nm.

  7. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Merrill, F. E.

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize amore » deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.« less

  8. Time correlated measurements using plastic scintillators with neutron-photon pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Richardson, Norman E., IV

    Since the beginning of the nuclear age, there has been a strong demand for the development of efficient technologies for the detection of ionizing radiation. According to the United States' Department of Energy, the accurate assessment of fissile materials is essential in achieving the nonproliferation goals of enhancing safety and security of nuclear fuel cycle and nuclear energy facilities. Nuclear materials can be characterized by the measurement of prompt and delayed neutrons and gamma rays emitted in spontaneous or induced fission reactions and neutrons emitted in fission reactions are the distinctive signatures of nuclear materials. Today, the most widely used neutron detection technologies rely on thermal neutron capture reactions using a moderating material to cause the neutron to lose its energy prior to the detection event. This is necessary because as the fission event occurs, neutrons are emitted carrying high amounts of energy, typically on the order of mega electron volts (MeV). These energetic particles are classified as "fast" neutrons. For detecting the thermal neutrons, the Helium-3 (3He) gas-filled counters are arguably the most widely used technology of neutron detection. 3He counters have been the scientific standard for the nuclear engineering community for several decades, and have earned their place as a reliable technique for the detection of neutrons. However, 3He gas-filled counters have several disadvantages. First, gas-filled counters are not rigid and are sensitive to vibrations. Secondly, gas-filled counters are prone to the count rate limitations due to the physical processes of charge multiplication and transport in the gas medium in the electric field. Lastly, 3He gas-filled counters suffer from a supply shortage of the 3He isotope. As it is stated in [3], this shortage is created by the new demand for Helium-3 due to the deployment of neutron detectors at the borders after the 9/11 attack to help secure the nation against smuggled

  9. Study of Cold Fusion Reactions Using Collective Clusterization Approach

    NASA Astrophysics Data System (ADS)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-10-01

    Within the framework of the dynamical cluster decay model (DCM), the 1n evaporation cross-sections ({σ }1n) of cold fusion reactions (Pb and Bi targets) are calculated for {Z}{CN}=104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy {E}{CN}* =15+/- 1 {MeV}, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (B f ) and neutron separation energies ({S}1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β 2i-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the 1n cross-sections are addressed for {Z}{CN}=104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto {Z}{CN}=109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia ({I}{NS}) is also investigated at these energies. Supported by the Council of Scientific and Industrial Research (CSIR), in the Form of Research Project Grant No. 03(1341)/15/EMR-II, and to DST, New Delhi, for INSPIRE-Fellowship Grant No. DST/INSPIRE/03/2015/000199

  10. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound impliesmore » both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.« less

  11. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    NASA Astrophysics Data System (ADS)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira; Kolomeitsev, Evgeni E.

    2017-10-01

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S 0. In addition, for assumed values of S 0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L ,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.

  12. Preparation and benchmarking of ANSL-V cross sections for advanced neutron source reactor studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arwood, J.W.; Ford, W.E. III; Greene, N.M.

    1987-01-01

    Validity of selected data from the fine-group neutron library was satisfactorily tested in performance parameter calculations for the BAPL-1, TRX-1, and ZEEP-1 thermal lattice benchmarks. BAPL-2 is an H/sub 2/O moderated, uranium oxide lattice; TRX-1 is an H/sub 2/O moderated, 1.31 weight percent enriched uranium metal lattice; ZEEP-1 is a D/sub 2/O-moderated, natural uranium lattice. 26 refs., 1 tab.

  13. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    NASA Astrophysics Data System (ADS)

    Kopatch, Yuri; Novitsky, Vadim; Ahmadov, Gadir; Gagarsky, Alexei; Berikov, Daniyar; Danilyan, Gevorg; Hutanu, Vladimir; Klenke, Jens; Masalovich, Sergey

    2018-03-01

    The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble) by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get "clean" data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  14. Effect of cold indoor environment on physical performance of older women living in the community.

    PubMed

    Lindemann, Ulrich; Oksa, Juha; Skelton, Dawn A; Beyer, Nina; Klenk, Jochen; Zscheile, Julia; Becker, Clemens

    2014-07-01

    the effects of cold on older persons' body and mind are not well documented, but with an increased number of older people with decreasing physical performance, these possible effects need to be understood. to investigate the effect of cold indoor environment on physical performance of older women. cross-sectional experimental study with two test conditions. movement laboratory in a climate chamber. eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). participants were exposed to moderately cold (15°C) and warm/normal (25°C) temperature in a climate chamber in random order with an interval of 1 week. The assessment protocol included leg extensor power (Nottingham Power Rig), sit-to-stand performance velocity (linear encoder), gait speed, walk-ratio (i.e. step length/cadence on an instrumented walk way), maximal quadriceps and hand grip strength. physical performance was lower in 15°C room temperature compared with 25°C room temperature for leg extensor power (P < 0.0001), sit-to-stand performance velocity (P < 0.0001), gait speed (P < 0.0001), walk-ratio (P = 0.016) and maximal quadriceps strength (P = 0.015), but not for hand grip strength. in healthy older women a moderately cold indoor environment decreased important physical performance measures necessary for independent living. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Complementary and alternative medicine for prevention and treatment of the common cold

    PubMed Central

    Nahas, Richard; Balla, Agneta

    2011-01-01

    Abstract Objective To review the evidence supporting complementary and alternative medicine approaches to treatment and prevention of the common cold in adults. Quality of Evidence MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews were searched from January 1966 to September 2009 combining the key words common cold or influenza with echinacea, garlic, ginseng, probiotics, vitamin C, and zinc. Clinical trials and prospective studies were included. Main Message For prevention, vitamin C demonstrated benefit in a large meta-analysis, with possibly increased benefit in patients subjected to cold stress. There is inconsistent evidence for Asian ginseng (Panax ginseng) and North American ginseng (Panax quinquefolius). Allicin was highly effective in 1 small trial. For treatment, Echinacea purpurea is the most consistently useful variety; it was effective in 5 of 6 trials. Zinc lozenges were effective in 5 of 9 trials, likely owing to dose and formulation issues. Overall, the evidence suggests no benefit from probiotics for prevention or treatment of the common cold. Conclusion Vitamin C can be recommended to Canadian patients for prevention of the common cold. There is moderate evidence supporting the use of Echinacea purpurea and zinc lozenges for treatment. Ginseng and allicin warrant further research. PMID:21322286

  16. High yield neutron generators using the DD reaction

    NASA Astrophysics Data System (ADS)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  17. Neutron optics concept for the materials engineering diffractometer at the ESS

    NASA Astrophysics Data System (ADS)

    Šaroun, J.; Fenske, J.; Rouijaa, M.; Beran, P.; Navrátil, J.; Lukáš, P.; Schreyer, A.; Strobl, M.

    2016-09-01

    The Beamline for European Materials Engineering Research (BEER) has been recently proposed to be built at the European Spallation Source (ESS). The presented concept of neutron delivery optics for this instrument addresses the problems of bi-spectral beam extraction from a small moderator, optimization of neutron guides profile for long-range neutron transport and focusing at the sample under various constraints. They include free space before and after the guides, a narrow guide section with gaps for choppers, closing of direct line of sight and cost reduction by optimization of the guides cross-section and coating. A system of slits and exchangeable focusing optics is proposed in order to match various wavelength resolution options provided by the pulse shaping and modulation choppers, which permits to efficiently trade resolution for intensity in a wide range. Simulated performance characteristics such as brilliance transfer ratio are complemented by the analysis of the histories of “useful” neutrons obtained by back tracing neutrons hitting the sample, which helps to optimize some of the neutron guide parameters such as supermirror coating.

  18. How to Produce a Reactor Neutron Spectrum Using a Proton Accelerator

    DOE PAGES

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; ...

    2015-06-18

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. Themore » particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.« less

  19. Constraining neutron guide optimizations with phase-space considerations

    NASA Astrophysics Data System (ADS)

    Bertelsen, Mads; Lefmann, Kim

    2016-09-01

    We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.

  20. An alternative to the traditional cold pressor test: the cold pressor arm wrap.

    PubMed

    Porcelli, Anthony John

    2014-01-16

    Recently research on the relationship between stress and cognition, emotion, and behavior has greatly increased. These advances have yielded insights into important questions ranging from the nature of stress' influence on addiction(1) to the role of stress in neural changes associated with alterations in decision-making(2,3). As topics being examined by the field evolve, however, so too must the methodologies involved. In this article a practical and effective alternative to a classic stress induction technique, the cold pressor test (CPT), is presented: the cold pressor arm wrap (CPAW). CPT typically involves immersion of a participant's dominant hand in ice-cold water for a period of time(4). The technique is associated with robust activation of the sympatho-adrenomedullary (SAM) axis (and release of catecholamines; e.g. adrenaline and noradrenaline) and mild-to-moderate activation of the hypothalamic-pituitary-adrenal (HPA) axis with associated glucocorticoid (e.g. cortisol) release. While CPT has been used in a wide range of studies, it can be impractical to apply in some research environments. For example use of water during, rather than prior to, magnetic resonance imaging (MRI) has the potential to damage sensitive and expensive equipment or interfere with acquisition of MRI signal. The CPAW is a practical and effective alternative to the traditional CPT. Composed of a versatile list of inexpensive and easily acquired components, CPAW makes use of MRI-safe gelpacs cooled to a temperature similar to CPT rather than actual water. Importantly CPAW is associated with levels of SAM and HPA activation comparable to CPT, and can easily be applied in a variety of research contexts. While it is important to maintain specific safety protocols when using the technique, these are easy to implement if planned for. Creation and use of the CPAW will be discussed.

  1. Cold plate

    DOEpatents

    Marroquin, Christopher M.; O'Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  2. The emergence of x-ray astronomy, neutron stars and black holes

    NASA Astrophysics Data System (ADS)

    Gursky, H.

    2003-10-01

    Remo Ruffini's professional career began just as X-ray astronomy began its second decade. His paper on the maximum mass of cold stars was instrumental in establishing Cygnus X-1 as a black hole. The idea of black holes and neutron stars had originated more than 40 years earlier based on considerations of white dwarfs. It was not until the explosion of technology that emerged after World War II that the observational evidence developed which enabled establishing the existence of these objects. The discovery of X-ray sources in 1962 and the subsequent maturing of that discipline and of radio astronomy were the key elements. By now a large number of stellar objects are found to be neutron stars and black holes.

  3. A compact in vivo neutron activation analysis system to quantify manganese in human hand bone

    NASA Astrophysics Data System (ADS)

    Liu, Yingzi

    As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.

  4. Quantitative NDA of isotopic neutron sources.

    PubMed

    Lakosi, L; Nguyen, C T; Bagi, J

    2005-01-01

    A non-destructive method for assaying transuranic neutron sources was developed, using a combination of gamma-spectrometry and neutron correlation technique. Source strength or actinide content of a number of PuBe, AmBe, AmLi, (244)Cm, and (252)Cf sources was assessed, both as a safety issue and with respect to combating illicit trafficking. A passive neutron coincidence collar was designed with (3)He counters embedded in a polyethylene moderator (lined with Cd) surrounding the sources to be measured. The electronics consist of independent channels of pulse amplifiers and discriminators as well as a shift register for coincidence counting. The neutron output of the sources was determined by gross neutron counting, and the actinide content was found out by adopting specific spontaneous fission and (alpha,n) reaction yields of individual isotopes from the literature. Identification of an unknown source type and constituents can be made by gamma-spectrometry. The coincidences are due to spontaneous fission in the case of Cm and Cf sources, while they are mostly due to neutron-induced fission of the Pu isotopes (i.e. self-multiplication) and the (9)Be(n,2n)(8)Be reaction in Be-containing sources. Recording coincidence rate offers a potential for calibration, exploiting a correlation between the Pu amount and the coincidence-to-total ratio. The method and the equipment were tested in an in-field demonstration exercise, with participation of national public authorities and foreign observers. Seizure of the illicit transport of a PuBe source was simulated in the exercise, and the Pu content of the source was determined. It is expected that the method could be used for identification and assay of illicit, found, or not documented neutron sources.

  5. SU-F-T-183: Design of a Beam Shaping Assembly of a Compact DD-Based Boron Neutron Capture Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, M; Liu, Y; Nie, L

    Purpose: To design a beam shaping assembly (BSA) to shape the 2.45-MeV neutrons produced by a deuterium-deuterium (DD) neutron generator and to optimize the beam output for boron neutron capture therapy of brain tumors Methods: MCNP is used for this simulation study. The simulation model consists of a neutron surface source that resembles an actual DD source and is surrounded by a BSA. The neutron source emits 2.45-MeV neutrons isotropically. The BSA is composed of a moderator, reflector, collimator and filter. Various types of materials and geometries are tested for each component to optimize the neutron output. Neutron characteristics aremore » measured with an 2×2×2-cm{sup 3} air-equivalent cylinder at the beam exit. The ideal BSA is determined by evaluating the in-air parameters, which include epithermal neutron per source neutron, fast neutron dose per epithermal neutron, and photon dose per epithermal neutron. The parameter values are compared to those recommended by the IAEA. Results: The ideal materials for reflector and thermal neutron filter were lead and cadmium, respectively. The thickness for reflector was 43 cm and for filter was 0.5 mm. At present, the best-performing moderator has 25 cm of AlF{sub 3} and 5 cm of MgF{sub 2}. This layout creates a neutron spectrum that has a peak at approximately 10 keV and produces 1.35E-4 epithermal neutrons per source neutron per cm{sup 2}. Additional neutron characteristics, fast neutrons per epithermal neutron and photon per epithermal neutron, are still under investigation. Conclusion: Working is ongoing to optimize the final layout of the BSA. The neutron spectrum at the beam exit window of the final configuration will have the maximum number of epithermal neutrons and limited photon and fast neutron contaminations within the recommended values by IAEA. Future studies will also include phantom experiments to validate the simulation results.« less

  6. A collimated neutron detector for RFP plasmas in MST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capecchi, W. J., E-mail: capecchi@wisc.edu; Anderson, J. K.; Bonofiglo, P. J.

    The neutron emissivity profile in the Madison Symmetric Torus is being reconstructed through the use of a collimated neutron detector. A scintillator-photomultiplier tube (PMT) system is employed to detect the fusion neutrons with the plasma viewing volume defined by a 55 cm deep, 5 cm diameter aperture. Effective detection of neutrons from the viewing volume is achieved through neutron moderation using 1300 lbs of high density polyethylene shielding, which modeling predicts attenuates the penetrating flux by a factor of 10{sup 4} or more. A broad spectrum of gamma radiation is also present due to the unconfined fusion proton bombardment ofmore » the thick aluminum vacuum vessel. A 15 cm cylindrical liquid scintillator of 3.8 cm diameter is used to further increase directional sensitivity. A fast (5 ns rise time) preamplifier and digitization at 500 MHz prevent pulse pile-up even at high count rates (∼10{sup 4}/s). The entire neutron camera system is situated on an adjustable inclining base which provides the differing plasma viewing volumes necessary for reconstruction of the neutron emissivity profile. This profile, directly related to the fast-ion population, allows for an investigation of the critical fast-ion pressure gradient required to destabilize a neutral beam driven Alfvénic mode which has been shown to transport fast ions.« less

  7. Cyclotron line resonant transfer through neutron star atmospheres

    NASA Technical Reports Server (NTRS)

    Wang, John C. L.; Wasserman, Ira M.; Salpeter, Edwin E.

    1988-01-01

    Monte Carlo methods are used to study in detail the resonant radiative transfer of cyclotron line photons with recoil through a purely scattering neutron star atmosphere for both the polarized and unpolarized cases. For each case, the number of scatters, the path length traveled, the escape frequency shift, the escape direction cosine, the emergent frequency spectra, and the angular distribution of escaping photons are investigated. In the polarized case, transfer is calculated using both the cold plasma e- and o-modes and the magnetic vacuum perpendicular and parallel modes.

  8. Concealed nuclear material identification via combined fast-neutron/γ-ray computed tomography (FNGCT): a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Licata, M.; Joyce, M. J.

    2018-02-01

    The potential of a combined and simultaneous fast-neutron/γ-ray computed tomography technique using Monte Carlo simulations is described. This technique is applied on the basis of a hypothetical tomography system comprising an isotopic radiation source (americium-beryllium) and a number (13) of organic scintillation detectors for the production and detection of both fast neutrons and γ rays, respectively. Via a combination of γ-ray and fast neutron tomography the potential is demonstrated to discern nuclear materials, such as compounds comprising plutonium and uranium, from substances that are used widely for neutron moderation and shielding. This discrimination is achieved on the basis of the difference in the attenuation characteristics of these substances. Discrimination of a variety of nuclear material compounds from shielding/moderating substances (the latter comprising lead or polyethylene for example) is shown to be challenging when using either γ-ray or neutron tomography in isolation of one another. Much-improved contrast is obtained for a combination of these tomographic modalities. This method has potential applications for in-situ, non-destructive assessments in nuclear security, safeguards, waste management and related requirements in the nuclear industry.

  9. β -decay studies of very neutron-rich Pd and Ag isotopes

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2014-03-01

    The rapid-neutron capture process (r-process) is attributed as the source of nearly half the elements heavier than iron. To gain insight into the r-process nucleosynthesis, uncertainties such as the nuclear physics involved must be minimized. An experiment was performed to measure properties of neutron-rich nuclei just below the N = 82 shell closure believed to be responsible for production of the A = 130 peak in the solar r-process abundance pattern. β-decay half-lives and neutron branching ratios, Pn values, were measured for Pd and Ag isotopes at the GSI Fragment Separator (FRS). The FRS provided in-flight separation and identification of fission fragments produced by a 900 MeV/u 238U beam. Ions of interest were implanted in the Silicon Implantation detector and Beta Absorber (SIMBA) array. The large pixelation of the array allowed for position-time correlation between implants and the corresponding β-decays. The parent nucleus may decay to an excited state in the daughter, above the neutron separation energy emitting a neutron. These neutrons were moderated and detected in Beta deLayEd Neutron (BELEN) detector surrounding SIMBA. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.

  10. Neutron star matter equation of state: current status and challenges

    NASA Astrophysics Data System (ADS)

    Ohnishi, Akira

    2014-09-01

    Neutron star matter has a variety of constituents and structures depending on the density; neutron-rich nuclei surounded by electrons and drip neutrons in the crust, pasta nuclei at the bottom of inner crust, and uniform isospin-asymmetric nuclear matter in a superfluid state in the outer core. In the inner core, the neutron Fermi energy becomes so large that exotic constituents such as hyperons, mesons and quarks may emerge. Radioactive beam and hypernuclear experiments provide information on the symmetry energy and superfluidity in the crust and outer core and on the hyperon potentials in the inner core, respectively. Cold atom experiments are also helpful to understand pure neutron matter, which may be simulated by the unitary gas. An equation of state (EOS) constructed based on these laboratory experiments has to be verified by the astronomical observations such as the mass, radius, and oscillations of neutron stars. One of the key but missing ingredients is the three-baryon interactions such as the hyperon-hyperon-nucleon (YYN) interaction. YYN interaction is important in order to explain the recently discovered massive neutron stars consistently with laboratory experiments. We have recently found that the ΛΛ interaction extracted from the ΛΛ correlation at RHIC is somewhat stronger than that from double Λ hypernuclei. Since these two interactions corresponds to the vacuum and in-medium ΛΛ interactions, respectively, the difference may tell us a possible way to access the YYN interaction based on experimental data. In the presentation, after a review on the current status of neutron star matter EOS studies, we discuss the necessary tasks to pin down the EOS. We also present our recent study of ΛΛ interaction from correlation data at RHIC.

  11. [Cold-induced urticaria].

    PubMed

    Delorme, N; Drouet, M; Thibaudeau, A; Verret, J L

    2002-09-01

    Cold urticaria is characterized by the development of urticaria, usually superficial and/or angioedematous reaction after cold contact. It was found predominantly in young women. The diagnosis is based on the history and ice cube test. Patients with a negative ice cube test may have represented systemic cold urticaria (atypical acquired cold urticaria) induced by general body cooling. The pathogenesis is poorly understood. Cold urticaria can be classified into acquired and familial disorders, with an autosomal dominant inheritance. Idiopathic cold urticaria is most common type but the research of a cryopathy is necessary. Therapy is often difficult. It is essential that the patient be warned of the dangers of swimming in cold water because systemic hypotension can occur. H1 antihistamines can be used for treatment of cold urticaria but the clinical responses are highly variable. The combination with an H2 antagonists is more effective. Doxepin may be useful in the treatment. Leukotriene receptor antagonists may be a novel, promising drug entity. In patients who do not respond to previous treatments, induction of cold tolerance may be tried.

  12. Optimization of a Light Collection System for use in the Neutron Lifetime Project

    NASA Astrophysics Data System (ADS)

    Taylor, C.; O'Shaughnessy, C.; Mumm, P.; Thompson, A.; Huffman, P.

    2007-10-01

    The Ultracold Neutron (UCN) Lifetime Project is an ongoing experiment with the objective of improving the average measurement of the neutron beta-decay lifetime. A more accurate measurement may increase our understanding of the electroweak interaction and improve astrophysical/cosmological theories on Big Bang nucleosynthesis. The current apparatus uses 0.89 nm cold neutrons to produce UCN through inelastic collisions with superfluid 4He in the superthermal process. The lifetime of the UCN is measured by detection of scintillation light from superfluid 4He created by electrons produced in neutron decay. Competing criteria of high detection efficiency outside of the apparatus and minimum heating of the experimental cell has led to the design of an acrylic light collection system. Initial designs were based on previous generations of the apparatus. ANSYS was used to optimize the cooling system for the light guide by checking simulated end conditions based on width of contact area, number of contact points, and location on the guide itself. SolidWorks and AutoCAD were used for design. The current system is in the production process.

  13. Neutron resonance spin-echo upgrade at the three-axis spectrometer FLEXX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groitl, F., E-mail: felix.groitl@psi.ch; Quintero-Castro, D. L.; Habicht, K.

    2015-02-15

    We describe the upgrade of the neutron resonance spin-echo setup at the cold neutron triple-axis spectrometer FLEXX at the BER II neutron source at the Helmholtz-Zentrum Berlin. The parameters of redesigned key components are discussed, including the radio frequency (RF) spin-flip coils, the magnetic shield, and the zero field coupling coils. The RF-flippers with larger beam windows allow for an improved neutron flux transfer from the source to the sample and further to the analyzer. The larger beam cross sections permit higher coil inclination angles and enable measurements on dispersive excitations with a larger slope of the dispersion. Due tomore » the compact design of the spin-echo units in combination with the increased coil tilt angles, the accessible momentum-range in the Larmor diffraction mode is substantially enlarged. In combination with the redesigned components of the FLEXX spectrometer, including the guide, the S-bender polarizer, the double focusing monochromator, and a Heusler crystal analyzer, the count rate increased by a factor of 15.5, and the neutron beam polarization is enhanced. The improved performance extends the range of feasible experiments, both for inelastic scattering on excitation lifetimes in single crystals, and for high-resolution Larmor diffraction. The experimental characterization of the instrument components demonstrates the reliable performance of the new neutron resonance spin-echo option, now available for the scientific community at FLEXX.« less

  14. Intranasal ipratropium bromide for the common cold.

    PubMed

    AlBalawi, Zaina H; Othman, Sahar S; Alfaleh, Khalid

    2013-06-19

    and epistaxis. The overall risk of bias in the included studies was moderate. For people with the common cold, the existing evidence, which has some limitations, suggests that IB is likely to be effective in ameliorating rhinorrhoea. IB had no effect on nasal congestion and its use was associated with more side effects compared to placebo or no treatment although these appeared to be well tolerated and self limiting. There is a need for larger, high-quality trials to determine the effectiveness of IB in relieving common cold symptoms.

  15. The effect of exercise on prevention of the common cold: a meta-analysis of randomized controlled trial studies.

    PubMed

    Lee, Hyun Kun; Hwang, In Hong; Kim, Soo Young; Pyo, Se Young

    2014-05-01

    Because there is no specific treatment for the common cold, many previous studies have focused on prevention of the common cold. There were some studies reporting that regular, moderate-intensity exercise increases immunity and prevents the common cold. We conducted a meta-analysis to determine the effects of exercise on prevention of the common cold. We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL for studies released through June 2013. We manually searched the references. Two authors independently extracted the data. To assess the risk of bias of included literature, Cochrane Collaboration's tool for assessing risk of bias was used. Review Manager ver. 5.2 (RevMan, Cochrane Collaboration) was used for statistical analysis. Four randomized controlled trials were identified. A total of 281 participants, 134 in the exercise group and 147 in the control group, were included. The effect of exercise on the prevention of the common cold had a relative risk (RR) of 0.73 (95% confidence interval [CI], 0.56 to 0.95; I(2) = 7%). The mean difference of mean illness days between exercise group and control group was -3.50 (95% CI, -6.06 to -0.94; I(2) = 93%). In the subgroup analysis, the RR of under 16 weeks exercise was 0.79 (95% CI, 0.58 to 1.08). In this meta-analysis, regular, moderate-intensity exercise may have an effect on the prevention of the common cold. But numbers of included studies and participants were too small and quality of included studies was relatively poor. Subsequent well-designed studies with larger sample size are needed to clarify the association.

  16. Bimodal Imaging at ICON Using Neutrons and X-rays

    NASA Astrophysics Data System (ADS)

    Kaestner, A. P.; Hovind, J.; Boillat, P.; Muehlebach, C.; Carminati, C.; Zarebanadkouki, M.; Lehmann, E. H.

    For experiments with low contrast between the relevant features it can be beneficial to add a second modality to reduce ambiguity. At Paul Scherrer Institut the two neutron imaging facilities NEUTRA (thermal neutrons) and ICON (cold neutrons) we have installed X-ray beamlines for on-site bimodal imaging with neutrons and X-rays. This allows us to leave the sample untouched in the sample environment throughout an experiment and to reduce the waiting times between acquisitions using each modality. The applications and energy ranges of the X-ray installations are different at the two facilities. At NEUTRA larger samples are intended (60-320 kV) and at ICON small samples and simultaneous acquisition are intended (40-150 kV). Here, we report the more recent installation at ICON. The X-ray beamline uses a cone beam source and is arranged across the neutron beamline. The beamline is designed to allow up to ten times magnification. This matches the voxel-size that can be achieved with the micro-setup for neutrons. The oblique arrangement of the X-ray beamline further makes real-time acquisition possible since both modalities have a free view of the sample at any time. Reconstruction of cone beam data requires more knowledge about the beam geometry and sample position. Therefore, the beamline is equipped with laser based distance sensors and a calibration procedure has been developed to increase the accuracy of the reconstruction. The purpose of using multimodal acquisition is to fuse the data in a way that enhances the output of the experiment. We demonstrate the current system performance and provide a basic analysis with experiment data.

  17. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  18. Mock-up experiment at Birmingham University for BNCT project of Osaka University--Neutron flux measurement with gold foil.

    PubMed

    Tamaki, S; Sakai, M; Yoshihashi, S; Manabe, M; Zushi, N; Murata, I; Hoashi, E; Kato, I; Kuri, S; Oshiro, S; Nagasaki, M; Horiike, H

    2015-12-01

    Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. High yield neutron generators using the DD reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber,more » increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.« less

  20. Intracavitary moderator balloon combined with (252)Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations.

    PubMed

    Brandão, S F; Campos, T P R

    2015-07-01

    This article proposes a combination of californium-252 ((252)Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Dosimetric evaluations were performed on three protocol set-ups: (252)Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0-5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the (252)Cf source, sparing the normal brain tissue. Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis.

  1. Cold urticaria. Dissociation of cold-evoked histamine release and urticara following cold challenge.

    PubMed

    Keahey, T M; Greaves, M W

    1980-02-01

    Nine patients with acquired cold urticaria were studied to assess the effects of beta-adrenergic agents, xanthines, and corticosteroids on cold-evoked histamine release from skin in vivo. The patients, in all of whom an immediate urticarial response developed after cooling of the forearm, demonstrated release of histamine into the venous blood draining that forearm. Following treatment with aminophylline and albuterol in combination or prednisone alone, suppression of histamine release occurred in all but one patient. In some patients, this was accompanied by a subjective diminution in pruritus or buring, but there was no significant improvement in the ensuing edema or erythema. In one patient, total suppression of histamine release was achieved without any effect on whealing and erythema in response to cold challenge. Our results suggest that histamine is not central to the pathogenesis of vascular changes in acquired cold urticaria.

  2. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  3. Monte Carlo calculation for the development of a BNCT neutron source (1eV-10KeV) using MCNP code.

    PubMed

    El Moussaoui, F; El Bardouni, T; Azahra, M; Kamili, A; Boukhal, H

    2008-09-01

    Different materials have been studied in order to produce the epithermal neutron beam between 1eV and 10KeV, which are extensively used to irradiate patients with brain tumors such as GBM. For this purpose, we have studied three different neutrons moderators (H(2)O, D(2)O and BeO) and their combinations, four reflectors (Al(2)O(3), C, Bi, and Pb) and two filters (Cd and Bi). Results of calculation showed that the best obtained assembly configuration corresponds to the combination of the three moderators H(2)O, BeO and D(2)O jointly to Al(2)O(3) reflector and two filter Cd+Bi optimize the spectrum of the epithermal neutron at 72%, and minimize the thermal neutron to 4% and thus it can be used to treat the deep tumor brain. The calculations have been performed by means of the Monte Carlo N (particle code MCNP 5C). Our results strongly encourage further studying of irradiation of the head with epithermal neutron fields.

  4. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./ Russian Progress Report for Fiscal Year 1997, Volume 4, Part 8 - Neutron Poison Plates in Assemblies Containing Homogeneous Mixtures of Polystyrene-Moderated Plutonium and Uranium Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavuz, M.

    1999-05-01

    In the 1970s at the Battelle Pacific Northwest Laboratory (PNL), a series of critical experiments using a remotely operated Split-Table Machine was performed with homogeneous mixtures of (Pu-U)O{sub 2}-polystyrene fuels in the form of square compacts having different heights. The experiments determined the critical geometric configurations of MOX fuel assemblies with and without neutron poison plates. With respect to PuO{sub 2} content and moderation [H/(Pu+U)atomic] ratio (MR), two different homogeneous (Pu-U) O{sub 2}-polystyrene mixtures were considered: Mixture (1) 14.62 wt% PuO{sub 2} with 30.6 MR, and Mixture (2) 30.3 wt% PuO{sub 2} with 2.8 MR. In all mixtures, the uraniummore » was depleted to about O.151 wt% U{sup 235}. Assemblies contained copper, copper-cadmium or aluminum neutron poison plates having thicknesses up to {approximately}2.5 cm. This evaluation contains 22 experiments for Mixture 1, and 10 for Mixture 2 compacts. For Mixture 1, there are 10 configurations with copper plates, 6 with aluminum, and 5 with copper-cadmium. One experiment contained no poison plate. For Mixture 2 compacts, there are 3 configurations with copper, 3 with aluminum, and 3 with copper-cadmium poison plates. One experiment contained no poison plate.« less

  5. Temperature Measurements in Dynamically-loaded Systems Using Neutron Resonance Spectroscopy (NRS) at LANSCE

    NASA Astrophysics Data System (ADS)

    Yuan, V. W.

    2002-12-01

    In previous attempts to determine the internal temperature in systems subjected to dynamic loading, experimenters have usually relied on surface-based optical techniques that are often hampered by insufficient information regarding the emissivity of the surfaces under study. Neutron Resonance Spectroscopy (NRS) is a technique that uses Doppler-broadened neutron resonances to measure internal temperatures in dynamically-loaded samples. NRS has developed its own target-moderator assembly to provide single pulses with an order of magnitude higher brightness than the Lujan production target. The resonance line shapes from which temperature information is extracted are also influenced by non-temperature-dependent broadening from the moderator and detector phosphorescence. Dynamic NRS experiments have been performed to measure the temperature in a silver sheet jet and behind the passage of a shock wave in molybdenum.

  6. New thermal neutron calibration channel at LNMRI/IRD

    NASA Astrophysics Data System (ADS)

    Astuto, A.; Patrão, K. C. S.; Fonseca, E. S.; Pereira, W. W.; Lopes, R. T.

    2016-07-01

    A new standard thermal neutron flux unit was designed in the National Ionizing Radiation Metrology Laboratory (LNMRI) for calibration of neutron detectors. Fluence is achieved by moderation of four 241Am-Be sources with 0.6 TBq each, in a facility built with graphite and paraffin blocks. The study was divided into two stages. First, simulations were performed using MCNPX code in different geometric arrangements, seeking the best performance in terms of fluence and their uncertainties. Last, the system was assembled based on the results obtained on the simulations. The simulation results indicate quasi-homogeneous fluence in the central chamber and H*(10) at 50 cm from the front face with the polyethylene filter.

  7. Proteomic analysis of endothelial cold-adaptation

    PubMed Central

    2011-01-01

    glutathione levels and the NAD salvage pathway in increasing the reducing capacity of cold-adapted cells. Conclusions Endothelial adaptation to mild-moderate hypothermia down-regulates anabolic processes and increases the reducing capacity of cells to enhance their resistance to oxidation and injury associated with 0°C storage and rewarming. Inducing these characteristics in a clinical setting could potentially limit the damaging effects of energy insufficiency due to ischemia and prevent the disruption of integrated metabolism at low temperatures. PMID:22192797

  8. Observations of the microclimate of a lake under cold air advective conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.

    1977-01-01

    The moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold air advective conditions. Point temperature measurements north and south of the lake and data obtained from the NOAA satellite and a thermal scanner flown at 1.6 km, indicate that, under conditions of moderate winds (approximately 4m/sec), surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C. With surface wind speed less than 1m/sec, no substantial temperature effects were observed. Results of this study are being used in land use planning, lake level control and in agriculture for selecting planting sites.

  9. Thermoluminescence measurements of neutron dose around a medical linac.

    PubMed

    Barquero, R; Méndez, R; Iñiguez, M P; Vega, H R; Voytchev, M

    2002-01-01

    The photoncutron ambient dose around a 18 MV medical electron lineal accelerator has been measured with LiF:Mg,Ti chips of 3 x 3 x 1 mm inside moderating spheres. During the measurements a water phantom was irradiated in a field of 40 x 40 cm2. Two methods have been considered for comparison. In the first, a TLD-600/TLD-700 pair at the centre of a 25 cm diameter paraffine sphere was used, with the system behaving as a rem meter. In the second method, TLD-600/TLD-700 pairs, bare and at the centre of 7.6, 12.7, 20.3, 25.4, and 30.5 cm diameter polyethylene Bonner spheres were used to obtain the neutron spectrum. This was unfolded using the BUNKIUT code with the SPUNIT algorithm and the UTA4 and ARKI response functions. The neutron dose was followed by multiplying the unfolded neutron spectrum by the ambient dose equivalent to neutron fluence conversion factors. Both methods result in 0.5 mSv x Gy(-1) m away from the isocentre.

  10. Low-level gamma and neutron monitoring based on use of proportional counter filled with 3He in polythene moderator: study of the responses to gamma and neutrons.

    PubMed

    Pszona, S; Bantsar, A; Tulik, P; Wincel, K; Zaręba, B

    2014-10-01

    It has been shown that a proportional counter filled with (3)He placed centrally inside a polythene sphere opens a new possibility for measuring gamma photons and neutrons in the separate pulse-height windows. The responses to gamma and neutrons (in terms of ambient dose equivalent) of the detector assembly consisting of 203-mm polythene sphere with centrally positioned 40-mm diameter (3)He proportional counter have been studied. The response to secondary gammas from capture process in hydrogen has also been studied. The rather preliminary studies indicate that the proposed measuring system has very promising features as an ambient dose equivalent device for mixed gamma-neutron fields. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Characterization of photosynthetic ferredoxin from the Antarctic alga Chlamydomonas sp. UWO241 reveals novel features of cold adaptation.

    PubMed

    Cvetkovska, Marina; Szyszka-Mroz, Beth; Possmayer, Marc; Pittock, Paula; Lajoie, Gilles; Smith, David R; Hüner, Norman P A

    2018-05-08

    The objective of this work was to characterize photosynthetic ferredoxin from the Antarctic green alga Chlamydomonas sp. UWO241, a key enzyme involved in distributing photosynthetic reducing power. We hypothesize that ferredoxin possesses characteristics typical of cold-adapted enzymes, namely increased structural flexibility and high activity at low temperatures, accompanied by low stability at moderate temperatures. To address this objective, we purified ferredoxin from UWO241 and characterized the temperature dependence of its enzymatic activity and protein conformation. The UWO241 ferredoxin protein, RNA, and DNA sequences were compared with homologous sequences from related organisms. We provide evidence for the duplication of the main ferredoxin gene in the UWO241 nuclear genome and the presence of two highly similar proteins. Ferredoxin from UWO241 has both high activity at low temperatures and high stability at moderate temperatures, representing a novel class of cold-adapted enzymes. Our study reveals novel insights into how photosynthesis functions in the cold. The presence of two distinct ferredoxin proteins in UWO241 could provide an adaptive advantage for survival at cold temperatures. The primary amino acid sequence of ferredoxin is highly conserved among photosynthetic species, and we suggest that subtle differences in sequence can lead to significant changes in activity at low temperatures. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance.

    PubMed

    Zwack, Paul J; Compton, Margaret A; Adams, Cami I; Rashotte, Aaron M

    2016-03-01

    Cytokinin response factor 4 (CRF4) shows a short-term induction by cold (4 °C) that appears to play a role in non-acclimated freezing tolerance as seen in mutant and overexpression lines. Responses to abiotic stresses, such as cold stress, are critical to plant growth and optimal production. Examination of Arabidopsis cytokinin response factors (CRFs) showed transcriptional induction after exposure to cold (4 °C). In particular, CRF4 was strongly induced in both root and shoot tissues. As CRF4 is one of several CRFs not transcriptionally regulated by cytokinin, we further investigated its response to cold. Peak CRF4 induction occurred 6 h post cold exposure, after which expression was maintained at moderately elevated levels during extended cold and subsequent treatment recovery. Examination of CRF4 mutant and overexpression lines under standard (non-cold) conditions revealed little difference from WT. One exception was a small, but significant increase in primary root growth of overexpression plants (CRF4OX). Under cold conditions, the only phenotype observed was a reduction in the rate of germination of CRF4OX seeds. The pattern of CRF4 expression along with the lack of strong phenotype at 4 °C led us to hypothesize that cold induction of CRF4 could play a role in short-term cold acclimation leading to increased freeze tolerance. Examination of CRF4OX and crf4 plants exposed to freezing temperatures revealed mutants lacking expression of CRF4 were more sensitive to freezing, while CRF4OXs with increased levels CRF4 levels were more tolerant. Altered transcript expression of CBF and COR15a cold signaling pathway genes in crf4 mutant and overexpression lines suggest that CRF4 may be potentially connected to this pathway. Overall this indicates that CRF4 plays an important role in both cold response and freezing stress.

  13. Possible Detection of Solar Neutrons from the ISS

    NASA Astrophysics Data System (ADS)

    Benker, Nicole; Echeverria-Mora, Elena; Hamblin, Jennifer; Dowben, Peter A.; Enders, Axel; Kananen, Brant; Petrosky, James; McClory, John

    2018-06-01

    A low energy steady state solar neutron flux has been long predicted [1]. The Detector for the Analysis of Solar Neutrons (DANSON), designed to detect this flux, was launched on the OA-5 mission to the International Space Station (ISS) on 17 Oct. 2016, deployed aboard ISS, and returned 19 March 2017. This detector is insensitive to high energy solar neutron events associated with solar flares, which have now been routinely detected in the range of 40 to 140 MeV, but the lower energy steady state solar neutron background has not been thoroughly examined. DANSON is based on boron rich detector elements combined with a plastic moderator to thermalize neutrons at energies above 40 meV, maximizing the B10 capture of epithermal neutrons. The detector elements include boron carbide (B10C2HX) heterojunction diodes on silicon and lithium tetraborate (Li2B4O7) single crystals. Three types of lithium tetraborate detector elements are used: crystals with a natural abundance of 10B (approx. 20% 10B, 80% 11B), crystals enriched in 10B, and crystals enriched in 11B. Enrichment in 10B provides a higher cross section for thermal neutron capture, while enrichment in 11B results in a negligible cross section for thermal neutron capture while maintaining a proton capture cross section comparable to that of 10B. The signature of neutron capture in the lithium tetraborate samples is evident in the thermoluminescent spectra. In the boron carbide diodes, the signature is measured in the huge decrease in drift carrier lifetimes compared to pre-flight characterization data, corresponding to about 3×109 neutrons/cm2 exposure. Since the estimated total solar exposure time for deployment is 8×106 seconds, this amounts to about 250 to 375 neutrons and protons/cm2sec. The detector package shows increased detection on the zenith side of ISS, after subtraction of radiation events from energetic protons and other sources, indicating possible detection of solar neutrons. Additionally, detection of

  14. METHOD AND APPARATUS FOR CONTROLLING NEUTRON DENSITY

    DOEpatents

    Wigner, E.P.; Young, G.J.; Weinberg, A.M.

    1961-06-27

    A neutronic reactor comprising a moderator containing uniformly sized and spaced channels and uniformly dimensioned fuel elements is patented. The fuel elements have a fissionable core and an aluminum jacket. The cores and the jackets of the fuel elements in the central channels of the reactor are respectively thinner and thicker than the cores and jackets of the fuel elements in the remainder of the reactor, producing a flattened flux.

  15. Cold air analgesia as pain reduction during photodynamic therapy of actinic keratoses.

    PubMed

    Stangeland, K Z; Kroon, S

    2012-07-01

    Photodynamic therapy (PDT) is an effective treatment for actinic keratoses and non-melanoma skin cancer. The main side effect of PDT is pain during the illumination. To assess the effect of cold air as pain relief during MAL-PDT for field cancerization on different body areas. A prospective, open, intra-individual right-left comparison study was performed in 43 patients with MAL-PDT as field cancerization. One area received cold air analgesia while the other did not. Pain was evaluated by numeric rating scale (NRS) during the illumination. The patients' received a questionnaire and recorded pain and postinflammatory symptoms on a visual analogue scale (VAS). We found a statistical significant difference in overall pain score at 3 and 9 minutes. The area receiving cold air during illumination had a mean NRS of 5.1 while the opposite side, not receiving cold air, had NRS of 6.1. At 9 minutes the side receiving cold air had mean NRS of 5.0, and the side without had 5.7. The pain difference on the chest was the most pronounced with a NRS of 5.2 without air and 3.5 with cold air. There was a significant difference in erythema immediately after, 1 h and 24 h after illumination. Small, open, not blinded study. The difference in pain was small. Cold air is an effective method for moderate pain relief. It is an easy, noninvasive method that can be used on all body parts. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  16. Progress in Mirror-Based Fusion Neutron Source Development.

    PubMed

    Anikeev, A V; Bagryansky, P A; Beklemishev, A D; Ivanov, A A; Kolesnikov, E Yu; Korzhavina, M S; Korobeinikova, O A; Lizunov, A A; Maximov, V V; Murakhtin, S V; Pinzhenin, E I; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Tsidulko, Yu A; Yakovlev, D V; Yurov, D V

    2015-12-04

    The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.

  17. Ion-Induced Afterpulsing in the Neutron Multiplicity Meter's Photomultiplier Tubes

    NASA Astrophysics Data System (ADS)

    Nedlik, Christopher; Schnee, Richard; Bunker, Raymond; Chen, Yu; Neutron Multiplicity Meter Collaboration

    2013-10-01

    The nature of the dark matter in the Universe remains a mystery in modern physics. A leading candidate, Weakly Interacting Massive Particles (WIMPs), may be detectable via scattering from nuclear targets in terrestrial detectors, located underground to prevent fake signals from cosmic-ray showers. The Neutron Multiplicity Meter (NMM) is a detector capable of measuring the muon-induced neutron flux deep underground, a problematic background for WIMP detection. The NMM is a 4.4-tonne Gd-loaded water-Cherenkov detector atop a 20-kilotonne lead target in the Soudan Mine. It measures high-energy neutrons (>50 MeV) by moderating and then detecting (via Gd capture gammas) the secondary neutrons emerging from the lead following a high-energy neutron interaction. The short time scale (~10 μs) for neutron capture in Gd-loaded water enables a custom multiplicity trigger to discriminate against the dominant gamma-ray background. Despite excellent rejection of the gamma-ray-induced background, NMM neutron-candidate events are not entirely background-free. One type of background is from ion-induced afterpulsing (AP) in the four 20'' Hamamatsu R7250 photomultiplier tubes (PMTs) used to monitor the NMM's two water tanks. We show that ion-induced AP in the PMTs can mimic the NMM's low-energy neutron response, potentially biasing a candidate event's measured multiplicity. We present detailed studies of the AP in order to allow identification of AP-induced background events.

  18. Investigation on the Residual Stress State of Drawn Tubes by Numerical Simulation and Neutron Diffraction Analysis

    PubMed Central

    Palkowski, Heinz; Brück, Sebastian; Pirling, Thilo; Carradò, Adele

    2013-01-01

    Cold drawing is widely applied in the industrial production of seamless tubes, employed for various mechanical applications. During pre-processing, deviations in tools and their adjustment lead to inhomogeneities in the geometry of the tubes and cause a gradient in residuals. In this paper a three dimensional finite element (3D-FE)-model is presented which was developed to calculate the change in wall thickness, eccentricity, ovality and residual macro-stress state of the tubes, produced by cold drawing. The model simulates the drawing process of tubes, drawn with and without a plug. For finite element modelling, the commercial software package Abaqus was used. To validate the model, neutron strain imaging measurements were performed on the strain imaging instrument SALSA at the Institute Laue Langevin (ILL, Grenoble, France) on a series of SF-copper tubes, drawn under controlled laboratory conditions, varying the drawing angle and the plug geometry. It can be stated that there is sufficient agreement between the finite element method (FEM)-calculation and the neutron stress determination. PMID:28788380

  19. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  20. The cold driver: Cold stress while driving results in dangerous behavior.

    PubMed

    Morris, Drew M; Pilcher, June J

    2016-10-01

    Cool vehicle cabin temperatures can induce short-term non-hypothermic cold stress. The current study created a cold condition to examine the impact of cold stress on driving behavior. Forty-four participants drove a high-fidelity driving simulator during a thermal neutral or local torso cooled condition. Participants performed additional tasks to assess attention, psychomotor vigilance, and manual dexterity. Skin temperature was significantly lower in the cold condition while internal temperature was unaffected. Participants who had higher subjective ratings of cold followed lead vehicles closer and started to brake later. Participants in the cold condition followed the lead car 22% (0.82s) closer and started braking 20% (2.35s) later when approaching a stop sign during the car-following task. No change in attention, psychomotor vigilance, or dexterity was observed. The current results suggest that cold environmental conditions can contribute to dangerous driving behaviors. Measures of cold perception were also shown to predict changes in driving behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cold-hearted or cool-headed: physical coldness promotes utilitarian moral judgment

    PubMed Central

    Nakamura, Hiroko; Ito, Yuichi; Honma, Yoshiko; Mori, Takuya; Kawaguchi, Jun

    2014-01-01

    In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1) participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2) participants had a high-level construal mindset and focused on abstract goals (e.g., save many); or (3) there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the “cool-headed” deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being “cold-hearted,” reduced empathetic concern, and facilitated utilitarian moral judgments. PMID:25324800

  2. Nuclear ``pasta'' structures in low-density nuclear matter and properties of the neutron-star crust

    NASA Astrophysics Data System (ADS)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2013-08-01

    In the neutron-star crust, nonuniform structure of nuclear matter—called the “pasta” structure—is expected. From recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron-star crust. To investigate the above quantities, we numerically explore the pasta structure with a fully three-dimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of “pasta.”

  3. An airport cargo inspection system based on X-ray and thermal neutron analysis (TNA).

    PubMed

    Ipe, Nisy E; Akery, A; Ryge, P; Brown, D; Liu, F; Thieu, J; James, B

    2005-01-01

    A cargo inspection system incorporating a high-resolution X-ray imaging system with a material-specific detection system based on Ancore Corporation's patented thermal neutron analysis (TNA) technology can detect bulk quantities of explosives and drugs concealed in trucks or cargo containers. The TNA process utilises a 252Cf neutron source surrounded by a moderator. The neutron interactions with the inspected object result in strong and unique gamma-ray signals from nitrogen, which is a key ingredient in modern high explosives, and from chlorinated drugs. The TNA computer analyses the gamma-ray signals and automatically determines the presence of explosives or drugs. The radiation source terms and shielding design of the facility are described. For the X-ray generator, the primary beam, leakage radiation, and scattered primary and leakage radiation were considered. For the TNA, the primary neutrons and tunnel scattered neutrons as well as the neutron-capture gamma rays were considered.

  4. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Multi-source irradiation facility with improved space configuration for neutron activation analysis: Design optimization.

    PubMed

    Kotb, N A; Solieman, Ahmed H M; El-Zakla, T; Amer, T Z; Elmeniawi, S; Comsan, M N H

    2018-05-01

    A neutron irradiation facility consisting of six 241 Am-Be neutron sources of 30 Ci total activity and 6.6 × 10 7 n/s total neutron yield is designed. The sources are embedded in a cubic paraffin wax, which plays a dual role as both moderator and reflector. The sample passage and irradiation channel are represented by a cylindrical path of 5 cm diameter passing through the facility core. The proposed design yields a high degree of space symmetry and thermal neutron homogeneity within 98% of flux distribution throughout the irradiated spherical sample of 5 cm diameter. The obtained thermal neutron flux is 8.0 × 10 4 n/cm 2 .s over the sample volume, with thermal-to-fast and thermal-to-epithermal ratios of 1.20 and 3.35, respectively. The design is optimized for maximizing the thermal neutron flux at sample position using the MCNP-5 code. The irradiation facility is supposed to be employed principally for neutron activation analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. TWO NEW SINGLE-EXPOSURE, MULTI-DETECTOR NEUTRON SPECTROMETERS FOR RADIATION PROTECTION APPLICATIONS IN WORKPLACE MONITORING.

    PubMed

    Gómez-Ros, J M; Bedogni, R; Bortot, D; Domingo, C; Esposito, A; Introini, M V; Lorenzoli, M; Mazzitelli, G; Moraleda, M; Pola, A; Sacco, D

    2017-04-01

    This communication describes two new instruments, based on multiple active thermal neutron detectors arranged within a single moderator, that permit to unfold the neutron spectrum (from thermal to hundreds of MeV) and to determine the corresponding integral quantities with only one exposure. This makes them especially advantageous for neutron field characterisation and workplace monitoring in neutron-producing facilities. One of the devices has spherical geometry and nearly isotropic response, the other one has cylindrical symmetry and it is only sensitive to neutrons incident along the cylinder axis. In both cases, active detectors have been specifically developed looking for the criteria of miniaturisation, high sensitivity, linear response and good photon rejection. The calculated response matrix has been validated by experimental irradiations in neutron reference fields with a global uncertainty of 3%. The measurements performed in realistic neutron fields permitted to determine the neutron spectra and the integral quantities, in particular H*(10). © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source

    NASA Astrophysics Data System (ADS)

    Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu

    At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.

  8. A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium.

    PubMed

    Komives, A; Sint, A K; Bowers, M; Snow, M

    2005-01-01

    A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.

  9. Calibration methodology for proportional counters applied to yield measurements of a neutron burst.

    PubMed

    Tarifeño-Saldivia, Ariel; Mayer, Roberto E; Pavez, Cristian; Soto, Leopoldo

    2014-01-01

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  10. Thermonuclear plasma with autocatalytic thermomagnetic current amplification by nuclear reactions from fusion neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winterberg, F.

    2006-03-15

    It is proposed to use the neutrons released from a deuterium-tritium or deuterium-deuterium fusion reaction to drive thermomagnetic currents in a plasma corona surrounding the fusion plasma through the heating of the corona with nuclear reactions by the neutrons released in the fusion reaction. Because the neutron reaction cross sections are larger for slow neutrons, it is proposed to slow them down in a moderator separated from the hot plasma of the corona, giving the configuration a striking similarity to a heterogeneous nuclear fission reactor. While in a fission reactor the separation makes possible a growing neutron chain reaction, itmore » here makes possible the autocatalytic amplification of the thermomagnetic currents by an increase of the fusion reaction rate through a rise of the plasma pressure by the magnetic pressure of the thermomagnetic currents. This is expected to substantially increase the n{tau} product over its Lawson value.« less

  11. AMOR - the time-of-flight neutron reflectometer at SINQ/PSI

    NASA Astrophysics Data System (ADS)

    Gupta, Mukul; Gutberlet, T.; Stahn, J.; Keller, P.; Clemens, D.

    2004-07-01

    The apparatus for multioptional reflectometry (AMOR) at SINQ/PSI is a versatile reflectometer operational in the time-of-flight (TOF) mode (in a wavelength range of 0.15 nm <λ < 1.3 nm) as well as in the monochromatic (theta-2theta) mode with both polarized and unpolarized neutrons. AMOR is designed to perform reflectometry measurements in horizontal sample-plane geometry which allows studying both solid-liquid and liquid-liquid interfaces. A pulsed cold neutron beam from the end position of the neutron guide is produced by a dual-chopper system (side-by-side) having two windows at 180^{circ} and rotatable with a maximum frequency of 200 Hz. In the TOF mode, the chopper frequency, width of the gating window and the chopper-detector distance can be selected independently providing a wide range of q-resolution (Delta q/q=1-10&%slash;). Remanent FeCoV/Ti : N supermirrors are used as polarizer/analyzer with a polarization efficiency of sim97&%slash;. For the monochromatic wavelength mode, a Ni/Ti multilayer is used as a monochromator, giving sim50&%slash; reflectivity at a wavelength of 0.47 nm. In the present work, a detailed description of the instrument and setting-up of the polarization option is described. Results from some of the recent studies with polarized neutrons and measurements on liquid surfaces are presented.

  12. Space experiment BTN-NEUTRON on INTERNATIONAL SPACE STATION - CURRENT STATUS and future stages

    NASA Astrophysics Data System (ADS)

    Tretyakov, V. I.; Kozyrev, A. S.; Laygushin, V. I.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Pronin, M. A.; Vostrukhin, A. A.; Sanin, A. B.

    2009-04-01

    Space experiment BTN (Board Telescope of Neutrons) was suggested in 1997 for the Russian segment of International Space Station. The first stage of this experiment was started in February 2007 with instrumentation BTN-M1, which contain two separate units: 1) the electronics unit for commanding and data handling, which is installed inside the Station; 2) the detector unit, which is installed at the outer surface of Russian Service Module "Zvezda". The total mass of this instrument without cables is about 15 kg and total power consumption is about 18 Watts. Detector unit of BTN-M1 has the set of four neutron detectors: three proportional counters of epithermal neutrons with 3He covered by cadmium shields and polyethylene moderators with different thickness and stylbene scintillator for fast neutrons at the energy range 0.4 Mev - 10 Mev. There are three sources of neutrons in the near-Earth space. Permanent flux of neutrons is produced due to interaction of energetic particles of galactic and solar cosmic rays with the upper atmosphere of the Earth ("natural neutrons") and with the body of the spacecraft ("technogenic neutrons"). The third transient sources of neutrons are active regions of the Sun, which may sporadically emit energetic neutrons during strong flares. Some of these particles have sufficiently high energy to neutrons cover the distance to the Earth before decay Data from BTN-M1 after 2 years of space operations is sufficient for preliminary estimation of neutron component of radiation environment in the near-Earth space. BTN-M1 detector unit is equal to the Russian instrument HEND, which also operates now onboard NASA's Mars Odyssey orbiter since May 2001. Simultaneous measurements of neutron radiation on orbits around Mars and Earth give the unique opportunity to compare neutron radiation environment around two planets. The technogenic component of neutron background may be estimated by analysis of data for different stages of flight. After evaluation

  13. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  14. Time-Dependent Effects of Acute Exercise on University Students’ Cognitive Performance in Temperate and Cold Environments

    PubMed Central

    Ji, Ling-Yu; Li, Xiao-Ling; Liu, Yang; Sun, Xiu-Wen; Wang, Hui-Fen; Chen, Long; Gao, Liang

    2017-01-01

    Background: Few studies have examined the acute exercise-induced changes in cognitive performance in different thermal environments and the time course effects. Objective: Investigate the time-dependent effects of acute exercise on university students’ processing speed, working memory and cognitive flexibility in temperate and cold environments. Method: Twenty male university students (age 23.5 ± 2.0 years) with moderate physical activity level participated in a repeated-measures within-subjects design. Processing speed, working memory and cognitive flexibility were assessed using CogState test battery at baseline (BASE), followed by a 45-min rest (REST), immediately after (EX) and 30 min after (POST-EX) 30-min moderate-intensity treadmill running in both temperate (TEMP; 25°C) and cold (COLD; 10°C) environments. Mean skin temperature (MST) and thermal sensation (TS) were also recorded. Two-way repeated measures ANOVA was performed to analyze each variable. Spearman’s rho was used to identify the correlations between MST, TS and cognitive performance. Results: Reaction time (RT) of processing speed and working memory decreased immediately after exercise in both conditions (processing speed: p = 0.003; working memory: p = 0.007). The facilitating effects on processing speed disappeared within 30 min after exercise in TEMP (p = 0.163) and COLD (p = 0.667), while improvements on working memory remained 30 min after exercise in TEMP (p = 0.047), but not in COLD (p = 0.663). Though RT of cognitive flexibility reduced in both conditions (p = 0.003), no significance was found between EX and REST (p = 0.135). Increased MST and TS were significantly associated with reductions in processing speed RT (MST: r = -0.341, p < 0.001; TS: r = -0.262, p = 0.001) and working memory RT (MST: r = -0.282, p < 0.001; TS: r = -0.2229, p = 0.005), and improvements in working memory accuracy (MST: r = 0.249, p = 0.002; TS: r = 0.255, p = 0.001). Conclusion: The results demonstrate

  15. Design of a novel instrument for active neutron interrogation of artillery shells.

    PubMed

    Bélanger-Champagne, Camille; Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter

    2017-01-01

    The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.

  16. Boron-copper neutron absorbing material and method of preparation

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry

    1991-01-01

    A composite, copper clad neutron absorbing material is comprised of copper powder and boron powder enriched with boron 10. The boron 10 content can reach over 30 percent by volume, permitting a very high level of neutron absorption. The copper clad product is also capable of being reduced to a thickness of 0.05 to 0.06 inches and curved to a radius of 2 to 3 inches, and can resist temperatures of 900.degree. C. A method of preparing the material includes the steps of compacting a boron-copper powder mixture and placing it in a copper cladding, restraining the clad assembly in a steel frame while it is hot rolled at 900.degree. C. with cross rolling, and removing the steel frame and further rolling the clad assembly at 650.degree. C. An additional sheet of copper can be soldered onto the clad assembly so that the finished sheet can be cold formed into curved shapes.

  17. Coping with Cold Sores

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Cold Sores KidsHealth / For Kids / Cold Sores What's in ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  18. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  19. Neutron dose per fluence and weighting factors for use at high energy accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations.more » A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.« less

  20. In-Situ Spectrometry of Neutrons

    NASA Technical Reports Server (NTRS)

    Maurer, Richard H.

    1999-01-01

    less damaging, but more prevalent, thermal and epithermal neutrons and to make the structure of the spectrum more accurate in the 20 KeV-2 MeV range; or a pair of tubes, one shielded and one unshielded, can be combined so that the difference in their counts yields the thermal neutron contribution. The spectrometer also uses a 5mm lithium drifted bulk silicon solid state detector in the medium energy range of 2-20 Mev and two standard silicon surface barrier detectors separated by tens of millimeters behind a I cm thick polyethylene moderator in a stack or telescope arrangement for the high energy neutrons (>20 MeV). In the medium and high energy regions equivalent damage factors are lower but hits from one or a small number of neutrons may prove to be important. The silicon detector systems for medium and high energy neutrons will discriminate against charged particles by using a plastic cesium iodide scintillator of an appropriate geometry monitored by a silicon PIN photodiode.