DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.
2012-10-01
Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. Formore » the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.« less
CRACK GROWTH RESPONSE OF ALLOY 690 IN SIMULATED PWR PRIMARY WATER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloczko, Mychailo B.; Bruemmer, Stephen M.
2009-12-01
The stress corrosion crack growth response of three extruded alloy 690 CRDM tube heats was investigated in several thermomechanical conditions. Extremely low propagation rates (< 1 x 10{sup -9} mm/s) were observed under constant stress intensity factor (K) loading at 325-350 C in the as-received, thermally treated (TT) materials despite using a variety of transitioning techniques. Post-test observation of the crack-growth surfaces revealed only isolated intergranular (IG) cracking. One-dimensional cold rolling to 17% reduction and testing in the S-L orientation did not promote enhanced stress corrosion rates. However, somewhat higher propagation rates were observed in a 30% cold-rolled alloy 690TTmore » specimen tested in the T-L orientation. Cracking of the cold-rolled material was promoted on grain boundaries oriented parallel to the rolling plane with the % IG increasing with the amount of cold rolling.« less
NASA Astrophysics Data System (ADS)
Toloczko, Mychailo B.; Olszta, Matthew J.; Bruemmer, Stephen M.
Stress corrosion crack-growth experiments have been performed on cold-rolled alloy 690 materials in simulated PWR primary water at 360°C. Extruded alloy 690 CRDM tubing in two conditions, thermally treated (TT) and solution annealed (SA), was cold rolled (CR) in one direction to several reductions reaching a maximum of 31% and tested in the S-L orientation. High stress corrosion cracking (SCC) propagation rates ( 8x10-8 mm/s) were observed for the 31%CR alloy 690TT material, while the 31%CR alloy 690SA exhibited 10X lower rates. The difference in intergranular SCC susceptibility appears to be related to grain boundary carbide distribution before cold rolling. SCC growth rates were found to depend on test temperature and hydrogen concentration. Tests were also performed on two alloy 690 plate heats, one CR to a reduction of 26% and the other to 20%. SCC growth rates at 360°C were similar to that measured for the 31%CR alloy 690TT CRDM tubing. Comparisons will be made to other results on CR alloy 690 materials.
NASA Astrophysics Data System (ADS)
Pedneault, Sylvain; Huot, Jacques; Roué, Lionel
In the present work, cold rolling has been investigated as a new means of producing Mg-based metal hydrides for nickel-metal hydride (Ni-MH) batteries. Structure and electrochemical evolution of 2Mg-Ni cold-rolled samples were investigated as a function of the number of rolling passes as well as heat treatment. It was found that nanocrystalline Mg 2Ni alloy can be obtained by an appropriate three step process involving rolling, heat treatment and rolling again. It was shown that the number of primary and secondary rolling passes must be carefully optimized in order to favour the complete formation of Mg 2Ni alloy having a nanocrystalline structure (∼10 nm in crystallite size) without excessive sample oxidation. Actually, the best result was obtained by first rolling 90 times, followed by a heat treatment at 400 °C for 4 h and roll again 20 times. The resulting material displayed an initial discharge capacity of 205 mAh g -1, which is quite similar to that obtained with ball-milled Mg 2Ni alloy.
NASA Technical Reports Server (NTRS)
Lahoti, G. D.; Akgerman, N.; Altan, T.
1978-01-01
Mild steel (AISI 1018) was selected as model cold-rolling material and Ti-6Al-4V and INCONEL 718 were selected as typical hot-rolling and cold-rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape-rolling process were developed. These models utilize the upper-bound and the slab methods of analysis, and are capable of predicting the lateral spread, roll-separating force, roll torque and local stresses, strains and strain rates. This computer-aided design (CAD) system is also capable of simulating the actual rolling process and thereby designing roll-pass schedule in rolling of an airfoil or similar shape. The predictions from the CAD system were verified with respect to cold rolling of mild steel plates. The system is being applied to cold and hot isothermal rolling of an airfoil shape, and will be verified with respect to laboratory experiments under controlled conditions.
NASA Astrophysics Data System (ADS)
Tanhaei, S.; Gheisari, Kh.; Alavi Zaree, S. R.
2018-06-01
This study has evaluated the effect of different levels of cold rolling (from 0 to 50%) on the microstructural, magnetic, and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in NaCl (1 mol/L) + H2SO4 (0.5 mol/L) solution. Microstructural examinations using optical microscopy revealed the development of a morphological texture from coaxial to elongated grains during the cold-rolling process. Phase analysis carried out on the basis of X-ray diffraction confirmed the formation of the ferromagnetic α'-martensite phase under the stresses applied during cold rolling. This finding is in agreement with magnetic measurements using a vibrating sample magnetometer. Mechanical properties determined by tensile and Vickers microhardness tests demonstrated an upward trend in the hardness-to-yield strength ratio with increasing cold-rolling percentage, representing a reduction in the material's work-hardening ability. Uniform and localized corrosion parameters were estimated via potentiodynamic polarization corrosion tests and electrochemical impedance spectroscopy. In contrast to the uniform corrosion, wherein the corrosion current density increased with increasing cold-working degree because of the high density of microstructural defects, the passive potential range and breakdown potential increased by cold working, showing greater resistance to pit nucleation. Although pits were formed, the cold-rolled material repassivation tendency decreased because of the broader hysteresis anodic loop, as confirmed experimentally by observation of the microscopic features after electrochemical cyclic polarization evaluations.
Mhaede, Mansour; Ahmed, Aymen; Wollmann, Manfred; Wagner, Lothar
2015-05-01
The present work investigates the effects of severe plastic deformation by cold rolling on the microstructure, the mechanical properties and the corrosion behavior of austenitic stainless steel (SS) 316Ti. Hydroxyapatite coating (HA) was applied on the deformed material to improve their corrosion resistance. The martensitic transformation due to cold rolling was recorded by X-ray diffraction spectra. The effects of cold rolling on the corrosion behavior were studied using potentiodynamic polarization. The electrochemical tests were carried out in Ringer's solution at 37±1 °C. Cold rolling markedly enhanced the mechanical properties while the electrochemical tests referred to a lower corrosion resistance of the deformed material. The best combination of both high strength and good corrosion resistance was achieved after applying hydroxyapatite coating. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Thomas, L. E.
Unidirectional cold rolling has been shown to promote intergranular stress corrosion cracking (IGSCC) in alloy 690 tested in PWR primary water. High-resolution scanning (SEM) and transmission electron microscopy (TEM) have been employed to investigate the microstructural reasons for this enhanced susceptibility in two stages, first examining grain boundary damage produced by cold rolling and second by characterization of stress corrosion crack tips. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG precipitate distribution. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. For the same degree of cold rolling, alloys with few IG carbides exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal no interaction between the preexisting voids and cracked carbides with the propagation. In many cases, these features appeared to blunt propagation of IGSCC cracks. High-resolution characterizations are described for cold-rolled alloy 690 CRDM tubing and plate materials to gain insights into IGSCC mechanisms.
Microstructure and texture evolution in cold-rolled and annealed alloy MA-956
NASA Astrophysics Data System (ADS)
Hosoda, Takashi
The microstructural and texture development with thermomechanical processing, performed through a combination of cold-rolling and annealing, in MA-956 plate consisting of a layered and inhomogeneous microstructure was systematically assessed. The alloy contained in mass percent, 20 Cr, 4.8 Al, 0.4 Ti, 0.4 Y2O3, and the balance iron. The starting material was as-hot-rolled plate, 9.7 mm thick. The as-hot-rolled plate was subjected to 40%, 60%, and 80% cold-rolling reduction and subsequently annealed at 1000, 1200, or 1380. Assessment of microstructural and texture developments before and after cold-rolling and annealing was performed using light optical microscopy (LOM), Vickers hardness testing, and electron backscatter diffraction (EBSD). Locally introduced misorientations by cold-rolling in each region were evaluated by Kernel Average Misorientation (KAM) maps. The as-hot-rolled condition contained a layered and inhomogeneous microstructure consisting of thin and coarse elongated grains, and aggregated regions which consisted of fine grains and sub-grains with {100} texture parallel to the longitudinal direction. The microstructure of the 40% cold-rolled condition contained deformation bands, and the 60% and 80% cold-rolled conditions also contained highly deformed regions where the deformation bands were intricately tangled. A predominant orientation of (001) parallel to the rolling direction was developed during cold-rolling, becoming more prominent with increasing reduction. The magnitudes of KAM angles varied through the thickness depending on the initial microstructures. Recrystallization occurred in regions where high KAM angles were dense after annealing and nucleation sites were the aggregation regions, deformation bands, and highly deformed regions. The shape and size of the recrystallized grains varied depending on the nucleation sites.
Investigation on the cold rolling and structuring of cold sprayed copper-coated steel sheets
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.; Senge, S.; Hirt, G.
2017-03-01
A current driving force of research is lightweight design. One of the approaches to reduce the weight of a component without causing an overall stiffness decrease is the use of multi-material components. One of the main challenges of this approach is the low bonding strength between different materials. Focusing on steel-aluminum multi-material components, thermally sprayed copper coatings can come into use as a bonding agent between steel sheets and high pressure die cast aluminum to improve the bonding strength. This paper presents a combination of cold gas spraying of copper coatings and their subsequent structuring by rolling as surface pretreatment method of the steel inserts. Therefore, flat rolling experiments are performed with samples in “as sprayed” and heat treated conditions to determine the influence of the rolling process on the bond strength and the formability of the coating. Furthermore, the influence of the rolling on the roughness and the hardness of the coating was examined. In the next step, the coated surface was structured, to create a surface topology suited for a form closure connection in a subsequent high-pressure die casting process. No cracks were observed after the cold rolling process with a thickness reduction of up to ε = 14 % for heat treated samples. Structuring of heat treated samples could be realized without delamination and cracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Gwnaghyo; Lee, Kwangmin, E-mail: kmlee@jnu.a
A Ti–6Mo–6V–5Cr–3Sn–2.5Zr (wt.%) alloy was designed as a new metastable β-Ti alloy. The effect that cold rolling had on the microstructural evolution of the material was investigated via optical microscopy (OM), X-ray diffraction (XRD), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM) measurements. A single β phase formed in the alloy after solution treatment at 780 °C for 30 min followed by water quenching. The solution-treated alloy was cold rolled with thickness reductions of 10%, 30%, 50% and 70%, and the hardness values increased as the thickness of the specimen decreased. The textures of the cold rolled specimen weremore » characterized according to the 〈110〉 partial parallel to the rolling direction as the rolling reduction increased. The crystallographic orientation showed principal α-fiber textures for (111)〈110〉 and (112)〈110〉. The cold deformation led to the appearance of martensite α″ phases, particularly stress-induced martensite (SIM) α″ phases. - Highlights: • Effect of cold rolling on new β-typed Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloy was studied. • A single β phase was obtained after solution treatment at 780 °C for 30 min. • α-Fiber textures became dominated with the increase in cold rolling reduction. • A stress-induced α″ martensite was caused by cold rolling.« less
NASA Astrophysics Data System (ADS)
Yonezawa, Toshio; Watanabe, Masashi; Hashimoto, Atsushi
2015-06-01
Primary water stress corrosion cracking growth rates (PWSCCGRs) in highly cold-worked thermally treated (TT) Alloy 690 have been recently reported as exhibiting significant heat-to-heat variability. Authors hypothesized that these significant differences could be due to the metallurgical characteristics of each heat. In order to confirm this hypothesis, the effect of fundamental metallurgical characteristics on PWSCCGR measurements in cold-worked TT Alloy 690 has been investigated. The following new observations were made in this study: (1) Microcracks and voids were observed in or near eutectic crystals of grain boundary (GB) M23C6 carbides (primary carbides) after cold rolling, but were not observed before cold rolling. These primary carbides with microcracks and voids were observed in both lightly forged and as-cast and cold-rolled TT Alloy 690 (heat A) as well as in a cold-rolled TT Alloy 690 (heat Y) that simulated the chemical composition and carbide banded structure of the material previously tested by Paraventi and Moshier. However, this was not observed in precipitated (secondary) M23C6 GB carbides in heavily forged and cold-rolled TT Alloy 690 heat A and a cold-rolled commercial TT Alloy 690. (2) From microstructural analyses carried out on the various TT Alloy 690 test materials before and after cold rolling, the amount of eutectic crystals (primary carbides and nitrides) M23C6 and TiN depended on the chemical composition. In particular, the amount of M23C6 depended on the fabrication process. Microcracks and voids in or near the M23C6 and TiN precipitates were generated by the cold rolling process. (3) The PWSCCGRs observed in TT Alloy 690 were different for each heat and fabrication process. The PWSCCGR decreased with increasing Vickers hardness of each heat. However, for the same heats and fabrication processes, the PWSCCGR increased with increasing Vickers hardness due to cold work. Thus, the PWSCCGR must be affected not only by hardness (or equivalently the cold working ratio) but also by grain size, microcracks, and voids of primary M23C6 carbides, etc., which in turn depend on chemical composition and the fabrication process.
NASA Astrophysics Data System (ADS)
Ravi Kumar, B.; Mahato, B.; Sharma, Sailaja; Sahu, J. K.
2009-12-01
As-received hot-rolled commercial grade AISI 304L austenitic stainless steel plates were solution treated at 1060 °C to achieve chemical homogeneity. Microstructural characterization of the solution-treated material revealed polygonal grains of about 85- μm size along with annealing twins. The solution-treated plates were heavily cold rolled to about 90 pct of reduction in thickness. Cold-rolled specimens were then subjected to thermal cycles at various temperatures between 750 °C and 925 °C. X-ray diffraction showed about 24.2 pct of strain-induced martensite formation due to cold rolling of austenitic stainless steel. Strain-induced martensite formed during cold rolling reverted to austenite by the cyclic thermal process. The microstructural study by transmission electron microscope of the material after the cyclic thermal process showed formation of nanostructure or ultrafine grain austenite. The tensile testing of the ultrafine-grained austenitic stainless steel showed a yield strength 4 to 6 times higher in comparison to its coarse-grained counterpart. However, it demonstrated very poor ductility due to inadequate strain hardenability. The poor strain hardenability was correlated with the formation of strain-induced martensite in this steel grade.
NASA Technical Reports Server (NTRS)
Lahoti, G. D.; Akgerman, N.; Altan, T.
1978-01-01
Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.
NASA Astrophysics Data System (ADS)
Babacan, N.; Ma, J.; Turkbas, O. S.; Karaman, I.; Kockar, B.
2018-01-01
In the present study, the effect of thermo-mechanical treatments on the shape memory and the superelastic characteristics of Cu73Al16Mn11 (at%) shape memory alloy were investigated. 10%, 50% and 70% cold rolling and subsequent heat treatment processes were conducted to achieve strengthening via grain size refinement. 70% grain size reduction compared to the homogenized condition was obtained using 70% cold rolling and subsequent recrystallization heat treatment technique. Moreover, 10% cold rolling was applied to homogenized specimen to reveal the influence of the low percentage cold rolling reduction with no heat treatment on shape memory properties of Cu73Al16Mn11 (at%) alloy. Stress free transformation temperatures, monotonic tension and superelasticity behaviors of these samples were compared with those of the as-aged sample. Isobaric heating-cooling experiments were also conducted to see the dimensional stability of the samples as a function of applied stress. The 70% grain-refined sample exhibited better dimensional stability showing reduced residual strain levels upon thermal cycling under constant stress compared with the as-aged material. However, no improvement was achieved with grain size reduction in the superelasticity experiments. This distinctive observation was attributed to the difference in the magnitude of the stress levels achieved during two different types of experiments which were the isobaric heating-cooling and superelasticity tests. Intergranular fracture due to the stress concentration overcame the strengthening effect via grain refinement in the superelasticity tests at higher stress values. On the other hand, the strength of the material and resistance of material against plastic deformation upon phase transformation were increased as a result of the grain refinement at lower stress values in the isobaric heating-cooling experiments.
Atzmon, M.; Johnson, W.L.; Verhoeven, J.D.
1987-02-03
Bulk metastable, amorphous or fine crystalline alloy materials are produced by reacting cold-worked, mechanically deformed filamentary precursors such as metal powder mixtures or intercalated metal foils. Cold-working consolidates the metals, increases the interfacial area, lowers the free energy for reaction, and reduces at least one characteristic dimension of the metals. For example, the grains of powder or the sheets of foil are clad in a container to form a disc. The disc is cold-rolled between the nip of rollers to form a flattened disc. The grains are further elongated by further rolling to form a very thin sheet of a lamellar filamentary structure containing filaments having a thickness of less than 0.01 microns. Thus, diffusion distance and time for reaction are substantially reduced when the flattened foil is thermally treated in oven to form a composite sheet containing metastable material dispersed in unreacted polycrystalline material. 4 figs.
NASA Astrophysics Data System (ADS)
Elramady, Alyaa Gamal
The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher susceptibility to SCC when they were cold-rolled and cold-expanded. The research found that surface compressive stresses have an effect on the SCC behavior of casing and tubing steels. The CO2 corrosion behavior and atomic processes at the corroding interface were investigated at laboratory temperature using electrochemical techniques. Cold-work was found to have an influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. These behaviors were found to be material and process dependent. Surface evaluation techniques such as field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) analysis did not detect formation of a protective scale. X-ray diffraction and X-ray photoelectron spectroscopy (XPS) analysis both detected the appearance of a scale that was traced back to magnetite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Vineet V.; Paxton, Dean M.; Lavender, Curt A.
Over the past several years Pacific Northwest National Laboratory (PNNL) has been actively involved in supporting the U.S. Department of Energy National Nuclear Security Administration Office of Material Management and Minimization (formerly Global Threat Reduction Initiative). The U.S. High- Power Research Reactor (USHPRR) project is developing alternatives to existing highly enriched uranium alloy fuel to reduce the proliferation threat. One option for a high-density metal fuel is uranium alloyed with 10 wt% molybdenum (U-10Mo). Forming the U-10Mo fuel plates/foils via rolling is an effective technique and is actively being pursued as part of the baseline manufacturing process. The processing ofmore » these fuel plates requires systematic investigation/understanding of the pre- and post-rolling microstructure, end-state mechanical properties, residual stresses, and defects, their effect on the mill during processing, and eventually, their in-reactor performance. In the work documented herein, studies were conducted to determine the effect of cold and hot rolling the as-cast and homogenized U-10Mo on its microstructure and hardness. The samples were homogenized at 900°C for 48 h, then later annealed for several durations and temperatures to investigate the effect on the material’s microstructure and hardness. The rolling of the as-cast plate, both hot and cold, was observed to form a molybdenum-rich and -lean banded structure. The cold rolling was ineffective, and in some cases exacerbated the as-cast defects. The grains elongated along the rolling direction and formed a pancake shape, while the carbides fractured perpendicularly to the rolling direction and left porosity between fractured particles of UC. The subsequent annealing of these samples at sub-eutectoid temperatures led to rapid precipitation of the ' lamellar phase, mainly in the molybdenum-lean regions. Annealing the samples above the eutectoid temperature did not refine the grain size or the banded microstructure. However, annealing the samples led to quick recovery in hardness as evidenced by a drop in Vickers hardness of 20%. Hot rolling was performed at 650 and 800°C. The hot-rolling mill loads (load separation force) were approximately 40 to 50% less than the cold-rolling for the same reduction and thickness. It was observed that hot rolling the samples with 50% or more reduction in thickness were responsible for dynamic recrystallization in the hot-rolled samples and led to grain refinement. Unlike the cold-rolled samples, the hot-rolled samples did not fracture the carbides and appeared to heal the casting defects. The recovery phenomenon was similar to the cold-rolled samples above the eutectoid temperatures, but owing to the refined grain size, the precipitation of the lamellar phase was far more rapid in these samples and the hardness increased more rapidly than in the cold rolled sample when heated below the eutectoid temperature. The data generated from these rolling efforts has been used to make the process modeling efforts more robust and applicable to all USHPRR partner rolling mills. The flow stress for cold rolling the samples was determined to be between 170-190 ksi, with frictional forces between 0.2 and 0.4 for the PNNL mill. The measured roll separation forces and those simulated using finite element methods for hot and cold rolling for the PNNL rolling mill were in good agreement.« less
Jana, Saumyadeep; Overman, Nicole; Varga, Tamas; ...
2017-09-25
Here, the effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.% Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 °C for 48 h and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot + cold-rolled to 0.2 mm + annealed at 700 °C for 1 h, and (iii) hot + cold-rolled to 0.2 mm + annealed at 1000 °C for 60 h. Annealing of as-rolledmore » materials at 700 °C resulted in small grain size (15 ± 9 μm average grain size), while annealing at 1000 °C led to very large grains (156 ± 118 μm average grain size) in rolled U10Mo foils. Later the samples were subjected to sub-eutectoid heat-treatment temperatures of 550 °C, 500 °C, and 400 °C for different durations of time starting from 1 h up to 100 h. U10Mo rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries. The least amount of cellular reaction was observed in the large-grain microstructure at all temperatures. Conversely, a substantial amount of cellular reaction was observed in both the as-rolled and the small-grain microstructure. After 100 h of heat treatment at 500 °C, the volume fraction of the lamellar phase was found to be 4%, 22%, and 82% in large-grain, as-rolled, and small-grain samples, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Saumyadeep; Overman, Nicole; Varga, Tamas
Here, the effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.% Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 °C for 48 h and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot + cold-rolled to 0.2 mm + annealed at 700 °C for 1 h, and (iii) hot + cold-rolled to 0.2 mm + annealed at 1000 °C for 60 h. Annealing of as-rolledmore » materials at 700 °C resulted in small grain size (15 ± 9 μm average grain size), while annealing at 1000 °C led to very large grains (156 ± 118 μm average grain size) in rolled U10Mo foils. Later the samples were subjected to sub-eutectoid heat-treatment temperatures of 550 °C, 500 °C, and 400 °C for different durations of time starting from 1 h up to 100 h. U10Mo rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries. The least amount of cellular reaction was observed in the large-grain microstructure at all temperatures. Conversely, a substantial amount of cellular reaction was observed in both the as-rolled and the small-grain microstructure. After 100 h of heat treatment at 500 °C, the volume fraction of the lamellar phase was found to be 4%, 22%, and 82% in large-grain, as-rolled, and small-grain samples, respectively.« less
Atzmon, Michael; Johnson, William L.; Verhoeven, John D.
1987-01-01
Bulk metastable, amorphous or fine crystalline alloy materials are produced by reacting cold-worked, mechanically deformed filamentary precursors such as metal powder mixtures or intercalated metal foils. Cold-working consolidates the metals, increases the interfacial area, lowers the free energy for reaction, and reduces at least one characteristic dimension of the metals. For example, the grains (13) of powder or the sheets of foil are clad in a container (14) to form a disc (10). The disc (10) is cold-rolled between the nip (16) of rollers (18,20) to form a flattened disc (22). The grains (13) are further elongated by further rolling to form a very thin sheet (26) of a lamellar filamentary structure (FIG. 4) containing filaments having a thickness of less than 0.01 microns. Thus, diffusion distance and time for reaction are substantially reduced when the flattened foil (28) is thermally treated in oven (32) to form a composite sheet (33) containing metastable material (34) dispersed in unreacted polycrystalline material (36).
NASA Astrophysics Data System (ADS)
Paul, S. K.; Ahmed, U.; Megahed, G. M.
2011-10-01
Low-carbon Al-killed hot rolled strips for direct forming, cold rolling, and galvanizing applications are produced from the similar chemistry at Ezz Flat Steel (EFS) through thin slab casting and rolling (TSCR) technology. The desired mechanical and microstructural properties in hot bands for different applications are achieved through control of hot rolling parameters, which in turn control the precipitation and growth of AlN. Nitrogen in solid solution strongly influences the yield strength (YS), ductility, strain aging index (SAI), and other formability properties of steel. The equilibrium solubility of AlN in austenite at different temperatures and its isothermal precipitation have been studied. To achieve the formability properties for direct forming, soluble nitrogen is fixed as AlN by coiling the strip at higher temperatures. For stringent cold forming, boron was added below the stoichiometric ratio with nitrogen, which improved the formability properties dramatically. The requirements of hot band for processing into cold rolled and annealed deep drawing sheets are high SAI and fine-grain microstructure. Higher finish rolling and low coiling temperatures are used to achieve these. Fully processed cold rolled sheets from these hot strips at customer's end have shown good formability properties. Coil break marks observed in some coils during uncoiling were found to be associated with yielding phenomenon. The spike height (difference between upper and lower yield stresses) and yield point elongation (YPE) were found to be the key material parameters for the break marks. Factors affecting these parameters have been studied and the coiling temperature optimized to overcome the problem.
NASA Astrophysics Data System (ADS)
Sai Srinadh, K. V.; Singh, Vakil
2007-08-01
Cold rolling of the titanium alloy Timetal 834 was found to cause marked enhancement in low-cycle fatigue (LCF) life at low strain amplitude and to eliminate bilinear behavior from the Coffin Manson (C-M) relationship. It was due to work hardening of surface grains of soft orientation and consequent increase in resistance of the material against crack initiation. The observed effect was not associated with texture.
The rolling performance of Fe-6.5 wt.% Si sheets edged with stainless steel
NASA Astrophysics Data System (ADS)
Zhang, B.; Ye, F.; Liang, Y. F.; Shi, X. J.; Lin, J. P.
2017-10-01
Compared with common electrical steel, high silicon electrical steel (Fe-6.5 wt.% Si alloy) exhibits excellent soft magnetic properties and a wide application prospect in high frequency electromagnetic fields. In the process of cold rolling Fe-6.5 wt.% Si alloy, edge-crack often occurs on the sheets due to the inadequate ductility and limited formability. It was found that the Fe-6.5 wt.% Si alloy sheet edged with 304 stainless steel by laser welding show an improved rolling performance. The composite sheet could be cold rolled to a thickness of 0.07 mm without observed edge cracks. The mechanical property of the edging material should be in an appropriate window in reference to that of the Fe-6.5 wt.% Si alloy.
Research of thread rolling on difficult-to-cut material workpieces
NASA Astrophysics Data System (ADS)
Popov, A. Yu; Bugay, I. A.; Nazarov, P. V.; Evdokimova, O. P.; Popov, P. E.; Vasilyev, E. V.
2018-01-01
In medicine production Ti-6Al-4V Grade 5 alloys are used. One of the most important tasks is to increase the strength of the products and decrease in value. The possibility to roll special thread on Ti-6Al-4V Grade 5 alloy workpiece on 2-roller thread rolling machine has been studied. This is wrought alloy, treatment of which in cold condition causes difficulties due to low plasticity. To obtain Ti-6Al-4V Grade 5 alloy product with thread by rolling is rather difficult. This is due to large axial workpiece displacements resulting from large alloy resistance to cold plastic deformation. The provision of adequate kinematics requires experimental researches and the selection of modes - speed of rolling and pressure on the movable roller. The purpose of the work is to determine the optimal modes for rolling thread on titanium alloy workpiece. It has been stated that, after rolling, the product strength has increased up to 30%. As a result of the work, the unit has been made and recommendations to choose the optimal rolling process modes have been offered.
NASA Astrophysics Data System (ADS)
He, Youliang; Mehdi, Mehdi; Hilinski, Erik J.; Edrisy, Afsaneh
2018-05-01
Magnetic Barkhausen noise (MBN) signals were measured on a non-oriented electrical steel through all the thermomechanical processing stages, i.e. hot rolling, hot band annealing, cold rolling and final annealing. The temperature of the final annealing was varied from 600 °C to 750 °C so that the steel consisted of partially or completely recrystallized microstructures and different levels of residual stresses. The angular MBNrms (root mean square) values were compared to the texture factors in the same directions, the latter being calculated from the crystallographic texture measured by electron backscatter diffraction (EBSD). It was found that, in the cold-rolled, hot-rolled and completely recrystallized steels, the angular MBNrms followed a cosine function with respect to the angle of magnetization, while in partially recrystallized state such a relation does not exist. After cold rolling, the maximum MBNrms was observed in the rolling direction (RD) and the minimum MBNrms was in the transverse direction (TD), which was inconsistent with the magnetocrystalline anisotropy as indicated by the texture factor. After hot rolling, the maximum and minimum MBNrms values were observed in the TD and RD, respectively, exactly opposite to the cold-rolled state. If the steel was completely recrystallized, the maximum MBNrms was normally observed at a direction that was 15-30° from the minimum texture factor. If the steel was partially recrystallized, both the magnetocrystalline anisotropy of the material and the residual stress contributed to the angular MBNrms, which resulted in the deviation of the relationship from a cosine function. The relative strength of the two factors determined which factor would dominate the overall magnetic anisotropy.
Effect of Cold-rolling on Mechanical Properties and Microstructure of an Al-12%Si-0.2%Mg Alloy
NASA Astrophysics Data System (ADS)
Liao, Hengcheng; Cai, Mingdong; Jing, Qiumin; Ding, Ke
2011-11-01
Effect of multi-pass cold-rolling on the mechanical properties and microstructure of a near-eutectic Al-12%Si-0.2%Mg casting alloy was investigated. Optical microscopy, SEM, and TEM were employed to resolve the as-rolled microstructure, and the microstructure of samples after aging treatment. It has been found that Brinell hardness increases considerably with rolling reduction ratio; and further annealing leads to a remarkable drop in hardness. Two mechanisms, namely precipitation hardening and recovery softening, were found to develop simultaneously in the subsequent aging treatment following cold rolling. In contrast, recovery softening dominated the aging of cold-rolled specimen with prior intermediate annealing. Tensile properties were also performed to measure the effect of cold rolling and subsequent aging treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Hung-Pin; Chen, Yen-Chun; Chen, Delphic
2014-08-15
In this study, the evolution of the recrystallization texture and microstructure was investigated after annealing of 50% and 90% cold-rolled FePd alloy at 530 °C. The FePd alloy was produced by vacuum arc melting in an atmosphere of 97% Ar and 3% H{sub 2}. The specimens were cold rolled to achieve 50% and 90% reduction in thickness. Electron backscatter diffraction measurements were performed on the rolling direction–normal direction section. With increased deformation from 50% to 90%, recrystallized texture transition occurs. For the 50% cold-rolled alloy, the preferred orientation is (0 1 0) [11 0 1], which is close to themore » cubic orientation after 400 h of annealing. For the 90% cold-rolled alloy, the orientation changes to (0 5 4) [22–4 5] after 16 h of annealing. - Highlights: • Texture and microstructure in cold-rolled FePd alloy was investigated during annealing using EBSD. • The recrystallized texture of 50% cold-rolled FePd is (0 1 0) [11 0 1] at 530 °C for 400 hours. • The recrystallized texture of 90% cold-rolled FePd is changed to (0 5 4) [22–4 5] at 530 °C after 16 hours.« less
Cold rolled Fe-6.5 wt. % Si alloy foils with high magnetic induction
NASA Astrophysics Data System (ADS)
Fang, X. S.; Liang, Y. F.; Ye, F.; Lin, J. P.
2012-05-01
Fe-6.5 wt. % Si alloy foils with 95 mm in width and 0.30 mm in thickness were successfully fabricated by cold rolling process. Excellent magnetic properties (Hc = 20.4 A/m, µm = 22 200, and Bs = 1.69 T) were obtained after annealing at the temperature of 1273 K for 1.5 h. This high magnetic induction is considered to be due to the formation of {hk0}<001> textures. Cut cores from this material have a very low iron loss at frequencies from 400 Hz to 10 kHz.
Influence of 10 % Cold Rolling Reduction on Ageing Behaviour of Hot Rolled Al-Cu-Si-Mn-Mg Alloy
NASA Astrophysics Data System (ADS)
Ghosh, S. K.
2014-10-01
In the current study, the effect of 10 % cold rolling on the different ageing phenomena of Al-Cu-Si-Mn-Mg alloy was investigated. Both hot rolled and cold rolled alloys were subjected to both natural and artificial ageing processes. Hardness was measured to understand the change in the mechanical property of the alloy before and after rolling and also during ageing processes. From microscopy, it was evident that the cold rolling and subsequent ageing provided the alloy with a structure in which CuAl2 precipitates were uniformly distributed. The alloy exhibited the peak hardness value of 92 VHN after 2 days of natural ageing, whereas the cold deformed (10 %) alloy exhibited the higher peak hardness value of 139 VHN after 3 days of natural ageing. Peak hardness of the alloy reached 94 VHN, when hot rolled alloy was subjected to ageing at 250 °C for 1 h, whereas 10 % cold rolling followed by ageing (100 °C, 15 min) demonstrated accelerated and elevated hardening. The ageing behaviours thus obtained permit the alloy to provide a range of desirable combinations of strength and ductility for high strength weight saving applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Rongguang, E-mail: lirongguang1980@126.com; Xin, Renlong; Chapuis, Adrien
Microstructure and mechanical properties of the Mg–4Sm (wt.%) alloy, prepared via combined processes of extrusion, cold rolling and aging, have been investigated. The hot extruded alloy exhibits a weak rare earth magnesium alloy texture with < 11 − 21 >//ED, while the cold-rolled alloy shows a stronger basal texture with < 0001 >//ND. Many tensile twins and double twins are observed in grains after rolling. The cold-rolled alloy shows a weak age-hardening response compared with the extruded alloy, which is the result of more precipitation in the twin boundary during aging. The rolled alloy exhibits almost no precipitate free zonemore » during aging compared with the extruded alloy. The higher proof stress of the rolled alloy in peak-aged condition is attributed to the presence of twin boundaries, stronger basal texture, higher dislocation density, and the suppression of precipitate free zone compared with the extruded alloy. - Highlights: • No precipitate free zone appears in cold-rolled alloy after aging. • Segregation and precipitates are observed in twin boundaries and grain boundaries. • Cold-rolled alloy shows a weak age-hardening response.« less
SCC of Alloy 690 and its Weld Metals
NASA Astrophysics Data System (ADS)
Andresen, Peter L.; Morra, Martin M.; Ahluwalia, Kawaljit
Alloy 690 base metal, HAZ and weld metal were tested in representative PWR primary water at 290 to 360°C. Intergranular cracking was observed in all materials. Growth rates as high as 1.2 × 10-6 mm/s were observed in the S-L orientation with micro structural banded material after cold rolling or forging to align the planes of banding, rolling and cracking. However, not all banded material has exhibited such high growth rates. Growth rates on homogeneous Alloy 690, including extruded CRDM tubing, often showed growth rates in the range of 2 - 8 × 10-8 mm/s in cold worked condition and an S-L orientation. Crack growth rates in some Alloy 690 tests were in the range of 1 to 10 × 10-9 mm/s, primarily in orientations other than S-L. For cracks aligned along the HAZ, growth rates as high as 1.2 × 10-8 mm/s were observed. Alloy 152/52/52i weld metals always exhibited low growth rates, apart from a weld that was further cold worked by 20%, which grew at 7 × 10-9 mm/s.
NASA Astrophysics Data System (ADS)
Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.
2014-12-01
The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.
Numerical Modeling of Tube Forming by HPTR Cold Pilgering Process
NASA Astrophysics Data System (ADS)
Sornin, D.; Pachón-Rodríguez, E. A.; Vanegas-Márquez, E.; Mocellin, K.; Logé, R.
2016-09-01
For new fast-neutron sodium-cooled Generation IV nuclear reactors, the candidate cladding materials for the very strong burn-up are ferritic and martensitic oxide dispersion strengthened grades. Classically, the cladding tube is cold formed by a sequence of cold pilger milling passes with intermediate heat treatments. This process acts upon the geometry and the microstructure of the tubes. Consequently, crystallographic texture, grain sizes and morphologies, and tube integrity are highly dependent on the pilgering parameters. In order to optimize the resulting mechanical properties of cold-rolled cladding tubes, it is essential to have a thorough understanding of the pilgering process. Finite Element Method (FEM) models are used for the numerical predictions of this task; however, the accuracy of the numerical predictions depends not only on the type of constitutive laws but also on the quality of the material parameters identification. Therefore, a Chaboche-type law which parameters have been identified on experimental observation of the mechanical behavior of the material is used here. As a complete three-dimensional FEM mechanical analysis of the high-precision tube rolling (HPTR) cold pilgering of tubes could be very expensive, only the evolution of geometry and deformation is addressed in this work. The computed geometry is compared to the experimental one. It is shown that the evolution of the geometry and deformation is not homogeneous over the circumference. Moreover, it is exposed that the strain is nonhomogeneous in the radial, tangential, and axial directions. Finally, it is seen that the dominant deformation mode of a material point evolves during HPTR cold pilgering forming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Saumyadeep; Overman, Nicole; Varga, Tamas
The effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.percent Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 degrees C for 48 hours and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot- + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot- + cold-rolled to 0.2 mm + annealed at 700 deg. C for 1 hour, and (iii) hot- + cold-rolled to 0.2 mm + annealed at 1000 deg. C for 60 hours. U10Momore » rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries.« less
40 CFR 420.101 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...
40 CFR 420.101 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...
40 CFR 420.101 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...
40 CFR 420.101 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...
78 FR 32471 - Amended Revised Determination on Reconsideration
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
..., including workers whose unemployment insurance (UI) wages are reported through Ohio cold rolling company... reported through Ohio cold rolling company Yorkville, Ohio [TA-W-71,572B] Severstal Wheeling, Inc., A... whose unemployment insurance (UI) wages are reported through Ohio cold rolling company Mingo Junction...
NASA Astrophysics Data System (ADS)
Wang, X. F.; Guo, M. X.; Chen, Y.; Zhu, J.; Zhang, J. S.; Zhuang, L. Z.
2017-07-01
The effect of thermomechanical processing on microstructure, texture evolution, and mechanical properties of Al-Mg-Si-Cu alloys with different Zn contents was studied by mechanical properties, microstructure, and texture characterization in the present study. The results show that thermomechanical processing has a significant influence on the evolution of microstructure and texture and on the final mechanical properties, independently of Zn contents. Compared with the T4P-treated (first preaged at 353 K (80 °C) for 12 hours and then naturally aged for 14 days) sheets with high final cold rolling reduction, the T4P-treated sheets with low final cold rolling reduction possess almost identical strength and elongation and higher average r values. Compared with the intermediate annealed sheets with high final cold rolling reduction, the intermediate annealed sheets with low final cold rolling reduction contain a higher number of particles with a smaller size. After solution treatment, in contrast to the sheets with high final cold rolling reduction, the sheets with low final cold rolling reduction possess finer grain structure and tend to form a weaker recrystallization texture. The recrystallization texture may be affected by particle distribution, grain size, and final cold rolling texture. Finally, the visco-plastic self-consistent (VPSC) model was used to predict r values.
Analytical solution for shear bands in cold-rolled 1018 steel
NASA Astrophysics Data System (ADS)
Voyiadjis, George Z.; Almasri, Amin H.; Faghihi, Danial; Palazotto, Anthony N.
2012-06-01
Cold-rolled 1018 (CR-1018) carbon steel has been well known for its susceptibility to adiabatic shear banding under dynamic loadings. Analysis of these localizations highly depends on the selection of the constitutive model. To deal with this issue, a constitutive model that takes temperature and strain rate effect into account is proposed. The model is motivated by two physical-based models: the Zerilli and Armstrong and the Voyiadjis and Abed models. This material model, however, incorporates a simple softening term that is capable of simulating the softening behavior of CR-1018 steel. Instability, localization, and evolution of adiabatic shear bands are discussed and presented graphically. In addition, the effect of hydrostatic pressure is illustrated.
NASA Astrophysics Data System (ADS)
Nakano, Hayato; Hakoyama, Tomoyuki; Kuwabara, Toshihiko
2017-10-01
Hole expansion forming of a cold rolled steel sheet is investigated both experimentally and analytically to clarify the effects of material models on the predictive accuracy of finite element analyses (FEA). The multiaxial plastic deformation behavior of a cold rolled steel sheet with a thickness of 1.2 mm was measured using a servo-controlled multiaxial tube expansion testing machine for the range of strain from initial yield to fracture. Tubular specimens were fabricated from the sheet sample by roller bending and laser welding. Many linear stress paths in the first quadrant of stress space were applied to the tubular specimens to measure the contours of plastic work in stress space up to a reference plastic strain of 0.24 along with the directions of plastic strain rates. The anisotropic parameters and exponent of the Yld2000-2d yield function (Barlat et al., 2003) were optimized to approximate the contours of plastic work and the directions of plastic strain rates. The hole expansion forming simulations were performed using the different model identifications based on the Yld2000-2d yield function. It is concluded that the yield function best capturing both the plastic work contours and the directions of plastic strain rates leads to the most accurate predicted FEA.
NASA Astrophysics Data System (ADS)
Naghizadeh, Meysam; Mirzadeh, Hamed
2018-05-01
An advanced thermomechanical process based on the formation and reversion of deformation-induced martensite was used to refine the grain size and enhance the hardness of an AISI 304L austenitic stainless steel. Both low and high reversion annealing temperatures and also the repetition of the whole thermomechanical cycle were considered. While a microstructure with average austenite grain size of a few micrometers was achieved based on cold rolling and high-temperature short-term annealing, an extreme grain refinement up to submicrometer regime was obtained by cold rolling followed by low-temperature long-term annealing. However, the required annealing time was found to be much longer, which negates its appropriateness for industrial production. While a magnificent grain refinement was achieved by one pass of the high-temperature thermomechanical process, the reduction in grain size was negligible by the repetition of the whole cycle. It was found that the hardness of the thermomechanically processed material is much higher than that of the as-received material. The results of the present work were shown to be compatible with the general trend of grain size dependence of hardness for AISI 304L stainless steel based on the Hall-Petch relationship. The results were also discussed based on the X-ray evaluation of dislocation density by modified Williamson-Hall plots.
NASA Astrophysics Data System (ADS)
Philippot, C.; Bellavoine, M.; Dumont, M.; Hoummada, K.; Drillet, J.; Hebert, V.; Maugis, P.
2018-01-01
Compared with other dual-phase (DP) steels, initial microstructures of cold-rolled martensite-ferrite have scarcely been investigated, even though they represent a promising industrial alternative to conventional ferrite-pearlite cold-rolled microstructures. In this study, the influence of the heating rate (over the range of 1 to 10 K/s) on the development of microstructures in a microalloyed DP steel is investigated; this includes the tempering of martensite, precipitation of microalloying elements, recrystallization, and austenite formation. This study points out the influence of the degree of ferrite recrystallization prior to the austenite formation, as well as the importance of the cementite distribution. A low heating rate giving a high degree of recrystallization, leads to the formation of coarse austenite grains that are homogenously distributed in the ferrite matrix. However, a high heating rate leading to a low recrystallization degree, results in a banded-like structure with small austenite grains surrounded by large ferrite grains. A combined approach, involving relevant multiscale microstructural characterization and modeling to rationalize the effect of the coupled processes, highlights the role of the cold-worked initial microstructure, here a martensite-ferrite mixture: recrystallization and austenite formation commence in the former martensite islands before extending in the rest of the material.
NASA Astrophysics Data System (ADS)
Lu, Bohan; Lu, Xiaohui
2018-02-01
This study investigates the correlation between the residual stress and distortion behavior of a cold-rolled ring from the annealing to quenching-tempering (QT) process. Due to the cold-rolled process, the external periphery of the bearing ring experiences a compressive residual stress. To relieve the residual stress, cold-rolled rings are annealed at 700 °C which is higher than the starting temperature of recrystallization. When cold-rolled rings are annealed at 700 °C for 15 min, the compressive residual stress is reduced to zero and the outer diameter of the annealed ring becomes larger than that of a non-annealed sample, which is unrelated to annealing time. Simultaneously, the roundness and taper deviation do not obviously change compared with those of non-annealed sample. The stress relaxation during the annealing process was attributed to the recovery and recrystallization of ferrite. Annealing has a genetic influence on the following QT heat treatment, wherein the lowest residual stress is in the non-annealed cold-rolled ring. From the annealing to QT process, the deviation of the outer diameter, roundness, and taper increased with annealing time, a large extend than that of non-annealed samples.
Preparation of isotopic molybdenum foils utilizing small quantities of material
NASA Astrophysics Data System (ADS)
Lipski, A. R.; Lee, L. L.; Liang, J. F.; Mahon, J. C.
1993-09-01
A simple method utilizing a small amount of isotopic material for production of molybdenum foils is discussed. An e-gun is used in the procedure. The Mo powder undergoes reduction-sintering and melting-solidifying steps leading to the creation of a metallic droplet suitable for further cold rolling or vacuum deposition.
Boron-copper neutron absorbing material and method of preparation
Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry
1991-01-01
A composite, copper clad neutron absorbing material is comprised of copper powder and boron powder enriched with boron 10. The boron 10 content can reach over 30 percent by volume, permitting a very high level of neutron absorption. The copper clad product is also capable of being reduced to a thickness of 0.05 to 0.06 inches and curved to a radius of 2 to 3 inches, and can resist temperatures of 900.degree. C. A method of preparing the material includes the steps of compacting a boron-copper powder mixture and placing it in a copper cladding, restraining the clad assembly in a steel frame while it is hot rolled at 900.degree. C. with cross rolling, and removing the steel frame and further rolling the clad assembly at 650.degree. C. An additional sheet of copper can be soldered onto the clad assembly so that the finished sheet can be cold formed into curved shapes.
Grain Orientation Dependence of the Residual Lattice Strain in a Cold Rolled Interstitial-Free Steel
Xie, Qingge; Gorti, Sarma B.; Sidor, Jurij; ...
2018-01-10
The experimentally measured grain-orientation-dependent residual lattice strains, evolved in an interstitia-free steel after 70% cold rolling reduction, are studied by means of crystal elastic visco-plastic finite element simulations, which provides a very satisfactory prediction of deformation texture. The calculated residual lattice strain pole figure matches well with the experimentally measured counterpart within the highest density regions of major texture components observed. Both experimental evidence and results of modeling clearly indicate that the residual lattice strain is orientation dependent, based on comprehensive information on the evolution of residual lattice strain in various crystallographic orientations during plastic deformation. It appears that inmore » a cold rolled material, there is a general correlation between the stresses developed just prior to unloading and the residual lattice strains in particular directions. Here, it is also shown that the cumulative plastic shear does not reveal a clear correlation with the components of residual lattice strain while presented in the normal correlation plot, however, this relationship can be better understood by means of the orientation distribution function of residual lattice strain, which can be derived from the neutron or X-ray diffraction experiments.« less
Grain Orientation Dependence of the Residual Lattice Strain in a Cold Rolled Interstitial-Free Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Qingge; Gorti, Sarma B.; Sidor, Jurij
The experimentally measured grain-orientation-dependent residual lattice strains, evolved in an interstitia-free steel after 70% cold rolling reduction, are studied by means of crystal elastic visco-plastic finite element simulations, which provides a very satisfactory prediction of deformation texture. The calculated residual lattice strain pole figure matches well with the experimentally measured counterpart within the highest density regions of major texture components observed. Both experimental evidence and results of modeling clearly indicate that the residual lattice strain is orientation dependent, based on comprehensive information on the evolution of residual lattice strain in various crystallographic orientations during plastic deformation. It appears that inmore » a cold rolled material, there is a general correlation between the stresses developed just prior to unloading and the residual lattice strains in particular directions. Here, it is also shown that the cumulative plastic shear does not reveal a clear correlation with the components of residual lattice strain while presented in the normal correlation plot, however, this relationship can be better understood by means of the orientation distribution function of residual lattice strain, which can be derived from the neutron or X-ray diffraction experiments.« less
Method of manufacturing metallic products such as sheet by cold working and flash anealing
Hajaligol, Mohammad R.; Sikka, Vinod K.
2001-01-01
A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.
Method of manufacturing metallic products such as sheet by cold working and flash annealing
Hajaligol, Mohammad R.; Sikka, Vinod K.
2000-01-01
A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.
NASA Astrophysics Data System (ADS)
Mandal, Arka; Patra, Sudipta; Chakrabarti, Debalay; Singh, Shiv Brat
2017-12-01
A lean duplex stainless steel (LDSS) has been prepared with low-N content and processed by different thermo-mechanical schedules, similar to the industrial processing that comprised hot-rolling, cold-rolling, and annealing treatments. The microstructure developed in the present study on low-N LDSS has been compared to that of high-N LDSS as reported in the literature. As N is an austenite stabilizer, lower-N content reduced the stability of austenite and the austenite content in low-N LDSS with respect to the conventional LDSS. Due to low stability of austenite in low-N LDSS, cold rolling resulted in strain-induced martensitic transformation and the reversion of martensite to austenite during subsequent annealing contributed to significant grain refinement within the austenite regions. δ-ferrite grains in low-N LDSS, on the other hand, are refined by extended recovery mechanism. Initial solidification texture (mainly cube texture) within the δ-ferrite region finally converted into gamma-fiber texture after cold rolling and annealing. Although MS-brass component dominated the austenite texture in low-N LDSS after hot rolling and cold rolling, that even transformed into alpha-fiber texture after the final annealing. Due to the significant grain refinement and formation of beneficial texture within both austenite and ferrite, good combination of strength and ductility has been achieved in cold-rolled and annealed sample of low-N LDSS steel.
Code of Federal Regulations, 2014 CFR
2014-07-01
... cold rolling wastewaters. 2 Within the range of 6.0 to 9.0. (2) Bar, billet and bloom. Subpart I... treated with cold rolling wastewaters. 2 Within the range of 6.0 to 9.0. (3) Strip, sheet and plate... are treated with cold rolling wastewaters. 2 Within the range of 6.0 to 9.0. (4) Pipe, tube and other...
Control of surface thermal scratch of strip in tandem cold rolling
NASA Astrophysics Data System (ADS)
Chen, Jinshan; Li, Changsheng
2014-07-01
The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.
Method of fabricating a uranium-bearing foil
Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN
2012-04-24
Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.
Effect of Grain Misorientation Angle on Twinning Propagation in Ti-15Mo Alloy
NASA Astrophysics Data System (ADS)
Im, Y.-D.; Lee, Y.-K.; Song, K. H.
2018-07-01
This study was carried out to evaluate the effect of grain misorientation angle distribution on the deformation behavior and twinning of Ti-15Mo alloy. Cold rolling exhibited a significant texture with grains oriented along the {111}//normal direction, which correlate with a higher fraction of low-angle boundaries. This material showed a lower yield strength and higher elongation than those of the hot rolled material. The twinning propagation mainly occurred between neighboring grains with a low-angle relation. Consequently, the texture development was correlated with low-angle boundaries and affected by the increase in the twinning density, which increased the strain hardening rate.
Progress in cold roll bonding of metals
Li, Long; Nagai, Kotobu; Yin, Fuxing
2008-01-01
Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. PMID:27877949
Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel
NASA Astrophysics Data System (ADS)
Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.
2017-10-01
Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Wei; Helbert, Anne-Laure, E-mail: anne-laure.helbert@u-psud.fr; Baudin, Thierry
In high purity Aluminum, very strong {l_brace}100{r_brace}<001> recrystallization texture is developed after 98% cold rolling and annealing at 500 Degree-Sign C. On the contrary, in Aluminum alloys of commercial purity, the Cube component hardly exceeds 30% after complete recrystallization. Parameters controlling Cube orientation development are mainly the solute dragging due to impurities in solid solution and the stored deformation energy. In the present study, besides the 85% cold rolling, two extra annealings and a slight cold rolling are introduced in the processing route to increase the Cube volume fraction. The Cube development was analyzed by X-ray diffraction and Electron BackScatteredmore » Diffraction (EBSD). The nucleation and growth mechanisms responsible for the large Cube growth were investigated using FEG/EBSD in-situ heating experiments. Continuous recrystallization was observed in Cube oriented grains and competed with SIBM (Strain Induced Boundary Migration) mechanism. This latter was favored by the stored energy gap introduced during the additional cold-rolling between the Cube grains and their neighbors. Finally, a Cube volume fraction of 65% was reached after final recrystallization. - Highlights: Black-Right-Pointing-Pointer EBSD in-situ heating experiments of aluminum alloy of commercial purity. Black-Right-Pointing-Pointer A 10% cold-rolling after a partial recrystallization improved Cube nucleation and growth. Black-Right-Pointing-Pointer Annealing before cold-rolling limited the solute drag effect and permitted a large Cube growth. Black-Right-Pointing-Pointer Cube development is enhanced by continuous recrystallization of Cube sub-grains. Black-Right-Pointing-Pointer The preferential Cube growth occurs by SIBM of small Cube grains.« less
Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources
NASA Astrophysics Data System (ADS)
Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.
2018-04-01
High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.
Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments
NASA Astrophysics Data System (ADS)
Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.
2010-02-01
This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.
NASA Astrophysics Data System (ADS)
Zheng, Yanwen; Zhang, Zhihao; Jiang, Yanbin
2018-04-01
The Ga liquid and Al powder were mechanically mixed and poured into a hollow iron plate, after alloying, the composite plate was rolled at room temperature for preparing an Fe/Ga-Al composite strip. The effect of annealing conditions on the diffusion, microstructures and magnetostrictive properties of the strip were studied. The composite plate had good cold rolling formability. After annealing at 750-850 °C for 5 h of the cold-rolled sample with a reduction of 97%, the diffusion distance of Ga and Al in the Fe matrix increased with an increase of the annealing temperature. However, some holes appeared in the center of the sample annealed at a temperature of more than 830 °C, which was detrimental to the subsequent rolling. The combination of the secondary cold rolling and annealing was beneficial to improve the composition homogeneity and magnetic properties of the sample. The magnetostriction coefficient (λ//) of the primary rolled sample was low, ∼4 × 10-6. After annealing and secondary cold rolling, the λ// of the sample increased to 9 × 10-6 and the λ// of the sample conducted by further annealing at 820 °C for 20 h reached 27.5 × 10-6.
NASA Astrophysics Data System (ADS)
Ashiq, Mohammad; Dhekne, Pushkar; Hamada, Atef Saad; Sahu, Puspendu; Mahato, B.; Minz, R. K.; Ghosh Chowdhury, Sandip; Pentti Karjalainen, L.
2017-10-01
The evolution of microstructure and texture of a two-phase austenite-ferrite twinning-induced plasticity steel during cold rolling was investigated and different deformation mechanisms were found to become active with increasing thickness reductions. Optical microscopy showed the formation of brass-type shear bands across several austenite grains at reductions greater than 50 pct. TEM observations reveal the presence of deformation twinning in austenite. The austenite phase initially shows the Cu-type texture, i.e., Cu {1 1 2}〈1 1 1〉, Goss {0 1 1}〈1 0 0〉 with a spread toward Brass {1 1 0}〈1 1 2〉. With continued cold rolling, the Cu {1 1 2}〈1 1 1〉 component moves toward CuT component {552}〈115〉 and the other two components increase in intensity. There is also emergence of {111} fiber after 90 pct cold rolling. The ferrite phase exhibits the evolution of ND-rotated Cube component {001}〈110〉 along with 〈110〉 fiber at lower as well as at higher rolling reductions. An exception is at 75 pct reduction, when the ferrite texture contains {111} fiber in place of 〈110〉 fiber with a weak rotated-Cube component. Phase fraction analysis by X-ray diffraction indicates a decrease in the austenite fraction up to 75 pct reduction followed by an increase at 90 pct reduction. After 90 pct cold rolling, the phase fraction is similar to that of the "as-received" state. Elongated grains of ferrite phase in finer dimensions after 90 pct cold rolling indicate softening within that phase; at similar stage, there are finer scale austenite grains mostly at the grain boundaries. The above has been suggested to be related with the adiabatic heating during cold rolling due to the high strain hardening of the austenite phase.
Hsu, Chia-Hao; Chen, Tai-Cheng; Huang, Rong-Tan; Tsay, Leu-Wen
2017-01-01
304 stainless steels (SS) were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod) 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD) map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC). Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ) was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group. PMID:28772547
Possibilities for specific utilization of material properties for an optimal part design
NASA Astrophysics Data System (ADS)
Beier, T.; Gerlach, J.; Roettger, R.; Kuhn, P.
2017-09-01
High-strength, cold-formable steels offer great potential for meeting cost and safety requirements in the automotive industry. In view of strengths of up to 1200 MPa now attainable, certain aspects need to be analysed and evaluated in advance in the development process using these materials. In addition to early assessment of crash properties, it is also highly important to adapt the forming process to match the material potential. The steel making companies have widened their portfolios of cold-rolled dual-phase steels well beyond the conventional high-strength steels. There are added new grades which offer a customized selection of high energy absorption, deformation resistance or enhanced cold-forming properties. In this article the necessary components for material modelling for finite element simulation are discussed. Additionally the required tests for material model calibration are presented and the potentials of the thyssenkrupp Steel material data base are introduced. Besides classical tensile tests at different angles to rolling direction and the forming limit curve, the hydraulic bulge test is now available for a wide range of modern steel grades. Using the conventional DP-K®60/98 and the DP-K®700Y980T with higher yield strength the method for calibrating yield locus, hardening and formability is given. With reference to the examples of an A-pillar reinforcement and different crash tests the procedure is shown how the customer can evaluate an optimal steel grade for specific requirements. Although the investigated materials have different yield strengths, no large differences in the forming process between the two steel grades can be found. However some advantages of the high-yield grade can be detected in crash performance depending on the specific boundary and loading conditions.
Crack growth testing on Cold Worked Alloy 690 in Primary Water Environment
NASA Astrophysics Data System (ADS)
Tice, David R.; Medway, Stuart L.; Platts, Norman; Stairmand, John W.
While plant experience so far has shown excellent resistance of Alloy 690 to stress corrosion cracking in PWR primary water environments, laboratory tests have reported that susceptibility may be enhanced substantially by non-uniform cold working, particularly when the plane of crack growth is in the plane of rolling or forging. The Alloy 690 program aims to further the understanding of the mechanisms behind this susceptibility and the heat-to-heat variability reported for different materials.
Hydrogen Permeation in Cold-Rolled High-Mn Twinning-Induced Plasticity Steels
NASA Astrophysics Data System (ADS)
Han, Do Kyeong; Hwang, A. In; Byeon, Woo Jun; Noh, Seung Jeong; Suh, Dong-Woo
2017-11-01
Hydrogen permeation is investigated in cold-rolled Fe-0.6C-18Mn-(1.5Al) alloys. The hydrogen mobility is lower in cold-rolled alloys compared with annealed alloys. Al-containing alloy shows less deceleration of hydrogen mobility compared with the Al-free alloy. This is attributed to the reduced formation of mechanical twins and dislocations. Mechanical twins trap hydrogen strongly but are vulnerable to crack initiation; suppression of these is thought to be a major favorable influence of Al on hydrogen-induced mechanical degradation.
Annealing of (DU-10Mo)-Zr Co-Rolled Foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacheco, Robin Montoya; Alexander, David John; Mccabe, Rodney James
2017-01-20
Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Almore » cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.« less
On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks
NASA Astrophysics Data System (ADS)
Gryschka, Micha; Fricke, Jens; Raasch, Siegfried
2014-11-01
We investigated the impact of roll convection on the convective boundary layer and vertical transports in different cold air outbreak (CAO) scenarios using large eddy simulations (LES). The organization of convection into rolls was triggered by upstream heterogeneities in the surface temperature, representing ice and water. By changing the sea ice distribution in our LES, we were able to simulate a roll and a nonroll case for each scenario. Furthermore, the roll wavelength was varied by changing the scale of the heterogeneity. The characteristics of the simulated rolls and cloud streets, such as aspect ratios, orientation of the roll axes, and downstream extensions of single rolls agreed closely with observations in CAO situations. The vertical turbulent fluxes, calculated for each simulation, were decomposed into contributions from rolls and from unorganized turbulence. Even though our results confirmed that rolls triggered by upstream heterogeneities can substantially contribute to vertical turbulent fluxes, the total fluxes were not affected by the rolls.
Processing and microstructure of Nb-1 percent Zr-0.1 percent C alloy sheet
NASA Technical Reports Server (NTRS)
Uz, Mehmet; Titran, Robert H.
1992-01-01
A systematic study was carried out to evaluate the effects of processing on the microstructure of Nb-1 wt. pct. Zr-0.1 wt. pct. C alloy sheet. The samples were fabricated by cold rolling different sheet bars that were single-, double- or triple-extruded at 1900 K. Heat treatment consisted on one- or two-step annealing of different samples at temperatures ranging from 1350 to 1850 K. The assessment of the effects of processing on microstructure involved characterization of the precipitates including the type, crystal structure, chemistry and distribution within the material as well as an examination of the grain structure. A combination of various analytical and metallographic techniques were used on both the sheet samples and the residue extracted from them. The results show that the relatively coarse orthorhombic Nb2C carbides in the as-rolled samples transformed to rather fine cubic monocarbides of Nb and Zr with varying Zr/Nb ratios upon subsequent heat treatment. The relative amount of the cubic carbides and the Zr/Nb ratio increased with increasing number of extrusions prior to cold rolling. Furthermore, the size and the aspect ratio of the grains appear to be strong functions of the processing history of the material. These and other results obtained will be presented with the emphasis on a possible relationship between processing and microstructure.
NASA Astrophysics Data System (ADS)
Mehta, K. K.; Mandal, R. K.; Singh, A. K.
2018-07-01
The high ratio of relative resolved shear stress on a twin to planar slip system results in microstructural latent hardening (some kind of overshooting) by the twin system on the primary slip planes, which leads to development of the {111}-fiber in Ni-16Cr alloy. The development of {111}-fiber starts as early as around 16 pct cold reduction in Ni-16Cr alloy and persists with maximum average intensity ranging from 35 to 40 pct additional deformation, i.e., around 50 pct cold reduction in unidirectional (U) and two-step cross (T)-rolling modes. In between 50 and 68 pct reductions in U and T modes, the fiber becomes unstable and starts disappearing. However, in multistep cross (M) rolling, the {111}-fiber formation starts late, i.e., at around 50 pct reduction, and maintains its stability up to additional deformation ranging from 35 to 40 pct, i.e., around 90 pct cold reduction. Thus, the life of {111}-fiber remains stable only within the range from 35 to 40 pct intermediate deformation during cold rolling of Ni-16Cr alloy irrespective of modes of rolling. However, the start and end of fiber stabilities depend on the modes of deformation by rolling. The maximum average intensity of {111}-fiber that can be attained in Ni-16Cr alloy is around 3.6× random in any of the deformation modes.
NASA Astrophysics Data System (ADS)
Mehta, K. K.; Mandal, R. K.; Singh, A. K.
2018-04-01
The high ratio of relative resolved shear stress on a twin to planar slip system results in microstructural latent hardening (some kind of overshooting) by the twin system on the primary slip planes, which leads to development of the {111}-fiber in Ni-16Cr alloy. The development of {111}-fiber starts as early as around 16 pct cold reduction in Ni-16Cr alloy and persists with maximum average intensity ranging from 35 to 40 pct additional deformation, i.e., around 50 pct cold reduction in unidirectional (U) and two-step cross (T)-rolling modes. In between 50 and 68 pct reductions in U and T modes, the fiber becomes unstable and starts disappearing. However, in multistep cross (M) rolling, the {111}-fiber formation starts late, i.e., at around 50 pct reduction, and maintains its stability up to additional deformation ranging from 35 to 40 pct, i.e., around 90 pct cold reduction. Thus, the life of {111}-fiber remains stable only within the range from 35 to 40 pct intermediate deformation during cold rolling of Ni-16Cr alloy irrespective of modes of rolling. However, the start and end of fiber stabilities depend on the modes of deformation by rolling. The maximum average intensity of {111}-fiber that can be attained in Ni-16Cr alloy is around 3.6× random in any of the deformation modes.
A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang; Misra, R. D. K.; Wang, Guo-Dong
2016-12-01
A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size 100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size 20-50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size 10-40 mm were formed and the final magnetic induction, B8, was as high as 1.9 T.
Lin, Hung-Pin; Chen, Delphic; Kuo, Jui-Chao
2015-01-01
In this study, the grain boundary character and texture of 50% and 90% cold-rolled FePd alloy was investigated during recrystallization at 700 °C. Electron backscatter diffraction (EBSD) measurements were performed on the rolling direction to normal direction section. Kernel average misorientation (KAM) calculated from EBSD measurements was employed to determine the recrystallization fraction. The Avrami exponent n of recrystallization is 1.9 and 4.9 for 50% and 90% cold rolling, respectively. The new formation of texture reveals random texture during the recrystallization process. As annealing time increased, the number of high angle boundary (HAGB) and coincidence site lattice (CSL) increased with consumption of low angle boundary (LAGB). In addition, possible transformations between different grain boundaries are observed here.
A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium
NASA Astrophysics Data System (ADS)
Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.
2015-08-01
The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.
NASA Astrophysics Data System (ADS)
Gaur, Rishi; Gupta, R. K.; AnilKumar, V.; Banwait, S. S.
2018-05-01
Mechanical behavior of Ti-4Al-1Mn titanium alloy has been studied in annealed, cold-rolled and heat-treated conditions. Room temperature tensile strength as well as % elongation has been found to be low with increasing amount of cold rolling. Lowering of strength in cold worked condition is attributed to premature failure. However, the same has been mitigated after heat treatment. Significant effect of cooling media (air and water) from heat treatment temperature on microstructure was not found except for the degree of fineness of α plates. Optimum properties (strength as well as ductility) were exhibited by samples subjected to 15% cold rolling and heat treatment below β transus temperature, which can be attributed to presence of recrystallized microstructure. In cold worked condition, the microstructure shows fine fragmented α plates/Widmanstätten morphology with high dislocation density along with a large amount of strain fields and twinning, which gets transformed to recrystallized equiaxed microstructure and with plate-like morphology after near β heat treatment. Prior cold work is found to have a significant effect on mechanical properties supported by evolution of microstructure. Twinning is found to be assisting in deformation as well as in recrystallization through the formation of deformation and annealing twins during cold working and heat treatment. Fracture analysis of the tested sample with prior cold work and heat-treated condition revealed quasi-ductile failure as compared to only ductile failure features seen for samples heat treated without prior cold work.
Improvement of mechanical properties on metastable stainless steels by reversion heat treatments
NASA Astrophysics Data System (ADS)
Mateo, A.; Zapata, A.; Fargas, G.
2013-12-01
AISI 301LN is a metastable austenitic stainless steel that offers an excellent combination of high strength and ductility. This stainless grade is currently used in applications where severe forming operations are required, such as automotive bodies. When these metastable steels are plastically deformed at room temperature, for example by cold rolling, austenite transforms to martensite and, as a result, yield strength increases but ductility is reduced. Grain refinement is the only method that allows improving strength and ductility simultaneously. Several researchers have demonstrated that fine grain AISI 301LN can be obtained by heat treatment after cold rolling. This heat treatment is called reversion because it provokes the reversion of strain induced martensite to austenite. In the present work, sheets of AISI 301LN previously subjected to 20% of cold rolling reduction were treated and a refined grain austenitic microstructure was obtained. Mechanical properties, including fatigue limit, were determined and compared with those corresponding to the steel both before and after the cold rolling.
NASA Astrophysics Data System (ADS)
Bakare, F.; Alsubhi, Y.; Ragkousis, A.; Ebomwonyi, O.; Damisa, J.; Okunzuwa, S.
2017-07-01
The novel thermomechanical treatment employed by Wang Z et al (2014 Mater. Sci. Eng. A 607 313-7) in enhancing the mechanical and microstructure properties of 6000 series aluminium alloys has been replicated for AA2139 aerospace aluminium alloys. The novel route which involves under-ageing, cold-rolling reductions and re-ageing at a fixed temperature has been carried out focusing on the effect of pre-straining and pre-ageing on the alloy properties. The influence of varying cold-rolling reductions and pre-ageing has been examined by tensile testing, hardness testing, differential scanning calorimetry, thermoelectric power measurements and scanning electron microscope (SEM). Further analyses were conducted with DSC and TEP measurements to check for precipitation sequence and solute retention respectively. On comparing the hardness and strength of the non pre-aged to the pre-aged samples, there is a remarkable increase in the hardness and strength of the aerospace alloy showing the huge influence of both pre-ageing and pre-straining stage of the novel thermomechanical treatment as observed in the 6000 series alloy, albeit at a higher rate. The treatments that exhibited the most promising mechanical properties (hardness, yield and ultimate tensile strength, elongation to failure) were found to be at a pre-ageing temperature of 175 °C for 1.5 h, 40% cold-rolling and re-ageing at 150 °C. The material was found to have yield strength of 590 MPa and 8.1% uniform elongation, which is well above the 5% acceptable value for structural applications and with strength levels adaptable for aerospace industries. The presence of higher volume fraction of well dispersed precipitates observed in the SEM further shows that intermediate cold-rolling reductions combines well with pre-ageing to give the best mechanical properties in this alloy.
On the Influence of Surface Heterogeneities onto Roll Convection
NASA Astrophysics Data System (ADS)
Gryschka, M.; Drüe, C.; Raasch, S.; Etling, D.
2009-04-01
Roll convection is a common phenomenon in atmospheric convective boundary layers (CBL) with background wind. Roll convection is observed both over land and over sea for different synoptic situations. There is still some debate about the different types of roll convection and their causes or rather the necessary conditions for their appearance. The stability parameter ζ = -ziL (zi: boundary layer height, L: Monin-Obukhov stability length) is widely used as a predictor for roll convection, since numerous studies suggest that convective rolls only appear when 0 < ζ < 20. In other words, roll development becomes unlikely for strong surface heating and weak vertical wind shear. In contrast to those studies the presence of roll convection in almost any polar cold air outbreak (as can be seen in numerous satellite images as cloud streets) reveals that even for large ζ roll convection can develop. Some studies report roll convection in cold air outbreaks for ζ = 250. Our large eddy simulations (LES) on roll convection suggests that the contrasting results concerning the dependency of roll convection on ζ are due to two different types of roll convection: One type which develops purely by self organization if ζ < 20 ("free rolls") and another type which is triggered by heterogeneities in surface temperature and develops also for large ζ ("forced rolls"). We think that most of the cloud streets observed in polar cold air outbreaks over open water are due to rolls of forced type which are tied to upstream located heterogeneities in the sea-ice distribution. The results of this study suggests that the omission of surface inhomogeneities in previous LES is the reason for the absence of rolls in all LES with strong surface heating and weak vertical wind shear so far. In this contribution we will present a large eddy simulation which successfully represents forced rolls under such conditions.
Environmentally Friendly Zirconium Oxide Pretreatment
2013-05-01
during the conversion of the highly soluble hexavalent chromate ions to an inert and relatively insoluble trivalent chromium oxide layer. Depletion of...are being used commercially in automotive and other industrial operations as replacements to hexavalent chromium -based and zinc phosphate...Society for Testing and Materials AVCRAD Aviation Classification Repair Activity Depot Chrome (VI) Hexavalent Chromium CRS Cold Rolled Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.
2015-06-15
Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validationmore » study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.« less
NASA Astrophysics Data System (ADS)
T, Morimoto; F, Yoshida; A, Yanagida; J, Yanagimoto
2015-04-01
First, hardening model in f.c.c. metals was formulated with collinear interactions slips, Hirth slips and Lomer-Cottrell slips. Using the Taylor and the Sachs rolling texture prediction model, the residual dislocation densities of cold-rolled commercial pure aluminum were estimated. Then, coincidence site lattice grains were investigated from observed cold rolling texture. Finally, on the basis of oriented nucleation theory and coincidence site lattice theory, the recrystallization texture of commercial pure aluminum after low-temperature annealing was predicted.
Microstructure Evolution During Creep of Cold Worked Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Krishan Yadav, Hari; Ballal, A. R.; Thawre, M. M.; Vijayanand, V. D.
2018-04-01
The 14Cr–15Ni austenitic stainless steel (SS) with additions of Ti, Si, and P has been developed for their superior creep strength and better resistance to void swelling during service as nuclear fuel clad and wrapper material. Cold working induces defects such as dislocations that interact with point defects generated by neutron irradiation and facilitates recombination to make the material more resistant to void swelling. In present investigation, creep properties of the SS in mill annealed condition (CW0) and 40 % cold worked (CW4) condition were studied. D9I stainless steel was solution treated at 1333 K for 30 minutes followed by cold rolling. Uniaxial creep tests were performed at 973 K for various stress levels ranging from 175-225 MPa. CW4 samples exhibited better creep resistance as compared to CW0 samples. During creep exposure, cold worked material exhibited phenomena of recovery and recrystallization wherein new strain free grains were observed with lesser dislocation network. In contrast CW0 samples showed no signs of recovery and recrystallization after creep exposure. Partial recrystallization on creep exposure led to higher drop in hardness in cold worked sample as compared to that in mill annealed sample. Accelerated precipitation of carbides at the grain boundaries was observed during creep exposure and this phenomenon was more pronounced in cold worked sample.
Evaluation of the Susceptibility to SCC Initiation of Alloy 690 in Simulated PWR Primary Water
NASA Astrophysics Data System (ADS)
Tsutsumi, Kazuya; Couvant, Thierry
Alloy 690 has been widely used in fabricating components of LWR plants as an alternative material to Alloy 600 which has exhibited a significant susceptibility to PWSCC. However, some authors have reported that Alloy 690 can suffer a significant susceptibility to SCC crack growth when highly cold worked. While most of the recent studies emphasize SCC propagation phase, EDF and its partners are focusing on the material's resistance to SCC initiation. This paper summarizes the current work carried out at EDF MAI on the SCC initiation. By means of constant elongation rate tests (CERTs) and constant displacement tests, experimental investigation of the susceptibility to PWSCC were performed. No SCC was observed on either an extruded bar or on two plates, even after 24%-1D cold rolling, confirming the superior PWSCC resistance of Alloy 690 independent of a amount of intergranular precipitation of carbides, and also revealing that such cold rolling does not necessarily decrease the resistance to SCC. On the other hand, a experimental steam generator tube that has a degraded microstructure due to specific heat-treatment revealed its susceptibility to SCC, probably because of the interactive effect of microstructure with heavy intragranular carbide precipitations and the cold worked superficial layer. This phenomenon is in good agreement with results previously published. In this study, the maximal crack depth slightly increased when DH increased from 5 to 60 cc.kg-1H2O. No significant prior ageing effect on the crack depth was observed, even when ageing was combined with high DH.
NASA Astrophysics Data System (ADS)
Zaba, K.; Dul, I.; Puchlerska, S.
2017-02-01
Superalloys based on nickel and selected steels are widely used in the aerospace industry, because of their excellent mechanical properties, heat resistance and creep resistance. Metal sheets of these materials are plastically deformed and applied, inter alia, to critical components of aircraft engines. Due to their chemical composition these materials are hardly deformable. There are various methods to improve the formability of these materials, including plastic deformation at an elevated or high temperature, or a suitable heat treatment before forming process. The paper presents results of the metal sheets testing after heat treatment. For the research, sheets of two types of nickel superalloys type Inconel and of three types of steel were chosen. The materials were subjected to multivariate heat treatment at different temperature range and time. After this step, mechanical properties were examined according to the metal sheet rolling direction. The results were compared and the optimal type of pre-trial softening heat treatment for each of the materials was determined.
Influences of rolling method on deformation force in cold roll-beating forming process
NASA Astrophysics Data System (ADS)
Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan
2018-03-01
In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.
NASA Astrophysics Data System (ADS)
Dutton, Kenneth
Shape (or flatness) control for rolled steel strip is becoming increasingly important as customer requirements become more stringent. Automatic shape control is now more or less mandatory on all new four-high cold mills, but no comprehensive scheme yet exists on a Sendzimir mill. This is due to the complexity of the control system design on such a mill, where many more degrees of freedom for control exist than is the case with the four-high mills.The objective of the current work is to develop, from first principles, such a system; including automatic control of the As-U-Roll and first intermediate roll actuators in response to the measured strip shape. This thesis concerns itself primarily with the As-U-Roll control system. The material presented is extremely wide-ranging. Areas covered include the development of original static and dynamic mathematical models of the mill systems, and testing of the plant by data-logging to tune these models. A basic control system philosophy proposed by other workers is modified and developed to suit the practical system requirements and the data provided by the models. The control strategy is tested by comprehensive multivariable simulation studies. Finally, details are given of the practical problems faced when installing the system on the plant. These include problems of manual control inter-action bumpless transfer and integral desaturation.At the time of presentation of the thesis, system commissioning is still in progress and production results are therefore not yet available. Nevertheless, the simulation studies predict a successful outcome, although performance is expected to be limited until the first intermediate roll actuators are eventually included in the scheme also.
Quantitative Residual Strain Analyses on Strain Hardened Nickel Based Alloy
NASA Astrophysics Data System (ADS)
Yonezawa, Toshio; Maeguchi, Takaharu; Goto, Toru; Juan, Hou
Many papers have reported about the effects of strain hardening by cold rolling, grinding, welding, etc. on stress corrosion cracking susceptibility of nickel based alloys and austenitic stainless steels for LWR pipings and components. But, the residual strain value due to cold rolling, grinding, welding, etc. is not so quantitatively evaluated.
Large grain cavities from pure niobium ingot
Myneni, Ganapati Rao [Yorktown, VA; Kneisel, Peter [Williamsburg, VA; Cameiro, Tadeu [McMurray, PA
2012-03-06
Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.
Wang, Z.; Gao, M. C.; Ma, S. G.; ...
2015-08-05
Cold rolling can break down the as-cast dendrite microstructure and thus may have pronounced impact on the mechanical behavior of the alloy. In the present study, the effect of cold rolling on the microstructure and mechanical properties of Al 0.25CoCrFe 1.25Ni 1.25 high-entropy alloy in the face-centered cubic structure was investigated. With increasing the thickness reduction from cold rolling, the hardness, the yield strength, and the fracture strength increased at the cost of reducing ductility. At the thickness reduction of 80%, the tensile strength (hardness) was 702 MPa (406 MPa), 1.62 (2.43) times that in the as-cast condition. Compared tomore » traditional alloys, Al 0.25CoCrFe 1.25Ni 1.25 has the highest hardening rate with respect to CR thickness reduction. Lastly, the phase relation and the mixing properties of Gibbs free energy, enthalpy and entropy of Al xCoCrFe 1.25Ni 1.25 were predicted using the CALPHAD method.« less
NASA Astrophysics Data System (ADS)
Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.
2012-09-01
Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.
Chen, Ming-biao; Ma, Min; Yang, Qing-xiang; Wang, Shan; Liu, Wen-chang; Zhao, Ying-mei
2013-09-01
To provide gist of DC AA 5052 and CC AA 5052 aluminum alloy to industry production and application, the texture variation of cold rolled sheets through thickness direction was studied by X-ray diffraction method, and the difference in texture at surface, quarter and center layer was analyzed. The hot plates of direct chill cast (DC) AA 5052 and continuous cast (CC) AA 5052 aluminum alloy were annealed at 454 degrees C for 4 hours and then cold rolled to different reductions. The strength and volume fraction of the fiber in CC AA 5052 aluminum alloy is larger than in DC AA 5052 aluminum alloy after same rolling reduction The volume fraction of the recrystallization texture cube in the CC AA 5052 aluminum alloy is less than in the DC AA 5052 aluminum alloy, which result in that CC AA 5052 aluminum alloy needs less cold rolling reduction than DC AA 5052 aluminum alloy for generating the texture with same intensity and volume fraction at surface layer, quarter layer and center layer. The manufacturability and performance of CC AA 5052 aluminum alloy is superior to DC AA 5052 aluminum alloy for use in stamping.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Khatirkar, Rajesh Kisni; Chalapathi, Darshan; Kumar, Gulshan; Suwas, Satyam
2017-05-01
In the present study, microstructure and texture evolution during cold rolling in UNS S32205 and UNS S32760 duplex stainless steel was investigated. Both steels were unidirectionally cold rolled up to 80 pct thickness reduction. Scanning electron microscopy and electron backscattered diffraction (EBSD) were used for microstructural characterization, while X-ray diffraction (XRD) was used for the measurement of bulk texture. Strain-induced martensite (SIM) was identified and quantified with the help of magnetic measurements (B-H curve and magnetization saturation). With the increase in plastic strain, the grains became morphologically elongated along the rolling direction with the reduction in average band thickness and band spacing. SIM increased with the increase in deformation and was found to be a function of strain and the SFE of austenite. The increase in SIM was much more pronounced in UNS S32205 steel as compared to UNS S32760 steel. After cold rolling, strong α-fiber (RD//<110>) texture was developed in ferrite, while brass texture was dominant in austenite for both steels. The strength of texture components and fibers was stronger in UNS S32760 steel. Another significant feature was the development of weak γ-fiber (ND//<111>) in UNS S32760 steel at intermediate deformation.
NASA Astrophysics Data System (ADS)
Kim, Seung-Gyu; Kim, Najung; Shim, Hyung-Seok; Kwon, Oh Min; Kwon, Dongil
2018-05-01
The superconductor industry considers cold-rolled austenitic stainless 310S steel a less expensive substitute for Hastelloy X as a substrate for coated superconductor. However, the mechanical properties of cold-rolled 310S substrate degrade significantly in the superconductor deposition process. To overcome this, we applied hot rolling at 900 °C (or 1000 °C) to the 310S substrate. To check the property changes, a simulated annealing condition equivalent to that used in manufacturing was determined and applied. The effects of the hot rolling on the substrate were evaluated by analyzing its physical properties and texture.
NASA Astrophysics Data System (ADS)
Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.
2014-11-01
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.
Tribological investigation of oriented HDPE.
Hoseini, Mohammed; Lausmaa, Jukka; Boldizar, Antal
2002-09-15
The possibility to control the wear properties of high-density polyethylene (HDPE) material at an early processing stage is explored. Wear measurements of cold roll-drawn HDPE with two different draw ratios were carried out for three sliding planes, each in two directions. The dependence of the wear properties on the degree and direction of orientation was investigated. The experiments were performed in a pin-on-disc machine in a dry environment. The tribo-couple consisted of HDPE plates versus a standardised diamond coated steel disc. The results show that the wear resistance of cold roll-drawn HDPE differ widely, by a factor up to 6, depending on the sliding direction relative to the drawing direction. The material has a significantly better wear resistance when the sliding direction was perpendicular to the processing direction. The best wear resistance was in the end plane and it was improved by a factor up to 3.6 when the draw ratio was increased from 2 to 4. These results indicate that molecular orientation by polymer processing is a promising method to improve the wear properties and decrease the wear debris production of HDPE. Copyright 2002 Wiley Periodicals, Inc.
Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.
2014-01-01
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885
Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A
2014-11-04
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.
Polymer quenched prealloyed metal powder
Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.
2001-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleishhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2003-12-09
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Thermomechanical processing of plasma sprayed intermetallic sheets
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2001-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2000-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Heterogeneous multi-layered IF steel with simultaneous high strength and good ductility
NASA Astrophysics Data System (ADS)
Zhang, Ling; Jiang, Xiaojuan; Wang, Yuhui; Chen, Qiang; Chen, Zhen; Zhang, Yonghong; Huang, Tianlin; Wu, Guilin
2017-07-01
Multi-layered IF steel samples were designed and fabricated by hot compression followed by cold forging of an alternating stack of cold-rolled and annealed IF steel sheets, with an aim to improve the strength of the material without losing much ductility. A very good combination of strength and ductility was achieved by proper annealing after deformation. Microstructural analysis by electron back-scatter diffraction revealed that the good combination of strength and ductility is related to a characteristic hierarchical structure that is characterized by layered and lamella structures with different length scales.
Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; ...
2017-01-01
Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less
Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.
Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less
NASA Astrophysics Data System (ADS)
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; Knezevic, Marko; Garlea, Elena; Agnew, Sean R.
2017-11-01
Finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold straight-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favors one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold straight-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of thermal expansion and the elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.
NASA Astrophysics Data System (ADS)
Gaillac, Alexis; Ly, Céline
2018-05-01
Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.
On the nature of low temperature internal friction peaks in metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khonik, V.A.; Spivak, L.V.
Low temperature (30 < T < 300 K) internal friction in a metallic glass Ni{sub 60}Nb{sub 40} subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs viamore » formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin.« less
Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlach, M., E-mail: martin.vlach@mff.cuni.cz; Stulikova, I.; Smola, B.
2013-12-15
The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitationmore » of the Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al{sub 6}Mn- and/or Al{sub 6}(Mn,Fe) particles of a size ∼ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al{sub 3}Sc particles formation and/or coarsening and that of the Al{sub 6}Mn and/or Al{sub 6}(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al{sub 3}Sc-phase and the Al{sub 6}Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle precipitation is slightly facilitated by cold rolling. • The Mn-containing particle precipitation is highly enhanced by cold rolling. • Cold rolling has no effect on activation energy of the Al{sub 3}Sc and Al{sub 6}Mn precipitation. • The texture development is affected by high solid solution strengthening by Mn.« less
NASA Astrophysics Data System (ADS)
Trivedi, Shefali; Ravi Kumar, D.; Aravindan, S.
2016-10-01
Phosphorus in steel is known to increase strength and hardness and decrease ductility. Higher phosphorus content (more than 0.05%), however, promotes brittle behavior due to segregation of Fe3P along the grain boundaries which makes further mechanical working of these alloys difficult. In this work, thin sheets of Fe-P alloys (with phosphorus in range of 0.1-0.35%) have been developed through processing by powder metallurgy followed by hot rolling and cold rolling. The effect of phosphorus content and annealing parameters (temperature and time) on microstructure, mechanical properties, formability in biaxial stretching and fracture behavior of the cold rolled and annealed sheets has been studied. A comparison has also been made between the properties of the sheets made through P/M route and the conventional cast route with similar phosphorus content. It has been shown that thin sheets of Fe-P alloys with phosphorous up to 0.35% possessing a good combination of strength and formability can be produced through rolling of billets of these alloys made through powder metallurgy technique without the problem of segregation.
NASA Astrophysics Data System (ADS)
Sych, O. V.; Khlusova, E. I.; Yashin, E. A.
2017-12-01
The paper presents the results of quantitative analysis of C, Mn, Ni and Cu content on strength and cold-resistance of rolled plates. Relations between the ferritic-bainitic structure morphology and anisotropy and steel performance characteristics have been established. Influence of thermal and deformation rolling patterns on steel structure has been studied. The steel chemical composition has been improved and precision thermomechanical processing conditions for production of cold-resistant Arc-steel plates have been developed.
Characterization of a cold-rolled 2101 lean duplex stainless steel.
Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene
2013-08-01
Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.
Analysis of factors influencing the bond strength in roll bonding processes
NASA Astrophysics Data System (ADS)
Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie
2018-05-01
Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.
NASA Astrophysics Data System (ADS)
Li, Jiheng; Liu, Yangyang; Li, Xiaojuan; Mu, Xing; Bao, Xiaoqian; Gao, Xuexu
2018-07-01
The effects of different rolling conditions on the microstructure and texture of primary and secondary recrystallization in magnetostrictive Fe82Ga9Al9+0.1at%NbC alloy sheets were investigated. After the primary recrystallization annealing at 850 °C for 5 min, the as-rolled sheets prepared by warm-cold rolling with an intermediate annealing, can be fully recrystallized, and obtain the homogeneous matrix in which the fine dispersed NbC precipitate particles are distributed. The primary recrystallization textures of sheets with different rolling conditions consist mostly of strong {1 0 0} textures, γ-fiber textures, {4 1 1}〈1 4 8〉 texture and weak Goss texture. In the primary recrystallized sheets prepared by warm-cold rolling with an intermediate annealing, the high energy grain boundaries and ∑9 boundaries have the highest proportion. After high temperature annealing, the secondary recrystallizations of Goss grains in these sheets are more complete, and the size of abnormal grown Goss grain is up to several centimeters, which results in the strongest Goss texture. Correspondingly, the largest magnetostriction of 183 ppm is observed. The sample prepared by warm-cold rolling with an intermediate annealing, has homogeneous primary matrix, special texture components and grain boundary distribution, all of which provide a better surrounding for the abnormal growth of Goss grains. This work indicates that the control of rolling conditions of Fe-Ga-Al alloy sheets is necessary to achieve the strong Goss texture and obtain a possible high magnetostriction if other appropriate conditions (stress, domain structure) are achieved.
NASA Astrophysics Data System (ADS)
Garber, E. A.; Timofeeva, M. A.
2016-11-01
New propositions are introduced into the technique of energy-force calculation of pinch-pass mills in order to determine the energy-force and technological parameters of skin rolling of cold-rolled steel strips at the minimum errors. The application of these propositions decreases the errors of calculating the forces and torques in a working stand by a factor of 3-5 as compared to the calculation according to the well-known technique, saves the electric power in the existing mills, and demonstrates the possibility of decreasing the dimensions of working stands and the power of the rolling mill engine.
Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process
NASA Astrophysics Data System (ADS)
Li, Changsheng; Li, Miao; Zhu, Tao; Huo, Gang
2013-05-01
In order to improve surface glossiness of stainless steel strip in tandem cold rolling, experimental research on micro-pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The surface morphology of micro-pit defects was observed by SEM. The effects of micro-pit defects on rolling reduction, roll surface roughness and emulsion parameters were analyzed. With the pass number increasing, the quantity and surface of micro-pit defects were reduced, uneven peak was decreased and gently along rolling direction, micro-pit defects had equally distributed tendency along tranverse direction. The micro-pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. The effects of temperature 55° and 63°, concentration 3% and 6% of emulsion on micro-pit effects had not obvious difference. Maintain of micro-pit was effected by rolling oil or air in the micro-pit, the quality of oil was much more than the air in the micro-pit in lubrication rolling.
Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun
2018-01-01
Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips. PMID:29883387
The Evolution of Second-Phase Particles in 6111 Aluminum Alloy Processed by Hot and Cold Rolling
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Wang, Yihan; Ni, Song; Chen, Gang; Li, Kai; Du, Yong; Song, Min
2018-03-01
The evolution of coarse Al9.9Fe2.65Ni1.45 phase, spherical Al12(Mn,Fe)3Si phase and rod-like Q phase in a 6111 aluminum alloy during hot and cold rolling deformation processes was systematically investigated in this work. The results showed that the coarse Al9.9Fe2.65Ni1.45 particles are mainly distributed at the grain boundaries, accompanied by the co-formation of Al12(Fe,Mn)3Si phase and Mg2Si phase, while the spherical Al12(Mn,Fe)3Si particles are mainly distributed in the grain interiors. Hot rolling has little effects on the size and distribution of both phases, but cold deformation can severely decrease the size of the particles by breaking the particles into small pieces. In addition, the temperature of 450 °C is not high enough for the dissolution of Q phase in the Al matrix, but the Q particles can be broken into small pieces due to the stress concentration during both hot and cold rolling deformation. In addition, the influences of phase evolution, dislocations and recrystallization on the mechanical properties evolution were also discussed.
Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun
2018-05-21
Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips.
Retaining {1 0 0} texture from initial columnar grains in 6.5 wt% Si electrical steels
NASA Astrophysics Data System (ADS)
Liang, Ruiyang; Yang, Ping; Mao, Weimin
2017-11-01
6.5 wt% Si electrical steel is a superior soft magnetic material with excellent magnetic properties which highly depends on texture. In this study, based on the heredity of 〈0 0 1〉 orientation in columnar grains, columnar grains are used as the initial material to prepare non-oriented 6.5 wt% Si electrical steel with excellent magnetic properties. EBSD and XRD techniques are adopted to explore the structure and texture evolution during hot rolling, warm rolling, cold rolling and annealing. The results show that, due to the heredity of "structure and texture" from the initial strong {1 0 0} columnar grains, annealed sheet with {1 0 0}〈0 0 1〉 texture had better magnetic properties, which can be used as non-oriented high-silicon electrical steel. Both preferred cube grain nucleation in deformed {1 1 3}〈3 6 1〉 grains in subsurface and coarse {1 0 0}〈0 0 1〉 deformed grains in center layer show the effect of initial columnar grains with {1 0 0} texture.
Effect of Thermomechanical Processing on Texture and Superelasticity in Fe-Ni-Co-Al-Ti-B Alloy
NASA Astrophysics Data System (ADS)
Lee, Doyup; Omori, Toshihiro; Han, Kwangsik; Hayakawa, Yasuyuki; Kainuma, Ryosuke
2018-03-01
The texture and superelasticity were investigated in austenitic Fe-Ni-Co-Al-Ti-B alloy with various reduction ratios of cold rolling and heating ratios in annealing. The rolled sheets show the {110} <112> deformation texture at a reduction ratio higher than 80%, while the texture hardly changes in the primary recrystallization at 1000 °C. The β (B2) precipitates inhibit the grain growth at this temperature, but they dissolve during heating, and secondary recrystallization occurs due to decreased pinning force at temperatures higher than 1100 °C, resulting in texture change to {210} <001> . The recrystallization texture is more strongly developed when the reduction ratio and heating rate are high and slow, respectively. The 90% cold-rolled and slowly heated sheet shows the recrystallization texture and high fraction of low-angle boundaries. As a result, ductility and superelasticity can be drastically improved in the 90% cold-rolled sheet, although superelasticity was previously obtained only in thin sheets with 98.5% reduction.
NASA Astrophysics Data System (ADS)
Kim, Young Suk; Kim, Sung Soo
2016-09-01
We show that enhanced stress corrosion cracking (SCC) initiation in cold-rolled Alloy 690 with decreasing strain rate is related to the rate of short-range ordering (SRO) but not to the time-dependent corrosion process. Evidence for SRO is provided by aging tests on cold-rolled Alloy 690 at 623 K and 693 K (350 °C and 420 °C), respectively, which demonstrate its enhanced lattice contraction and hardness increase with aging temperature and time, respectively. Secondary intergranular cracks formed only in thermally treated and cold-rolled Alloy 690 during SCC tests, which are not SCC cracks, are caused by its lattice contraction by SRO before SCC tests but not by the orientation effect.
Numerical simulation on chain-die forming of an AHSS top-hat section
NASA Astrophysics Data System (ADS)
Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui
2018-05-01
The applications of Advanced High-Strength Steels (AHSS) in the automotive industry are rapidly increasing due to a demand for a lightweight material that significantly reduces fuel consumption without compromising passenger safety. Automotive industries and material suppliers are expected by consumers to deliver reliable and affordable products, thus stimulating these manufacturers to research solutions to meet these customer requirements. The primary advantage of AHSS is its extremely high strength to weight ratio, an ideal material for the automotive industry. However, its low ductility is a major disadvantage, in particular, when using traditional cold forming processes such as roll forming and deep drawing process to form profiles. Consequently, AHSS parts frequently fail to form. Thereby, in order to improve quality and reliability on manufacturing AHSS products, a recently-developed incremental cold sheet metal forming technology called Chain-die Forming (CDF) is recognised as a potential solution to the forming process of AHSS. The typical CDF process is a combination of bending and roll forming processes which is equivalent to a roll with a large deforming radius, and incrementally forms the desired shape with split die and segments. This study focuses on manufacturing an AHSS top-hat section with minimum passes without geometrical or surface defects by using finite element modelling and simulations. The developed numerical simulation is employed to investigate the influences on the main control parameter of the CDF process while forming AHSS products and further develop new die-punch sets of compensation design via a numerical optimal process. In addition, the study focuses on the tool design to compensate spring-back and reduce friction between tooling and sheet-metal. This reduces the number of passes, thereby improving productivity and reducing energy consumption and material waste. This numerical study reveals that CDF forms AHSS products of complex profiles with much less residual stress, low spring back, low strain and of higher geometrical accuracy compared to other traditional manufacturing processes.
Advances in Integrated Computational Materials Engineering "ICME"
NASA Astrophysics Data System (ADS)
Hirsch, Jürgen
The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.
Bhattacharjee, T; Wani, I S; Sheikh, S; Clark, I T; Okawa, T; Guo, S; Bhattacharjee, P P; Tsuji, N
2018-02-19
Nano-lamellar (L1 2 + B2) AlCoCrFeNi 2.1 eutectic high entropy alloy (EHEA) was processed by cryo-rolling and annealing. The EHEA developed a novel hierarchical microstructure featured by fine lamellar regions consisting of FCC lamellae filled with ultrafine FCC grains (average size ~200-250 nm) and B2 lamellae, and coarse non-lamellar regions consisting of ultrafine FCC (average size ~200-250 nm), few coarse recrystallized FCC grains and rather coarse unrecrystallized B2 phase (~2.5 µm). This complex and hierarchical microstructure originated from differences in strain-partitioning amongst the constituent phases, affecting the driving force for recrystallization. The hierarchical microstructure of the cryo-rolled and annealed material resulted in simultaneous enhancement in strength (Yield Strength/YS: 1437 ± 26 MPa, Ultimate Tensile Strength/UTS: 1562 ± 33 MPa) and ductility (elongation to failure/e f ~ 14 ± 1%) as compared to the as-cast as well as cold-rolled and annealed materials. The present study for the first time demonstrated that cryo-deformation and annealing could be a novel microstructural design strategy for overcoming strength-ductility trade off in multiphase high entropy alloys.
Defining rolled metal performance for cold bolt upsetting (bolt head)
NASA Astrophysics Data System (ADS)
Pachurin, G. V.; Shevchenko, S. M.; Filippov, A. A.; Mukhina, M. V.; Kuzmin, N. A.
2018-03-01
Hardware items are one of the products for mass consumption. Rolled metal for cold forging shall have the required ductility, uniform mechanical characteristics along the mill length, corresponding chemical composition and shall be free from internal or superficial defects. Standard mechanical characteristics have been reviewed in this document and fracture criteria of calibrated rolled steel 40X have been calculated after its isothermal treatment at different temperatures in nitre bath and subsequent drawing with different deformation degrees. Comparison of synergy fracture criteria showed that rolled stock, treated as per the proposed conditions: bath patenting at the temperature of 400°C and drawing with reduction rate of 5% and 10%, are more preferable, comparing to processing conditions, existing in the industry.
40 CFR 420.100 - Applicability; description of the cold forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming... works from cold rolling and cold working pipe and tube operations in which unheated steel is passed... controlled mechanical properties in the steel. (b) The limitations and standards set out below for cold...
Elastic-Plastic Behavior of U6Nb Under Ramp Wave Loading
NASA Astrophysics Data System (ADS)
Hayes, D. B.; Hall, C.; Hixson, R. S.
2005-07-01
Prior shock experiments on the alloy uranium-niobium-6 wt.% (U6Nb) were absent an elastic precursor when one was expected (A. K. Zurek, et. al., Journal de Physique IV, 10 (#9) p677-682). This was later explained as a consequence of shear stress relaxation from time-dependent twinning that prevented sufficient shear stress for plastic yielding. (D. B. Hayes, et. al., Shock Compression of Condensed Matter-2003, p1177, American Institute of Physics 2004) Pressure was ramped to 13 GPa in 150-ns on eight U6Nb specimens with thicknesses from 0.5 -- 1.1-mm and the back surface velocities were measured with laser interferometry. This pressure load produces a stress wave with sufficiently fast rise time so that, according to the prior work, twins do not have time to form. Four of the U6Nb specimens had been cold-rolled which increased the yield stress. Each velocity history was analyzed with a backward integration analysis to give the stress-strain response of the U6Nb. Comparison of these results with prior Hugoniot measurements shows that the U6Nb in the present experiments responds as an elastic-plastic material and the deduced yield strength of the baseline and of the cold-rolled material agree with static results.
NASA Astrophysics Data System (ADS)
Zhou, Xiao; Liu, Qiang; Liu, Ruirui; Zhou, Haitao
2018-06-01
The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the MgLi2Al precipitated in β-Li matrix due to the transformation reaction: β-Li → β-Li + MgLi2Al + α-Mg. As for the alloy subjected to annealed hot rolling, β-Li phase was clearly recrystallized while recrystallization rarely occurred in α-Mg phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh α-Mg grains in β-Li phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.
Hot rolling of thick uranium molybdenum alloys
DeMint, Amy L.; Gooch, Jack G.
2015-11-17
Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.
Thomas, G.; Ahn, J.H.; Kim, N.J.
1986-10-28
An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar[sub 3] temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics. 3 figs.
Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon
1986-01-01
An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.
Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel
Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos
2015-01-01
In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel. PMID:28793647
Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel.
Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos
2015-11-04
In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... Memorandum 1. Background 2. Scope of the Investigation 3. Respondent Selection 4. Discussion of Methodology a...: Scope of the Investigation The diffusion-annealed, nickel-plated flat-rolled steel products included in this investigation are flat-rolled, cold-reduced steel products, regardless of chemistry; whether or...
Microplastic Deformation of Submicrocrystalline Copper at Room and Elevated Temperatures
NASA Astrophysics Data System (ADS)
Dudarev, E. F.; Pochivalova, G. P.; Tabachenko, A. N.; Maletkina, T. Yu.; Skosyrskii, A. B.; Osipov, D. A.
2017-02-01
of investigations of submicrocrystalline copper subjected to cold rolling after abc pressing by methods of backscatter electron diffraction and x-ray diffraction analysis are presented. It is demonstrated that after such combined intensive plastic deformation, the submicrocrystalline structure with average grain-subgrain structure elements having sizes of 0.63 μm is formed with relative fraction of high-angle grain boundaries of 70% with texture typical for rolled copper. Results of investigation of microplastic deformation of copper with such structure at temperatures in the interval 295-473 K and with submicrocrystalline structure formed by cold rolling of coarse-grained copper are presented.
Manufacturing Methods and Technology Project Summary Reports.
1980-12-01
deposition of chrome-copper (Cr- Cu ), dry-film photoresist application, photolithographic masking, spray etching, die bonding, ultrasonic...4) cold roll forging. Of these, the cold roll forging process is the most widely used for the pro- duction of steel and low alloy blades. It provides... sprayed Mo- Al -Ni both provide relatively good wear resistance, see Figure 1. The powder -flame sprayed aluminum bronze did not perform as well. 147 -S t. I
NASA Astrophysics Data System (ADS)
Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Shirazi, H.
2010-07-01
Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was epsilon ~7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.
Tang, Yan; Le, Qichi; Wang, Tong; Chen, Xingrui
2017-10-12
The microstructural evolution, mechanical properties, and mathematical relationship of an α, α + β, and β phase Mg-Li alloy during the cold rolling and annealing process were investigated. The results showed that the increased Li element gradually transformed the Mg matrix structure from hcp to bcc. Simultaneously, the alloy plasticity was improved remarkably during cold rolling. In the annealing process, a sort of abnormal grain growth was found in Mg-11Li-3Al-2Zn-0.2Y, but was not detected in Mg-5Li-3Al-2Zn-0.2Y and Mg-8Li-3Al-2Zn-0.2Y. Moreover, the mechanical properties of alloy were evidently improved through a kind of solid solution in the β matrix. To accurately quantify this strengthening effect, the method of mathematical modeling was used to determine the relationship between strength and multiple factors.
Recycle of valuable products from oily cold rolling mill sludge
NASA Astrophysics Data System (ADS)
Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Liu, Yang; Volinsky, Alex A.
2013-10-01
Oily cold rolling mill (CRM) sludge contains lots of iron and alloying elements along with plenty of hazardous organic components, which makes it as an attractive secondary source and an environmental contaminant at the same time. The compound methods of "vacuum distillation + oxidizing roasting" and "vacuum distillation + hydrogen reduction" were employed for the recycle of oily cold rolling mill sludge. First, the sludge was dynamically vacuum distilled in a rotating furnace at 50 r/min and 600°C for 3 h, which removed almost hazardous organic components, obtaining 89.2wt% ferrous resultant. Then, high purity ferric oxide powders (99.2wt%) and reduced iron powders (98.9wt%) were obtained when the distillation residues were oxidized and reduced, respectively. The distillation oil can be used for fuel or chemical feedstock, and the distillation gases can be collected and reused as a fuel.
NASA Astrophysics Data System (ADS)
Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan
2016-09-01
As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.
NASA Astrophysics Data System (ADS)
Galdos, L.; Saenz de Argandoña, E.; Mendiguren, J.; Silvestre, E.
2017-09-01
The roll levelling is a flattening process used to remove the residual stresses and imperfections of metal strips by means of plastic deformations. During the process, the metal sheet is subjected to cyclic tension-compression deformations leading to a flat product. The process is especially important to avoid final geometrical errors when coils are cold formed or when thick plates are cut by laser. In the last years, and due to the appearance of high strength materials such as Ultra High Strength Steels, machine design engineers are demanding reliable tools for the dimensioning of the levelling facilities. Like in other metal forming fields, finite element analysis seems to be the most widely used solution to understand the occurring phenomena and to calculate the processing loads. In this paper, the roll levelling process of the third generation Fortiform 1050 steel is numerically analysed. The process has been studied using the MSC MARC software and two different material laws. A pure isotropic hardening law has been used and set as the baseline study. In the second part, tension-compression tests have been carried out to analyse the cyclic behaviour of the steel. With the obtained data, a new material model using a combined isotropic-kinematic hardening formulation has been fitted. Finally, the influence of the material model in the numerical results has been analysed by comparing a pure isotropic model and the later combined mixed hardening model.
Deformation and annealing study of NiCrAlY
NASA Technical Reports Server (NTRS)
Ebert, L. J.; Trela, D. M.
1978-01-01
The elevated temperature properties (tensile and creep) of NiCrALY, a nickel base alloy containing nominally 16% chromium, 4% aluminum, and 2 to 3% yttria (Y2O3) were evaluated and the optimal combination of thermomechanical treatments for maximum creep resistance was determined. Stored strain energy in as-extruded bars (14:1 extrusion ratio) permitted the development of a large grain size in the material when it was annealed at the maximum safe temperature 2450 F (1343 C). With a one-hour anneal at this temperature, the relatively fine grain size of the as-extruded material was changed to one in which the average grain diameter approached 1 mm, and the aspect ratio was about 10. The material was capable of being cold worked (by rolling) in amounts greater than 30% reduction in area. When the cold worked material was given a relaxation treatment, consisting of heating one hour at 1600 F(871 C), and then a high temperature anneal at 2450 F (1343 C) for one hour, both the high temperature strength and the high temperature creep resistance of the material was further enhanced.
Klimova, Margarita; Stepanov, Nikita; Shaysultanov, Dmitry; Chernichenko, Ruslan; Yurchenko, Nikita; Sanin, Vladimir; Zherebtsov, Sergey
2017-12-29
The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.
Micromechanical Characterization and Texture Analysis of Direct Cast Titanium Alloys Strips
NASA Technical Reports Server (NTRS)
2000-01-01
This research was conducted to determine a post-processing technique to optimize mechanical and material properties of a number of Titanium based alloys and aluminides processed via Melt Overflow Solidification Technique (MORST). This technique was developed by NASA for the development of thin sheet titanium and titanium aluminides used in high temperature applications. The materials investigated in this study included conventional titanium alloy strips and foils, Ti-1100, Ti-24Al-11Nb (Alpha-2), and Ti-48Al-2Ta (Gamma). The methodology used included micro-characterization, heat-treatment, mechanical processing and mechanical testing. Characterization techniques included optical, electron microscopy, and x-ray texture analysis. The processing included heat-treatment and mechanical deformation through cold rolling. The initial as-cast materials were evaluated for their microstructure and mechanical properties. Different heat-treatment and rolling steps were chosen to process these materials. The properties were evaluated further and a processing relationship was established in order to obtain an optimum processing condition. The results showed that the as-cast material exhibited a Widmanstatten (fine grain) microstructure that developed into a microstructure with larger grains through processing steps. The texture intensity showed little change for all processing performed in this investigation.
Rolling-element fatigue life of AMS 5900 balls
NASA Technical Reports Server (NTRS)
Parker, R. J.
1983-01-01
The rolling-element fatigue life of AMS 5900 12.7-mm (1/2-in.) dia was determined in five-ball fatigue testers. The 10% life with the warm headed AMS 5900 balls was equivalent to that of AMS 5749 and over eight times that of AISI M-50. The AMS balls fabricated by cold heading had small surface cracks which initiated fatigue spalls where these cracks were crossed by running tracks. The cold-headed AMS 5900 balls had a 10% fatigue life an order of magnitude less than that of the warm headed balls even when failures on the cold headed balls at visible surface cracks were omitted.
Fiber vs Rolling Texture: Stress State Dependence for Cold-Drawn Wire
NASA Astrophysics Data System (ADS)
Zorina, M. A.; Karabanalov, M. S.; Stepanov, S. I.; Demakov, S. L.; Loginov, Yu. N.; Lobanov, M. L.
2018-02-01
The texture of the cold-drawn copper wire was investigated along the radius using electron backscatter diffraction. The complex fiber texture of the central region of the wire was considered as the rolling texture consisting of a set of preferred orientations. The texture of the periphery region was revealed to be similar to the shear texture. The orientation-dependent properties of the wire were proven to be determined by the texture of the near-surface layers.
Combustion Synthesis Reaction Behavior of Cold-Rolled Ni/Al and Ti/Al Multilayers
2011-04-01
6 Figure 4 . Combustion synthesis process of the cold-rolled Ni/Al multilayer foils: (a) reaction front of the displacement of the reaction...Reactive Nanostructured Foil Used as a Heat Source for Joining Titanium . J. Appl. Phys. 2004, 96 ( 4 ), 2336–2342. 16. Wang, J.; Besnoin, E...2011 2. REPORT TYPE Final 3. DATES COVERED (From - To) January 2006–January 2008 4 . TITLE AND SUBTITLE Combustion Synthesis Reaction Behavior of
Microscopic Observations of Adiabatic Shear Bands in Three Different Steels
1988-09-01
low thermal conductivity, and a high thermal softening rate. Examples include alloys of titanium. aluminum, copper , as well as steels [5-221... steels : 1 (1) an AISI 1018 cold rolled steel , (2) a high strength low alloy structural steel , and deformation in shear was impo.ed to produce shear bands...stecls: (1) an AISI 1018 cold rolled steel , (2) a high strength low alloy structural steel , and (3) an AISI 4340 VAR steel tempered
New technology for recyclingmaterials from oily cold rollingmill sludge
NASA Astrophysics Data System (ADS)
Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Meng, Ling; Liu, Yang
2013-12-01
Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge.
Determination of the Emissivity of Materials
1962-12-31
testing. The window is protected by a magnetically-ope-ated rolling disc shutter. Bakeout heaters are provided to outgas the chamber before testing...nitrogen cold trap over a period of two hours. During this period the chamber was baked out at 350 °F. The ion-gettering pump was then started and the...If the chamber had been contaminated by previous testing, it was baked out at 350 °F during pump-down. During testing, the chamber walls were cooled to
USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy. Number 40.
1976-11-01
means of increasing the deformability of two- phase martensite - ferrite steels during subsequent cold rolling, as well as austenite- ferrite steels ...carbon steel , VT-4 titanium alloy and M-l copper . The specimens were placed in July 1972 and removed in April 1974. Tables are given summarizing...between the degree of development of the a -*• y conversion at the deformation focus in steels of the martensite - ferrite class and the position of
40 CFR 468.14 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... for monthly average Metric units—mg/off-kg of copper or copper alloy hot rolled English units—pounds... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166... copper or copper alloy drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy...
NASA Astrophysics Data System (ADS)
Miura, H.; Kobayashi, T.; Kobayashi, M.
2014-08-01
Cu-18.2Zn-1.5Si-0.25Fe (mass%) alloy was heavily cold rolled. Ultrafine grained (UFGed) structure, containing a mixture of lamellar and mechanical twins, was easily and homogeneously formed. The average grain size was approximately 100 nm. The as-rolled sample showed quite high ultimate tensile strength (UTS) over 1 GPa. The UTS was higher than those obtained by multi directional forging. When the samples were annealed at relatively low temperatures between 553 K and 653 K, they showed slight hardening followed by large softening due to occurrence of static recrystallization (SRX). Annealing of UFGed structure at relatively low temperature of around 0.4 Tm caused extensive SRX that, in turn, induces ultrafine RXed grained structure. The grain size of the RXed sample was as fine as 200 nm. Although the annealing induced recovery of ductility while UTS gradually reduces, UTS over 1 GPa with ductility of 15 % were attained. The RXed grains mainly contained ultrafine annealing twins. Therefore, UFGed structure and superior mechanical properties could be achieved by a simple process of cold rolling, i.e., without severe plastic deformation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
... Southwest Cold Weather Event Follow-up Technical Conference; Notice of Technical Conference Take notice that... August 16, 2011 Report on Outages and Curtailments During the Southwest Cold Weather Event of February 1... severe cold weather issues that led to rolling blackouts affecting over 4 million customers and natural...
Rolling contact fatigue of low hardness steel for slewing ring application
NASA Astrophysics Data System (ADS)
Knuth, Jason A.
This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium carbon alloy. The work hardening of the high carbon steel increased the surface hardness that exceeded the medium carbon alloy steel surface hardness.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong
2016-12-01
In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.
Orientation Dependence of the Deformation Microstructure of Ta-4%W after Cold-Rolling
NASA Astrophysics Data System (ADS)
Zhang, J.; Ma, G. Q.; Godfrey, A.; Shu, D. Y.; Chen, Q.; Wu, G. L.
2017-07-01
One of the common features of deformed face-centered cubic metals with medium to high stacking fault energy is the formation of geometrically necessary dislocation boundaries. The dislocation boundary arrangements in refractory metals with body-centered cubic crystal structure are, however, less well known. To address this issue a Ta-4%W alloy was cold rolled up to 70% in thickness in the present work. The resulting deformation microstructures were characterized by electron back-scattering diffraction and the dislocation boundary arrangements in each grain were revealed using sample-frame misorientation axis maps calculated using an in-house code. The maps were used to analyze the slip pattern of individual grains after rolling, revealing an orientation dependence of the slip pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, S.A.; Martin, M.M.; Lotts, A.L.
The fabricability of dispersion fuels using UO/sub 2/ or UC as the dispersoid and uranium combined with 10 to 15 wt% Mo as the matrix was investigated. Cores containing l7.8 wt% UO/sub 2/ dispersed in U-- 15 wt.% Mo were successfully fabricated to about 80% of theoretical density by cold pressing at 50 tsi, sintering at 1100 deg C, and cold coining at 50 tsi. Comparable results were obtained with UC as the dispersoid. Core fabrication results varied greatly with the type of matrix powder used. Occluded gases, pour density, and surface cleanliness bore important relations to the fabrication behaviormore » of powders. Suitable pressing and sintering results were obtained with prealloyed, calcium-reduced U--Mo powder and with molybdenum and calcium-reduced uranium as elemental powders. Shotted prealloyed powders were difficult to press and sinter, as were elemental and prealloyed powders prepared by hydriding. The cores containing UO/sub 2/ were picture-frame, hot-roll-clad as miniature plates. Molybdenum, Fansteel 82, and Zr--3 wt% Al were investigated as cladding materials. While each bonded well to itself, only the molybdenum-clad core, rolled at 1150 deg C to 10/1 reduction, resulted in dispersions free of ruptures and UO/sub 2/ fragmentation and in strong bonding to the core, evaluated by metallography, mechanical peel, and thermal shock tests. The matrix phase was homogeneous, but the UO/sub 2/ dispersoid showed stringering characteristic of cores worked by hot rolling. Core densities as high as 99% of theoretical were obtained. (auth)« less
Effect of oxide particles on the stabilization and final microstructure in aluminium
Bachmaier, Andrea; Pippan, Reinhard
2011-01-01
Bulk aluminium samples containing alumina particles have been produced by different severe plastic deformation methods. Aluminium foils with different initial foil thicknesses were cold rolled to different amounts of strain and aluminium powders were consolidated and deformed by high pressure torsion (HPT). During processing, alumina particles from the foil or particle surface are easily incorporated and dispersed in the bulk material. The influence of these alumina particles on the developing microstructures and the mechanical properties has been studied. PMID:21976787
Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites.
Florián-Algarín, David; Marrero, Raúl; Li, Xiaochun; Choi, Hongseok; Suárez, Oscar Marcelo
2018-03-10
This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.
Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites
Marrero, Raúl; Li, Xiaochun; Choi, Hongseok
2018-01-01
This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding. PMID:29534441
Insulation Testing Using Cryostat Apparatus with Sleeve
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Augustynowicz, S. D.
1999-01-01
The method and equipment of testing continuously rolled insulation materials is presented in this paper. Testing of blanket and molded products is also facilitated. Materials are installed around a cylindrical copper sleeve using a wrapping machine. The sleeve is slid onto the vertical cold mass of the cryostat. The gap between the cold mass and the sleeve measures less than 1 mm. The cryostat apparatus is a liquid nitrogen boiloff calorimeter system that enables direct measurement of the apparent thermal conductivity (k-value) of the insulation system at any vacuum level between 5 x 10(exp -5) and 760 torr. Sensors are placed between layers of the insulation to provide complete temperature-thickness profiles. The temperatures of the cold mass (maintained at 77.8 kelvin (K)), the sleeve (cold boundary temperature (CBT)), the insulation outer surface (warm boundary temperature (WBT)), and the vacuum can (maintained at 313 K by a thermal shroud) are measured. Plots of CBT, WBT, and layer temperature profiles as functions of vacuum level show the transitions between the three dominant heat transfer modes. For this cryostat apparatus, the measureable heat gain is from 0.2 to 20 watts. The steady-state measurement of k-value is made when all temperatures and the boiloff rate are stable.
Code of Federal Regulations, 2011 CFR
2011-07-01
... beading, straightening, corrugating, flanging, or bending rolls; and hot or cold rolling mills. (ii) All... area between the dies; power presses; and plate punches. (iii) All bending machines, such as apron...
EBSD characterization of twinning in cold-rolled CP-Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X., E-mail: csulixu@hotmail.com; Duan, Y.L., E-mail: 876270744@qq.com; Xu, G.F., E-mail: csuxgf66@csu.edu.cn
2013-10-15
This work presents the use of a mechanical testing system and the electron backscatter diffraction technique to study the mechanical properties and twinning systems of cold-rolled commercial purity titanium, respectively. The dependence of twinning on the matrix orientation is analyzed by the distribution map of Schmid factor. The results showed that the commercial purity titanium experienced strong strain hardening and had excellent formability during rolling. Both the (112{sup ¯}2)<112{sup ¯}3{sup ¯}> compressive twins and (101{sup ¯}2)<101{sup ¯}1{sup ¯}> tensile twins were dependent on the matrix orientation. The Schmid factor of a grain influenced the activation of a particular twinning system.more » The specific rolling deformation of commercial purity titanium controlled the number and species of twinning systems and further changed the mechanical properties. - Highlights: • CP-Ti experienced strain hardening and had excellent formability. • Twins were dependent on the matrix orientation. • Schmid factor of a grain influenced the activation of a twinning system. • Rolling deformation controlled twinning systems and mechanical properties.« less
Shock compression response of cold-rolled Ni/Al multilayer composites
Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.
2017-01-06
Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. Finally, these simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.
NASA Astrophysics Data System (ADS)
He, Tong; Bai, Yang; Liu, Xiuting; Guo, Dan; Liu, Yandong
2018-04-01
We investigated the effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels. The as-received hot rolled sheets were cold rolled up to 80% reduction and then annealed at 740-880 °C for 5 min. The cold rolling and recrystallization microstructures and micro-textures of Sn-containing and Sn-free ferritic stainless steels were all determined by electron backscatter diffraction. Our Results show that Sn micro-alloying has important effects on recrystallization nucleation and growth processes of ferritic stainless steels. Sn micro-alloying conduces to grain fragmentation in the deformation band, more fragmented grains are existed in Sn-containing cold rolled sheets, which provides more sites for recrystallization nucleation. Sn micro-alloying also promotes recrystallization process and inhibits the growth of recrystallized grains. The recrystallization nucleation and growth mechanism of Sn-containing and Sn-free ferritic stainless steels are both characterized by orientation nucleation and selective growth, but Sn micro-alloying promotes the formation of γ-oriented grains. Furthermore, Sn micro-alloying contributes to the formation of Σ13b CSL boundaries and homogeneous γ-fiber texture. Combining the results of microstructure and micro-texture, the formability of Sn-containing ferritic stainless steels will be improved to some extent.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., or bending rolls; and hot or cold rolling mills. (ii) All pressing or punching machines, such as... presses; and plate punches. (iii) All bending machines, such as apron brakes and press brakes. (iv) All...
Finite element modelling of chain-die forming for ultra-high strength steel
NASA Astrophysics Data System (ADS)
Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui
2017-10-01
There has been a high demand for weight reduction in automotive vehicles while maintaining passenger safety. A potential steel material to achieve this is Ultra High Strength Steel (UHSS). As a high strength material, it is difficult to be formed with desired profiles using traditional sheet metal forming processes such as Cold Roll Forming. To overcome this problem, a potentially alternative solution is Chain-die Forming (CDF), recently developed. The basic principal of the CDF is to fully combine roll forming and bending processes. The main advantage of this process is the elongated deformation length that significantly increases effective roll radius. This study focuses on identifying issues with the CDF by using CAD modelling, Motion Analysis and Finite Element Analysis (FEA) to devise solutions and construct a more reliable process in an optimal design sense. Some attempts on finite element modelling and simulation of the CDF were conducted using relatively simple models in literature and the research was still not sufficient enough for optimal design of a typical CDF for UHSS. Therefore two numerical models of Chain-die Forming process are developed in this study, including a) one having a set of rolls similar to roll forming but with a large radius, i.e., 20 meters; and b) the other one with dies and punch segments similar to a typical CDF machine. As a case study, to form a 60° channel with single pass was conducted using these two devised models for a comparison. The obtained numerical results clearly show the CDF could generate less residual stress, low strain and small springback of a single pass for the 60° UHSS channel. The design analysis procedure proposed in this study could greatly help the mechanical designers to devise a cost-effective and reliable CDF process for forming UHSS.
40 CFR 468.13 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... copper alloy hot rolled Chromium 0.038 0.015 Copper 0.131 0.062 Lead 0.010 0.0092 Nickel 0.056 0.038 Zinc... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140... copper or copper alloy drawn Chromium 0.031 0.012 Copper 0.108 0.051 Lead 0.0085 0.0076 Nickel 0.046 0...
40 CFR 468.13 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... copper alloy hot rolled Chromium 0.038 0.015 Copper 0.131 0.062 Lead 0.010 0.0092 Nickel 0.056 0.038 Zinc... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140... copper or copper alloy drawn Chromium 0.031 0.012 Copper 0.108 0.051 Lead 0.0085 0.0076 Nickel 0.046 0...
40 CFR 468.13 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... copper alloy hot rolled Chromium 0.038 0.015 Copper 0.131 0.062 Lead 0.010 0.0092 Nickel 0.056 0.038 Zinc... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140... copper or copper alloy drawn Chromium 0.031 0.012 Copper 0.108 0.051 Lead 0.0085 0.0076 Nickel 0.046 0...
High dislocation density-induced large ductility in deformed and partitioned steels
NASA Astrophysics Data System (ADS)
He, B. B.; Hu, B.; Yen, H. W.; Cheng, G. J.; Wang, Z. K.; Luo, H. W.; Huang, M. X.
2017-09-01
A wide variety of industrial applications require materials with high strength and ductility. Unfortunately, the strategies for increasing material strength, such as processing to create line defects (dislocations), tend to decrease ductility. We developed a strategy to circumvent this in inexpensive, medium manganese steel. Cold rolling followed by low-temperature tempering developed steel with metastable austenite grains embedded in a highly dislocated martensite matrix. This deformed and partitioned (D and P) process produced dislocation hardening but retained high ductility, both through the glide of intensive mobile dislocations and by allowing us to control martensitic transformation. The D and P strategy should apply to any other alloy with deformation-induced martensitic transformation and provides a pathway for the development of high-strength, high-ductility materials.
NASA Astrophysics Data System (ADS)
Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A.
2015-07-01
A dual phase (DP) steel was produced by a new process utilizing an uncommon cold-rolling and subsequent intercritical annealing of a martensite-ferrite duplex starting structure. Ultrafine grained DP steels with an average grain size of about 2 μm and chain-networked martensite islands were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructure. The strength of the low carbon steel with the new DP microstructure was reached about 1300 MPa (140 pct higher than that of the as-received state, e.g., 540 MPa), without loss of ductility. Tensile testing revealed good strength-elongation balance for the new DP steels (UTS × UE ≈ 11,000 to 15,000 MPa pct) in comparison with the previous works and commercially used high strength DP steels. Two strain hardening stages with comparable exponents were observed in the Holloman analysis of all DP steels. The variations of hardness, strength, elongation, and strain hardening behavior of the specimens with thermomechanical parameters were correlated to microstructural features.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420...) Cold rolling mills—(1) Recirculation—single stand. Subpart J Pollutant or pollutant property BCT...) (1) 1 Within the range of 6.0 to 9.0. (b) Cold worked pipe and tube—(1) Using water. Subpart J...
Code of Federal Regulations, 2014 CFR
2014-07-01
... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420...) Cold rolling mills—(1) Recirculation—single stand. Subpart J Pollutant or pollutant property BCT...) (1) 1 Within the range of 6.0 to 9.0. (b) Cold worked pipe and tube—(1) Using water. Subpart J...
Code of Federal Regulations, 2011 CFR
2011-07-01
... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420...) Cold rolling mills—(1) Recirculation—single stand. Subpart J Pollutant or pollutant property BCT...) (1) 1 Within the range of 6.0 to 9.0. (b) Cold worked pipe and tube—(1) Using water. Subpart J...
Code of Federal Regulations, 2010 CFR
2010-07-01
... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420...) Cold rolling mills—(1) Recirculation—single stand. Subpart J Pollutant or pollutant property BCT...) (1) 1 Within the range of 6.0 to 9.0. (b) Cold worked pipe and tube—(1) Using water. Subpart J...
Code of Federal Regulations, 2012 CFR
2012-07-01
... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420...) Cold rolling mills—(1) Recirculation—single stand. Subpart J Pollutant or pollutant property BCT...) (1) 1 Within the range of 6.0 to 9.0. (b) Cold worked pipe and tube—(1) Using water. Subpart J...
Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets
NASA Astrophysics Data System (ADS)
Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.
2011-05-01
Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.
Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, A. E.; Berger, E.; Freudenthaler, J.
Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesivemore » and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.« less
Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukinori; Sun, Zhiqian; Pint, Bruce A.
2016-06-03
There are two major objectives in this report; (1) to optimize microstructure control of ATF FeCrAl alloys during tube drawing processes, and (2) to provide an update on the progress of ATF FeCrAl tube production via commercial manufacturers. Experimental efforts have been made to optimize the process parameters balancing the tube fabricability, especially for tube drawing processes, and microstructure control of the final tube products. Lab-scale sheet materials of Gen II FeCrAl alloys (Mo-containing and Nb-containing FeCrAl alloys) were used in the study, combined with a stepwise warm-rolling process and intermediate annealing, aiming to simulate the tube drawing process inmore » a commercial tube manufacturer. The intermediate annealing at 650ºC for 1h was suggested for the tube-drawing process of Mo-containing FeCrAl alloys because it successfully softened the material by recovering the work hardening introduced through the rolling step, without inducing grain coarsening due to recrystallization. The final tube product is expected to have stabilized deformed microstructure providing the improved tensile properties with sufficient ductility. Optimization efforts on Nb-containing FeCrAl alloys focused on the effect of alloying additions and annealing conditions on the stability of deformed microstructure. Relationships between the second-phase precipitates (Fe 2Nb-Laves phase) and microstructure stability are discussed. FeCrAl tube production through commercial tube manufacturers is currently in progress. Three different manufacturers, Century Tubes, Inc. (CTI), Rhenium Alloys, Inc. (RAI), and Superior Tube Company, Inc. (STC), are providing capabilities for cold-drawing, warm-drawing, and HPTR cold-pilgering, respectively. The first two companies are currently working on large quantity tube production (expected 250 ft length) of Gen I model FeCrAl alloy (B136Y3, at CTI) and Gen II (C35M4, at RAI), with the process parameters obtained from the experimental efforts. The expected delivery dates are at the end of July, 2016, and the middle of June, 2016, respectively. Tube production at STC would be the first attempt to apply cold-pilgering to the FeCrAl alloys. Communication has been initiated, and the materials have been machined for the cold-pilgering process.« less
Metallurgical characterization of brass objects from the Akko 1 shipwreck, Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashkenazi, D., E-mail: dana@eng.tau.ac.il; Cvikel, D.; Stern, A.
2014-06-01
The Akko 1 shipwreck was a small Egyptian armed vessel or auxiliary naval brig built in the eastern Mediterranean at the beginning of the 19th century. During the underwater excavations, about 230 brass hook-and-eye closures were found, mainly in the bow area. In addition, 158 brass cases were found, mainly between midships and the aft extremity of the shipwreck. Metallurgical non-destructive and destructive characterizations of selected items were performed, including radiographic testing, XRF, lead isotope analysis, optical microscopy, SEM–EDS and microhardness tests. The hook-and-eye closures and the cases were both found to be made of binary copper–zinc alloy (about 30more » wt.% zinc). While the brass cases were made from rolled sheets, hand-made using simple tools, and joined by tin–lead soldering material, the brass hook-and-eye closures were hand-made from drawn brass wire, and manufactured from commercial drawn brass bars by a cold-working process. The lead isotope analyses suggest different provenances of the raw materials used for making the brass objects, thus the different origins of the ores may hint that the brass wire and sheet were imported to the workshops in which the objects were manufactured. - Highlights: • Brass cases and hook-and-eye closures were retrieved from the Akko 1 shipwreck. • Both types of objects were made of binary copper–zinc alloy (about 30 wt.% zinc). • The cases were hand-made from rolled sheets and joined by tin–lead soldering. • Hook-and-eye closures were made from drawn brass wire manufactured by cold-working. • Lead isotope analyses suggest that the origins of the raw material were diverse.« less
Shock compression response of cold-rolled Ni/Al multilayer composites
NASA Astrophysics Data System (ADS)
Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.
2017-01-01
Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations [Specht et al., J. Appl. Phys. 111, 073527 (2012)]. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. These simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.
40 CFR 468.14 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018 Copper 0.195 0.103... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166... drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107 Zinc 0.124 0.051 TTO 0...
40 CFR 468.14 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045... alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead 0.056 0.049 Nickel 0.727 0.481 Zinc 0.553... copper or copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107...
40 CFR 468.14 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045... alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead 0.056 0.049 Nickel 0.727 0.481 Zinc 0.553... copper or copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107...
40 CFR 468.14 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045... alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead 0.056 0.049 Nickel 0.727 0.481 Zinc 0.553... copper or copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
...., Steubenville, OH By applications dated May 15 and May 21, 2010, United Steel, Paper and Forestry, Rubber... back plate coils (TA-W-71,572A), hot rolled coils (TA- W-71,572B), and cold rolled coils (TA-W-71,572C...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
... determined that Philippines, Indonesia, Ukraine, Thailand, Colombia, and South Africa are countries... Flat-Rolled Carbon-Quality Steel Products from the Russian Federation, 65 FR 5510, 5518 (February 4...\\ See Final Determination of Sales at Less Than Fair Value: Certain Cold-Rolled Carbon Quality Steel...
NASA Astrophysics Data System (ADS)
Puff, Werner; Rabitsch, Herbert; Wilde, Gerhard; Dinda, Guru P.; Würschum, Roland
2007-06-01
With the aim to contribute to a microscopical understanding of the processes of solid-state amorphization, the chemically sensitive technique of background—reduced Doppler broadening of positron-electron annihilation radiation in combination with positron lifetime spectroscopy and microstructural characterization is applied to a free volume study of the amorphization of Cu60Zr40 induced by consecutive folding and rolling. Starting from the constituent pure metal foils, a nanosale multilayer structure of elemental layers and amorphous interlayers develops in an intermediate state of folding and rolling, where free volumes with a Zr-rich environment occur presumably located in the hetero-interfaces between the various layers or in grain boundaries of the Cu layers. After complete intermixing and amorphization, the local chemical environment of the free volumes reflects the average chemical alloy composition. In contrast to other processes of amorphization, free volumes of the size of few missing atoms occur in the rolling-induced amorphous state. Self-consistent results from three different methods for analyzing the Doppler broadening spectra, i.e., S-W-parameter correlation, multicomponent fit, and the shape of ratio curves, demonstrate the potential of the background-reduced Doppler technique for chemically sensitive characterization of structurally complex materials on an atomic scale.
NASA Astrophysics Data System (ADS)
Leuning, Nora; Steentjes, Simon; Stöcker, Anett; Kawalla, Rudolf; Wei, Xuefei; Dierdorf, Jens; Hirt, Gerhard; Roggenbuck, Stefan; Korte-Kerzel, Sandra; Weiss, Hannes A.; Volk, Wolfram; Hameyer, Kay
2018-04-01
Thin laminations of non-grain oriented (NO) electrical steels form the magnetic core of rotating electrical machines. The magnetic properties of these laminations are therefore key elements for the efficiency of electric drives and need to be fully utilized. Ideally, high magnetization and low losses are realized over the entire polarization and frequency spectrum at reasonable production and processing costs. However, such an ideal material does not exist and thus, achievable magnetic properties need to be deduced from the respective application requirements. Parameters of the electrical steel such as lamination thickness, microstructure and texture affect the magnetic properties as well as their polarization and frequency dependence. These structural features represent possibilities to actively alter the magnetic properties, e.g., magnetization curve, magnetic loss or frequency dependence. This paper studies the influence of production and processing on the resulting magnetic properties of a 2.4 wt% Si electrical steel. Aim is to close the gap between production influence on the material properties and its resulting effect on the magnetization curves and losses at different frequencies with a strong focus on occurring interdependencies between production and mechanical processing. The material production is realized on an experimental processing route that comprises the steps of hot rolling, cold rolling, annealing and punching.
NASA Astrophysics Data System (ADS)
Chen, S.; Butler, J.; Melzer, S.
2014-11-01
In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions.
Ultrafine-grained titanium for medical implants
Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.
2002-01-01
We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.
Multiscale modeling of a low magnetostrictive Fe-27wt%Co-0.5wt%Cr alloy
NASA Astrophysics Data System (ADS)
Savary, M.; Hubert, O.; Helbert, A. L.; Baudin, T.; Batonnet, R.; Waeckerlé, T.
2018-05-01
The present paper deals with the improvement of a multi-scale approach describing the magneto-mechanical coupling of Fe-27wt%Co-0.5wt%Cr alloy. The magnetostriction behavior is demonstrated as very different (low magnetostriction vs. high magnetostriction) when this material is submitted to two different final annealing conditions after cold rolling. The numerical data obtained from a multi-scale approach are in accordance with experimental data corresponding to the high magnetostriction level material. A bi-domain structure hypothesis is employed to explain the low magnetostriction behavior, in accordance with the effect of an applied tensile stress. A modification of the multiscale approach is proposed to match this result.
Liu, Qiang; Chai, Tianyou; Wang, Hong; Qin, Si-Zhao Joe
2011-12-01
The continuous annealing process line (CAPL) of cold rolling is an important unit to improve the mechanical properties of steel strips in steel making. In continuous annealing processes, strip tension is an important factor, which indicates whether the line operates steadily. Abnormal tension profile distribution along the production line can lead to strip break and roll slippage. Therefore, it is essential to estimate the whole tension profile in order to prevent the occurrence of faults. However, in real annealing processes, only a limited number of strip tension sensors are installed along the machine direction. Since the effects of strip temperature, gas flow, bearing friction, strip inertia, and roll eccentricity can lead to nonlinear tension dynamics, it is difficult to apply the first-principles induced model to estimate the tension profile distribution. In this paper, a novel data-based hybrid tension estimation and fault diagnosis method is proposed to estimate the unmeasured tension between two neighboring rolls. The main model is established by an observer-based method using a limited number of measured tensions, speeds, and currents of each roll, where the tension error compensation model is designed by applying neural networks principal component regression. The corresponding tension fault diagnosis method is designed using the estimated tensions. Finally, the proposed tension estimation and fault diagnosis method was applied to a real CAPL in a steel-making company, demonstrating the effectiveness of the proposed method.
Producing Foils From Direct Cast Titanium Alloy Strip
NASA Technical Reports Server (NTRS)
Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.
1996-01-01
This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.
Vision-based surface defect inspection for thick steel plates
NASA Astrophysics Data System (ADS)
Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo
2017-05-01
There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Tutar, Mumin; Aydin, Hakan; Bayram, Ali
2017-08-01
Formability and energy absorption capability of a steel sheet are highly desirable properties in manufacturing components for automotive applications. TWinning Induced Plastisity (TWIP) steels are, new generation high Mn alloyed steels, attractive for the automotive industry due to its outstanding elongation (%40-45) and tensile strength (~1000MPa). So, TWIP steels provide excellent formability and energy absorption capability. Another required property from the steel sheets is suitability for manufacturing methods such as welding. The use of the steel sheets in the automotive applications inevitably involves welding. Considering that there are 3000-5000 welded spots on a vehicle, it can be interpreted that one of the most important manufacturing method is Resistance Spot Welding (RSW) for the automotive industry. In this study; firstly, TWIP steel sheet were cold rolled to 15% reduction in thickness. Then, the cold rolled TWIP steel sheets were welded with RSW method. The welding parameters (welding current, welding time and electrode force) were optimized for maximizing the peak tensile shear load and minimizing the indentation of the joints using a Taguchi L9 orthogonal array. The effect of welding parameters was also evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results.
Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX
NASA Technical Reports Server (NTRS)
Wu, Dong L.
2012-01-01
How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu; Yao, Sheng-Jie
2015-08-15
In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initialmore » as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.« less
NASA Astrophysics Data System (ADS)
Wang, Yin-Ping; Liu, Hai-Tao; Song, Hong-Yu; Liu, Jia-Xin; Shen, Hui-Ying; Jin, Yang; Wang, Guo-Dong
2018-04-01
0.05-0.15 mm-thick ultra-thin grain-oriented silicon steel sheets were successfully produced by a novel processing route including strip casting, hot rolling, normalizing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing and secondary recrystallization annealing. The evolutions of microstructure, texture and inhibitor along the processing were briefly investigated. The results showed that the initial Goss orientation originated due to the heterogenous nucleation of δ-ferrite grains during solidification. Because of the lack of shear deformation, only a few Goss grains were observed in the hot rolled sheet. After the first cold rolling and intermediate annealing, Goss texture was enhanced and distributed in the whole thickness. A small number of Goss grains having a high fraction of high energy boundaries exhibited in the primary recrystallization annealed sheet. A large number of fine and dispersed MnS and AlN and a few co-precipitates MnS and AlN with the size range of 10-70 nm were also observed. Interestingly, a well-developed secondary recrystallization microstructure characterized by 10-60 mm grains and a sharp Goss texture were finally produced in the 0.05-0.15 mm-thick ultra-thin sheets. A magnetic induction B8 of 1.72-1.84 T was obtained. Another new finding was that a few {2 3 0}〈0 0 1〉 and {2 1 0}〈1 2 7〉 grains also can grow up abnormally because of the high fraction of high energy boundaries and the size and number advantage, respectively. These non-Goss grains finally deteriorated the magnetic properties of the ultra-thin sheets. In addition, low surface energies of {hk0} planes may also contribute to the abnormal growth of Goss, {2 3 0}〈0 0 1〉 and {2 1 0}〈1 2 7〉 grains.
NASA Astrophysics Data System (ADS)
Chu, J. P.; Rigsbee, J. M.; Banaś, G.; Lawrence, F. V.; Elsayed-Ali, H. E.
1995-06-01
The effects of laser-shock processing (LSP) on the microstructure, hardness, and residual stress of Hadfield manganese (1 pct C and 14 pct Mn) steels were studied. Laser-shock processing was performed using a Nd: glass phosphate laser with 600 ps pulse width and up to 120 J/pulse energy at power density above 1012 W/cm2. The effects of cold rolling and shot peening were also studied for comparison. Laser-shock processing caused extensive formation of ɛ hexagonal close-packed (hep) martensite (35 vol pct), producing up to a 130 pct increase of surface hardness. The surface hardness increase was 40 to 60 pct for the shot-peened specimen and about 60 pct for the cold-rolled specimen. The LSP strengthening effect on Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to the presence of the ɛ-hcp martensite. For the cold-rolled and shot-peened specimens, the strengthening was a result of ɛ-hcp martensite and twins with dislocation effects, respectively. Shot peening resulted in a relatively higher compressive residual stress throughout the specimen than LSP.
INTERIOR OF WESTERN SECTION, SHOWING WALL OF COLD STORAGE ROOM ...
INTERIOR OF WESTERN SECTION, SHOWING WALL OF COLD STORAGE ROOM (IN BAYS 32 TO 34) AND ROLLING DOORS AT WEST END, VIEW FACING SOUTH-SOUTHWEST. - Naval Air Station Barbers Point, Aircraft Storehouse, Between Midway & Card Streets at Enterprise Avenue intersection, Ewa, Honolulu County, HI
A Study of the Cold Resistance of Pipe Coiled Stock Produced at Foundry-Rolling Works. Part 2
NASA Astrophysics Data System (ADS)
Bagmet, O. A.; Naumenko, V. V.; Smetanin, K. S.
2018-03-01
Results of a study of coiled stock from low-carbon steels alloyed with manganese and silicon and different additives of niobium and titanium are presented. The coiled stock is produced at foundry-rolling works by the method of direct rolling of thin slabs right after their continuous casting. The microdeformation of the crystal lattice and the crystallographic texture are determined. The conditions of formation of the most favorable structure and texture in the steels are specified.
Research and Development Trend of Shape Control for Cold Rolling Strip
NASA Astrophysics Data System (ADS)
Wang, Dong-Cheng; Liu, Hong-Min; Liu, Jun
2017-09-01
Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain can help to seek new breakthrough directions. In the past 10 years, researches and applications of shape control models, shape control means, shape detection technology, and shape control system have achieved significant progress. In the aspect of shape control models, the researches in the past improve the accuracy, speed and robustness of the models. The intelligentization of shape control models should be strengthened in the future. In the aspect of the shape control means, the researches in the past focus on the roll optimization, mill type selection, process optimization, local strip shape control, edge drop control, and so on. In the future, more attention should be paid to the coordination control of both strip shape and other quality indexes, and the refinement of control objective should be strengthened. In the aspects of shape detection technology and shape control system, some new types of shape detection meters and shape control systems are developed and have successfully industrial applications. In the future, the standardization of shape detection technology and shape control system should be promoted to solve the problem of compatibility. In general, the four expected development trends of shape control for cold rolling strip in the future are intelligentization, coordination, refinement, and standardization. The proposed research provides new breakthrough directions for improving shape quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nezakat, Majid, E-mail: majid.nezakat@usask.ca
We studied the texture evolution of thermo-mechanically processed austenitic stainless steel 310S. This alloy was cold rolled up to 90% reduction in thickness and subsequently annealed at 1050 °C. At the early stages of deformation, strain-induced martensite was formed from deformed austenite. By increasing the deformation level, slip mechanism was found to be insufficient to accommodate higher deformation strains. Our results demonstrated that twinning is the dominant deformation mechanism at higher deformation levels. Results also showed that cold rolling in unidirectional and cross rolling modes results in Goss/Brass and Brass dominant textures in deformed samples, respectively. Similar texture components aremore » observed after annealing. Thus, the annealing texture was greatly affected by texture of the deformed parent phase and martensite did not contribute as it showed an athermal reversion during annealing. Results also showed that when the fraction of martensite exceeds a critical point, its grain boundaries impeded the movement of austenite grain boundaries during annealing. As a result, recrystallization incubation time would increase. This caused an incomplete recrystallization of highly deformed samples, which led to a rational drop in the intensity of the texture components. - Highlights: •Thermo-mechanical processing through different cold rolling modes can induce different textures. •Martensite reversion is athermal during annealing. •Higher fraction of deformation-induced martensite can increase the annealing time required for complete recrystallization. •Annealing texture is mainly influenced by the deformation texture of austenite.« less
Combustion Engineering, Inc. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
Four (4) 3 '' O.D. x 0.470'' nominal wall thickness (NWT) hot rotary pierced/roll reduced modified AOD/ESR tube hollows were cold pilger reduced through one pass to 2'' O.D. x 0.250'' NWT tubing. Two (2) additional hollows of same size and process history were cold pilger reduced through one pass to 2 1/8'' O.D. x 0.200'' NWT. Six (6) 3 3/4'' O.D. x 0.600'' NWT hot extruded tube hollows were cold pilger reduced through two passes to 2'' O.D. x 0.250'' NWT tubing. Four of the extrusions represented duplex AOD/ESR melting practice and two extrusions represented AOD melting practice. Twelvemore » (12) pieces of 2 1/8'' O.D. x 0.200'' NWT x approx. 9' long tubing were final heat treated, straightened, and ultrasonically tested. Twelve (12) more pieces of 2 1/8'' O.D. tubing have been solution austenitized (1177/sup 0/C) and are to be reaustenitized (1066/sup 0/C), tempered (760/sup 0/C), straightened, and ultrasonically inspected. All 2'' O.D. x 0.250'' NWT tubing is in the solution austenitized condition. Creep and stress rupture testing has continued on aged material from CarTech heat 91887 and on unaged material from CarTech heat 30182A.« less
40 CFR 468.13 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... copper alloy hot rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy hot... for monthly average Metric units—mg/off-kg of copper or copper alloy cold rolled English units—pounds... copper or copper alloy drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy...
NASA Astrophysics Data System (ADS)
Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen
2018-05-01
In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.
Deformation and annealing response of TD-nickel chromium sheet
NASA Technical Reports Server (NTRS)
Kane, R. D.; Ebert, L. J.
1973-01-01
The deformation and annealing response of TD-nickel chromium (TD-NiCr) 0.1 inch thick sheet was examined using various cold-rolling and annealing treatments. Upon annealing (above 816 C (1500 F), the as-received material was converted from an initially ultra-fine grain size (average grain dimension 0.51 micron) to a large grain structure. Increases in grain size by a factor of 100 to 200 were observed for this transformation. However, in those material states where the large grain transformation was absent, a fine grain recrystallized structure formed upon annealing (above 732 C (1350 F)). The deformation and annealing response of TD-NiCr sheet was evaluated with respect to the processing related variables as mode and severity of deformation and annealing temperature. Results indicate that the large grain transformation, classical primary recrystallization occurs. Using selected materials produced during the deformation and annealing study, the elevated temperature tensile properties of TD-NiCr sheet were examined in the temperature range 593 C (1100 F) to 1093 C (2000 F). It was observed that the elevated temperature tensile properties of TD-NiCr sheet could be optimized by the stabilization of a large grain size in this material using the cold working and/or annealing treatments developed during the present investigation.
Inamura, T; Shimizu, R; Kim, H Y; Miyazaki, S; Hosoda, H
2016-04-01
The rolling rate (r) dependence of textures was investigated in the Ti-26Nb-3Al (mol%) alloy to reveal the conditions required to form the {001}<110> recrystallization texture, which is a desirable orientation for the β-titanium shape memory alloy. {001}<110> was the dominant cold-rolling texture when r=90% and it was transferred to the recrystallization texture without forming {112}<110>, which is detrimental for the isotropic mechanical properties of the rolled sheet. A further increase in r resulted in the formation of {112}<110> in both rolling and recrystallization textures. Therefore, r should be controlled to form only the {001}<110> rolling texture, because the {112}<110> texture can overwhelm the {001}<110> texture during recrystallization. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hendrik; Sebleku, P.; Siswayanti, B.; Pramono, A. W.
2017-05-01
The manufacture of high critical temperature (Tc) Bi, Pb-Sr-Ca-Cu-O (HTS BPSCCO) superconductor wire fabricated by power-in-tube (PIT) is a multi-step process. The main difficulty is that the value of Tc superconductor wire determined by various factors for each step. The objective of this research is to investigate the effect of sintering parameters on the properties of final rolled material. The fabrication process of 1 m rolled-silver sheath monofilament superconductor BPSCCO wire using mechanical deformation process including rolling and drawing has been carried out. The pure silver powders were melted and formed into pure silver (Ag) tube. The tube was 10 mm in diameter with a sheath material: superconductor powders ratio of about 6 : 1. Starting powders, containing the nominal composition of Bi2-Sr2-Cam-1-Cum-Oy, were inserted into the pure silver tube and rolled until it reached a diameter of 4 mm. A typical area reduction ratio of about 5% per step has been proposed to prevent microcracking during the cold-drawing process. The process of rolling of the silver tube was subsequently repeated to obtain three samples and then followed by heat-treated at 820 °C, 840 °C, and 860 °C, respectively. The surface morphology was analyzed by using SEM; the crystal structure was studied by using X-RD, whereas the superconductivity was investigated by using temperature dependence resistivity measurement by using four-point probe technique. SEM images showed the porosity of the cross-sectional surface of the samples. The sample with low heating temperature showed porosity more than the one with high temperature. The value of critical temperature (Tc) of the sample with a dwelling time of heating of 8 hours is 70 K. At above 70 K, it shows the behavior of conductor properties. However, the porosity increased as the heating time increased up to 24 hours. The critical temperature was difficult to be identified due to its porosity. According to XRD results, the Bi-2212 phase is prominent in all samples.
Comparative Mechanical Improvement of Stainless Steel 304 Through Three Methods
NASA Astrophysics Data System (ADS)
Mubarok, N.; Notonegoro, H. A.; Thosin, K. A. Z.
2018-05-01
Stainless Steel 304 (SS304) is one of stainless steel group widely used in industries for various purposes. In this paper, we compared the experimental process to enhance the mechanical properties of the surface SS304 through three different methods, cold rolled, annealed salt baht bronzing (ASB), and annealed salt baht boronizing-quench (ASB-Q). The phase change in SS304 due to the cold rolled process makes this method is to abandon. The increasing of the annealing time in the ASB method has a nonlinear relationship with the increases in hardness value. Comparing to the increases in hardness value of the ASB method, the hardness value of ASB-Q methods is still lower than that method.
Review on cold-formed steel connections.
Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian
2014-01-01
The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.
Review on Cold-Formed Steel Connections
Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian
2014-01-01
The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448
40 CFR 468.15 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... average Metric units—mg/off-kg of copper or copper alloy hot rolled English units—pounds per 1,000,000 off... English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140 0.056... copper alloy drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy drawn Chromium...
Effect of Rolling on High-Cycle Fatigue and Fracture of an Al - Mg - Sc Alloy
NASA Astrophysics Data System (ADS)
Zhemchuzhnikova, D. A.; Petrov, A. P.; Eremeev, N. V.; Eremeev, V. V.; Kaibyshev, R. O.
2016-07-01
The tensile strength and fatigue properties of alloy 1575 of the Al - Mg - Sc system are studied after hot deformation (at 360°C) and subsequent cold rolling with different reduction ratios. The effect of the deformed structure on the properties and mechanisms of fracture of the alloy under cyclic tests is determined.
Magnetostrictive clad steel plates for high-performance vibration energy harvesting
NASA Astrophysics Data System (ADS)
Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio
2018-02-01
Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Zhanying; Department of Applied Science, University of Québec at Chicoutimi, Saguenay, QC G7H 2B1; Zhao, Gang
2016-04-15
The effects of two homogenization treatments applied to the direct chill (DC) cast billet on the recrystallization behavior in 7150 aluminum alloy during post-rolling annealing have been investigated using the electron backscatter diffraction (EBSD) technique. Following hot and cold rolling to the sheet, measured orientation maps, the recrystallization fraction and grain size, the misorientation angle and the subgrain size were used to characterize the recovery and recrystallization processes at different annealing temperatures. The results were compared between the conventional one-step homogenization and the new two-step homogenization, with the first step being pretreated at 250 °C. Al{sub 3}Zr dispersoids with highermore » densities and smaller sizes were obtained after the two-step homogenization, which strongly retarded subgrain/grain boundary mobility and inhibited recrystallization. Compared with the conventional one-step homogenized samples, a significantly lower recrystallized fraction and a smaller recrystallized grain size were obtained under all annealing conditions after cold rolling in the two-step homogenized samples. - Highlights: • Effects of two homogenization treatments on recrystallization in 7150 Al sheets • Quantitative study on the recrystallization evolution during post-rolling annealing • Al{sub 3}Zr dispersoids with higher densities and smaller sizes after two-step treatment • Higher recrystallization resistance of 7150 sheets with two-step homogenization.« less
In Situ XRD Studies of the Process Dynamics During Annealing in Cold-Rolled Copper
NASA Astrophysics Data System (ADS)
Dey, Santu; Gayathri, N.; Bhattacharya, M.; Mukherjee, P.
2016-12-01
The dynamics of the release of stored energy during annealing along two different crystallographic planes, i.e., {111} and {220}, in deformed copper have been investigated using in situ X-ray diffraction measurements at 458 K and 473 K (185 °C and 200 °C). The study has been carried out on 50 and 80 pct cold-rolled Cu sheets. The microstructures of the rolled samples have been characterized using optical microscopy and electron backscattered diffraction measurements. The microstructural parameters were evaluated from the X-ray diffractogram using the Scherrer equation and the modified Rietveld method. The stored energy along different planes was determined using the modified Stibitz formula from the X-ray peak broadening, and the bulk stored energy was evaluated using differential scanning calorimetry. The process dynamics of recovery and recrystallization as observed through the release of stored energy have been modeled as the second-order and first-order processes, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew
This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each processmore » from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.« less
40 CFR 468.15 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
...-pounds of copper or copper alloy hot rolled Chromium 0.038 0.015 Copper 0.131 0.062 Lead 0.010 0.0092... English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140 0.056... copper alloy drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy drawn Chromium...
Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)
NASA Astrophysics Data System (ADS)
Halevy, Itzhak; Haroush, Shlomo; Eisen, Yosef; Silberman, Ido; Moreno, Dany; Hen, Amir; Winterrose, Mike L.; Ghose, Sanjit; Chen, Zhiqiang
2010-04-01
Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at ˜13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Mössbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.
NASA Astrophysics Data System (ADS)
Garber, E. A.; Diligenskii, E. V.; Antonov, P. V.; Shalaevskii, D. L.; Dyatlov, I. A.
2017-09-01
The factors of the process of production of cold-rolled steel strips that promote and hinder the appearance of a coil lap welding defect upon annealing in bell-type furnaces are analyzed using statistical methods. The works dealing with this problem are analytically reviewed to reveal the problems to be studied and refined. The ranking of the technological factors according to the significance of their influence on the probability of appearance of this defect is determined and supported by industrial data, and a regression equation is derived to calculate this probability. The process of production is improved to minimize the rejection of strips caused by the welding of coil laps.
The Measurement of Elastic Constants for the Determination of Stresses by X-Rays
1983-07-01
both cases the hhh reflection is at the s.me or hlqher iN 29 value as the hkl reflection; thus any oscillations should be equally clear since the...reduct.oa 70-30 .2471" cold rolled to .02V (A-bras a 90" reduction 304 tainlaess .059’ cold re,’ .055" steel as rUI-. 1075 steel .03s " "ld rolled .03...6.85 4.83 5.54 6.14 4.36 .53 304 C 331 4.48 .20 4.01 3.82 3.92 3.13 stainless Te 222 3.75 .35 4.01 3.09 3.55 3.63 steil 3.51 .38 1075 Fe 220 4.17 .17
NASA Astrophysics Data System (ADS)
Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun; Xie, Guoxin
2011-04-01
In an abrasive chemical mechanical polishing (CMP) process, materials were considered to be removed by abrasive sliding and rolling. Abrasive sliding has been investigated by many molecular dynamics (MD) studies; while abrasive rolling was usually considered to be negligible and therefore was rarely investigated. In this paper, an MD simulation was used to study the effects of abrasive rolling on material removal and surface finish in the CMP process. As the silica particle rolled across the silicon substrate, some atoms of the substrate were dragged out from their original positions and adhered to the silica particle, leaving some atomic vacancies on the substrate surface. Meanwhile, a high quality surface could be obtained. During the abrasive rolling process, the influencing factors of material removal, e.g., external down force and driving force, were also discussed. Finally, MD simulations were carried out to examine the effects of abrasive sliding on material removal under the same external down force as abrasive rolling. The results showed that the ability of abrasive rolling to remove material on the atomic scale was not notably inferior to that of abrasive sliding. Therefore, it can be proposed that both abrasive sliding and rolling play important roles in material removal in the abrasive CMP of the silicon substrate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Metric units—mg/off-kg of copper or copper alloy hot rolled English units—pounds per 1,000,000 off-pounds... copper or copper alloy cold rolled English units—pounds per 1,000,000 off-pounds of copper or copper... drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy drawn Chromium 0.037 0.015...
Code of Federal Regulations, 2010 CFR
2010-07-01
... English Units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018... monthly average Metric units—mg/off-kg of copper or copper alloy cold rolled English units—pounds per 1.../off-kg of copper or copper alloy drawn English units—pounds per 1,000,000 off-pounds of copper or...
Corrosion Inhibition of Cold-rolled Low Carbon Steel with Pulse Fiber Laser Ablation in Water
NASA Astrophysics Data System (ADS)
Chan, Sze Ney; Wong, Wai Yin; Walvekar, Rashmi; Kadhum, Abdul Amir H.; Khalid, Mohammad; Lim, Kean Long
2018-04-01
This study aims at the use of a fiber laser for modifying the surface properties of cold-rolled low carbon steel via a pulse laser ablation technique in water. The effect on the corrosion behavior of the fiber laser-treated metal surface was investigated in NaCl and HCl environments. Electrochemical tests showed significant improvement in the corrosion resistance of the laser-treated sample in NaCl, with an increase in open-circuit potential (OCP) from - 0.65 to - 0.60 V and an inhibition efficiency of 89.22% as obtained from the impedance study. Such improvement was less significant in an acidic environment. Lower corrosion rates of 20.9 mpy and 5.819 × 103 mpy were obtained for the laser-treated samples in neutral and acidic electrolytes, respectively, than the corrosion rates obtained for the as-received samples (33.2 mpy and 11.98 × 103 mpy). Morphological analysis indicated a passive film built by spherical grains of regular size on the metal surface after laser treatment. The corrosion inhibition effects in NaCl were evident by the nonexistence of the common corrosion products of lepidocrocite and crystalline structures that were seen on as-received samples; only polyhedral crystals with micrograins grown on them were seen covering the laser-treated surface. Therefore, the laser treatment using a fiber laser source improved the corrosion resistance of cold-rolled low carbon steel.
Method and apparatus for drying web
Orloff, David I.; Kloth, Gerald R.; Rudemiller, Gary R.
1992-01-01
The present invention is directed to a method and apparatus for drying a web of paper utilizing impulse drying techniques. In the method of the invention for drying a paper web, the paper web is transported through a pair of rolls wherein at least one of the rolls has been heated to an elevated temperature. The heated roll is provided with a surface having a low thermal diffusivity of less than about 1.times.10.sup.-6 m.sup.2 /s. The surface material of the roll is preferably prepared from a material selected from the group consisting of ceramics, polymers, glass, inorganic plastics, composite materials and cermets. The heated roll may be constructed entirely from the material having a low thermal diffusivity or the roll may be formed from metal, such as steel or aluminum, or other suitable material which is provided with a surface layer of a material having a low thermal diffusivity.
Effects of microalloying on hot-rolled and cold-rolled Q&P steels
NASA Astrophysics Data System (ADS)
Azevedo de Araujo, Ana Luiza
Third generation advanced high strength steels (AHSS) have been a major focus in steel development over the last decade. The premise of these types of steel is based on the potential to obtain excellent combinations of strength and ductility with low-alloy compositions by forming mixed microstructures containing retained austenite (RA). The development of heat treatments able to achieve the desired structures and properties, such as quenching and partitioning (Q&P) steels, is driven by new requirements to increase vehicle fuel economy by reducing overall weight while maintaining safety and crashworthiness. Microalloying additions of niobium (Nb) and vanadium (V) in sheet products are known to provide strengthening via grain refinement and precipitation hardening and may influence RA volume fraction and transformation behavior. Additions of microalloying elements in Q&P steels have not been extensively studied to date, however. The objective of the present study was to begin to understand the potential roles of Nb and V in hot-rolled and cold-rolled Q&P steel. For that, a common Q&P steel composition was selected as a Base alloy with 0.2C-1.5Si-2.0Mn (wt. %). Two alloys with an addition of Nb (0.02 and 0.04 wt. %) and one with an addition of V (0.06 wt. %) to the Base alloy were investigated. Both hot-rolled and cold-rolled/annealed Q&P simulations were conducted. In the hot-rolled Q&P study, thermomechanical processing was simulated via hot torsion testing in a GleebleRTM 3500, and four coiling temperatures (CT) were chosen. Microstructural evaluation (including RA measurements via electron backscattered diffraction - EBSD) and hardness measurements were performed for all alloys and coiling conditions. The analysis showed that Nb additions led to overall refinement of the prior microstructure. Maximum RA fractions were measured at the 375 °C CT, and microalloying was associated with increased RA in this condition when compared to the Base alloy. A change in austenite morphology from lath-like to blocky with increasing CT was observed. Hardness generally increased with decreasing CT, consistent with the increased fraction of harder phases in the microstructure. For the cold-rolled Q&P study, several combinations of quenching temperature (QT), partitioning temperature (PT), and partitioning time (t p) were examined using heat treatments in salt baths. Uniaxial tensile tests and RA measurements via x-ray diffraction (XRD) were performed for all alloys and heat treatment conditions. Scanning electron microscope (SEM) imaging and EBSD were conducted for a few select conditions. In terms of microstructure, Nb promoted an extensive refinement of the prior austenite grain size. Additions of V and Nb also seemed to affect the morphology of the microstructural constituents. It was observed that V generally increased austenite fractions at lower t p's, and the Nb-containing alloys had greater austenite fractions in most instances when compared to the Base alloy. Carbon content in austenite was usually increased or maintained with additions of Nb and V. In terms of mechanical properties, V slightly improved strength and elongation when compared to the Base alloy for most conditions. Niobium additions were somewhat more effective in improving ductility.
NASA Astrophysics Data System (ADS)
Han, Yun; Kuang, Shuang; Qi, Xiumei; Xie, Chunqian; Liu, Guanghui
Effects of galvanizing simulation parameters on microstructures and mechanical properties of Ti-microalloyed cold rolled hot-dip galvanizing DP980 steel were investigated in this study by optical microscopy (OM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and tensile test. Moreover, the precipitation behavior of Ti in the experimental steel was also studied. The results show that, as the heating temperature increases, the tensile strength of experimental galvanizing DP980 steel decreases while the yield ratio and elongation of the steel are enhanced. The microstructures of experimental steels exhibit typical dual phase steel character and the volume fractions of MA islands are almost 30%. In addition, lots of nano-sized TiC precipitates can be found in the ferrite grains.
NASA Astrophysics Data System (ADS)
Seyfpour, M.; Ghanei, S.; Mazinani, M.; Kashefi, M.; Davis, C.
2018-04-01
The recovery process in steel is usually investigated by conventional destructive tests that are expensive, time-consuming and also cumbersome. In this study, an alternative non-destructive test technique (based on eddy current testing) is used to characterise the recovery process during annealing of cold-rolled low-carbon steels. For assessing the reliability of eddy current results corresponding to different levels of recovery, X-ray line broadening analysis is also employed. It is shown that there is a strong relationship between eddy current outputs and the extent to which recovery occurs at different annealing temperatures. Accordingly, the non-destructive eddy current test technique represents the potential to be used as a reliable process for detection of the occurrence of recovery in the steel microstructure.
NASA Astrophysics Data System (ADS)
Ogawa, Toshio; Dannoshita, Hiroyuki; Maruoka, Kuniaki; Ushioda, Kohsaku
2017-08-01
Microstructural evolution during cold rolling and subsequent annealing of low-carbon steel with different initial microstructures was investigated from the perspective of the competitive phenomenon between recrystallization of ferrite and reverse phase transformation from ferrite to austenite. Three kinds of hot-rolled sheet specimens were prepared. Specimen P consisted of ferrite and pearlite, specimen B consisted of bainite, and specimen M consisted of martensite. The progress of recovery and recrystallization of ferrite during annealing was more rapid in specimen M than that in specimens P and B. In particular, the recrystallized ferrite grains in specimen M were fine and equiaxed. The progress of ferrite-to-austenite phase transformation during intercritical annealing was more rapid in specimen M than in specimens P and B. In all specimens, the austenite nucleation sites were mainly at high-angle grain boundaries, such as those between recrystallized ferrite grains. The austenite distribution was the most uniform in specimen M. Thus, we concluded that fine equiaxed recrystallized ferrite grains were formed in specimen M, leading to a uniform distribution of austenite.
Super-formable pure magnesium at room temperature.
Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; H J Davies, Chris; Birbilis, Nick
2017-10-17
Magnesium, the lightest structural metal, is difficult to form at room temperature due to an insufficient number of deformation modes imposed by its hexagonal structure and a strong texture developed during thermomechanical processes. Although appropriate alloying additions can weaken the texture, formability improvement is limited because alloying additions do not fundamentally alter deformation modes. Here we show that magnesium can become super-formable at room temperature without alloying. Despite possessing a strong texture, magnesium can be cold rolled to a strain at least eight times that possible in conventional processing. The resultant cold-rolled sheet can be further formed without cracking due to grain size reduction to the order of one micron and inter-granular mechanisms becoming dominant, rather than the usual slip and twinning. These findings provide a pathway for developing highly formable products from magnesium and other hexagonal metals that are traditionally difficult to form at room temperature.Replacing steel or aluminium vehicle parts with magnesium would result in reduced emissions, but shaping magnesium without cracking remains challenging. Here, the authors successfully extrude and roll textured magnesium into ductile foil at low temperatures by activating intra-granular mechanisms.
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Uz, Mehmet
1996-01-01
A systematic study to evaluate the effects of thermomechanical processing on the microstructure and mechanical properties of Nb-1Zr alloy sheet containing 0.06 and 0.1 wt.%C (PWC-11) was conducted and compared to the results of Nb-1Zr. Coarse orthorhombic Nb2C precipitates were present in all the cast, extruded and cold rolled Nb-Zr samples containing C. After high temperature (greater than 0.5 T(sub m)) exposure (with or without applied stress), the Nb2C transforms to very fine and extremely stable FCC (Zr, Nb)C dispersoid, resulting in a highly creep resistant material. Only ZrO2 precipitates were found in Nb-1Zr. The creep strength of the 0.06C and the 0.1C carbide strengthened alloys were much superior to Nb-1Zr. At 1350 K the strength of the 0.06C alloy was about three times that of Nb-1Zr, while the 0.1C alloy had about five times the creep stress capability of Nb-1Zr. The tensile strength, long term creep strength, and stability of the microstructure of the PWC-11 sheet appear to be independent of the number of 1900 K extrusions performed prior to cold rolling. The microhardness of these single, double and triple extnided PWC-11 sheets also were comparable. The tensile strength of PWC-11 and Nb-1Zr at room temperature and 1350 K were comparable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiguo, E-mail: wang_weiguo@vip.163.com
High purity (99.99%) iron samples were cold rolled with a thickness reduction of 87% followed by a annealing at 620 °C for 15 and 45 min, then the grain boundary plane distributions were characterized by electron backscatter diffraction and a stereology and statistics based five parameter analysis. The results showed that the grain boundary planes were mainly distributed on (1 0 0) and such distribution was enhanced obviously when the holding time of annealing increased from 15 to 45 min during which an extensive grain growth and a dramatic texture evolution took place. Further analysis indicated such distribution was largelymore » due to the rotation of grain boundary planes of the [1 0 0] misoriented grains. Additionally, it was also observed that some random boundaries of [1 0 0] misoriented grains were changing from asymmetrical tilt into (1 0 0)/(− 1 0 0) twist when annealing proceeded from 15 to 45 min. Based on the present work and the results reported by other investigators, it was suggested that the chemistry appeared to be critical in determining the grain boundary plane distribution in iron based materials. - Highlights: •Grain boundary (GB) plane distribution (GBPD) in a high purity (99.99%) was studied. •GB planes are mainly distributed on (1 0 0) in the cold rolled and annealed samples. •Such distribution is largely due to the rotation of GB planes of [100] misoriented grains. •Some [1 0 0] asymmetrical tilt boundaries are evolving into twist ones during annealing.« less
Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys
NASA Astrophysics Data System (ADS)
Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean
2017-10-01
A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).
An advanced dissymmetric rolling model for online regulation
NASA Astrophysics Data System (ADS)
Cao, Trong-Son
2017-10-01
Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.
Experience of Application of Liquid Lubricating Materials during Wide Strip Hot Rolling
NASA Astrophysics Data System (ADS)
Platov, S. I.; Dema, R. R.; Kharchenko, M. V.; Amirov, R. N.
2017-12-01
The paper presents the results of the scientific and practical research of roller systems operation at feed of liquid lubricating materials through the example of the wide strip hot rolling Mill-2000 at PAO MMK. The experiments proved that application of lubricating materials leads to decrease of energy-power parameters of the process by 12 to 15 %, and reduction of work roll wear by 10 to 12%. The practical results of the study are developed recommendations on determination of consumption-volumetric parameters of the supplied lubricating material depending on rheological and geometrical parameters of the rolled strip and current wear of work rolls.
NASA Astrophysics Data System (ADS)
Lu, Cheng-zhuang; Li, Jing-yuan; Fang, Zhi
2018-02-01
In ferritic stainless steels, a significant non-uniform recrystallization orientation and a substantial texture gradient usually occur, which can degrade the ridging resistance of the final sheets. To improve the homogeneity of the recrystallization orientation and reduce the texture gradient in ultra-purified 17%Cr ferritic stainless steel, in this work, we performed conventional and asymmetric rolling processes and conducted macro and micro-texture analyses to investigate texture evolution under different cold-rolling conditions. In the conventional rolling specimens, we observed that the deformation was not uniform in the thickness direction, whereas there was homogeneous shear deformation in the asymmetric rolling specimens as well as the formation of uniform recrystallized grains and random orientation grains in the final annealing sheets. As such, the ridging resistance of the final sheets was significantly improved by employing the asymmetric rolling process. This result indicates with certainty that the texture gradient and orientation inhomogeneity can be attributed to non-uniform deformation, whereas the uniform orientation gradient in the thickness direction is explained by the increased number of shear bands obtained in the asymmetric rolling process.
Toward large-area roll-to-roll printed nanophotonic sensors
NASA Astrophysics Data System (ADS)
Karioja, Pentti; Hiltunen, Jussi; Aikio, Sanna M.; Alajoki, Teemu; Tuominen, Jarkko; Hiltunen, Marianne; Siitonen, Samuli; Kontturi, Ville; Böhlen, Karl; Hauser, Rene; Charlton, Martin; Boersma, Arjen; Lieberzeit, Peter; Felder, Thorsten; Eustace, David; Haskal, Eliav
2014-05-01
Polymers have become an important material group in fabricating discrete photonic components and integrated optical devices. This is due to their good properties: high optical transmittance, versatile processability at relative low temperatures and potential for low-cost production. Recently, nanoimprinting or nanoimprint lithography (NIL) has obtained a plenty of research interest. In NIL, a mould is pressed against a substrate coated with a moldable material. After deformation of the material, the mold is separated and a replica of the mold is formed. Compared with conventional lithographic methods, imprinting is simple to carry out, requires less-complicated equipment and can provide high-resolution with high throughput. Nanoimprint lithography has shown potential to become a method for low-cost and high-throughput fabrication of nanostructures. We show the development process of nano-structured, large-area multi-parameter sensors using Photonic Crystal (PC) and Surface Enhanced Raman Scattering (SERS) methodologies for environmental and pharmaceutical applications. We address these challenges by developing roll-to-roll (R2R) UV-nanoimprint fabrication methods. Our development steps are the following: Firstly, the proof of concept structures are fabricated by the use of wafer-level processes in Si-based materials. Secondly, the master molds of successful designs are fabricated, and they are used to transfer the nanophotonic structures into polymer materials using sheet-level UV-nanoimprinting. Thirdly, the sheet-level nanoimprinting processes are transferred to roll-to-roll fabrication. In order to enhance roll-to-roll manufacturing capabilities, silicone-based polymer material development was carried out. In the different development phases, Photonic Crystal and SERS sensor structures with increasing complexities were fabricated using polymer materials in order to enhance sheet-level and roll-to-roll manufacturing processes. In addition, chemical and molecular imprint (MIP) functionalization methods were applied in the sensor demonstrators. In this paper, the process flow in fabricating large-area nanophotonic structures by the use of sheet-level and roll-to-roll UV- nanoimprinting is reported.
NASA Astrophysics Data System (ADS)
Rokhlin, L. L.; Dobatkina, T. V.; Luk'yanova, E. A.; Korol'kova, I. G.; Choporov, V. F.
2016-07-01
The microstructure and strength properties of hot-pressed alloy IMV7-1 of the Mg - Y - Gd - Zr system are studied after additional cold and hot rolling deformation. It is shown that the strength properties of the pressed alloy can be elevated by cold deformation at an admissible level of ductility.
Texture evolution in Oxide Dispersion Strengthened (ODS) steel tubes during pilgering process
NASA Astrophysics Data System (ADS)
Vakhitova, E.; Sornin, D.; Barcelo, F.; François, M.
2017-10-01
Oxide Dispersion Strengthened (ODS) steels are foreseen as fuel cladding material in the coming generation of Sodium Fast Reactors (SFR). Cladding tubes are manufactured by hot extrusion and subsequent cold forming steps. In this study, a 9 wt% Cr ODS steel exhibiting α-γ phase transformation at high temperature is cold formed under industrial conditions with a large section reduction in two pilgering steps. The influence of pilgering process parameters and intermediate heat treatment on the microstructure evolution is studied experimentally using Electron Backscattering Diffraction (EBSD) and X-ray Diffraction (XRD) methods. Pilgered samples show elongated grains and a high texture formation with a preferential orientation along the rolling direction. During the heat treatment, grain morphology is recovered from elongated grains to almost equiaxed ones, while the well-known α-fiber texture presents an unexpected increase in intensity. The remarkable temperature stability of this fiber is attributed to a crystallographic structure memory effect during phase transformations.
NASA Astrophysics Data System (ADS)
Moya Riffo, A.; Vicente Alvarez, M. A.; Santisteban, J. R.; Vizcaino, P.; Limandri, S.; Daymond, M. R.; Kerr, D.; Okasinski, J.; Almer, J.; Vogel, S. C.
2017-05-01
This work presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β->α transformation, while slow cooling rates and fine β grains result in strong variant selection.
Riffo, A. Moya; Vicente Alvarez, M. A.; Santisteban, J. R.; ...
2017-02-08
This study presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory.more » In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α( hcp) to β( bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β–>α transformation, while slow cooling rates and fine β grains result in strong variant selection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riffo, A. Moya; Vicente Alvarez, M. A.; Santisteban, J. R.
This study presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory.more » In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α( hcp) to β( bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β–>α transformation, while slow cooling rates and fine β grains result in strong variant selection.« less
Sharma, N K; Shekhar, S
2016-12-01
Microstructural evolution of cold-rolled Cu-5%Zn alloy during in situ heating inside field-emission scanning electron microscope was utilized to obtain user-independent parameters in order to trace the progress of static recovery and recrystallization. Electron back-scattered diffraction (EBSD)-based orientation imaging microscopy was used to obtain micrographs at various stages of in situ heating. It is shown that unlike the pre-existing methods, additional EBSD-based parameter can be used to trace the progress of recovery and recrystallization, which is not dependent on user input and hence less prone to error. True strain of 0.3 was imposed during cold rolling of alloy sample. Rolled sample was subjected to in situ heating from room temperature to 500°C (∼0.58 Tm) with soaking time of 10 min, at each of the intermediate temperatures viz. 100, 200, 300, 400 and 450°C. After reaching 500°C, the sample was kept at this temperature for a maximum duration of around 15 h. The sample showed clear signs of recovery for temperature up to 450°C, and at 500°C, recrystallization started to take place. Recrystallization kinetics was moderate, and full recrystallization was achieved in approximately 120 min. We found that EBSD parameter, namely, band contrast intensity can be used as an extra handle to map out the progress of recrystallization occurring in the sample. By contrast, mean angular deviation can be used to understand the evolution of recovery in samples. The parameters mentioned in the current study, unlike other pre-existing methods, can also be used for mapping local microstructural transformations due to recovery and recrystallization. We discuss the benefits and limitations in using these additional handles in understanding the changes taking place in the material during in situ heating. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Ma, Jingling; Li, Wuhui; Wang, Guangxin; Li, Yaqiong; Guo, Hongbo; Zhao, Zeliang; Li, Wei
2017-10-01
In order to study the effects of La2O3 content and rolling on microstructure and mechanical properties of Mo-La2O3 alloys, Mo-0.5% (1%) La2O3 alloys were prepared by liquid-solid doping technique, subsequently rolled either by a single-direction rolling or a cross-rolling. As a result, three different materials were prepared for this study. After being annealed at 1800 °C, the single-directionally rolled Mo-1% La2O3 alloy shows the best mechanical properties in terms of strength, hardness, and sagging deformation among the three materials. This is attributed to the observation that the alloy is only recovered with a microstructure of subgrains and dislocations. The single-directionally rolled Mo-0.5% La2O3 exhibits the worst mechanical property among the three materials. In this material, coarse grains, but no subgrains and dislocations, can be observed after annealing, indicating that it is fully recrystallized. For the cross-rolled Mo-1% La2O3 alloy, grains of dispersed sizes, but no dislocations, are visible after annealing, implying that this alloy is partially recrystallized. Accordingly, the mechanical property of this material is in between the other two materials. Thus, the mechanical properties of the three materials can be well understood based on OM, SEM, and TEM results. Overall, the single-directionally rolled Mo-1% La2O3 alloy possesses good mechanical properties and is more suitable for high-temperature applications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of copper or copper alloy hot rolled Chromium 0.045 0.018 Copper 0.195 0.103 Lead 0.015 0.013 Nickel... alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead 0.056 0.049 Nickel 0.727 0.481 Zinc 0.553... drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy drawn Chromium 0.037 0.015...
Code of Federal Regulations, 2014 CFR
2014-07-01
... English Units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018...,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead... copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107 Zinc 0.124...
40 CFR 468.13 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... rolled Chromium 0.038 0.015 Copper 0.131 0.062 Lead 0.010 0.0092 Nickel 0.056 0.038 Zinc 0.105 0.043 Oil... per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140 0.056 Copper 0.485 0.231... drawn Chromium 0.031 0.012 Copper 0.108 0.051 Lead 0.0085 0.0076 Nickel 0.046 0.031 Zinc 0.086 0.035 Oil...
Code of Federal Regulations, 2013 CFR
2013-07-01
... English Units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018...,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead... copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107 Zinc 0.124...
Code of Federal Regulations, 2012 CFR
2012-07-01
... of copper or copper alloy hot rolled Chromium 0.045 0.018 Copper 0.195 0.103 Lead 0.015 0.013 Nickel... alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead 0.056 0.049 Nickel 0.727 0.481 Zinc 0.553... drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy drawn Chromium 0.037 0.015...
Code of Federal Regulations, 2012 CFR
2012-07-01
... English Units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018...,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead... copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107 Zinc 0.124...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of copper or copper alloy hot rolled Chromium 0.045 0.018 Copper 0.195 0.103 Lead 0.015 0.013 Nickel... alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead 0.056 0.049 Nickel 0.727 0.481 Zinc 0.553... drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy drawn Chromium 0.037 0.015...
Code of Federal Regulations, 2011 CFR
2011-07-01
... English Units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018...,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead... copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107 Zinc 0.124...
Code of Federal Regulations, 2014 CFR
2014-07-01
... of copper or copper alloy hot rolled Chromium 0.045 0.018 Copper 0.195 0.103 Lead 0.015 0.013 Nickel... alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead 0.056 0.049 Nickel 0.727 0.481 Zinc 0.553... drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy drawn Chromium 0.037 0.015...
Main roll for an air press of a papermaking machine
Beck, David A.
2004-03-09
A roll for use in an air press assembly of a papermaking machine has a pair of ends associated therewith. The roll includes a pair of edge portions with each edge portion extending to one of the pair of ends. Each edge portion has an edge surface portion composed of a first material, the first material having a first hardness. The roll further includes a middle portion located between the pair of edge portions, the middle portion having a middle surface portion composed of a second material. The second material has a second hardness, the second material being harder than the first material. The first material is preferably a soft, seal material which promotes reduced air leakage from the air press assembly.
Calendering and Rolling of Viscoplastic Materials: Theory and Experiments
NASA Astrophysics Data System (ADS)
Mitsoulis, E.; Sofou, S.; Muliawan, E. B.; Hatzikiriakos, S. G.
2007-04-01
The calendering and rolling processes are used in a wide variety of industries for the production of rolled sheets or films of specific thickness and final appearance. The acquired final sheet thickness depends mainly on the rheological properties of the material. Materials which have been used in the present study are foodstuff (such as mozzarella cheese and flour-water dough) used in food processing. These materials are rheologically viscoplastic, obeying the Herschel-Bulkley model. The results give the final sheet thickness and the torque as a function of the roll speed. Theoretical analysis based on the Lubrication Approximation Theory (LAT) shows that LAT is a good predictive tool for calendering, where the sheet thickness is very small compared with the roll size. However, in rolling where this is not true, LAT does not hold, and a 2-D analysis is necessary.
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.
2018-07-01
The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.
2018-05-01
The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.
Reverse-transformation austenite structure control with micro/nanometer size
NASA Astrophysics Data System (ADS)
Wu, Hui-bin; Niu, Gang; Wu, Feng-juan; Tang, Di
2017-05-01
To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were annealed at different temperatures. The microstructure evolutions were analyzed by optical microscopy, scanning electron microscopy (SEM), magnetic measurements, and X-ray diffraction (XRD); the mechanical properties are also determined by tensile tests. The results showed that the fraction of stain-induced martensite was approximately 72% in the 90% cold-rolled steel. The micro/nanometric microstructure was obtained after reversion annealing at 820-870°C for 60 s. Nearly 100% reversed austenite was obtained in samples annealed at 850°C, where grains with a diameter ≤ 500 nm accounted for 30% and those with a diameter > 0.5 μm accounted for 70%. The micro/nanometer-grain steel exhibited not only a high strength level (approximately 959 MPa) but also a desirable elongation of approximately 45%.
NASA Astrophysics Data System (ADS)
Overhagen, Christian; Mauk, Paul Josef
2018-05-01
For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.
Fabrication of thin bulk ceramics for microwave circulator applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ings, J.B.; Simmins, J.J.; May, J.L.
1995-09-01
Planer MMIC circulator applications require the production of thin, flat garnet, spinel, and hexagonal ferrite circulator elements. Fabrication of cira 250 {mu}m circulator elements was done by tape casting and roll compaction. For the garnet, tape cast gave equivalent results to roll compaction. For the spinel and hexaferrite materials, which undergo magnetic flocculation, roll compaction was found to be the preferred fabrication method. Roll compacted lithium ferrite resulted in higher densities and lower {triangle}H and tan{delta} than did the tape case material. Roll compacted barium hexaferrite resulted in higher densities and remanent magnetization than did the tape cast material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id; Notonegoro, Hamdan Akbar
The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initialmore » hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.« less
NASA Technical Reports Server (NTRS)
Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.
2010-01-01
The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the pressurization system, including regulator blowdown and propellant ullage performance, measure system pressure drops for comparison to analysis of tubing and components, and validate system activation and re-activation procedures for the helium pressurant system. Secondary objectives included: validating system processes for loading, unloading, and purging, validating procedures and system response for multiple failure scenarios, including relief valve operation, and evaluating system performance for contingency scenarios. The test results of the cold flow development test program are essential in validating the performance and interaction of the Roll Control System and anchoring analysis tools and results to a Critical Design Review level of fidelity.
New Forming Technologies for Autobody at POSCO
NASA Astrophysics Data System (ADS)
Lee, Hong-Woo; Cha, Myung-Hwan; Choi, Byung-Keun; Kim, Gyo-Sung; Park, Sung-Ho
2011-08-01
As development of car body with light weight and enhanced safety became one of the hottest issues in the auto industry, the advanced high strength steels have been broadly applied to various automotive parts over the last few years. Corresponding to this trend, POSCO has developed various types of cold and hot rolled AHSSs such as DP, TRIP, CP and FB, and continues to develop new types of steel in order to satisfy the requirement of OEMs more extensively. To provide optimal technical supports to customers, POSCO has developed more advanced EVI concept, which includes the concept of CE/SE, VA/VE, VI and PP as well as the conventional EVI strategy. To realize this concept, POSCO not only supports customers with material data, process guideline, and evaluation of formability, weld-ability, paint-ability and performance but also provides parts or sub-assemblies which demand highly advanced technologies. Especially, to accelerate adoption of AHSS in autobody, POSCO has tried to come up with optimal solutions to AHSS forming. Application of conventional forming technologies has been restricted more and more by relatively low formability of AHSS with high tensile-strength. To overcome the limitation in the forming, POSCO has recently developed new forming technologies such as hydro-forming, hot press forming, roll forming and form forming. In this paper, tailored strength HPF, hydroformed torsion beam axle and multi-directional roll forming are introduced as examples of new forming technologies.
Method for improving the mechanical properties of uranium-1 to 3 wt % zirconium alloy
Anderson, R.C.
1983-11-22
A uranium-1 to 3 wt % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750 to 850/sup 0/C and then quenched in water, is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenchd plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325 to 375/sup 0/C for five to six hours and then aging the plate at a higher temperature ranging from 480 to 500/sup 0/C for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.S.; Kim, S.I.; Choi, S.-H., E-mail: shihoon@sunchon.ac.kr
2014-06-01
The electron backscatter diffraction technique has been used to characterize the microstructure of deformed grains in cold-rolled, Cu-added, bake-hardenable steel. A new scheme based on the kind and number of average orientations, as determined from a unique grain map of the deformed grains, was developed in order to classify deformed grains by type. The α-fiber components, γ-fiber components and random orientations, those which could not be assigned to either γ-fiber or α-fiber components, were used to define the average orientation of unique grains within individual deformed grains. The microstructures of deformed grains in as-rolled specimens were analyzed based on themore » Taylor factor, stored energy, and misorientation. The relative levels and distributions of the Taylor factor, the stored energy and the misorientation were examined in terms of the types of deformed grains. - Highlights: • We characterized the microstructure of Cu-added BH steel using EBSD. • A new scheme was developed in order to classify deformed grains by type. • Stored energy and misorientation are strongly dependent on the type of deformed grains. • Microstructure was examined in terms of the types of deformed grains.« less
Roll type conducting polymer legs for rigid-flexible thermoelectric generator
NASA Astrophysics Data System (ADS)
Park, Teahoon; Lim, Hanwhuy; Hwang, Jong Un; Na, Jongbeom; Lee, Hyunki; Kim, Eunkyoung
2017-07-01
A roll-type conducting polymer film was explored as a flexible organic p-type thermoelectric leg using poly(3,4-ethylenedioxythiophene) (PEDOT) doped with tosylate. The PEDOT films were prepared through solution casting polymerization and rolled up for a roll-type leg. Due to the high flexibility, the roll-type PEDOT leg enabled easy contact to both top and bottom electrodes. Simulation on the dynamic heat transfer and convective cooling for a vertically roosted rod- and roll-type PEDOT leg showed that the temperature difference (ΔT) between the hot and cold sides of the leg was much higher in the roll than that of the rod. The PEDOT legs were integrated with n-type Bi2Te3 blocks, to give a 36-couple rigid-flexible thermoelectric generator (RF-TEG). The maximum output voltage from the 36-couple RF-TEG under a ΔT of 7.9 K was determined as 36.7 mV along with a high output power of 115 nW. A wearable RF-TEG was prepared upon the combination of the 36-couple RF-TEG with an arm warmer, to afford an output voltage of 10.6 mV, which was generated constantly and steadily from human wrist heat.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Naseri, Majid; Gashti, Seyed Omid; Vafaeian, Saeed; Keshavarz, Mohsen K.
2018-06-01
In the present work, influences of the cold deformation on electrochemical and passive response of pure nickel in three solutions with adjusted pH values of 8.5, 9.0, and 9.5 at 298 ± 1 K (25 ± 1 °C) were investigated. A cold deformation process was applied by means of cold rolling. Implementation of the cold deformation process resulted in samples having a finer microstructure. Also, the cold work and grain refinement led to increased hardness. In addition, open-circuit potential and potentiodynamic polarization tests were performed and results showed that corrosion current density was reduced by applying the cold deformation. Moreover, the results of the electrochemical impedance spectroscopy and Mott-Schottky analyses indicated higher corrosion resistance of pure nickel after cold deformation. This behavior is attributed to the growth of much thicker, with less point defects, passive layer on the surface of cold-deformed samples.
Effects of Casting Conditions on End Product Defects in Direct Chill Casted Hot Rolling Ingots
NASA Astrophysics Data System (ADS)
Yorulmaz, Arda; Yüksel, Çağlar; Erzi, Eraz; Dispinar, Derya
Direct chill casting is a reliable casting process for almost any wrought aluminum alloy for subsequent deformation via hot rolling to supply vital industries such as aerospace, automotive, construction, packaging and maritime. While some defects occur during casting, like hot tearing, some others like surface defect causing blisters, appear after hot rolling process or annealing after final cold rolling steps. It was found that some of these defects are caused by melt impurities formed from entrained folded aluminum oxides or bifilms. A study in a hot rolling casting facility was carried out with different melt cleaning practices, launder and molten metal transferring designs. Bifilm index and reduced pressure test were used for determining melt cleanliness measurement. It was found that porous plug gas diffusons for degassing are more effective than lance type degassers and a design towards less turbulent molten metal flow from furnace to mould cavity are necessary for reducing defects caused by bifilms.
NASA Astrophysics Data System (ADS)
Bannykh, O. A.; Betsofen, S. Ya.; Lukin, E. I.; Blinov, V. M.; Voznesenskaya, N. M.; Tonysheva, O. A.; Blinov, E. V.
2016-04-01
The effect of the rolling temperature and strain on the structure and the properties of corrosionresistant austenitic-martensitic 14Kh15AN4M steel is studied. The steel is shown to exhibit high ductility: upon rolling in the temperature range 700-1100°C at a reduction per pass up to 80%, wedge steel specimens are uniformly deformed along and across the rolling direction without cracking and other surface defects. Subsequent cold treatment and low-temperature tempering ensure a high hardness of the steel (50-56 HRC). Austenite mainly contributes to the hardening upon rolling in the temperature range 700-800°C at a reduction of 50-70%, and martensite makes the main contribution at higher temperatures and lower strains. Texture does not form under the chosen deformation conditions, which indicates dynamic recrystallization with the nucleation and growth of grains having no preferential orientation.
XRD and EBSD analysis of anisotropic microstructure development in cold rolled F138 stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vincentis, N.S., E-mail: devincentis@ifir-conic
The microstructural characteristics of deformation-processed materials highly influence their mechanical properties. For a complete characterization of a microstructure both local and global information must be gathered, which requires the combination of different analysis techniques. X-ray and Electron Backscatter Diffraction were used in the present paper to characterize the deformation induced in a cold rolled F138 austenitic stainless steel sample. The results obtained using laboratory and synchrotron X-ray sources were compared and combined with EBSD quantitative results, allowing the global and local characterization and orientation dependence of the deformation microstructure. A particular behavior was observed in the XRD data corresponding tomore » the planes with < 220 >∥ ND, likely due to a smaller amount of defects accumulated in the crystals with that particular orientation. EBSD was used to separate the scans data into partitions and to calculate misorientation variables and parameters, showing that this behavior can be attributed to a combination of larger grain sizes, lower local boundary misorientations and dislocation densities for crystals having < 220 >∥ ND. Several conclusions, of general validity for the evaluation of microstructure anisotropy, can be extracted from the results. - Highlights: •Combined XRD and EBSD for studying microstructure gave a superb insight on anisotropic accumulation of defects. •W-H and CMWP methods were applied for checking consistency of results. •XRD showed that a smaller accumulation of defects occurred in crystals with < 220 >∥ ND. •High brilliance X-ray beam allowed to study the anisotropy of defect accumulation.« less
Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; ...
2014-11-28
The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less
NASA Astrophysics Data System (ADS)
Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe
2018-05-01
Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.
NASA Astrophysics Data System (ADS)
Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe
2018-07-01
Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.
The response of the Seasat and Magsat infrared horizon scanners to cold clouds
NASA Technical Reports Server (NTRS)
Bilanow, S.; Phenneger, M.
1980-01-01
Cold clouds over the Earth are shown to be the principal cause of pitch and roll measurement noise in flight data from the infrared horizon scanners onboard Seasat and Magsat. The observed effects of clouds on the fixed threshold horizon detection logic of the Magsat scanner and on the variable threshold detection logic of the Seasat scanner are discussed. National Oceanic and Atmospheric Administration (NOAA) Earth photographs marked with the scanner ground trace clearly confirm the relationship between measurement errors and Earth clouds. A one to one correspondence can be seen between excursion in the pitch and roll data and cloud crossings. The characteristics of the cloud-induced noise are discussed, and the response of the satellite control systems to the cloud errors is described. Changes to the horizon scanner designs that would reduce the effects of clouds are noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Ungár, Tamás; Toth, Laszlo S.
The evolution of texture, grain size, grain shape, dislocation and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni- Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear-coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution ofmore » the microstructure parameters. Grain-growth and texture evolution are shown to proceed by the shear-coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.« less
NASA Astrophysics Data System (ADS)
Stockert, Sven; Wehr, Matthias; Lohmar, Johannes; Abel, Dirk; Hirt, Gerhard
2017-10-01
In the electrical and medical industries the trend towards further miniaturization of devices is accompanied by the demand for smaller manufacturing tolerances. Such industries use a plentitude of small and narrow cold rolled metal strips with high thickness accuracy. Conventional rolling mills can hardly achieve further improvement of these tolerances. However, a model-based controller in combination with an additional piezoelectric actuator for high dynamic roll adjustment is expected to enable the production of the required metal strips with a thickness tolerance of +/-1 µm. The model-based controller has to be based on a rolling theory which can describe the rolling process very accurately. Additionally, the required computing time has to be low in order to predict the rolling process in real-time. In this work, four rolling theories from literature with different levels of complexity are tested for their suitability for the predictive controller. Rolling theories of von Kármán, Siebel, Bland & Ford and Alexander are implemented in Matlab and afterwards transferred to the real-time computer used for the controller. The prediction accuracy of these theories is validated using rolling trials with different thickness reduction and a comparison to the calculated results. Furthermore, the required computing time on the real-time computer is measured. Adequate results according the prediction accuracy can be achieved with the rolling theories developed by Bland & Ford and Alexander. A comparison of the computing time of those two theories reveals that Alexander's theory exceeds the sample rate of 1 kHz of the real-time computer.
Enhancing wear resistance of working bodies of grinder through lining crushed material
NASA Astrophysics Data System (ADS)
Romanovich, A. A.; Annenko, D. M.; Romanovich, M. A.; Apukhtina, I. V.
2018-03-01
The article presents the analysis of directions of increasing wear resistance of working surfaces of rolls. A technical solution developed at the level of the invention is proposed, which is simple to implement in production conditions and which makes it possible to protect the roll surface from heavy wear due to surfacing of wear-resistant mesh material, cells of which are filling with grinding material in the process of work. Retaining them enables one to protect the roll surface from wear. The paper dwells on conditions of pressing materials in cells of eccentric rolls on the working surface with a grid of rectangular shape. The paper presents an equation for calculation of the cell dimension that provides the lining of the working surface by a mill material with respect to its properties. The article presents results of comparative studies on the grinding process of a press roller grinder (PRG) between rolls with and without a fusion-bonded mesh. It is clarified that the lining of rolls working surface slightly reduces the quality of the grinding, since the material thickness in the cell is small and has a finely divided and compacted structure with high strength.
NASA Astrophysics Data System (ADS)
Ragkousis, A.; Bakare, F.; Babalola, M. I.
2017-11-01
This study presents the effects of a novel thermomechanical treatment on the mechanical properties of the AA2139 aerospace aluminium alloys. The novel treatment, which is comprised of a combination of under-aging, cold-rolling, and re-aging, was successfully employed by Wang et al (2014 Mater. Sci. Eng. A 607 313-7) to enhance the mechanical and microstructure properties of 6000 series aluminium alloys. The influence of under-ageing and re-aging parameters of the treatment on the AA2139 properties has been examined by tensile and hardness testing, differential scanning calorimetry, and thermoelectric power measurements. It was determined that a higher temperature under-ageing, combined with lower temperature and long duration re-ageing resulted in the most attractive mechanical properties, which significantly exceeded those of other traditional treatments. More specifically, a 175 °C/1.5 h under-ageing treatment, followed by a cold rolling reduction of 75% and a 110 °C/96 h re-ageing resulted in a yield strength of 554 MPa, an ultimate tensile strength of 618 MPa, and an elongation of 7.5%, far exceeding the strength requirements and 5% acceptable elongation for applications in the aerospace industry. These results, in conjunction with the results of the parallel study focusing on the effects of the cold-rolling component of the treatment (Bakare et al 2017 Mater. Res. Express 4) further reinforce the position that the treatment employed is superior to conventional ones for the 2139 alloy.
Improving cold chain systems: Challenges and solutions.
Ashok, Ashvin; Brison, Michael; LeTallec, Yann
2017-04-19
While a number of new vaccines have been rolled out across the developing world (with more vaccines in the pipeline), cold chain systems are struggling to efficiently support national immunization programs in ensuring the availability of safe and potent vaccines. This article reflects on the Clinton Health Access Initiative, Inc. (CHAI) experience working since 2010 with national immunization programs and partners to improve vaccines cold chains in 10 countries-Ethiopia, Nigeria, Kenya, Malawi, Tanzania, Uganda, Cameroon, Mozambique, Lesotho and India - to identify the root causes and solutions for three common issues limiting cold chain performance. Key recommendations include: Collectively, the solutions detailed in this article chart a path to substantially improving the performance of the cold chain. Combined with an enabling global and in-country environment, it is possible to eliminate cold chain issues as a substantial barrier to effective and full immunization coverage over the next few years. Copyright © 2017. Published by Elsevier Ltd.
Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation
NASA Astrophysics Data System (ADS)
Khamei, A. A.; Dehghani, K.; Mahmudi, R.
2015-05-01
Solutionized AA6061 aluminum alloy was processed by equal-channel angular pressing followed by cold rolling. The hot ductility of the material was studied after severe plastic deformation. The hot tensile tests were carried out in the temperature range of 300-500°C and at the strain rates of 0.0005-0.01 s-1. Depending on the temperature and strain rate, the applied strain level exhibited significant effects on the hot ductility, strain-rate sensitivity, and activation energy. It can be suggested that the possible mechanism dominated the hot deformation during tensile testing is dynamic recovery and dislocation creep. Constitutive equations were developed to model the hot ductility of the severe plastic deformed AA6061 alloy.
Synthesis, Characterization and Cold Workability of Cast Copper-Magnesium-Tin Alloys
NASA Astrophysics Data System (ADS)
Bravo Bénard, Agustín Eduardo; Martínez Hernández, David; González Reyes, José Gonzalo; Ortiz Prado, Armando; Schouwenaars Franssens, Rafael
2014-02-01
The use of Mg as an alloying element in copper alloys has largely been overlooked in scientific literature and technological applications. Its supposed tribological compatibility with iron makes it an interesting option to replace Pb in tribological alloys. This work describes the casting process of high-quality thin slabs of Cu-Mg-Sn alloys with different compositions by means of conventional methods. The resulting phases were analyzed using X-ray diffraction, scanning electron microscopy, optical microscopy, and energy dispersive X-ray spectroscopy techniques. Typical dendritic α-Cu, eutectic Cu2Mg(Sn) and eutectoid non-equilibrium microstructures were found. Tensile tests and Vickers microhardness show the excellent hardening capability of Mg as compared to other copper alloys in the as-cast condition. For some of the slabs and compositions, cold rolling reductions of over 95 pct have been easily achieved. Other compositions and slabs have failed during the deformation process. Failure analysis after cold rolling reveals that one cause for brittleness is the presence of casting defects such as microshrinkage and inclusions, which can be eliminated. However, for high Mg contents, a high volume fraction of the intermetallic phase provides a contiguous path for crack propagation through the connected interdendritic regions.
76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
...] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations On...-quality steel products from Russia would be likely to lead to continuation or recurrence of material...) entitled Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil, Japan, and Russia: Investigation...
75 FR 16504 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice that it has...-rolled steel from Russia would be likely to lead to continuation or recurrence of material injury...
Al-Li Alloy 1441 for Fuselage Applications
NASA Technical Reports Server (NTRS)
Bird, R. K.; Dicus, D. L.; Fridlyander, J. N.; Sandler, V. S.
2000-01-01
A cooperative investigation was conducted to evaluate Al-Cu-Mg-Li alloy 1441 for long service life fuselage applications. Alloy 1441 is currently being used for fuselage applications on the Russian Be-103 amphibious aircraft, and is expected to be used for fuselage skin on a new Tupolev business class aircraft. Alloy 1441 is cold-rollable and has several attributes that make it attractive for fuselage skin applications. These attributes include lower density and higher specific modulus with similar strength as compared to conventional Al-Cu-Mg alloys. Cold-rolled 1441 Al-Li sheet specimens were tested at NASA Langley Research Center (LaRC) and at the All-Russia Institute of Aviation Materials (VIAM) in Russia to evaluate tensile properties, fracture toughness, impact resistance, fatigue life and fatigue crack growth rate. In addition, fuselage panels were fabricated by Tupolev Design Bureau (TDB) using 1441 skins and Al-Zn-Mg-Cu alloy stiffeners. The panels were subjected to cyclic pressurization fatigue tests at TDB and at LaRC to simulate fuselage pressurization/depressurization during aircraft service. This paper discusses the results from this investigation.
Effect of roll-compaction and milling conditions on granules and tablet properties.
Perez-Gandarillas, Lucia; Perez-Gago, Ana; Mazor, Alon; Kleinebudde, Peter; Lecoq, Olivier; Michrafy, Abderrahim
2016-09-01
Dry granulation is an agglomeration process used to produce size-enlarged particles (granules), improving the handling properties of powders such as flowability. In this process, powders are compacted using a roll press to produce ribbons, which are milled in granules used further in the tableting process. The granule and tablet properties are influenced by the existence of different designs of the roll compactors, milling systems and the interaction between process parameters and raw material properties. The main objective of this work was to investigate how different roll-compaction conditions and milling process parameters impact on ribbons, granules and tablet properties, highlighting the role of the sealing system (cheek plates and rimmed roll). In this context, two common excipients differing in their mechanical behaviour (MCC and mannitol) are used. The study is based on the analysis of granule size distribution together with the characterization of loss of compactability during die compaction. Results show that the tensile strength of tablets is lower when using granules than when the raw materials are compressed. Moreover, the plastic material (MCC) is more sensitive than the brittle one (mannitol). Regarding the roll-force, it is observed that the higher the roll force, the lower the tensile strength of tablets from granulated material is. These findings are in agreement with the literature. The comparison of sealing systems shows that the rimmed-roll system leads to slightly stronger tablets than the use of cheek plates. In addition, the use of the rimmed-roll system reduces the amount of fines, in particular when high roll force is applied. Overall, it can be concluded that roll-compaction effect is predominant over the milling effect on the production of fines but less significant on the tablet properties. This study points out that the balance between a good flowability by reducing the amount of fines and appropriate tablet strength is achieved with rimmed-roll and the highest roll-force used. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Naizabekov, Abdrakhman; Lezhnev, Sergey; Arbuz, Alexandr; Panin, Evgeniy
2018-02-01
Ultrafine-grained materials are one of the most promising structural and functional materials. However, the known methods of obtaining them are not enough powerful and technologically advanced for profitable industrial applications. Development of the combined process "helical rolling-pressing" is an attempt to bring technology to produce ultrafine-grained materials to the industry. The combination of intense processing of the surface by helical rolling and the entire cross section of workpiece in equal channel angular matrix, with intense deformation by torsion between rolls and matrix will increase the degree of deformation per pass and allows to mutually compensate disadvantages of these methods in the case of their separate use. This paper describes the development of a laboratory stand and study of influence of combined process "helical rolling-pressing"on the microstructure of tool steel, technical copper and high alloy stainless high-temperature steel.
NASA Astrophysics Data System (ADS)
Wang, Xiao-feng; Guo, Ming-xing; Cao, Ling-yong; Wang, Fei; Zhang, Ji-shan; Zhuang, Lin-zhong
2015-07-01
The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstructural observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio ( r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geometry value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001}<110> and Goss {110}<001> orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H{001}<110> orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.
Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet
NASA Astrophysics Data System (ADS)
Iwata, Y.; Miyashita, S.; Iwase, E.
2017-12-01
This paper proposes a micro self-folding using a self-rolling up deformation. In the fabrication method at micro scale, self-folding is an especially useful method of easily fabricating complex three-dimensional (3D) structures from engineered two-dimensional (2D) sheets. However, most self-folded structures are limited to 3D structures with a hollow region. Therefore, we made 3D structures with a small hollow region by self-rolling up a 2D sheet consisting of SU-8 and a temperature-responsive hybrid hydrogel of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The temperature-responsive hydrogel can provide repetitive deformation, which is a good feature for micro soft robots or actuators, using hydrogel shrinking and swelling. Our micro self-rolling up method is a self-folding method for a 3D structure performed by rolling up a 2D flat sheet, like making a croissant, through continuous self-folding. We used our method to fabricate 3D structures with a small hollow region, such as cylindrical, conical, and croissant-like ellipsoidal structures, and 3D structures with a hollow region, such as spiral shapes. All the structures showed repetitive deformation, forward rolling up in 20 °C cold water and backward rolling up in 40 °C hot water. The results demonstrate that self-rolling up deformation can be useful in the field of micro soft devices.
Anderson, Robert C.
1986-01-01
A uranium-1 to 3 wt. % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750.degree. to 850.degree. C. and then quenched in water is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenched plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325.degree. to 375.degree. C. for five to six hours and then aging the plate at a higher temperature ranging from 480.degree. to 500.degree. C. for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.
Steels For Rolling-Element Bearings
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1988-01-01
Bearing lives increased by attention to details of processing and applications. NASA technical memorandum discusses selection of steels for long-life rolling-element bearings. After brief review of advances in manufacturing, report discusses effect of cleanliness of bearing material on fatigue in rolling element. Also discusses fracture toughnesses of through-hardened and case-hardened materials.
Development of nanostructured SUS316L-2%TiC with superior tensile properties
NASA Astrophysics Data System (ADS)
Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.
2015-11-01
Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.
NASA Astrophysics Data System (ADS)
Girina, O.; Fonstein, N.; Yakubovsky, O.; Panahi, D.; Bhattacharya, D.; Jansto, S.
The influence of Nb, Mo, Cr and B on phase transformations and mechanical properties are studied in a 0.15C-2.0Mn-0.3Si-0.020Ti dual phase steel separately and in combination. The formation and decomposition of austenite together with recrystallization of ferrite are evaluated by dilatometry and constructed CCT-diagrams in laboratory processed cold rolled material cooled after full austenitization and from intercritical temperature range. The effect of alloying elements on formation of austenite through their effect on initial hot rolled structure is taken into account. The interpretation of phase transformations during heating and cooling is supported by metallography. The effect of alloying elements on mechanical properties and structure are evaluated by annealing simulations. It has been shown that mechanical properties are strongly influenced by alloying additions such as Nb, Mo, Cr and B through their effect on ferrite formation during continuous cooling and corresponding enrichment of remaining austenite by carbon. Depending on combined effect of these alloying elements, different phase transformations can be promoted during cooling. This allows controlling of final microstructural constituents and mechanical properties.
NASA Astrophysics Data System (ADS)
Melnikov, Eugene; Astafurova, Elena; Maier, Galina; Moskvina, Valentina
2017-12-01
The influence of multi-pass cold rolling on the phase composition and microhardness of austenitic Fe-18Cr-9Ni-0.21C, Fe-18Cr-9Ni-0.5Ti-0.08C, Fe-17Cr-13Ni-3Mo-0.01C (in wt %) steels with different stacking fault energies was studied. The metastable Fe-18Cr-9Ni-0.5Ti-0.08C steel undergoes γ → α' phase transformations during rolling, the volume fraction of strain-induced α'-martensite in steel structure is increased with increasing strain. Metastable austenite Fe-18Cr-9Ni-0.21C steel does not undergo the formation of an appreciable amount of strain-induced α'-martensite under rolling, but the magnetophase analysis reveals a small amount of ferrite phase in the structure of steel after rolling. The structure of stable Fe-17Cr-13Ni-3Mo-0.01C steel remains austenitic independently under strain. Investigations of microhardness of the steels show that their values are increased with strain and are dependent on propensity of steels to strain-induced martensitic transformation.
Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets
NASA Astrophysics Data System (ADS)
Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko
2017-10-01
Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.
NASA Astrophysics Data System (ADS)
Gatti, J. R.; Bhattacharjee, P. P.
2014-12-01
Evolution of microstructure and texture during severe deformation and annealing was studied in Al-2.5%Mg alloy processed by two different routes, namely, monotonic Accumulative Roll Bonding (ARB) and a hybrid route combining ARB and conventional rolling (CR). For this purpose Al-2.5%Mg sheets were subjected to 5 cycles of monotonic ARB (equivalent strain (ɛeq) = 4.0) processing while in the hybrid route (ARB + CR) 3 cycle ARB-processed sheets were further deformed by conventional rolling to 75% reduction in thickness (ɛeq = 4.0). Although formation of ultrafine structure was observed in the two processing routes, the monotonic ARB—processed material showed finer microstructure but weak texture as compared to the ARB + CR—processed material. After complete recrystallization, the ARB + CR-processed material showed weak cube texture ({001}<100>) but the cube component was almost negligible in the monotonic ARB-processed material-processed material. However, the ND-rotated cube components were stronger in the monotonic ARB-processed material-processed material. The observed differences in the microstructure and texture evolution during deformation and annealing could be explained by the characteristic differences of the two processing routes.
Increased compactibility of acetames after roll compaction.
Kuntz, Theresia; Schubert, Martin A; Kleinebudde, Peter
2011-01-01
A common technique for manufacturing granules in a continuous way is the combination of roll compaction and subsequent milling. Roll compaction can considerably impact tableting performance of a material. The purpose of this study was to investigate the influence of roll compaction/dry granulation on the compaction behavior of acetames, a class of active pharmaceutical substances, which are mainly used for the treatment of central nervous diseases. Some representatives of acetames were roll compacted and then compressed into tablets. Compactibility of granules was compared with the compaction behavior of the directly compressed drug powders. In contrast to many other materials, the roll compaction step induced an increase in compactibility for all investigated acetames. Specific surface areas of the untreated and the roll compacted drugs were determined by nitrogen adsorption. The raise in compactibility observed was accompanied by an increase in specific surface area during roll compaction. Copyright © 2010 Elsevier B.V. All rights reserved.
A method for the determination of the coefficient of rolling friction using cycloidal pendulum
NASA Astrophysics Data System (ADS)
Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.
2017-08-01
The paper presents a method for experimental finding of coefficient of rolling friction appropriate for biomedical applications based on the theory of cycloidal pendulum. When a mobile circle rolls over a fixed straight line, the points from the circle describe trajectories called normal cycloids. To materialize this model, it is sufficient that a small region from boundary surfaces of a moving rigid body is spherical. Assuming pure rolling motion, the equation of motion of the cycloidal pendulum is obtained - an ordinary nonlinear differential equation. The experimental device is composed by two interconnected balls rolling over the material to be studied. The inertial characteristics of the pendulum can be adjusted via weights placed on a rod. A laser spot oscillates together to the pendulum and provides the amplitude of oscillations. After finding the experimental parameters necessary in differential equation of motion, it can be integrated using the Runge-Kutta of fourth order method. The equation was integrated for several materials and found values of rolling friction coefficients. Two main conclusions are drawn: the coefficient of rolling friction influenced significantly the amplitude of oscillation but the effect upon the period of oscillation is practically imperceptible. A methodology is proposed for finding the rolling friction coefficient and the pure rolling condition is verified.
NASA Astrophysics Data System (ADS)
Jansen Van Rensburg, G. J.; Kok, S.; Wilke, D. N.
2017-10-01
Different roll pass reduction schedules have different effects on the through-thickness properties of hot-rolled metal slabs. In order to assess or improve a reduction schedule using the finite element method, a material model is required that captures the relevant deformation mechanisms and physics. The model should also report relevant field quantities to assess variations in material state through the thickness of a simulated rolled metal slab. In this paper, a dislocation density-based material model with recrystallization is presented and calibrated on the material response of a high-strength low-alloy steel. The model has the ability to replicate and predict material response to a fair degree thanks to the physically motivated mechanisms it is built on. An example study is also presented to illustrate the possible effect different reduction schedules could have on the through-thickness material state and the ability to assess these effects based on finite element simulations.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Khatirkar, Rajesh Kisni; Gupta, Aman; Shekhawat, Satish K.; Suwas, Satyam
2018-06-01
In the present work, the influence of strain path on the evolution of microstructure, crystallographic texture, and magnetic properties of a two-phase Fe-Cr-Ni alloy was investigated. The Fe-Cr-Ni alloy had nearly equal proportion of austenite and ferrite and was cold rolled up to a true strain of 1.6 (thickness reduction) using two different strain paths—unidirectional rolling and multi-step cross rolling. The microstructures were characterized by scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD), while crystallographic textures were determined using X-ray diffraction. For magnetic characterization, B-H loops and M-H curves were measured and magnetic force microscopy was performed. After unidirectional rolling, ferrite showed the presence of strong α-fiber (rolling direction, RD//<110>) and austenite showed strong brass type texture (consisting of Brass (Bs) ({110}<112>), Goss ({110}<001>), and S ({123}<634>)). After multi-step cross rolling, strong rotated cube ({100}<110>) was developed in ferrite, while austenite showed ND (normal direction) rotated brass ( 10 deg) texture. The strain-induced martensite (SIM) was found to be higher in unidirectionally rolled samples than multi-step cross-rolled samples. The coherently diffracting domain size, micro-strain, coercivity, and core loss also showed a strong correlation with strain and strain path. More strain was partitioned into austenite than ferrite during deformation (unidirectional as well as cross rolling). Further, the strain partitioning (in both austenite and ferrite) was found to be higher in unidirectionally rolled samples.
Application of RNAMlet to surface defect identification of steels
NASA Astrophysics Data System (ADS)
Xu, Ke; Xu, Yang; Zhou, Peng; Wang, Lei
2018-06-01
As three main production lines of steels, continuous casting slabs, hot rolled steel plates and cold rolled steel strips have different surface appearances and are produced at different speeds of their production lines. Therefore, the algorithms for the surface defect identifications of the three steel products have different requirements for real-time and anti-interference. The existing algorithms cannot be adaptively applied to surface defect identification of the three steel products. A new method of adaptive multi-scale geometric analysis named RNAMlet was proposed. The idea of RNAMlet came from the non-symmetry anti-packing pattern representation model (NAM). The image is decomposed into a set of rectangular blocks asymmetrically according to gray value changes of image pixels. Then two-dimensional Haar wavelet transform is applied to all blocks. If the image background is complex, the number of blocks is large, and more details of the image are utilized. If the image background is simple, the number of blocks is small, and less computation time is needed. RNAMlet was tested with image samples of the three steel products, and compared with three classical methods of multi-scale geometric analysis, including Contourlet, Shearlet and Tetrolet. For the image samples with complicated backgrounds, such as continuous casting slabs and hot rolled steel plates, the defect identification rate obtained by RNAMlet was 1% higher than other three methods. For the image samples with simple backgrounds, such as cold rolled steel strips, the computation time of RNAMlet was one-tenth of the other three MGA methods, while the defect identification rates obtained by RNAMlet were higher than the other three methods.
Roll-to-roll light directed electrophoretic deposition system and method
Pascall, Andrew J.; Kuntz, Joshua
2017-06-06
A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.
High-rate, roll-to-roll nanomanufacturing of flexible systems
NASA Astrophysics Data System (ADS)
Cooper, Khershed P.; Wachter, Ralph F.
2012-10-01
Since the National Nanotechnology Initiative was first announced in 2000, nanotechnology has developed an impressive catalog of nano-scale structures with building-blocks such as nanoparticles, nanotubes, nanorods, nanopillars, and quantum dots. Similarly, there are accompanying materials processes such as, atomic layer deposition, pulsed layer deposition, nanoprinting, nanoimprinting, transfer printing, nanolithography and nanopatterning. One of the challenges of nanomanufacturing is scaling up these processes reliably and affordably. Roll-to-roll manufacturing is a means for scaling up, for increasing throughput. It is high-speed production using a continuous, moving platform such as a web or a flexible substrate. The adoption of roll-to-roll to nanomanufacturing is novel. The goal is to build structures and devices with nano-scale features and specific functionality. The substrate could be a polymer, metal foil, silk, cloth or paper. The materials to build the structures and multi-level devices could be organic, inorganic or biological. Processing could be solution-based, e.g., ink-jet printing, or vacuum-based, e.g., chemical vapor deposition. Products could be electronics, optoelectronics, membranes, catalysts, microfluidics, lab-on-film, filters, etc. By this means, processing of large and conformal areas is achievable. High-throughput translates into low cost, which is the attraction of roll-to-roll nanomanufacturing. There are technical challenges requiring fundamental scientific advances in materials and process development and in manufacturing and system-integration where achieving nano-scale feature size, resolution and accuracy at high speeds can be major hurdles. We will give an overview of roll-to-roll nanomanufacturing with emphasis on the need to understand the material, process and system complexities, the need for instrumentation, measurement, and process control and describe the concept of cyber-enabled nanomanufacturing for reliable and predictable production.
Intermixing in Cu/Ni multilayers induced by cold rolling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z.; Perepezko, J. H., E-mail: perepezk@engr.wisc.edu; Larson, D.
2015-04-28
Repeated cold rolling was performed on multilayers of Cu60/Ni40 and Cu40/Ni60 foil arrays to study the details of driven atomic scale interfacial mixing. With increasing deformation, there is a significant layer refinement down to the nm level that leads to the formation of a solid solution phase from the elemental end members. Intriguingly, the composition of the solid solution is revealed by an oscillation in the composition profile across the multilayers, which is different from the smoothly varying profile due to thermally activated diffusion. During the reaction, Cu mixed into Ni preferentially compared to Ni mixing into Cu, which ismore » also in contrast to the thermal diffusion behavior. This is confirmed by observations from X-ray diffraction, electron energy loss spectrum and atom probe tomography. The diffusion coefficient induced by cold rolling is estimated as 1.7 × 10{sup −17} m{sup 2}/s, which cannot be attributed to any thermal effect. The effective temperature due to the deformation induced mixing is estimated as 1093 K and an intrinsic diffusivity d{sub b}, which quantifies the tendency towards equilibrium in the absence of thermal diffusion, is estimated as 6.38 × 10{sup −18} m{sup 2}/s. The fraction of the solid solution phase formed is illustrated by examining the layer thickness distribution and is described by using an error function representation. The evolution of mixing in the solid solution phase is described by a simplified sinusoid model, in which the amplitude decays with increased deformation level. The promoted diffusion coefficient could be related to the effective temperature concept, but the establishment of an oscillation in the composition profile is a characteristic behavior that develops due to deformation.« less
Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy
NASA Astrophysics Data System (ADS)
Penlington, Alex
Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Daqiang, E-mail: dq80jiang@126.com; Cui, Lishan; Jiang, Jiang
Graphical abstract: - Highlights: • In situ NiTi/Nb(Ti) composites were fabricated. • The transformation temperature was affected by the mixing Ti:Ni atomic ratios. • The NiTi component became micron-scale lamella after forging and rolling. • The composite exhibited high strength and high damping capacity. - Abstract: This paper reports on the creation of a series of in situ NiTi/Nb(Ti) composites with controllable transformation temperatures based on the pseudo-binary hypereutectic transformation of NiTi–Nb system. The composite constituent morphology was controlled by forging and rolling. It is found that the thickness of the NiTi lamella in the composite reached micron level aftermore » the hot-forging and cold-rolling. The NiTi/Nb(Ti) composite exhibited high damping capacity as well as high yield strength.« less
NASA Astrophysics Data System (ADS)
Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel
2004-03-01
Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.
beta Phase Growth and Precipitation in the 5xxx Series Aluminum Alloy System
NASA Astrophysics Data System (ADS)
Scotto D'Antuono, Daniel
The 5xxx series aluminum alloys are commonly used for structural applications due to their high strength to weight ratio, corrosion resistance, and weldability. This material system is a non-heat treatable aluminum and derives its strength from a super saturation of magnesium (3%>), and from cold rolling. While these materials have many admiral properties, they can undergo a process known as sensitization when exposed to elevated temperatures (50-280°C) for extended periods of time. During this process, magnesium segregates toward the grain boundaries and forms the secondary precipitate β phase (Al3Mg2). When exposed to harsh environments such as sea water, a galvanic couple is formed between the Al matrix and the β phase precipitates. The precipitates become anodic to the matrix and preferentially dissolve leaving gaps along the boundary network, ultimately leading to stress corrosion cracking. While this problem has been known to occur for some time now, questions relating to nucleation sites, misorientation dependence, effect of prior strain, and preferred temperature regimes remain unanswered. The work contained in this thesis attempted to better understand the kinetics, growth, and misorientation dependence, of β phase precipitation using in situ transmission electron microscopy experiments which allowed for direct visualization of the precipitation process. Orientation imaging using a Nanomegas/ASTAR system (OIM in TEM) coupled with the in situ experiments, along with elemental STEM EELs mapping were used to better understand the diffusion of Mg and found low angle boundaries as potential sites for nucleation. The resulting STEM EELs experiments also showed that Mg is much more stable at the grain boundaries than previously thought. Concurrent bulk ex-situ studies were used to compare various heat treatments, as well as to failed in service material showing that the low temperature treatments yield the metastable β’ phase more readily than the β equilibrium phase. The work here has identified the size, location, and kinetics of β phase formation as well as the effects of pre-strain (cold rolling) and boundary misorientation on precipitation showing that increases in dislocations speeds up sensitization and increases nucleation sites but does not increase overall precipitate size. This work also compared precipitate type (β vs. β’) showing that the metastable β’ phase is more common in low temperature treated material and the main precipitate found in failed in service material. A comparison between the corrosion effects of the two precipitation showed that lower temperature treatments have a higher degree of sensitization further delineating between the two forms.
Zhou, Xi; Xu, Huihua; Cheng, Jiyi; Zhao, Ni; Chen, Shih-Chi
2015-01-01
A continuous roll-to-roll microcontact printing (MCP) platform promises large-area nanoscale patterning with significantly improved throughput and a great variety of applications, e.g. precision patterning of metals, bio-molecules, colloidal nanocrystals, etc. Compared with nanoimprint lithography, MCP does not require a thermal imprinting step (which limits the speed and material choices), but instead, extreme precision with multi-axis positioning and misalignment correction capabilities for large area adaptation. In this work, we exploit a flexure-based mechanism that enables continuous MCP with 500 nm precision and 0.05 N force control. The fully automated roll-to-roll platform is coupled with a new backfilling MCP chemistry optimized for high-speed patterning of gold and silver. Gratings of 300, 400, 600 nm line-width at various locations on a 4-inch plastic substrate are fabricated at a speed of 60 cm/min. Our work represents the first example of roll-to-roll MCP with high reproducibility, wafer scale production capability at nanometer resolution. The precision roll-to-roll platform can be readily applied to other material systems. PMID:26037147
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Anderson, W. J.
1983-01-01
Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.
Rolling, slip and traction measurements on low modulus materials
NASA Technical Reports Server (NTRS)
Tevaarwerk, J. L.
1985-01-01
Traction and wear tests were performed on six low modulus materials (LMM). Three different traction tests were performed to determine the suitability of the material for use as traction rollers. These were the rolling, slip and endurance traction tests. For each material the combination LMM on LMM and LMM on steel were evaluated. Rolling traction test were conducted to determine the load - velocity limits, the rolling traction coefficient of the materials and to establish the type of failures that would result when loading beyond the limit. It was found that in general a simple constant rolling traction coefficient was enough to describe the results of all the test. The slip traction tests revealed that the peak traction coefficients were considerably higher than for lubricated traction contacts. The endurance traction tests were performed to establish the durability of the LMM under conditions of prolonged traction. Wear measurements were performed during and after the test. Energetic wear rates were determined from the wear measurements conducted in the endurance traction tests. These values show that the roller wear is not severe when reasonable levels of traction are transmitted.
NASA Astrophysics Data System (ADS)
Khalique, Abdul; Khan, Mohammad Riaz
1997-07-01
The present scientific and technological advancement in space travel has given an added impetus to the development and production of light metal high strength alloys, capable of enduring rapid changes in temperature and other environmental conditions. Al-3.3 Mg-1.22 Mn (weight %) cold rolled alloy sheet of 2 mm thickness was selected for the study. This alloy falls in the category of non-heat treatable, corrosive resistant alloys. The change in mechanical behaviour when age-softened in N2 gas atomsphere was studied. In addition, mechanical properties of samples when artificially aged in the temperature range of 150°C-250°C for 3 hours each, after solution treatment at 450°C for 12 h followed by quenching to room temperature were investigated. It is revealed that improvement, though limited, in tensile strength, surface hardness and ductility during aging is a function of cooling rate during quenching.
Influence of roll levelling on material properties and postforming springback
NASA Astrophysics Data System (ADS)
Galdos, Lander; Mendiguren, Joseba; de Argandoña, Eneko Saenz; Otegi, Nagore; Silvestre, Elena
2018-05-01
Roll levelling is commonly used in cut to length and blanking lines to flatten initial coils and produce residual stress free precuts. Roll straightener is also used to remove coil-set when progressive dies are used and the starting raw material is a coil. Industrial evidences have proved that roll leveler or straightener tuning is crucial to get a robust process and to obtain repetitive springback values after stamping. This is more relevant when using Advanced High Strength Steels and aluminum coils. However, the mechanisms affecting this material behavior are unknown and how the levelling technology affects the material properties has not been yet reported. In this paper, the influence the roll levelling process has on the final properties of a 6xxx aluminum alloy is studied. For that, as received coils have been relevelled using two different leveler set-ups and tensile tests have been performed using both initial and final material states. Aiming to quantify the effect of the material hardening on a real forming process, a new tangential bending prototype has been developed. As received and levelled precuts have been bent and the forming torques and the postforming angles have been compared.
LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammon, Duncan L.; Clarke, Kester D.; Alexander, David J.
2015-05-29
The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield.more » This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.« less
Characterization of particle exposure in ferrochromium and stainless steel production.
Järvelä, Merja; Huvinen, Markku; Viitanen, Anna-Kaisa; Kanerva, Tomi; Vanhala, Esa; Uitti, Jukka; Koivisto, Antti J; Junttila, Sakari; Luukkonen, Ritva; Tuomi, Timo
2016-07-01
This study describes workers' exposure to fine and ultrafine particles in the production chain of ferrochromium and stainless steel during sintering, ferrochromium smelting, stainless steel melting, and hot and cold rolling operations. Workers' personal exposure to inhalable dust was assessed using IOM sampler with a cellulose acetate filter (AAWP, diameter 25 mm; Millipore, Bedford, MA). Filter sampling methods were used to measure particle mass concentrations in fixed locations. Particle number concentrations and size distributions were examined using an SMPS+C sequential mobile particle sizer and counter (series 5.400, Grimm Aerosol Technik, Ainring, Germany), and a hand-held condensation particle counter (CPC, model 3007, TSI Incorporated, MN). The structure and elemental composition of particles were analyzed using TEM-EDXA (TEM: JEM-1220, JEOL, Tokyo, Japan; EDXA: Noran System Six, Thermo Fisher Scientific Inc., Madison,WI). Workers' personal exposure to inhalable dust averaged 1.87, 1.40, 2.34, 0.30, and 0.17 mg m(-3) in sintering plant, ferrochromium smelter, stainless steel melting shop, hot rolling mill, and the cold rolling mill, respectively. Particle number concentrations measured using SMPS+C varied from 58 × 10(3) to 662 × 10(3) cm(-3) in the production areas, whereas concentrations measured using SMPS+C and CPC3007 in control rooms ranged from 24 × 10(3) to 243 × 10(3) cm(-3) and 5.1 × 10(3) to 97 × 10(3) cm(-3), respectively. The elemental composition and the structure of particles in different production phases varied. In the cold-rolling mill non-process particles were abundant. In other sites, chromium and iron originating from ore and recycled steel scrap were the most common elements in the particles studied. Particle mass concentrations were at the same level as that reported earlier. However, particle number measurements showed a high amount of ultrafine particles, especially in sintering, alloy smelting and melting, and tapping operations. Particle number concentration and size distribution measurements provide important information regarding exposure to ultrafine particles, which cannot be seen in particle mass measurements.
NASA Technical Reports Server (NTRS)
Bird, R. Keith; Hibberd, Joshua
2009-01-01
Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate two Inconel 718 single-bead-width wall builds and one multiple-bead-width block build. Specimens were machined to evaluate microstructure and room temperature tensile properties. The tensile strength and yield strength of the as-deposited material from the wall and block builds were greater than those for conventional Inconel 718 castings but were less than those for conventional cold-rolled sheet. Ductility levels for the EBF3 material were similar to those for conventionally-processed sheet and castings. An unexpected result was that the modulus of the EBF3-deposited Inconel 718 was significantly lower than that of the conventional material. This low modulus may be associated with a preferred crystallographic orientation resultant from the deposition and rapid solidification process. A heat treatment with a high solution treatment temperature resulted in a recrystallized microstructure and an increased modulus. However, the modulus was not increased to the level that is expected for Inconel 718.
NASA Astrophysics Data System (ADS)
Kasaei, M. M.; Naeini, H. Moslemi; Tehrani, M. Salmani; Tafti, R. Azizi
2011-01-01
Cage roll forming is one of the advanced methods of cold roll forming process which is used widely for producing ERW pipes. In addition to decreasing the production cost and time, using cage roll forming provides smooth deformation on the strip. Few studies can be found about cage roll forming because of its complexity, and the available knowledge is experience-based more than science-based. In this paper, deformation of pipes with low ratio of thickness/diameter is investigated by 3D finite element simulation in Marc-Mentat software. Edge buckling defect in cage roll forming of low ratio of thickness/diameter pipes is very important. Due to direct influence of longitudinal strain on the edge buckling phenomenon, longitudinal strains at the edge and center line of the strip are investigated and high risk stands are introduced. The deformed strip is predicted using the simulation results and effects of each cage forming stage on the deformed strip profile are specified. In order to verify the simulation results, strip width and opening distance of the two edges in different forming stages are obtained from the simulations and compared with the experimental data which were measured from the production line. A good agreement between the experimental and simulated results is observed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... rubber articles, cartons, bags, corrugated boxes with fillers, instruction sheets, range hood filters, bathroom mirrors, filters for whole house ventilation systems, cold- rolled steel for manufacturing, flat..., damper or filter springs for grille, stainless steel kitchen backsplashes, brackets, aluminum stainless...
Development of nano/sub-micron grain structures in metastable austenitic stainless steels
NASA Astrophysics Data System (ADS)
Rajasekhara, Shreyas
2007-12-01
This dissertation is a part of a collaborative work between the University of Texas, Austin-Texas, the University of Oulu, Oulu-Finland, and Outokumpu Stainless Oy, Tornio-Finland, to develop commercial austenitic stainless steels with high strength and ductility. The idea behind this work involves cold-rolling a commercial metastable austenitic stainless steel - AISI 301LN stainless steel to produce strain-induced martensite, followed by an annealing treatment to generate nano/sub-micron grained austenite. AISI 301LN stainless steel sheets are cold-rolled to 63% reduction and subsequently annealed at 600°C, 700°C, 800°C, 900°C and 1000°C for 1, 10 and 100 seconds. The samples are analyzed by X-Ray diffraction, SQUID, transmission electron microscopy, and tensile testing to fundamentally understand the microstructural evolution, the mechanism for the martensite → austenite reversion, the formation of nano/sub-micron austenite grains, and the relationship between the microstructure and the strength obtained in this stainless steel. The results show that cold-rolled AISI 301LN stainless steel consist of dislocation-cell martensite, heavily deformed lath-martensite and austenite shear bands. Subsequent annealing at 600°C for short durations of 1 and 10 seconds leads to negligible martensite to austenite reversion. These 600°C samples exhibit a similar microstructure to the cold-rolled sample. However, for samples annealed at 600°C for 100 seconds and those annealed at higher temperatures (700°C, 800°C, 900°C and 1000°C) exhibit equiaxed austenitic grains of sizes 0.2mum-10mum and secondary phase precipitates. The microstructural analysis also reveals that the martensite → austenite reversion occurs via a diffusion-type reversion mechanism. In this regard, a generalized form of Avrami's equation is used to model the kinetics of martensite → austenite phase reversion. The results from the model agree reasonably well with the experiments. Furthermore, the activation energy for grain growth in nano/sub-micron grained AISI 301LN stainless steel is found to be ˜ 205kJ/mol, which is comparable to values observed in coarse grained commercial stainless steels (AISI 304, 316). However, the driving force for grain growth in nano/sub-micron grained AISI 301LN stainless steel is considerably higher when compared to other stainless steels. Finally, the average grain sizes in AISI 301LN stainless steels are related to the mechanical properties obtained, through the Hall-Petch relationship.
Analytical study on web deformation by tension in roll-to-roll printing process
NASA Astrophysics Data System (ADS)
Kang, Y. S.; Hong, M. S.; Lee, S. H.; Jeon, Y. H.; Kang, D.; Lee, N. K.; Lee, M. G.
2017-08-01
Recently, flexible devices have gained high intentions for flexible display, Radio Frequency Identification (RFID), bio-sensor and so on. For manufacturing of the flexible devices, roll-to-roll process is a good candidate because of its low production cost and high productivity. Flexible substrate has a non-uniform deformation distribution by tension. Because the roll-to-roll process carries out a number of overlay printing processes, the deformation affect overlay printing precision and printable areas. In this study, the deformation of flexible substrate was analyzed by using finite element analysis and it was verified through experiments. More deformation occurred in the middle region in the direction parallel to rolling of the flexible substrate. It is confirmed through experiments and analysis that deformation occurs less at the both ends than in the middle region. Based on these results, a hourglass roll is proposed as a mechanical design of the roll to compensate the non-uniform deformation of the flexible substrate. In the hourglass roll, high stiffness material is used in the core and low stiffness material such as an elastic material is wrapped. The diameter of the core roll was designed to be the minimum at the middle and the maximum at both ends. We tried to compensate the non-uniform deformation distribution of the flexible substrate by using the variation of the contact stiffness between the roll and the flexible substrate. Deformation distribution of flexible substrates was confirmed by finite element analysis by applying hourglass roll shape. In the analysis when using the hourglass roll, it is confirmed that the stress distribution is compensated by about 70% and the strain distribution is compensated by about 67% compared to the case using the hourglass roll. To verify the compensation of the non-uniform deformation distribution due to the tension, deformation measurement experiment when using the proposed hourglass roll was carried out. Experiments have shown that the distribution of deformation is compensated by about 34%. From the results, we verified the performance of the proposed.
Hubble Space Telescope solar cell module thermal cycle test
NASA Technical Reports Server (NTRS)
Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar
1992-01-01
The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.
NASA Astrophysics Data System (ADS)
Hordych, Illia; Rodman, Dmytro; Nürnberger, Florian; Schmidt, Hans Christian; Orive, Alejandro Gonzalez; Homberg, Werner; Grundmeier, Guido; Maier, Hans Jürgen
2018-05-01
In the present study, heat-treatment assisted bonding of galfan-coated low-carbon steel sheets was investigated. Steel sheets were bonded by cold rolling subsequently to a heat treatment in the temperature range from 400 °C to 550°C. The reduction ratio during cold rolling was varied in the range from 50% to 80%. Such high reduction ratios were achieved by splitting the bonding process into three stages. By employing heat-treatments, the mechanical properties of the bonds were improved. The heat-pretreatment allowed the formation of brittle intermetallic phases that were easily fractured in the rolling gap during the bonding process. Thus, juvenile non-oxidized surfaces were formed, which facilitated the bonding between the steel layers, and thus increased the bond strength. The intermetallic phases were actively formed at temperatures of 450 °C and above; however increasing temperatures resulted in decreasing mechanical properties due to oxidation processes. The local microstructure was analyzed by scanning electron microscopy in order to characterize the contact zone on the micro level with a focus on the formation of intermetallic phases. The mechanical properties were determined in tensile shear tests. Interestingly, it was found that the galfan coating allowed for bonding at room temperature, and the aluminum fraction was primarily responsible for the enhanced oxide formation during the heat-pretreatment.
Deformability of Oxide Inclusions in Tire Cord Steels
NASA Astrophysics Data System (ADS)
Zhang, Lifeng; Guo, Changbo; Yang, Wen; Ren, Ying; Ling, Haitao
2018-04-01
The deformation of oxide inclusions in tire cord steels during hot rolling was analyzed, and the factors influencing their deformability at high and low temperatures were evaluated and discussed. The aspect ratio of oxide inclusions decreased with the increasing reduction ratio of the steel during hot rolling owing to the fracture of the inclusions. The aspect ratio obtained after the first hot-rolling process was used to characterize the high-temperature deformability of the inclusions. The deformation first increased and then decreased with the increasing (MgO + Al2O3)/(SiO2 + MnO) ratio of the inclusions. It also increased with the decreasing melting temperatures of the inclusions. Young's modulus was used to evaluate the low-temperature deformability of the inclusions. An empirical formula was fitted to calculate the Young's moduli of the oxides using the mean atomic volume. The moduli values of the inclusions causing wire fracture were significantly greater than the average. To reduce fracture in tire cord steel wires during cold drawing, it is proposed that inclusions be controlled to those with high SiO2 content and extremely low Al2O3 content. This proposal is based on the hypothesis that the deformabilities of oxides during cold drawing are inversely proportional to their Young's moduli. The future study thus proposed includes an experimental confirmation for the abovementioned predictions.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Pinaki P.; Ray, Ranjit K.; Tsuji, Nobuhiro
2010-11-01
An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling ( 95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented ( left\\{ {00 1} right\\}left< { 100} rightrangle ) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube ( left\\{ {0 1 3} right\\}left< { 100} rightrangle ). Low-temperature annealing produces a weak cube texture along with the left\\{ {0 1 3} right\\}left< { 100} rightrangle component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the left\\{ {0 1 3} right\\}left< { 100} rightrangle component. The difference in the relative strengths of the cube, and the left\\{ {0 1 3} right\\}left< { 100} rightrangle components in the two materials is evident from the beginning of recrystallization in which more left\\{ {0 1 3} right\\}left< { 100} rightrangle -oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the left\\{ {0 1 3} right\\}left< { 100} rightrangle grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation.
NASA Astrophysics Data System (ADS)
Boehlert, C. J.; Dickmann, D. S.; Eisinger, Ny. N. C.
2006-01-01
The grain size, grain boundary character distribution (GBCD), creep, and tensile behavior of INCONEL alloy 718 (IN 718) were characterized to identify processing-microstructure-property relationships. The alloy was sequentially cold rolled (CR) to 0, 10, 20, 30, 40, 60, and 80 pct followed by annealing at temperatures between 954 °C and 1050 °C and the traditional aging schedule used for this alloy. In addition, this alloy can be superplastically formed (IN 718SPF) to a significantly finer grain size and the corresponding microstructure and mechanical behavior were evaluated. The creep behavior was evaluated in the applied stress (σ a ) range of 300 to 758 MPa and the temperature range of 638 °C to 670 °C. Constant-load tensile creep experiments were used to measure the values of the steady-state creep rate and the consecutive load reduction method was used to determine the values of backstress (σ0). The values for the effective stress exponent and activation energy suggested that the transition between the rate-controlling creep mechanisms was dependent on effective stresses (σ e =σ a σ0) and the transition occurred at σ e ≅ 135 MPa. The 10 to 40 pct CR samples exhibited the greatest 650 °C strength, while IN 718SPF exhibited the greatest room-temperature (RT) tensile strength (>1550 MPa) and ductility (ɛ f >16 pct). After the 954 °C annealing treatment, the 20 pct CR and 30 pct CR microstructures exhibited the most attractive combination of elevated-temperature tensile and creep strength, while the most severely cold-rolled materials exhibited the poorest elevated-temperature properties. After the 1050 °C annealing treatment, the IN 718SPF material exhibited the greatest backstress and best creep resistance. Electron backscattered diffraction was performed to identify the GBCD as a function of CR and annealing. The data indicated that annealing above 1010 °C increased the grain size and resulted in a greater fraction of twin boundaries, which in turn increased the fraction of coincident site lattice boundaries. This result is discussed in light of the potential to grain boundary engineer this alloy.
A new criterion for predicting rolling-element fatigue lives of through-hardened steels
NASA Technical Reports Server (NTRS)
Chevalier, J. L.; Zaretsky, E. V.; Parker, R. J.
1972-01-01
A carbide factor was derived based upon a statistical analysis which related rolling-element fatigue life to the total number of residual carbide particles per unit area, median residual carbide size, and percent residual carbide area. An equation was experimentally determined which predicts material hardness as a function of temperature. The limiting temperatures of all of the materials studied were dependent on initial room temperature hardness and tempering temperature. An equation was derived combining the effects of material hardness, carbide factor, and bearing temperature to predict rolling-element bearing life.
46 CFR 154.610 - Design temperature not colder than 0 °C (32 °F).
Code of Federal Regulations, 2010 CFR
2010-10-01
... materials must meet §§ 54.25-1 and 54.25-3 of this chapter. (b) Plates, forgings, rolled and forged bars and... batch of forgings, forged or rolled fittings, and forged or rolled bars and shapes. (f) The specified... ton batch of forgings, forged or rolled fittings and rolled or forged bars and shapes. (h) The...
NASA Astrophysics Data System (ADS)
Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.
2015-11-01
Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.
Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.
2015-01-01
Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441
The study on deformation characterization in micro rolling for ultra-thin strip
NASA Astrophysics Data System (ADS)
Xie, H. B.; Manabe, K.; Furushima, T.; Jiang, Z. Y.
2013-12-01
The demand for miniaturized parts and miniaturized semi-finished products is increasing. Metal forming processes cannot be simply scaled down to produce miniaturized micro parts and microforming processes have the capability of improving mass production and minimizing material waste. In this study, experimental and theoretical investigations on the micro rolling process have proven that the micro rolling deformation of thin strip is influenced by size effects from specimen sizeon flow stress and friction coefficient. The analytical and finite element (FE) models for describing the size effect related phenomena for SUS 304 stainless steel, such as the change of flow stress, friction and deformation behaviour, are proposed. The material surface constraint and the material deformation mode are critical in determination of material flow stress curve. The identified deformation and mechanics behaviours provide a basis for further exploration of the material deformation behaviour in plastic deformation of micro scale and the development of micro scale products via micro rolling.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... Russian Federation (``Russia'') would likely lead to continuation or recurrence of dumping, and material... duty investigation on hot- rolled steel from Russia (``the Agreement''), pursuant to section 751(c) of... the suspended antidumping duty investigation on hot- rolled steel from Russia would likely lead to a...
Adaptive wing static aeroelastic roll control
NASA Astrophysics Data System (ADS)
Ehlers, Steven M.; Weisshaar, Terrence A.
1993-09-01
Control of the static aeroelastic characteristics of a swept uniform wing in roll using an adaptive structure is examined. The wing structure is modeled as a uniform beam with bending and torsional deformation freedom. Aerodynamic loads are obtained from strip theory. The structure model includes coefficients representing torsional and bending actuation provided by embedded piezoelectric material layers. The wing is made adaptive by requiring the electric field applied to the piezoelectric material layers to be proportional to the wing root loads. The proportionality factor, or feedback gain, is used to control static aeroelastic rolling properties. Example wing configurations are used to illustrate the capabilities of the adaptive structure. The results show that rolling power, damping-in-roll and aileron effectiveness can be controlled by adjusting the feedback gain. And that dynamic pressure affects the gain required. Gain scheduling can be used to set and maintain rolling properties over a range of dynamic pressures. An adaptive wing provides a method for active aeroelastic tailoring of structural response to meet changing structural performance requirements during a roll maneuver.
An approach to develop an algorithm to detect the climbing height in radial-axial ring rolling
NASA Astrophysics Data System (ADS)
Husmann, Simon; Hohmann, Magnus; Kuhlenkötter, Bernd
2017-10-01
Radial-axial ring rolling is the mainly used forming process to produce seamless rings, which are applied in miscellaneous industries like the energy sector, the aerospace technology or in the automotive industry. Due to the simultaneously forming in two opposite rolling gaps and the fact that ring rolling is a mass forming process, different errors could occur during the rolling process. Ring climbing is one of the most occurring process errors leading to a distortion of the ring's cross section and a deformation of the rings geometry. The conventional sensors of a radial-axial rolling machine could not detect this error. Therefore, it is a common strategy to roll a slightly bigger ring, so that random occurring process errors could be reduce afterwards by removing the additional material. The LPS installed an image processing system to the radial rolling gap of their ring rolling machine to enable the recognition and measurement of climbing rings and by this, to reduce the additional material. This paper presents the algorithm which enables the image processing system to detect the error of a climbing ring and ensures comparable reliable results for the measurement of the climbing height of the rings.
Hybridized Thermoplastic Aramids: Enabling Material Technology For Future Force Headgear
2006-11-01
keeping the complete helmet weight the same. Design Material Rolled steel Hadfield Steel Kevlar 29/PVB Phenolic Kevlar 129/PVB...Material Rolled steel Hadfield Steel Kevlar 29/PVB Phenolic Kevlar 129/PVB phenolic Thermoplastic aramid Twaron/PVB phenolic ...Deflection RESULTS Improved Fiber, Fiber Architecture, and Matrix Materials Enable Performance Enhancement PASGT: 19 Ply S735 Kevlar with PVB Phenolic
Deformation in Micro Roll Forming of Bipolar Plate
NASA Astrophysics Data System (ADS)
Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.
2017-09-01
Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.
NASA Astrophysics Data System (ADS)
Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari
2018-05-01
In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zieger, H.
1961-10-01
The as-cast structure of d.c.-cast aluminum ingots sometimes shows feather-like crystals. The influence of this type of crystals on the earing behavior and on the surface markings after anodizing was investigated on Al 99.5- sheets of 2 mm thickness. Feather-like crystals gave rise to more irregular and higher earings in all cases. Hot and afterwards cold rolled sheets showed markings on the anodized surface, which were intensified by feather-like crystals in the ingot. Extruding prior to hot rolling suppressed these markings completely, but did not affect the earing behavior. (auth)
Determining the effect of grain size and maximum induction upon coercive field of electrical steels
NASA Astrophysics Data System (ADS)
Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel
2011-10-01
Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.
Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers
Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam
2017-01-01
There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work. PMID:28772954
Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.
Bellingham, Alyssa; Bromhead, Nicholas; Fontecchio, Adam
2017-05-29
There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.
Ceramic Bearings For Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1989-01-01
Report reviews data from three decades of research on bearings containing rolling elements and possibly other components made of ceramics. Ceramic bearings attractive for use in gas-turbine engines because ceramics generally retain strengths and resistances to corrosion over range of temperatures greater than typical steels used in rolling-element bearings. Text begins with brief description of historical developments in field. Followed by discussion of effects of contact stress on fatigue life of rolling element. Supplemented by figures and tables giving data on fatigue lives of rolling elements made of various materials. Analyzes data on effects of temperature and speed on fatigue lives for several materials and operating conditions. Followed by discussion of related topic of generation of heat in bearings, with consideration of effects of bearing materials, lubrication, speeds, and loads.
Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets
2015-06-01
Materials 2 2.2 Hot Rolling 3 2.2 Sample Characterization: Microstructure and Tensile Properties 3 3. Rolling Experiments 5 3.1 High-Temperature...material systems for protective and structural applications, especially in ground vehicles. Magnesium (Mg), due to its low density (~25% that of steel ...applications, wrought Mg is difficult to produce in thin sheets because of its inherently low ductility . As a result, Mg sheet is often produced at
Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.
This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.
Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V
2015-07-13
We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Derevyagina, L. S.; Gordienko, A. I.; Pochivalov, Yu. I.; Smirnova, A. S.
2018-01-01
The paper reports the investigation results on the microstructure and mechanical properties of low-carbon pipe steel after helical rolling. The processing of the steel leads to the refinement of ferritic grains from 12 (for the coarse-grained state) to 5 μm, to the strengthening of ferrite by carbide particles, a decrease in the total fraction of perlite grains, a more uniform alternation of ferrite and perlite, and the formation of regions with bainitic structure. The mechanical properties of the steel have been determined in the conditions of static and dynamic loading in the range of test temperatures from +20 to-70°C. As a result of processing, the ultimate tensile strength increases (from 650 to 770 MPa at a rolling temperature from 920°C) and the viscoplastic properties at negative temperatures are improved significantly. The ductile-brittle transition temperature of the rolled steel decreases from-32 to-55°C and the impact toughness at the test temperature-40°C increases eight times compared to the initial state of the steel.
NASA Astrophysics Data System (ADS)
Baranov, Vladimir; Sidelnikov, Sergey; Zenkin, Evgeny; Frolov, Viktor; Voroshilov, Denis; Yakivyuk, Olga; Konstantinov, Igor; Sokolov, Ruslan; Belokonova, Irina
2018-04-01
The results of a study on the strength of rolled products from aluminium alloys doped with scandium under various processing conditions of hot and cold rolling are presented. The regularities of metal flow and the level of strength of deformed semi-finished products from aluminum-scandium alloys are established, depending on the total degree of deformation and the various modes of single reduction during rolling. It is shown that when using one heating of a cast billet to obtain high-quality semi-finished products, the temperature during the rolling process should not be lower than 350-370°, and the total degree of deformation does not exceed 50-60%. It was found that the semi-finished products from alloys with a content of scandium in the range 0.11-0.12% in the deformed state had elevated values of ultimate tensile strength and yield strength of the metal, which allows them to be recommended for industrial production of sheet metal products.
Grote, Simon; Kleinebudde, Peter
2018-05-29
The influence of particle morphology and size of alpha-lactose monohydrate on dry granules and tablets was studied. Four different morphologies were investigated: Two grades of primary crystals, which differed in their particle size and structure (compact crystals vs. agglomerates). The materials were roll compacted at different specific compaction forces and changes in the particle size distribution and the specific surface area were measured. Afterwards, two fractions of granules were pressed to tablets and the tensile strength was compared to that from tablets compressed from the raw materials. The specific surface area was increased induced by roll compaction/dry granulation for all materials. At increased specific compaction forces, the materials showed sufficient size enlargement. The morphology of lactose determined the strength of direct compressed tablets. In contrast, the strength of granule tablets was leveled by the previous compression step during roll compaction/dry granulation. Thus, the tensile strength of tablets compressed directly from the powder mixtures determined whether materials exhibited a loss in tabletability after roll compaction/dry granulation or not. The granule size had only a slight influence on the strength of produced tablets. In some cases, the fraction of smaller granules showed a higher tensile strength compared to the larger fraction.
Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi
2016-01-01
Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.
Cold Rolled Steel and Knowledge: What Can Higher Education Learn about Productivity?
ERIC Educational Resources Information Center
Thille, Candace; Smith, Joel
2011-01-01
Higher education is simply not making substantial progress in addressing its most significant challenges: educating an increasingly diverse body of students while containing the cost that is putting postsecondary education beyond the reach of a growing percentage of the world's population. Tweaking long-standing strategies to achieve incremental…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... On-Site Leased Workers From Adecco, ESW, Inc., Guardsmark, Hudson Global Resources and Multi Serv... and cold rolled steel. The company reports that workers leased from Multi Serv were employed on-site at the Hennepin, Illinois location of Arcelor Mittal. The Department has determined that these...
NASA Astrophysics Data System (ADS)
Suh, Dong-Woo; Park, Seong-Jun; Lee, Tae-Ho; Oh, Chang-Seok; Kim, Sung-Joon
2010-02-01
Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.
Sohn, Seok Su; Song, Hyejin; Jo, Min Chul; Song, Taejin; Kim, Hyoung Seop; Lee, Sunghak
2017-04-28
Needs for steel designs of ultra-high strength and excellent ductility have been an important issue in worldwide automotive industries to achieve energy conservation, improvement of safety, and crashworthiness qualities. Because of various drawbacks in existing 1.5-GPa-grade steels, new development of formable cold-rolled ultra-high-strength steels is essentially needed. Here we show a plausible method to achieve ultra-high strengths of 1.0~1.5 GPa together with excellent ductility above 50% by actively utilizing non-recrystallization region and TRansformation-Induced Plasticity (TRIP) mechanism in a cold-rolled and annealed Fe-Mn-Al-C-based steel. We adopt a duplex microstructure composed of austenite and ultra-fine ferrite in order to overcome low-yield-strength characteristics of austenite. Persistent elongation up to 50% as well as ultra-high yield strength over 1.4 GPa are attributed to well-balanced mechanical stability of non-crystallized austenite with critical strain for TRIP. Our results demonstrate how the non-recrystallized austenite can be a metamorphosis in 1.5-GPa-grade steel sheet design.
NASA Astrophysics Data System (ADS)
Roy, Rajat K.; Dutta, Siuli; Panda, Ashis K.; Rajinikanth, V.; Das, Swapan K.; Mitra, Amitava; Strangwood, M.; Davis, Claire L.
2018-07-01
The recovery and recrystallisation behaviours of cold rolled IF steel have been investigated by destructive (optical microscopy and hardness) and non-destructive electromagnetic sensor, (which allows direct measurement of strip samples with no surface preparation) techniques. The onset and completion of recrystallisation are clearly monitored through destructive techniques of optical microscopy and hardness measurements. The nucleation of new recrystallised grains is observed in the sample annealed at 600 °C/15 min, while completion of recrystallisation takes place at 700 °C/15 min. The destructive techniques are not very accurate in monitoring recovery, for example, changes in hardness of <20% are seen. In contrast, the magnetic properties of annealed steel show the onsets of both recovery and recrystallisation, with recovery accounting for ≈60% change in the coercivity value. Therefore, the measurement of magnetic softening through an electromagnetic sensor acts a crucial role for understanding recovery and recrystallisation behaviours of steels during industrial processing. The present investigation is aimed not only for controlling product quality but also saving characterisation time through off line monitoring during steel processing at industry.
Cheng, Hai-Hsuan; Whang, Liang-Ming; Yi, Tse-Fu; Liu, Cheng-Pin; Lin, Tsair-Fuh; Yeh, Mao-Song
2018-05-09
A pilot-scale single-stage anaerobic fluidized membrane bioreactor (AFMBR) was firstly used in this study to treat cold-rolling emulsion wastewater from steel industry. It was continuously operated for 302 days with influent COD concentration of 860-1120 mg/L. Under a hydraulic retention time of 1.5 d, the average effluent COD concentration of 72 mg/L achieved corresponding 90% of COD removal. The permeate flux was varied between 1.7 and 2.9 L/m 2 /h during operation which decreased with increased biomass concentration inside AFMBR. The trans-membrane pressure (TMP) was generally around 35-40 kPa, however, it increased up to 60 kPa when volatile suspended solid increased to above 2.5 g/L. Both flux and TMP data reveal the importance of biomass control for AFMBR operation. Results from terminal restriction fragment length polymorphism (T-RFLP) show the genus Methanosaeta was dominant on GAC and it shared dominance with the genera Methanomethylovorans and Methanosarcina in suspended sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adam, Khaled; Zöllner, Dana; Field, David P.
2018-04-01
Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.
Freitag, Franziska; Kleinebudde, Peter
2003-07-01
The effect of roll compaction/dry granulation on the particle and bulk material characteristics of different magnesium carbonates was evaluated. The flowability of all materials could be improved, even by the application of low specific compaction forces. The tablet properties made of powder and dry granulated magnesium carbonate were compared. Roll compaction/dry granulation resulted in a modified compactibility of the material and, consequently, tablets with reduced tensile strength. The higher relative tap density of the compacted material does not allow a densification to the same extent as the uncompacted powder. The degree of densification during tableting can be expressed as the ratio of the relative tablet density to the relative tap density of the feed material. Increasing the specific compaction forces resulted in higher apparent mean yield pressure, gained from Heckel plots, of all materials analysed. The partial loss of compactibility leads to the demand of low loads during roll compaction. Comparing the tablet properties of different magnesium carbonates reveals an obvious capping disposition. However, it depends on the type of magnesium carbonate, the specific compaction force and also on the tableting force applied.
Novel technique of making thin target foil of high density material via rolling method
NASA Astrophysics Data System (ADS)
Gupta, C. K.; Rohilla, Aman; Singh, R. P.; Singh, Gurjot; Chamoli, S. K.
2018-05-01
The conventional rolling method fails to yield good quality thin foils of thicknesses less than 2 mg/cm2 for high density materials with Z ≥ 70 (e.g. gold, lead). A special and improved technique has been developed to obtain such low thickness good quality gold foils by rolling method. Using this technique thin gold foils of thickness in the range of 0.850-2.5 mg/cm2 were obtained in the present work. By making use of alcohol during rolling, foils of thickness 1 mg/cm2 can be obtained in shorter time with less effort.
Effects of surface removal on rolling-element fatigue
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1987-01-01
The Lundberg-Palmgren equation was modified to show the effect on rolling-element fatigue life of removing by grinding a portion of the stressed volume of the raceways of a rolling-element bearing. Results of this analysis show that depending on the amount of material removed, and depending on the initial running time of the bearing when material removal occurs, the 10-percent life of the reground bearings ranges from 74 to 100 percent of the 10-percent life of a brand new bearing. Three bearing types were selected for testing. A total of 250 bearings were reground. Of this matter, 30 bearings from each type were endurance tested to 1600 hr. No bearing failure occurred related to material removal. Two bearing failures occurred due to defective rolling elements and were typical of those which may occur in new bearings.
Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; MacDowell, Louis G.; Vinje, Rubie D.
2005-01-01
Comparative tests have been performed to evaluate the corrosion-prevention capabilities of an experimental paint of the type described in Water-Borne, Silicone-Based, Primerless Paints, NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 30. To recapitulate: these paints contain relatively small amounts of volatile organic solvents and were developed as substitutes for traditional anticorrosion paints that contain large amounts of such solvents. An additional desirable feature of these paints is that they can be applied without need for prior application of primers to ensure adhesion. The test specimens included panels of cold-rolled steel, stainless steel 316, and aluminum 2024-T3. Some panels of each of these alloys were left bare and some were coated with the experimental water-borne, silicone-based, primerless paint. In addition, some panels of aluminum 2024-T3 and some panels of a fourth alloy (stainless steel 304) were coated with a commercial solvent-borne paint containing aluminum and zinc flakes in a nitrile rubber matrix. In the tests, the specimens were immersed in an aerated 3.5-weight-percent aqueous solution of NaCl for 168 hours. At intervals of 24 hours, the specimens were characterized by electrochemical impedance spectroscopy (EIS) and measurements of corrosion potentials. The specimens were also observed visually. As indicated by photographs of specimens taken after the 168-hour immersion (see figure), the experimental primerless silicone paint was effective in preventing corrosion of stainless steel 316, but failed to protect aluminum 2024-T3 and cold-rolled steel. The degree of failure was greater in the case of the cold-rolled steel. On the basis of visual observations, EIS, and corrosion- potential measurements, it was concluded that the commercial aluminum and zinc-filled nitrile rubber coating affords superior corrosion protection to aluminum 2024-T3 and is somewhat less effective in protecting stainless steel 304.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi
2015-09-15
Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewatermore » (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Moor, Emmanuel
The present project investigated Quenching and Partitioning (Q&P) to process cold rolled steels to develop high strength sheet steels that exhibit superior ductility compared to available grades with the intent to allow forming of high strength parts at room temperature to provide an alternative to hot stamping of parts. Hot stamping of boron alloyed steel is the current technology to manufacture thinner gauge sections in automotive structures to guarantee anti-intrusion during collisions whilst improving fuel efficiency by decreasing vehicle weight. Hot stamping involves reheating steel to 900 °C or higher followed by deformation and quenching in the die to producemore » ultra-high strength materials. Hot stamping requires significant energy to reheat the steel and is less productive than traditional room temperature stamping operations. Stamping at elevated temperature was developed due to the lack of available steels with strength levels of interest possessing sufficient ductility enabling traditional room temperature forming. This process is seeing growing demand within the automotive industry and, given the reheating step in this operation, increased energy consumption during part manufacturing results. The present research program focused on the development of steel grades via Q&P processing that exhibit high strength and formability enabling room temperature forming to replace hot stamping. The main project objective consisted of developing sheet steels exhibiting minimum ultimate tensile strength levels of 1200 MPa in combination with minimum tensile elongation levels of 15 pct using Q&P processing through judicious alloy design and heat treating parameter definition. In addition, detailed microstructural characterization and study of properties, processing and microstructure interrelationships were pursued to develop strategies to further enhance tensile properties. In order to accomplish these objectives, alloy design was conducted towards achieving the target properties. Twelve alloys were designed and laboratory produced involving melting, alloying, casting, hot rolling, and cold rolling to obtain sheet steels of approximately 1 mm thickness. Q&P processing of the samples was then conducted. Target properties were achieved and substantially exceeded demonstrating success in the developed and employed alloy design approaches. The best combinations of tensile properties were found at approximately 1550 MPa with a total elongation in excess of 20 pct clearly showing the potential for replacement of hot stamping to produce advanced high strength steels.« less
Richter, Berna I; Ostermeier, Sven; Turger, Anke; Denkena, Berend; Hurschler, Christof
2010-06-15
Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants.
2010-01-01
Background Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. Methods A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. Results The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. Conclusions The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. PMID:20550669
NASA Astrophysics Data System (ADS)
Huang, Xiao-Jie; Zhang, Li; Hu, Yu-Peng; Li, You-Rong
2018-06-01
In order to understand the effect of the Rayleigh number, the density inversion phenomenon and the aspect ratio on the flow patterns and the heat transfer characteristics of Rayleigh–Bénard convection of cold water in the neighborhood of the maximum density, a series of large eddy simulations are conducted by using the finite volume method. The Rayleigh number ranges between 106 and 109, the density inversion parameter and the aspect ratio are varied from 0 to 0.9 and from 0.4 to 2.5, respectively. The results indicate that the reversal of the large scale circulation (LSC) occurs with the increase of the Rayleigh number. When there exists a density inversion phenomenon, the key driver for the LSC is hot plumes. When the density inversion parameter is large enough, a stagnant region is found near the top of the container as the hot plumes cannot move to the top wall. The flow pattern structures depend mainly on the aspect ratio. When the aspect ratio is small, the rolls are vertically stacked and the flow keeps on switching among different flow states. For a moderate aspect ratio, different long-lived roll states coexist at a fixed aspect ratio. For a larger aspect ratio, the flow state is everlasting. The number of rolls increases with the increase of the aspect ratio. Furthermore, the aspect ratio has only slight influence on the time averaged Nusselt number for all density inversion parameters.
Simple Model of a Rolling Water-Filled Bottle on an Inclined Ramp
ERIC Educational Resources Information Center
Lin, Shihao; Hu, Naiwen; Yao, Tianchen; Chu, Charles; Babb, Simona; Cohen, Jenna; Sangiovanni, Giana; Watt, Summer; Weisman, Danielle; Klep, James; Walecki, Wojciech J.; Walecki, Eve S.; Walecki, Peter S.
2015-01-01
We investigate a water-filled bottle rolling down an incline and ask the following question: is a rolling bottle better described by a model ignoring all internal motion where the bottle is approximated by a material point sliding down an incline, or is it better described by a rigid solid cylinder rolling down the incline without skidding? The…
Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauger, Scott; Neyerlin, K.C.; Stickel, Jonathan
2017-04-26
Roll-to-roll (R2R) coating is the most economical and highest throughput method for producing fuel cell electrodes. R2R coating encompasses many different methodologies to create uniform films on a moving web substrate. Here we explore two coating methods, gravure and slot die, to understand the impacts of each on film uniformity and performance.
NASA Astrophysics Data System (ADS)
Liu, Yangyang; Li, Jiheng; Gao, Xuexu
2017-08-01
Magnetostrictive Fe82Ga4.5Al13.5 sheets with 0.1 at% NbC were prepared from directional solidified alloys with <0 0 1> preferred orientation. The slabs were hot rolled at 650 °C and warm rolled at 500 °C. Then some warm-rolled sheets were annealed intermediately at 850 °C for 5 min but the others not. After that, all the sheets were cold rolled to a final thickness of ∼0.3 mm. The microstructures, the textures and the distributions of second phase particles in the primary recrystallized samples were investigated. With intermediate annealing, the inhomogeneous microstructure was improved remarkably and strong Goss ({1 1 0}<0 0 1>) and γ-fiber (<1 1 1>//normal direction [ND]) textures were produced in the primary recrystallized samples. But, an evident disadvantage in size and quantity was observed for Goss grains in the primary recrystallized sample without intermediate annealing. After a final annealing, the final textures and magnetostrictions of samples with and without intermediate annealing were characterized. For samples without intermediate annealing, abnormal growth of {1 1 3} grains occurred and deteriorated the magnetostriction. In contrast, abnormal Goss grain growth occurred completely in samples with intermediate annealing and led to saturation magnetostriction as high as 156 ppm.
Heat storage capability of a rolling cylinder using Glauber's salt
NASA Technical Reports Server (NTRS)
Herrick, C. S.; Zarnoch, K. P.
1980-01-01
The rolling cylinder phase change heat storage concept was developed to the point where a prototype design is completed and a cost analysis is prepared. A series of experimental and analytical tasks are defined to establish the thermal, mechanical, and materials behavior of rolling cylinder devices. These tasks include: analyses of internal and external heat transfer; performance and lifetime testing of the phase change materials; corrosion evaluation; development of a mathematical model; and design of a prototype and associated test equipment.
NASA Astrophysics Data System (ADS)
Sagapuram, Dinakar
Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for basal slip exhibits ductile tensile-type fracture. A two-fold increase in ductility is also observed for the LSEM sheet under uniaxial tensile testing without significant changes in the strength. Among texture and microstructure (grain size), texture is shown to be more critical for Mg sheet formability. However, in conjunction with a favorable texture, fine recrystallized microstructure provides for additional enhancement of strain-hardening capacity and formability. In-situ imaging of material flow during uniaxial tensile testing revealed new, interesting flow localization phenomena and fracture behavior. It is shown that the deformation behavior of Mg sheet is highly texture dependent, and also radically different from that of conventional ductile metals both in terms of necking and fracture. The implications of these observations for the LDH test results and formability of Mg sheet, in general, are briefly discussed.
2014-11-01
39–44) has been explored in depth in the literature. Of particular interest for this study are investigations into roll control. Isolating the...Control Performance, Aerodynamic Modeling, and Validation of Coupled Simulation Techniques for Guided Projectile Roll Dynamics by Jubaraj...Simulation Techniques for Guided Projectile Roll Dynamics Jubaraj Sahu, Frank Fresconi, and Karen R. Heavey Weapons and Materials Research
NASA Astrophysics Data System (ADS)
Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.
2015-09-01
The first part of this two-part study reported the possibility of simultaneously generating a dense, self-healing α-alumina layer by thermal oxidation and a coarse-grained microstructure with a potential goodness for high-temperature creep resistance in a FeCrAl oxide dispersion-strengthened ferritic alloy that was cold deformed after hot rolling and extrusion. In this second part, the factors affecting the formation of the coarse-grained microstructure such as strain gradients induced during the rolling process are analyzed. It is concluded that larger strain gradients lead to more refined and more isotropic grain structures.
Through-process modelling of texture and anisotropy in AA5182
NASA Astrophysics Data System (ADS)
Crumbach, M.; Neumann, L.; Goerdeler, M.; Aretz, H.; Gottstein, G.; Kopp, R.
2006-07-01
A through-process texture and anisotropy prediction for AA5182 sheet production from hot rolling through cold rolling and annealing is reported. Thermo-mechanical process data predicted by the finite element method (FEM) package T-Pack based on the software LARSTRAN were fed into a combination of physics based microstructure models for deformation texture (GIA), work hardening (3IVM), nucleation texture (ReNuc), and recrystallization texture (StaRT). The final simulated sheet texture was fed into a FEM simulation of cup drawing employing a new concept of interactively updated texture based yield locus predictions. The modelling results of texture development and anisotropy were compared to experimental data. The applicability to other alloys and processes is discussed.
Investigation into the Origin of Magnetic Properties of Amorphous Metallic Alloys.
1981-10-01
Luborsky, F.E., J.L. Walter, and D. LeGrand. "Cold Rolling and Annealing of Amor- phous Ribbons," IEEE Trans. Magn. Mag-12, 1976, p. 930. Reprint 8011 ...curve. Iiii) For Fe-B-Al they lie significantly below. The differences between the T, for the three different aluminium containing alloys is not
Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.
Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn
2018-01-17
Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.
Strain distribution in hot rolled aluminum by photoplastic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyinlola, Adeyinka Kofoworola
1974-10-01
A previously developed photomechanic material, Larninac, which excellently simulates the behavior of aluminum in tension has been investigated intensively as a possible modeling material for hot-rolled aluminum billets. Photoplasticity techniques combined with the Moire method have been used to study the behavior of the Laminac mixture in compression. Photoplastic analysis revealed that a Laminac mixture of 60% flexible and 40% rigid resins, compressed or rolled at 40°C, showed the phenomenon of double bulging which has been observed in hot-rolled aluminum billets. The potentiality of the 60:40 Laminac mixture as a possible Simulating material at 40°C is further enhanced by themore » fact that the true stress-true strain curves of cylindrical samples compressed at 40°C correlated very well with true stresstrue strain of identical cylindrical samples of aluminum compressed. at 300°C, 425PC and 500°c.« less
Ultrasonic cleaning of conveyor belt materials using Listeria monocytogenes as a model organism.
Tolvanén, Riina; Lunden, Janne; Korkeala, Hannu; Wirtanen, Gun
2007-03-01
Persistent Listeria monocytogenes contamination of food industry equipment is a difficult problem to solve. Ultrasonic cleaning offers new possibilities for cleaning conveyors and other equipment that are not easy to clean. Ultrasonic cleaning was tested on three conveyor belt materials: polypropylene, acetal, and stainless steel (cold-rolled, AISI 304). Cleaning efficiency was tested at two temperatures (30 and 45 degrees C) and two cleaning times (30 and 60 s) with two cleaning detergents (KOH, and NaOH combined with KOH). Conveyor belt materials were soiled with milk-based soil and L. monocytogenes strains V1, V3, and B9, and then incubated for 72 h to attach bacteria to surfaces. Ultrasonic cleaning treatments reduced L. monocytogenes counts on stainless steel 4.61 to 5.90 log units; on acetal, 3.37 to 5.55 log units; and on polypropylene, 2.31 to 4.40 log units. The logarithmic reduction differences were statistically analyzed by analysis of variance using Statistical Package for the Social Sciences software. The logarithmic reduction was significantly greater in stainless steel than in plastic materials (P < 0.001 for polypropylene, P = 0.023 for acetal). Higher temperatures enhanced the cleaning efficiency in tested materials. No significant difference occurred between cleaning times. The logarithmic reduction was significantly higher (P = 0.013) in cleaning treatments with potassium hydroxide detergent. In this study, ultrasonic cleaning was efficient for cleaning conveyor belt materials.
Advances in roll to roll processing of optics
NASA Astrophysics Data System (ADS)
Watts, Michael P. C.
2008-02-01
Today, there are a number of successful commercial applications that utilize roll to roll processing and almost all involve optics; unpatterned film, patterned film, and devices on film. The largest applications today are in holograms, and brightness enhancement film (BEF) for LCD. Solar cells are rapidly growing. These are mostly made in large captive facilities with their own proprietary equipment, materials and pattern generation capability. World wide roll to roll volume is > 100M meters2 year -1, and generates sales of > $5B. The vast majority of the sales are in BEF film by 3M.
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.
NASA Astrophysics Data System (ADS)
Silva, J. M.; Baêta Júnior, E. S.; Moraes, N. R. D. C.; Botelho, R. A.; Felix, R. A. C.; Brandao, L.
2017-01-01
The purpose of this work was to study the influence of different kinds of rolling on the magnetic properties of NOG steel, an electric steel widely used in electrical motors. These properties are highly correlated with the crystallographic texture of the material, which can be changed by rolling. Three kinds of rolling were examined: conventional rolling, cross-rolling and asymmetrical rolling. The crystallographic texture was determined by X-ray diffraction and the magnetic properties were calculated from a theoretical model that related the magnetic induction to crystallographic texture through the anisotropy energy. The results show that cross-rolling yields higher values of magnetic induction than the other processes.
Hazardous Waste Cleanup: Von Roll Isola USA Incorporated in Schenectady, New York
The Riverview facility is a 52-acre manufacturing facility located on Von Roll Drive in Schenectady, New York. The facility is owned and operated by Von Roll Isola USA, Inc., and produces solid and liquid insulating materials and tapes for the electrical
Study of soft magnetic iron cobalt based alloys processed by powder injection molding
NASA Astrophysics Data System (ADS)
Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A. P.
As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V.
Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters
NASA Astrophysics Data System (ADS)
Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.
2018-01-01
Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.
Kim, Dong-Kyu; Park, Won-Woong; Lee, Ho Won; Kang, Seong-Hoon; Im, Yong-Taek
2013-12-01
In this study, a rigorous methodology for quantifying recrystallization kinetics by electron backscatter diffraction is proposed in order to reduce errors associated with the operator's skill. An adaptive criterion to determine adjustable grain orientation spread depending on the recrystallization stage is proposed to better identify the recrystallized grains in the partially recrystallized microstructure. The proposed method was applied in characterizing the microstructure evolution during annealing of interstitial-free steel cold rolled to low and high true strain levels of 0.7 and 1.6, respectively. The recrystallization kinetics determined by the proposed method was found to be consistent with the standard method of Vickers microhardness. The application of the proposed method to the overall recrystallization stages showed that it can be used for the rigorous characterization of progressive microstructure evolution, especially for the severely deformed material. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Superplasticity in a lean Fe-Mn-Al steel.
Han, Jeongho; Kang, Seok-Hyeon; Lee, Seung-Joon; Kawasaki, Megumi; Lee, Han-Joo; Ponge, Dirk; Raabe, Dierk; Lee, Young-Kook
2017-09-29
Superplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys.Research in new alloy compositions and treatments may allow the increased strength of mass-produced, intricately shaped parts. Here authors introduce a superplastic medium manganese steel which has an inexpensive lean chemical composition and which is suited for conventional manufacturing processes.
NASA Astrophysics Data System (ADS)
Hussain, Maruff; Nageswara rao, P.; Singh, Dharmendra; Jayaganthan, R.
2018-04-01
The precipitation hardenable aluminium alloy (Al-Mg-Si) plates were solutionized and subjected to rolling at room temperature and liquid nitrogen temperature (RTR, CR) up to a true strain of ∼2.7. The rolled sheets were uniformly aged at room temperature and above room temperature (125 °C) to induce precipitation. The rolled and aged samples were analysed using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), hardness and tensile tests. The strength and ductility were simultaneously improved after controlled ageing of the cryorolled (CR) and room temperature rolled (RTR) samples. However, the increment in strength is more in RTR material than CR material with same ductility. Transmission electron microscopy analysis revealed the formation of ultrafine grains (UFG) filled with dislocations and nanosized precipitates in the CR and RTR conditions after ageing treatment. The behaviour of CR and RTR alloy is same under natural ageing conditions.
Anisotropy of mechanical and thermal properties of AZ31 sheets prepared using the ARB technique
NASA Astrophysics Data System (ADS)
Halmešová, K.; Trojanová, Z.; Džugan, J.; Drozd, Z.; Minárik, P.; Knapek, M.
2017-07-01
In the accumulative roll bonding (ARB) technique, repeated stacking of material followed by conventional roll-bonding is carried out. For this process the surfaces are cleaned with ethanol and then joined together by rolling. The rolled material is then cut into two halves, again surface treated and roll-bonded. This process may be repeated several times. For the magnesium alloy AZ31 (Mg-3Al-1Zn) rolling at an elevated temperature of 400 °C is necessary for ARB because of the low plasticity of hexagonal magnesium alloys at lower temperatures. Samples for this study were prepared using 1 to 3 ARB passes through the rolling mill. It was found that the ARB substantially refined the grain size of sheets to the micrometer scale. The microstructure and texture of the deformed samples were studied by light and electron microscopy. The mechanical properties of the ARB samples were explored using tensile test-pieces cut from the sheets with the tensile axis taken either parallel or perpendicular to the rolling direction, where a significant anisotropy in both mechanical properties and Young’s modulus was found. Anisotropy is explained on the basis of the specific microstructure and texture formed during the ARB process.
23. In the CoatingRoom. This picture shows the rolls of ...
23. In the Coating-Room. This picture shows the rolls of paper made on the machine shown on page 237, just starting on the coating-machines. The paper passes through a bath of coating material; then through felt-covered rolls; then between vibrating brushes, which lay in the coating material evenly and smoothly on the paper. It then passes outh at the left into the drying-room (see following illustration). (p.238.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA
NASA Astrophysics Data System (ADS)
Gali, Olufisayo A.
Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.
NASA Astrophysics Data System (ADS)
Cha, Joon-Hyeon; Kim, Su-Hyeon; Lee, Yun-Soo; Kim, Hyoung-Wook; Choi, Yoon Suk
2016-09-01
Multi-layered Al alloy sheets can exhibit unique properties by the combination of properties of component materials. A poor corrosion resistance of high strength Al alloys can be complemented by having a protective surface with corrosion resistant Al alloys. Here, a special care should be taken regarding the heat treatment of multi-layered Al alloy sheets because dissimilar Al alloys may exhibit unexpected interfacial reactions upon heat treatment. In the present study, A6022/A7075/A6022 sheets were fabricated by a cold roll-bonding process, and the effect of the heat treatment on the microstructure and mechanical properties was examined. The solution treatment gave rise to the diffusion of Zn, Mg, Cu and Si elements across the core/clad interface. In particular, the pronounced diffusion of Zn, which is a major alloying element (for solid-solution strengthening) of the A7075 core, resulted in a gradual hardness change across the core/clad interface. Mg2Si precipitates and the precipitate free zone were also formed near the interface after the heat treatment. The heat-treated sheet showed high strengths and reasonable elongation without apparent deformation misfit or interfacial delamination during the tensile deformation. The high strength of the sheet was mainly due to the T4 and T6 heat treatment of the A7075 core.
Cryogenic Testing of Different Seam Concepts for Multilayer Insulation Systems
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.; Fesmire, J. E.
2009-01-01
Recent testing in a cylindrical, comparative cryostat at the Cryogenics Test Laboratory has focused on various seam concepts for multilayer insulation systems. Three main types of seams were investigated: straight overlap, fold-over, and roll wrapped. Each blanket was comprised of 40 layer pairs of reflector and spacer materials. The total thickness was approximately 12.5-mm, giving an average layer density of 32 layers per centimeter. The blankets were tested at high vacuum, soft vacuum, and no vacuum using liquid nitrogen to maintain the cold boundary temperature at 77 K. Test results show that all three seam concepts are all close in thermal performance; however the fold-over method provides the lowest heat flux. For the first series of tests, seams were located 120 degrees around the circumference of the cryostat from the previous seam. This technique appears to have lessened the degradation of the blanket due to the seams. In a follow-on test, a 20 layer blanket was tested in a roll wrapped configuration and then cut down the side of the cylinder, taped together, and re-tested. This test result shows the thermal performance impact of having the seams all in one location versus having the seams clocked around the vessel. This experimental investigation indicates that the method of joining the seams in multilayer insulation systems is not as critical as the quality of the installation process.
Non-Heat Treatable Alloy Sheet Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, H.W.; Barthold, G.W.; Das, S.K.
ALCAR is an innovative approach for conducting multi-company, pre-competitive research and development programs. ALCAR has been formed to crate a partnership of aluminum producers, the American Society of Mechanical Engineers Center for Research and Technology Development (ASME/CRTD), the United States Department of Energy (USDOE), three USDOE National Laboratories, and a Technical Advisory Committee for conducting cooperative, pre-competitive research on the development of flower-cost, non-heat treated (NHT) aluminum alloys for automotive sheet applications with strength, formability and surface appearance similar to current heat treated (HT) aluminum alloys under consideration. The effort has been supported by the USDOE, Office of Transportation Technologymore » (OTT) through a three-year program with 50/50 cost share at a total program cost of $3 million. The program has led to the development of new and modified 5000 series aluminum ally compositions. Pilot production-size ingots have bee n melted, cast, hot rolled and cold rolled. Stamping trials on samples of rolled product for demonstrating production of typical automotive components have been successful.« less
Vanadium Microalloyed High Strength Martensitic Steel Sheet for Hot-Dip Coating
NASA Astrophysics Data System (ADS)
Hutchinson, Bevis; Komenda, Jacek; Martin, David
Cold rolled steels with various vanadium and nitrogen levels have been treated to simulate the application of galvanizing and galvannealing to hardened martensitic microstructures. Strength levels were raised 100-150MPa by alloying with vanadium, which mitigates the effect of tempering. This opens the way for new ultra-high strength steels with corrosion resistant coatings produced by hot dip galvanising.
Lubricating Coolant for Cold Rolling of Aluminum and Its Alloys,
The title fluid consists of a mixtures of alkyl esters of high molecular weight acids, an ester of xylitol and a C(subscript 6) or higher fatty acid...molecular weight acids 3-6, an ester of xylitol and a C(subscript 6) or higher fatty acid 1-3, an Al soap 0.3-1, a mineral oil 10-60, a polyoxyethylene
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastewaters. 2 Within the range of 6.0 to 9.0. (5) Fume scrubbers. Subpart I Pollutant or pollutant property... fume scrubber associated with a sulfuric acid pickling operation. (b) Hydrochloric acid pickling (spent... pickling wastewaters are treated with cold rolling wastewaters. 2 Within the range of 6.0 to 9.0. (4) Fume...
Code of Federal Regulations, 2010 CFR
2010-07-01
... wastewaters. 2 Within the range of 6.0 to 9.0. (5) Fume scrubbers. Subpart I Pollutant or pollutant property... fume scrubber associated with a sulfuric acid pickling operation. (b) Hydrochloric acid pickling (spent... pickling wastewaters are treated with cold rolling wastewaters. 2 Within the range of 6.0 to 9.0. (4) Fume...
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastewaters. 2 Within the range of 6.0 to 9.0. (5) Fume scrubbers. Subpart I Pollutant or pollutant property... fume scrubber associated with a sulfuric acid pickling operation. (b) Hydrochloric acid pickling (spent... pickling wastewaters are treated with cold rolling wastewaters. 2 Within the range of 6.0 to 9.0. (4) Fume...
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastewaters. 2 Within the range of 6.0 to 9.0. (5) Fume scrubbers. Subpart I Pollutant or pollutant property... fume scrubber associated with a sulfuric acid pickling operation. (b) Hydrochloric acid pickling (spent... pickling wastewaters are treated with cold rolling wastewaters. 2 Within the range of 6.0 to 9.0. (4) Fume...
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastewaters. 2 Within the range of 6.0 to 9.0. (5) Fume scrubbers. Subpart I Pollutant or pollutant property... fume scrubber associated with a sulfuric acid pickling operation. (b) Hydrochloric acid pickling (spent... pickling wastewaters are treated with cold rolling wastewaters. 2 Within the range of 6.0 to 9.0. (4) Fume...
40 CFR 420.106 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... (pounds per 1,000 lb) of product Chromium 1 0.0000209 0.0000084 Lead 0.0000094 0.0000031 Nickel 1 0... limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold rolling... Chromium 1 0.0000418 0.0000167 Lead 0.0000188 0.0000063 Nickel 1 0.0000376 0.0000125 Zinc 0.0000125 0...
40 CFR 420.106 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... (pounds per 1,000 lb) of product Chromium 1 0.0000209 0.0000084 Lead 0.0000094 0.0000031 Nickel 1 0... limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold rolling... Chromium 1 0.0000418 0.0000167 Lead 0.0000188 0.0000063 Nickel 1 0.0000376 0.0000125 Zinc 0.0000125 0...
40 CFR 420.106 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... (pounds per 1,000 lb) of product Chromium 1 0.0000209 0.0000084 Lead 0.0000094 0.0000031 Nickel 1 0... limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold rolling... Chromium 1 0.0000418 0.0000167 Lead 0.0000188 0.0000063 Nickel 1 0.0000376 0.0000125 Zinc 0.0000125 0...
DIMENSIONALLY STABLE, CORROSION RESISTANT NUCLEAR FUEL
Kittel, J.H.
1963-10-31
A method of making a uranium alloy of improved corrosion resistance and dimensional stability is described. The alloy contains from 0-9 weight per cent of an additive of zirconium and niobium in the proportions by weight of 5 to 1 1/ 2. The alloy is cold rolled, heated to two different temperatures, air-cooled, heated to a third temperature, and quenched in water. (AEC)
40 CFR 420.106 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... (pounds per 1,000 lb) of product Chromium 1 0.0000209 0.0000084 Lead 0.0000094 0.0000031 Nickel 1 0... limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold rolling... Chromium 1 0.0000418 0.0000167 Lead 0.0000188 0.0000063 Nickel 1 0.0000376 0.0000125 Zinc 0.0000125 0...
40 CFR 420.106 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (pounds per 1,000 lb) of product Chromium 1 0.0000209 0.0000084 Lead 0.0000094 0.0000031 Nickel 1 0... limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold rolling... Chromium 1 0.0000418 0.0000167 Lead 0.0000188 0.0000063 Nickel 1 0.0000376 0.0000125 Zinc 0.0000125 0...
Microstructure and Precipitate's Characterization of the Cu-Ni-Si-P Alloy
NASA Astrophysics Data System (ADS)
Zhang, Yi; Tian, Baohong; Volinsky, Alex A.; Sun, Huili; Chai, Zhe; Liu, Ping; Chen, Xiaohong; Liu, Yong
2016-04-01
Microstructure of the Cu-Ni-Si-P alloy was investigated by transmission electron microscopy (TEM). The alloy had 551 MPa tensile strength, 226 HV hardness, and 36% IACS electrical conductivity after 80% cold rolling and aging at 450 °C for 2 h. Under the same aging conditions, but without the cold rolling, the strength, hardness, and electrical conductivity were 379 MPa, 216 HV, and 32% IACS, respectively. The precipitates identified by TEM characterization were δ-Ni2Si. Some semi-coherent spherical precipitates with a typical coffee bean contrast were found after aging for 48 h at 450 °C. The average diameter of the observed semi-coherent precipitates is about 5 nm. The morphology of the fracture surface was observed by scanning electron microscopy. All samples showed typical ductile fracture. The addition of P refined the grain size and increased the nucleation rate of the precipitates. The precipitated phase coarsening was inhibited by the small additions of P. After aging, the Cu-Ni-Si-P alloy can gain excellent mechanical properties with 804 MPa strength and 49% IACS conductivity. This study aimed to optimize processing conditions of the Cu-Ni-Si-P alloys.
Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing
NASA Astrophysics Data System (ADS)
Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier
2017-10-01
Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.
NASA Astrophysics Data System (ADS)
Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay
2018-03-01
Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.
NASA Astrophysics Data System (ADS)
Modak, Pranabananda; Patra, Sudipta; Mitra, Rahul; Chakrabarti, Debalay
2018-06-01
Effect of the initial as-cast structure on the microstructure-texture evolution during thermomechanical processing of 409L grade ferritic stainless steel was studied. Samples from the regions of cast slab having `columnar,' `equiaxed,' and a mixture of `columnar' and `equiaxed' grains were subjected to two different processing schedules: one with intermediate hot-band annealing before cold-rolling followed by final annealing, and another without any hot-band annealing. EBSD study reveals that large columnar crystals with cube orientation are very difficult to deform and recrystallize uniformly. Resultant variations in ferrite grain structure and retention of cube-textured band in cold-rolled and annealed sheet contribute to ridging behavior during stretch forming. Initial equiaxed grain structure is certainly beneficial to reduce or even eliminate ridging defect by producing uniform ferrite grain structure, free from any texture banding. Application of hot-band annealing treatment is also advantageous as it can maximize the evolution of beneficial gamma-fiber texture and eliminate the ridging defect in case of completely `equiaxed' starting structure. Such treatment reduces the severity of ridging even if the initial structure contains typically mixed `columnar-equiaxed' grains.
Microstructures and mechanical properties of duplex low carbon steel
NASA Astrophysics Data System (ADS)
Alfirano; Eben, U. S.; Hidayat, M.
2018-04-01
The microstructures behavior of duplex cold-rolled low carbon steel for automotive applications has been investigated. Intercritical annealing treatment is commonly used to develop a duplex low carbon steel containing ferrite and martensite. To get a duplex phase ferrite and martensite, the specimens were heated at inter-critical annealing temperature of 775°C - 825°C, for heating time up to 20 minutes, followed by water-quenched. The hardness of specimens was studied. The optical microscopy was used to analyze the microstructures. The optimal annealing conditions (martensite volume fraction approaching 20%) at 775°C with a heating time of 10 minutes was achieved. The highest hardness value was obtained in cold-rolled specimens of 41% in size reduction for intercritical annealing temperature of 825°C. In this condition, the hardness value was 373 HVN. The correlation between intercritical annealing temperature and time can be expressed in the transformation kinetics as fγ/fe = 1-exp(-Ktn) wherein K and n are grain growth rate constant and Avrami’s exponent, respectively. From experiment, the value of K = 0.15 and n = 0.461. Using the relationship between temperatures and heating time, activation energy (Q) can be calculated that is 267 kJ/mol.
NASA Astrophysics Data System (ADS)
Huang, Hongfeng; Jiang, Feng; Zhou, Jiang; Wei, Lili; Qu, Jiping; Liu, Lele
2015-11-01
The mechanical properties and microstructures of Al-6Mg-0.25Sc-0.1Zr alloy (wt.%) during annealing were investigated by means of uniaxial tensile testing, optical microscope, scanning electron microscope, transmission electron microscope, and high-resolution transmission electron microscope. The results show that a large number of micro and grain-scale shear bands form in this alloy after cold rolling. As the tensile-loading force rises, strain softening would generate in shear bands, resulting in the occurrence of shear banding fracture in cold-rolled Al-Mg-Sc-Zr alloys. Recrystallization takes place preferentially in shear bands during annealing. Due to the formation of coarse-grain bands constructed by new subgrains, recrystallization softening tends to occur in these regions. During low-temperature annealing, recrystallization is inhibited by nano-scale Al3(Sc,Zr) precipitates which exert significant coherency strengthening and modulus hardening. However, the strengthening effect of Al3(Sc,Zr) decreases with the increasing of particle diameter at elevated annealing temperature. The mechanical properties of the recrystallized Al-Mg-Sc-Zr alloy decrease to a minimum level, and the fracture plane exhibits pure ductile fracture characteristics.
Singhbabu, Y N; Sivakumar, B; Singh, J K; Bapari, H; Pramanick, A K; Sahu, Ranjan K
2015-05-07
We report the production of an efficient anti-corrosive coating of cold-rolled (CR) steel in a seawater environment (∼3.5 wt% NaCl aqueous solution) using an oil-based graphene oxide ink. The graphene oxide was produced by heating Aeschynomene aspera plant as a carbon source at 1600 °C in an argon atmosphere. The ink was prepared by cup-milling the mixture of graphene oxide and sunflower oil for 10 min. The coating of ink on the CR steel was made using the dip-coating method, followed by curing at 350 °C for 10 min in air atmosphere. The results of the potentiodynamic polarization show that the corrosion rate of bare CR steel decreases nearly 10,000-fold by the ink coating. Furthermore, the salt spray test results show that the red rusting in the ink-coated CR steel is initiated after 100 h, in contrast to 24 h and 6 h in the case of oil-coated and bare CR steel, respectively. The significant decrease in the corrosion rate by the ink-coating is discussed based on the impermeability of graphene oxide to the corrosive ions.
NASA Astrophysics Data System (ADS)
Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Babich, Y.; Zaripova, M.; Krapivka, N.
2018-05-01
The paper presents the results of investigation of the regularities of the structure and texture formation during rolling of single crystals of Zr-25%Nb alloy differing in their initial orientations relative to the external principal directions in the rolled plate: normal (ND) and rolling directions (RD). The features of rolled single crystals with initial orientations of planes {001}, {011} or {111} parallel to the rolling plane and different crystallographic directions along RD are considered. A comparison of the peculiarities of plastic deformation in a polycrystalline alloy of the same composition is made. For the samples studied, a decrease in the lattice parameter of the β-phase has been recorded, the minimum of the parameter being observed for different degrees of deformation, varying from 20 to 50%. Observed decrease in the unit cell parameter can be connected with the precipitation of the α(α')-Zr phase from the deformed nonequilibrium β-phase of the Zr-25%Nb alloy, i.e. change in the composition of the solid solution. Distributions of the increase in the dimensions of the deformed single crystal along RD and the transverse direction (TD) with its deformation up to 30% in thickness, which indicate the anisotropy of the plasticity of single crystals during their rolling, are constructed on stereographic projection. It is shown, that the deformation of single crystals occurs practically without increasing of their dimensions in the <110> direction with a total thickness deformation of up to 30%. Direction <110> is characterized by maximum hardening (microhardness) with indentation along it, which causes low plasticity of deformed and annealed foils from Zr-25%Nb alloy at the stretching along and across RD, that is connected with the features of their crystallographic texture.
Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling
NASA Astrophysics Data System (ADS)
Won, Jong Woo; Kang, Minju; Kwon, Heoun-Jun; Lim, Ka Ram; Seo, Seong Moon; Na, Young Sang
2018-05-01
This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures 500 ≤ T R ≤ 1000 °C. Edge cracks did not form in the material rolled at 500 °C, but widened and deepened into the inside of plate as T R increased from 500 °C. Edge cracks were most severe in the material rolled at 1000 °C. Mn-Cr-O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at T R ≥ 600 °C generated distinct inclusion cracks whereas they were not serious at T R = 500 °C, so noticeable edge cracks formed at T R ≥ 600 °C. At T R = 1000 °C, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at T R = 1000 °C.
Freitag, Franziska; Reincke, Katrin; Runge, Jürgen; Grellmann, Wolfgang; Kleinebudde, Peter
2004-07-01
The effect of roll compaction/dry granulation on the ribbon and tablet properties produced using different magnesium carbonates was evaluated. The ribbon microhardness and the pore size distribution of tablets were used as evaluation factors. Increasing the specific compaction force resulted in higher microhardness for ribbons prepared with all four magnesium carbonates accompanied with decreased part of fine. Consequently, the corresponding produced tablets displayed a lower tensile strength. A possible correlation between the particle shape, surface area and the resulting pore structure of tablets produced with the four different types of magnesium carbonate was observed. The tensile strength of tablets prepared using granules was lower than tensile strength of tablets produced using starting materials. The partial loss of compactibility resulted in a demand of low loads during roll compaction. However, the impact of changes in the material properties during the roll compaction depended greatly on the type of magnesium carbonate, the specific compaction force and the tableting pressure applied.
Energy dissipation in a rolling aircraft tire
NASA Technical Reports Server (NTRS)
Tielking, John T.
1988-01-01
The project is extending an existing finite element tire model to calculate the energy dissipation in a free-rolling aircraft tire and temperature buildup in the tire carcass. The model will provide a means of calculating the influence of tire design on the distribution of tire temperature. Current focus is on energy loss measurements of aircraft tire material. The feasibility of taking test specimens directly from the tire carcass for measurements of viscoelastic properties was demonstrated. The interaction of temperature and frequency effects on material loss properties was studied. The tire model was extended to calculate the cyclic energy change in a tire during rolling under load. Input data representing the 40 by 14 aircraft tire whose material loss properties were measured are being used.
NASA Astrophysics Data System (ADS)
Han, Baoshuai; Guo, Enyu; Xue, Xiang; Zhao, Zhiyong; Li, Tiejun; Xu, Yanjin; Luo, Liangshun; Hou, Hongliang
2018-05-01
Combining the excellent properties of carbon nanotube (CNT) and copper, CNT/Cu composite fibers were fabricated by physical vapor deposition (PVD) and rolling treatment. Dense and continuous copper film (∼2 μm) was coated on the surface of the CNT fibers by PVD, and rolling treatment was adopt to strengthen the CNT/Cu composite fibers. After the rolling treatment, the defects between the Cu grains and the CNT bundles were eliminated, and the structure of both the copper film and the core CNT fibers were optimized. The rolled CNT/Cu composite fibers possess high tensile effective strength (1.01 ± 0.13 GPa) and high electrical conductivity ((2.6 ± 0.3) × 107 S/m), and thus, this material may become a promising wire material.
Advanced bulk processing of lightweight materials for utilization in the transportation sector
NASA Astrophysics Data System (ADS)
Milner, Justin L.
The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.
Roll splitting for field processing of biomass
Dennis T. Curtin; Donald L. Sirois; John A. Sturos
1987-01-01
The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...
Mathematical modeling of a process the rolling delivery
NASA Astrophysics Data System (ADS)
Stepanov, Mikhail A.; Korolev, Andrey A.
2018-03-01
An adduced analysis of the scientific researches in a domain of the rolling equipments, also research of properties the working material. A one of perspective direction of scientific research this is mathematical modeling. That is broadly used in many scientific disciplines and especially at the technical, applied sciences. With the aid of mathematical modeling it can be study of physical properties of the researching objects and systems. A research of the rolling delivery and transporting devices realized with the aid of a construction of mathematical model of appropriate process. To be described the basic principles and conditions of a construction of mathematical models of the real objects. For example to be consider a construction of mathematical model the rolling delivery device. For a construction that is model used system of the equations, which consist of: Lagrange’s equation of a motion, describing of the law conservation of energy of a mechanical system, and the Navier - Stokes equations, which characterize of the flow of a continuous non-compressed fluid. A construction of mathematical model the rolling deliver to let determined of a total energy of device, and therefore to got the dependence upon the power of drive to a gap between of rolls. A corroborate the hypothesis about laminar the flow of a material into the rolling gap of deliver.
Research on the rolling moment in the symmetrical and asymmetrical rolling process
NASA Astrophysics Data System (ADS)
Alexa, V.; Raţiu, S. A.; Kiss, I.; Cioată, C. G.
2017-01-01
Research distribution the rolling moments symmetrical and asymmetrical report presents great importance both in theory and to introduce clarifications to the calculation of rolling resistance line assemblies. Clarifying individuals of metallic material deformation between the rolls single cylinder diameters act of any difference of work and analysis of advance and delay phenomena. Torque drive value for each of the rolling cylinders was done by reducing the thickness of the laminate samples, an experimental facility located in the laboratory of plastic deformation of the Faculty of Engineering Hunedoara. The analysis of research results show that in terms of power consumption for deformation and safety equipment in operation is rational for mills which require such a difference between the work rolls to execute about one cylinder operated.
Grain-Structure Development in Heavily Cold-Rolled Alpha-Titanium (Postprint)
2014-04-01
H.P. Lee, C. Esling , H.J. Bunge, Textures Microstruct. 7 (1988) 317–337. [10] S. Nourbakhsh, T.D. O’Brien, Mater. Sci. Eng. 100 (1988) 109–114. [11...2010) 4536–4548. [20] Y. Zhong, F. Yin, K. Nagai, J. Mater. Res. 23 (2008) 2954–2966. [21] M.J. Philippe, M. Serghat, P. Van Houtte, C. Esling , Acta
1974-12-01
Breakfast Cereals 11 Griddle Cakes 12 Eggs 13 Breakfast Meats Arm®d Forces High Preference and Low Preference Foods HIGH Tom. Veg. Noodle Soup...Tomato Soup Chicken Noodle Soup Orange Juice Grape Juice Lemonade Iced Tea Milk Ice Cream Cola Doughnuts Sweet Rolls Cold Cereal Griddle...Grape Lemonade Lime-Flavored Drink Cherry-Flavored Drink Instant Coffee Freeze-Dried Coffee Skimmed Milk Buttermilk Frutt-Flvd. Yogurt Lo-cal
Souihi, Nabil; Dumarey, Melanie; Wikström, Håkan; Tajarobi, Pirjo; Fransson, Magnus; Svensson, Olof; Josefson, Mats; Trygg, Johan
2013-04-15
Roll compaction is a continuous process for solid dosage form manufacturing increasingly popular within pharmaceutical industry. Although roll compaction has become an established technique for dry granulation, the influence of material properties is still not fully understood. In this study, a quality by design (QbD) approach was utilized, not only to understand the influence of different qualities of mannitol and dicalcium phosphate (DCP), but also to predict critical quality attributes of the drug product based solely on the material properties of that filler. By describing each filler quality in terms of several representative physical properties, orthogonal projections to latent structures (OPLS) was used to understand and predict how those properties affected drug product intermediates as well as critical quality attributes of the final drug product. These models were then validated by predicting product attributes for filler qualities not used in the model construction. The results of this study confirmed that the tensile strength reduction, known to affect plastic materials when roll compacted, is not prominent when using brittle materials. Some qualities of these fillers actually demonstrated improved compactability following roll compaction. While direct compression qualities are frequently used for roll compacted drug products because of their excellent flowability and good compaction properties, this study revealed that granules from these qualities were more poor flowing than the corresponding powder blends, which was not seen for granules from traditional qualities. The QbD approach used in this study could be extended beyond fillers. Thus any new compound/ingredient would first be characterized and then suitable formulation characteristics could be determined in silico, without running any additional experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Rolling Resistance of Pneumatic Tires
DOT National Transportation Integrated Search
1975-01-01
Potential improvements in tire power transmission efficiency are worth seeking for gaining improved automotive fuel economy. Summaries herein of tire rolling resistance as influenced by tire construction and design, tire materials, and tire operating...
Rolling Resistance of Pneumatic Tires
DOT National Transportation Integrated Search
1979-05-01
Potential improvements in tire power transmission efficiency are worth seeking for gaining improved automotive fuel economy. Summaries herein of tire rolling resistance as influenced by tire construction and design, tire materials, and tire operating...
A Systematic Study of Kelvin-Helmholtz Instability in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Su, Yuanyuan
2017-09-01
Kelvin-Helmholtz instabilities (KHI) were observed at cold fronts in a handful of clusters. KHI are predicted at all cold fronts in hydro simulation of intracluster medium (ICM). Their presence and absence provides a unique probe of transport processes in the hot plasma, which are essential to the dissipation and redistribution of the energy in the ICM. We propose the first systematic study of the prevalence of KHI in galaxy clusters by analyzing the archived Chandra observations of a sample of 50 nearby galaxy clusters. We will associate the occurrence and properties of KHI rolls with various cluster parameters such as their gas temperature and density, and put constraints on effective transport coefficients in the ICM
Research and industrialization of near-net rolling technology used in shaft parts
NASA Astrophysics Data System (ADS)
Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua
2017-11-01
Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.
Research and industrialization of near-net rolling technology used in shaft parts
NASA Astrophysics Data System (ADS)
Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua
2018-03-01
Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.
NASA Astrophysics Data System (ADS)
Schmidtchen, M.; Rimnac, A.; Warczok, P.; Kozeschnik, E.; Bernhard, C.; Bragin, S.; Kawalla, R.; Linzer, B.
2016-03-01
The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness.
Strip casting with fluxing agent applied to casting roll
Williams, R.S.; O`Malley, R.J.; Sussman, R.C.
1997-07-29
A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.
NASA Technical Reports Server (NTRS)
Anderson, W. J.
1980-01-01
The considered investigations deal with some of the more important present day and future bearing requirements, and design methodologies available for coping with them. Solutions to many forthcoming bearing problems lie in the utilization of the most advanced materials, design methods, and lubrication techniques. Attention is given to materials for rolling element bearings, numerical analysis techniques and design methodology for rolling element bearing load support systems, lubrication of rolling element bearings, journal bearing design for high speed turbomachinery, design and energy losses in the case of turbulent flow bearings, and fluid film bearing response to dynamic loading.
Development of a beam builder for automatic fabrication of large composite space structures
NASA Technical Reports Server (NTRS)
Bodle, J. G.
1979-01-01
The composite material beam builder which will produce triangular beams from pre-consolidated graphite/glass/thermoplastic composite material through automated mechanical processes is presented, side member storage, feed and positioning, ultrasonic welding, and beam cutoff are formed. Each process lends itself to modular subsystem development. Initial development is concentrated on the key processes for roll forming and ultrasonic welding composite thermoplastic materials. The construction and test of an experimental roll forming machine and ultrasonic welding process control techniques are described.
Direct metal laser deposition of titanium powder Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Bykovskiy, D. P.; Petrovskiy, V. N.; Sergeev, K. L.; Osintsev, A. V.; Dzhumaev, P. S.; Polskiy, V. I.
2017-12-01
The paper presents the results of mechanical properties study of the material produced by direct metal laser deposition of VT6 titanium powder. The properties were determined by the results of stretching at tensile testing machine, as well as compared with the properties of the same rolled material. These results show that obtained samples have properties on the level or even higher than that ones of the samples obtained from the rolled material in a certain range of technological regimes.
Evolution of Oxide Inclusions in Si-Mn Killed Steels During Hot-Rolling Process
NASA Astrophysics Data System (ADS)
Yang, Wen; Guo, Changbo; Zhang, Lifeng; Ling, Haitao; Li, Chao
2017-10-01
The evolution of oxide inclusions in Si-Mn killed steels refined by slags of different basicity during a four-pass industrial hot-rolling process was investigated using an automated microscopy system. High-basicity refining slag induced the formation of CaO- and Al2O3-containing inclusions, while refining slag with 0.8 basicity induced dominant inclusions of SiO2 and MnO-SiO2. CaO-SiO2-Al2O3 inclusions mainly formed endogenously during solidification and cooling of Ca-containing steels, where Ca originated from slag-steel reactions. However, the larger-sized higher-CaO inclusions originated from slag entrainment. Different inclusions presented different hot-rolling behaviors. The inclusion composition changed by deformation and new phase formation. The dominant oxide types were unchanged under refinement by low-basicity slag; however, they changed under refinement with high-basicity slag. The deformation index of inclusions decreased with increasing accumulated reduction (AR) of the steel. The difference in deformation index between different inclusion types was the largest in the first rolling stage and decreased in subsequent stages. SiO2-CaO and SiO2-MnO-CaO inclusions had larger deformation indices during hot rolling but smaller indices in the last two stages. High-basicity slag increased inclusion complexity; from the perspective of cold-drawing performance, low-basicity refining slag is better for the industrial production of tire-cord steels.
NASA Astrophysics Data System (ADS)
Chen, Zhiguo; Ren, Jieke; Zhang, Jishuai; Chen, Jiqiang; Fang, Liang
2016-02-01
Scanning electron microscopy, transmission electron microscopy, tensile test, exfoliation corrosion test, and slow strain rate tensile test were applied to investigate the properties and microstructure of Al-Zn-Mg-Cu alloy processed by final thermomechanical treatment, retrogression reaging, and novel thermomechanical treatment (a combination of retrogression reaging with cold or warm rolling). The results indicate that in comparison with conventional heat treatment, the novel thermomechanical treatment reduces the stress corrosion susceptibility. A good combination of mechanical properties, stress corrosion resistance, and exfoliation corrosion resistance can be obtained by combining retrogression reaging with warm rolling. The mechanism of the novel thermomechanical treatment is the synergistic effect of composite microstructure such as grain morphology, dislocation substructures, as well as the morphology and distribution of primary phases and precipitations.
Promising Sparingly Alloyed Boron-Bearing Steels for the Production of High-Strength Fasteners
NASA Astrophysics Data System (ADS)
Bobylev, M. V.; Koroleva, E. G.; Shtannikov, P. A.
2005-05-01
The main advantages of boron-bearing steels used for production of rolled sections at cold upset shops of Russian automotive plants are considered. A thermodynamic model for the majority of boron-bearing steels for high-strength fasteners is used to plot nomograms characterizing the effect of titanium, aluminum, nitrogen, and boron on the amount of nitrides and oxides segregated in crystallization and on the content of effective boron. The effect of effective boron on the characteristics of hardenability is estimated. The studies conducted are used for determining the range of permissible contents of titanium and aluminum ensuring through hardenability of rolled bars from steels 12G1R, 20G2R, and 30G1R up to 25 mm in diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal, C.A.M.; Sabato, J.A.
1962-09-01
BS>Descriptions are given of: (a) the design, construction, and adjustment of a Ford plane-strain compression die, to be used in the determination of constrained yield stress curves, and (b) the design and construction of a load cell with strain gages to be used in the measurement of the rolling load during rolling. (auth)
Rolling process for producing biaxially textured substrates
Goyal, Amit
2004-05-25
A method of preparing a biaxially textured article includes the steps of: rolling a metal preform while applying shear force thereto to form as-rolled biaxially textured substrate having an a rotated cube texture wherein a (100) cube face thereof is parallel to a surface of said substrate, and wherein a [100] direction thereof is at an angle of at least 30.degree. relative to the rolling direction; and depositing onto the surface of the biaxially textured substrate at least one epitaxial layer of another material to form a biaxially textured article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittenhouse, P.L.; Picklesimer, M.L.
1961-02-01
The preferred orientation and anisotropy of strain behavior of Zircaloy- 2 were studied as functions of fabrication variables. An inverse-pole-figure technique was used for the preferred orientation determinations. Evaluation of the effects of the fabrication variables on the anisotropy of strain behavior was accomplished by a contractile strainaxial strain analysis. An analysis of strain behavior in the normal direction was developed on the basis of theory of plastic flow of anisotropic metals. A simple intuitively derivable relation was found to exist between the strainstrain analysis and the preferred orientation data. Correlations of the strain-strain data with true-stress-truestrain diagrams and mechanicalmore » properties were attempted. The preferred orientation of Zircaloy-2 produced by the Oak Ridge National Laboratory-Homogeneous Reactor Project (ORNL- HRP) metallurgy fabrication schedule (ingot breakdown at 1500 to 1900 deg F, major reduction at 1800 to 1900 deg F or 1350 to 1450 deg F, a heat treatment of 30 min at 1800 at 1550 deg F followed by a water quench or rapid air cool to below 1200 deg F, a final reduction of 25 to 40% at 1000 deg F. and a 3O-min anneal at 1400 to 1425 deg F) was weak compared to that of most of the other schedules investigated. Elimination of the beta heat treatment (1800 to 1850 deg F for 30 min) between the major reduction and final reduction steps resulted in a material with a high degree of preferred orienation and with a state of pseudoisotropy in ihe rolling plane. A unique and quite high degree of preferred orientaion was developed when the ORNL-HRP metallurgy fabrication procedure was used, but the ingot axis was in the transverse rather than the rolling direction of the finished plate permitting more contractile sirain to occur in the normal direction than in either the rolling or transverse directions. The strain-strain analyses of the materials were consistent with the conclusions reached by the preferred orientation analyses. The effects of cross rolling on the anisotropy of strain behavior of Zircaloy-2 were found to depend on the type of cross rolling (unidirectional or rotational), the temperature of cross rolling, and the stage of fabrication at which the cross rolling was done. Unidirectional cross rolling at 1000 deg F after beta heat treatment caused only a slight increase in anisotropy of strain behavior over that for straight-rolled material, but roiational cross rolling at 1000 deg F after beta heat treatment resulted in a material with a state of isotropy of strain behavior only in the rolling plane. Rotational cross rolling before beta heat treatment, for one material at 1450 deg F and for another from 1900 deg F, produced different states or degrees of anisotropy of strain behavior. Because of flow constraints which exist in sheettype tensile specimens with width-to-thickness ratios > 1.0, it is imperative that round tensile specimens be used in the contractile strain-axial strain analysis. Since the principal axes of anisotropy are generally not the major sheet directions, they must be found by the preferred orientation analysis. (auth)« less
Development of a paper based roll-to-roll nanoimprinting machine
NASA Astrophysics Data System (ADS)
Son, Byungwook
Nanoimprint lithography (NIL) has been developed and studied since 1995. It is a technique where micro- or nanoscale patterns are transferred to soft materials such as polymer through pressing a stamp with certain patterns into this materials and then solidifying it by cooling at lower temperature or curing under ultra violet excitement. High Cost and low throughput of batch mode nanoimprint lithography (NIL) processes are limiting its wide range of applications in meeting industry manufacturing requirements. The roll-to-roll (R2R) nanoimprinting technology is emerged as a solution to this issue. This thesis study presents the design, build and test of an innovative R2R T-NIL process machine for nanofabrication and MEMS fabrication applications, which consists of individual modules of heating, inking, pressuring, and rotational speed control. The system utilizes PDMS as mold material, PMMA as imprinting material, and paper as substrate material. In order to achieve a uniform pressure on PMMA during imprinting process, an innovative air pressure device (APD) was developed and integrated with R2R machine. The APD replaces the conventional 2-roll line contact pressure approach and can cover one third of the surface of the imprinting roller with a uniform pressure (1-3 psi). During the imprinting experiment, a mixture of PMMA (20w %) and 2-Ethoxyethyl acetate is applied on the paper substrate by an inking roller using capillary force and an IR heater is used for pre-heating and drying of polymer layers before it is fed into the imprinting module. Two 500-Watt cartridge heaters are installed on the roller and provide the heat to raise the PMMA film temperature during the imprinting.
Behavior of sheets from Ti-alloys by rolling and heat treatment
NASA Astrophysics Data System (ADS)
Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Gritskevich, M.; Stolbov, S.; Zaripova, M.
2017-10-01
Sheets from single- and two-phase Ti-alloys (VT1-0, Ti-22Nb-9%Zr and VT-16) were rolled at the room temperature up to various deformation degrees and annealed at temperatures 500-900 °C. The regularities of texture formation in both phases were established. In the technically pure Ti (VT1-0) with the single α-Ti phase the final stable texture component is (0001)±30-40°ND-TD<101 ¯0>. In the two-phase alloy the reorientation of basal axes of α-Ti occurs by the same trajectories as in the single phase alloy. However, in the case of two-phase alloy texture development in α-Ti stops at the intermediate stage, when this texture consists of components with rolling planes (0001)±15-20°ND-RD and (0001)±30-40°ND-TD. The stability of the first components can be provided both by the mutually balanced operation of pyramidal and basal slip systems, activity of which remains at the high deformation degree of two-phase alloy, and by the dynamic α↔β phase transformations, taking place in the distorted structures of α- and β-phases in the course of its cold rolling. At recrystallization of technically pure Ti the basal component disappears in its texture. At the same time, prismatic axes turn by angles 20÷30° depending on the heating rate of the rolled sheet and annealing temperature. At recrystallization of the two-phase Ti-alloy prismatic axes of its α-grains doesn't turn relative to their positions in the rolling texture, as it occurs in the single-phase alloy. This fact indicates to some alternative mode of arising new recrystallized grains in two-phase alloys.
2009-10-01
cryostat and cooled at a temperature under 77K by a Stirling cryocooler , as represented on the following Figure 5 : Cryostat...Figure 5. Detector cryostat and cryocooler The read-out frequency of the detectors is adapted to the ground speed of the plane above...Cold shield Detector plane Cryocoole r Cryocoole r compresso r Fixed frame Roll frame Pitch frame Yaw frame SIELETERS: a Static Fourier
2011-08-01
the Texture Evolution During Cold Rolling of Al –Mg Alloys . s.l.: Journal of Alloys and Compounds 2011, 508, 922–928. 11. Suhuddin, U.F.H.R.; Mironov...graphene onto a substrate with insulator properties . The current transfer process is still preliminary and presents a number of challenges. Since the...dimensions. The fabrication process flow for the stators uses chemical solution deposited PZT, metal sputtering and evaporation, reactive ion etching
Crack Growth in Mercury Embrittled Aluminum Alloys under Cyclic and Static Loading Conditions
1983-03-01
STATEMENT (ol the abalract entered In Block 20, It dlHerent from Report) 18. SUPPLEMENTARY NOTES This was a thesis in partial fulfillment of...argued that the strengthening that occurs from cold rolling suppresses crack nucleation at the surface under monotonlc loading. Under cyclic loading...precracking. Copper was chosen because It can be easily electrodeposited on aluminum, easily wet with mercury, and remains wet almost indefinitely
The Effects of Carbon Nanotube Reinforcement on Adhesive Joints for Naval Applications
2009-12-01
ACRONYMS AND ABBREVIATIONS CNT Carbon Nanotube CoNap Cobalt Naphthenate DMA Dimethylaniline IR Infared MEKP Methyl Ethyl Ketone Peroxide... removed prior to use. The selection of cold rolled steel significantly reduced the surface preparation required for each sample. The steel was one...6% Cobalt Naphthenate (CoNap), as well as an accelerator, dimethylaniline (DMA), can be varied to control gel time of the resign based on ambient
Unsupported palladium alloy membranes and methods of making same
Way, J. Douglas; Thoen, Paul; Gade, Sabina K.
2015-06-02
The invention provides support-free palladium membranes and methods of making these membranes. Single-gas testing of the unsupported foils produced hydrogen permeabilities equivalent to thicker membranes produced by cold-rolling. Defect-free films as thin as 7.2 microns can be fabricated, with ideal H.sub.2/N.sub.2 selectivities as high as 40,000. Homogeneous membrane compositions may also be produced using these methods.
NASA Astrophysics Data System (ADS)
Li, Xiaopei; Li, Xiaohui; Kure-Chu, Song-Zhu; Tang, Guoyi
2017-12-01
Cold-rolled AZ31 Mg alloy strips, with a reduction of 33 pct, were subjected to electropulse treatment (EPT) and conventional heat treatment (HT) to evaluate the respective influences of electropulses and temperature on the recrystallization behavior of AZ31. The highest measured temperature during the EPT (543 K) was used in HT. The electron backscattered diffraction results demonstrated that the EPT-stimulated recrystallization was completed within 8 seconds, whereas for HT, recrystallization was still far from completion even after 240 seconds. It was found that both the nucleation and grain growth of these two processes were totally different. In the EPT samples, nucleation tended to occur preferentially near extension twin boundaries and grain boundaries by continuous recrystallization, whereas in the HT samples, nucleation occurred mainly by grain boundaries bulging via discontinuous recrystallization. As grain growth proceeded, the texture intensities of the EPT samples decreased gradually and finally evolved into an obvious transverse-direction-split texture. This is likely attributable to the impact of electropulses on the boundary energy and the contribution of nonbasal dislocations; however, the basal-type textures of the HT samples were notably strengthened, which is associated with a 30 deg〈0001〉 orientation with respect to the deformed texture.
NASA Astrophysics Data System (ADS)
Li, Xiaopei; Li, Xiaohui; Kure-Chu, Song-Zhu; Tang, Guoyi
2018-02-01
Cold-rolled AZ31 Mg alloy strips, with a reduction of 33 pct, were subjected to electropulse treatment (EPT) and conventional heat treatment (HT) to evaluate the respective influences of electropulses and temperature on the recrystallization behavior of AZ31. The highest measured temperature during the EPT (543 K) was used in HT. The electron backscattered diffraction results demonstrated that the EPT-stimulated recrystallization was completed within 8 seconds, whereas for HT, recrystallization was still far from completion even after 240 seconds. It was found that both the nucleation and grain growth of these two processes were totally different. In the EPT samples, nucleation tended to occur preferentially near extension twin boundaries and grain boundaries by continuous recrystallization, whereas in the HT samples, nucleation occurred mainly by grain boundaries bulging via discontinuous recrystallization. As grain growth proceeded, the texture intensities of the EPT samples decreased gradually and finally evolved into an obvious transverse-direction-split texture. This is likely attributable to the impact of electropulses on the boundary energy and the contribution of nonbasal dislocations; however, the basal-type textures of the HT samples were notably strengthened, which is associated with a 30 deg〈0001〉 orientation with respect to the deformed texture.
NASA Astrophysics Data System (ADS)
Papa Rao, M.; Subramanya Sarma, V.; Sankaran, S.
2017-03-01
Ultrafine-grained (UFG) dual-phase (DP) steel was produced by severe cold rolling (true strain of 2.4) and intercritical annealing of a low carbon V-Nb microalloyed steel in a temperature range of 1003 K to 1033 K (730 °C to 760 °C) for 2 minutes, and water quenching. The microstructure of UFG DP steels consisted of polygonal ferrite matrix with homogeneously distributed martensite islands (both of size <1 µm) and a small fraction of the inter lath films of retained austenite. The UFG DP steel produced through intercritical annealing at 1013 K (740 °C) has good combination of strength (1295 MPa) and ductility (uniform elongation, 13 pct). The nanoscale V- and Nb-based carbides/carbonitrides and spheroidized cementite particles have played a crucial role in achieving UFG DP microstructure and in improving the strength and work hardening. Analysis of work hardening behavior of the UFG DP steels through modified Crussard-Jaoul analysis showed a continuously varying work hardening rate response which could be approximated by 2 or 3 linear regimes. The transmission electron microscopy analysis on post tensile-tested samples indicated that these regimes are possibly related to the work hardening of ferrite, lath, and twin martensite, respectively.
Development of Highly Ductile Spheroidized Steel from High C (0.61 wt.% C) Low-Alloy Steel
NASA Astrophysics Data System (ADS)
Monia, S.; Varshney, A.; Gouthama; Sangal, S.; Kundu, S.; Samanta, S.; Mondal, K.
2015-11-01
This research aims to develop a multiphase steel combining spheroidal cementite and bainite in ductile ferrite matrix possessing an optimal balance of reasonably high strength and excellent ductility. A high carbon (0.61 wt.%) high silicon (1.71 wt.%) EN45 spring steel was annealed to obtain ferrite pearlite microstructure. The samples were given 5 and 10% cold rolling followed by holding at temperature below Ac1 for about 3 h. The samples were then held in intercritical range at 770 °C temperature for different durations ranging from 5 to 20 min for partial re-austenitization followed by quenching in a salt bath maintained at 350 °C and holding for 10 min to get bainite. The samples were finally water quenched. Characterizations of the samples with the help of optical microscopy, x-ray diffraction, scanning electron microscopy, and atomic force microscopy were carried out. Optimal heat-treatment conditions were found out after correlating with tensile properties. The best combination of high tensile strength (~800 MPa) with very high elongation (~29%) was obtained. Effects of cold-rolled strain and holding time in the intercritical region on the mechanical properties and microstructural changes were studied. Finally, structural property correlation is established.
Method of manufacturing iron aluminide by thermomechanical processing of elemental powders
Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.
2000-01-01
A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Uz, Mehmet
1994-01-01
Effects of thermomechanical processing on the mechanical properties of Nb-1 wt. percent Zr-0.1 wt. percent C, a candidate alloy for use in advanced space power systems, were investigated. Sheet bars were cold rolled into 1-mm thick sheets following single, double, or triple extrusion operations at 1900 K. All the creep and tensile specimens were given a two-step heat treatment 1 hr at 1755 K + 2 hr 1475 K prior to testing. Tensile properties were determined at 300 as well as at 1350 K. Microhardness measurements were made on cold rolled, heat treated, and crept samples. Creep tests were carried out at 1350 K and 34.5 MPa for times of about 10,000 to 19,000 hr. The results show that the number of extrusions had some effects on both the microhardness and tensile properties. However, the long-time creep behavior of the samples were comparable, and all were found to have adequate properties to meet the design requirements of advanced power systems regardless of thermomechanical history. The results are discussed in correlation with processing and microstructure, and further compared to the results obtained from the testing of Nb-1 wt. percent Zr and Nb-1 wt. percent Zr-0.06 wt. percent C alloys.
NASA Astrophysics Data System (ADS)
Yan, Ru; He, Wei; Zhai, Tianhua; Ma, Houyi
2018-06-01
Seeing that amino trimethylene phosphonic acid (ATMP) possesses very strong complexation ability to metal ions and the phosphonic acid group has good affinity for the oxidized iron surface, herein a simple and rapid film-forming method (one-step assembly method) was developed to construct the ATMP-Zn complex conversion layers (ATMP-Zn layers for short) on the cold-rolled steel (CRS) substrate. Zinc ions were found to participate in the formation process of ATMP-based composite film, which made the Zn-containing ATMP film significantly different in appearance, thickness, microstructure and film-forming mechanisms from the Zn-free ATMP film. There was mainly iron (ш) phosphonate in the Zn-free ATMP film, whereas there were Zn2+-ATMP complex and a certain amount of ZnO in the ATMP-Zn composite film. In addition, electrochemical test results clearly indicate that corrosion resistance of ATMP-Zn composite film was greatly enhanced due to the presence of Zn component. Moreover, the corrosion resistance performance could be controlled by adjusting film-forming time, pH and ATMP concentration in the film-forming solutions. The present study provides a new method for the design and fabrication of high-quality environmentally-friendly conversion layers.
Beaver, R.J.
1961-11-21
A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)
NASA Astrophysics Data System (ADS)
Hoseini-Athar, M. M.; Tolaminejad, B.
2016-07-01
Explosive welding is a well-known solid state method for joining similar and dissimilar materials. In the present study, tri-layered Al-Cu-Al laminated composites with different interface morphologies were fabricated by explosive welding and subsequent rolling. Effects of explosive ratio and rolling thickness reduction on the morphology of interface and mechanical properties were evaluated through optical/scanning electron microscopy, micro-hardness, tensile and tensile-shear tests. Results showed that by increasing the thickness reduction, bonding strength of specimens including straight and wavy interfaces increases. However, bonding strength of the specimens with melted layer interface decreases up to a threshold thickness reduction, then rapidly increases by raising the reduction. Hardness Values of welded specimens were higher than those of original material especially near the interface and a more uniform hardness profile was obtained after rolling process.
Selection of rolling-element bearing steels for long-life applications
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1989-01-01
Nearly four decades of research in bearing steel metallurgy and processing have resulted in improvements in bearing life by a factor of 100 over that obtained in the early 1940s. For critical applications such as aircraft, these improvements have resulted in longer lived, more reliable commercial aircraft engines. Material factors such as hardness, retained austenite, grain size and carbide size, number, and area can influence rolling-element fatigue life. Bearing steel processing such as double vacuum melting can have a greater effect on bearing life than material chemistry. The selection and specification of a bearing steel is dependent on the integration of all these considerations into the bearing design and application. The paper reviews rolling-element fatigue data and analysis which can enable the engineer or metallurgist to select a rolling-element bearing steel for critical applications where long life is required.
Selection of rolling-element bearing steels for long-life application
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.
1986-01-01
Nearly four decades of research in bearing steel metallurgy and processing have resulted in improvements in bearing life by a factor of 100 over that obtained in the early 1940's. For critical applications such as aircraft, these improvements have resulted in longer lived, more reliable commercial aircraft engines. Material factors such as hardness, retained austenite, grain size and carbide size, number, and area can influence rolling-element fatigue life. Bearing steel processing such as double vacuum melting can have a greater efect on bearing life than material chemistry. The selection and specification of a bearing steel is dependent on the integration of all these considerations into the bearing design and application. The paper reviews rolling-element fatigue data and analysis which can enable the engineer or metallurgist to select a rolling-element bearing steel for critical applications where long life is required.
NASA Astrophysics Data System (ADS)
Park, Keecheol; Oh, Kyungsuk
2017-09-01
In order to investigate the effect of leveling conditions on residual stress evolution during the leveling process of hot rolled high strength steels, the in-plane residual stresses of sheet processed under controlled conditions at skin-pass mill and levelers were measured by cutting method. The residual stress was localized near the edge of sheet. As the thickness of sheet was increased, the residual stress occurred region was expanded. The magnitude of residual stress within the sheet was reduced as increasing the deformation occurred during the leveling process. But the residual stress itself was not removed completely. The magnitude of camber occurred at cut plate was able to be predicted by the residual stress distribution. A numerical algorithm was developed for analysing the effect of leveling conditions on residual stress. It was able to implement the effect of plastic deformation in leveling, tension, work roll bending, and initial state of sheet (residual stress and curl distribution). The validity of simulated results was verified from comparison with the experimentally measured residual stress and curl in a sheet.
NASA Astrophysics Data System (ADS)
Fan, Zhijian; Jóni, Bertalan; Xie, Lei; Ribárik, Gábor; Ungár, Tamás
2018-04-01
Specimens of cold-rolled zirconium were tensile-deformed along the rolling (RD) and the transverse (TD) directions. The stress-strain curves revealed a strong texture dependence. High resolution X-ray line profile analysis was used to determine the prevailing active slip-systems in the specimens with different textures. The reflections in the X-ray diffraction patterns were separated into two groups. One group corresponds to the major and the other group to the random texture component, respectively. The dislocation densities, the subgrain size and the prevailing active slip-systems were evaluated by using the convolutional multiple whole profile (CMWP) procedure. These microstructure parameters were evaluated separately in the two groups of reflections corresponding to the two different texture components. Significant differences were found in both, the evolution of dislocation densities and the development of the fractions of and
NASA Astrophysics Data System (ADS)
Bataev, V. A.; Golkovski, M. G.; Samoylenko, V. V.; Ruktuev, A. A.; Polyakov, I. A.; Kuksanov, N. K.
2018-04-01
The study has been conducted in line with the current approach to investigation of materials obtained by considerably deep surface alloying of the titanium substrate with Ta, Nb, and Zr. The thickness of the resulting alloyed layer was equal to 2 mm. The coating was formed through weld deposition of a powder with the use of a high-voltage electron beam in the air. It has been lately demonstrated that manufactured such a way alloyed layers possess corrosion resistance which is significantly higher than the resistance of titanium substrates. It has already been shown that such two-layered materials are weldable. The study objective is to investigate the feasibility of rolling for necking the sheets with the Ti-Ta-Nb anticorrosion coating with further fourfold decrease in their thickness. The research is also aimed at investigation of the material properties after rolling. Anticorrosion layers were formed both on CP-titanium and on VT14 (Ti-4Al-3Mo-1 V) durable titanium alloy. The results of chemical composition determination, structure examination, X-ray phase analysis and mechanical properties observations (including bending properties of the alloyed layers) are presented in the paper. The combination of welding, rolling, and bending enables the manufacture of corrosion-resistant vessels and process pipes which are made from the developed material and find technological application.
NASA Astrophysics Data System (ADS)
Yadav, Vinod; Singh, Arbind Kumar; Dixit, Uday Shanker
2017-08-01
Flat rolling is one of the most widely used metal forming processes. For proper control and optimization of the process, modelling of the process is essential. Modelling of the process requires input data about material properties and friction. In batch production mode of rolling with newer materials, it may be difficult to determine the input parameters offline. In view of it, in the present work, a methodology to determine these parameters online by the measurement of exit temperature and slip is verified experimentally. It is observed that the inverse prediction of input parameters could be done with a reasonable accuracy. It was also assessed experimentally that there is a correlation between micro-hardness and flow stress of the material; however the correlation between surface roughness and reduction is not that obvious.
Hösel, Markus; Angmo, Dechan; Søndergaard, Roar R.; dos Reis Benatto, Gisele A.; Carlé, Jon E.; Jørgensen, Mikkel
2014-01-01
The fabrication of substrates and superstrates prepared by scalable roll‐to‐roll methods is reviewed. The substrates and superstrates that act as the flexible carrier for the processing of functional organic electronic devices are an essential component, and proposals are made about how the general availability of various forms of these materials is needed to accelerate the development of the field of organic electronics. The initial development of the replacement of indium‐tin‐oxide (ITO) for the flexible carrier materials is described and a description of how roll‐to‐roll processing development led to simplification from an initially complex make‐up to higher performing materials through a more simple process is also presented. This process intensification through process simplification is viewed as a central strategy for upscaling, increasing throughput, performance, and cost reduction. PMID:27980893
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shurcliff, W.A.
1979-04-01
SolaRoll is a solar collector material composed of extruded strips of black ethylene propylene diene monomer (EPDM) that is suitable for water or air type collectors. SolaRoll is provided in rolls and consists of an absorber mat with tubes and fins and a framing strip comprising all the parts of the collector frame. The rolls are bent in a counterflow pattern to cover the entire collector area and the mat is fastened with a thermosetting mastic adhesive. The heat transfer fluid is plain water as freezing does not injure the EPDM. Installation of the glazing in the framing strip ismore » described. EPDM has the disadvantage of low thermal conductivity but its use does not require antifreeze or a heat exchanger. Design options and suitable applications of SolaRoll systems are discussed.« less
Strip casting with fluxing agent applied to casting roll
Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.
1997-01-01
A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.
Hot-rolling of reduced activation 8CrODS ferritic steel
NASA Astrophysics Data System (ADS)
Wu, Xiaochao; Ukai, Shigeharu; Leng, Bin; Oono, Naoko; Hayashi, Shigenari; Sakasegawa, Hideo; Tanigawa, Hiroyasu
2013-11-01
The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above Ar3 of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite.
Rolling-Element Fatigue Testing and Data Analysis - A Tutorial
NASA Technical Reports Server (NTRS)
Vlcek, Brian L.; Zaretsky, Erwin V.
2011-01-01
In order to rank bearing materials, lubricants and other design variables using rolling-element bench type fatigue testing of bearing components and full-scale rolling-element bearing tests, the investigator needs to be cognizant of the variables that affect rolling-element fatigue life and be able to maintain and control them within an acceptable experimental tolerance. Once these variables are controlled, the number of tests and the test conditions must be specified to assure reasonable statistical certainty of the final results. There is a reasonable correlation between the results from elemental test rigs with those results obtained with full-scale bearings. Using the statistical methods of W. Weibull and L. Johnson, the minimum number of tests required can be determined. This paper brings together and discusses the technical aspects of rolling-element fatigue testing and data analysis as well as making recommendations to assure quality and reliable testing of rolling-element specimens and full-scale rolling-element bearings.
Structural aspects of cold-formed steel section designed as U-shape composite beam
NASA Astrophysics Data System (ADS)
Saggaff, Anis; Tahir, Mahmood Md.; Azimi, Mohammadamin; Alhajri, T. M.
2017-11-01
Composite beam construction usually associated with old-style Hot-Rolled Steel Section (HRSS) has proven to act much better in compare with Cold-Formed Steel Section (CFSS) sections due to thicker section. Due, it's getting popular to replace HRSS with CFSS in some aspects as a composite beam. The advantages such as lightweight, cost effective and easy to install have contributed to the apply CFSS as a preferred construction material for composite beam. There is a few technical data available regarding the application of the usage of CFSS as a composite system, despite the potentials use for residential and light-weight industrial constructions. This paper presents an experimental tests results which have been conducted using CFSS as composite beam. Composite action of CFSS arranged as double beam with Self-Compacting Concrete (SCC) slab are integrated together with bolted shear connectors were used. A full-scale test comprised of 3 proposed composite beam specimens with bolted shear connector spaced at 300 mm interval of grade 8.8 was using single nut with washer on flange of CFS, cast to the slab and loaded until failed. The test show that the bolted shear connector yielded better capacity of ultimate strength and ultimate moment for the proposed composite beam. It can be concluded that, bolted shear connectors of 16 mm in diameter performed better than the other diameter size of bolted shear connectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, M.S.; Scriven, L.E.
1997-12-01
In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.
NASA Astrophysics Data System (ADS)
Hördemann, C.; Hirschfelder, K.; Schaefer, M.; Gillner, A.
2015-09-01
The breakthrough of flexible organic electronics and especially organic photovoltaics is highly dependent on cost-efficient production technologies. Roll-2-Roll processes show potential for a promising solution in terms of high throughput and low-cost production of thin film organic components. Solution based material deposition and integrated laser patterning processes offer new possibilities for versatile production lines. The use of flexible polymeric substrates brings along challenges in laser patterning which have to be overcome. One main challenge when patterning transparent conductive layers on polymeric substrates are material bulges at the edges of the ablated area. Bulges can lead to short circuits in the layer system leading to device failure. Therefore following layers have to have a sufficient thickness to cover and smooth the ridge. In order to minimize the bulging height, a study has been carried out on transparent conductive ITO layers on flexible PET substrates. Ablation results using different beam shapes, such as Gaussian beam, Top-Hat beam and Donut-shaped beam, as well as multi-pass scribing and double-pulsed ablation are compared. Furthermore, lab scale methods for cleaning the patterned layer and eliminating bulges are contrasted to the use of additional water based sacrificial layers in order to obtain an alternative procedure suitable for large scale Roll-2-Roll manufacturing. Besides progress in research, ongoing transfer of laser processes into a Roll-2-Roll demonstrator is illustrated. By using fixed optical elements in combination with a galvanometric scanner, scribing, variable patterning and edge deletion can be performed individually.
NASA Technical Reports Server (NTRS)
Alexander, D. W.
1992-01-01
The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and -100 C. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit was evaluated by performing a cold-roll test using one module.
Cylindrical cryogenic calorimeter testing of six types of multilayer insulation systems
NASA Astrophysics Data System (ADS)
Fesmire, J. E.; Johnson, W. L.
2018-01-01
Extensive cryogenic thermal testing of more than 100 different multilayer insulation (MLI) specimens was performed over the last 20 years for the research and development of evacuated reflective thermal insulation systems. From this data library, 26 MLI systems plus several vacuum-only systems are selected for analysis and comparison. The test apparatus, methods, and results enabled the adoption of two new technical consensus standards under ASTM International. Materials tested include reflectors of aluminum foil or double-aluminized Mylar and spacers of fiberglass paper, polyester netting, silk netting, polyester fabric, or discrete polymer standoffs. The six types of MLI systems tested are listed as follows: Mylar/Paper, Foil/Paper, Mylar/Net, Mylar/Blanket, Mylar/Fabric, Mylar/Discrete. Also tested are vacuum-only systems with different cold surface materials/finishes including stainless steel, black, copper, and aluminum. Testing was performed between the boundary temperatures of 78 K and 293 K (and up to 350 K) using a thermally guarded one-meter-long cylindrical calorimeter (Cryostat-100) for absolute heat flow measurement. Cold vacuum pressures include the full range from 1 × 10-6 torr to 760 torr with nitrogen as the residual gas. System variations include number of layers from one to 80 layers, layer densities from 0.5 to 5 layers per millimeter, and installation techniques such layer-by-layer, blankets (multi-layer assemblies), sub-blankets, seaming, butt-joining, spiral wrapping, and roll-wrapping. Experimental thermal performance data for the different MLI systems are presented in terms of heat flux and effective thermal conductivity. Benchmark cryogenic-vacuum thermal performance curves for MLI are given for comparison with different insulation approaches for storage and transfer equipment, cryostats, launch vehicles, spacecraft, or science instruments.
Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Xia, Minglu; Sun, Qingping
2017-10-01
Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.
Evolution of microstructure and residual stress during annealing of austenitic and ferritic steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wawszczak, R.; Baczmański, A., E-mail: Andrzej.Baczmanski@fis.agh.edu.pl; Marciszko, M.
2016-02-15
In this work the recovery and recrystallization processes occurring in ferritic and austenitic steels were studied. To determine the evolution of residual stresses during material annealing the nonlinear sin{sup 2}ψ diffraction method was used and an important relaxation of the macrostresses as well as the microstresses was found in the cold rolled samples subjected to heat treatment. Such relaxation occurs at the beginning of recovery, when any changes of microstructure cannot be detected using other experimental techniques. Stress evolution in the annealed steel samples was correlated with the progress of recovery process, which significantly depends on the value of stackingmore » fault energy. - Highlights: • X-ray diffraction was used to determine the first order and second order stresses. • Diffraction data were analyzed using scale transition elastoplastic models model. • Stress relaxation in annealed ferritic and austenitic steels was correlated with evolution of microstructure. • Influence of stacking fault energy on thermally induced processes was discussed.« less
NASA Astrophysics Data System (ADS)
Zhang, Xin; Huang, Yingqiu; Liu, Xiangyu; Yang, Lei; Shi, Changdong; Wu, Yucheng; Tang, Wenming
2018-03-01
Composites of 40Cu/Ag(Invar) were prepared via pressureless sintering and subsequent thermo-mechanical treatment from raw materials of electroless Ag-plated Invar alloy powder and electrolytic Cu powder. Microstructures and properties of the prepared composites were studied to evaluate the effect of the Ag layer on blocking Cu/Invar interfacial diffusion in the composites. The electroless-plated Ag layer was dense, uniform, continuous, and bonded tightly with the Invar alloy substrate. During sintering of the composites, the Ag layer effectively prevented Cu/Invar interfacial diffusion. During cold-rolling, the Ag layer was deformed uniformly with the Invar alloy particles. The composites exhibited bi-continuous network structure and considerably improved properties. After sintering at 775 °C and subsequent thermo-mechanical treatment, the 40Cu/Ag(Invar) composites showed satisfactory comprehensive properties: relative density of 99.0 pct, hardness of HV 253, thermal conductivity of 55.7 W/(m K), and coefficient of thermal expansion of 11.2 × 10-6/K.
A Rolling Sphere on a Tilted Rotating Turntable.
ERIC Educational Resources Information Center
Sambles, J. R.; And Others
1983-01-01
Describes an advanced high school/college experiment that illustrates the mechanics describing the motion of a rolling ball. Includes procedures used, discussions of vectoral and mathematical (calculus) solutions to the investigation, and sample student results using the recommended materials. (JM)
NASA Astrophysics Data System (ADS)
Kiss, I.; Alexa, V.; Serban, S.; Rackov, M.; Čavić, M.
2018-01-01
The cast hipereutectoid steel (usually named Adamite) is a roll manufacturing destined material, having mechanical, chemical properties and Carbon [C] content of which stands between steelandiron, along-withitsalloyelements such as Nickel [Ni], Chrome [Cr], Molybdenum [Mo] and/or other alloy elements. Adamite Rolls are basically alloy steel rolls (a kind of high carbon steel) having hardness ranging from 40 to 55 degrees Shore C, with Carbon [C] percentage ranging from 1.35% until to 2% (usually between 1.2˜2.3%), the extra Carbon [C] and the special alloying element giving an extra wear resistance and strength. First of all the Adamite roll’s prominent feature is the small variation in hardness of the working surface, and has a good abrasion resistance and bite performance. This paper reviews key aspects of roll material properties and presents an analysis of the influences of chemical composition upon the mechanical properties (hardness) of the cast hipereutectoid steel rolls (Adamite). Using the multiple regression analysis (the double and triple regression equations), some mathematical correlations between the cast hipereutectoid steel rolls’ chemical composition and the obtained hardness are presented. In this work several results and evidence obtained by actual experiments are presented. Thus, several variation boundaries for the chemical composition of cast hipereutectoid steel rolls, in view the obtaining the proper values of the hardness, are revealed. For the multiple regression equations, correlation coefficients and graphical representations the software Matlab was used.
Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process
NASA Astrophysics Data System (ADS)
Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.
2017-09-01
Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.
Chao, Jesus; Rementeria, Rosalia; Aranda, Maria; Capdevila, Carlos; Gonzalez-Carrasco, Jose Luis
2016-07-29
The ductile-to-brittle transition (DBT) behavior of two similar Fe-Cr-Al oxide dispersion strengthened (ODS) stainless steels was analyzed following the Cottrell-Petch model. Both alloys were manufactured by mechanical alloying (MA) but by different forming routes. One was manufactured as hot rolled tube, and the other in the form of hot extruded bar. The two hot forming routes considered do not significantly influence the microstructure, but cause differences in the texture and the distribution of oxide particles. These have little influence on tensile properties; however, the DBT temperature and the upper shelf energy (USE) are significantly affected because of delamination orientation with regard to the notch plane. Whereas in hot rolled material the delaminations are parallel to the rolling surface, in the hot extruded material, they are randomly oriented because the material is transversally isotropic.
Chao, Jesus; Rementeria, Rosalia; Aranda, Maria; Capdevila, Carlos; Gonzalez-Carrasco, Jose Luis
2016-01-01
The ductile-to-brittle transition (DBT) behavior of two similar Fe-Cr-Al oxide dispersion strengthened (ODS) stainless steels was analyzed following the Cottrell–Petch model. Both alloys were manufactured by mechanical alloying (MA) but by different forming routes. One was manufactured as hot rolled tube, and the other in the form of hot extruded bar. The two hot forming routes considered do not significantly influence the microstructure, but cause differences in the texture and the distribution of oxide particles. These have little influence on tensile properties; however, the DBT temperature and the upper shelf energy (USE) are significantly affected because of delamination orientation with regard to the notch plane. Whereas in hot rolled material the delaminations are parallel to the rolling surface, in the hot extruded material, they are randomly oriented because the material is transversally isotropic. PMID:28773764
Apparatus for assembling space structure
NASA Technical Reports Server (NTRS)
Johnston, J. D.; Tuggle, R. H., Jr.; Burch, J. L.; Clark, K. H. (Inventor)
1978-01-01
An apparatus for producing a structure in outer space from rolls of prepunched ribbon or sheet material that are transported from the earth to the apparatus located in outer space is described. The apparatus spins the space structure similar to a spider spinning a web utilizing the prepunched ribbon material. The prepunched ribbon material is fed through the apparatus and is shaped into a predetermined channel-shaped configuration. Trusses are punched out of the ribbon and are bent downwardly and attached to a track which normally is a previously laid sheet of material. The size of the overall space structure may be increased by merely attaching an additional roll of sheet material to the apparatus.
Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, John P.; Askari, Hesam A.; Hovanski, Yuri
2015-03-01
Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less
1987-06-01
cold-rolled zinc-copper-aluminum eutectic alloy exhibited this superplastic response. Superplasticity was initially viewed as a curious observation...limited to eutectic alloys when tested under the correct laboratory conditions. However, in 1962 Underwood [Ref. 23 reviewed Soviet work; this review...formation of a very fine dispersoid, ZrAI3. This dispersoid results in grain refinement, raises the recrystallization temperature (Ref. 7:p. 414] and gives
Food Service Alternatives for Meals Away from the Dining Facility
1984-06-01
Chicken Salad Ham Salad Italian Cold Cuts Roast Beef Ham Turkey Hot Meatball with Cheese Hot Sausage Egg Roll Fried Rice Beef and Vegetables Desserts...Salami Provolone American Cheese Swiss Cheese Tuna Salad Egg Salad Chicken Salad Ham Salad *Hot Sausage *Hot Meatball with Cheese Chili Beef...Cake Ham Brownies Hot Sausage Puddings Hot Meatball with Cheese Jello Shaved Steak with Pie Eggs Cookies Cheese Cole Slaw Onions Macaroni Salad Peppers
NASA Astrophysics Data System (ADS)
Veerasamy, M.; Srinivasan, K.; Prakash, Raghu V.
2010-10-01
The crash behavior of Cold Rolled Mild Steel (CRMS) closed form thin section was studied by conducting compressive tests at loading velocities of 5 mm/min and 1000 mm/min. The numerical simulations were conducted for the same experimental conditions to understand the deformation shape, peak forces and energy absorption capacity of sections at different impact velocities. The simulation results correlated well with the experimental results.
Code of Federal Regulations, 2014 CFR
2014-07-01
....000626 O&G 0.000522 0.000209 Chromium 1 0.0000209 0.0000084 Lead 0.0000094 0.0000031 Nickel 1 0.0000188 0... limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold rolling...) of product TSS 0.00626 0.00313 O&G 0.00261 0.00104 Chromium 1 0.000104 0.0000418 Lead 0.0000469 0...
Code of Federal Regulations, 2013 CFR
2013-07-01
....000626 O&G 0.000522 0.000209 Chromium 1 0.0000209 0.0000084 Lead 0.0000094 0.0000031 Nickel 1 0.0000188 0... limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold rolling...) of product TSS 0.00626 0.00313 O&G 0.00261 0.00104 Chromium 1 0.000104 0.0000418 Lead 0.0000469 0...
Code of Federal Regulations, 2012 CFR
2012-07-01
....000626 O&G 0.000522 0.000209 Chromium 1 0.0000209 0.0000084 Lead 0.0000094 0.0000031 Nickel 1 0.0000188 0... limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold rolling...) of product TSS 0.00626 0.00313 O&G 0.00261 0.00104 Chromium 1 0.000104 0.0000418 Lead 0.0000469 0...
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2007-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated .pi.-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2007-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated x-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2005-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated pi-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of sulfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.
Code of Federal Regulations, 2010 CFR
2010-07-01
....000626 O&G 0.000522 0.000209 Chromium 1 0.0000209 0.0000084 Lead 0.0000094 0.0000031 Nickel 1 0.0000188 0... limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold rolling...) of product TSS 0.00626 0.00313 O&G 0.00261 0.00104 Chromium 1 0.000104 0.0000418 Lead 0.0000469 0...
Code of Federal Regulations, 2011 CFR
2011-07-01
....000626 O&G 0.000522 0.000209 Chromium 1 0.0000209 0.0000084 Lead 0.0000094 0.0000031 Nickel 1 0.0000188 0... limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold rolling...) of product TSS 0.00626 0.00313 O&G 0.00261 0.00104 Chromium 1 0.000104 0.0000418 Lead 0.0000469 0...
Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels
NASA Astrophysics Data System (ADS)
Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi
2000-12-01
Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y2O3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained.