Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.
Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica
2015-01-01
Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.
Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms
Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica
2015-01-01
Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee’s physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems. PMID:25961447
Thermal responses from repeated exposures to severe cold with intermittent warmer temperatures.
Ozaki, H; Enomoto-Koshimizu, H; Tochihara, Y; Nakamura, K
1998-09-01
This study was conducted to evaluate physiological reaction and manual performance during exposure to warm (30 degrees C) and cool (10 degrees C) environments after exposure to very low temperatures (-25 degrees C). Furthermore, this experiment was conducted to study whether it is desirable to remove cold-protective jackets in warmer rooms after severe cold exposure. Eight male students remained in an extremely cold room for 20 min, after which they transferred into either the warm room or the cool room for 20 min. This pattern was repeated three times, and the total cold exposure time was 60 min. In the warm and cool rooms, the subjects either removed their cold-protective jackets (Condition A), or wore them continuously (Condition B). Rectal temperature, skin temperatures, manual performance, blood pressure, thermal, comfort and pain sensations were measured during the experiment. The effects of severe cold on almost all measurements in the cool (10 degrees C) environment were greater than those in the warm (30 degrees C) environment under both clothing conditions. The effects of severe cold on all measurements under Condition A except rectal temperature and toe skin temperature were significantly greater than those under Condition B in the cool environment but, not at all differences between Condition A and Condition B in the warm environments were significant. It was recognized that to remove cold-protective jackets in the cool room (10 degrees C) after severe cold exposure promoted the effects of severe cold. When rewarming in the warm resting room (30 degrees C), the physiological and psychological responses and manual performance were not influenced by the presence or absence of cold-protective clothing. These results suggest that it is necessary for workers to make sure to rewarm in the warm room outside of the cold storage and continue to wear cold-protective clothing in the cool room.
Gockel, Christine; Kolb, Peter M.; Werth, Lioba
2014-01-01
Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent. PMID:24788725
Gockel, Christine; Kolb, Peter M; Werth, Lioba
2014-01-01
Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent.
Johnson, Lacey; Tan, Shereen; Jenkins, Emily; Wood, Ben; Marks, Denese C
2018-04-01
Alternatives to room temperature storage of platelets (PLTs) are of interest to support blood banking logistics. The aim of this study was to compare the presence of biologic response modifiers (BRMs) in PLT concentrates stored under conventional room temperature conditions with refrigerated or cryopreserved PLTs. A three-arm pool-and-split study was carried out using buffy coat-derived PLTs stored in 30% plasma/70% SSP+. The three matched treatment arms were as follows: room temperature (20-24°C), cold (2-6°C), and cryopreserved (-80°C with DMSO). Liquid-stored PLTs were tested over a 21-day period, while cryopreserved PLTs were tested immediately after thawing and reconstitution in 30% plasma/70% SSP+ and after storage at room temperature. Coagulation factor activity was comparable between room temperature and cold PLTs, with the exception of protein S, while cryopreserved PLTs had reduced Factor (F)V and FVIII activity. Cold-stored PLTs retained α-granule proteins better than room temperature or cryopreserved PLTs. Cryopreservation resulted in 10-fold higher microparticle generation than cold-stored PLTs, but both groups contained significantly more microparticles than those stored at room temperature. The supernatant from both cold and cryopreserved PLTs initiated faster clot formation and thrombin generation than room temperature PLTs. Cold storage and cryopreservation alter the composition of the soluble fraction of stored PLTs. These differences in coagulation proteins, cytokines, and microparticles likely influence both the hemostatic capacity of the components and the auxiliary functions. © 2017 AABB.
Ambient temperature influences the neural benefits of exercise.
Maynard, Mark E; Chung, Chasity; Comer, Ashley; Nelson, Katharine; Tran, Jamie; Werries, Nadja; Barton, Emily A; Spinetta, Michael; Leasure, J Leigh
2016-02-15
Many of the neural benefits of exercise require weeks to manifest. It would be useful to accelerate onset of exercise-driven plastic changes, such as increased hippocampal neurogenesis. Exercise represents a significant challenge to the brain because it produces heat, but brain temperature does not rise during exercise in the cold. This study tested the hypothesis that exercise in cold ambient temperature would stimulate hippocampal neurogenesis more than exercise in room or hot conditions. Adult female rats had exercise access 2h per day for 5 days at either room (20 °C), cold (4.5 °C) or hot (37.5 °C) temperature. To label dividing hippocampal precursor cells, animals received daily injections of BrdU. Brains were immunohistochemically processed for dividing cells (Ki67+), surviving cells (BrdU+) and new neurons (doublecortin, DCX) in the hippocampal dentate gyrus. Animals exercising at room temperature ran significantly farther than animals exercising in cold or hot conditions (room 1490 ± 400 m; cold 440 ± 102 m; hot 291 ± 56 m). We therefore analyzed the number of Ki67+, BrdU+ and DCX+ cells normalized for shortest distance run. Contrary to our hypothesis, exercise in either cold or hot conditions generated significantly more Ki67+, BrdU+ and DCX+ cells compared to exercise at room temperature. Thus, a limited amount of running in either cold or hot ambient conditions generates more new cells than a much greater distance run at room temperature. Taken together, our results suggest a simple means by which to augment exercise effects, yet minimize exercise time. Copyright © 2015 Elsevier B.V. All rights reserved.
O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.
The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.
Instantaneous radioiodination of rose bengal at room temperature and a cold kit therefor
O'Brien, Jr., Harold A.; Hupf, Homer B.; Wanek, Philip M.
1981-01-01
The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free .sup.125 I.sup.- is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.
[Studies on the health standard for room temperature in cold regions].
Meng, Z L
1990-03-01
The microclimate of 205 rooms of single storey houses in four new rural residential districts in coastal and inland Shandong was monitored and studied the blood circulation of the finger, skin temperature, sweating function and other physiological indexes among 2,401 peasants. We interrogated their personal sensation to cold and warmth. The count was done by the application of thermal equilibrium index (TEI), predicted 4-hour Sweat Rate (P4SR) and the uncomfortable index. The standard room temperature is recommended as follows. In rural area in winter the appropriate room temperature is 14-16 degrees C, the comfortable room temperature is 16-20 degrees C, the lowest room temperature must not be below 14 degrees C. In summer the appropriate room temperature is 25-28 degrees C, the comfortable room temperature is 26-27 degrees C, the highest temperature must not be above 28 degrees C.
Johnson, Lacey; Tan, Shereen; Wood, Ben; Davis, April; Marks, Denese C
2016-07-01
Alternatives to room temperature storage of platelets (PLTs) may be beneficial to extend the limited shelf life and support transfusion logistics in rural and military areas. The aim of this study was to assess the morphologic, metabolic, and functional aspects of PLTs stored at room temperature or in refrigerated conditions or cryopreserved. A three-arm pool-and-split study was carried out using buffy coat-derived PLTs stored in 30% plasma/70% SSP+. The three matched treatment arms were room temperature stored (20-24°C), cold-stored (2-6°C), and cryopreserved (-80°C with dimethyl sulfoxide). Liquid-stored PLTs were tested over a 21-day period, while cryopreserved PLTs were examined immediately after thawing and after 6 and 24 hours of storage at room temperature. Cold-stored and cryopreserved PLTs underwent a significant shape change, although the cryopreserved PLTs appeared to recover from this during subsequent storage. Glycolytic metabolism was reduced in cold-stored PLTs, but accelerated in cryopreserved PLTs, while oxidative phosphorylation was negatively affected by both storage conditions. PLT aggregation was potentiated by cold storage and diminished by cryopreservation in comparison to room temperature-stored PLTs. Cold storage and cryopreservation resulted in faster clot formation (R-time; thromboelastography), which was associated with an increase in microparticles. Cold storage and cryopreservation of PLTs led to morphologic and metabolic changes. However, storage under these conditions appears to maintain or even enhance certain aspects of in vitro PLT function. © 2016 AABB.
Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi
2017-11-01
We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n = 7) and non-cold-sensitive (Control, n = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Sharma, Aruna; Muresanu, Dafin F; Lafuente, José Vicente; Sjöquist, Per-Ove; Patnaik, Ranjana; Ryan Tian, Z; Ozkizilcik, Asya; Sharma, Hari S
2018-01-01
The possibility that traumatic brain injury (TBI) occurring in a cold environment exacerbates brain pathology and oxidative stress was examined in our rat model. TBI was inflicted by making a longitudinal incision into the right parietal cerebral cortex (2 mm deep and 4 mm long) in cold-acclimatized rats (5 °C for 3 h daily for 5 weeks) or animals at room temperature under Equithesin anesthesia. TBI in cold-exposed rats exhibited pronounced increase in brain lucigenin (LCG), luminol (LUM), and malondialdehyde (MDA) and marked pronounced decrease in glutathione (GTH) as compared to identical TBI at room temperature. The magnitude and intensity of BBB breakdown to radioiodine and Evans blue albumin, edema formation, and neuronal injuries were also exacerbated in cold-exposed rats after injury as compared to room temperature. Nanowired delivery of H-290/51 (50 mg/kg) 6 and 8 h after injury in cold-exposed group significantly thwarted brain pathology and oxidative stress whereas normal delivery of H-290/51 was neuroprotective after TBI at room temperature only. These observations are the first to demonstrate that (i) cold aggravates the pathophysiology of TBI possibly due to an enhanced production of oxidative stress, (ii) and in such conditions, nanodelivery of antioxidant compound has superior neuroprotective effects, not reported earlier.
Design of the thermal insulating test system for doors and windows of buildings
NASA Astrophysics Data System (ADS)
Yu, Yan; Qi, Jinqing; Xu, Yunwei; Wu, Hao; Ou, Jinping
2011-04-01
Thermal insulating properties of doors and widows are important parameter to measure the quality of windows and doors. This paper develops the thermal insulating test system of doors and windows for large temperature difference in winter in north of China according to national standards. This system is integrated with temperature measurement subsystem, temperature control subsystem, the heating power measurement subsystem, and heat transfer coefficient calculated subsystem. The temperature measurement subsystem includes temperature sensor which is implemented by sixty-four thermocouple sensors to measure the key positions of cold room and hot room, and the temperature acquisition unit which adopts Agilent 34901A data acquisition card to achieve self-compensation and accurate temperature capture. The temperature control subsystem including temperature controller and compressor system is used to control the temperature between 0 degree to 20 degree for hot room and -20 degree to 0 degree for cold room. The hot room controller uses fuzzy control algorithm to achieve accurate control of temperature and the cold room controller firstly uses compressor to achieve coarse control and then uses more accurate temperature controller unit to obtain constant temperature(-20 degree). The heating power measurement is mainly to get the heat power of hot room heating devices. After above constant temperature environment is constructed, software of the test system is developed. Using software, temperature data and heat power data can be accurately got and then the heat transfer coefficient, representing the thermal insulating properties of doors and widows, is calculated using the standard formula. Experimental results show that the test system is simple, reliable and precise. It meets the testing requirements of national standard and has a good application prospect.
Numerical modeling of cold room's hinged door opening and closing processes
NASA Astrophysics Data System (ADS)
Carneiro, R.; Gaspar, P. D.; Silva, P. D.; Domingues, L. C.
2016-06-01
The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.
Seifert, John G; Frost, Jeremy; St Cyr, John A
2017-01-01
Breathing cold air can lead to bronchoconstriction and peripheral vasoconstriction, both of which could impact muscular performance by affecting metabolic demands during exercise. Successful solutions dealing with these physiological changes during exercise in the cold has been lacking; therefore, we investigated the influence of a heat and moisture exchange mask during exercise in the cold. There were three trial arms within this study: wearing the heat and moisture exchange mask during the rest periods in the cold, no-mask application during the rest periods in the cold, and a trial at room temperature (22°C). Eight subjects cycled in four 35 kJ sprint sessions with each session separated by 20 min rest period. Workload was 4% of body mass. Mean sprint times were faster with heat and moisture exchange mask and room temperature trial than cold, no-mask trial (133.8 ± 8.6, 134.9 ± 8.8, and 138.0 ± 8.4 s (p = 0.001)). Systolic blood pressure and mean arterial pressure were greater during the cold trial with no mask (15% and 13%, respectively), and heart rate was 10 bpm less during the third rest or recovery period during cold, no mask compared to the heat and moisture exchange mask and room temperature trials. Subjects demonstrated significant decreases in vital capacity and peak expiratory flow rate during the cold with no mask applied during the rest periods. These negative responses to cold exposure were alleviated by the use of a heat and moisture exchange mask worn during the rest intervals by minimizing cold-induced temperature stress on the respiratory system with subsequent maintenance of cardiovascular function.
Baldus, Sandra; Kluth, Karsten; Strasser, Helmut
2012-01-01
So far, it was unclear to what extent working in deep cold-storage depots has an influence on female order-pickers body core temperature and skin surface temperature considering different age groups. Physiological effects of order-picking in a chill room (+3°C) and cold store (-24°C) were examined on 30 female subjects (Ss), classified in two age groups (20- to 35- year-olds and 40- to 65-year-olds). The body core temperature was taken every 15 min at the tympanum and the skin surface temperature was recorded continuously at seven different positions. Working in the chill room induced a decrease of the body core temperature up to 0.5K in comparison to the value at the outset for both age groups which could be compensated by all Ss during the breaks. Working in the cold store caused a decline up to 1.1K for the younger Ss and 1.3K for the older Ss. A complete warming-up during the breaks was often not possible. Regarding the skin surface temperature, working in the chill room can be considered as unproblematic, whereas significantly lower temperatures at nose, fingers and toes, associated with substantial negative subjective sensations, were recorded while working in the cold store.
Elshoff, Jan-Peer; Timmermann, Lars; Schmid, Miriam; Arth, Christoph; Komenda, Michael; Brunnert, Marcus; Bauer, Lars
2013-12-01
Rotigotine transdermal patch is approved for the treatment of early and advanced idiopathic Parkinson's disease (PD) and moderate-to-severe idiopathic restless legs syndrome (RLS). A cold chain manufacturing and distribution process was temporarily implemented in 2008, as this reduced the crystal formation reported within patches stored at room temperature. In order to overcome the crystallization issue and meet EMA and FDA requirements, a new room temperature stable formulation was developed. The three studies reported here were conducted to determine whether the new room temperature stable patch demonstrated similar bioavailability and adhesiveness to the original and intermediate patches. Data are reported from three cross-over studies that compared the original, cold chain and room temperature stable patch. Two open-label bioequivalence studies investigated the 2 mg/24 h dosage in healthy individuals (SP951, n = 52 [Clinicaltrials.gov: NCT00881894]; SP0987, n = 50 [NCT01059903]) and a double-blind patch adhesiveness study investigated the 8 mg/24 h dosage in patients with PD (SP1066, n = 56 [NCT01338896]). Plasma concentration-time curves and geometric means for pharmacokinetic parameters were similar for the cold chain vs. original patch in SP951 (AUC(0-tz): 2.68 vs. 2.71 ng/mL*h; point estimate: 0.99 [90% confidence interval (CI): 0.91, 1.07]) (Cmax: 0.131 vs. 0.136 ng/mL; 0.96 [0.89, 1.04]) and for the room temperature stable vs. cold chain patch in SP0987 (AUC(0-tz): 4.51 vs. 4.87 ng/mL*h; 0.90 [0.84, 0.97]) (Cmax: 0.23 vs. 0.23 ng/mL; 0.95 [0.88, 1.02]). In both studies, 90% CIs for ratios of AUC(0-tz) and Cmax were within the bioequivalence acceptance range (0.8-1.25). In SP1066, overall median adhesiveness scores were similar for cold chain (0.5 [range: 0-4]) and room temperature stable (0 [0-4]) formulations. These results demonstrated bioequivalence and indicated similar adhesiveness of the approved room temperature stable rotigotine patch with the original and cold chain patches. Potential limitations include the enrolment of healthy volunteers in the bioequivalence studies, as these individuals were likely to be younger than the general PD or RLS population.
Cold Exposure Exacerbates the Development of Diabetic Polyneuropathy in the Rat
Kasselman, Lora J.; Veves, Aristidis; Gibbons, Christopher H.; Rutkove, Seward B.
2009-01-01
Diabetic polyneuropathy (DPN) and cold-induced nerve injury share several pathogenic mechanisms. This study explores whether cold exposure contributes to the development of DPN. Streptozotocin-induced diabetic rats and controls were exposed to a room temperature (23°C) or cold environment (10°C). H-reflex, tail and sciatic motor, and sensory nerve conduction studies were performed. Analyses of sural nerve, intraepidermal nerve fibers, and skin and nerve nitrotyrosine ELISAs were performed. Diabetic animals exposed to a cold environment had an increased H-reflex four weeks earlier than diabetic room temperature animals (P = .03). Cold-exposed diabetic animals also had greater reduction in motor conduction velocities at 20 weeks (P = .017), decreased skin nerve fiber density (P = .037), and increased skin nitrotyrosine levels (P = .047). Cold exposure appears to hasten the development of DPN in the rat STZ model of diabetes. These findings support that further study into the relationship between ambient temperature and DPN is warranted. PMID:20130819
Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei-dong
The room temperature creep behavior and deformation mechanisms of a Ti–Nb–Ta–Zr–O alloy, which is also called “gum metal”, were investigated with the nanoindentation creep and conventional creep tests. The microstructure was observed with electron backscattered diffraction analysis (EBSD) and transmission electron microscopy (TEM). The results show that the creep stress exponent of the alloy is sensitive to cold deformation history of the alloy. The alloy which was cold swaged by 85% shows high creep resistance and the stress exponent is approximately equal to 1. Microstructural observation shows that creep process of the alloy without cold deformation is controlled by dislocationmore » mechanism. The stress-induced α' martensitic phase transformation also occurs. The EBSD results show that the grain orientation changes after the creep tests, and thus, the creep of the cold-worked alloy is dominated by the shear deformation of giant faults without direct assistance from dislocations. - Highlights: •Nanoindentation was used to investigate room temperature creep behavior of gum metal. •The creep stress exponent of gum metal is sensitive to the cold deformation history. •The creep stress exponent of cold worked gum metal is approximately equal to 1. •The creep of the cold-worked gum metal is governed by the shear deformation of giant faults.« less
Effect of ambient temperature on human pain and temperature perception.
Strigo, I A; Carli, F; Bushnell, M C
2000-03-01
Animal studies show reduced nociceptive responses to noxious heat stimuli and increases in endogenous beta-endorphin levels in cold environments, suggesting that human pain perception may be dependent on ambient temperature. However, studies of changes in local skin temperature on human pain perception have yielded variable results. This study examines the effect of both warm and cool ambient temperature on the perception of noxious and innocuous mechanical and thermal stimuli. Ten subjects (7 men and 3 women, aged 20-23 yr) used visual analog scales to rate the stimulus intensity, pain intensity, and unpleasantness of thermal (0-50 degrees C) and mechanical (1.2-28.9 g) stimuli applied on the volar forearm with a 1-cm2 contact thermode and von Frey filaments, respectively. Mean skin temperatures were measured throughout the experiment by infrared pyrometer. Each subject was tested in ambient temperatures of 15 degrees C (cool), 25 degrees C (neutral), and 35 degrees C (warm) on separate days, after a 30-min acclimation to the environment. Studies began in the morning after an 8-h fast. Mean skin temperature was altered by ambient temperature (cool room: 30.1 degrees C; neutral room: 33.4 degrees C; warm room: 34.5 degrees C; P < 0.0001). Ambient temperature affected both heat (44-50 degrees C) and cold (25-0 degrees C) perception (P < 0.01). Stimulus intensity ratings tended to be lower in the cool than in the neutral environment (P < 0.07) but were not different between the neutral and warm environments. Unpleasantness ratings revealed that cold stimuli were more unpleasant than hot stimuli in the cool room and that noxious heat stimuli were more unpleasant in a warm environment. Environmental temperature did not alter ratings of warm (37 and 40 degrees C) or mechanical stimuli. These results indicate that, in humans, a decrease in skin temperature following exposure to cool environments reduces thermal pain. Suppression of Adelta primary afferent cold fiber activity has been shown to increase cold pain produced by skin cooling. Our current findings may represent the reverse phenomenon, i.e., a reduction in thermal nociceptive transmission by the activation of Adelta cutaneous cold fibers.
Cold Temperatures Increase Cold Hardiness in the Next Generation Ophraella communa Beetles
Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao
2013-01-01
The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%–4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R 0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates. PMID:24098666
Canaday, D C; Salak-Johnson, J L; Visconti, A M; Wang, X; Bhalerao, K; Knox, R V
2013-03-01
The effects of room temperature and light intensity before breeding and into early gestation were evaluated on the reproductive performance and well-being of gilts housed individually in crates. In eight replicates, estrus was synchronized in mature gilts (n = 198) and after last feeding of Matrix were randomly assigned to a room temperature of 15°C (COLD), 21°C (NEUTRAL), or 30°C (HOT) and a light intensity of 11 (DIM) or 433 (BRIGHT) lx. Estrous detection was performed daily and gilts inseminated twice. Blood samples were collected before and after breeding for determination of immune measures and cortisol concentrations. Gilt ADFI, BW, and body temperature were measured. On d 30 postbreeding, gilts were slaughtered to recover reproductive tracts to evaluate pregnancy and litter characteristics. There were no temperature × light intensity interactions for any response variable. Reproductive measures of follicle development, expression of estrus, ovulation rate, pregnancy rate (83.2%), litter size (14.3 ± 0.5), and fetal measures were not affected by temperature or lighting (P > 0.10). Gilts in COLD (37.6°C) had a lower (P < 0.05) rectal temperature than those in NEUTRAL (38.2°C) and HOT (38.6 ± 0.04°C). Both BW gain and final BW were greater (P < 0.0001) for gilts kept in HOT than those in NEUTRAL or COLD environments. Cortisol was greater (P < 0.01) for gilts kept in COLD compared with those kept in the HOT room. Gilts housed in the HOT environment made more postural changes (P < 0.05) than did those kept in either COLD or NEUTRAL temperatures. Gilts kept in the HOT temperature spent more total time lying and more time lying ventrally compared with those gilts housed in the NEUTRAL or COLD rooms. Total white blood cells and the percentage of neutrophils as well as neutrophil-to-lymphocyte ratio were all influenced (P < 0.05) by temperature but there was no effect (P > 0.10) of light or interaction with temperature on other immune cells or measures. These results indicate that temperatures in the range of 15 to 30°C or light intensity at 11 to 433 lx do not impact reproduction during the follicular phase and into early gestation for mature gilts housed in gestation crates. However, room temperature does impact physiological, behavioral, and immune responses of mature gilts and should be considered as a potential factor that may influence gilt well-being during the first 30 d postbreeding.
Barreto, Tainá A.; Andrade, Sonalle C. A.; Maciel, Janeeyre F.; Arcanjo, Narciza M. O.; Madruga, Marta S.; Meireles, Bruno; Cordeiro, Ângela M. T.; Souza, Evandro L.; Magnani, Marciane
2016-01-01
The efficacy of an edible chitosan coating (CHI; 4 mg/mL) and Origanum vulgare L. essential oil (OVEO; 1.25 μL/mL) for maintaining the quality of cherry tomato fruit during storage at room (25°C; 12 days) and cold (12°C; 24 days) temperatures was assessed. CHI and OVEO in combination showed in vitro fungicidal effects against R. stolonifer and Aspergillus niger. CHI-OVEO coating reduced the incidence of black mold and soft rot caused by these fungi in artificially contaminated cherry tomato fruit during storage at both temperatures. CHI-OVEO coating delayed the appearance of the first visible signs of black mold and soft rot in artificially contaminated cherry tomato fruit stored at room temperature by 6 days and by more than 9 days in those stored at cold temperature. At the end of storage at room and cold temperature fruit coated with CHI-OVEO showed higher firmness (>2 N/mm) and lower weight loss (>2%) compared to uncoated tomato fruit. CHI-OVEO coating delayed the decrease of lycopene, ascorbic citric acid, glucose and fructose during the storage time assessed at room or cold temperatures. The increase of catechin, myricetin, caffeic and syringic acids was higher (1–9 mg/g) in cherry tomato fruit coated with CHI-OVEO compared to uncoated fruit during the storage at both temperatures studied. CHI-OVEO coating is a feasible treatment for maintaining the storage quality of cherry tomato fruit. PMID:27877156
Rabadán, Adrián; Álvarez-Ortí, Manuel; Pardo, José Emilio; Alvarruiz, Andrés
2018-09-01
Chemical composition and stability parameters of three cold-pressed nut oils (almond, walnut and pistachio) were monitored for up to 16 months of storage at 5 °C, 10 °C, 20 °C and room temperature. Freshly pressed pistachio oil had lower peroxide value than almond oil and higher induction period than almond and walnut oils, indicating a higher stability. The peroxide values increased faster at room temperature than at lower temperatures during the storage time, and the highest increase was for pistachio oil stored at room temperature exposed to daylight. The induction period decreased for all three nut oils during the storage time, regardless of the storage conditions. Pistachio oil remained the most stable oil at the end of the storage time, followed by almond oil. The percentage of polyunsaturated fatty acids decreased slightly throughout the storage. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ohta, Hiromi; Maruyama, Megumi; Tanabe, Yoko; Hara, Toshiko; Nishino, Yoshihiko; Tsujino, Yoshio; Morita, Eishin; Kobayashi, Shotai; Shido, Osamu
2008-05-01
We investigated the effects of redecoration of a hospital isolation room with natural materials on thermoregulatory, cardiovascular and hormonal parameters of healthy subjects staying in the room. Two isolation rooms with almost bilaterally-symmetrical arrangements were used. One room (RD) was redecorated with wood paneling and Japanese paper, while the other (CN) was unchanged (with concrete walls). Seven healthy male subjects stayed in each room for over 24 h in the cold season. Their rectal temperature (Tre) and heart rate, and the room temperature (Ta) and relative humidity were continuously measured. Arterial blood pressures, arterial vascular compliance, thermal sensation and thermal comfort were measured every 4 h except during sleeping. Blood was sampled after the stay in the rooms. In RD, Ta was significantly higher by about 0.4°C and relative humidity was lower by about 5% than in CN. Diurnal Tre levels of subjects in RD significantly differed from those in CN, i.e., Tres were significantly higher in RD than in CN especially in the evening. In RD, the subjects felt more thermally-comfortable than in CN. Redecoration had minimal effects on cardiovascular parameters. Plasma levels of catecholamines and antidiuretic hormone did not differ, while plasma cortisol level was significantly lower after staying in RD than in CN by nearly 20%. The results indicate that, in the cold season, redecoration with natural materials improves the thermal environment of the room and contributes to maintaining core temperature of denizens at preferable levels. It also seems that redecoration of room could attenuate stress levels of isolated subjects.
Improved Comfort | Efficient Windows Collaborative
temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior
Investigations of Heat Transfer in Vacuum between Room Temperature and 80 K
NASA Astrophysics Data System (ADS)
Hooks, J.; Demko, J. A.; E Fesmire, J.; Matsumoto, T.
2017-12-01
The heat transfer between room temperature and 80 K is controlled using various insulating material combinations. The modes of heat transfer are well established to be conduction and thermal radiation when in a vacuum. Multi-Layer Insulation (MLI) in a vacuum has long been the best approach. Typically this layered system is applied to the cold surface. This paper investigates the application of MLI to both the cold and warm surface to see whether there is a significant difference. In addition if MLI is on the warm surface, the cold side of the MLI may be below the critical temperature of some high temperature superconducting (HTS) materials. It has been proposed that HTS materials can serve to block thermal radiation. An experiment is conducted to measure this effect. Boil-off calorimetry is the method of measuring the heat transfer.
Peng, G H
1990-05-01
Experiments were made to ascertain the effects of covering windowpane with plastic film in Hulunbeir region on microclimate and sunshine intensity in the living room. It was found that a good regulative effect on the room microclimate resulted by covering the windowpane with plastic film in the cold region. The room temperature rose distinctly. No evident effects were found on ultra-violet radiation and illumination. But the concentration of carbon dioxide increased to some extent. Attention should be paid to ventilation of the room.
Martinez-Tellez, Borja; Sanchez-Delgado, Guillermo; Acosta, Francisco M; Alcantara, Juan M A; Boon, Mariëtte R; Rensen, Patrick C N; Ruiz, Jonatan R
2017-09-05
Cold exposure is necessary to activate human brown adipose tissue (BAT), resulting in heat production. Skin temperature is an indirect measure to monitor the body's reaction to cold. The aim of this research was to study whether the most used equations to estimate parameters of skin temperature in BAT-human studies measure the same values of temperature in young lean men (n = 11: 23.4 ± 0.5 years, fat mass: 19.9 ± 1.2%). Skin temperature was measured with 26 ibuttons at 1-minute intervals in warm and cold room conditions. We used 12 equations to estimate parameters of mean, proximal, and distal skin temperature as well as skin temperature gradients. Data were analysed with Temperatus software. Significant differences were found across equations to measure the same parameters of skin temperature in warm and cold room conditions, hampering comparison across studies. Based on these findings, we suggest to use a set of 14 ibuttons at anatomical positions reported by ISO STANDARD 9886:2004 plus five ibuttons placed on the right supraclavicular fossa, right middle clavicular bone, right middle upper forearm, right top of forefinger, and right upper chest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibunnisa; Mathur, P.B.; Bano, Z.
1971-11-01
Effect of cobalt-60 gamma rays at a dose-rate of 6 krad on the storage behavior of garlic bulbs packaged individually and in lots of eight in perforated polyethylene bags of 200 gauge was investigated at room temperature (75 to 90 deg F) and cold temperature (32 to 35 deg F) under relative humidity 85 to 90%. Irradiation was immediately followed by an increase in the rate of respiration in the garlic bulbs followed by a decrease in the rate of respiration towards the later part of the storage period. At room temperature, sprouting was inhibited to a considerable extent, whilemore » in cold storage after a storage period of 9 months sprouting was completely prevented. The percentage sprouting was more in large size garlic bulbs than in small sized ones. For extension of storage life, packaging singly in polyethylene bags, selection of small sized garlic bulbs, storage at 32 to 35 deg F and irradiation with 6 krad of cobalt 60 gamma rays are recommended. (INIS)« less
Yang, Ying; Zhu, Zai-Biao; Guo, Qiao-Sheng; Miao, Yuan-Yuan; Ma, Hong-Liang; Yang, Xiao-Hua
2015-01-01
The effect of low temperature storage on dormancy breaking, sprouting and growth after planting of Tulipa edulis was studied. The results showed that starch content and activity of amylases significantly decreased during 10 weeks of cold storage, soluble protein content raised at first then decreased, and the peak appeared at the 6th week. However, total soluble sugar content which in- creased slowly at first than rose sharply and reducing sugar content increased during the storage duration. The bulbs with cold storage treatment rooted in the 6th week, which was about 2 weeks earlier than room temperature storage, but there were less new roots in the late period of storage. After stored at a low temperature, bud lengths were longer than that with room temperature treatment. Cold storage treatment could promote earlier emergence, shorten germination time, prolong growth period and improve the yield of bulb, but rarely affect the emergence rate. It was not beneficial to flowering and fruiting. The results indicated that 6-8 weeks of cold storage was deemed to be the key period of dormancy breaking preliminary.
Heintges, Gaël H L; Leenaers, Pieter J; Janssen, René A J
2017-07-14
The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of alternating DPP and oligothiophene units, are substituted with linear and second position branched alkyl side chains. For the polymer-fullerene blends that can be processed at room temperature, hot processing does not enhance the power conversion efficiencies compared to cold processing because the increased solubility at elevated temperatures results in the formation of wider polymer fibres that reduce charge generation. Instead, hot processing seems to be advantageous when cold processing is not possible due to a limited solubility at room temperature. The resulting morphologies are consistent with a nucleation-growth mechanism for polymer fibres during drying of the films.
Super-formable pure magnesium at room temperature.
Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; H J Davies, Chris; Birbilis, Nick
2017-10-17
Magnesium, the lightest structural metal, is difficult to form at room temperature due to an insufficient number of deformation modes imposed by its hexagonal structure and a strong texture developed during thermomechanical processes. Although appropriate alloying additions can weaken the texture, formability improvement is limited because alloying additions do not fundamentally alter deformation modes. Here we show that magnesium can become super-formable at room temperature without alloying. Despite possessing a strong texture, magnesium can be cold rolled to a strain at least eight times that possible in conventional processing. The resultant cold-rolled sheet can be further formed without cracking due to grain size reduction to the order of one micron and inter-granular mechanisms becoming dominant, rather than the usual slip and twinning. These findings provide a pathway for developing highly formable products from magnesium and other hexagonal metals that are traditionally difficult to form at room temperature.Replacing steel or aluminium vehicle parts with magnesium would result in reduced emissions, but shaping magnesium without cracking remains challenging. Here, the authors successfully extrude and roll textured magnesium into ductile foil at low temperatures by activating intra-granular mechanisms.
Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels
NASA Technical Reports Server (NTRS)
Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.
1983-01-01
The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.
Peake, Jonathan; Peiffer, Jeremiah J; Abbiss, Chris R; Nosaka, Kazunori; Okutsu, Mitsuharu; Laursen, Paul B; Suzuki, Katsuhiko
2008-03-01
We investigated the influence of rectal temperature on the immune system during and after exercise. Ten well-trained male cyclists completed exercise trials (90 min cycling at 60% VO(2max) + 16.1 - km time trial) on three separate occasions: once in 18 degrees C and twice in 32 degrees C. Twenty minutes after the trials in 32 degrees C, the cyclists sat for approximately 20 min in cold water (14 degrees C) on one occasion, whereas on another occasion they sat at room temperature. Rectal temperature increased significantly during cycling in both conditions, and was significantly higher after cycling in 32 degrees C than in 18 degrees C (P < 0.05). Leukocyte counts increased significantly during cycling but did not differ between the conditions. The concentrations of serum interleukin (IL)-6, IL-8 and IL-10, plasma catecholamines, granulocyte-colony stimulating factor, myeloperoxidase and calprotectin increased significantly following cycling in both conditions. The concentrations of serum IL-8 (25%), IL-10 (120%), IL-1 receptor antagonist (70%), tumour necrosis factor-alpha (17%), plasma myeloperoxidase (26%) and norepinephrine (130%) were significantly higher after cycling in 32 degrees C than in 18 degrees C. During recovery from exercise in 32 degrees C, rectal temperature was significantly lower in response to sitting in cold water than at room temperature. However, immune changes during 90 min of recovery did not differ significantly between sitting in cold water and at room temperature. The greater rise in rectal temperature during exercise in 32 degrees C increased the concentrations of serum IL-8, IL-10, IL-1ra, TNF-alpha and plasma myeloperoxidase, whereas the greater decline in rectal temperature during cold water immersion after exercise did not affect immune responses.
Energy-filtered cold electron transport at room temperature.
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-09-10
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.
Practical and efficient magnetic heat pump
NASA Technical Reports Server (NTRS)
Brown, G. V.
1978-01-01
Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.
Diaw, Mouhamadou; Salgado, Renato M; Canesin, Heloísa S; Gridley, Nell; Hinrichs, Katrin
2018-04-15
Intracytoplasmic sperm injection (ICSI) is an important tool for equine embryo production in both clinical and research settings. In clinical ICSI programs, immature equine cumulus-oocyte complexes (COCs) are often collected at the mare's location and shipped to the ICSI laboratory. To simplify shipment and aid scheduling of subsequent procedures, COCs can be held overnight at room temperature (∼22 °C) before placement into maturation culture, with no detrimental effect on meiotic or developmental competence. A recent study indicated that it might be possible to hold COCs overnight at cold (∼4 °C) temperatures. If so, this might allow longer holding periods that would ease shipping requirements. In this study, we compared oocyte maturation rates, as well as cleavage and blastocyst rates after ICSI, for COCs held at either room or cold temperatures overnight before the onset of in vitro maturation. In Exp. 1, COCs were shipped overnight in a commercial embryo holding medium, ViGRO (Vg), in insulated containers designed to hold at either room temperature (RT, ∼22 °C) or cold temperatures (Cold, ∼7 °C). Subsequent rates of in vitro maturation, cleavage and blastocyst formation were significantly higher in the RT treatment (39%, 90% and 41%, respectively) than in the Cold treatment (23%, 60% and 17%, respectively, P < .05). In Exp. 2, we compared Vg medium with a second commercial embryo holding medium, SYNGRO (Sy). There was no significant difference between Vg and Sy groups in any evaluated parameter within either RT or Cold treatments. Within each medium group and for both media combined, the rates of in vitro maturation, cleavage and blastocyst formation were significantly higher in the RT treatment (42%, 81% and 42%, respectively for the combined media) than in the Cold treatment (29%, 54% and 10%, respectively for the combined media, P < .05). We conclude that shipment of immature equine COCs at cold temperatures (∼7 °C) is detrimental to subsequent in vitro maturation and embryo production. Copyright © 2018 Elsevier Inc. All rights reserved.
Dufresne, Jaimie; Florentinus-Mefailoski, Angelique; Ajambo, Juliet; Ferwa, Ammara; Bowden, Peter; Marshall, John
2017-01-01
The tryptic peptides from ice cold versus room temperature plasma were identified by C18 liquid chromatography and micro electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Samples collected on ice showed low levels of endogenous tryptic peptides compared to the same samples incubated at room temperature. Plasma on ice contained peptides from albumin, complement, and apolipoproteins and others that were observed by the X!TANDEM and SEQUEST algorithms. In contrast to ice cold samples, after incubation at room temperature, greater numbers of tryptic peptides from well characterized plasma proteins, and from cellular proteins were observed. A total of 583,927 precursor ions and MS/MS spectra were correlated to 94,669 best fit peptides that reduced to 22,287 correlations to the best accession within a gene symbol and to 7174 correlations to at least 510 gene symbols with ≥ 5 independent MS/MS correlations (peptide counts) that showed FDR q-values ranging from E-9 (i.e. FDR = 0.000000001) to E-227. A set of 528 gene symbols identified by X!TANDEM and SEQUEST including C4B showed ≥ fivefold variation between ice cold versus room temperature incubation. STRING analysis of the protein gene symbols observed from endogenous peptides in normal plasma revealed an extensive protein-interaction network of cellular factors associated with cell signalling and regulation, the formation of membrane bound organelles, cellular exosomes and exocytosis network proteins. Taken together the results indicated that a pool of cellular proteins, or protein complexes, in plasma are apparently not stable and degrade soon after incubation at room temperature.
DOT National Transportation Integrated Search
1966-04-01
The effects of dieldrin poisoning on the liver were compared in cold-adapted rats and normal rats. One-fourth of the cold-adapted rats succumbed to the poisoning while all of the normal rats survived. There were minimal fat deposits in both groups, b...
... hives, including hives caused by exposure to cold temperatures and by rubbing the skin. Cyproheptadine is also ... of reach of children. Store it at room temperature and away from excess heat and moisture (not ...
Postharvest conservation of the tuberous roots of Pachyrhizus Ahipa (Wedd) Parodi.
Mussury, Rosilda M; Scalon, Silvana P Q; Silva, Magaiver A; Silva, Tatiane F; Gomes, Hellen; Gassi, Rosimeire
2013-01-01
This paper aimed to evaluate the effects of storage periods on the conservation of Pachyrhizus ahipa roots at different temperatures and packaging materials. The roots were harvested, washed, packed in PVC, plastic bags, without wrappings (control) and stored in polystyrene trays in refrigerators, or cold chambers, or at room temperature. Total titratable acidity (TTA), total soluble solids (TSS), pH, as well as their ash, lipid, total carbohydrate and protein (dry basis) contents were analyzed. The lowest loss of root fresh weight was observed in the cold chamber and plastic bags. The TTA remained higher among roots stored in the cold chamber and in PVC packaging. The lowest TSS contents were observed for roots stored in the cold chamber, and these did not vary among the packing materials. The average carbohydrate content percentage for all treatments was 84.9%. The percentage of lipids was highest in roots stored at room temperature while protein and ash contents were highest in roots under refrigeration. The best storage conditions for roots are plastic bags packaging in a cold chamber, with the roots retaining appropriate quality for commercialization for up to 30 days.
Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.
Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin
2017-05-10
Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.
Energy-filtered cold electron transport at room temperature
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-01-01
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839
A cold ejector for closed-cycle helium refrigerators
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Daggett, D. L.
1987-01-01
The test results are presented of an initial cold helium ejector design that can be installed on a closed cycle refrigerator to provide refrigeration at temperatures below 4.2 K. The ejector, test apparatus, instrumentation, and test results are described. Tests were conducted both at room temperature and at cryogenic temperatures to provide operational experience with the ejector as well as for future use in the subsequent design of an ejector that will provide refrigeration at temperatures below 3 K.
Heat and cold acclimation in helium-cold hypothermia in the hamster.
NASA Technical Reports Server (NTRS)
Musacchia, X. J.
1972-01-01
A study was made of the effects of acclimation of hamsters to high (34-35 C) and low (4-5 C) temperatures for periods up to 6 weeks on the induction of hypothermia in hamsters. Hypothermia was achieved by exposing hamsters to a helox mixture of 80% helium and 20% oxygen at 0 C. Hypothermic induction was most rapid (2-3 hr) in heat-acclimated hamsters and slowest (6-12 hr) in cold-acclimated hamsters. The induction period was intermediate (5-8 hr) in room temperature nonacclimated animals (controls). Survival time in hypothermia was relatable to previous temperature acclimations. The hypothesis that thermogenesis in cold-acclimated hamsters would accentuate resistance to induction of hypothermia was substantiated.
The Work Softening Behavior of Pure Mg Wire during Cold Drawing.
Sun, Liuxia; Bai, Jing; Xue, Feng; Chu, Chenglin; Meng, Jiao
2018-04-13
We performed multiple-pass cold drawing for pure Mg wire which showed excellent formability (~138% accumulative true strain) at room temperature. Different from the continuous work hardening occurring during cold drawing of Mg alloy wires, for pure Mg, an initially rapid increase in hardness and strength was followed by significant work softening and finally reached a steady-state level, approximately 40~45 HV. The work softening can be attributed to the dynamic recovery and recrystallization of pure Mg at room temperature. Meanwhile, an abrupt change in texture component also was detected with the transition from work hardening to softening in the strain range of 28~34%. During the whole drawing, the strongest texture component gradually transformed from as-extruded basal to <10 1 ¯ 0> fiber (~28% accumulative true strain), and then rapidly returned to the weak basal texture.
Cold Multiphoton Matrix Assisted Laser Desorption/Ionization (MALDI)
NASA Astrophysics Data System (ADS)
Harris, Peter; Cooke, William; Tracy, Eugene
2008-05-01
We present evidence of a cold multiphoton MALDI process occurring at a Room Temperature Ionic Liquid (RTIL)/metal interface. Our RTIL, 1-Butyl-3-methylimidazolium hexafluorophosphate, remains a stable liquid at room temperatures, even at pressures lower than 10-9 torr. We focus the 2^nd harmonic of a pulsed (2ns pulse length) Nd:YAG laser onto a gold grid coated with RTIL to generate a cold (narrow velocity spread) ion source with temporal resolution comparable to current MALDI ion sources. Unlike conventional MALDI, we believe multiphoton MALDI does not rely on collisional ionization within the ejection plume, and thus produces large signals at laser intensities just above threshold. Removing the collisional ionization process allow us to eject material from smaller regions of a sample, enhancing the suitability of multiphoton MALDI as an ion imaging technique.
2015-12-17
temperature . New device architecture that utilizes cold-electron transport for ultra-low energy consumption electronics has been designed in a configuration...the oxygen has also been found important for the SiC>2 sputter deposition. The sputter was carried out at room temperature . Our optimized process...have been pursued for two electronic devices, 1) room- temperature single-electron transistors, and 2) ultralow energy consumption transistors. For
Protection of Pyruvate,Pi Dikinase from Maize against Cold Lability by Compatible Solutes 1
Krall, John P.; Edwards, Gerald E.; Andreo, Carlos S.
1989-01-01
Most C4 species are chilling sensitive and certain enzymes like pyruvate,Pi dikinase of the C4 pathway are also cold labile. The ability of cations and compatible solutes to protect maize (Zea mays) dikinase against cold lability was examined. The enzyme in desalted extracts at pH 8 from preilluminated leaves could be protected against cold lability (at 0°C) by the divalent cations Mn2+, Mg2+, and Ca2+. There was substantial protection by sulfate based salts but little protection by chloride based salts of potassium or ammonium (concentration 250 millimolar). The degree of protection against cold lability under limiting MgCl2 (5 millimolar) was pH sensitive (maximum protection at pH 8), but independent of ionic strength (up to 250 millimolar by addition of KCl). In catalysis Mg2+ is required and Mn2+ could not substitute as a cofactor. Several compatible solutes reduced or prevented the cold inactivation of dikinase (in desalted extracts and the partially purified enzyme), including glycerol, proline, glycinebetaine and trimethylamine-N-oxide (TMAO). TMAO and Mg2+ had an additive effect in protecting dikinase against cold inactivation. TMAO could largely substitute for the divalent cation and addition of TMAO during cold treatment prevented further inactivation. Cold inactivation was partially reversed by incubation at room temperature; with addition of TMAO reversal was complete. The temperature dependence of inactivation at pH 8 and 3 millimolar MgCl2 was evaluated by incubation at 2 to 17°C for 45 minutes, followed by assay at room temperature. At preincubation temperatures below 11°C there was a progressive inactivation which could be prevented by TMAO (450 millimolar). The results are discussed relative to possible effects of the solutes on the quaternary structure of this enzyme, which is known to dissociate at low temperatures. PMID:16666527
Guan, Mingzhi; Wang, Xingzhe; Zhou, Youhe
2015-01-01
During design and winding of superconducting magnets at room temperature, a pre-tension under different rate is always applied to improve the mechanical stability of the magnets. However, an inconsistency rises for superconductors usually being sensitive to strain and oversized pre-stress which results in degradation of the superconducting composites' critical performance at low temperature. The present study focused on the effects of the cold-treatment and strain-rate of tension deformation on mechanical properties of NbTi/Cu superconducting composite wires. The samples were immersed in a liquid nitrogen (LN2) cryostat for the adiabatic cold-treatment, respectively with 18-hour, 20-hour, 22-hour and 24-hour. A universal testing machine was utilized for tension tests of the NbTi/Cu superconducting composite wires at room temperature; a small-scale extensometer was used to measure strain of samples with variable strain-rate. The strength, elongation at fracture and yield strength of pre-cold-treatment NbTi/Cu composite wires were drawn. It was shown that, the mechanical properties of the superconducting wires are linearly dependent on the holding time of cold-treatment at lower tensile strain-rate, while they exhibit notable nonlinear features at higher strain-rate. The cold-treatment in advance and the strain-rate of pre-tension demonstrate remarkable influences on the mechanical property of the superconducting composite wires.
Wire and Cable Cold Bending Test
NASA Technical Reports Server (NTRS)
Colozza, Anthony
2010-01-01
One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.
Protracted effects of chronic stress on serotonin-dependent thermoregulation.
Natarajan, Reka; Northrop, Nicole A; Yamamoto, Bryan K
2015-01-01
Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. The body temperature is controlled in part, by the medial preoptic area (mPOA) of the hypothalamus. To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress (CUS) paradigm produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 d of CUS. Four days after the last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10 °C were recorded. The CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that the CUS induced changes to the 5HTergic system alter mPOA function in thermoregulation. These findings help us to explain the mechanisms underlying chronic stress-induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed.
Protracted effects of chronic stress on serotonin dependent thermoregulation
Natarajan, Reka; Northrop, Nicole A.; Yamamoto, Bryan K.
2016-01-01
Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. Body temperature is controlled in part, by the medial preoptic area of the hypothalamus (mPOA). To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress paradigm (CUS) produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 days of CUS. Four days after last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10°C were recorded. CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that CUS induced changes to the 5HTergic system alters mPOA function in thermoregulation. These findings help explain mechanisms underlying chronic stress induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed. PMID:26414686
Hostler, David; Reis, Steven E; Bednez, James C; Kerin, Sarah; Suyama, Joe
2010-01-01
Background Thermal protective clothing (TPC) worn by firefighters provides considerable protection from the external environment during structural fire suppression. However, TPC is associated with physiological derangements that may have adverse cardiovascular consequences. These derangements should be treated during on-scene rehabilitation periods. Objective The present study examined heart rate and core temperature responses during the application of four active cooling devices, currently being marketed to the fire service for on-scene rehab, and compared them to passive cooling in a moderate temperature (approximately 24°C) and to an infusion of cold (4°C) saline. Methods Subjects exercised in TPC in a heated room. Following an initial exercise period (BOUT 1) the subjects exited the room, removed TPC, and for 20 minutes cooled passively at room temperature, received an infusion of cold normal saline, or were cooled by one of four devices (fan, forearm immersion in water, hand cooling, water perfused cooling vest). After cooling, subjects donned TPC and entered the heated room for another 50-minute exercise period (BOUT 2). Results Subjects were not able to fully recover core temperature during a 20-minute rehab period when provided rehydration and the opportunity to completely remove TPC. Exercise duration was shorter during BOUT 2 when compared to BOUT 1 but did not differ by cooling intervention. The overall magnitude and rate of cooling and heart rate recovery did not differ by intervention. Conclusions No clear advantage was identified when active cooling devices and cold intravenous saline were compared to passive cooling in a moderate temperature after treadmill exercise in TPC. PMID:20397868
Begum, Shahanara; Shibagaki, Masaki; Furusawa, Osamu; Nakaba, Satoshi; Yamagishi, Yusuke; Yoshimoto, Joto; Jin, Hyun-O; Sano, Yuzou; Funada, Ryo
2012-01-01
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2-3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.
Response of Esophagus to High and Low Temperatures in Patients With Achalasia
Ren, Yutang; Fang, Xiucai; Zhu, Liming; Sun, Xiaohong; Wang, Zhifeng; Wang, Ruifeng; Wei, Zhao; Wen, Ping; Xin, Haiwei; Chang, Min
2012-01-01
Background/Aims Achalasia patients would feel exacerbated dysphagia, chest pain and regurgitation when they drink cold beverages or eat cold food. But these symptoms would relieve when they drink hot water. Reasons are unknown. Methods Twelve achalasia patients (mean age, 34 ± 10 years; F:M, 3:9) who never had any invasive therapies were chosen from Peking Union Medical College Hospital. They were asked to fill in the questionnaire on eating habits including food temperature and related symptoms and to receive high-resolution manometry examination. The exam was done in 2 separated days, at swallowing room temperature (25℃) then hot (50℃) water, and at room temperature (25℃) then cold (2℃) water, respectively. Parameters associated with esophageal motility were analyzed. Results Most patients (9/12) reported discomfort when they ate cold food. All patients reported no additional discomfort when they ate hot food. Drinking hot water was effective in 5/8 patients who ever tried to relieve chest pain attacks. On manometry, cold water increased lower esophageal sphincter (LES) resting pressure (P = 0.003), and prolonged the duration of esophageal body contraction (P = 0.002). Hot water decreased LES resting pressure and residue pressure during swallow (P = 0.008 and P = 0.002), increased LES relaxation rate (P = 0.029) and shortened the duration of esophageal body contraction (P = 0.003). Conclusions Cold water could increase LES resting pressure, prolong the contraction duration of esophageal body, and exacerbate achalasia symptoms. Hot water could reduce LES resting pressure, assist LES relaxation, shorten the contraction duration of esophageal body and relieve symptoms. Thus achalasia patients are recommended to eat hot and warm food and avoid cold food. PMID:23105999
Ozaki, H; Nagai, Y; Tochihara, Y
2001-04-01
We evaluated human physiological responses and the performance of manual tasks during exposure to severe cold (-25 degrees C) at night (0300-0500 hours) and in the afternoon (1500-1700 hours). Thirteen male students wearing standard cold protective clothing occupied a severely cold room (-25 degrees C) for 20 min, and were then transferred to a cool room (10 degrees C) for 20 min. This pattern of exposure was repeated three times, for a total time of exposure to extreme cold of 60 min. The experiments were started either at 1500 hours or 0300 hours and measurements of rectal temperature, skin temperature, blood pressure, performance in a counting task, hand tremor, and subjective responses were made in each condition. At the end of the experiment at night the mean decrease in rectal temperature [0.68 (SEM 0.04) degree C] was significantly greater than that at the end of the experiment in the afternoon [0.55 (SEM 0.08) degree C, P < 0.01]. After the second cold exposure at night the mean increase in diastolic blood pressure [90 (SEM 2.0) mmHg] was significantly greater than that at the end of the second cold exposure in the afternoon [82 (SEM 2.8) mmHg, P < 0.01]. At the end of the second cold exposure at night, mean finger skin temperature [11.8 (SEM 0.8) degrees C] was significantly higher than that at the comparable time in the afternoon [9.0 (SEM 0.7) degrees C, P < 0.01]. Similarly for the toe, mean skin temperature at the start of the second cold exposure at night [25.6 (SEM 1.5) degrees C] was significantly higher than in the afternoon [20.1 (SEM 0.8) degrees C, P < 0.01]. The increased skin temperatures in the periphery resulted in increased heat loss. Since peripheral skin temperatures were highest at night, the subjects noted diminished sensations of thermal cold and pain at that time. Manual dexterity at the end of the first cold exposure at night [mean 83.7 (SEM 3.6) times.min-1] had decreased significantly more than at the end of the first cold exposure in the afternoon [mean 89.4 (SEM 3.5) times.min-1, P < 0.01]. These findings of a lowered rectal temperature and diminished manual dexterity suggest that there is an increased risk of both hypothermia and accidents for those who work at night.
Ion-Atom Cold Collisions and Atomic Clocks
NASA Technical Reports Server (NTRS)
Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.
1997-01-01
Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions, exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.
Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression
NASA Astrophysics Data System (ADS)
Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping
2015-10-01
Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.
Liu, Cai; Li, Yong-Jun; Sun, Shi-Gang; Yeung, Edward S
2011-04-21
A cold-welding strategy is proposed to rapidly join together Au nanoparticles (AuNPs) into two-dimensional continuous structures for enhancing the electrooxidation of carbon monoxide by injecting a mixture of ethanol and tolulene into the bottom of a AuNP solution. © The Royal Society of Chemistry 2011
Strain softening during tension in cold drawn Cu–Ag alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.L., E-mail: lilichang@sdu.edu.cn; Wen, S.; Li, S.L.
2015-10-15
Experiments were conducted on Cu–0.1wt.%Ag alloys to evaluate the influence of producing procedures and annealing conditions on microstructure evolution and mechanical properties of Cu–Ag alloys. Optical microscopy (OM), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for microstructural evaluation and mechanical properties were characterized by tensile tests. The results indicated that hot-extruded Cu–Ag alloys had a typical dynamic recrystallized microstructure with equiaxed grains. Cold drawing at room temperature leaded to partial recrystallized microstructure with a mixture of coarse and fine grains. The dominate {001}<100 > cubic texture formed during hot extrusion was changed tomore » be {112}<111 > copper texture by cold drawing. Strain softening occurred during room temperature tension of cold drawn Cu–Ag alloys with an average grain size of 13–19.7 μm. - Highlights: • Strain softening occurred during tension of Cu–Ag alloys with coarse grain size. • Work hardening was observed in hot-extruded and annealed Cu–0.1wt.%Ag alloys. • Strain softening was ascribed to dynamic recovery and dynamic recrystallization.« less
Sun, Yuexia; Wang, Zhigang; Zhang, Yufeng; Sundell, Jan
2011-01-01
Objective To test whether the incidence of common colds among college students in China is associated with ventilation rates and crowdedness in dormitories. Methods In Phase I of the study, a cross-sectional study, 3712 students living in 1569 dorm rooms in 13 buildings responded to a questionnaire about incidence and duration of common colds in the previous 12 months. In Phase II, air temperature, relative humidity and CO2 concentration were measured for 24 hours in 238 dorm rooms in 13 buildings, during both summer and winter. Out-to indoor air flow rates at night were calculated based on measured CO2 concentrations. Results In Phase I, 10% of college students reported an incidence of more than 6 common colds in the previous 12 months, and 15% reported that each infection usually lasted for more than 2 weeks. Students in 6-person dorm rooms were about 2 times as likely to have an incidence of common colds ≥6 times per year and a duration ≥2 weeks, compared to students in 3-person rooms. In Phase II, 90% of the measured dorm rooms had an out-to indoor air flow rate less than the Chinese standard of 8.3 L/s per person during the heating season. There was a dose-response relationship between out-to indoor air flow rate per person in dorm rooms and the proportion of occupants with annual common cold infections ≥6 times. A mean ventilation rate of 5 L/(s•person) in dorm buildings was associated with 5% of self reported common cold ≥6 times, compared to 35% at 1 L/(s•person). Conclusion Crowded dormitories with low out-to indoor airflow rates are associated with more respiratory infections among college students. PMID:22110607
Hwang, Janice J.; Yeckel, Catherine W.; Gallezot, Jean-Dominique; Aguiar, Renata Belfort-De; Ersahin, Devrim; Gao, Hong; Kapinos, Michael; Nabulsi, Nabeel; Huang, Yiyun; Cheng, David; Carson, Richard E.; Sherwin, Robert; Ding, Yu-Shin
2015-01-01
Introduction Brown adipose tissue (BAT) plays a critical role in adaptive thermogenesis and is tightly regulated by the sympathetic nervous system (SNS). However, current BAT imaging modalities require cold stimulation and are often unreliable to detect BAT in the basal state, at room temperature (RT). We have shown previously that BAT can be detected in rodents under both RT and cold conditions with 11C-MRB ((S,S)-11C-O-methylreboxetine), a highly selective ligand for the norepinephrine transporter (NET). Here, we evaluate this novel approach for BAT detection in adult humans under RT conditions. Methods Ten healthy, Caucasian subjects (5 M: age 24.6±2.6, BMI 21.6±2.7 kg/m2; 5 F: age 25.4±2.1, BMI 22.1±1.0 kg/m2) underwent 11C-MRB PET-CT imaging for cervical/supraclavicular BAT under RT and cold-stimulated conditions (RPCM Cool vest; enthalpy 15°C) compared to 18F-FDG PET-CT imaging. Uptake of 11C-MRB, was quantified as the distribution volume ratio (DVR) using the occipital cortex as a low NET density reference region. Total body fat and lean body mass were assessed via bioelectrical impedance analysis. Results As expected, 18F-FDG uptake in BAT was difficult to identify at RT but easily detected with cold stimulation (p=0.01). In contrast, BAT 11C-MRB uptake (also normalized for muscle) was equally evident under both RT and cold conditions (BAT DVR: RT 1.0±0.3 vs. cold 1.1±0.3, p=0.31; BAT/muscle DVR: RT 2.3±0.7 vs. cold 2.5±0.5, p=0.61). Importantly, BAT DVR and BAT/muscle DVR of 11C-MRB at RT correlated positively with core body temperature (r=0.76, p=0.05 and r=0.92, p=0.004, respectively), a relationship not observed with 18F-FDG (p=0.63). Furthermore, there were gender differences in 11C-MRB uptake in response to cold (p=0.03), which reflected significant differences in the change in 11C-MRB as a function of both body composition and body temperature. Conclusions Unlike 18F-FDG, the uptake of 11C-MRB in BAT offers a unique opportunity to investigate the role of BAT in humans under basal, room temperature conditions. PMID:25798999
Hwang, Janice J; Yeckel, Catherine W; Gallezot, Jean-Dominique; Aguiar, Renata Belfort-De; Ersahin, Devrim; Gao, Hong; Kapinos, Michael; Nabulsi, Nabeel; Huang, Yiyun; Cheng, David; Carson, Richard E; Sherwin, Robert; Ding, Yu-Shin
2015-06-01
Brown adipose tissue (BAT) plays a critical role in adaptive thermogenesis and is tightly regulated by the sympathetic nervous system (SNS). However, current BAT imaging modalities require cold stimulation and are often unreliable to detect BAT in the basal state, at room temperature (RT). We have shown previously that BAT can be detected in rodents under both RT and cold conditions with (11)C-MRB ((S,S)-(11)C-O-methylreboxetine), a highly selective ligand for the norepinephrine transporter (NET). Here, we evaluate this novel approach for BAT detection in adult humans under RT conditions. Ten healthy, Caucasian subjects (5 M: age 24.6±2.6, BMI 21.6±2.7kg/m(2); 5 F: age 25.4±2.1, BMI 22.1±1.0kg/m(2)) underwent (11)C-MRB PET-CT imaging for cervical/supraclavicular BAT under RT and cold-stimulated conditions (RPCM Cool vest; enthalpy 15°C) compared to (18)F-FDG PET-CT imaging. Uptake of (11)C-MRB, was quantified as the distribution volume ratio (DVR) using the occipital cortex as a low NET density reference region. Total body fat and lean body mass were assessed via bioelectrical impedance analysis. As expected, (18)F-FDG uptake in BAT was difficult to identify at RT but easily detected with cold stimulation (p=0.01). In contrast, BAT (11)C-MRB uptake (also normalized for muscle) was equally evident under both RT and cold conditions (BAT DVR: RT 1.0±0.3 vs. cold 1.1±0.3, p=0.31; BAT/muscle DVR: RT 2.3±0.7 vs. cold 2.5±0.5, p=0.61). Importantly, BAT DVR and BAT/muscle DVR of (11)C-MRB at RT correlated positively with core body temperature (r=0.76, p=0.05 and r=0.92, p=0.004, respectively), a relationship not observed with (18)F-FDG (p=0.63). Furthermore, there were gender differences in (11)C-MRB uptake in response to cold (p=0.03), which reflected significant differences in the change in (11)C-MRB as a function of both body composition and body temperature. Unlike (18)F-FDG, the uptake of (11)C-MRB in BAT offers a unique opportunity to investigate the role of BAT in humans under basal, room temperature conditions. Copyright © 2015. Published by Elsevier Inc.
Segal, Ava D; Klute, Glenn K
2016-01-01
Thermal comfort remains a common problem for people with lower-limb amputation. Both donning a prosthesis and engaging in activity at room temperature can increase residual limb skin temperature; however, the effects of activity on skin temperature and comfort in more extreme environments remain unknown. We examined residual limb skin temperatures and perceived thermal comfort (PTC; 11-point Likert scale) of participants with unilateral transtibial amputation (n = 8) who were snowshoeing in a cold environment. Residual limb skin temperature increased by 3.9°C [3.0°C to 4.7°C] (mean difference [95% confidence interval (CI)], p < 0.001) after two 30 min exercise sessions separated by a 5 min rest session. Minimal cooling (-0.2°C [-1.1°C to 0.6°C]) occurred during the rest period. Similar changes in PTC were found for the residual limb, intact limb, and whole body, with a mean scale increase of 1.6 [1.1 to 2.1] and 1.3 [0.8 to 1.8] for the first and second exercise sessions, respectively (p < 0.001). Activity in a cold environment caused similar increases in residual limb skin temperature as those found in studies conducted at room temperature. Participants with amputation perceived warming as their skin temperature increased during exercise followed by the perception of cooling during rest, despite minimal associated decreases in skin temperature.
Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon
Shi, Meng; Ji, Xing; Feng, Shangsheng; Yang, Qingzhen; Lu, Tian Jian; Xu, Feng
2016-01-01
The Leidenfrost phenomenon of liquid droplets levitating and dancing when placed upon a hot plate due to propulsion of evaporative vapor has been extended to many self-propelled circumstances. However, such self-propelled Leidenfrost devices commonly need a high temperature for evaporation and a structured solid substrate for directional movements. Here we observed a “cold Leidenfrost phenomenon” when placing a dry ice device on the surface of room temperature water, based on which we developed a controllable self-propelled dry ice hovercraft. Due to the sublimated vapor, the hovercraft could float on water and move in a programmable manner through designed structures. As demonstrations, we showed that the hovercraft could be used as a cargo ship or a petroleum contamination collector without consuming external power. This phenomenon enables a novel way to utilize programmable self-propelled devices on top of room temperature water, holding great potential for applications in energy, chemical engineering and biology. PMID:27338595
Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon.
Shi, Meng; Ji, Xing; Feng, Shangsheng; Yang, Qingzhen; Lu, Tian Jian; Xu, Feng
2016-06-24
The Leidenfrost phenomenon of liquid droplets levitating and dancing when placed upon a hot plate due to propulsion of evaporative vapor has been extended to many self-propelled circumstances. However, such self-propelled Leidenfrost devices commonly need a high temperature for evaporation and a structured solid substrate for directional movements. Here we observed a "cold Leidenfrost phenomenon" when placing a dry ice device on the surface of room temperature water, based on which we developed a controllable self-propelled dry ice hovercraft. Due to the sublimated vapor, the hovercraft could float on water and move in a programmable manner through designed structures. As demonstrations, we showed that the hovercraft could be used as a cargo ship or a petroleum contamination collector without consuming external power. This phenomenon enables a novel way to utilize programmable self-propelled devices on top of room temperature water, holding great potential for applications in energy, chemical engineering and biology.
Improved Method for Determining the Heat Capacity of Metals
ERIC Educational Resources Information Center
Barth, Roger; Moran, Michael J.
2014-01-01
An improved procedure for laboratory determination of the heat capacities of metals is described. The temperature of cold water is continuously recorded with a computer-interfaced temperature probe and the room temperature metal is added. The method is more accurate and faster than previous methods. It allows students to get accurate measurements…
Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Wang, Dixiong; Guo, Hanzheng; Morandi, Carl S.; Randall, Clive A.; Trolier-McKinstry, Susan
2018-01-01
This paper describes a cold sintering process for Pb(Zr,Ti)O3 ceramics and the associated processing-property relations. Pb(Zr,Ti)O3 has a very small, incongruent solubility that is a challenge during cold sintering. To circumvent this, a Pb(NO3)2 solution was used as the transient liquid phase. A bimodal lead zirconate titanate powder was densified to a relative density of 89% by cold sintering at 300 °C and 500 MPa. After the cold sintering step, the permittivity was 200, and the dielectric loss was 2.0%. A second heat-treatment involving a 3 h anneal at 900 °C increased the relative density to 99%; the resulting relative dielectric permittivity was 1300 at room temperature and 100 kHz. The samples showed well-defined ferroelectric hysteresis loops, having a remanent polarization of 28 μC/cm2. On poling, the piezoelectric coefficient d33 was ˜200 pC/N. With a 700 °C 3 h post-annealing, samples show a lower room temperature relative permittivity (950 at 100 kHz), but a 24 h hold time at 700 °C produces ceramics where there is an improved relative dielectric constant (1050 at 100 kHz).
Effect of cold indoor environment on physical performance of older women living in the community.
Lindemann, Ulrich; Oksa, Juha; Skelton, Dawn A; Beyer, Nina; Klenk, Jochen; Zscheile, Julia; Becker, Clemens
2014-07-01
the effects of cold on older persons' body and mind are not well documented, but with an increased number of older people with decreasing physical performance, these possible effects need to be understood. to investigate the effect of cold indoor environment on physical performance of older women. cross-sectional experimental study with two test conditions. movement laboratory in a climate chamber. eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). participants were exposed to moderately cold (15°C) and warm/normal (25°C) temperature in a climate chamber in random order with an interval of 1 week. The assessment protocol included leg extensor power (Nottingham Power Rig), sit-to-stand performance velocity (linear encoder), gait speed, walk-ratio (i.e. step length/cadence on an instrumented walk way), maximal quadriceps and hand grip strength. physical performance was lower in 15°C room temperature compared with 25°C room temperature for leg extensor power (P < 0.0001), sit-to-stand performance velocity (P < 0.0001), gait speed (P < 0.0001), walk-ratio (P = 0.016) and maximal quadriceps strength (P = 0.015), but not for hand grip strength. in healthy older women a moderately cold indoor environment decreased important physical performance measures necessary for independent living. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gitz, Eelo; Koekman, Cornelis A; van den Heuvel, Dave J.; Deckmyn, Hans; Akkerman, Jan W.; Gerritsen, Hans C.; Urbanus, Rolf T.
2012-01-01
Background Storing platelets for transfusion at room temperature increases the risk of microbial infection and decreases platelet functionality, leading to out-date discard rates of up to 20%. Cold storage may be a better alternative, but this treatment leads to rapid platelet clearance after transfusion, initiated by changes in glycoprotein Ibα, the receptor for von Willebrand factor. Design and Methods: We examined the change in glycoprotein Ibα distribution using Förster resonance energy transfer by time-gated fluorescence lifetime imaging microscopy. Results Cold storage induced deglycosylation of glycoprotein Ibα ectodomain, exposing N-acetyl-Dglucosamine residues, which sequestered with GM1 gangliosides in lipid rafts. Raft-associated glycoprotein Ibα formed clusters upon binding of 14-3-3ζ adaptor proteins to its cytoplasmic tail, a process accompanied by mitochondrial injury and phosphatidyl serine exposure. Cold storage left glycoprotein Ibα surface expression unchanged and although glycoprotein V decreased, the fall did not affect glycoprotein Ibα clustering. Prevention of glycoprotein Ibα clustering by blockade of deglycosylation and 14-3-3ζ translocation increased the survival of cold-stored platelets to above the levels of platelets stored at room temperature without compromising hemostatic functions. Conclusions We conclude that glycoprotein Ibα translocates to lipid rafts upon cold-induced deglycosylation and forms clusters by associating with 14-3-3ζ. Interference with these steps provides a means to enable cold storage of platelet concentrates in the near future. PMID:22733027
Low temperature structures of dCpG-proflavine. Conformational and hydration effects.
Schneider, B; Ginell, S L; Berman, H M
1992-01-01
The structure of the complex of dCpG with proflavine was determined using x-ray data taken at -130 degrees C (low temperature) and at -2 degrees C (cold temperature) and compared with the structure of the complex determined previously at room temperature (Shieh, H. S., H. M. Berman, M. Dabrow, and S. Neidle. 1980. Nucleic Acids Res. 8:85-97). Low temperature was refined with 5,125 reflections between 8.0 and 0.93 A, Anisotropically modeled temperature factors were used for DNA/drug atoms and isotropic ones for water oxygens to R factor of 12.2% in P2(1)2(1)2; a = 32.853, b = 21.760, c = 13.296 A. Cold temperature was refined isotropically with 2,846 reflections 8.0-0.89 A to R = 15.1% in P2(1)2(1)2; a = 32.867, b = 22.356, c = 13.461 A. Both structures are very similar to the room temperature one, though some important differences were observed: one guanine sugar moiety is disordered and additional water molecules have been located that give rise to infinite polyhedral hydration networks. Images FIGURE 2 PMID:1489914
Low temperature structures of dCpG-proflavine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, B.; Ginell, S. L.; Berman, H. M.
1992-12-01
The structure of the complex of dCpG with proflavine was determined using x-ray data taken at -130 degrees C (low temperature) and at -2 degrees C (cold temperature) and compared with the structure of the complex determined previously at room temperature (Shieh, H. S., H. M. Berman, M. Dabrow, and S. Neidle. 1980. Nucleic Acids Res. 8:85-97). Low temperature was refined with 5,125 reflections between 8.0 and 0.93 A, Anisotropically modeled temperature factors were used for DNA/drug atoms and isotropic ones for water oxygens to R factor of 12.2% in P2(1)2(1)2; a = 32.853, b = 21.760, c = 13.296more » A. Cold temperature was refined isotropically with 2,846 reflections 8.0-0.89 A to R = 15.1% in P2(1)2(1)2; a = 32.867, b = 22.356, c = 13.461 A. Both structures are very similar to the room temperature one, though some important differences were observed: one guanine sugar moiety is disordered and additional water molecules have been located that give rise to infinite polyhedral hydration networks.« less
Cold-fusion television show angers APS
NASA Astrophysics Data System (ADS)
Cartwright, Jon
2009-06-01
Cold fusion has been controversial since its inception on 23 March 1989, when chemists Martin Fleischmann and Stanley Pons at the University of Utah in the US announced that they had achieved a sustained nuclear-fusion reaction at room temperature. Two decades on, a US television documentary about the field has stirred up fresh debate after it linked the American Physical Society (APS) to an evaluation of some cold-fusion results by Robert Duncan, a physicist and vice chancellor of the University of Missouri.
Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Shah, C. H.; Postyn, A. S.
1996-01-01
In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.
Human Brown Adipose Tissue Temperature and Fat Fraction Are Related to Its Metabolic Activity.
Koskensalo, Kalle; Raiko, Juho; Saari, Teemu; Saunavaara, Virva; Eskola, Olli; Nuutila, Pirjo; Saunavaara, Jani; Parkkola, Riitta; Virtanen, Kirsi A
2017-04-01
The metabolic activity of human brown adipose tissue (BAT) has been previously examined using positron emission tomography (PET). The aim of this study was to use proton magnetic resonance spectroscopy (1H MRS) to investigate whether the temperature and the fat fraction (FF) of BAT and white adipose tissue (WAT) are associated with BAT metabolic activity determined by deoxy-2-18F-fluoro-d-glucose (18F-FDG)-PET. Ten healthy subjects (four women, six men; 25 to 45 years of age) were studied using PET-magnetic resonance imaging during acute cold exposure and at ambient room temperature. BAT and subcutaneous WAT 1H MRS were measured. The tissue temperature and the FF were derived from the spectra. Tissue metabolic activity was studied through glucose uptake using dynamic FDG PET scanning during cold exposure. A 2-hour hyperinsulinemic euglycemic clamp was performed on eight subjects. The metabolic activity of BAT associated directly with the heat production capacity and inversely with the FF of the tissue. In addition, the lipid-burning capacity of BAT associated with whole-body insulin sensitivity. During cold exposure, the FF of BAT was lower than at room temperature, and cold-induced FF of BAT associated inversely with high-density lipoprotein and directly with low-density lipoprotein cholesterol. Both 1H MRS-derived temperature and FF are promising methods to study BAT activity noninvasively. The association between the lipid-burning capacity of BAT and whole-body insulin sensitivity emphasizes the role of BAT in glucose handling. Furthermore, the relation of FF to high-density lipoprotein and low-density lipoprotein cholesterol suggests that BAT has a role in lipid clearance, thus protecting tissues from excess lipid load. Copyright © 2017 Endocrine Society
Survival of Salmonella enterica serovar infantis on and within stored table eggs.
Lublin, Avishai; Maler, Ilana; Mechani, Sara; Pinto, Riky; Sela-Saldinger, Shlomo
2015-02-01
Contaminated table eggs are considered a primary source of foodborne salmonellosis globally. Recently, a single clone of Salmonella enterica serovar Infantis emerged in Israel and became the predominant serovar isolated in poultry. This clone is currently the most prevalent strain in poultry and is the leading cause of salmonellosis in humans. Because little is known regarding the potential transmission of this strain from contaminated eggs to humans, the objective of this study was to evaluate the ability of Salmonella Infantis to survive on the eggshell or within the egg during cold storage or at room temperature. Salmonella cells (5.7 log CFU per egg) were inoculated on the surface of 120 intact eggs or injected into the egg yolk (3.7 log CFU per egg) of another 120 eggs. Half of the eggs were stored at 5.5 ± 0.3°C and half at room temperature (25.5 ± 0.1°C) for up to 10 weeks. At both temperatures, the number of Salmonella cells on the shell declined by 2 log up to 4 weeks and remained constant thereafter. Yolk-inoculated Salmonella counts at cold storage declined by 1 log up to 4 weeks and remained constant, while room-temperature storage supported the growth of the pathogen to a level of 8 log CFU/ml of total egg content, as early as 4 weeks postinoculation. Examination of egg content following surface inoculation revealed the presence of Salmonella in a portion of the eggs at both temperatures up to 10 weeks, suggesting that this strain can also penetrate through the shell and survive within the egg. These findings imply that Salmonella enterica serovar Infantis is capable of survival both on the exterior and interior of table eggs and even multiply inside the egg at room temperature. Our findings support the need for prompt refrigeration to prevent Salmonella multiplication during storage of eggs at room temperature.
Kamanli, S; Durmuş, I; Yalçın, S; Yıldırım, U; Meral, Ö
2015-07-01
This study was designed to determine the effect of prenatal temperature conditioning on hatching and live performance of laying chickens, and response to heat and cold stress during laying period. A total of 3600 eggs obtained from ATAK-S brown parent stock were incubated at control (37.5°C, CONT-Inc), cyclic low (36.5°C/6h/d from 10 to 18d of incubation, LOW-Inc) or high (38.5°C/6h/d from 10-18d of incubation, HIGH-Inc) incubation temperatures. Hatched chicks per incubation temperature were reared under standard rearing conditions up to 26wk. From 27 to 30wk, hens from each incubation temperature were divided into 3 environmentally controlled rooms and reared at control (20±2°C, CONT-Room), low (12±2°C, COLDS) or high (32±2°C, HEATS) temperatures. Hatching performance, body weight, egg production, and plasma triiodothyronine (T3) and thyroxine (T4) levels and oxidant and antioxidant activities were evaluated. The highest hatchability was for LOW-Inc chicks while HIGH-Inc chick had similar hatchability to CONT-Inc. There was no effect of incubation temperatures on plasma MDA, GSH-Px, activities and T4 concentrations on day of hatch. LOW- Inc chicks had higher SOD activities and T3 concentrations compared to the other groups. Although chick weight was similar among incubation temperature groups, CONT-Inc chicks were heavier than those cyclic incubation temperature groups until 12wk of age. Incubation temperature had no effect on sexual maturity age and weight and egg production of laying hens. From 27 to 30wk, regardless of incubation temperature, HEATS hens lost weight from day 0 to 10, had the highest cloacal temperatures and lowest feed consumption and egg production while COLDS hens had the lowest cloacal temperatures. At day 5, T4 level was higher in LOW-Inc hens at COLDS but it was higher in HIGH-Inc hens at HEATS compared to CONT-Inc. These data may suggest a modification in thyroid activity of hens that were conditioned during the incubation period. Moreover under COLDS condition, SOD production of LOW-Inc hens was higher than those of CONT- and HIGH-Inc hens indicating an induction in antioxidant enzyme activity. Nonetheless, prenatal temperature conditioning of laying hen embryos had no advantage on laying performance of hens under temperature stress conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermal Management of a Nitrogen Cryogenic Loop Heat Pipe
NASA Astrophysics Data System (ADS)
Gully, Ph.; Yan, T.
2010-04-01
Efficient thermal links are needed to ease the distribution of the cold power in satellites. Loop heat pipes are widely used at room temperature as passive thermal links based on a two-phase flow generated by capillary forces. Transportation of the cold power at cryogenic temperatures requires a specific design. In addition to the main loop, the cryogenic loop heat pipe (CLHP) features a hot reservoir and a secondary loop with a cold reservoir and a secondary evaporator which allows the cool down and the thermal management of the thermal link in normal cold operation. We have studied the influence of a heated cold reservoir and investigated the effect of parasitic heat loads on the performance of a nitrogen CLHP at around 80 K. It is shown that heating of the cold reservoir with a small amount of power (0.1 W) allows controlling the system temperature difference, which can be kept constant at a very low level (1 K) regardless of the transferred cold power (0-10 W). Parasitic heat loads have a significant effect on the thermal resistance, and the power applied on the secondary evaporator has to be increased up to 4 W to get stable operation.
Lei, Fan; Kheir, Michael M.; Wang, Xin-Pei; Chai, Yu-Shuang; Yuan, Zhi-Yi; Lu, Xi; Xing, Dong-Ming; Du, Feng; Du, Li-Jun
2013-01-01
The purpose of this study was to assess the effects of berberine (BBR) on thermoregulation in mice exposed to hot (40°C) and cold (4°C) environmental conditions. Four groups of mice were assembled with three different dosages of BBR (0.2, 0.4, and 0.8 mg/kg) and normal saline (control). In room temperature, our largest dosage of BBR (0.8 mg/kg) can reduce rectal temperatures (Tc) of normal mice. In hot conditions, BBR can antagonize the increasing core body temperature and inhibit the expression of HSP70 and TNFα in mice; conversely, in cold conditions, BBR can antagonize the decreasing core body temperature and enhance the expression of TRPM8. This study demonstrates the dual ability of BBR in maintaining thermal balance, which is of great relevance to the regulation of HSP70, TNFα and TRPM8. PMID:23335996
Research of the cold shield in cryogenic liquid storage
NASA Astrophysics Data System (ADS)
Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.
2017-12-01
To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.
Duru, Ilhan Cem; Laine, Pia; Andreevskaya, Margarita; Paulin, Lars; Kananen, Soila; Tynkkynen, Soile; Auvinen, Petri; Smolander, Olli-Pekka
2018-05-19
In Swiss-type cheeses, characteristic nut-like and sweet flavor develops during the cheese ripening due to the metabolic activities of cheese microbiota. Temperature changes during warm and cold room ripening, and duration of ripening can significantly change the gene expression of the cheese microbiota, which can affect the flavor formation. In this study, a metagenomic and metatranscriptomic analysis of Swiss-type Maasdam cheese was performed on samples obtained during ripening in the warm and cold rooms. We reconstructed four different bacterial genomes (Lactococcus lactis, Lactobacillus rhamnosus, Lactobacillus helveticus, and Propionibacterium freudenreichii subsp. shermanii strain JS) from the Maasdam cheese to near completeness. Based on the DNA and RNA mean coverage, Lc. lactis strongly dominated (~80-90%) within the cheese microbial community. Genome annotation showed the potential for the presence of several flavor forming pathways in these species, such as production of methanethiol, free fatty acids, acetoin, diacetyl, acetate, ethanol, and propionate. Using the metatranscriptomic data, we showed that, with the exception of Lc. lactis, the central metabolism of the microbiota was downregulated during cold room ripening suggesting that fewer flavor compounds such as acetoin and propionate were produced. In contrast, Lc. lactis genes related to the central metabolism, including the vitamin biosynthesis and homolactic fermentation, were upregulated during cold room ripening. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, H.; Amirkhiz, B. Shalchi; Lloyd, D. J.
2018-03-01
The mechanical properties of fully annealed Al-4.6 wt pct Mg alloys with different levels of Mn and Fe have been characterized at room and superplastic forming (SPF) temperatures. The effects of Mn and Fe on the intermetallic phase, grain structure, and cavitation were investigated and correlated to the formability at different temperatures. Although both Mn and Fe contribute to the formation of Al6(Mn,Fe) phase, which refines the grain structure by particle-stimulated nucleation and Zener pinning, their effects are different. An increasing Mn reduces the room temperature formability due to the increasing number of intermetallic particles, but significantly improves the superplasticity by fine grain size-induced grain boundary sliding. Meanwhile, the Fe makes the constituent particles very coarse, resulting in reduced formability at all temperatures due to extensive cavitation. A combination of high Mn and low Fe is therefore beneficial to SPF, while low levels of both elements are good for cold forming. Consequently, the superplasticity of high-Mg aluminum alloys can be significantly improved by modifying the chemical composition with sacrifice of some room temperature formability.
Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu
2014-10-01
This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.
Basu, Rupa; Gavin, Lyndsay; Pearson, Dharshani; Ebisu, Keita; Malig, Brian
2018-04-01
The association between ambient temperature and morbidity has been explored previously. However, the association between temperature and mental health-related outcomes, including violence and self-harm, remains relatively unexamined. For the period 2005-2013, we obtained daily counts of mental health-related emergency room visits involving injuries with an external cause for 16 California climate zones from the California Office of Statewide Health Planning and Development and combined them with data on mean apparent temperature, a combination of temperature and humidity. Using Poisson regression models, we estimated climate zone-level associations and then used random-effects meta-analyses to produce overall estimates. Analyses were stratified by season (warm: May-October; cold: November-April), race/ethnicity, and age. During the warm season, a 10°F (5.6°C) increase in same-day mean apparent temperature was associated with 4.8% (95% confidence interval (CI): 3.6, 6.0), 5.8% (95% CI: 4.5, 7.1), and 7.9% (95% CI: 7.3, 8.4) increases in the risk of emergency room visits for mental health disorders, self-injury/suicide, and intentional injury/homicide, respectively. High temperatures during the cold season were also positively associated with these outcomes. Variations were observed by race/ethnicity, age group, and sex, with Hispanics, whites, persons aged 6-18 years, and females being at greatest risk for most outcomes. Increasing mean apparent temperature was found to have acute associations with mental health outcomes and intentional injuries, and these findings warrant further study in other locations.
Dhanani, Tushar; Singh, Raghuraj; Reddy, Nagaraja; Trivedi, A; Kumar, Satyanshu
2017-05-01
Senna is an important medicinal plant and is used in many Ayurvedic formulations. Dianthraquinone glucosides are the main bioactive phytochemicals present in leaves and pods of senna. The extraction efficiency in terms of yield and composition of the extract of senna prepared using both conventional (cold percolation at room temperature and refluxing) and non conventional (ultrasound and microwave assisted solvent extraction as well as supercritical fluid extraction) techniques were compared in the present study. Also a rapid reverse phase HPLC-PDA detection method was developed and validated for the simultaneous determination of sennoside A and sennoside B in the different extracts of senna leaves. Ultrasound and microwave assisted solvent extraction techniques were more effective in terms of yield and composition of the extracts compared to cold percolation at room temperature and refluxing methods of extraction.
Weather conditions influence the number of psychiatric emergency room patients
NASA Astrophysics Data System (ADS)
Brandl, Eva Janina; Lett, Tristram A.; Bakanidze, George; Heinz, Andreas; Bermpohl, Felix; Schouler-Ocak, Meryam
2017-12-01
The specific impact of weather factors on psychiatric disorders has been investigated only in few studies with inconsistent results. We hypothesized that meteorological conditions influence the number of cases presenting in a psychiatric emergency room as a measure of mental health conditions. We analyzed the number of patients consulting the emergency room (ER) of a psychiatric hospital in Berlin, Germany, between January 1, 2008, and December 31, 2014. A total of N = 22,672 cases were treated in the ER over the study period. Meteorological data were obtained from a publicly available data base. Due to collinearity among the meteorological variables, we performed a principal component (PC) analysis. Association of PCs with the daily number of patients was analyzed with autoregressive integrated moving average model. Delayed effects were investigated using Granger causal modeling. Daily number of patients in the ER was significantly higher in spring and summer compared to fall and winter (p < 0.001). Three PCs explained 76.8% percent of the variance with PC1 loading mostly on temperature, PC2 on cloudiness and low pressure, and PC3 on windiness. PC1 and PC2 showed strong association with number of patients in the emergency room (p < 0.010) indicating higher patient numbers on warmer and on cloudy days. Further, PC1, PC2, and PC3 predicted the number of patients presenting in the emergency room for up to 7 days (p < 0.050). A secondary analysis revealed that the effect of temperature on number of patients was mostly due to lower patient numbers on cold days. Although replication of our findings is required, our results suggest that weather influences the number of psychiatric patients consulting the emergency room. In particular, our data indicate lower patient numbers during very cold temperatures.
Weather conditions influence the number of psychiatric emergency room patients
NASA Astrophysics Data System (ADS)
Brandl, Eva Janina; Lett, Tristram A.; Bakanidze, George; Heinz, Andreas; Bermpohl, Felix; Schouler-Ocak, Meryam
2018-05-01
The specific impact of weather factors on psychiatric disorders has been investigated only in few studies with inconsistent results. We hypothesized that meteorological conditions influence the number of cases presenting in a psychiatric emergency room as a measure of mental health conditions. We analyzed the number of patients consulting the emergency room (ER) of a psychiatric hospital in Berlin, Germany, between January 1, 2008, and December 31, 2014. A total of N = 22,672 cases were treated in the ER over the study period. Meteorological data were obtained from a publicly available data base. Due to collinearity among the meteorological variables, we performed a principal component (PC) analysis. Association of PCs with the daily number of patients was analyzed with autoregressive integrated moving average model. Delayed effects were investigated using Granger causal modeling. Daily number of patients in the ER was significantly higher in spring and summer compared to fall and winter ( p < 0.001). Three PCs explained 76.8% percent of the variance with PC1 loading mostly on temperature, PC2 on cloudiness and low pressure, and PC3 on windiness. PC1 and PC2 showed strong association with number of patients in the emergency room ( p < 0.010) indicating higher patient numbers on warmer and on cloudy days. Further, PC1, PC2, and PC3 predicted the number of patients presenting in the emergency room for up to 7 days ( p < 0.050). A secondary analysis revealed that the effect of temperature on number of patients was mostly due to lower patient numbers on cold days. Although replication of our findings is required, our results suggest that weather influences the number of psychiatric patients consulting the emergency room. In particular, our data indicate lower patient numbers during very cold temperatures.
EDTA-temperature-Induced pseudohematocytopenia in a patient with multiple myeloma.
Zhang, Lixia; Pan, Shiyang; Zhang, Jie; Lu, Lin; Xie, Erfu; Ye, Qin
2012-01-01
Platelet clumping caused by ethylenediamine tetraacetic acid (EDTA) and erythrocyte agglutination caused by cold agglutinins are often found in clinical findings. However, erythrocyte agglutination induced by EDTA has not been reported as yet. Spurious low red blood cell (RBC), white blood cell (WBC), and platelet counts were observed in a patient blood sample collected in EDTA in vitro at room temperature and 37 degrees C. However, the phenomena were only observed in the sodium citrate and heparin anticoagulated blood at room temperature, but not at 37 degrees C. Both erythrocyte agglutination and platelet clumping were observed in the peripheral blood smear. These data suggest an EDTA-temperature-induced pseudohematocytopenia. It is a very rare phenomenon to observe erythrocyte agglutination induced by EDTA and temperature.
Spontaneous evolution of rydberg atoms into an ultracold plasma
Robinson; Tolra; Noel; Gallagher; Pillet
2000-11-20
We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm(-1). When the atoms are initially bound by 70 cm(-1), this evolution occurs when most of the atoms are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma.
Wang, Xiang; Lavigne, Eric; Ouellette-kuntz, Hélène; Chen, Bingshu E
2014-02-01
The purpose of this study was to assess the effects of extreme ambient temperature on hospital emergency room visits (ER) related to mental and behavioral illnesses in Toronto, Canada. A time series study was conducted using health and climatic data from 2002 to 2010 in Toronto, Canada. Relative risks (RRs) for increases in emergency room (ER) visits were estimated for specific mental and behavioral diseases (MBD) after exposure to hot and cold temperatures while using the 50th percentile of the daily mean temperature as reference. Poisson regression models using a distributed lag non-linear model (DLNM) were used. We adjusted for the effects of seasonality, humidity, day-of-the-week and outdoor air pollutants. We found a strong association between MBD ER visits and mean daily temperature at 28°C. The association was strongest within a period of 0-4 days for exposure to hot temperatures. A 29% (RR=1.29, 95% CI 1.09-1.53) increase in MBD ER vists was observed over a cumulative period of 7 days after exposure to high ambient temperature (99th percentile vs. 50th percentile). Similar associations were reported for schizophrenia, mood, and neurotic disorers. No significant associations with cold temperatures were reported. The ecological nature and the fact that only one city was investigated. Our findings suggest that extreme temperature poses a risk to the health and wellbeing for individuals with mental and behavior illnesses. Patient management and education may need to be improved as extreme temperatures may become more prevalent with climate change. © 2013 Elsevier B.V. All rights reserved.
Pucks, N; Thomas, A; Hallam, M J; Venables, V; Neville, C; Nduka, C
2015-12-01
Botulinum toxin injections are an effective, well-established treatment to manage synkinesis secondary to chronic facial palsy, but they entail painful injections at multiple sites on the face up to four times per year. Cutaneous cooling has long been recognised to provide an analgesic effect for cutaneous procedures, but evidence to date has been anecdotal or weak. This randomised controlled trial aims to assess the analgesic efficacy of cutaneous cooling using a cold gel pack versus a room-temperature Control. The analgesic efficacy of a 1-min application of a Treatment cold (3-5 °C) gel pack versus a Control (room-temperature (20 °C)) gel pack prior to botulinum toxin injection into the platysma was assessed via visual analogue scale (VAS) ratings of pain before, during and after the procedure. Thirty-five patients received both trial arms during two separate clinic appointments. Cold gel packs provided a statistically significant reduction in pain compared with a room-temperature Control (from 26.4- to 10.2-mm VAS improvement (p < 0.001)), with no variance noted secondary to age, the hemi-facial side injected or the order in which the Treatment or Control gel packs were applied. Cryoanalgesia using a fridge-cooled gel pack provides an effective, safe and cheap method for reducing pain at the botulinum toxin injection site in patients with facial palsy. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Dufresne, Jaimie; Florentinus-Mefailoski, Angelique; Ajambo, Juliet; Ferwa, Ammara; Bowden, Peter; Marshall, John
2017-01-01
Normal human EDTA plasma samples were collected on ice, processed ice cold, and stored in a freezer at - 80 °C prior to experiments. Plasma test samples from the - 80 °C freezer were thawed on ice or intentionally warmed to room temperature. Protein content was measured by CBBR binding and the release of alcohol soluble amines by the Cd ninhydrin assay. Plasma peptides released over time were collected over C18 for random and independent sampling by liquid chromatography micro electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) and correlated with X!TANDEM. Fully tryptic peptides by X!TANDEM returned a similar set of proteins, but was more computationally efficient, than "no enzyme" correlations. Plasma samples maintained on ice, or ice with a cocktail of protease inhibitors, showed lower background amounts of plasma peptides compared to samples incubated at room temperature. Regression analysis indicated that warming plasma to room temperature, versus ice cold, resulted in a ~ twofold increase in the frequency of peptide identification over hours-days of incubation at room temperature. The type I error rate of the protein identification from the X!TANDEM algorithm combined was estimated to be low compared to a null model of computer generated random MS/MS spectra. The peptides of human plasma were identified and quantified with low error rates by random and independent sampling that revealed 1000s of peptides from hundreds of human plasma proteins from endogenous tryptic peptides.
Kanda, K; Tsuchiya, J; Seto, M; Ohnaka, T; Tochihara, Y
1995-06-01
Thermal conditions in the bathroom and physiological responses were examined during winter and summer. The subjects were 22 male and 20 female elderly people, between 65 and 88 years old living in 25 houses in Gunma Prefecture, Japan. Heart rate, blood pressure, skin temperature and thermal sensation were measured during bathing. Changes in thermal sensation due to bathing were assessed in the living room and dressing room on a 9-point scale. Then they were asked about the purposes of bathing and the facilities of bathroom and dressing room. The results are summarized as follows: 1. The purpose of bathing in winter was to warm up for more than 80% of the subjects. In summer, all subjects felt refreshed by bathing. Eighty-five percent of the subjects took a bath every other day in both seasons. 2. Fifty-two percent of the bathrooms had no ventilating fans and 32% had no exclusive dressing rooms. 3. The average room temperature in the dressing rooms was 13-14 degrees C in winter. Thermal sensation was 'cool', 'slightly cold' or 'cold' for more than two-thirds of the subjects when they were partially nude, and there were no heaters in most dressing rooms. 4. The heart rate increased steadily, and reached a maximum value in a partially dressed condition in both seasons. 5. In winter, a marked increase of systolic blood pressure was observed in the partially nude condition. There was a significant difference between the before bathing condition and partially nude condition in winter.(ABSTRACT TRUNCATED AT 250 WORDS)
Slivka, Dustin; Heesch, Matthew; Dumke, Charles; Cuddy, John; Hailes, Walter; Ruby, Brent
2013-06-01
The purpose of this investigation was to determine the impact of post-exercise environmental cold exposure on muscle glycogen, PGC-1α, and downstream transcription factors. Eight males cycled for 1h and recovered in either 7 °C (cold) or 20 °C (room temp) environment for 4h. Muscle biopsies were obtained pre, post, and 4h post exercise for the analysis of muscle glycogen and mRNA. During recovery participants consumed 1.8 g kg⁻¹ of body weight of an oral dextrose solution immediately following the post biopsy and 2h into recovery. Blood samples were obtained post exercise and at 30, 60, 120, 150, 180, and 240 min post exercise for the analysis of serum glucose and insulin AUC. Oxygen uptake was lower during room temp than during cold recovery (0.40 ± 0.05 L x min⁻¹ vs. 0.80 ± 0.12 L x min⁻¹; p<0.01). There was no effect of temperature on muscle glycogen recovery or glucose AUC. However, insulin AUC was greater during the room temp trial compared to the cold trial (5139 ± 1412 vs. 4318 ± 1272, respectively; p=0.025). PGC-1α gene expression was higher (p=0.029), but ERRα and NRF2 were lower (p=0.019 and p=0.046, respectively) after recovery in the cold. There were no differences in NRF1 (p=.173) or TFAM (p=0.694). This investigation shows no effect of a cold recovery environment on glycogen re-synthesis but does demonstrate reduced ERRα and NRF2 mRNA despite elevations in PGC-1α mRNA when recovery post-exercise takes place in a cold environment. Copyright © 2013 Elsevier Inc. All rights reserved.
Cold atmospheric pressure air plasma jet for medical applications
NASA Astrophysics Data System (ADS)
Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.
2008-06-01
By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong W. Lee
During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less
ERIC Educational Resources Information Center
Fogle, Pamela W.
1991-01-01
Public relations issues arising from the University of Utah's controversial announcement of research claiming achievement of nuclear fusion at room temperature are discussed. They include problems occurring before and after the initial press conference, secrecy vs. openness, research ethics, and effects lasting past the original incident and…
Alzeftawy, Ashraf Elsayed; El-Daba, Ahmad Ali
2016-01-01
Cooling of local anesthetic potentiates its action and increases its duration. Magnesium sulfate (MgSo 4 ) added to local anesthetic prolongs the duration of anesthesia and postoperative analgesia with minimal side effects. The aim of this prospective, randomized, double-blind study was to compare the effect of cold to 4°C bupivacaine 0.5% and Mg added to normal temperature (20-25°C) bupivacaine 0.5% during sonar-guided combined femoral and sciatic nerve blocks on the onset of sensory and motor block, intraoperative anesthesia, duration of sensory and motor block, and postoperative analgesia in arthroscopic anterior cruciate ligament (ACL) reconstruction surgery. A total of 90 American Society of Anesthesiologists classes I and II patients who were scheduled to undergo elective ACL reconstruction were enrolled in the study. The patients were randomly allocated to 3 equal groups to receive sonar-guided femoral and sciatic nerve blocks. In Group I, 17 ml of room temperature (20-25°C) 0.5% bupivacaine and 3 ml of room temperature saline were injected for each nerve block whereas in Group II, 17 ml of cold (4°C) 0.5% bupivacaine and 3 ml of cold saline were injected for each nerve block. In Group III, 17 ml of room temperature 0.5% bupivacaine and 3 ml of MgSo 4 5% were injected for each nerve block. The onset of sensory and motor block was evaluated every 3 min for 30 min. Surgery was started after complete sensory and motor block were achieved. Intraoperatively, the patients were evaluated for heart rate and mean arterial pressure, rescue analgesic and sedative requirements plus patient and surgeon satisfaction. Postoperatively, hemodynamics, duration of analgesia, resolution of motor block, time to first analgesic, total analgesic consumption, and the incidence of side effects were recorded. There was no statistically significant difference in demographic data, mean arterial pressure, heart rate, and duration of surgery. Onset of both sensory and motor block was significantly shorter in both Groups II and III compared to Group I. Intraoperative anesthetic quality was comparable between groups with good patient and surgeon satisfaction. The time to first analgesia was significantly longer in Groups II and III compared to Group I with nonsignificant difference between each other. Moreover, the total opioid consumption was significantly lower in Groups II and III and duration of analgesia and motor block were significantly longer in Groups II and III compared to Group I. There was no difference in the incidence of side effects. The use of cold 0.5% bupivacaine or the addition of Mg to normal temperature 0.5% bupivacaine prolongs the sensory and motor block duration without increasing side effects and enhances the quality of intra- and post-operative analgesia with better patient satisfaction in sonar-guided femoral and sciatic nerve block for arthroscopic ACL reconstruction surgery.
Paschen's law studies in cold gases
NASA Astrophysics Data System (ADS)
Massarczyk, R.; Chu, P.; Dugger, C.; Elliott, S. R.; Rielage, K.; Xu, W.
2017-06-01
The break-through voltage behavior over small gaps has been investigated for differing gap distances, gas pressures, and gas temperatures in nitrogen, neon, argon and xenon gases. A deviation from Paschen's law at micro gap distances has been found. At lower temperatures, a significant shift of the curve relative to the results at room temperature was observed. This behavior can be explained by combining Paschen's law and the ideal gas law.
Raval, A H; Solanki, S C; Yadav, Rajvir
2013-04-01
A simple analytical heat flow model for a closed rectangular food package containing fruits or vegetables is proposed for predicting time temperature distribution during transient cooling in a controlled environment cold room. It is based on the assumption of only conductive heat transfer inside a closed food package with effective thermal properties, and convective and radiative heat transfer at the outside of the package. The effective thermal conductivity of the food package is determined by evaluating its effective thermal resistance to heat conduction in the packages. Food packages both as an infinite slab and a finite slab have been investigated. The finite slab solution has been obtained as the product of three infinite slab solutions describe in ASHRAE guide and data book. Time temperature variation has been determined and is presented graphically. The cooling rate and the half cooling time were also obtained. These predicted values, are compared with the experimentally measured values for both the finite and infinite closed packages containing oranges. An excellent agreement between them validated the simple proposed model.
The Nature of Cold-induced Dormancy in Urediospores of Puccinia graminis tritici
Maheshwari, Ramesh; Sussman, Alfred S.
1971-01-01
When air-dry urediospores of the wheat stem rust, Puccinia graminis f. sp. tritici, are exposed to temperatures below freezing, their germinability is markedly reduced, even after prolonged thawing at room temperature. Germinability is fully restored by a brief heat-shock or by vapor phase hydration. We have found that this “cold dormancy” cannot be reversed once the spores contact liquid water. Enhanced loss of metabolites occurs immediately upon suspension of cold-dormant urediospores in liquid without a prior heat-shock. Such leakage is two to three times greater than from untreated or heatshocked cold-dormant spores and accounts for up to 70% of the soluble pool of metabolites normally present in germinating urediospores. Respiratory activity of cold-dormant urediospores declines rapidly during incubation in liquid. Incorporation of isotopic carbon into cold-dormant urediospores is only a fraction of that of untreated or heat-activated spores. Thus, cold shock transforms the spores into a state of supersensitivity to liquid water, which is reversed by heat-shock or slow hydration by vapor phase equilibration. The primary cause of damage to cold-dormant cells exposed to liquid water appears to be irreversible permeability damage, followed by metabolic injury. PMID:16657610
Storage and sterilization techniques: the specific role of the cold chain.
Guinebault, A
1986-01-01
Focus in this discussion is on reasons for the cold chain, management of vaccine supplies (regional storage, peripheral centers, and the clinic), the facilities and their use, monitoring the cold chain, and training participants in the cold chain. To remain active, vaccines must be maintained continuously within a specific temperature range from the moment they are produced until they are injected. This is the meaning of the cold chain. If the cold chain is broken at any point, the vaccines must be destroyed for they will have lost their effectiveness. To function properly, a cold chain requires the combined presence of efficient, reliable equipment, and of qualified, vigilant personnel at all levels. The cold chain is composed of the following elements: a national storage center, near an international airport, with a 1-year supply of vaccines for the entire target population; regional storage centers with a 3-month supply of vaccines for the entire population of the region; peripheral immunization centers scattered throughout the region, managing a supply for about 1 month; clinics, which either perform vaccinations on the spot and/or supply mobile teams, depending on the strategy; and mobile teams, with portable cold boxes, with an autonomy of several days. The main problems occur at the local levels, and more specifically with respect to transportation and the fuel and power supplies, as well as cold packs. At the central level, the 1-year supply of vaccines generally is stored in cold rooms. Personnel in charge of central strorage also are responsible for transportation to and from these cold rooms. Once the space required for storing vaccines is determined, the facilities required at each level may be evaluated. The information essential to the choice must be considered in each case. The main criteria involved are outlined. There are many devices for monitoring the function of the cold chain: indicators, which accompany the vaccines from the central depot to the peripheral centers show any excesses in temperature and their duration; and devices such as thermometers show the present temperature, independently of the "history" of the vaccine. Some devices are available for checking individual elements of the cold chain from time to time. The World Health Organization (WHO) has developed a training strategy aimed at people on all levels: international consultants and decisionmakers involved in programming the Expanded Program on Immunization; technicians in charge of maintenance; and medical personnel.
Developing instrumentation to characterize thermoelectric generator modules.
Liu, Dawei; Li, Qiming; Peng, Wenbo; Zhu, Lianjun; Gao, Hu; Meng, Qingsen; Jin, A J
2015-03-01
Based on the law of physics, known as "Seebeck effect," a thermoelectric generator (TEG) produces electricity when the temperature differential is applied across the TEG. This article reports a precision method in characterizing TEG modules. A precision instrument is constructed to study thermoelectric conversion in terms of output power and efficiency of TEG modules. The maximum allowable TEG module size is 150 mm, and the preferred size is from 30 mm to 60 mm. During measurements, the highest hot side temperature is 500 °C and the cold side temperature can be adjusted from room temperature to 100 °C. A mechanical structure is developed to control the pressure and parallelism of the clamping force of the TEG on both its hot and cold sides. A heat flux measurement module is installed at its cold side, and the heat flux through TEGs can be measured in position. Finally, the energy conversion efficiency of TEGs is calculated from experimental data of both an output power and a heat flux.
Ojala, Teija; Laine, Pia K S; Ahlroos, Terhi; Tanskanen, Jarna; Pitkänen, Saara; Salusjärvi, Tuomas; Kankainen, Matti; Tynkkynen, Soile; Paulin, Lars; Auvinen, Petri
2017-01-16
Propionibacterium freudenreichii is a commercially important bacterium that is essential for the development of the characteristic eyes and flavor of Swiss-type cheeses. These bacteria grow actively and produce large quantities of flavor compounds during cheese ripening at warm temperatures but also appear to contribute to the aroma development during the subsequent cold storage of cheese. Here, we advance our understanding of the role of P. freudenreichii in cheese ripening by presenting the 2.68-Mbp annotated genome sequence of P. freudenreichii ssp. shermanii JS and determining its global transcriptional profiles during industrial cheese-making using transcriptome sequencing. The annotation of the genome identified a total of 2377 protein-coding genes and revealed the presence of enzymes and pathways for formation of several flavor compounds. Based on transcriptome profiling, the expression of 348 protein-coding genes was altered between the warm and cold room ripening of cheese. Several propionate, acetate, and diacetyl/acetoin production related genes had higher expression levels in the warm room, whereas a general slowing down of the metabolism and an activation of mobile genetic elements was seen in the cold room. A few ripening-related and amino acid catabolism involved genes were induced or remained active in cold room, indicating that strain JS contributes to the aroma development also during cold room ripening. In addition, we performed a comparative genomic analysis of strain JS and 29 other Propionibacterium strains of 10 different species, including an isolate of both P. freudenreichii subspecies freudenreichii and shermanii. Ortholog grouping of the predicted protein sequences revealed that close to 86% of the ortholog groups of strain JS, including a variety of ripening-related ortholog groups, were conserved across the P. freudenreichii isolates. Taken together, this study contributes to the understanding of the genomic basis of P. freudenreichii and sheds light on its activities during cheese ripening. Copyright © 2016 Elsevier B.V. All rights reserved.
Røssvoll, Elin; Rønning, Helene Thorsen; Granum, Per Einar; Møretrø, Trond; Hjerpekjøn, Marianne Røine; Langsrud, Solveig
2014-08-18
It is crucial for the quality and safety of ready-to-eat (RTE) foods to maintain the cold chain from production to consumption. The effect of temperature abuse related to daily meals and elevated refrigerator temperatures on the growth and toxin production of Bacillus cereus, Bacillus weihenstephanensis and Staphylococcus aureus and the growth of Listeria monocytogenes and Yersinia enterocolitica was studied. A case study with temperature loggings in the domestic environment during Easter and Christmas holidays was performed to select relevant time and temperature courses. A model for bacterial surface growth on food using nutrient agar plates exposed to variations in temperatures was used to simulate food stored at different temperatures and exposed to room temperature for short periods of time. The results were compared with predicted growth using the modeling tool ComBase Predictor. The consumers exposed their cold cuts to room temperatures as high as 26.5°C with an average duration of meals was 47 min daily for breakfast/brunch during the vacations. Short (≤ 2 h) daily intervals at 25°C nearly halved the time the different pathogens needed to reach levels corresponding to the levels associated with human infection or intoxication, compared with the controls continuously stored at refrigerator temperature. Although the temperature fluctuations affected growth of both B. weihenstephanensis and S. aureus, toxin production was only detected at much higher cell concentrations than what has been associated with human intoxications. Therefore, growth of L. monocytogenes and Y. enterocolitica was found to be the limiting factor for safety. In combination with data on temperature abuse in the domestic environment, modeling programs such as ComBase Predictor can be efficient tools to predict growth of some pathogens but will not predict toxin production. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Rolland du Roscoat, S.; Geindreau, C.
2013-12-01
Three-dimensional (3D) images of snow offer the possibility of studying snow metamorphism at the grain scale by analysing the time evolution of its complex microstructure. Such images are also particularly useful for providing physical effective properties of snow arising in macroscopic models. In the last 15 years, several experiments have been developed in order to get 3D images of snow by X-ray microtomography. Up to now, two different approaches have been used: a static and an in vivo approach. The static method consists in imaging a snow sample whose structural evolution has been stopped by impregnation and/or very cold temperature conditions. The sample is placed in a cryogenic cell that can operate at the ambient temperature of the tomograph room (e.g. Brzoska et al., 1999, Coléou et al., 2001). The in vivo technique uses a non impregnated sample which continues to undergo structural evolutions and is put in a cell that controls the temperature conditions at the boundaries of the sample. This kind of cell requires a cold environnement and the whole tomographic acquisition process takes place in a cold room (e.g. Schneebeli and Sokratov, 2004, Pinzer and Schneebeli, 2009). The 2nd approach has the major advantage to provide the time evolution of the microstructure of a same snow sample but requires a dedicated cold-room tomographic scanner, whereas the static method can be used with any tomographic scanner operating at ambient conditions. We developed a new in vivo cryogenic cell which benefits from the advantages of each of the above methods: it (1) allows to follow the evolution of the same sample with time and (2) is usable with a wide panel of tomographic scanners provided with large cabin sizes, which has many advantages in terms of speed, resolution, and availability of new technologies. The thermal insulation between the snow sample and the outside is ensured by a double wall vacuum system of thermal conductivity of about 0.0015 Wm-1K-1. An air pumping system is thus permanently active during the experiment. Two Peltier cells are used to regulate the temperature at the top and bottom of the snow sample, allowing to impose the conditions of metamorphism (isothermal, temperature gradient). The snow sample consists of a cylinder of 1 cm radius and 1 cm height. During its positioning into the cryogenic cell, it is protected from the room conditions by a sealed and cold copper sample holder. The whole apparatus (cell, pumping system) is able to rotate of 360° synchronously during the tomographic acquisition. After X-ray tomography and image processing, this cell provides a set of 3D images showing the time evolution of the microstructure of a snow sample during its metamorphism under well-defined imposed conditions. Preliminary results give promising outlooks for the study of snow and firn physical processes. Brzoska, J.-B. and 7 others. 1999. ESRF Newsletter, 32, 22-23. Coléou, C., B. Lesaffre, J.-B. Brzoska, W. Ludwig and E. Boller. 2001. Ann. Glaciol., 32, 75-81. Pinzer, B. and M. Schneebeli. 2009. Meas. Sci. Technol., 20, 095705. Schneebeli, M. and S. A. Sokratov. 2004. Hydrol. Process., 18, 3655 - 3665.
Evaluation of Capacitors at Cryogenic Temperatures for Space Applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Gerber, Scott S.
1998-01-01
Advanced electronic systems designed for use in planetary exploration missions must operate efficiently and reliably under the extreme cold temperatures of deep space environment. In addition, spacecraft power electronics capable of cold temperature operation will greatly simplify the thermal management system by eliminating the need for heating units and associated equipment and thereby reduce the size and weight of the overall power system. In this study, film, mica, solid tantalum and electric double layer capacitors were evaluated as a function of temperature from room to liquid nitrogen in terms of their dielectric properties. These properties included capacitance stability and dielectric loss in the frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also performed on the capacitors. The results obtained are discussed and conclusions are made concerning the suitability of the capacitors investigated for low temperature applications.
Microplastic Deformation of Submicrocrystalline Copper at Room and Elevated Temperatures
NASA Astrophysics Data System (ADS)
Dudarev, E. F.; Pochivalova, G. P.; Tabachenko, A. N.; Maletkina, T. Yu.; Skosyrskii, A. B.; Osipov, D. A.
2017-02-01
of investigations of submicrocrystalline copper subjected to cold rolling after abc pressing by methods of backscatter electron diffraction and x-ray diffraction analysis are presented. It is demonstrated that after such combined intensive plastic deformation, the submicrocrystalline structure with average grain-subgrain structure elements having sizes of 0.63 μm is formed with relative fraction of high-angle grain boundaries of 70% with texture typical for rolled copper. Results of investigation of microplastic deformation of copper with such structure at temperatures in the interval 295-473 K and with submicrocrystalline structure formed by cold rolling of coarse-grained copper are presented.
Refrigeration is not necessary for measurement of uric acid in patients treated with rasburicase.
Lindeman, Neal I; Melanson, Stacy E F; McDonnell, Anne; DeAngelo, Daniel J; Jarolim, Petr
2013-05-01
Rasburicase, used for hyperuricemia of tumor lysis syndrome, retains activity at room temperature (RT) in in vitro studies. Cold-temperature handling is recommended for uric acid measurements in patients receiving rasburicase: collection in prechilled tubes, transportation on ice, and 4°C centrifugation. We performed a prospective study of these requirements. A total of 65 pairs of blood samples were collected from 34 patients, 12-24 h after receiving rasburicase. The effect of temperature on uric acid concentration was tested on paired samples handled either at RT or when cold: centrifugation (18 sample pairs), collection tube (14 pairs), transportation (24 pairs), and nine pairs were retested after 1 h at RT. No significant temperature effect was seen on the uric acid measurements for any of the cold-handling steps: proportional, absolute biases were -1.4%, -0.06 mg/dL (centrifugation), -1.5%, +0.02 mg/dL (tube temperature), and -2.2%, -0.01 mg/dL (transportation). A 20% negative bias was seen in samples retested after 1 h at RT. Cold handling (prechilled tubes, iced transportation, 4°C centrifugation) was equivalent to RT for immediate measurement. An additional 1 h delay at RT led to a 20% decrease in uric acid. The cold handling measures required by the manufacturer are not necessary for uric acid testing of patients receiving rasburicase treatment, if testing is performed without delay.
... The body part should be wrapped in a clean, damp cloth, placed in a sealed plastic bag, and the bag immersed in cold water (ice water if available). Cooling the severed body part will keep it alive for much longer than if it is at room temperature or warmer.
Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)
NASA Astrophysics Data System (ADS)
Halevy, Itzhak; Haroush, Shlomo; Eisen, Yosef; Silberman, Ido; Moreno, Dany; Hen, Amir; Winterrose, Mike L.; Ghose, Sanjit; Chen, Zhiqiang
2010-04-01
Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at ˜13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Mössbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.
Response of a Zn₂TiO₄ Gas Sensor to Propanol at Room Temperature.
Gaidan, Ibrahim; Brabazon, Dermot; Ahad, Inam Ul
2017-08-31
In this study, three different compositions of ZnO and TiO₂ powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB) as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.
Imprinting bulk amorphous alloy at room temperature
Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...
2015-11-13
We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less
Small Cold Temperature Instrument Packages
NASA Astrophysics Data System (ADS)
Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.
We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.
Aluja, M; Díaz-Fleischer, F; Arredondo, J; Valle-Mora, J; Rull, J
2010-12-01
Commercially ripe 'Hass' avocados, Persea americana Mill, artificially exposed to wild Anastrepha ludens (Loew) (Diptera: Tephritidae) females 24 h after harvest were placed in a cold storage facility to determine the effect of low temperature on larval survival and adult viability. Fruit were left for 3, 6, 9, and 12 d in a cold room at 5 degrees C followed by a 20-25-d period at ambient temperature to allow for larval development and pupation. Hass avocados and grapefruit, Citrus paradisi Macfadyen, maintained at ambient temperature served as controls. Overall, only 0.23% of the Hass avocados and 19.30% of the grapefruit were infested. The number of infested fruit increased with decreasing exposure time to cold. Puparia from cold-treated Hass avocados were significantly smaller than those stemming from cold-treated grapefruit. Hass avocados exposed for 12 d to 5 degrees C yielded no puparia, and those exposed for 6 and 9 d yielded 22 and two puparia, respectively, but no adults. Although Hass avocados exposed to cold temperature for 3 d yielded adults that reached sexual maturity (N = 16), females laid inviable eggs. Grapefruit exposed to cold for 12 d yielded normal-sized puparia (but no adults), whereas those exposed over 9 d yielded females able to lay viable eggs. We conclude that exposing fruit to cold storage after packing and during transport represents an effective risk-mitigating procedure in the highly improbable event that a gravid A. ludens female might lay eggs in a commercially ripe Hass avocado that had been left unprotected in a packinghouse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Legvold, S.; Burgardt, P.; Beaudry, B.J.
1977-09-15
The electrical resistivity of high-purity double hexagonal-close-packed (dhcp) ..cap alpha..-La from 5 to 300 K is reported. Measurements were made on small-grained samples prepared by heat treatment of cold-worked lanthanum. Measurements were also made on samples cut in different directions from an ingot slowly cooled from the molten state. The room-temperature results were all within 2% of the mean value. Chemically pure ..beta..-La (fcc) cannot be retained at room temperature, hence, measurements were made on an fcc sample of La containing 0.2-at. % Gd and approx. 0.8-at. % total interstitial nonmetallic impurities. The cubic form has almost the same typemore » of temperature dependence as the dhcp form, but has a 10% lower magnitude.« less
Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jianhua; Yi Danqing; Su Xuping
2008-07-15
The effects of deformation ageing treatment (DAT) on the microstructure and properties of aluminum alloy 2618 were investigated. The alloy was subjected to deformation ageing treatment which included solution treating at 535 deg. C quenching into water at room-temperature, cold rolling (10%) and further ageing to peak hardness level at 200 deg. C. The electron microscopic studies revealed that the treatment affects the ageing characteristics and the coarsening of ageing phase (S') at elevated-temperature. The dislocation-precipitate tangles substructure couldn't be found in alloy 2618. The tensile and hardness tests showed that deformation-ageing treatment causes a significant improvement in tensile strengthmore » and hardness to alloy 2618 at room- and elevated-temperature.« less
NASA Astrophysics Data System (ADS)
Gaur, Rishi; Gupta, R. K.; AnilKumar, V.; Banwait, S. S.
2018-05-01
Mechanical behavior of Ti-4Al-1Mn titanium alloy has been studied in annealed, cold-rolled and heat-treated conditions. Room temperature tensile strength as well as % elongation has been found to be low with increasing amount of cold rolling. Lowering of strength in cold worked condition is attributed to premature failure. However, the same has been mitigated after heat treatment. Significant effect of cooling media (air and water) from heat treatment temperature on microstructure was not found except for the degree of fineness of α plates. Optimum properties (strength as well as ductility) were exhibited by samples subjected to 15% cold rolling and heat treatment below β transus temperature, which can be attributed to presence of recrystallized microstructure. In cold worked condition, the microstructure shows fine fragmented α plates/Widmanstätten morphology with high dislocation density along with a large amount of strain fields and twinning, which gets transformed to recrystallized equiaxed microstructure and with plate-like morphology after near β heat treatment. Prior cold work is found to have a significant effect on mechanical properties supported by evolution of microstructure. Twinning is found to be assisting in deformation as well as in recrystallization through the formation of deformation and annealing twins during cold working and heat treatment. Fracture analysis of the tested sample with prior cold work and heat-treated condition revealed quasi-ductile failure as compared to only ductile failure features seen for samples heat treated without prior cold work.
Wistrand, Camilla; Söderquist, Bo; Magnusson, Anders; Nilsson, Ulrica
2015-01-01
In clinical practice, patients who are awake often comment that cold surgical skin disinfectant is unpleasant. This is not only a problem of patients' experience; heat loss during the disinfection process is a problem that can result in hypothermia. Evidence for the efficacy of preheated disinfection is scarce. We tested whether preheated skin disinfectant was non-inferior to room-temperature skin disinfectant on reducing bacterial colonization during pacemaker implantation. This randomized, controlled, non-inferiority trial included 220 patients allocated to skin disinfection with preheated (36 °C) or room-temperature (20 °C) chlorhexidine solution in 70 % ethanol. Cultures were obtained by swabbing at 4 time-points; 1) before skin disinfection (skin surface), 2) after skin disinfection (skin surface), 3) after the incision (subcutaneously in the wound), and 4) before suturing (subcutaneously in the wound). The absolute difference in growth between patients treated with preheated versus room-temperature skin disinfectant was zero (90 % CI -0.101 to 0.101; preheated: 30 of 105 [28.6 %] vs. room-temperature: 32 of 112 [28.6 %]). The pre-specified margin for statistical non-inferiority in the protocol was set at 10 % for the preheated disinfectant. There were no significant differences between groups regarding SSIs three month postoperatively, which occurred in 0.9 % (1 of 108) treated with preheated and 1.8 % (2 of 112) treated with room-temperature skin disinfectant. Preheated skin disinfection is non-inferior to room-temperature disinfection in bacterial reduction. We therefore suggest that preheated skin disinfection become routine in clean surgery. The study is registered at ClinicalTrials.gov (NCTO2260479).
Sokolov, Alexander; Louhi-Kultanen, Marjatta
2018-06-07
The increase in volume and variety of pharmaceuticals found in natural water bodies has become an increasingly serious environmental problem. The implementation of cold plasma technology, specifically gas-phase pulsed corona discharge (PCD), for sulfamethizole abatement was studied in the present work. It was observed that sulfamethizole is easily oxidized by PCD. The flow rate and pH of the solution have no significant effect on the oxidation. Treatment at low pulse repetition frequency is preferable from the energy efficiency point of view but is more time-consuming. The maximum energy efficiency was around 120 g/kWh at half-life and around 50 g/kWh at the end of the treatment. Increasing the solution temperature from room temperature to 50 °C led to a significant reaction retardation of the process and decrease in energy efficiency. The pseudo-first order reaction rate constant (k 1 ) grows with increase in pulse repetition frequency and does not depend on pH. By contrast, decreasing frequency leads to a reduction of the second order reaction rate constant (k 2 ). At elevated temperature of 50 °C, the k 1 , k 2 values decrease 2 and 2.9 times at 50 pps and 500 pps respectively. Lower temperature of 10 °C had no effect on oxidation efficiency compared with room temperature.
Temperature corrections in routine spirometry.
Cramer, D; Peacock, A; Denison, D
1984-01-01
Forced expiratory volume (FEV1) and forced vital capacity (FVC) were measured in nine normal subjects with three Vitalograph and three rolling seal spirometers at three different ambient temperatures (4 degrees C, 22 degrees C, 32 degrees C). When the results obtained with the rolling seal spirometer were converted to BTPS the agreement between measurements in the three environments improved, but when the Vitalograph measurements obtained in the hot and cold rooms were converted an error of up to 13% was introduced. The error was similar whether ambient or spirometer temperatures were used to make the conversion. In an attempt to explain the behaviour of the Vitalograph spirometers the compliance of their bellows was measured at the three temperatures. It was higher at the higher temperature (32 degrees C) and lower at the lower temperature (4 degrees C) than at the normal room temperature. These changes in instrument compliance could account for the differences in measured values between the two types of spirometer. It is concluded that the ATPS-BTPS conversion is valid and necessary for measurements made with rolling seal spirometers, but can cause substantial error if it is used for Vitalograph measurements made under conditions other than normal room temperature. PMID:6495245
Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hullar, Ted; Anastasio, Cort, E-mail: canastasio@ucdavis.edu; Paige, David F.
2014-04-15
High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as −25 °Cmore » ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.« less
Reducing the risk of unplanned perioperative hypothermia.
Lynch, Susan; Dixon, Jacqueline; Leary, Donna
2010-11-01
Maintaining normothermia is important for patient safety, positive surgical outcomes, and increased patient satisfaction. Causes of unplanned hypothermia in the OR include cold room temperatures, the effects of anesthesia, cold IV and irrigation fluids, skin and wound exposure, and patient risk factors. Nurses at Riddle Memorial Hospital in Media, Pennsylvania, performed a quality improvement project to evaluate the effectiveness of using warm blankets, warm irrigation fluids, or forced-air warming on perioperative patients to maintain their core temperature during the perioperative experience. Results of the project showed that 75% of patients who received forced-air warming perioperatively had temperatures that reached or were maintained at 36° C (96.8° F) or higher within 15 minutes after leaving the OR. Copyright © 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, L.M.; Jones, A.H.
1986-04-01
The fracture toughness of CIP-HIP (cold isostatic pressed-hot isostatic pressed) beryllium was determined using the short-bar fracture-toughness (K/sub IcSB/) method. The K/sub IcSB/ value measured was 10.96 MPa x the square root of m at room temperature. This falls well within the expected range of 9 to 12 MPa x the square root of m as observed from previous fracture toughness measurements of beryllium. Toughness increased rapidly between 400 F and 500 F reaching a value of 16.7 MPa x the square root of m at 500 F.
1990-08-01
9 Pathophysiology of hypothermia............ 11 Hypothermia and anesthesia................ 16 Causes of hypothermia...Various causes exist for the development of hypothermia and many are intrinsic to the surgical environment. Cool operating room temperatures, cold skin...slower infusion rates (< 20 ml/min) cause heat loss from fluids warmed by conventional warmers (Baker, 1985), similar loss may occur using rapid infusion
Effect of high CO{sub 2} on cold acclimation and deacclimation of three conifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinus, R.W.; Greer, D.H.; Robinson, L.A.
1995-12-31
Atmospheric CO{sub 2} levels are rising, and whether or not this leads to a climate change, high CO{sub 2} is known to have some direct effects of plants. One aspect that has only begun to be explored is possible effects on cold hardiness. Well adapted woody plants can tolerate the lowest temperatures to which they may be exposed at all times of the year. Every year temperate and boral woody plants must cold harden in a timely manner in autumn, become hardy enough to withstand the coldest winter temperatures, and not lose their hardiness prematurely in the spring. The authorsmore » objective was to determine the effect of elevated CO{sub 2} on cold acclimation and deacclimation of three commercially important conifers. Seedlings of three conifers were cold hardened and dehardened in growth rooms under 350 or 700 ppm CO{sub 2}. High CO{sub 2} had little effect on cold hardiness of radiata pine, but increased autumn and spring hardiness of Douglas-fir. High CO{sub 2} increased hardiness of ponderosa pine in autumn and decreased it in the spring.« less
Thyroid function and cold acclimation in the hamster, Mesocricetus auratus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomasi, T.E.; Horwitz, B.A.
1987-02-01
Basal metabolic rate (BMR), thyroxine utilization rate (T4U), and triiodothyronine utilization rate (T3U) were measured in cold-acclimated (CA) and room temperature-acclimated (RA) male golden hamsters, Mesocricetus auratus. Hormone utilization rates were calculated via the plasma disappearance technique using SVI-labeled hormones and measuring serum hormone levels via radioimmunoassay. BMR showed a significant 28% increase with cold acclimation. The same cold exposure also produced a 32% increase in T4U, and a 204% increase in T3U. The much greater increase in T3U implies that previous assessments of the relationship between cold acclimation and thyroid function may have been underestimated and that cold exposuremore » induces both quantitative and qualitative changes in thyroid function. It is concluded that in the cold-acclimated state, T3U more accurately reflects thyroid function than does T4U. A mechanism for the cold-induced change in BMR is proposed.« less
Application of Cold Storage for Raja Sere Banana (Musa acuminata colla)
NASA Astrophysics Data System (ADS)
Crismas, S. R. S.; Purwanto, Y. A.; Sutrisno
2018-05-01
Raja Sere is one of the indigenous banana cultivars in Indonesia. This cultivar has a yellow color when ripen, small size and sweet taste. Traditionally, the growers market this banana cultivar to the market without any treatment to delay the ripening process. Banana fruits are commonly being harvested at the condition of hard green mature. At this condition of hard green mature, banana fruits can be stored for a long-term period. The objective of this study was to examine the effect of cold storage on the quality of raja sere banana that stored at 13°C. Banana fruits cultivar Raja Sere were harvested from local farmer field at the condition of hard green mature (about 14 weeks age after the flower bloom). Fifteen bunches of banana were stored in cold storage with a temperature of 13°C for 0, 3, 6, 9, and 12 days, respectively. For the control, room temperature storage (28°C) was used. At a storage period, samples of banana fruits ripened in the ripening chamber by injecting 100 ppm of ethylene gas at 25°C for 24 hours. The quality parameters namely respiration rate, hardness, total soluble solids (TSS), change in color, and weight loss were measured. For those banana fruits stored at room temperature, the shelf-life of banana was only reached up to 6 days. For those banana fruits stored in cold storage, the condition of banana fruits was reached up to 12 days. After cold storage and ripening, the third day measurement was the optimal time for bananas to be consumed which indicated by the yellow color (lightness value = 68.51, a* = 4.74 and value b* = 62.63), TSS 24.30 °Brix and hardness 0.48 kgf, weight loss about 7.53-16.45% and CO2 respiration rate of 100.37 mLCO2 / kg.hr.
Evaluation of Commercially Available Cold Chain Shipping Systems
2015-03-19
instructions for the maceration of heart tissue. Briefly, 10 g of ground beef was placed alone or with 40 mL 4°C phosphate buffered saline (PBS) in...room temperature (25°C) raw ground beef was placed in a 50-mL IKA Turrax tube with rotor-stator elements and 40 mL of 4°C PBS. Temperature probes...were placed in the center of the ground beef to record the starting temperature and removed during the homogenization process. Turrax homogenization
NASA Astrophysics Data System (ADS)
Soszka, W.
1992-09-01
Energy spectra of 5 keV Ne+ and He+ ions backscattered from the cold (100) nickel surface for chosen values of the incidence angles were measured. It was found that the occurrence of the isotope structure of the so-called "single-scattering" peak as well as its position on the energy scale depend on the incidence angle and the target temperature. In comparison to the case of room temperature the "ICISS curve" (the intensity of the single-scattering peak versus the incidence angle) at low temperatures increases up to relatively large angles. The curve in its part shows some structure which is not observed at room temperatures. It has been shown [E.S. Parilis et al., Atomic Collisions in Gases and on Solid Surfaces (FAN, Tashkent, 1988) in Russian] that the doubly scattered ions can have the same energy and exit angle as the singly scattered ions and both components create the quasi-single-scattering peak. The double-scattering component depends in a complex manner on the incidence angle and the target temperature. It is shown that at low temperatures (below 80 K) the intensity of the single-scattering component decreases (a decrease of thermal cross section), and the intensity of the double-scattering component relatively increases. This determines the behaviour of the ICISS curve, which, for low temperatures and light projectiles cannot be treated as a real ICISS curve.
An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Xinpei; Jiang Zhonghe; Xiong Qing
2008-02-25
In this letter, a room temperature atmospheric pressure plasma jet device is reported. The high voltage electrode of the device is covered by a quartz tube with one end closed. The device, which is driven by a kilohertz ac power supply, is capable of generating a plasma plume up to 11 cm long in the surrounding room air. The rotational and vibrational temperatures of the plasma plume are 300 and 2300 K, respectively. A simple electrical model shows that, when the plasma plume is contacted with a human, the voltage drop on the human is less than 66 V formore » applied voltage of 5 kV (rms)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Dacheng; Department of Aeronautics, Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005; Zhao Di
2011-04-18
This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilizationmore » process.« less
Cold-hearted or cool-headed: physical coldness promotes utilitarian moral judgment
Nakamura, Hiroko; Ito, Yuichi; Honma, Yoshiko; Mori, Takuya; Kawaguchi, Jun
2014-01-01
In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1) participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2) participants had a high-level construal mindset and focused on abstract goals (e.g., save many); or (3) there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the “cool-headed” deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being “cold-hearted,” reduced empathetic concern, and facilitated utilitarian moral judgments. PMID:25324800
Permanently densified SiO2 glasses: a structural approach.
Martinet, C; Kassir-Bodon, A; Deschamps, T; Cornet, A; Le Floch, S; Martinez, V; Champagnon, B
2015-08-19
Densified silica can be obtained by different pressure and temperature paths and for different stress conditions, hydrostatic or including shear. The density is usually the macroscopic parameter used to characterize the different compressed silica samples. The aim of our present study is to compare structural modifications for silica glass, densified from several routes. For this, densified silica glasses are prepared from cold and high temperature (up to 1020 °C) compressions. The different densified glasses obtained in our study are characterized by micro-Raman spectroscopy. Intertetrahedral angles from the main band relative to the bending mode decrease and their values are larger for densified samples from high temperature compression than those samples from cold compression. The relative amount of 3-membered rings deduced from the D2 line area increases as a function of density for cold compression. The temperature increase during the compression process induces a decrease of the 3 fold ring population. Moreover, 3 fold rings are more deformed and stressed for densified samples at room temperature at the expense of those densified at high temperature. Temperature plays a main role in the reorganization structure during the densification and leads to obtaining a more relaxed structure with lower stresses than glasses densified from cold compression. The role of hydrostatic or non-hydrostatic applied stresses on the glass structure is discussed. From the Sen and Thorpe central force model, intertetrahedral angle average value and their distribution are estimated.
Pach, Daniel; Knöchel, Bettina; Lüdtke, Rainer; Wruck, Katja; Willich, Stefan N; Witt, Claudia M
To compare the efficacy of applying hot dry air versus dry air at room temperature to the throat of patients with a newly acquired common cold using a symptom severity score. A randomised single-blind controlled trial with a treatment duration of 3 days and a follow-up period of 4 days was conducted at a sauna in Berlin, Germany. Between November 2007 and March 2008 and between September 2008 and April 2009, 157 patients with symptoms of the common cold were randomly assigned to an intervention group (n=80) and a control group (n=77). Participants in the intervention group inhaled hot dry air within a hot sauna, dressed in a winter coat, whereas participants in the control group inhaled dry air at room temperature within a hot sauna, also dressed in a winter coat. Area under the curve (AUC) summarising symptom severity over time (Days 2, 3, 5 and 7), symptom severity scores for individual days, intake of medication for the common cold and general ill feeling. No significant difference between groups was observed for AUC representing symptom severity over time (intervention group mean, 31.2 [SEM, 1.8]; control group mean, 35.1 [SEM, 2.3]; group difference, -3.9 [95% CI, -9.7 to 1.9]; P=0.19). However, significant differences between groups were found for medication use on Day 1 (P=0.01), symptom severity score on Day 2 (P=0.04), and participants' ratings of the effectiveness of the therapy on Day 7 (P=0.03). Inhaling hot air while in a sauna has no significant impact on overall symptom severity of the common cold. ClinicalTrials.gov identifier NCT00552981.
NASA Astrophysics Data System (ADS)
Garion, C.; Dufay-Chanat, L.; Koettig, T.; Machiocha, W.; Morrone, M.
2015-12-01
The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented.
Rapid restoration of electric vehicle battery performance while driving at cold temperatures
NASA Astrophysics Data System (ADS)
Zhang, Guangsheng; Ge, Shanhai; Yang, Xiao-Guang; Leng, Yongjun; Marple, Dan; Wang, Chao-Yang
2017-12-01
Electric vehicles (EVs) driven in cold weather experience two major drawbacks of Li-ion batteries: drastic power loss (up to 10-fold at -30 °C) and restriction of regenerative braking at temperatures below 5-10 °C. Both factors greatly reduce cruise range, exacerbating drivers' range anxiety in winter. While preheating the battery before driving is a practice widely adopted to maintain battery power and EV drivability, it is time-consuming (on the order of 40 min) and prohibits instantaneous mobility. Here we reveal a control strategy that can rapidly restore EV battery power and permit full regeneration while driving at temperatures as low as -40 °C. The strategy involves heating the battery internally during regenerative braking and rest periods of driving. We show that this technique fully restores room-temperature battery power and regeneration in 13, 33, 46, 56 and 112 s into uninterrupted driving in 0, -10, -20, -30 and -40 °C environments, respectively. Correspondingly, the strategy significantly increases cruise range of a vehicle operated at cold temperatures, e.g. 49% at -40 °C in simulated US06 driving cycle tests. The present work suggests that smart batteries with embedded sensing/actuation can leapfrog in performance.
NASA Astrophysics Data System (ADS)
Issing, K.; Fuhr, E.
1986-09-01
Students wearing swim suits were exposed for 30 min to neutral room temperature (TR=28‡C). During the following 60 min they were subjected to gradual decreases or increases of room temperature reaching 12‡C or 45‡C, respectively. Static thermal stimuli were applied to the palms of the right (38‡C) and left (25‡C) hands. Hands and feet of all subjects were thermally isolated at 22‡C ambient temperature. General thermal comfort (GTC), local thermal comfort (LTC), skin blood flow (which is proportional to heat transport index λ) several body temperatures, oxygen-consumption(dot V_{O_2 } ), and sweat rate (S), were measured. After moderate intermittent heat exposures (7 times for 1h at TR=42.5‡C) the experiments started again. From GTC, LTC, or λ as functions of TR, no new knowledge about thermoregulatory or adaptive mechanisms was available. The high λ in the cold stimulated left hand, however, and the oscillatory thresholds (λOSC) for rhythmic vasomotion indicated the peripheral influence of skin temperature, as well as local, mean skin temperature (¯Ts) and core temperature. When exposed to moderate temperature decreases or increases the body seems to react only with increasing thermal resistance by vasoconstriction or an increase of sweat rate, respectively. Moderate heat adaptation is only able to raise sweat rate, but not the thresholds and gain of the S-function. We assume that functional studies of adaptive modifications in humans must be conducted at temperatures greatly beyond those used in these experiments.
Temperature, hospital admissions and emergency room visits in Lhasa, Tibet: a time-series analysis.
Bai, Li; Cirendunzhu; Woodward, Alistair; Dawa; Zhaxisangmu; Chen, Bin; Liu, Qiyong
2014-08-15
Tibet of China, with an average altitude of over 4000 m, has experienced noticeable changes in its climate over the last 50 years. The association between temperature and morbidity (most commonly represented by hospital admissions) has been documented mainly in developed countries. Little is known about patterns in China; nor have the health effects of temperature variations been closely studied in highland areas, worldwide. We investigated the temperature-morbidity association in Lhasa, the capital city of Tibet, using sex- and age-specific hospitalizations, excluding those due to external causes. A distributed lag non-linear model (DLNM) was applied to assess the nonlinear and delayed effects of temperature on morbidity (including total emergency room visits, total and cause-specific hospital admissions, sex- and age-specific non-external admissions). High temperatures are associated with increases in morbidity, to a greater extent than low temperatures. Lag effects of high and low temperatures were cause-specific. The relative risks (RR) of high temperature for total emergency room visits and non-external hospitalizations were 1.162 (95% CI: 1.002-1.349) and 1.161 (95% CI: 1.007-1.339) respectively, for lag 0-14 days. The strongest cumulative effect of heat for lag 0-27 days was on admissions for infectious diseases (RR: 2.067, 95% CI: 1.026-4.027). Acute heat effects at lag 0 were related with increases of renal (RR: 1.478, 95% CI: 1.005-2.174) and respiratory diseases (RR: 1.119, 95% CI: 1.010-1.240), whereas immediate cold effects increased admission for digestive diseases (RR: 1.132, 95% CI: 1.002-1.282). Those ≥65 years of age and males were more vulnerable to high temperatures. We provide a first look at the temperature-morbidity relationship in Tibet. Exposure to both hot and cold temperatures resulted in increased admissions to hospital, but the immediate causes varied. We suggest that initiatives should be taken to reduce the adverse effects of temperature extremes in Tibet. Copyright © 2014. Published by Elsevier B.V.
Peyton W. Owston; T.T. Kozlowski
1981-01-01
Seedlings of Pseudotsuga menziesii (Mirb.) Franco, Abies procera Rehd., and Picea sitchensis (Bong.) Carr. were grown for 5 months in growth rooms which simulated hot, warm, or cool growing regimes in greenhouses in western Oregon. Temperature, humidity, light intensity, and photoperiod were changed...
A novel coupled VM-PT cryocooler operating at liquid helium temperature
NASA Astrophysics Data System (ADS)
Pan, Changzhao; Zhang, Tong; Zhou, Yuan; Wang, Junjie
2016-07-01
This paper presents experimental results on a novel two-stage gas-coupled VM-PT cryocooler, which is a one-stage VM cooler coupled a pulse tube cooler. In order to reach temperatures below the critical point of helium-4, a one-stage coaxial pulse tube cryocooler was gas-coupled on the cold end of the former VM cryocooler. The low temperature inertance tube and room temperature gas reservoir were used as phase shifters. The influence of room temperature double-inlet was first investigated, and the results showed that it added excessive heat loss. Then the inertance tube, regenerator and the length of the pulse tube were researched experimentally. Especially, the DC flow, whose function is similar to the double-orifice, was experimentally studied, and shown to contribute about 0.2 K for the no-load temperature. The minimum no-load temperature of 4.4 K was obtained with a pressure ratio near 1.5, working frequency of 2.2 Hz, and average pressure of 1.73 MPa.
Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs
NASA Astrophysics Data System (ADS)
Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan
2013-12-01
Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.
Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
1999-01-01
An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle re-entry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800 degrees Fahrenheit. The environmental pressure was varied from 0.0001 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of Saffil, Q-Fiber felt, Cerachrome, and three multi-layer insulation configurations were measured.
Structural damping studies at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Buehrle, Ralph D.
1994-01-01
Results of an engineering study to measure changes in structural damping properties of two cryogenic wind tunnel model systems and two metallic test specimens at cryogenic temperatures are presented. Data are presented which indicate overall, a trend toward reduced structural damping at cryogenic temperatures (-250 degrees F) when compared with room temperature damping properties. The study was focused on structures and materials used for model systems tested in the National Transonic Facility (NTF). The study suggests that the significant reductions in damping at extremely cold temperatures are most likely associated with changes in mechanical joint compliance damping rather than changes in material (solid) damping.
Cryogenic characterization of LEDs for space application
NASA Astrophysics Data System (ADS)
Carron, Jérôme; Philippon, Anne; How, Lip Sun; Delbergue, Audrey; Hassanzadeh, Sahar; Cillierre, David; Danto, Pascale; Boutillier, Mathieu
2017-09-01
In the frame of EUCLID project, the Calibration Unit of the VIS (VISible Imager) instrument must provide an accurate and well characterized light source for in-flight instrument calibration without noise when it is switched off. The Calibration Unit consists of a set of LEDs emitting at various wavelengths in the visible towards an integrating sphere. The sphere's output provides a uniform illumination over the entire focal plane. Nine references of LEDs from different manufacturers were selected, screened and qualified under cryogenic conditions. Testing this large quantity of samples led to the implementation of automated testing equipment with complete in-situ monitoring of optoelectronic parameters as well as temperature and vacuum values. All the electrical and optical parameters of the LED have been monitored and recorded at ambient and cryogenic temperatures. These results have been compiled in order to show the total deviation of the LED electrical and electro-optical properties in the whole mission and to select the best suitable LED references for the mission. This qualification has demonstrated the robustness of COTS LEDs to operate at low cryogenic temperatures and in the space environment. Then 6 wavelengths were selected and submitted to an EMC sensitivity test at room and cold temperature by counting the number of photons when LEDs drivers are OFF. Characterizations were conducted in the full frequency spectrum in order to implement solutions at system level to suppress the emission of photons when the LED drivers are OFF. LEDs impedance was also characterized at room temperature and cold temperature.
Cold chemistry with cold molecules
NASA Astrophysics Data System (ADS)
Shagam, Yuval
Low temperature chemistry has been predicted to be dominated by quantum effects, such as shape resonances, where colliding particles exhibit wave-like behavior and tunnel through potential barriers. Observation of these quantum effects provides valuable insight into the microscopic mechanism that governs scattering processes. Our recent advances in the control of neutral supersonic molecular beams, namely merged beam experiments, have enabled continuous tuning of collision energies from the classical regime at room temperature down to 0.01 kelvin, where a quantum description of the dynamics is necessary. I will discuss our use of this technique to study how the dynamics change when molecules participate in collisions, demonstrating the crucial role the molecular quantum rotor plays. We have found that at low temperatures rotational state of the molecule can strongly affect collision dynamics considerably changing reaction rates, due to the different symmetries of the molecular wavefunction.
Physiological responses to acute cold exposure in young lean men
Martinez-Tellez, Borja; Sanchez-Delgado, Guillermo; A. Alcantara, Juan M.; Acosta-Manzano, Pedro; Morales-Artacho, Antonio J.; R. Ruiz, Jonatan
2018-01-01
The aim of this study was to comprehensively describe the physiological responses to an acute bout of mild cold in young lean men (n = 11, age: 23 ± 2 years, body mass index: 23.1 ± 1.2 kg/m2) to better understand the underlying mechanisms of non-shivering thermogenesis and how it is regulated. Resting energy expenditure, substrate metabolism, skin temperature, thermal comfort perception, superficial muscle activity, hemodynamics of the forearm and abdominal regions, and heart rate variability were measured under warm conditions (22.7 ± 0.2°C) and during an individualized cooling protocol (air-conditioning and water cooling vest) in a cold room (19.4 ± 0.1°C). The temperature of the cooling vest started at 16.6°C and decreased ~ 1.4°C every 10 minutes until participants shivered (93.5 ± 26.3 min). All measurements were analysed across 4 periods: warm period, at 31% and at 64% of individual´s cold exposure time until shivering occurred, and at the shivering threshold. Energy expenditure increased from warm period to 31% of cold exposure by 16.7% (P = 0.078) and to the shivering threshold by 31.7% (P = 0.023). Fat oxidation increased by 72.6% from warm period to 31% of cold exposure (P = 0.004), whereas no changes occurred in carbohydrates oxidation. As shivering came closer, the skin temperature and thermal comfort perception decreased (all P<0.05), except in the supraclavicular skin temperature, which did not change (P>0.05). Furthermore, the superficial muscle activation increased at the shivering threshold. It is noteworthy that the largest physiological changes occurred during the first 30 minutes of cold exposure, when the participants felt less discomfort. PMID:29734360
Khamverdi, Zahra; Vahedi, Mohammad; Abdollahzadeh, Shermin; Ghambari, Mohammad Hosein
2013-09-01
This study compared diet and regular Coca-Cola on enamel erosion in cold and room temperatures. Seventy five enamel specimens were prepared and divided into 5 equal groups (N=15) as follows: Group 1: regular beverage at room temperature, Group 2: regular beverage at refri-gerator temperature, Group 3: diet beverage at room and Group 4: diet beverage at refrige-rator temperature. The specimens were immersed in the regular or diet beverage (Coca-Cola, trade mark regd. Khoshgovar Co., Tehran, Iran) at room (20°C) or refrigerator (2°C) temperatures for 20 minutes, 3 times per day for 7 days. Specimens in the control subjects (group 5) were placed in synthetic saliva at room temperature for 7 days. The hardness of specimens was tested using Vickers test under 500 gr loads for 5 seconds. The data were analyzed using two-way ANOVA and Tukey tests. The mean and standard deviations of micro-hardness values of the studied groups were as follow: G1: 304.26±29.71, G2: 285.53±42.14, G3: 279.06±39.52, G4: 266.80±23.98 and G5: 319± 30.79. There was a significant difference in the beverage type as the main factor (p<0.05), but temperature factor and their interaction effect on enamel hardness showed no significant difference (p>0.05). Tukey tests showed that there were significant differences between control and diet groups as well as regular and diet groups. Diet Coca-Cola is more erosive than the regular type and the temperature of the beverages used had no significant influence on enamel erosion.
Khamverdi, Zahra; Vahedi, Mohammad; Abdollahzadeh, Shermin; Ghambari, Mohammad Hosein
2013-01-01
Objective: This study compared diet and regular Coca-Cola on enamel erosion in cold and room temperatures. Materials and Methods: Seventy five enamel specimens were prepared and divided into 5 equal groups (N=15) as follows: Group 1: regular beverage at room temperature, Group 2: regular beverage at refri-gerator temperature, Group 3: diet beverage at room and Group 4: diet beverage at refrige-rator temperature. The specimens were immersed in the regular or diet beverage (Coca-Cola, trade mark regd. Khoshgovar Co., Tehran, Iran) at room (20°C) or refrigerator (2°C) temperatures for 20 minutes, 3 times per day for 7 days. Specimens in the control subjects (group 5) were placed in synthetic saliva at room temperature for 7 days. The hardness of specimens was tested using Vickers test under 500 gr loads for 5 seconds. The data were analyzed using two-way ANOVA and Tukey tests. Results: The mean and standard deviations of micro-hardness values of the studied groups were as follow: G1: 304.26±29.71, G2: 285.53±42.14, G3: 279.06±39.52, G4: 266.80±23.98 and G5: 319± 30.79. There was a significant difference in the beverage type as the main factor (p<0.05), but temperature factor and their interaction effect on enamel hardness showed no significant difference (p>0.05). Tukey tests showed that there were significant differences between control and diet groups as well as regular and diet groups. Conclusion: Diet Coca-Cola is more erosive than the regular type and the temperature of the beverages used had no significant influence on enamel erosion. PMID:24910648
NASA Technical Reports Server (NTRS)
Smith, Robert W.; Smith, Gordon T.
1960-01-01
Thermal-fatigue crack-growth characteristics of notched- and unnotched-disk specimens of A-286, Discaloy, hot-cold worked 16-25-6, and overaged 16-25-6 were experimentally studied. Separately controlled variables were total strain range (0.0043 to 0.0079 in./in.), maximum cycle temperature (1300 and 1100 F), and hold time at maximum temperature (O and 5 min). A limited number of mechanical, push-pull, constant-strain cycle tests at room temperature were made using notched and un-notched bars of the same materials. In these tests the number of cycles to failure as well as the variation of load change with accumulated cycles was measured, and the effects of mean stress were observed. Constant-strain-range mechanical-fatigue tests at room temperature revealed notched-bar fatigue life to be strongly influenced by mean stress. For a specific strain range, the longest fatigue life was always found to be associated with the least-tensile (or most compressive) mean stress. By defining thermal-fatigue life as the number of cycles required to produce a crack area of 6000 square mils, the relative thermal-fatigue resistances of the test materials were established. Notched-disk specimens of A-286 and Discaloy steels exhibited longer fatigue lives than either hot-cold worked or overaged 16-25-6. On the other hand, unnotched-disk specimens of Discaloy and hot-cold worked 16-25-6 had longer lives than A-286 and overaged 16-25-6. Separation of the crack-growth data into microstage and macrostage periods revealed that the macrostage period accounted for the greatest part of the difference among materials when tested in the notched configuration, while the microstage was largely responsible for the differences encountered in unnotched disks.
Cold immersion recovery responses in the diabetic foot with neuropathy.
Bharara, Manish; Viswanathan, Vijay; Cobb, Jonathan E
2008-10-01
The aim of this article was to investigate the effectiveness of testing cold immersion recovery responses in the diabetic foot with neuropathy using a contact thermography system based on thermochromic liquid crystals. A total of 81 subjects with no history of diabetic foot ulceration were assigned to neuropathy, non neuropathy and healthy groups. Each group received prior verbal and written description of the test objectives and subsequently underwent a comprehensive foot care examination. The room temperature and humidity were consistently maintained at 24 degrees C and less than 50%, respectively, with air conditioning. The right foot for each subject was located on the measurement platform after cold immersion in water at 18-20 degrees C. Whole-field thermal images of the plantar foot were recorded for 10 minutes. Patients with diabetes with neuropathy show the highest 'delta temperature', that is difference between the temperature after 10-minute recovery period and baseline temperature measured independently at all the three sites tested, that is first metatarsal head (MTH), second MTH and heel. This clinical study showed for the first time the evidence of poor recovery times for the diabetic foot with neuropathy when assessing the foot under load. A temperature deficit (because of poor recovery to baseline temperature) suggests degeneration of thermoreceptors, leading to diminished hypothalamus-mediated activity in the diabetic neuropathic group.
Xiao, Xin; Zhang, Peng; Meng, Zhao-Nan; Li, Ming
2015-04-01
Nitrates and eutectic nitrate mixtures are considered as potential phase change materials (PCMs) for the middle-temperature-range solar energy storage applications. But the extensive utilization is restricted by the poor thermal conductivity and thermal stability. In the present study, sodium nitrate-potassium nitrate eutectic mixture was used as the base PCM, and expanded graphite (EG) was added to the mixture so as to improve the thermal conductivities. The elaboration method consists of a physically mixing of salt powders with or without EG, and the composite PCMs were cold-compressed to form shape-stabilized PCMs at room temperature. The thermal conductivities of the composite PCMs fabricated by cold-compression were investigated at different temperatures by the steady state method. The results showed that the addition of EG significantly enhanced the thermal conductivities. The thermal conductivities of pure nitrates and nitrates/EG composite PCMs in solid state showed the behavior of temperature dependant, and they slightly decreased with the increase of the temperature.
NASA Astrophysics Data System (ADS)
Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.
2014-07-01
The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL-1 during 40 days, and HSV-1, 2.7 Log10 PFU mL-1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL-1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.
Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.
2014-01-01
The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL−1 during 40 days, and HSV-1, 2.7 Log10 PFU mL−1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL−1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors. PMID:25078058
Use of RBC-O and S-MCV parameters of SYSMEX XE-2100 in a patient with RBC cold agglutination.
Wang, Hong; Lu, Lin; Zhou, Yun; Liu, Jian; Qian, Min; Tang, Weiming; Jie, Zhang; Pan, Shiyang
2013-01-01
Sometimes EDTA blood of erythrocyte agglutination cannot be well resolved by incubation at 37 degrees C. In this case report, however, such a specimen was detected from a lymphoma patient at room temperature by using RBC-O and S-MCV parameters of the SYSMEX XE-2100 hematology analyzer. The specimen was diluted with 0.9% NaCL solution at 1:1 before measurement. HCT, MCV, and MCHC, corrected by RBC-O, HGB and S-MCV, were all in their normal ranges. This case indicates that RBC-O and S-MCV parameters of XE-2100 can be used in the routine blood examination of erythrocyte agglutination specimen at room temperature.
Nguyen, Phuong; Greene, Elizabeth; Ishola, Peter; Huff, Geraldine; Donoghue, Annie; Bottje, Walter; Dridi, Sami
2015-01-01
Low environmental temperatures are among the most challenging stressors in poultry industries. Although landmark studies using acute severe cold exposure have been conducted, still the molecular mechanisms underlying cold-stress responses in birds are not completely defined. In the present study we determine the effect of chronic mild cold conditioning (CMCC) on growth performances and on the expression of key metabolic-related genes in three metabolically important tissues: brain (main site for feed intake control), liver (main site for lipogenesis) and muscle (main site for thermogenesis). 80 one-day old male broiler chicks were divided into two weight-matched groups and maintained in two different temperature floor pen rooms (40 birds/room). The temperature of control room was 32°C, while the cold room temperature started at 26.7°C and gradually reduced every day (1°C/day) to reach 19.7°C at the seventh day of the experiment. At day 7, growth performances were recorded (from all birds) and blood samples and tissues were collected (n = 10). The rest of birds were maintained at the same standard environmental condition for two more weeks and growth performances were measured. Although feed intake remained unchanged, body weight gain was significantly increased in CMCC compared to the control chicks resulting in a significant low feed conversion ratio (FCR). Circulating cholesterol and creatine kinase levels were higher in CMCC chicks compared to the control group (P<0.05). CMCC significantly decreased the expression of both the hypothalamic orexigenic neuropeptide Y (NPY) and anorexigenic cocaine and amphetamine regulated transcript (CART) in chick brain which may explain the similar feed intake between the two groups. Compared to the control condition, CMCC increased the mRNA abundance of AMPKα1/α2 and decreased mTOR gene expression (P<0.05), the master energy and nutrient sensors, respectively. It also significantly decreased the expression of fatty acid synthase (FAS) gene in chick brain compared to the control. Although their roles are still unknown in avian species, adiponectin (Adpn) and its related receptors (AdipoR1 and 2) were down regulated in the brain of CMCC compared to control chicks (P<0.05). In the liver, CMCC significantly down regulated the expression of lipogenic genes namely FAS, acetyl-CoA carboxylase alpha (ACCα) and malic enzyme (ME) and their related transcription factors sterol regulatory element binding protein 1/2 (SREBP-1 and 2). Hepatic mTOR mRNA levels and phosphorylated mTOR at Ser2448 were down regulated (P<0.05), however phosphorylated ACCαSer79 (inactivation) was up regulated (P<0.05) in CMCC compared to control chicks, indicating that CMCC switch hepatic catabolism on and inhibits hepatic lipogenesis. In the muscle however, CMCC significantly up regulated the expression of carnitine palmitoyltransferase 1 (CPT-1) gene and the mRNA and phosphorylated protein levels of mTOR compared to the control chicks, indicating that CMCC enhanced muscle fatty acid β-oxidation. In conclusion, this is the first report indicating that CMCC may regulate AMPK-mTOR expression in a tissue specific manner and identifying AMPK-mTOR as a potential molecular signature that controls cellular fatty acid utilization (inhibition of hepatic lipogenesis and induction of muscle fatty acid β-oxidation) to enhance growth performance during mild cold acclimation.
NASA Astrophysics Data System (ADS)
Lillo Gallardo, Patricio Andres
Canada has aggressive targets for introducing wind energy across the country, but also faces challenges in achieving these goals due to the harsh Canadian climate. One issue which has received little attention in other countries not experiencing these extremes is the behaviour of composite blades in winter conditions. The scope of the work presented is to analyze the static stresses and fatigue response in cold climates using finite element models of the blade. The work opens with a quantification of the extremes of cold experienced in candidate Canadian wind turbine deployment locations. The thesis then narrows its focus to a consideration of the stresses in the root of the composite blades, specifically two common blade-hub connection methods: embedded root carrots and T-bolts. Finite element models of the root are proposed to properly simulate boundary conditions, applied loading and thermal stresses for a 1.5 MW wind turbine. It is shown that the blade root is strongly affected by the thermal stresses caused by the mismatch and orthotrophy of the coefficients of thermal expansion of the blade root constituents. Fatigue analysis of a blade is then presented using temperature dependent material properties including estimated fatigue coefficients.It was found that the natural frequencies of a 1.5 MW wind turbine blade are not significantly altered at cold temperatures. Additionally, cold temperatures slightly increase stresses in the composite blade skin when the blade is loaded, due to an increase in stiffness. Cold temperatures also lead to higher cyclic flapwise bending moments acting on the blade. However, this increase was found not to affect the lifetime fatigue damage. Finally, it was found that the cold climate as seen in Canada improves the fatigue strength of the saturated composite materials used in the blade. The predicted fatigue damage of the triaxial fabric and the spar cap layers in cold climates was therefore predicted to be half that of the fatigue damage at room temperature. This is caused solely by the temperature dependence of the fatigue coefficient b which requires further experimental verification to validate the numerical results of the current study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Y.; Besant, R.W.; Chen, H.
1999-07-01
An experimental investigation of frost growth on a flat, cold surface supplied by subfreezing, turbulent, humid, parallel flow of air is presented. The operating conditions are typical of many commercial freezers. A test loop was constructed to perform the tests, and the frost height, frost mass concentration, and cold surface heat flux were measured using specially designed and calibrated instrumentation. Twenty tests were done for steady operating conditions, each starting with no initial frost accumulation, and were run for two to six hours giving 480 data samples. Measured results show that the frost characteristics differ significantly with frost growth datamore » taken previously for room temperature airflow. Depending on the temperature of the cold plate and the relative humidity of the subfreezing supply air, the frost could appear to be either smooth or rough. Smooth frost, which occurred at warmer plate temperatures and lower supply air relative humidities, gave rise to frost growth that was much thinner and denser than that for the rough, thick, low-density frost. Frost growth characteristics are correlated as a function of five independent variables (time, distance from the leading edge, cold plate temperature ratio, humidity ratio, and Reynolds number). These correlations are presented separately for the full data set, the rough frost data, and the smooth frost data.« less
Observation of the isotope effect in sub-kelvin reactions
NASA Astrophysics Data System (ADS)
Lavert-Ofir, Etay; Shagam, Yuval; Henson, Alon B.; Gersten, Sasha; Kłos, Jacek; Żuchowski, Piotr S.; Narevicius, Julia; Narevicius, Edvardas
2014-04-01
Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain ab initio calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces.
NASA Astrophysics Data System (ADS)
Zheng, Yanwen; Zhang, Zhihao; Jiang, Yanbin
2018-04-01
The Ga liquid and Al powder were mechanically mixed and poured into a hollow iron plate, after alloying, the composite plate was rolled at room temperature for preparing an Fe/Ga-Al composite strip. The effect of annealing conditions on the diffusion, microstructures and magnetostrictive properties of the strip were studied. The composite plate had good cold rolling formability. After annealing at 750-850 °C for 5 h of the cold-rolled sample with a reduction of 97%, the diffusion distance of Ga and Al in the Fe matrix increased with an increase of the annealing temperature. However, some holes appeared in the center of the sample annealed at a temperature of more than 830 °C, which was detrimental to the subsequent rolling. The combination of the secondary cold rolling and annealing was beneficial to improve the composition homogeneity and magnetic properties of the sample. The magnetostriction coefficient (λ//) of the primary rolled sample was low, ∼4 × 10-6. After annealing and secondary cold rolling, the λ// of the sample increased to 9 × 10-6 and the λ// of the sample conducted by further annealing at 820 °C for 20 h reached 27.5 × 10-6.
Assessing cold chain status in a metro city of India: an intervention study.
Mallik, S; Mandal, P K; Chatterjee, C; Ghosh, P; Manna, N; Chakrabarty, D; Bagchi, S N; Dasgupta, S
2011-03-01
Cold chain maintenance is an essential activity to maintain the potency of vaccines and to prevent adverse events following immunization. One baseline study highlighted the unsatisfactory cold chain status in city of Kolkata in India. To assess the changes which occurred in the cold chain status after the intervention undertaken to improve the status and also to assess the awareness of the cold chain handlers regarding cold chain maintenance. Intervention consisted of reorganization of cold chain points and training of health manpower in Kolkata Municipal area regarding immunization and cold chain following the guidelines as laid by Govt of India. Reevaluation of cold chain status was done at 20 institutions selected by stratified systematic random sampling after the intervention. The results were compared with baseline survey. Significant improvement had been observed in correct placing of cold chain equipment, maintenance of stock security, orderly placing of ice packs, diluents and vaccines inside the equipment, temperature recording and maintenance. But awareness and skill of cold chain handlers regarding basics of cold chain maintenance was not satisfactory. The success of intervention included significant improvement of cold chain status including creation of a designated cold chain handler. The gaps lay in non-availability of non-electrical cold chain equipment and separate cold chain room, policy makers should stress. Cold chain handlers need reorientation training regarding heat & cold sensitive vaccines, preventive maintenance and correct contingency plan.
INTERIOR OF COLD STORAGE ROOM, SHOWING MOVABLE HANGING RACKS. ...
INTERIOR OF COLD STORAGE ROOM, SHOWING MOVABLE HANGING RACKS. - Naval Air Station Barbers Point, Aircraft Storehouse, Between Midway & Card Streets at Enterprise Avenue intersection, Ewa, Honolulu County, HI
Jo, Y. H.; Jung, S.; Choi, W. M.; Sohn, S. S.; Kim, H. S.; Lee, B. J.; Kim, N. J.; Lee, S.
2017-01-01
The excellent cryogenic tensile properties of the CrMnFeCoNi alloy are generally caused by deformation twinning, which is difficult to achieve at room temperature because of insufficient stress for twinning. Here, we induced twinning at room temperature to improve the cryogenic tensile properties of the CrMnFeCoNi alloy. Considering grain size effects on the critical stress for twinning, twins were readily formed in the coarse microstructure by cold rolling without grain refinement by hot rolling. These twins were retained by partial recrystallization and played an important role in improving strength, allowing yield strengths approaching 1 GPa. The persistent elongation up to 46% as well as the tensile strength of 1.3 GPa are attributed to additional twinning in both recrystallized and non-recrystallization regions. Our results demonstrate that non-recrystallized grains, which are generally avoided in conventional alloys because of their deleterious effect on ductility, can be useful in achieving high-strength high-entropy alloys. PMID:28604656
Rice mutants deficient in ω-3 fatty acid desaturase (FAD8) fail to acclimate to cold temperatures.
Tovuu, Altanzaya; Zulfugarov, Ismayil S; Wu, Guangxi; Kang, In Soon; Kim, Choongrak; Moon, Byoung Yong; An, Gynheung; Lee, Choon-Hwan
2016-12-01
To investigate the role of ω-3 fatty acid (FA) desaturase (FAD8) during cold acclimation in higher plants, we characterized three independent T-DNA insertional knock-out mutants of OsFAD8 from rice (Oryza sativa L.). At room temperature (28 °C), osfad8 plants exhibited significant alterations in fatty acid (FA) unsaturation for all four investigated plastidic lipid classes. During a 5-d acclimation period at 4 °C, further changes in FA unsaturation in both wild-type (WT) and mutant plants varied according to the type of lipid. We also monitored the fluidity of the thylakoid membrane using a threshold temperature to represent the change in fluorescence. The values were altered significantly by both FAD8 mutation and cold acclimation, suggesting that factors other than FAD8 are involved in C18 FA unsaturation and fluctuations in membrane fluidity. Similarly, significant changes were noted for both the mutant and WT samples in terms of their FA compositions as well as activities related to photosystem (PS) I, PSII, and photoprotection. This included the development of non-photochemical quenching and increased zeaxanthin accumulation. Despite the relatively small changes in FA composition during cold acclimation, cold-inducible FAD8 knock-out mutants displayed strong differences in photoprotective activities and a further drop in membrane fluidity. The mutants were more sensitive than WT to short-term low-temperature stress that resulted in increased production of reactive oxygen species after 5 d of chilling. Taken together, our findings suggest that FA unsaturation by OsFAD8 is crucial for the acclimation of higher plants to low-temperature stress. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Polymer quenched prealloyed metal powder
Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.
2001-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleishhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2003-12-09
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Thermomechanical processing of plasma sprayed intermetallic sheets
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2001-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2000-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
A high performance normally closed solenoid-actuated cold valve.
Taminiau, I A J; Benningshof, O W B; Jochemsen, R
2009-08-01
An electromagnetically driven normally closed valve for liquid helium is presented, which is meant to regulate the input flow to a 1 K pot. An earlier design is modified to be normally closed (not actuated) and tuned for durability and reliability. A new feature is presented which prevents seat deformation at room temperature and provides comfort and durability for intensive use.
Thermographic analysis and autonomic response in the hands of patients with leprosy.
Cavalheiro, Aretusa Lopes; Costa, Debora Tacon da; Menezes, Ana Luiza Ferro de; Pereira, Janser Moura; Carvalho, Eliane Maria de
2016-01-01
Low temperatures and slow blood flow may result from peripheral neuropathy caused by leprosy, and the simple detection of cold fingers could already be a preliminary classification for these patients. To investigate whether infrared thermography would be able to measure this change in temperature in the hands of people with leprosy. The study assessed 17 leprosy patients who were under treatment at the National Reference Center for Sanitary Dermatology and Leprosy, Uberlândia/MG, and 15 people without leprosy for the control group. The infrared camera FLIR A325 and Therma CAM Researcher Professional 2.9 software were used to measure the temperature. The room was air-conditioned, maintaining the temperature at 25°C; the distance between the camera and the limb was 70 cm. The vasomotor reflex of patients was tested by a cold stress on the palm. The study showed a significant interaction between the clinical form of leprosy and temperature, where the control group and the borderline-borderline form revealed a higher initial temperature, while borderline-lepromatous and lepromatous leprosy showed a lower temperature. Regarding vasomotor reflex, lepromatous leprosy patients were unable to recover the initial temperature after cold stress, while those with the borderline-tuberculoid form not only recovered but exceeded the initial temperature. Thermography proved a potential tool to assist in the early detection of neuropathies, helping in the prevention of major nerve damage and the installation of deformities and disabilities that are characteristic of leprosy.
Badia-Melis, Ricardo; Ruiz-Garcia, Luis; Garcia-Hierro, Javier; Villalba, Jose I Robla
2015-02-26
Every day, millions of tons of temperature-sensitive goods are produced, transported, stored or distributed worldwide, thus making their temperature and humidity control essential. Quality control and monitoring of goods during the cold chain is an increasing concern for producers, suppliers, logistic decision makers and consumers. In this paper we present the results of a combination of RFID and WSN devices in a set of studies performed in three commercial wholesale chambers of 1848 m3 with different set points and products. Up to 90 semi-passive RFID temperature loggers were installed simultaneously together with seven motes, during one week in each chamber. 3D temperature mapping charts were obtained and also the psychrometric data model from ASABE was implemented for the calculation of enthalpy changes and the absolute water content of air. Thus thank to the feedback of data, between RFID and WSN it is possible to estimate energy consumption in the cold room, water loss from the products and detect any condensation over the stored commodities.
NASA Astrophysics Data System (ADS)
Khalique, Abdul; Khan, Mohammad Riaz
1997-07-01
The present scientific and technological advancement in space travel has given an added impetus to the development and production of light metal high strength alloys, capable of enduring rapid changes in temperature and other environmental conditions. Al-3.3 Mg-1.22 Mn (weight %) cold rolled alloy sheet of 2 mm thickness was selected for the study. This alloy falls in the category of non-heat treatable, corrosive resistant alloys. The change in mechanical behaviour when age-softened in N2 gas atomsphere was studied. In addition, mechanical properties of samples when artificially aged in the temperature range of 150°C-250°C for 3 hours each, after solution treatment at 450°C for 12 h followed by quenching to room temperature were investigated. It is revealed that improvement, though limited, in tensile strength, surface hardness and ductility during aging is a function of cooling rate during quenching.
Badia-Melis, Ricardo; Ruiz-Garcia, Luis; Garcia-Hierro, Javier; Villalba, Jose I. Robla
2015-01-01
Every day, millions of tons of temperature-sensitive goods are produced, transported, stored or distributed worldwide, thus making their temperature and humidity control essential. Quality control and monitoring of goods during the cold chain is an increasing concern for producers, suppliers, logistic decision makers and consumers. In this paper we present the results of a combination of RFID and WSN devices in a set of studies performed in three commercial wholesale chambers of 1848 m3 with different set points and products. Up to 90 semi-passive RFID temperature loggers were installed simultaneously together with seven motes, during one week in each chamber. 3D temperature mapping charts were obtained and also the psychrometric data model from ASABE was implemented for the calculation of enthalpy changes and the absolute water content of air. Thus thank to the feedback of data, between RFID and WSN it is possible to estimate energy consumption in the cold room, water loss from the products and detect any condensation over the stored commodities. PMID:25730482
Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G
2009-08-15
A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).
Formation, antioxidant property and oxidative stability of cold pressed rice bran oil emulsion.
Thanonkaew, Amonrat; Wongyai, Surapote; Decker, Eric A; McClements, David J
2015-10-01
Cold pressed rice bran oil (CPRBO) is used in foods, cosmetics, and pharmaceuticals due to its desirable health and functional attributes. The purpose of this work was to study the formation, antioxidant property and oxidative stability of oil-in-water emulsion of CPRBO. The influence of oil (10-40 % CPRBO) and surfactant (1-5 % glyceryl monostearate (GMS)) concentration on the properties of emulsions were studied. The lightness (L*) and yellowness (b*) of CPRBO emulsions decreased as GMS concentration increased, which was attributed to a decrease in droplet size after homogenization. The CPRBO emulsion was stable during storage at room temperature for 30 days. Increasing the oil concentration in the CPRBO emulsions increased their antioxidant activity, which can be attributed to the corresponding increase in phytochemical content. However, GMS concentration had little impact on the antioxidant activity of CPRBO emulsions. The storage of CPRBO emulsion at room temperature showed that lipid oxidation markers gradually increased after 30 days of storage, which was correlated to a decrease in gamma oryzanol content and antioxidant activity. These results have important implications for the utilization of rice bran oil (RBO) as a function ingredient in food, cosmetic, and pharmaceutical products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinkle, S.J.; Eatherly, W.S.
1997-04-01
The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination ofmore » high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.« less
NASA Astrophysics Data System (ADS)
Vogelaere, P.; Brasseur, M.; Quirion, A.; Leclercq, R.; Laurencelle, L.; Bekaert, S.
1990-03-01
The affect of negative thermal stress on hematological variables at rest, and during submaximal (sub ex) and maximal exercise (max ex) were observed for young males who volunteered in two experimental sessions, performed in cold (0°C) and in normal room temperature (20°C). At rest, hematological variables such as RBC and derivates Hb and Hct were significantly increased ( P<0.05) during cold stress exposure, while plasma volume decreased. The findings of this study suggest that the major factor inducing hypovolemia during low thermal stress can be imputed to local plasma water-shift mechanisms and especially to a transient shift of plasma water from intrato extravascular compartments. Rest values for WBC and platelets (Pla) were also slightly increased during cold stress exposure. However this increase can partly be related to hemoconcentration but also to the cold induced hyperventilation activating the lung circulation. Maximal exhaustive exercise induced, in both experimental temperatures, significant ( P<0.05) increments of RBC, Hb, Hct, and WBC while plasma volume decreased. However, Pla increase was less marked. On the other hand, cold stress raised slightly the observed variations of the different hematological variables. Submaximal exercise induced a similar, though non-significant, pattern for the different hematological variables in both experimental conditions. Observed plasma volume (Δ PV%) reduction appears during exercise. However cold stress induced resting plasma volume variations that are transferred at every exercise level. Neither exercise nor cold inducement significantly modified the hematological indices (MCH, MCV, MCHC). In conclusion hematological variables are affected by cold stress exposure, even when subjects perform a physical activity.
Dai, Gaole; Wang, Binjun; Xu, Shang; Lu, Yang; Shen, Yajing
2016-06-01
Cold welding has been regarded as a promising bottom-up nanofabrication technique because of its ability to join metallic nanostructures at room temperature with low applied stress and without introducing damage. Usually, the cold welding process can be done instantaneously for ultrathin nanowires (diameter <10 nm) in "head-to-head" joining. Here, we demonstrate that "dumbbell" shaped ultrathin gold nanorods can be cold welded in the "side-to-side" mode in a highly controllable manner and can form an extremely small nanogap via a relatively slow welding process (up to tens of minutes, allowing various functional applications). By combining in situ high-resolution transmission electron microscopic analysis and molecular dynamic simulations, we further reveal the underlying mechanism for this "side-to-side" welding process as being dominated by atom kinetics instead of thermodynamics, which provides critical insights into three-dimensional nanosystem integration as well as the building of functional nanodevices.
Environment-Assisted Cracking in Custom 465 Stainless Steel
NASA Astrophysics Data System (ADS)
Lee, E. U.; Goswami, R.; Jones, M.; Vasudevan, A. K.
2011-02-01
The influence of cold work and aging on the environment-assisted cracking (EAC) behavior and mechanical properties of Custom 465 stainless steel (SS) was studied. Four sets of specimens were made and tested. All specimens were initially solution annealed, rapidly cooled, and refrigerated (SAR condition). The first specimen set was steel in the SAR condition. The second specimen set was aged to the H1000 condition. The third specimen set was 60 pct cold worked, and the fourth specimen set was 60 pct cold worked and aged at temperatures ranging from 755 K to 825 K (482 °C to 552 °C) for 4 hours in air. The specimens were subsequently subjected to EAC and mechanical testing. The EAC testing was conducted, using the rising step load (RSL) technique, in aqueous solutions of NaCl of pH 7.3 with concentrations ranging from 0.0035 to 3.5 pct at room temperature. The microstructure, dislocation substructure, and crack paths, resulting from the cold work, aging, or subsequent EAC testing, were examined by optical microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The aging of the cold-worked specimens induced carbide precipitation within the martensite lath, but not at the lath or packet boundaries. In the aged specimens, as aging temperature rose, the threshold stress intensity for EAC (KIEAC), elongation, and fracture toughness increased, but the strength and hardness decreased. The KIEAC also decreased with increasing yield strength and NaCl concentration. In the SAR and H1000 specimens, the EAC propagated along the prior austenite grain boundary, while in the cold-worked and cold-worked and aged specimens, the EAC propagated along the martensite lath, and its packet and prior austenite grain boundaries. The controlling mechanism for the observed EAC was identified to be hydrogen embrittlement.
Imamura, Tetsuya; Ishizuka, Osamu; Sudha, Gautam Silwal; Lei, Zhang; Hosoda, Tomoka; Noguchi, Wataru; Yamagishi, Takahiro; Yokoyama, Hitoshi; Kurizaki, Yoshiki; Nishizawa, Osamu
2013-06-01
We determined if THC-002, a galenical produced from Ba-Wei-Die-Huang-Wan, could increase skin temperature and inhibit detrusor overactivity induced by sudden whole body cooling. Further, we determined if THC-002 could decrease expression of transient receptor potential melastatin 8 (TRPM8) channels associated with the cold responses. Hind leg skin temperature of female 10-week-old Sprague-Dawley rats was measured by thermal imaging. Experimental rats (n = 12) were given oral 100 mg/kg THC-002 daily for one week, and controls (n = 12) were similarly treated with THC-002-free solution. Afterwards, thermal imaging and cystometric investigations of the freely moving conscious rats were performed at room temperature (RT, 27 ± 2°C) for 20 min. The rats were then transferred to a low temperature (LT, 4 ± 2°C) environment during which thermal imaging and cystometric measurements were taken at 5, 10, 20, 30, and 40 min. Afterward, the skin tissues were harvested to estimate expression levels of TRPM8 channels by immunohistochemistry and real-time reverse-transcription polymerase chain reaction. The RT skin temperature of THC-002-treated rats was significantly higher than controls. During the first 20 min under LT, the control rats exhibited cold stress-induced detrusor overactivity such as decreased voiding interval and bladder capacity. THC-002 partially inhibited the detrusor overactivity patterns. During the second 20 min, skin temperature was relatively stable, and the detrusor overactivity of both groups slowly disappeared. THC-002 significantly reduced expression of TRPM8 channel protein and mRNA. THC-002 inhibited cold stress-induced detrusor overactivity resulting from decreasing skin temperature. Therefore, THC-002 might provide resistance to cold stress-exacerbated lower urinary tract symptoms. Copyright © 2012 Wiley Periodicals, Inc.
Joslin, Jeremy; Fisher, Andrew; Wojcik, Susan; Cooney, Derek R
2014-01-01
During cold weather months in much of the country, the temperatures in which prehospital care is delivered creates the potential for inadvertently cool intravenous fluids to be administered to patients during their transport and care by emergency medical services (EMS). There is some potential for patient harm from unintentional infusion of cool intravenous fluids. Prehospital providers in these cold weather environments are likely using fluids that are well below room temperature when prehospital intravenous fluid (IVF) warming techniques are not being employed. It was hypothesized that cold ambient temperatures during winter months in the study location would lead to the inadvertent infusion of cold intravenous fluids during prehospital patient care. Trained student research assistants obtained three sequential temperature measurements using an infrared thermometer in a convenience sample of intravenous fluid bags connected to patients arriving via EMS during two consecutive winter seasons (2011 to 2013) at our receiving hospital in Syracuse, New York. Intravenous fluids contained in anything other than a standard polyvinyl chloride bag were not measured and were not included in the study. Outdoor temperature was collected by referencing National Weather Service online data at the time of arrival. Official transport times from the scene to the emergency department (ED) and other demographic data was collected from the EMS provider or their patient care record at the time of EMS interaction. Twenty-three intravenous fluid bag temperatures were collected and analyzed. Outdoor temperature was significantly related to the temperature of the intravenous fluid being administered, b = 0.69, t(21) = 4.3, p < 0.001. Transport time did not predict the measured intravenous fluid temperatures, b = 0.12, t(20) = 0.55, p < 0.6. Use of unwarmed intravenous fluid in the prehospital environment during times of cold ambient temperatures can lead to the infusion of cool intravenous fluid and may result in harm to patients. Short transport times do not limit this risk. Emergency departments should not rely on EMS agencies' use of intravenous fluid warming techniques and should consider replacing EMS intravenous fluids upon ED arrival to ensure patient safety.
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Draper, Susan; Gaydosh, Darrell; Garga, Anita; Lerch, Brad; Penney, Nicholas; Begelow, Glen; Padula, Santo, II; Brown, Jeff
2006-01-01
TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire.
Reviewing the importance of the cold chain in the distribution of vaccines.
Purssell, Edward
2015-10-01
Vaccination is an effective public health measure to prevent and control a number of infectious diseases. However, since vaccines are biological products and are sensitive to both heat and cold, they need to be maintained within a narrow range of temperatures, often referred to as the 'cold-chain'. This range, which is between +2°C and +8°C with a target +5°C, does not allow for refreezing or storage at room temperature. This paper discusses the importance of the cold chain, what should be done both to maintain it, and the actions to be taken, should a break be noted. It is important to note the product information supplied with vaccines, which is taken from the summary of product characteristics that forms part of the licensing requirements for each vaccine, and which will state how it should be stored. Using a vaccine that has not been stored according to these instructions constitutes off-label use, for which the individual practitioner must take responsibility. It also emphasises the fragile nature of many public health interventions, maintenance of which require constant vigilance and close cooperation between many groups and individuals.
NASA Astrophysics Data System (ADS)
Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan
2016-09-01
As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.
Effect of Temperature and Deformation Rate on the Tensile Mechanical Properties of Polyimide Films
NASA Technical Reports Server (NTRS)
Moghazy, Samir F.; McNair, Kevin C.
1996-01-01
In order to study the structure-property relationships of different processed oriented polyimide films, the mechanical properties will be identified by using tensile tester Instron 4505 and structural information such as the 3-dimensional birefringence molecular symmetry axis and 3-dimensional refractive indices will be determined by using wave guide coupling techniques. The monoaxial drawing techniques utilized in this research are very useful for improving the tensile mechanical properties of aromatic polyimide films. In order to obtain high modulus/high strength polyimide films the following two techniques have been employed, cold drawing in which polyimide films are drawn at room temperature at different cross head speeds and hot drawing in which polyimide films are drawn at different temperatures and cross head speeds. In the hot drawing process the polyimide films are drawn at different temperatures until the glass transition temperature (Tg) is reached by using the environmental chamber. All of the mechanical and optical property parameters will be identified for each sample processed by both cold and hot drawing techniques.
Cold atoms as a coolant for levitated optomechanical systems
NASA Astrophysics Data System (ADS)
Ranjit, Gambhir; Montoya, Cris; Geraci, Andrew A.
2015-01-01
Optically trapped dielectric objects are well suited for reaching the quantum regime of their center-of-mass motion in an ultrahigh-vacuum environment. We show that ground-state cooling of an optically trapped nanosphere is achievable when starting at room temperature, by sympathetic cooling of a cold-atomic gas optically coupled to the nanoparticle. Unlike cavity cooling in the resolved-sideband limit, this system requires only a modest cavity finesse and it allows the cooling to be turned off, permitting subsequent observation of strongly coupled dynamics between the atoms and sphere. Nanospheres cooled to their quantum ground state could have applications in quantum information science or in precision sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter
2014-08-15
We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.
14. INTERIOR VIEW TO THE SOUTH OF ROOM 136, COLD ...
14. INTERIOR VIEW TO THE SOUTH OF ROOM 136, COLD ASSEMBLY BAY NO. 2. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
13. INTERIOR VIEW TO THE SOUTHEAST OF ROOM 101, COLD ...
13. INTERIOR VIEW TO THE SOUTHEAST OF ROOM 101, COLD ASSEMBLY BAY NO. 1. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Fox, R. H.; Woodward, Patricia M.; Exton-Smith, A. N.; Green, M. F.; Donnison, D. V.; Wicks, M. H.
1973-01-01
Two large-scale surveys of body temperatures in elderly people living at home were carried out in the winter of 1972. Most of the homes visited were cold with room temperatures below the minimum recommended by the Department of Health. Deep body temperatures below 35·5°C were found in 10% of those studied, and the difference between the skin temperature and the core temperature was also reduced in this group. Such individuals are at risk of developing hypothermia since they show evidence of some degree of thermoregulatory failure. Further research is needed, but meanwhile there are practical measures that could be taken to reduce the risk of hypothermia in the elderly. PMID:4686555
AAV Delivery of Endothelin-1 shRNA Attenuates Cold-Induced Hypertension.
Chen, Peter Gin-Fu; Sun, Zhongjie
2017-02-01
Cold temperatures are associated with increased prevalence of hypertension. Cold exposure increases endothelin-1 (ET1) production. The purpose of this study is to determine whether upregulation of ET1 contributes to cold-induced hypertension (CIH). In vivo RNAi silencing of the ET1 gene was achieved by adeno-associated virus 2 (AAV2) delivery of ET1 short-hairpin small interfering RNA (ET1-shRNA). Four groups of male rats were used. Three groups were given AAV.ET1-shRNA, AAV.SC-shRNA (scrambled shRNA), and phosphate-buffered saline (PBS), respectively, before exposure to a moderately cold environment (6.7 ± 2°C), while the last group was given PBS and kept at room temperature (warm, 24 ± 2°C) and served as a control. We found that systolic blood pressure of the PBS-treated and SC-shRNA-treated groups increased significantly within 2 weeks of exposure to cold, reached a peak level (145 ± 4.8 mmHg) by 6 weeks, and remained elevated thereafter. By contrast, blood pressure of the ET1-shRNA-treated group did not increase, suggesting that silencing of ET1 prevented the development of CIH. Animals were euthanized after 10 weeks of exposure to cold. Cold exposure significantly increased the left ventricle (LV) surface area and LV weight in cold-exposed rats, suggesting LV hypertrophy. Superoxide production in the heart was increased by cold exposure. Interestingly, ET1-shRNA prevented cold-induced superoxide production and cardiac hypertrophy. ELISA assay indicated that ET1-shRNA abolished the cold-induced upregulation of ET1 levels, indicating effective silencing of ET1. In conclusion, upregulation of ET1 plays a critical role in the pathogenesis of CIH and cardiac hypertrophy. AAV delivery of ET1-shRNA is an effective therapeutic strategy for cold-related cardiovascular disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Moor, Emmanuel
The present project investigated Quenching and Partitioning (Q&P) to process cold rolled steels to develop high strength sheet steels that exhibit superior ductility compared to available grades with the intent to allow forming of high strength parts at room temperature to provide an alternative to hot stamping of parts. Hot stamping of boron alloyed steel is the current technology to manufacture thinner gauge sections in automotive structures to guarantee anti-intrusion during collisions whilst improving fuel efficiency by decreasing vehicle weight. Hot stamping involves reheating steel to 900 °C or higher followed by deformation and quenching in the die to producemore » ultra-high strength materials. Hot stamping requires significant energy to reheat the steel and is less productive than traditional room temperature stamping operations. Stamping at elevated temperature was developed due to the lack of available steels with strength levels of interest possessing sufficient ductility enabling traditional room temperature forming. This process is seeing growing demand within the automotive industry and, given the reheating step in this operation, increased energy consumption during part manufacturing results. The present research program focused on the development of steel grades via Q&P processing that exhibit high strength and formability enabling room temperature forming to replace hot stamping. The main project objective consisted of developing sheet steels exhibiting minimum ultimate tensile strength levels of 1200 MPa in combination with minimum tensile elongation levels of 15 pct using Q&P processing through judicious alloy design and heat treating parameter definition. In addition, detailed microstructural characterization and study of properties, processing and microstructure interrelationships were pursued to develop strategies to further enhance tensile properties. In order to accomplish these objectives, alloy design was conducted towards achieving the target properties. Twelve alloys were designed and laboratory produced involving melting, alloying, casting, hot rolling, and cold rolling to obtain sheet steels of approximately 1 mm thickness. Q&P processing of the samples was then conducted. Target properties were achieved and substantially exceeded demonstrating success in the developed and employed alloy design approaches. The best combinations of tensile properties were found at approximately 1550 MPa with a total elongation in excess of 20 pct clearly showing the potential for replacement of hot stamping to produce advanced high strength steels.« less
Unconditional polarization qubit quantum memory at room temperature
NASA Astrophysics Data System (ADS)
Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden
2016-05-01
The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.
Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties.
Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue
2015-12-11
Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.
Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties
NASA Astrophysics Data System (ADS)
Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue
2015-12-01
Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.
LENR BEC Clusters on and below Wires through Cavitation and Related Techniques
NASA Astrophysics Data System (ADS)
Stringham, Roger; Stringham, Julie
2011-03-01
During the last two years I have been working on BEC cluster densities deposited just under the surface of wires, using cavitation, and other techniques. If I get the concentration high enough before the clusters dissipate, in addition to cold fusion related excess heat (and other effects, including helium-4 formation) I anticipate that it may be possible to initiate transient forms of superconductivity at room temperature.
Herrmann, Anja; De Wilde, Rudy Leon
2015-01-01
Background. We tested the hypothesis that warm-humidified carbon dioxide (CO2) insufflation would reduce postoperative pain and morphine requirement compared to cold-dry CO2 insufflation. Methods. A double-blinded, randomized, controlled trial was conducted to compare warm, humidified CO2 and cold-dry CO2. Patients with benign uterine diseases were randomized to either treatment (n = 48) or control (n = 49) group during laparoscopically assisted vaginal hysterectomy. Primary endpoints of the study were rest pain, movement pain, shoulder-tip pain, and cough pain at 2, 4, 6, 24, and 48 hours postoperatively, measured by visual analogue scale. Secondary outcomes were morphine consumption, rejected boli, temperature change, recovery room stay, and length of hospital stay. Results. There were no significant differences in all baseline characteristics. Shoulder-tip pain at 6 h postoperatively was significantly reduced in the intervention group. Pain at rest, movement pain, and cough pain did not differ. Total morphine consumption and rejected boli at 24 h postoperatively were significantly higher in the control group. Temperature change, recovery room stay, and length of hospital were similar. Conclusions. Warm, humidified insufflation gas significantly reduces postoperative shoulder-tip pain as well as morphine demand. This trial is registered with Clinical Trial Registration Number DRKS00003853 (German Clinical Trials Register (DRKS)). PMID:25722977
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Ghaffarian, Reza; Shapiro, Andrew; Napala, Phil A.; Martin, Patrick A.
2005-01-01
Flip-chip interconnect electronic package boards have been assembled, underfilled, non-destructively evaluated and subsequently subjected to extreme temperature thermal cycling to assess the reliability of this advanced packaging interconnect technology for future deep space, long-term, extreme temperature missions. In this very preliminary study, the employed temperature range covers military specifications (-55 C to 100 C), extreme cold Martian (-120 C to 115 C) and asteroid Nereus (-180 C to 25 C) environments. The resistance of daisy-chained, flip-chip interconnects were measured at room temperature and at various intervals as a function of extreme temperature thermal cycling. Electrical resistance measurements are reported and the tests to date have not shown significant change in resistance as a function of extreme temperature thermal cycling. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work has been carried out to understand the reliability of flip-chip interconnect packages under extreme temperature applications (-190 C to 85 C) via continuously monitoring the daisy chain resistance. Adaptation of suitable diagnostic techniques to identify the failure mechanisms is in progress. This presentation will describe the experimental test results of flip-chip testing under extreme temperatures.
Williams, Rebecca M.; Farnum, Cornelia E.
2010-01-01
Ambient temperature and physical activity modulate bone elongation in mammals, but mechanisms underlying this plasticity are a century-old enigma. Longitudinal bone growth occurs in cartilaginous plates, which receive nutritional support via delivery of solutes from the vasculature. We tested the hypothesis that chronic exercise and warm temperature promote bone lengthening by increasing solute delivery to the growth plate, measured in real time using in vivo multiphoton microscopy. We housed 68 weanling female mice at cold (16°C) or warm (25°C) temperatures and allowed some groups voluntary access to a running wheel. We show that exercise mitigates the stunting effect of cold temperature on limb elongation after 11 days of wheel running. All runners had significantly lengthened limbs, regardless of temperature, while nonrunning mice had shorter limbs that correlated with housing temperature. Tail length was impacted only by temperature, indicating that the exercise effect was localized to limb bones and was not a systemic endocrine reaction. In vivo multiphoton imaging of fluoresceinated tracers revealed enhanced solute delivery to tibial growth plates in wheel-running mice, measured under anesthesia at rest. There was a minimal effect of rearing temperature on solute delivery when measured at an intermediate room temperature (20°C), suggesting that a lasting increase in solute delivery is an important factor in exercise-mediated limb lengthening but may not play a role in temperature-mediated limb lengthening. These results are relevant to the study of skeletal evolution in mammals from varying environments and have the potential to fundamentally advance our understanding of bone elongation processes. PMID:20930127
Effect of pressure on the strength of olivine at room temperature
NASA Astrophysics Data System (ADS)
Proietti, Arnaud; Bystricky, Misha; Guignard, Jérémy; Béjina, Frédéric; Crichton, Wilson
2016-10-01
A fine grained fully-dense olivine aggregate was deformed in a D-DIA press at room temperature and pressures ranging from 3.5 to 6.8 GPa, at constant strain rates between 6 ×10-6 and 2.2 ×10-5 s-1. A weighted non-linear least square fit of a dataset including our results and data from other high-pressure studies to a low-temperature plasticity flow law yields a Peierls stress σP0 = 7.4 (0.5) GPa and an activation energy E∗ = 232 (60) kJ.mol-1. The dependence of the Peierls stress to pressure, σP = σP0 (1 + 0.09 P) , appears to be larger than the value predicted by the formulation proposed by Frost and Ashby (1982). With such a dependence, the activation volume is very small (V* = 1.6 (1.7) cm3.mol-1). Extrapolation to natural conditions yields a viscosity of 1023 -1024 Pa.s for a cold subducting slab at depths of 50-100 km.
Oxygen key to the new superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This paper has briefings from the 1987 Spring Meeting of the Materials Research Society that was held in Anaheim, California, from 21 to 24 April. Except for an impassioned presentation by Juei-Teng Chen of Wayne State University, who sought to convince listeners that a group there had seen clear signs of superconductivity at 240 K, which is ambient temperature during a cold night on the northern plains, no significant indications of room-temperature superconductivity were reported. The most skeptical view was that of Theodore Geballe of Stanford University, who suggested that some of the unreproducible signs seen in several laboratories couldmore » be due to something other than superconductivity, as similar effects disappeared in Stanford samples with repeated cycling between room and liquid-nitrogen temperature. If there was one theme at the symposium, it was that oxygen is the key to the family of rare-earth-based ceramic materials now in hand that remain superconducting up to about 100 K.« less
Parametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays
Yuan, Xuesong; Cole, Matthew T.; Zhang, Yu; Wu, Jianqiang; Milne, William I.; Yan, Yang
2017-01-01
Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT)-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron sources. We determine the field emission current of the present microstructures directly using particle in cell (PIC) software and present a new CNT cold cathode array variant which has been geometrically optimized to provide maximal emission current density, with current densities of up to 11.5 A/cm2 at low operational electric fields of 5.0 V/μm. PMID:28336845
NASA Astrophysics Data System (ADS)
Kobayashi, Hideo; Iyama, Hiromasa; Kagatsume, Takeshi; Watanabe, Tsuyoshi
2012-11-01
Cold-development is well-known for resolution enhancement on ZEP520A. Dipping a wafer in a developer solvent chilled by a freezer, such a typical method had been employed. But, it is obvious that the dip-development method has several inferiorities such as developer temperature instability, temperature inconsistency between developer and a wafer, water-condensation on drying. We then built a single wafer spin-develop tool, and established a process sequence, to solve those difficulties. And, we tried to see their effect down to -10degC over various developers. In specific, we tried to make hole patterns in hexagonal closest packing in 40nm, 35nm, 30nm, 25nm pitch, and examined holes pattern quality and resolution limit by varying setting temperature from room temperature to -10degC in the cold-development, as well as varying developer chemistry from the standard developer ZED N-50 (n-amyl acetate, 100%) to MiBK and IPA mixture which was a rinsing solvent mixture originally. We also examined the other developer (poor solvent mixture) we designed, N-50 and fluorocarbon (FC) mixture, MiBK and FC mixture, and IPA+FC mixture. This paper describes cold-development tool and technique, and its results down to minus (-) 10degC, for ZEP520A resolution enhancement to obtain 1Xnm bits (holes) in 25nm pitch to fabricate an EB master mold for Nano-Imprinting Lithography for 1Tbit/in2 bit patterned media (BPM) in HDD development and production.
Improvement of mechanical properties on metastable stainless steels by reversion heat treatments
NASA Astrophysics Data System (ADS)
Mateo, A.; Zapata, A.; Fargas, G.
2013-12-01
AISI 301LN is a metastable austenitic stainless steel that offers an excellent combination of high strength and ductility. This stainless grade is currently used in applications where severe forming operations are required, such as automotive bodies. When these metastable steels are plastically deformed at room temperature, for example by cold rolling, austenite transforms to martensite and, as a result, yield strength increases but ductility is reduced. Grain refinement is the only method that allows improving strength and ductility simultaneously. Several researchers have demonstrated that fine grain AISI 301LN can be obtained by heat treatment after cold rolling. This heat treatment is called reversion because it provokes the reversion of strain induced martensite to austenite. In the present work, sheets of AISI 301LN previously subjected to 20% of cold rolling reduction were treated and a refined grain austenitic microstructure was obtained. Mechanical properties, including fatigue limit, were determined and compared with those corresponding to the steel both before and after the cold rolling.
The effects of a hot drink on nasal airflow and symptoms of common cold and flu.
Sanu, A; Eccles, R
2008-12-01
Hot drinks are a common treatment for common cold and flu but there are no studies reported in the scientific and clinical literature on this mode of treatment. This study investigated the effects of a hot fruit drink on objective and subjective measures of nasal airflow, and on subjective scores for common cold/flu symptoms in 30 subjects suffering from common cold/flu. The results demonstrate that the hot drink had no effect on objective measurement of nasal airflow but it did cause a significant improvement in subjective measures of nasal airflow. The hot drink provided immediate and sustained relief from symptoms of runny nose, cough, sneezing, sore throat, chilliness and tiredness, whereas the same drink at room temperature only provided relief from symptoms of runny nose, cough and sneezing. The effects of the drinks are discussed in terms of a placebo effect and physiological effects on salivation and airway secretions. In conclusion the results support the folklore that a hot tasty drink is a beneficial treatment for relief of most symptoms of common cold and flu.
INTERIOR OF WESTERN SECTION, SHOWING WALL OF COLD STORAGE ROOM ...
INTERIOR OF WESTERN SECTION, SHOWING WALL OF COLD STORAGE ROOM (IN BAYS 32 TO 34) AND ROLLING DOORS AT WEST END, VIEW FACING SOUTH-SOUTHWEST. - Naval Air Station Barbers Point, Aircraft Storehouse, Between Midway & Card Streets at Enterprise Avenue intersection, Ewa, Honolulu County, HI
Heat resistance study of basalt fiber material via mechanical tests
NASA Astrophysics Data System (ADS)
Gao, Y. Q.; Jia, C.; Meng, L.; Li, X. H.
2017-12-01
This paper focuses on the study of the relationship between the fracture strength of basalt rovings and temperature. Strong stretching performance of the rovings has been tested after the treatment at fixed temperatures but different heating time and then the fracture strength of the rovings exposed to the heating at different temperatures and cooled in different modes investigated. Finally, the fracture strength of the basalt material after the heat treatment was studied. The results showed that the room-temperature strength tends to decrease with an increase of the heat treatment time at 250 °C, but it has the local maximum after 2h heating. And the basalt rovings strength increased after the heat treatment up to 200 °C. It was 16.7 percent higher than the original strength. The strength depends not only on the temperature and duration of the heating, but also on the cooling mode. The value of the strength measured after cold water cooling was less by 6.3% compared with an ambient air cooling mode. The room-temperature breaking strength of the rovings heated at 200 °C and 100 °C for 2 hours each increased by about 14.6% with respect to unpretreated basalt rovings.
NASA Astrophysics Data System (ADS)
Samoc, A.; Holland, A.; Tsuchimori, M.; Watanabe, O.; Samoc, M.; Luther-Davies, B.; Kolev, V. Z.
2005-09-01
We investigated linear optical and second-order nonlinear optical (NLO) properties of films of urethane-urea copolymer (UU2) functionalised with a high concentration of an azobenzene chromophore. The polymer films on ITO-coated substrate were corona poled to induce a noncentrosymmetric organization of chromophore dipoles and data on the second harmonic generated with the laser beam (the fundamental wavelength 1053 nm, 6 ps/pulse, 20 Hz repetition rate) was acquired as a function of time and temperature. Second harmonic generation (SHG) was used to monitor in situ the polar alignment and relaxation of orientation of the side-chain Disperse Red-like chromophore molecules in the films poled at room temperature and high above the glass transition temperature (Tg 140-150oC). The deff coefficient was determined from the Maker-fringe method and corrected for absorption. A strong second harmonic effect with a fast relaxation was observed in "cold" (room temperature) poling experiments. A large second-order resonantly enhanced optical nonlinearity (d33 of the order of 200 pm/V) was obtained in high temperature poling. A strong and stable nonlinearity has persisted for years after the films were high-temperature poled.
Keramidas, M E; Kölegård, R; Mekjavic, I B; Eiken, O
2015-10-01
The study examined the effects of a 10-day normobaric hypoxic confinement (FiO2: 0.14), with [hypoxic exercise training (HT); n = 8)] or without [hypoxic ambulatory (HA; n = 6)] exercise, on the hand temperature responses during and after local cold stress. Before and after the confinement, subjects immersed their right hand for 30 min in 8 °C water [cold water immersion (CWI)], followed by a 15-min spontaneous rewarming (RW), while breathing either room air (AIR), or a hypoxic gas mixture (HYPO). The hand temperature responses were monitored with thermocouples and infrared thermography. The confinement did not influence the hand temperature responses of the HA group during the AIR and HYPO CWI and the HYPO RW phases; but it impaired the AIR RW response (-1.3 °C; P = 0.05). After the confinement, the hand temperature responses were unaltered in the HT group throughout the AIR trial. However, the average hand temperature was increased during the HYPO CWI (+0.5 °C; P ≤ 0.05) and RW (+2.4 °C; P ≤ 0.001) phases. Accordingly, present findings suggest that prolonged exposure to normobaric hypoxia per se does not alter the hand temperature responses to local cooling; yet, it impairs the normoxic RW response. Conversely, the combined stimuli of continuous hypoxia and exercise enhance the finger cold-induced vasodilatation and hand RW responses, specifically, under hypoxic conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Physics and medical applications of cold atmospheric plasma
NASA Astrophysics Data System (ADS)
Keidar, Michael
2013-09-01
Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Varieties of novel plasma diagnostic techniques were applied in a quest to understand physics of cold plasmas. In particular it was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m3. We have demonstrated the efficacy of cold plasma in a pre-clinical model of various cancer types (lung, bladder, breast, head, neck, brain and skin). Both in-vitro andin-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasmainduces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at ~24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed.
The influence of digit size and proportions on dexterity during cold exposure.
Payne, Stephanie; Macintosh, Alison; Stock, Jay
2018-04-20
The current study investigated whether size and proportions of the hands and digits affect dexterity during severe cold exposure. As wide hands are known to lose less heat than narrow hands, and narrow digits are associated with greater dexterity, this study aimed to test whether there was a direct trade-off between dexterity and thermoregulation that shapes hand morphology. Participants (25 women, 15 men) carried out the Purdue Pegboard test before and after a 3-min ice-water immersion of the hand. Their hand length, hand width, digit lengths, and digit widths were measured using standard anthropometric methods. Wide first and third digits associated with significantly reduced dexterity after immersion relative to individuals with narrower first and third digits. Second digit width positively correlated with average digit temperature after immersion. Hand length and hand width did not influence dexterity. The current study suggests that digit width influences dexterity in cold conditions, reflecting patterns found at room temperature. Hand and digit morphology may be the product of two significant constraints on the hand: dexterity and thermoregulation. In cold conditions, hand morphology appears to be predominantly constrained by thermal stress, at the expense of dexterity. This may have important implications for interpreting the morphology of extinct and extant hominins. © 2018 Wiley Periodicals, Inc.
Mechanical and electrical properties of low temperature phase MnBi
NASA Astrophysics Data System (ADS)
Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; Palasyuk, Olena; Dennis, Kevin W.; Dahl, Michael; Choi, Jung-Pyung; Polikarpov, Evgueni; Marinescu, Melania; Cui, Jun
2016-01-01
Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ˜5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.
Aluka, Tony M.; Gyuse, Abraham N.; Udonwa, Ndifreke E.; Asibong, Udeme E.; Meremikwu, Martin M.; Oyo-Ita, Angela
2013-01-01
Background: A wide range of childhood illnesses are accompanied by fever, leading to varied attempts at treatment by caregivers at home before coming to a hospital. Common modalities of treatment include use of antipyretics and physical methods such as cold water sponging, fanning and removal of clothing. These treatment modalities have been received with varied attitudes among physicians and the scientific community. This study was to assess the efficacy of both modalities in first-line management of fever in our area. Objectives: The main aim of the study is to compare the effectiveness of cold water sponging with that of oral paracetamol in the treatment of fever in children attending the University of Calabar Teaching Hospital, Calabar. Subjects and Methods: This is a randomized clinical trial. Eighty-eight children aged 12-120 months who presented to the Children Outpatient Clinic (CHOP) and the Children Emergency Room (CHER) of University of Calabar Teaching Hospital, Calabar, with acute febrile illness and axillary temperatures spanning ≥ 38.0-40.0°C. All children within the age limit whose caregivers gave consent were recruited into the study and were randomized to receive either cold water sponging or oral paracetamol. Axillary temperature, pulse rate, respiratory rate and assessment of discomforts (crying, shivering, goose pimples and convulsions) were recorded every 30 min for 2 h. The results were analyzed using the SPSS statistical software and have been presented in the tables. Results: Cold water sponging was very effective in temperature reduction within the first 30 min, with 29 (70.73%) having their temperature reduced to within normal limits. This declined to 12 (29.26%) at 60 min and 4 (10.53%) at 120 min, with the mean temperature differences from the baseline value following the same trends (1.63°C by 30 min, 0.91°C by 60 min and 0.39°C by 120 min). When compared with paracetamol, cold water sponging was more effective in temperature reduction within the first 30 min (P = 0.000), with the difference in effect at 60 min less significant between these two groups (P = 0.229). Paracetamol demonstrated a gradual and sustained reduction in temperature with the proportions of afebrile children in this group increasing from 7 (16.27%) at 30 min to 33 (78.57%) at 120 min. The mean temperature differences from the baseline value also showed the same trend. Children who received cold water sponging had more discomforts compared with those who received only oral paracetamol. Conclusions: It is concluded that cold water sponging, although producing rapid reduction in temperature compared with paracetamol, has effects that last only for a short time. Paracetamol on the other hand produces a gradual but sustained effect. The discomforts experienced should not be a limiting factor to the use of cold water sponging in reducing the body temperature of febrile children. Cold water sponging is safe and its use by mothers and primary caregivers should be encouraged while preparing to take the child to the nearest health facility for definitive treatment of the underlying cause of the fever. PMID:24479070
Aluka, Tony M; Gyuse, Abraham N; Udonwa, Ndifreke E; Asibong, Udeme E; Meremikwu, Martin M; Oyo-Ita, Angela
2013-04-01
A wide range of childhood illnesses are accompanied by fever, leading to varied attempts at treatment by caregivers at home before coming to a hospital. Common modalities of treatment include use of antipyretics and physical methods such as cold water sponging, fanning and removal of clothing. These treatment modalities have been received with varied attitudes among physicians and the scientific community. This study was to assess the efficacy of both modalities in first-line management of fever in our area. The main aim of the study is to compare the effectiveness of cold water sponging with that of oral paracetamol in the treatment of fever in children attending the University of Calabar Teaching Hospital, Calabar. This is a randomized clinical trial. Eighty-eight children aged 12-120 months who presented to the Children Outpatient Clinic (CHOP) and the Children Emergency Room (CHER) of University of Calabar Teaching Hospital, Calabar, with acute febrile illness and axillary temperatures spanning ≥ 38.0-40.0°C. All children within the age limit whose caregivers gave consent were recruited into the study and were randomized to receive either cold water sponging or oral paracetamol. Axillary temperature, pulse rate, respiratory rate and assessment of discomforts (crying, shivering, goose pimples and convulsions) were recorded every 30 min for 2 h. The results were analyzed using the SPSS statistical software and have been presented in the tables. Cold water sponging was very effective in temperature reduction within the first 30 min, with 29 (70.73%) having their temperature reduced to within normal limits. This declined to 12 (29.26%) at 60 min and 4 (10.53%) at 120 min, with the mean temperature differences from the baseline value following the same trends (1.63°C by 30 min, 0.91°C by 60 min and 0.39°C by 120 min). When compared with paracetamol, cold water sponging was more effective in temperature reduction within the first 30 min (P = 0.000), with the difference in effect at 60 min less significant between these two groups (P = 0.229). Paracetamol demonstrated a gradual and sustained reduction in temperature with the proportions of afebrile children in this group increasing from 7 (16.27%) at 30 min to 33 (78.57%) at 120 min. The mean temperature differences from the baseline value also showed the same trend. Children who received cold water sponging had more discomforts compared with those who received only oral paracetamol. It is concluded that cold water sponging, although producing rapid reduction in temperature compared with paracetamol, has effects that last only for a short time. Paracetamol on the other hand produces a gradual but sustained effect. The discomforts experienced should not be a limiting factor to the use of cold water sponging in reducing the body temperature of febrile children. Cold water sponging is safe and its use by mothers and primary caregivers should be encouraged while preparing to take the child to the nearest health facility for definitive treatment of the underlying cause of the fever.
Implementation of thermoelectric module for cooling process of microscale experimental room
NASA Astrophysics Data System (ADS)
Gołebiowska, Justyna; Żelazna, Agnieszka; Zioło, Paweł
2017-08-01
Thermoelectric modules, also known as Peltier modules, are used for cooling small devices and also, according to literature, in refrigeration. They can be an alternative to conventional refrigeration systems based on the use of compressors chillers powered by AC power. Peltier modules are powered by direct current (DC), which allows to power them directly supply by photovoltaic modules. In this paper operation of thermoelectric module used for cooling experimental room of cubature 0.125 m3 is presented. The study involves investigation of temperatures achieved on the cold and hot sides of module and inside the experimental room depending on the values of module supplying current. These studies provide an introduction to the assessment of the influence of different methods of heat removal on the hot side of thermoelectric module on cooling efficiency of whole system.
The evolution of X-ray clusters in a cold plus hot dark matter universe
NASA Technical Reports Server (NTRS)
Bryan, Greg L.; Klypin, Anatoly; Loken, Chris; Norman, Michael L.; Burns, Jack O.
1994-01-01
We present the first self-consistently computed results on the evolution of X-ray properties of galaxy clusters in a cold + hot dark matter (CHDM) model. We have performed a hydrodynamic plus N-body simulation for the COBE-compatible CHDM model with standard mass components: Omega(sub hot) = 0.3, Omega (sub cold) = 0.6 and Omega(sub baryon) = 0.1 (h = 0.5). In contrast with the CDM model, which fails to reproduce the observed temperature distribution function dN/dT (Bryan et al. 1994b), the CHDM model fits the observational dN/dT quite well. Our results on X-ray luminosity are less firm but even more intriguing. We find that the resulting X-ray luminosity functions at redshifts z = 0.0, 0.2, 0.4, 0.7 are well fit by observations, where they overlap. The fact that both temperatures and luminosities provide a reasonable fit to the available observational data indicates that, unless we are missing some essential physics, there is neither room nor need for a large fraction of gas in rich clusters: 10% (or less) in baryons is sufficient to explain their X-ray properties. We also see a tight correlation between X-ray luminosity and gas temperature.
NASA Astrophysics Data System (ADS)
Deng, Yonggang; Di, Hongshuang; Hu, Meiyuan; Zhang, Jiecen; Misra, R. D. K.
2017-07-01
Ultrafine-grained dual-phase (UFG-DP) steel consisting of ferrite (1.2 μm) and martensite (1 μm) was uniquely processed via combination of hot rolling, cold rolling and continuous annealing of a low-carbon Nb-microalloyed steel. Room temperature tensile properties were evaluated and fracture mechanisms studied and compared to the coarse-grained (CG) counterpart. In contrast to the CG-DP steel, UFG-DP had 12.7% higher ultimate tensile strength and 10.7% greater uniform elongation. This is partly attributed to the increase in the initial strain-hardening rate, decrease in nanohardness ratio of martensite and ferrite. Moreover, a decreasing number of ferrite grains with {001} orientation increased the cleavage fracture stress and increased the crack initiation threshold stress with consequent improvement in ductility UFG-DP steel.
The influence of a heat and moisture exchanger on tracheal climate in a cold environment.
Zuur, J Karel; Muller, Sara H; Vincent, Andrew; Sinaasappel, Michiel; de Jongh, Frans H C; Hilgers, Frans J M
2009-09-01
The incidence of pulmonary complaints, severe tracheitis and lung function deterioration is increased during wintertime in laryngectomized individuals. We analyzed how a heat and moisture exchanger (HME) performs in cold and dry ambient circumstances, and how its efficiency in this environmental climate might be improved. Randomized crossover. Intra-tracheal temperature and humidity were measured in 10 laryngectomized patients with and without HME, in a cold (mean, 4.7 degrees C) and dry (mean, 4.5 mgH2O/L) room. Presence of an HME causes the intra-tracheal mean humidity minima and maxima to increase with 4.2 mgH2O/L (95%CI: 3.3-5.0 mgH2O/L; p<0.001) and 2.4 mgH2O/L (95%CI: 1.7-3.1 mgH2O/L; p<0.001), respectively. The intra-tracheal mean temperature minima and maxima increased with 3.9 degrees C (95%CI: 2.7-5.1 degrees C; p<0.001) and 1.2 degrees C (95%CI: 0.8-1.2 degrees C; p<0.001), respectively. In the majority of patients, the calculated relative humidity values appear to reach well above 100% during inspiration. In a cold environment, presence of an HME significantly increases both inspiratory and expiratory temperature and humidity values. Relative humidity calculations suggest the formation of condense droplets during inspiration. To further increase its effectiveness, improvement of the HME's thermal capacity should be aimed for.
Intra-operative fluid warming in elective caesarean section: a blinded randomised controlled trial.
Woolnough, M; Allam, J; Hemingway, C; Cox, M; Yentis, S M
2009-10-01
We assessed the effect of warming intravenous fluids during elective caesarean section under combined spinal-epidural anaesthesia in a blinded, randomised controlled trial. Seventy-five women having elective caesarean section were randomly assigned to receive all intravenous fluids at room temperature, or heated in a cabinet set at 45 degrees C or via a Hotline fluid warmer (Smiths Medical International Ltd, Watford, Herts, UK). After 10 mL/kg crystalloid preload, combined spinal-epidural anaesthesia was performed. Core and ambient temperatures, thermal comfort and shivering were measured every 15 min thereafter. The primary outcome was the temperature at 60 min. Temperature decreased in all groups. Although the temperature decrease at 60 min was similar in the heated cabinet and Hotline groups, the room temperature group exhibited a greater decrease [difference 0.4 degrees C (95% CI 0.2-0.6 degrees C); P=0.015]. More women felt cold in the room temperature group (8: 32%) than in the heated cabinet set (3: 12%) and Hotline (1: 4%) groups (P=0.02), but the incidence of shivering was similar: 11 (44%), 9 (36%) and 7 (28%) respectively. Apgar scores and neonatal cord gases were similar. Warming intravenous fluids mitigates the decrease in maternal temperature during elective caesarean section under combined spinal-epidural anaesthesia and improves thermal comfort, but does not affect shivering. Intravenous fluids should be warmed routinely in elective caesarean section, especially for cases of expected long duration, but the use of pre-warmed fluids is as efficient and cheaper than using a Hotline fluid warmer.
NASA Technical Reports Server (NTRS)
Joerns, J. C.
1986-01-01
Pressure regulated and flow timed to control amount dispensed. Dispenser provides measured amount of water for reconstituting dehydrated foods and beverages. Dispenser holds food or beverage package while being filled with either cold or room-temperature water. Other uses might include dispensing of fluids or medicine. Pressure regulator in dispenser reduces varying pressure of water supply to constant pressure. Electronic timer stops flow after predetermined length of time. Timed flow at regulated pressure ensures controlled volume of water dispensed.
Energy Flow in Dense Off-Equilibrium Plasma
2016-07-15
akT e in our system100 i e T T Teller 1966 Smoking Gun Experiment: Laser Breakdown in COLD gas In going from room to liquid Nitrogen temperature...oflaser breakdown have revealed a new phase of off-equilibrium plasma that has a tensile strength similar to a liquid , and reduced ion-electron...approved for public release. Part 1: Energy Balance in Sonoluminescing Dense Plasma Sonoluminescence occurs from rapid implosion of gas bubbles caused to
Cryogen free cooling of ASTRO-H SXS Helium Dewar from 300 K to 4 K
NASA Astrophysics Data System (ADS)
Kanao, Ken'ichi; Yoshida, Seiji; Miyaoka, Mikio; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Narasaki, Katsuhiro; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuji; Sato, Yoichi; Okamoto, Atsushi; Noda, Hirofumi; DiPirro, Michel J.; Shirron, Peter J.
2017-12-01
Soft X-ray Spectrometer instrument (SXS) is one of the primary scientific instruments of ASTRO-H. SXS has a cold detector that is cooled to 50 mK by using a multi-stage Adiabatic Demagnetization Refrigerator (ADR). SXS Dewar containing ADR provides 1.3 K heat sink by using liquid helium in nominal operation. After liquid helium is dried up, 4 K heat sink is provided by using mechanical coolers. Both nominal operation and cryogen free operation were successfully demonstrated. This paper describes the test result of cryogen free operation and cool-down performance from room temperature by using only mechanical coolers without liquid helium. The coolers on the Dewar cooled down cold mass from around 300 K to 4 K with 260 W electric power in 40 days. Cold mass is 35 kg in 4 K area including the helium tank, ADR and detector assembly.
Chung, Nana; Park, Jonghoon; Lim, Kiwon
2017-01-01
[Purpose] The purpose of this study was to determine whether exercise or/and cold exposure regulate mitochondria biogenesis-related gene expression in soleus and inguinal adipose tissue of mice. [Methods] Forty ICR 5-week old male mice were divided into four groups: thermoneutrality-untrained (23 ± 1 °C in room temperature, n=10), cold-water immersion (24 ± 1 °C, n=10), exercise in neutral temperature (34 ± 1 °C, n=10), and exercise in cold temperature (24 ± 1 °C, n=10). The mice performed swimming exercise (30 min to 60 min, 5 times) for 8 weeks. After 8 weeks, we confirmed mitochondrial biogenesis-related gene expression changes for peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), nuclear respiratory factors 1 (NRF1), and mitochondrial transcription factor A (Tfam) in soleus muscle and inguinal adipose tissue, and the related protein expression in soleus muscle. [Results] In soleus muscle, PGC-1α expression significantly increased in response to cold exposure (p = 0.006) and exercise (p = 0.05). There was also significant interaction between exercise and cold exposure (p = 0.005). Only exercise had a significant effect on NRF1 relative expression (p=0.001). Neither cold exposure nor the interaction showed significant effects (p = 0.1222 and p = 0.875, respectively). Relative Tfam expression did not show any significant effect from exercise. In inguinal adipose tissue, relative PGC-1α expression did not significantly change in any group. NRF1 expression showed a significant change from exercise (p = 0.01) and cold exposure (p = 0.011). There was also a significant interaction between exercise and cold exposure (p = 0.000). Tfam mRNA expression showed a significant effect from exercise (p=0.000) and an interaction between exercise and cold exposure (p=0.001). Only temperature significantly affected PGC-1α protein levels (p=0.045). Neither exercise nor the interaction were significant (p = 0.397 and p = 0.292, respectively). NRF1 protein levels did not show a significant effect in any experimental treatments. Tfam protein levels showed a significant effect in the exercise group (p=0.012), but effects of neither cold exposure nor the interaction were significant (p = 0.085 and p=0.374, respectively). [Conclusion] Exercise and cold exposure promoted increased expression of mitochondrial biogenesis- related genes in soleus muscle. Only cold exposure had a significant effect on PGC-1α protein expression and only exercise had a significant effect on Tfam protein expression. In inguinal adipose tissue, there was interaction between exercise and cold exposure in expression of mitochondrial biogenesis-related genes. PMID:28715885
Zhu, Bo; Liu, Jianli; Gao, Weidong
2017-09-01
This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.
TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures
NASA Astrophysics Data System (ADS)
Feller, Georges
2010-08-01
Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.
On buoyancy-driven natural ventilation of a room with a heated floor
NASA Astrophysics Data System (ADS)
Gladstone, Charlotte; Woods, Andrew W.
2001-08-01
The natural ventilation of a room, both with a heated floor and connected to a cold exterior through two openings, is investigated by combining quantitative models with analogue laboratory experiments. The heated floor generates an areal source of buoyancy while the openings allow displacement ventilation to operate. When combined, these produce a steady state in which the air in the room is well-mixed, and the heat provided by the floor equals the heat lost by displacement. We develop a quantitative model describing this process, in which the advective heat transfer through the openings is balanced with the heat flux supplied at the floor. This model is successfully tested with observations from small-scale analogue laboratory experiments. We compare our results with the steady-state flow associated with a point source of buoyancy: for a given applied heat flux, an areal source produces heated air of lower temperature but a greater volume flux of air circulates through the room. We generalize the model to account for the effects of (i) a cooled roof as well as a heated floor, and (ii) an external wind or temperature gradient. In the former case, the direction of the flow through the openings depends on the temperature of the exterior air relative to an averaged roof and floor temperature. In the latter case, the flow is either buoyancy dominated or wind dominated depending on the strength of the pressure associated with the wind. Furthermore, there is an intermediate multiple-solution regime in which either flow regime may develop.
Stability of dronabinol capsules when stored frozen, refrigerated, or at room temperature.
Wempe, Michael F; Oldland, Alan; Stolpman, Nancy; Kiser, Tyree H
2016-07-15
Results of a study to determine the 90-day stability of dronabinol capsules stored under various temperature conditions are reported. High-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was used to assess the stability of dronabinol capsules (synthetic delta-9-tetrahydrocannabinol [Δ9-THC] mixed with high-grade sesame oil and other inactive ingredients and encapsulated as soft gelatin capsules) that were frozen, refrigerated, or kept at room temperature for three months. The dronabinol capsules remained in the original foil-sealed blister packs until preparation for HPLC-UV assessment. The primary endpoint was the percentage of the initial Δ9-THC concentration remaining at multiple designated time points. The secondary aim was to perform forced-degradation studies under acidic conditions to demonstrate that the HPLC-UV method used was stability indicating. The appearance of the dronabinol capsules remained unaltered during frozen, cold, or room-temperature storage. Regardless of storage condition, the percentage of the initial Δ9-THC content remaining was greater than 97% for all evaluated samples at all time points over the three-month study. These experimental data indicate that the product packaging and the sesame oil used to formulate dronabinol capsules efficiently protect Δ9-THC from oxidative degradation to cannabinol; this suggests that pharmacies can store dronabinol capsules in nonrefrigerated automated dispensing systems, with a capsule expiration date of 90 days after removal from the refrigerator. Dronabinol capsules may be stored at room temperature in their original packaging for up to three months without compromising capsule appearance and with minimal reduction in Δ9-THC concentration. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Maximising platelet availability by delaying cold storage.
Wood, B; Johnson, L; Hyland, R A; Marks, D C
2018-04-06
Cold-stored platelets may be an alternative to conventional room temperature (RT) storage. However, cold-stored platelets are cleared more rapidly from circulation, reducing their suitability for prophylactic transfusion. To minimise wastage, it may be beneficial to store platelets conventionally until near expiry (4 days) for prophylactic use, transferring them to refrigerated storage to facilitate an extended shelf life, reserving the platelets for the treatment of acute bleeding. Two ABO-matched buffy-coat-derived platelets (30% plasma/70% SSP+) were pooled and split to produce matched pairs (n = 8 pairs). One unit was stored at 2-6°C without agitation (day 1 postcollection; cold); the second unit was stored at 20-24°C with constant agitation until day 4 then stored at 2-6°C thereafter (delayed-cold). All units were tested for in vitro quality periodically over 21 days. During storage, cold and delayed-cold platelets maintained a similar platelet count. While pH and HSR were significantly higher in delayed-cold platelets, other metabolic markers, including lactate production and glucose consumption, did not differ significantly. Furthermore, surface expression of phosphatidylserine and CD62P, release of soluble CD62P and microparticles were not significantly different, suggesting similar activation profiles. Aggregation responses of delayed-cold platelets followed the same trend as cold platelets once transferred to cold storage, gradually declining over the storage period. The metabolic and activation profile of delayed-cold platelets was similar to cold-stored platelets. These data suggest that transferring platelets to refrigerated storage when near expiry may be a viable option for maximising platelet inventories. © 2018 International Society of Blood Transfusion.
Study on indoor thermal environment in winter for rural residences in Yulin region
NASA Astrophysics Data System (ADS)
Yanjun, Li; Weixiao, Han
2018-02-01
Yulin region is located in the northern part of Shaanxi Province, China. The winter here is very cold and it has a long duration. In this paper, a rural residence which was located in Yulin region was taken as a study object. Indoor thermal environment of the rural residence were tested, including indoor air temperature and air relative humidity. Then, test data were analyzed. It was summarized that indoor thermal environment of test room can not fully meet human thermal comfort needs, and some tactics of regulation building thermal environment were proposed. This research contributes to improvement of indoor thermal environment for local rural residences and it provides reference for rural residences in other cold regions.
Cold atmospheric plasma, a novel promising anti-cancer treatment modality.
Yan, Dayun; Sherman, Jonathan H; Keidar, Michael
2017-02-28
Over the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists.
Effect of 1-methylcyclopropene treatment on green asparagus quality during cold storage
NASA Astrophysics Data System (ADS)
Zhang, Peng; Zhang, Min; Wang, Shaojin; Wu, Zhishuang
2012-10-01
Green asparagus was treated with 1-methylcyclopropene at three concentration levels at room temperature for 24 h after harvest to evaluate the postharvest quality during cold storage at 4°C. Comparing with the controls, the loss of vitamin C, decomposition of chlorophyll, and accumulation of the malonydiadehyde under treatments of 1-methylcyclopropene were reduced during storage. The enzyme activities in asparagus including peroxidase and phenylalanine ammonia lyase were inhibited by 1-methylcyclopropene treatments, while the activity of superoxide dismutase was enhanced. Based on non-significant difference of the treated samples with 6 ìl l-1, 1-methylcyclopropene treatments at 4 ìl l-1 could be selected to maintain postharvest quality of green asparagus and provide long storage life.
Afsarian, O; Shahir, M H; Akhlaghi, A; Lotfolahian, H; Hoseini, A; Lourens, A
2016-10-01
An experiment was conducted to evaluate the effects of a periodically low eggshell temperature exposure during incubation and dietary supplementation of arginine on performance, ascites incidence, and cold tolerance acquisition in broilers. A total of 2,400 hatching eggs were randomly assigned to 2 treatment groups (16 replicates of 75 eggs per treatment). The eggs were incubated at a constant eggshell temperature (EST) of 37.8ºC throughout the incubation period (CON) or were periodically exposed to 15°C for one hour on days 11, 13, 15, and 17 of incubation and the EST was measured (periodical low EST; PLE). After hatching, 240 one-day-old male broiler chicks from both treatment groups were reared for 42 d with or without dietary arginine supplementation in a completely randomized design with a 2 × 2 factorial arrangement. In order to induce ascites, all chicks were exposed to a 15°C room temperature from 14 d onwards. Results showed that second grade chicks and yolk sac weight were decreased, and final body weight was increased in the PLE group. Ascites mortality rate was decreased only in the PLE group and dietary arginine supplementation had no apparent effect. In the PLE group, the packed cell volume (PCV) percentage and red blood cell (RBC) count were decreased. In conclusion, the results showed that the PLE treatment during incubation was associated with improved hatchability, chick quality, and productive performance of broilers and decreased ascites incidence during post hatch cold exposure. Dietary arginine supplementation had no beneficial effects in cold exposed broilers. © 2016 Poultry Science Association Inc.
Povinelli, Benjamin J; Kokolus, Kathleen M; Eng, Jason W-L; Dougher, Christopher W; Curtin, Leslie; Capitano, Maegan L; Sailsbury-Ruf, Christi T; Repasky, Elizabeth A; Nemeth, Michael J
2015-01-01
The production of new blood cells relies on a hierarchical network of hematopoietic stem and progenitor cells (HSPCs). To maintain lifelong hematopoiesis, HSPCs must be protected from ionizing radiation or other cytotoxic agents. For many years, murine models have been a valuable source of information regarding factors that either enhance or reduce the survival of HSPCs after exposure of marrow to ionizing radiation. In a recent series of studies, however, it has become clear that housing-related factors such as the cool room temperature required for laboratory mice can exert a surprising influence on the outcome of experiments. Here we report that the mild, but chronic cold-stress endured by mice housed under these conditions exerts a protective effect on HSPCs after both non-lethal and lethal doses of total body irradiation (TBI). Alleviation of this cold-stress by housing mice at a thermoneutral temperature (30°C) resulted in significantly greater baseline radiosensitivity to a lethal dose of TBI with more HSPCs from mice housed at thermoneutral temperature undergoing apoptosis following non-lethal TBI. Cold-stressed mice have elevated levels of norepinephrine, a key molecule of the sympathetic nervous system that binds to β-adrenergic receptors. We show that blocking this signaling pathway in vivo through use of the β-blocker propanolol completely mitigates the protective effect of cold-stress on HSPC apoptosis. Collectively this study demonstrates that chronic stress endured by the standard housing conditions of laboratory mice increases the resistance of HSPCs to TBI-induced apoptosis through a mechanism that depends upon β-adrenergic signaling. Since β-blockers are commonly prescribed to a wide variety of patients, this information could be important when predicting the clinical impact of HSPC sensitivity to TBI.
Eng, Jason W.-L.; Dougher, Christopher W.; Curtin, Leslie; Capitano, Maegan L.; Sailsbury-Ruf, Christi T.; Repasky, Elizabeth A.; Nemeth, Michael J.
2015-01-01
The production of new blood cells relies on a hierarchical network of hematopoietic stem and progenitor cells (HSPCs). To maintain lifelong hematopoiesis, HSPCs must be protected from ionizing radiation or other cytotoxic agents. For many years, murine models have been a valuable source of information regarding factors that either enhance or reduce the survival of HSPCs after exposure of marrow to ionizing radiation. In a recent series of studies, however, it has become clear that housing-related factors such as the cool room temperature required for laboratory mice can exert a surprising influence on the outcome of experiments. Here we report that the mild, but chronic cold-stress endured by mice housed under these conditions exerts a protective effect on HSPCs after both non-lethal and lethal doses of total body irradiation (TBI). Alleviation of this cold-stress by housing mice at a thermoneutral temperature (30°C) resulted in significantly greater baseline radiosensitivity to a lethal dose of TBI with more HSPCs from mice housed at thermoneutral temperature undergoing apoptosis following non-lethal TBI. Cold-stressed mice have elevated levels of norepinephrine, a key molecule of the sympathetic nervous system that binds to β-adrenergic receptors. We show that blocking this signaling pathway in vivo through use of the β-blocker propanolol completely mitigates the protective effect of cold-stress on HSPC apoptosis. Collectively this study demonstrates that chronic stress endured by the standard housing conditions of laboratory mice increases the resistance of HSPCs to TBI-induced apoptosis through a mechanism that depends upon β-adrenergic signaling. Since β-blockers are commonly prescribed to a wide variety of patients, this information could be important when predicting the clinical impact of HSPC sensitivity to TBI. PMID:25793392
Compression Strength of Sulfur Concrete Subjected to Extreme Cold
NASA Technical Reports Server (NTRS)
Grugel, Richard N.
2008-01-01
Sulfur concrete cubes were cycled between liquid nitrogen and room temperature to simulate extreme exposure conditions. Subsequent compression testing showed the strength of cycled samples to be roughly five times less than those non-cycled. Fracture surface examination showed de-bonding of the sulfur from the aggregate material in the cycled samples but not in those non-cycled. The large discrepancy found, between the samples is attributed to the relative thermal properties of the materials constituting the concrete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turgeon, R.; Wimmers, L.E.
1988-05-01
Vein loading of exogenous ({sup 14}C)sucrose was studied using short uptake and wash periods to distinguish between direct loading into veins and loading via mesophyll tissue. Mature leaf tissue of Pisum sativum L. cv Little Marvel, or Coleus blumei Benth. cv Candidum, was abraded and leaf discs were floated on ({sup 14}C)sucrose solution for 1 or 2 minutes. Discs were then washed for 1 to 30 min either at room temperature or in the cold and were frozen, lyophilized, and autoradiographed. In P. sativum, veins were clearly labeled after 1 minute uptake and 1 minute wash periods. Autoradiographic images didmore » not change appreciably with longer times of uptake or wash. Vein loading was inhibited by p-chloromercuribenzenesulfonic acid. These results indicate that uptake of exogenous sucrose occurs directly into the veins in this species. When C. blumei leaf discs were floated on ({sup 14}C)sucrose for 2 minutes and washed in the cold, the mesophyll was labeled but little, if any, minor vein loading occurred. When discs were labeled for 2 minutes and washed at room temperature, label was transferred from the mesophyll to the veins within minutes. These results indicate that there may be different patterns of phloem loading of photosynthetically derived sucrose in these two species.« less
Pipeline design and thermal stress analysis of a 10kW@20K helium refrigerator
NASA Astrophysics Data System (ADS)
Xu, D.; Gong, L. H.; Xu, P.; Liu, H. M.; Li, L. F.; Xu, X. D.
2014-01-01
This paper is based on the devices and pipeline in the horizontal cryogenic cold-box of a 10kW@20K helium refrigerator developed by Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. Four devices, six valves, supporting components and pipe lines are positioned in the cold-box. At operating state, the temperature of these devices and pipeline is far below the room temperature, and the lowest temperature is 14K. Due to different material and temperature, the shrinkage of devices and pipes is different. Finite element analysis software SOLIDWORKS SIMULATION was used to numerically simulate the thermal stress and deformation. The results show that the thermal stress of pipe A is a little large. So we should change the pipe route or use a bellows expansion joint. Bellows expansion joints should also be used in the pipes connected to three of the six valves to protect them by decreasing the deformation. At last, the effect of diameter, thickness and bend radius on the thermal stress was analyzed. The results show that the thermal stress of the pipes increases with the increase of the diameter and the decrease of the bend radius.
Ribonucleic acid interference knockdown of interleukin 6 attenuates cold-induced hypertension.
Crosswhite, Patrick; Sun, Zhongjie
2010-06-01
The purpose of this study was to determine the role of the proinflammatory cytokine interleukin (IL) 6 in cold-induced hypertension. Four groups of male Sprague-Dawley rats were used (6 rats per group). After blood pressure was stabilized, 3 groups received intravenous delivery of adenoassociated virus carrying IL-6 small hairpin RNA (shRNA), adenoassociated virus carrying scrambled shRNA, and PBS, respectively, before exposure to a cold environment (5 degrees C). The last group received PBS and was kept at room temperature (25 degrees C, warm) as a control. Adenoassociated virus delivery of IL-6 shRNA significantly attenuated cold-induced elevation of systolic blood pressure and kept it at the control level for < or =7 weeks (length of the study). Chronic exposure to cold upregulated IL-6 expression in aorta, heart, and kidneys and increased macrophage and T-cell infiltration in kidneys, suggesting that cold exposure increases inflammation. IL-6 shRNA delivery abolished the cold-induced upregulation of IL-6, indicating effective silence of IL-6. Interestingly, RNA interference knockdown of IL-6 prevented cold-induced inflammation, as evidenced by a complete inhibition of tumor necrosis factor-alpha expression and leukocyte infiltration by IL-6 shRNA. RNA interference knockdown of IL-6 significantly decreased the cold-induced increase in vascular superoxide production. It is noted that IL-6 shRNA abolished the cold-induced increase in collagen deposition in the heart, suggesting that inflammation is involved in cold-induced cardiac remodeling. Cold exposure caused glomerular collapses, which could be prevented by knockdown of IL-6, suggesting an important role of inflammation in cold-induced renal damage. In conclusion, cold exposure increased IL-6 expression and inflammation, which play critical roles in the pathogenesis of cold-induced hypertension and cardiac and renal damage.
[Prevention of perioperative hypothermia].
Horn, Ernst-Peter; Torossian, Alexander
2010-03-01
Inadvertent perioperative hypothermia impairs postoperative outcome in surgical patients due to ischemic myocardial events, wound infections and coagulation disorders. Body core temperature should be assessed 1-2h preoperatively and continuously during surgery. To prevent hypothermia patients and nursing clinical staff should be teached and trained. Preoperatively surgical patients should always be prewarmed by using convective warming devices and active warming should be continued in surgeries longer than 1 hour. Warming of IV fluids is effective if infusion rates are above 1l/h. Core temperature should be measured in the recovery room and active warming should be started when patients are hypothermic or if they feel cold. Georg Thieme Verlag Stuttgart * New York.
Thermodynamic limits for solar energy conversion by a quantum-thermal hybrid system
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.
1981-01-01
The limits are presented fo air mass 1.5 conditions. A maximum conversion efficiency of 74 percent is thermodynamically achievable for the quantum device operating at 3500 K and the heat engine in contact with a reservoir at 0 K. The efficiency drops to 56 percent for a cold reservoir at approximately room temperature conditions. Hybrid system efficiencies exceed 50 percent over receiver temperatures ranging from 1400 K to 4000 K, suggesting little benefit is gained in operating the system above 1400 K. The results are applied to a system consisting of a photovoltaic solar cell in series with a heat engine.
Performance improvement of a large capacity GM cryocooler
NASA Astrophysics Data System (ADS)
Wang, C.; Olesh, A.; Cosco, J.
2017-12-01
This paper presents the improvement of a large GM cryocooler, Cryomech model AL600, based on redesigning a cold head stem seal, regenerator, heat exchanger and displacer bumper as well as optimizing operating parameters. The no-load temperature is reduced from 26.6 K to 23.4 K. The cooling capacity is improved from 615 W to 701W at 80 K with a power input of 12.5 kW. It has the highest relative Carnot Efficiency at 15.4%. The vibration of AL600 is investigated experimentally. The new displacer bumper significantly reduces the vibration force on the room temperature flange by 82 % from 520 N to 93 N.
Detailed Uncertainty Analysis of the ZEM-3 Measurement System
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
The measurement of Seebeck coefficient and electrical resistivity are critical to the investigation of all thermoelectric systems. Therefore, it stands that the measurement uncertainty must be well understood to report ZT values which are accurate and trustworthy. A detailed uncertainty analysis of the ZEM-3 measurement system has been performed. The uncertainty analysis calculates error in the electrical resistivity measurement as a result of sample geometry tolerance, probe geometry tolerance, statistical error, and multi-meter uncertainty. The uncertainty on Seebeck coefficient includes probe wire correction factors, statistical error, multi-meter uncertainty, and most importantly the cold-finger effect. The cold-finger effect plagues all potentiometric (four-probe) Seebeck measurement systems, as heat parasitically transfers through thermocouple probes. The effect leads to an asymmetric over-estimation of the Seebeck coefficient. A thermal finite element analysis allows for quantification of the phenomenon, and provides an estimate on the uncertainty of the Seebeck coefficient. The thermoelectric power factor has been found to have an uncertainty of +9-14 at high temperature and 9 near room temperature.
Thermal stability, storage and release of proteins with tailored fit in silica
NASA Astrophysics Data System (ADS)
Chen, Yun-Chu; Smith, Tristan; Hicks, Robert H.; Doekhie, Aswin; Koumanov, Francoise; Wells, Stephen A.; Edler, Karen J.; van den Elsen, Jean; Holman, Geoffrey D.; Marchbank, Kevin J.; Sartbaeva, Asel
2017-04-01
Biological substances based on proteins, including vaccines, antibodies, and enzymes, typically degrade at room temperature over time due to denaturation, as proteins unfold with loss of secondary and tertiary structure. Their storage and distribution therefore relies on a “cold chain” of continuous refrigeration; this is costly and not always effective, as any break in the chain leads to rapid loss of effectiveness and potency. Efforts have been made to make vaccines thermally stable using treatments including freeze-drying (lyophilisation), biomineralisation, and encapsulation in sugar glass and organic polymers. Here for the first time we show that proteins can be enclosed in a deposited silica “cage”, rendering them stable against denaturing thermal treatment and long-term ambient-temperature storage, and subsequently released into solution with their structure and function intact. This “ensilication” method produces a storable solid protein-loaded material without the need for desiccation or freeze-drying. Ensilication offers the prospect of a solution to the “cold chain” problem for biological materials, in particular for vaccines.
Thermal stability, storage and release of proteins with tailored fit in silica.
Chen, Yun-Chu; Smith, Tristan; Hicks, Robert H; Doekhie, Aswin; Koumanov, Francoise; Wells, Stephen A; Edler, Karen J; van den Elsen, Jean; Holman, Geoffrey D; Marchbank, Kevin J; Sartbaeva, Asel
2017-04-24
Biological substances based on proteins, including vaccines, antibodies, and enzymes, typically degrade at room temperature over time due to denaturation, as proteins unfold with loss of secondary and tertiary structure. Their storage and distribution therefore relies on a "cold chain" of continuous refrigeration; this is costly and not always effective, as any break in the chain leads to rapid loss of effectiveness and potency. Efforts have been made to make vaccines thermally stable using treatments including freeze-drying (lyophilisation), biomineralisation, and encapsulation in sugar glass and organic polymers. Here for the first time we show that proteins can be enclosed in a deposited silica "cage", rendering them stable against denaturing thermal treatment and long-term ambient-temperature storage, and subsequently released into solution with their structure and function intact. This "ensilication" method produces a storable solid protein-loaded material without the need for desiccation or freeze-drying. Ensilication offers the prospect of a solution to the "cold chain" problem for biological materials, in particular for vaccines.
Examining the Association Between Temperature and Mental Health in California
NASA Astrophysics Data System (ADS)
Basu, R.; Gavin, L.; Pearson, D.; Malig, B. J.; Ebisu, K.
2016-12-01
Background: The association between temperature and morbidity from some specific causes has been well established. However, the association between temperature and mental health effects has not been examined closely, although those with mental illnesses may be susceptible to temperature. Methods: We obtained daily counts of emergency room visits and hospitalizations (ICD-9 codes) from the California Office of Statewide Health Planning and Development from 16 California climate zones from 2005 - 2013. Mean apparent temperature was determined by combining monitored temperature and humidity data from the US EPA, California Irrigation Management Information System, and the National Oceanic Atmospheric Administration and weighting monitor values by distance to zip code tabulation areas (ZCTA) and ZCTA populations in the same climate zone as each monitor. We used a two-stage hierarchical model to analyze this data, adjusted by the following independent variables: mean daily apparent temperature, holiday, day of the week, and a natural spline smoothing function of time. The regression was performed for both warm (5/1 - 10/31) and cold (11/1 - 4/30) seasons. Results were stratified by race/ethnicity and age group. Results: We observed an association between same-day mean apparent temperature and mental health outcomes during the warm and cold seasons. We also observed associations between temperature and suicide/self-injury and homicide/assault injury. A 10°F increase in mean apparent temperature was associated with a 4.98% [95% confidence interval, 3.73-6.23], 5.82% [4.34-7.30], and 7.43% [6.75-8.12], increase in mental health events, suicide, and homicide events during the warm season, respectively. Similar results were observed during the cold season. Effect modification by race/ethnic and age groups was observed for some outcomes for both seasons. Conclusions: Increase in mean apparent temperature was found to have same-day associations with several mental health outcomes and external injuries both self-inflicted and inflicted by others.
The effect of high indoor temperatures on self-perceived health of elderly persons.
van Loenhout, J A F; le Grand, A; Duijm, F; Greven, F; Vink, N M; Hoek, G; Zuurbier, M
2016-04-01
Exposure to high ambient temperatures leads to an increase in mortality and morbidity, especially in the elderly. This relationship is usually assessed with outdoor temperature, even though the elderly spend most of their time indoors. Our study investigated the relationship between indoor temperature and heat-related health problems of elderly individuals. The study was conducted in the Netherlands between April and August 2012. Temperature and relative humidity were measured continuously in the living rooms and bedrooms of 113 elderly individuals. Respondents were asked to fill out an hourly diary during three weeks with high temperature and one cold reference week, and a questionnaire at the end of these weeks, on health problems that they experienced due to heat. During the warmest week of the study period (14-20 August), average living room and bedroom temperatures were approximately 5°C higher than during the reference week. More than half of the respondents perceived their indoor climate as too warm during this week. The most reported symptoms were thirst (42.7%), sleep disturbance (40.6%) and excessive sweating (39.6%). There was a significant relationship between both indoor and outdoor temperatures with the number of hours that heat-related health problems were reported per day. For an increase of 1°C of indoor temperature, annoyance due to heat and sleep disturbance increased with 33% and 24% respectively. Outdoor temperature was associated with smaller increases: 13% and 11% for annoyance due to heat and sleep disturbance, respectively. The relationship between outdoor temperature and heat-related health problems disappeared when indoor and outdoor temperatures were included in one model. The relationship with heat-related health problems in the elderly is stronger with indoor (living room and bedroom) temperature than with outdoor temperature. This should be taken into account when looking for measures to reduce heat exposure in this vulnerable group. Copyright © 2015 Elsevier Inc. All rights reserved.
Method of manufacturing iron aluminide by thermomechanical processing of elemental powders
Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.
2000-01-01
A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.
The effects of temperature on service employees' customer orientation: an experimental approach.
Kolb, Peter; Gockel, Christine; Werth, Lioba
2012-01-01
Numerous studies have demonstrated how temperature can affect perceptual, cognitive and psychomotor performance (e.g. Hancock, P.A., Ross, J., and Szalma, J., 2007. A meta-analysis of performance response under thermal stressors. Human Factors: The Journal of the Human Factors and Ergonomics Society, 49 (5), 851-877). We extend this research to interpersonal aspects of performance, namely service employees' and salespeople's customer orientation. We combine ergonomics with recent research on social cognition linking physical with interpersonal warmth/coldness. In Experiment 1, a scenario study in the lab, we demonstrate that student participants in rooms with a low temperature showed more customer-oriented behaviour and gave higher customer discounts than participants in rooms with a high temperature - even in zones of thermal comfort. In Experiment 2, we show the existence of alternative possibilities to evoke positive temperature effects on customer orientation in a sample of 126 service and sales employees using a semantic priming procedure. Overall, our results confirm the existence of temperature effects on customer orientation. Furthermore, important implications for services, retail and other settings of interpersonal interactions are discussed. Practitioner Summary: Temperature effects on performance have emerged as a vital research topic. Owing to services' increasing economic importance, we transferred this research to the construct of customer orientation, focusing on performance in service and retail settings. The demonstrated temperature effects are transferable to services, retail and other settings of interpersonal interactions.
Transformation characteristics of TiNi/TiNi alloys synthesized by explosive welding
NASA Astrophysics Data System (ADS)
Li, Juntao; Zheng, Yanjun; Cui, Lishan
2007-10-01
Effects of severe deformation and heat treatment on the transformation behaviors of explosively welded duplex TiNi/TiNi shape memory alloys (SMAs) were investigated by the differential scanning calorimeter (DSC). The explosively welded duplex TiNi/TiNi plate of 0.7 mm in thickness was cold-rolled at room temperature to the extent of 60% reduction in thickness and then annealed at different temperatures (573-973 K) for different time (15 min-10 h). Low temperature (623-723 K) heat treatment led to amorphous crystallization. At higher temperature (873 K), the re-crystallization took place in the specimens. Analysis showed that the change of internal stresses is just the root cause of the change of transformation temperature. The relationships between the transformation behaviors and the heat treatment were discussed in the present report.
Alterations in MAST suit pressure with changes in ambient temperature.
Sanders, A B; Meislin, H W; Daub, E
1983-01-01
A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.
Sánchez, B; Cabo, M L; Margolles, A; Herrera, J J R
2010-11-15
Staphylococcus aureus is an important pathogenic microorganism that has been associated with serious infection problems in different fields, from food to clinic. In the present study, we have taken into account that the main reservoirs of this microorganism are the human body and some parts of food processing plants, which have normal temperatures of around 37 and 25°C, respectively. It can be expected that S. aureus must acclimate its metabolism to colder temperatures before growing in food matrices. Since temperature abuse for foods occurs at approximately 12°C, it is expected that S. aureus must acclimate its metabolism to colder temperatures before growing in food. For this reason, we have performed a proteomic comparison between exponential- and stationary-phase cultures of S. aureus CECT 976 acclimated to 12°C after growing at 25°C or 37°C. The analysis led to the identification of two different protein patterns associated with cold acclimation, denominated pattern A and pattern B. The first was characteristic of cultures at stationary phase of growth, grown at 25°C and acclimated to 12°C. The second appeared in the rest of experimental cases. Pattern A was distinguished by the presence of glycolytic proteins, whereas pattern B was differentiated by the presence of general stress and regulatory proteins. Pattern A was related through physiological experiments with a cross-resistance to acid pH, whereas pattern B conferred resistance to nisin. This prompted us to conclude that both molecular strategies could be valid, in vivo, for the process of acclimation of S. aureus to cold temperatures. Copyright © 2010 Elsevier B.V. All rights reserved.
A Rare Non-Hemolytic Case of Idiopathic Cold Agglutinin Disease.
Erkus, Edip; Kocak, Mehmet Z; Aktas, Gulali; Ozen, Mehmet; Atak, Burcin M; Duman, Tuba T; Tekce, Buket K; Savli, Haluk
2018-06-01
Cold agglutinin disease is a very rare condition associated with agglutination of erythrocytes in cold environment usually due to IgM type antibodies. Other than hemolytic anemias, it may interfere with routine hemogram tests due to miscalculation of red blood cell count (RBC) and other hemogram parameters calculated with involvement of RBC. Awareness of the condition is important to overcome laboratory errors. We studied a peripheral blood smear and repeated the hemogram test at 37°C to establish the diagnosis of cold agglutinin disease. Initial hemogram test results of the fifty-eight year-old man was as follows: RBC: 1.34 M/µL, hemoglobin (Hb): 12.4 g/dL, hematocrit (Htc): 11.8%, mean corpuscular hemoglobin (MCH): 92.4 pg, and mean corpuscular hemoglobin concentration (MCHC): 105 gr/dL. Despite the standard indirect Coombs test being negative, repeated tests at room temperature was 4+. We suspected cold agglutinin disease and repeated the hemogram test using the Bain-Marie method at 37°C and the test results showed RBC: 3.4 M/µL, hemoglobin: 12.6 g/dL, hematocrit: 30.2%, MCH: 31.7 pg, and MCHC: 41.8 g/dL. Inappropriate hemogram results may be a sign of underlying cold agglutinin disease. Hemolytic anemia not always accompanies the disease; however, cold exposure may trigger erythrocyte agglutination in vitro and may cause erratic laboratory results.
Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation
NASA Astrophysics Data System (ADS)
CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan
2017-03-01
The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.
25. INTERIOR VIEW TO THE SOUTHWEST OF ROOM 109, THE ...
25. INTERIOR VIEW TO THE SOUTHWEST OF ROOM 109, THE WARM AND COLD STORAGE ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
Large low-field magnetoresistance in Fe3O4/molecule nanoparticles at room temperature
NASA Astrophysics Data System (ADS)
Yue, F. J.; Wang, S.; Lin, L.; Zhang, F. M.; Li, C. H.; Zuo, J. L.; Du, Y. W.; Wu, D.
2011-01-01
Acetic acid molecule-coated Fe3O4 nanoparticles, 450-650 nm in size, have been synthesized using a chemical solvothermal reduction method. Fourier transform infrared spectroscopy measurements confirm one monolayer acetic acid molecules chemically bond to the Fe3O4 nanoparticles. The low-field magnetoresistance (LFMR) of more than -10% at room temperature and -23% at 140 K is achieved with saturation field of less than 2 kOe. In comparison, the resistivity of cold-pressed bare Fe3O4 nanoparticles is six orders of magnitudes smaller than that of Fe3O4/molecule nanoparticles, and the LFMR ratio is one order of magnitude smaller. Our results indicate that the large LFMR in Fe3O4/molecule nanoparticles is associated with spin-polarized electrons tunnelling through molecules instead of direct nanoparticle contacts. These results suggest that magnetic oxide-molecule hybrid materials are an alternative type of materials to develop spin-based devices by a simple low-cost approach.
Low-temperature creep of austenitic stainless steels
NASA Astrophysics Data System (ADS)
Reed, R. P.; Walsh, R. P.
2017-09-01
Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.
Tuning the heat transfer medium and operating conditions in magnetic refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghahremani, Mohammadreza, E-mail: mghahrem@shepherd.edu; Dept. of Electrical and Computer Engineering, The George Washington University, Washington DC 20052; Aslani, Amir
A new experimental test bed has been designed, built, and tested to evaluate the effect of the system’s parameters on a reciprocating Active Magnetic Regenerator (AMR) near room temperature. Bulk gadolinium was used as the refrigerant, silicon oil as the heat transfer medium, and a magnetic field of 1.3 T was cycled. This study focuses on the methodology of single stage AMR operation conditions to get a high temperature span near room temperature. Herein, the main objective is not to report the absolute maximum attainable temperature span seen in an AMR system, but rather to find the system’s optimal operatingmore » conditions to reach that maximum span. The results of this research show that there is a optimal operating frequency, heat transfer fluid flow rate, flow duration, and displaced volume ratio in any AMR system. By optimizing these parameters in our AMR apparatus the temperature span between the hot and cold ends increased by 24%. The optimized values are system dependent and need to be determined and measured for any AMR system by following the procedures that are introduced in this research. It is expected that such optimization will permit the design of a more efficient magnetic refrigeration system.« less
Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.
Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide
2014-03-01
The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus. © 2013 Japanese Society of Animal Science.
Experimental Studies on Grooved Double Pipe Heat Exchanger with Different Groove Space
NASA Astrophysics Data System (ADS)
Sunu, P. W.; Arsawan, I. M.; Anakottapary, D. S.; Santosa, I. D. M. C.; Yasa, I. K. A.
2018-01-01
Experimental studies were performed on grooved double pipe heat exchanger (DPHE) with different groove space. The objective of this work is to determine optimal heat transfer parameter especially logarithmic mean temperature difference (LMTD). The document in this paper also provides the total heat observed by the cold fluid. The rectangular grooves were incised on outer surface of tube side with circumferential pattern and two different grooves space, namely 1 mm and 2 mm. The distance between grooves and the grooves high were kept constant, 8 mm and 0.3 mm respectively. The tube diameter is 20 mm and its made of aluminium. The shell is made of acrylic which has 28 mm in diameter. Water is used as the working fluid. Using counter flow scheme, the cold fluid flows in the annulus room of DPHE. The volume flowrate of hot fluid remains constant at 15 lpm. The volume flowrate of cold fluid were varied from 11 lpm to 15 lpm. Based on logarithmic mean temperature difference analysis, the LMTD of 1 mm grooves space was higher compared to that of 2 mm grooves space. The smaller grooves space has more advantage since the recirculating region are increased which essentially cause larger heat transfer enhancement.
DOE R&D Accomplishments Database
Sibener, S. J.; Lee, Y. T.
1978-05-01
An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.
Improvement of GRCop-84 Through the Addition of Zirconium
NASA Technical Reports Server (NTRS)
Ellis, David L.; Lerch, Bradley A.
2012-01-01
GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has excellent strength, creep resistance, low cycle fatigue (LCF) life and stability at elevated temperatures. It suffers in comparison to many commercially available precipitation-strengthened alloys below 500 C (932 F). It was observed that the addition of Zr consistently improved the mechanical properties of Cu-based alloys especially below 500 C. In an effort to improve the low temperature properties of GRCop-84, 0.35 wt.% Zr was added to the alloy. Limited tensile, creep, and LCF testing was conducted to determine if improvements occur. The results showed some dramatic increases in the tensile and creep properties at the conditions tested with the probability of additional improvements being possible through cold working. LCF testing at room temperature did not show an improvement, but improvements might occur at elevated temperatures.
Mice receiving infrared irradiation have a higher survival rate under forced swimming in cold.
Tsai, Jui-Feng
2009-10-01
To explore the effect of infrared (IR) irradiation on the survival rates of mice under forced swimming in cold conditions. IR irradiation has been found to be beneficial for wound healing, tumor reduction, pain relief, and even against depression. However, whether the antidepressant effect of IR irradiation came from heat has remained unanswered. The goals of the study were originally aimed at using an animal model for depression to understand the relationship between the antidepressant effect of IR irradiation and hyperthermia as well as seasonality. Forty-four mice were housed in cages in a room subject to the outdoor temperature, and randomly assigned to the IR-treated group (n = 15), the heat-treated group (n = 14), and the control group (n = 15) during winter. The mice of the IR-treated group received whole-body IR irradiation for 60 min daily, while the heat-treated group received heat diffusion to reach the same temperature level. The control group received neither IR nor heat. All groups of mice underwent a forced swimming test weekly. Incidentally, two episodes of cold current occurred during the study period, and some mice died. The survival rates were compared pairwise against the control. The IR-treated group had a significantly reduced relative risk (p = 0.013) when compared with the control group, while the heat-treated group did not show any significant reduction (p = 0.087). There was no significant difference in body temperatures of the three groups before and after the irradiation. IR irradiation resulted in a significantly higher survival rate for mice that were concurrently subjected to cold and a forced swimming test. This result may be beyond the thermal effect.
Numerical investigation and experimental development on VM-PT cryocooler operating below 4 K
NASA Astrophysics Data System (ADS)
Zhang, Tong; Pan, Changzhao; Zhou, Yuan; Wang, Junjie
2016-12-01
Vuilleumier coupling pulse tube (VM-PT) cryocooler is a novel kind of cryocooler capable of attaining liquid helium temperature which had been experimentally verified. Depending on different coupling modes and phase shifters, VM-PT cryocooler can be designed in several configurations. This paper presents a numerical investigation on three typical types of VM-PT cryocoolers, which are gas-coupling mode with room temperature phase shifter (GCRP), gas-coupling mode with cold phase shifter (GCCP) and thermal-coupling mode with cold phase shifter (TCCP). Firstly, three configurations are optimized on operating parameters to attain lower no-load temperature. Then, based on the simulation results, distributions of acoustic power, enthalpy flow, pressure wave, and volume flow rate are presented and discussed to better understand the energy flow characteristics and coupling mechanism. Meanwhile, analyses of phase relationship and exergy loss are also performed. Furthermore, a GCCP experimental system with optimal comprehensive performance among three configurations was built and tested. Experimental results showed good consistency with the simulations. Finally, a no-load temperature of 3.39 K and cooling power of 9.75 mW at 4.2 K were obtained with a pressure ratio of 1.7, operating frequency of 1.22 Hz and mean pressure of 1.5 MPa.
[Cold auto- and alloantibodies considered "benign"--do they have some pathological significance?].
Serrano, J
1990-12-01
In our Blood Bank the screening for irregular antibodies is performed on blood bags and patient's serum and is done at 37 degrees C as well as 22 degrees C even when we are conscious that the test at 22 degrees C is devoid of any practical value as far as transfusional haemolytic reactions are concerned. A total of 23,021 patients and 91,021 blood bags have been studied in the last 10 years. The results have been analyzed in order to find out any possible association of cold autoanti-I antibodies, or cold alloantibodies, mainly anti-P1, anti-Leb, anti-Lea and anti-Lex, with certain diseases. The cold antibodies looked for in the present study are neither "natural" antibodies reactive only at 4-10 degrees C, since they were not investigated at such low temperatures, nor pathological antibodies, reactive up to 37 degrees C and/or endowed with haemolytic activity. They are instead antibodies, reactive at 22 degrees C, that interfere with compatibility tests and with screening for irregular antibodies, when the assay is performed at room temperature. In our experience, by far the most prominent antibody in this category is auto-anti-I, amounting to over two thirds of the positive findings. This autoantibodies, as well as allo-anti-P1, appear much more frequently in patients that in donors, whereas significant differences are not found with anti-Lewis antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)
Donaldson, G C; Ermakov, S P; Komarov, Y M; McDonald, C P; Keatinge, W R
1998-01-01
Objective To assess how effectively measures adopted in extreme cold in Yakutsk control winter mortality. Design Interviews to assess outdoor clothing and measure indoor temperatures; regressions of these and of delayed cause-specific mortalities on temperature. Setting Yakutsk, east Siberia, Russia. Subjects: All people aged 50-59 and 65-74 years living within 400 km of Yakutsk during 1989-95 and sample of 1002 men and women who agreed to be interviewed. Main outcome measures Daily mortality from all causes and from ischaemic heart, cerebrovascular, and respiratory disease. Results Mean temperature for October-March 1989-95 was −26.6°C. At 10.2°C people wore 3.30 (95% confidence interval 3.08 to 3.53) layers of clothing outdoors, increasing to 4.39 (4.13 to 4.66; P<0.0001) layers at −20°C. Thick coats, often of fur, replaced anoraks as temperature fell to −48.2°C. 82% of people went out each day when temperatures were 10.2°C to −20°C, but below −20°C the proportion fell steadily to 44% (35% to 53%) at −48.2°C (P<0.001), and overall shivering outdoors did not increase. Living room temperature was 17.9 (17.2 to 18.5)°C at 10.2°C outdoors, 19.6 (18.8 to 20.4)°C at −20°C, and 19.1 (18.6 to 19.6)°C at −48.2°C. Mortality from all causes and from ischaemic heart and respiratory disease was unaffected by the fall in temperature. Mortality from respiratory disease (daily deaths per million) rose from 4.7 (4.3 to 5.1) to 5.1 (4.4 to 5.7) (P=0.03), but this was offset by a fall in deaths from injury. Conclusions People in Yakutsk wore very warm clothing, and in extremely cold weather stayed indoors in warm housing, preventing the increases in mortality seen in winter in milder regions of the world. Only respiratory mortality rose, perhaps because of breathing cold air. Key messagesDeath rates from ischaemic heart, cerebrovascular, and respiratory disease and all causes have been shown to increase as air temperature fallsIn Yakutsk, Russia, mortality from cerebrovascular and ischaemic heart disease and all causes among people aged 50-59 and 65-74 was unchanged as temperature fell to −48.2°CMortality from respiratory disease increased as temperatures fell below −20°C but this was more than offset by a decrease in deaths from accidentsExceptionally warm clothing, with reduction of outdoor excursions at temperatures below −20°C, prevented overall outdoor cold stress PMID:9765165
NASA Astrophysics Data System (ADS)
Heeb, Norbert V.; Forss, Anna-Maria; Saxer, Christian J.; Wilhelm, Patrick
The US urban driving cycle (FTP-75) is widely used to estimate both the emissions under hot engine conditions as well as those associated with the cold start. Applying fast analysis techniques such as chemical ionization mass spectrometry (CI-MS) the warm-up behavior of individual vehicles can be monitored at a time resolution of 1 s. CI-MS has been used to investigate the emissions of methane, benzene and the alkyl benzene class of compounds. The amount of the emissions at cold start influence was deduced from the time-resolved emission data of four gasoline-driven vehicle classes representing the vehicle technology of the last two decades. Overall, the emissions of five EURO-0, 20 EURO-1, 18 EURO-2 and so far of six EURO-3 passenger cars were recorded. The test vehicles were selected from the currently operating Swiss car fleet based on the car sales statistics. The average methane, benzene and alkyl benzene cold start emissions are reported using both, the traditional bag method as well as the regression model. At room temperature a clear reduction of 94%, 81% and 85% was found for the methane, benzene and alkyl benzene cold start emissions from EURO-0 to EURO-3 technology, respectively.
Formability of Annealed Ni-Ti Shape Memory Alloy Sheet
NASA Astrophysics Data System (ADS)
Fann, K. J.; Su, J. Y.; Chang, C. H.
2018-03-01
Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its application, this study attempts to investigate the strength and cold formability of its sheet blank, which is annealed at various temperatures, by hardness test and by Erichsen-like cupping test. As a result, the higher the annealing temperature, the lower the hardness, the lower the maximum punch load as the sheet blank fractured, and the lower the Erichsen-like index or the lower the formability. In general, the Ni-Ti sheet after annealing has an Erichsen-like index between 8 mm and 9 mm. This study has also confirmed via DSC that the Ni-Ti shape memory alloy possesses the austenitic phase and shows the superelasticity at room temperature.
Bubbling cell death: A hot air balloon released from the nucleus in the cold.
Chang, Nan-Shan
2016-06-01
Cell death emanating from the nucleus is largely unknown. In our recent study, we determined that when temperature is lowered in the surrounding environment, apoptosis stops and bubbling cell death (BCD) occurs. The study concerns the severity of frostbite. When exposed to severe cold and strong ultraviolet (UV) irradiation, people may suffer serious damages to the skin and internal organs. This ultimately leads to limb amputations, organ failure, and death. BCD is defined as "formation of a single bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death." When cells are subjected to UV irradiation and/or brief cold shock (4℃ for 5 min) and then incubated at room temperature or 4℃ for time-lapse microscopy, each cell releases an enlarging nuclear gas bubble containing nitric oxide. Certain cells may simultaneously eject hundreds or thousands of exosome-like particles. Unlike apoptosis, no phosphatidylserine flip-over, mitochondrial apoptosis, damage to Golgi complex, and chromosomal DNA fragmentation are shown in BCD. When the temperature is increased back at 37℃, bubble formation stops and apoptosis restarts. Mechanistically, proapoptotic WW domain-containing oxidoreductase and p53 block the protective TNF receptor adaptor factor 2 that allows nitric oxide synthase 2 to synthesize nitric oxide and bubble formation. In this mini-review, updated knowledge in cell death and the proposed molecular mechanism for BCD are provided. © 2016 by the Society for Experimental Biology and Medicine.
Bubbling cell death: A hot air balloon released from the nucleus in the cold
2016-01-01
Cell death emanating from the nucleus is largely unknown. In our recent study, we determined that when temperature is lowered in the surrounding environment, apoptosis stops and bubbling cell death (BCD) occurs. The study concerns the severity of frostbite. When exposed to severe cold and strong ultraviolet (UV) irradiation, people may suffer serious damages to the skin and internal organs. This ultimately leads to limb amputations, organ failure, and death. BCD is defined as “formation of a single bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death.” When cells are subjected to UV irradiation and/or brief cold shock (4℃ for 5 min) and then incubated at room temperature or 4℃ for time-lapse microscopy, each cell releases an enlarging nuclear gas bubble containing nitric oxide. Certain cells may simultaneously eject hundreds or thousands of exosome-like particles. Unlike apoptosis, no phosphatidylserine flip-over, mitochondrial apoptosis, damage to Golgi complex, and chromosomal DNA fragmentation are shown in BCD. When the temperature is increased back at 37℃, bubble formation stops and apoptosis restarts. Mechanistically, proapoptotic WW domain-containing oxidoreductase and p53 block the protective TNF receptor adaptor factor 2 that allows nitric oxide synthase 2 to synthesize nitric oxide and bubble formation. In this mini-review, updated knowledge in cell death and the proposed molecular mechanism for BCD are provided. PMID:27075929
Xu, Peng; Kujundzic, Elmira; Peccia, Jordan; Schafer, Millie P; Moss, Gene; Hernandez, Mark; Miller, Shelly L
2005-12-15
This study evaluated the efficacy of an upper-room air ultraviolet germicidal irradiation (UVGI) system for inactivating airborne bacteria, which irradiates the upper part of a room while minimizing radiation exposure to persons in the lower part of the room. A full-scale test room (87 m3), fitted with a UVGI system consisting of 9 louvered wall and ceiling fixtures (504 W all lamps operating) was operated at 24 and 34 degrees C, between 25 and 90% relative humidity, and at three ventilation rates. Mycobacterium parafortuitum cells were aerosolized into the room such that their numbers and physiologic state were comparable both with and without the UVGI system operating. Airborne bacteria were collected in duplicate using liquid impingers and quantified with direct epifluorescent microscopy and standard culturing assay. Performance of the UVGI system degraded significantly when the relative humidity was increased from 50% to 75-90% RH, the horizontal UV fluence rate distribution was skewed to one side compared to being evenly dispersed, and the room air temperature was stratified from hot at the ceiling to cold at the floor. The inactivation rate increased linearly with effective UV fluence rate up to 5 microW cm(-2); an increase in the fluence rate above this level did not yield a proportional increase in inactivation rate.
Buledi, Rahim; Butt, Zahid Ahmad; Ahmed, Jamil; Alizai, Aamir Akram
2017-05-01
To determine the status of cold chain and knowledge and practices of health workers about cold chain maintenance in routine immunisation health centres. This cross-sectional study was conducted in Quetta, Pakistan, from May to July 2012, and comprised health facilities in the district. We interviewed the staff responsible for vaccine storage and cold chain maintenance and used a checklist to assess cold chain maintenance of routine expanded programme on immunisation vaccines. SPSS 16 was used for data analysis.. Of the 42 health facilities, staff of 13(30%) wrongly indicated that measles and Bacillus Calmette-Guérin were cold sensitive vaccines. Temperature of the ice-lined refrigerators was not maintained twice daily in 18(43%) centres. There were no voltage stabilisers and standby power generators in 31(74%) and 38(90%) centres, respectively. Vaccine arrangement was found to be inappropriate in ice-lined refrigerators of 38(90%) centres and ice packs were incorrectly used in carriers in 22(52%) centres. Vaccine stock was not charted in 39(93%) centres. Moreover, 4(10%) facilities did not have dedicated expanded programme on immunisation rooms whereas about 5(12%) and 33(79%) had no vaccinator and separate expanded programme on immunisation incharge appointed. Also, 32(76%) centres did not have a female vaccinator appointed. Although the majority of health staff had adequate knowledge, there were weaknesses in practice of maintaining the cold chain.
Cold plasma processing technology makes advances
USDA-ARS?s Scientific Manuscript database
Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...
Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers
NASA Astrophysics Data System (ADS)
Sohbatzadeh, F.; Mirzanejhad, S.; Shokri, H.; Nikpour, M.
2016-06-01
The main objective of this study is to investigate the inactivation efficacy of cold streamers in a sealed package on pathogenic fungi Aspergillus flavus ( A. flavus) spores that artificially contaminated pistachio surface. To produce penetrating cold streamers, electric power supply was adapted to deposit adequate power into the package. The plasma streamers were generated by an alternating high voltage with carrier frequency of 12.5 kHz which was suppressed by a modulated pulsed signal at frequency of 110 Hz. The plasma exposition time was varied from 8 to 18 min to show the effect of the plasma treatment on fungal clearance while the electrode and sample remained at room temperature. This proved a positive effect of the cold streamers treatment on fungal clearance. Benefits of deactivation of fungal spores by streamers inside the package include no heating, short treatment time and adaptability to existing processes. Given its ability to ensure the safety and longevity of food products, this technology has great potential for utilization in food packaging and processing industry. In this study, moisture and pH changes of pistachio samples after plasma streamers treatment were also investigated.
[Fluorescence spectra analysis of the scrophularia soup].
Yan, Li-hua; Song, Feng; Han, Juan; Su, Jing; Qu, Fei-fei; Song, Yi-zhan; Hu, Bo-lin; Tian, Jian-guo
2008-08-01
The cold-water and boiled-water soaked scrophularia soups have been prepared. The emission and excitation spectra of each scrophularia soup under different conditions have been measured at room temperature. The pH values of the different scrophularia soups have been also detected. There are obvious differences between the cold-water soaked scrophularia soup and the boiled-water soaked scrophularia. For both soups the emission wavelength increases with the wavelength of the excitation, but the peaks of the emission spectra for cold-water and boiled-water soaked scrophularia soup are different, which are 441 and 532 nm, respectively. Excitation spectrum has double peaks in the cold-water soaked scrophularia soup while only one peak with longer wavelength in the boiled-water soaked one. The pH value changes from 5.5 to 4.1. According to the organic admixture fluorescence mechanism we analyzed the reasons of the experimental results. Through heating, the interaction in different fluorescence molecular and the energy transfer process in the same fluorescence molecular become more active, and the conjugate structures and the generation of hydrogen bonds, increase. The fluorescence measurement is of value for the scrophularia pharmacology analysis and provides an analytical method for the quality identification of scrophularia soup.
Natural aging and reversion behavior of Al-Cu-Li-Ag-Mg alloy Weldalite (tm) 049
NASA Technical Reports Server (NTRS)
Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.
1991-01-01
This study was initiated to understand the natural aging and reversion behavior of Weldalite (trademark) 049 in tempers without cold work. Of particular interest are: (1) the microstructural basis for the high strength in the T4 condition; (2) an explanation of the reversion phenomenon; and (3) the effect of re-aging at room temperature after a reversion treatment. Mechanical properties were measured and transmission electron microscopy (TEM) analysis performed at various stages of microstructural development during aging, reversion, and subsequent re-aging.
Renshaw, Mark A; Olds, Brett P; Jerde, Christopher L; McVeigh, Margaret M; Lodge, David M
2015-01-01
Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2-week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol–chloroform–isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction. PMID:24834966
17. INTERIOR VIEW TO THE EAST OF ROOM 215, A ...
17. INTERIOR VIEW TO THE EAST OF ROOM 215, A SECOND FLOOR OFFICE ABOVE ROOM 137 IN THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong
2013-07-01
Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.
Kaija, Helena; Pakanen, Lasse; Kortelainen, Marja-Leena; Porvari, Katja
2015-01-01
Prostate cancer has been extensively studied, but cellular stress responses in healthy prostate tissue are rarely investigated. Hypothermia is known to cause alterations in mRNA and protein expressions and stability. The aim of this study was to use normal rat prostate as a model in order to find out consequences of cold exposure and rewarming on the expressions of genes which are either members or functionally/structurally related to erythroblastic leukemia viral oncogene B (ErbB) signaling pathway. Relative mRNA expressions of amphiregulin (AMR), cyclin D1 (CyD1), cyclin-dependent kinase inhibitor 1A (p21), transmembrane form of the prostatic acid phosphatase (PAcP), thrombomodulin (TM) and heat shock transcription factor 1 (HSF1) in rat ventral prostate were quantified in mild (2 or 4.5 h at room temperature) and severe (2 or 4.5 h at +10°C) hypothermia and in rewarming after cold exposure (2 h at +10°C followed by 2 h at room temperature or 3 h at +28°C). AMR protein level, apoptotic Bcl-2 associated X protein to B-cell CLL/lymphoma 2 (Bax/Bcl-2) mRNA ratio and proliferative index Ki-67 were determined. 4.5-h mild hypothermia, 2-h severe hypothermia and rewarming increased expression of all these genes. Elevated proliferation index Ki-67 could be seen in 2-h severe hypothermia, and the proliferation index had its highest value in longer rewarming with totally recovered normal body temperature. Pro-apoptotic tendency could be seen in 2-h mild hypothermia while anti-apoptosis was predominant in 4.5-h mild hypothermia and in shorter rewarming with only partly recovered body temperature. Hypothermia and following rewarming promote the proliferation of cells in healthy rat prostate tissue possibly via ErbB signaling pathway. PMID:25996932
NASA Astrophysics Data System (ADS)
Suh, Dong-Woo; Park, Seong-Jun; Lee, Tae-Ho; Oh, Chang-Seok; Kim, Sung-Joon
2010-02-01
Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.
Microclimates of l'Aven d'Orgnac and other French limestone caves (Chauvet, Esparros, Marsoulas)
NASA Astrophysics Data System (ADS)
Bourges, F.; Genthon, P.; Mangin, A.; D'Hulst, D.
2006-10-01
We assess the aerodynamics of the atmosphere in some limestone caves using a 5-year monitoring of the Aven d'Orgnac system, shorter thermal vertical profiling experiments, and comparison with the time series from other French caves. In the first rooms, located under the Aven opening, our records indicate, for each year, a succession of a summer regime characterized by stable parameters (except for the perturbations introduced by tourist visits) and a winter regime, in which the inner air temperature drops and is highly correlated with that outside. Atmospheric composition suggests that during the winter regime the cave is ventilated by the outside air. We show that the onset of the winter regime is governed by a thermo-convective instability involving the inflow of the outside cold and dense air. Atmospheric temperature and composition allow us to follow the stepwise progression of the winter regime toward the adjacent rooms.In the Salle Plane (SP), a far room of the Orgnac-Issirac karstic system, in which the winter regime has never been observed, the air temperature is extremely homogeneous and steady, and is characterized by a half-daily signal of amplitude less than 0.03 °C, which is correlated with the derivative of pressure versus time. This correlation, which is also observed in various other confined caves, may be explained by pressure-induced temperature changes relaxed in less than 1 h by thermal exchanges with a large volume of rock whose temperature is assumed to be constant.The various microclimates of karstic cave systems should be taken into account for the conservation of the caves open to tourists and for the interpretation of growth laminae of speleothems.
Ayzenberg, Mark; Narvaez, Michael; Raphael, James
2018-01-01
Casting is routinely used for acute and post-operative immobilization and remains a cornerstone in the non-operative management of fractures and deformities. The application of a properly fitted and wellmolded cast, especially for a trainee, can be challenging. We present a simple method of prolonging cure time of fiberglass cast — placing ice in the dip water. Eight-ply, fiveinch fiberglass cast was circumferentially applied to an aluminum-wrapped cardboard cylinder. An electronic, 2-channel temperature sensor (TR-71wf Temp Logger, T&D Corporation, Matsumoto, Japan), accurate to 0.1ºC and accurate to ±0.3ºC, was placed between the fourth and fifth layers of fiberglass. Thirty total casts were tested using 9±1ºC (cold), 22±1ºC (ambient), and 36±1ºC (warm) dip water. Room temperature was maintained at 24±1ºC. Cast temperatures were measured during the exothermic reaction generated by the cast curing. Peak temperatures and cure times were recorded. Cure time was defined as the point of downward deflection on the timetemperature curve immediately after peak. Cure and peak temperatures were compared among groups using analysis of variance. Mean cure time was 3.5±0.1 minutes for warm water, 5.0±0.4 minutes for ambient water and 7.0±0.5 minutes for cold water. Peak temperature, measured between layers 4 and 5 of the cast material, was 36.6±0.8ºC for warm water, 31.1±1.4ºC for ambient water and 25.2±0.5ºC for cold water. Cold afforded, on average, an additional 2 minutes (40% increase) in cure time compared to ambient water and an additional 3.5 minutes (100% increase) compared to warm water. Cure time differences were significant (P<0.001) for all groups, as were peak temperature differences (P<0.001). Temperatures concerning for development of burns were never reached. Utilizing iced dip water when casting is a simple and effective method to prolong the time available for cast application. Orthopedic residents and trainees may find this useful in learning to fabricate a high quality cast. For the experienced orthopedic surgeon, this method eliminates the need to bridge longlimb casts and facilitates the application of complex casts. PMID:29770174
Kanda, Hirosato; Gu, Jianguo G.
2016-01-01
Except a small population of primary afferent neurons for sensing cold to generate the sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of other primary afferent neurons that are not for cold-sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In the present study we have found that not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (regarded as cold-ineffective neurons) or suppress (regarded as cold-suppressive neurons) their membrane excitability. For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by the increases in action potential (AP) firing numbers and/or reduction of AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. PMID:26709732
Kanda, Hirosato; Gu, Jianguo G
2017-05-01
Aside from a small population of primary afferent neurons for sensing cold, which generate sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of primary afferent neurons not responsible for cold sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In this study we have found that the not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, a cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (cold-ineffective neurons) or suppress their membrane excitability (cold-suppressive neurons). For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by increases in action potential (AP) firing numbers and/or the reduction in AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing, but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. This article is part of the special article series "Pain". © 2015 International Society for Neurochemistry.
Measurement of Heat Transfer in Unbonded Silica Fibrous Insulation and Comparison with Theory
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.
2007-01-01
Effective thermal conductivity of a high porosity unbonded silica fibrous insulation specimen was measured over a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and with large temperature gradients maintained across the sample thickness: hot side temperature range of 360 to 1360 K, with the cold side at room temperature. The measurements were compared with the theoretical solution of combined radiation/conduction heat transfer. The previously developed radiation heat transfer model used in this study is based on a modified diffusion approximation, and uses deterministic parameters that define the composition and morphology of the medium: distributions of fiber size and orientation, fiber volume fractions, and the spectral complex refractive index of the fibers. The close agreement between experimental and theoretical data further verifies the theoretical model over a wide range of temperatures and pressures.
Electronics for Deep Space Cryogenic Applications
NASA Technical Reports Server (NTRS)
Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.
2002-01-01
Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.
Development status of a high cooling capacity single stage pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Hirayama, T.; Li, R.; Y Xu, M.; Zhu, S. W.
2017-12-01
High temperature superconducting (HTS) applications require high-capacity and high-reliability cooling solutions to keep HTS materials at temperatures of approximately 80 K. In order to meet such requirements, Sumitomo Heavy Industries, Ltd.(SHI) has been developing high cooling capacity GM-type active-buffer pulse tube cryocooler. An experimental unit was designed, built and tested. A cooling capacity of 390.5 W at 80 K, COP 0.042 was achieved with an input power of approximately 9 kW. The cold stage usually reaches a stable temperature of about 25 K within one hour starting at room temperature. Also, a simplified analysis was carried out to better understand the experimental unit. In the analysis, the regenerator, thermal conduction, heat exchanger and radiation losses were calculated. The net cooling capacity was about 80% of the PV work. The experimental results, the analysis method and results are reported in this paper.
4. FIRST FLOOR INTERIOR, AMMONIA COMPRESSION DYNAMOS IN MACHINERY ROOM ...
4. FIRST FLOOR INTERIOR, AMMONIA COMPRESSION DYNAMOS IN MACHINERY ROOM ALONG SOUTH SIDE OF WESTERN PORTION OF BUILDING, FROM EASTERN ENTRANCE TO MACHINERY ROOM, LOOKING WEST. - Oakland Naval Supply Center, Cold Storage Warehouse, South of C Street between First & Second Street, Oakland, Alameda County, CA
Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors.
Yang, Xiao; Xi, Tao-Fang; Li, Yu-Xian; Wang, Hai-Hong; Qin, Ying; Zhang, Jie-Ping; Cai, Wen-Ting; Huang, Meng-Ting; Shen, Ji-Qiao; Fan, Xi-Min; Shi, Xuan-Zheng; Xie, Dong-Ping
2014-08-21
To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats. Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors. Colon transit was slower in the cold group than in the control group (P < 0.05). Colonic smooth muscle contractile response to oxytocin decreased, and the inhibitory effect of oxytocin on muscle contractility was enhanced by cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P < 0.05). Atosiban and tetrodotoxin inhibited the effect of oxytocin on colonic motility. Oxytocin receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P < 0.05). Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P < 0.05). However, in ovariectomized rats, estradiol treatment increased blood oxytocin, and the response of colonic muscle strips to oxytocin was attenuated. Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.
NASA Astrophysics Data System (ADS)
Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya
2015-04-01
Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions.
Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya
2015-01-01
Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4°C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4°C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts’ heath and NASA’s mission. PMID:25821722
Measurement of heat conduction through stacked screens
NASA Technical Reports Server (NTRS)
Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.
1998-01-01
This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.
Measurement of heat conduction through stacked screens.
Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R
1998-01-01
This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.
Chen, Ke-Xin; Wang, Chun-Ming; Wang, Gui-Ying; Zhao, Zhi-Jun
2014-08-01
The mechanism of the rate of living-free radical theory suggests that higher rate of oxidative metabolism results from greater rate of mitochondria oxidative phosphorylation, leading to a consequent increase in production of free radicals. However, the relation between metabolic rate and oxidative stress is tissue dependent in animals acclimated to cold temperatures. Here we examined oxidative stress, reflected by changes of antioxidant activity and other related markers, in striped hamsters acclimated to moderate cold (15°C), room (23°C) or warm temperature (30°C) for 6 weeks, by which either higher or lower metabolic rate was induced experimentally. Energy intake and the rate of metabolism and nonshivering thermogenesis were increased at 15°C, but decreased at 30°C compared with that at 23°C. Effects of temperatures on the markers of both oxidative stress and antioxidant activities were rarely significant. The percentages of positive correlation between the 11 tissues (brain, BAT, liver, heart, lung, kidneys, stomach, small and large intestine, caecum and skeletal muscle) were 14.5% (8/55) for catalase (CAT), 7.3% (4/55) for the capacity of inhibition of hydroxyl free radical (CIH), 5.5% (3/55) for activities of superoxide dismutase (SOD), 1.8% (1/55) for total antioxidant capacity (T-AOC), 4.3% (2/46) for H2O2 and 11.1% (4/36) for the capacity of inhibition of hydroxyl free radical (CIH). This indicated that the tissue-dependent changes of both oxidative stress and antioxidant activity were less consistent among the different tissues. Finally the data from this study were less consistent with the prediction of the mechanism of the rate of living-free radical theory. Copyright © 2014 Elsevier Ltd. All rights reserved.
SOME HISTOCHEMICAL RESPONSES OF GUINEA PIG TISSUES TO COLD,
Guinea pigs weighing approximately 300 gm were kept in a cold room, held at 6C, for two weeks. Various organs were then studied histochemically...Liver glycogen is rapidly used up in cold-exposed guinea pigs . The fate of liver lipids is unknown. Lipids in the cortex of the adrenals appear to
Heuberger, Adam L; Broeckling, Corey D; Lewis, Matthew R; Salazar, Lauren; Bouckaert, Peter; Prenni, Jessica E
2012-12-01
The effect of temperature on non-volatile compounds in beer has not been well characterised during storage. Here, a metabolomics approach was applied to characterise the effect of storage temperature on non-volatile metabolite variation after 16weeks of storage, using fresh beer as a control. The metabolite profile of room temperature stored (RT) and cold temperature stored (CT) beer differed significantly from fresh, with the most substantial variation observed between RT and fresh beer. Metabolites that changed during storage included prenylated flavonoids, purines, and peptides, and all showed reduced quantitative variation under the CT storage conditions. Corresponding sensory panel observations indicated significant beer oxidation after 12 and 16weeks of storage, with higher values reported for RT samples. These data support that temperature affected beer oxidation during short-term storage, and reveal 5-methylthioadenosine (5-MTA) as a candidate non-volatile metabolite marker for beer oxidation and staling. Copyright © 2012 Elsevier Ltd. All rights reserved.
Verbeek, Else; Oliver, Mark Hope; Waas, Joseph Rupert; McLeay, Lance Maxwell; Blache, Dominique; Matthews, Lindsay Ross
2012-01-01
Background Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal's ability to cope with cold challenges. Methods Eighteen pregnant ewes with a BCS of 2.7±0.1 were fed to attain low (LBC: BCS2.3±0.1), medium (MBC: BCS3.2±0.2) or high BCS (HBC: BCS3.6±0.2). Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.4±0.1°C) in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase. Results During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA) increased in LBC compared to MBC (P<0.01, P<0.01 and P<0.05, respectively) and HBC ewes (P<0.05, P<0.01 and P<0.01, respectively). During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P<0.05) and HBC ewes (P<0.05), and FFA and insulin concentrations were lower in LBC than HBC ewes (P<0.05 and P<0.001, respectively). Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P<0.01). Glucose concentrations and internal body temperature (Tcore) increased in all treatments, although peak Tcore tended to be higher in HBC ewes (P<0.1). During the recovery phase, T4 concentrations were lower in LBC ewes (P<0.05). Conclusion Even though all ewes were able to increase Tcore and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced. PMID:22662144
Micrometoric Impact Effects: Peak Pressure versus Spectral Variation
NASA Technical Reports Server (NTRS)
Jensen, Elizabeth; Lederer, S. M.; Wooden, D. H.; Lindsay, S. S.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.
2013-01-01
At the Experimental Impact Laboratory at NASA Johnson Space Center, we have investigated the surface properties of asteroids caused by collisions in the mid-infrared (2.5 to 16 microns) by impacting forsterite and enstatite across a range of velocities (as predicted by the Nice Model) and at varying temperatures. The crystal structure in these minerals can be deformed by the shock wave from the impact as well as sheared into smaller particle sizes. Our current focus is on the differing effects between 2.3 and 2.6 km/sec, as well as the differences between a cold sample at -20C and a room temperature sample at 25C. We find that the spectral variation and crystal deformation varies non-linearly with the peak shock pressure.
Extended Operation of Stirling Convertors at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Oriti, Salvatore
2011-01-01
Glenn Research Center (GRC) is supporting life and reliability database for free-piston Stirilng conversion via extended convertor operation Ongoing convertor operation: 18 convertors (4 TDCs from Infinia, 14 ASCs from Sunpower). 350,000 total convertor hours of operation. 218,000 on Infinia units and 132,000 on Sunpower units. Demonstrating steady convertor performance requires precise maintenance of operating conditions. Sources of disruption : Investigative tests: Varying operating frequency, hot-end temp, cold-end temp. Hot end control method: Constant heat input mode requires more user-adjustment than constant temperature mode. Long-term transients in hot end insulation were observed. Support facility: Open-bath circulator fluid concentration drifting. Nuisance shutdowns (instrumentation failure, EMI, power outages). Ambient temperature fluctuations due to room HVAC.
NASA Astrophysics Data System (ADS)
Kozima, Tsuneo
Recently, new method of removing water from perishable food were developed using dehydration sheet with material having high osmotic pressure and absorbent polymer. Dehydration sheet consist of mixture of sugar dehydrolysate and absorbent polymer covered with sem-permeable membrane, and can remove water in liquid state by contact with perishable food. Dehydration rate of fish using with dehydration sheet varied depending on species, their shape, and ambient temperature etc. Fish were dehydrated with dehydration sheet at low temperature as 0 - 5 C and frozen in cold storage room. Dehydrofrozen fish were kept it's high quality and freshness after thawing, ATPase activity of fish muscle was kept at high level after dehydrofreezing in the case of cod and alaska pollack, and flesh color of farming salmon was kept after thawing.
Compartmental efflux analysis and removal of extracellular cadmium from roots. [Agrostis gigantea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauser, W.E.
1987-09-01
Profiles of /sup 109/Cd efflux from roots into three solutions were determined for young intact plants of Agrostis gigantea and maize. The solutions were (a) nutrient culture medium containing 3 micromolar Cd at room temperature, (b) ice-cold 5 millimolar CaCl/sub 2/, and (c) ice-cold 5 millimolar PbCl/sub 2/. Efflux profiles were clearly resolved into three easily discernible components having fast, medium, and slow exchange rates. These results were unexpected for the situation where some intracellular Cd was present both as extractable Cd-binding peptide and in electron-dense granules within the cytoplasm and the vacuoles. Adding a fourth compartment to the curve-fittingmore » model produced a splitting of the fast exchanging component. Use of these efflux kinetics to estimate Cd fluxes through membranes was inappropriate. However, they were useful in determining optimal washing times for the removal of extracellular Cd. A 10 minute wash in ice-cold 5 millimolar CaCl/sub 2/ is recommended for this purpose for Agrostis and maize roots.« less
Stability of Azacitidine in Sterile Water for Injection
Walker, Scott E; Charbonneau, Lauren F; Law, Shirley; Earle, Craig
2012-01-01
Background: The product monograph for azacitidine states that once reconstituted, the drug may be held for only 30 min at room temperature or 8 h at 4°C. Standard doses result in wastage of a portion of each vial, and the cost of this wastage is significant, adding about $156 000 to annual drug expenditures at the authors’ institution. Objective: To evaluate the stability of azacitidine after reconstitution. Methods: Vials of azacitidine were reconstituted with sterile water for injection. At the time of reconstitution, the temperature of the diluent was 4°C for samples to be stored at 4°C or −20°C and room temperature for samples to be stored at 23°C. Solutions of azacitidine (10 or 25 mg/mL) were stored in polypropylene syringes and glass vials at room temperature (23°C), 4°C, or −20°C. The concentration of azacitidine was determined by a validated, stability-indicating liquid chromatographic method in serial samples over 9.6 h at room temperature, over 4 days at 4°C, and over 23 days at −20°C. The recommended expiry date was determined on the basis of time to reach 90% of the initial concentration according to the fastest observed degradation rates (i.e., lower limit of 95% confidence interval). Results: Azacitidine degradation was very sensitive to temperature but not storage container (glass vial or polypropylene syringe). Reconstitution with cold sterile water reduced degradation. At 23°C, 15% of the initial concentration was lost after 9.6 h; at 4°C, 32% was lost after 4 days; and at −20°C, less than 5% was lost after 23 days. Conclusions: More than 90% of the initial azacitidine concentration will be retained, with 97.5% confidence, if, during the life of the product, storage at 23°C does not exceed 2 h, storage at 4°C does not exceed 8 h, and storage at −20°C does not exceed 4 days. These expiry dates could substantially reduce wastage and cost where the time between doses does not exceed 4 days. PMID:23129863
Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H.; Dandekar, Abhaya M.; Granell, Antonio
2014-01-01
Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury. PMID:24598973
Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H; Dandekar, Abhaya M; Granell, Antonio
2014-01-01
Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury.
The clearance mechanism of chilled blood platelets.
Hoffmeister, Karin M; Felbinger, Thomas W; Falet, Hervé; Denis, Cécile V; Bergmeier, Wolfgang; Mayadas, Tanya N; von Andrian, Ulrich H; Wagner, Denisa D; Stossel, Thomas P; Hartwig, John H
2003-01-10
Platelet transfusion is a very common lifesaving medical procedure. Not widely known is the fact that platelets, unlike other blood cells, rapidly leave the circulation if refrigerated prior to transfusion. This peculiarity requires blood services to store platelets at room temperature, limiting platelet supplies for clinical needs. Here, we describe the mechanism of this clearance system, a longstanding mystery. Chilling platelets clusters their von Willebrand (vWf) receptors, eliciting recognition of mouse and human platelets by hepatic macrophage complement type 3 (CR3) receptors. CR3-expressing but not CR3-deficient mice exposed to cold rapidly decrease platelet counts. Cooling primes platelets for activation. We propose that platelets are thermosensors, primed at peripheral sites where most injuries occurred throughout evolution. Clearance prevents pathologic thrombosis by primed platelets. Chilled platelets bind vWf and function normally in vitro and ex vivo after transfusion into CR3-deficient mice. Therefore, GPIb modification might permit cold platelet storage.
NASA Astrophysics Data System (ADS)
Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin
2009-10-01
Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.
NASA Astrophysics Data System (ADS)
Hordych, Illia; Rodman, Dmytro; Nürnberger, Florian; Schmidt, Hans Christian; Orive, Alejandro Gonzalez; Homberg, Werner; Grundmeier, Guido; Maier, Hans Jürgen
2018-05-01
In the present study, heat-treatment assisted bonding of galfan-coated low-carbon steel sheets was investigated. Steel sheets were bonded by cold rolling subsequently to a heat treatment in the temperature range from 400 °C to 550°C. The reduction ratio during cold rolling was varied in the range from 50% to 80%. Such high reduction ratios were achieved by splitting the bonding process into three stages. By employing heat-treatments, the mechanical properties of the bonds were improved. The heat-pretreatment allowed the formation of brittle intermetallic phases that were easily fractured in the rolling gap during the bonding process. Thus, juvenile non-oxidized surfaces were formed, which facilitated the bonding between the steel layers, and thus increased the bond strength. The intermetallic phases were actively formed at temperatures of 450 °C and above; however increasing temperatures resulted in decreasing mechanical properties due to oxidation processes. The local microstructure was analyzed by scanning electron microscopy in order to characterize the contact zone on the micro level with a focus on the formation of intermetallic phases. The mechanical properties were determined in tensile shear tests. Interestingly, it was found that the galfan coating allowed for bonding at room temperature, and the aluminum fraction was primarily responsible for the enhanced oxide formation during the heat-pretreatment.
Experiments on planetary ices at UCL
NASA Astrophysics Data System (ADS)
Grindrod, P. M.; Fortes, A. D.; Wood, I. G.; Dobson, D.; Sammonds, P. R.; Stone-Drake, L.; Vocadlo, L.
2007-08-01
Using a suite of techniques and equipment, we conduct several different types of experiments on planetary ices at UCL. Samples are prepared in the Ice Physics Laboratory, which consists of a 5 chamber complex of inter-connected cold rooms, controllable from +30 to -30 deg C. Within this laboratory we have a functioning triaxial deformation cell operating at low temperature (down to -90 deg C) and high pressures (300 MPa), an Automatic Ice Fabric Analyser (AIFA) and a low-temperature microscope with CCD output. Polycrystalline samples, 40mm diameter by 100mm long, are compressed in the triaxial rig with a confining pressure; single crystal specimens are compressed in a separate uniaxial creep rig which operates at zero confining pressure for surface studies. A cold stage is also available for study of ice microstructural studies on our new Jeol JSM-6480LV SEM, which also allows tensile, compression and/or bending tests, with load ranges from less than 2N to 5000N. Finally, we also use a cold stage on a new PANalytical, X'pert PRO MPD, high resolution powder diffractometer to study the structure and phase behaviour of icy materials. Recent highlights of our work include: (1) derivation of a manufacturing process for methane clathrate at low temperatures, analysed in the X-Ray Diffraction Laboratory, for future rheological experiments, (2) analysed the growth behaviour of MS11, (3) refurbished and commenced calibration tests on the triaxial deformation cell using ice Ih, and (4) performed creep tests on gypsum and epsomite using the single crystal deformation cell. Further experiments will build on these preliminary results.
Hatchling painted turtles (Chrysemys picta) survive only brief freezing of their bodily fluids.
Attaway, M B; Packard, G C; Packard, M J
1998-07-01
Neonatal painted turtles (Chrysemys picta) spend their first winter inside the shallow, subterranean nest cavity where they completed embryogenesis. Consequently, hatchlings at high latitudes may be exposed to ice and cold during the winter. This study was undertaken to determine how long hatchlings withstand freezing at temperatures slightly below 0 degree C because tolerance for freezing has been proposed to be the key to survival by overwintering animals. A thermocouple was glued to the carapace of each hatchling. The animal was dipped in water to provide a site of nucleation of ice and was then placed into a glass jar that was partially immersed in a circulating bath at -2 degrees C. Carapace temperature was monitored throughout the procedure. When a freezing exotherm was detected, timing of the freezing event began. Animals were maintained in a frozen state for 12-48 h prior to being warmed to room temperature. Of the 39 hatchlings, 22 did not survive, and mortality increased as the duration of freezing increased. Logistic regression indicates that no turtle would have survived in a frozen state for more than 54 h. These results indicate that hatchlings can survive only brief exposure to freezing of the body fluids. Thus, hatchlings cannot tolerate freezing during prolonged periods of cold.
Design of a Hydrogen Pulsating Heat Pipe
NASA Astrophysics Data System (ADS)
Liu, Yumeng; Deng, Haoren; Pfotenhauer, John; Gan, Zhihua
In order to enhance the application of a cryocooler that provides cooling capacity at the cold head location, and effectively spread that cooling over an extended region, one requires an efficient heat transfer method. The pulsating heat pipe affords a highly effective heat transfer component that has been extensively researched at room temperature, but is recently being investigated for cryogenic applications. This paper describes the design. The experimental setup is designed to characterize the thermal performance of the PHP as a function of the applied heat, number of turns, filling ratio, inclination angle, and length of adiabatic section.
UTEX LEACHING, THICKENING AND FILTRATION TESTS. Topical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, A.; George, D.R.; Thomas, P.N.
1954-03-15
A series of leaching, thickening, and filtration tests was undertaken to determine minimum conditions for high uranium extractions and obtain thickening and filtration data. The ore represented by the sample responded to cold and hot leaching with the minimum condition for uranium extraction being 500 pounds of H/ sub 2/SO/sub 4/ per ton and five pounds NaClO/sub 3/ per ton leached at room temperature for l6 hours with uranium extraction of over 95%. Thickening and filtration were economical if a reagent such as S-3000 or Guar gum was used. (auth)
Functionalization of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)
2007-01-01
Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2, or F2, or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.
Functionalization of carbon nanotubes
NASA Technical Reports Server (NTRS)
Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)
2007-01-01
Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H.sub.2 or F.sub.2 or C.sub.nH.sub.m) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.
Implications of elastic wave velocities for Apollo 17 rock powders
NASA Technical Reports Server (NTRS)
Talwani, P.; Nur, A.; Kovach, R. L.
1974-01-01
Ultrasonic P- and S-wave velocities of lunar rock powders 172701, 172161, 170051, and 175081 were measured at room temperature and to 2.5 kb confining pressure. The results compare well with those of terrestrial volcanic ash and powdered basalt. P-wave velocity values up to pressures corresponding to a lunar depth of 1.4 km preclude cold compaction alone as an explanation for the observed seismic velocity structure at the Apollo 17 site. Application of small amounts of heat with simultaneous application of pressure causes rock powders to achieve equivalence of seismic velocities for competent rocks.
NASA Technical Reports Server (NTRS)
Sanfeliz, Jose G.
1993-01-01
Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.
Ozcelik, Fatih; Arslan, Erol; Serdar, Muhittin A; Yiginer, Omer; Oztosun, Muzaffer; Kayadibi, Huseyin; Kurt, Ismail
2012-11-01
Pseudothrombocytopenia (PTCP), caused by platelet (PLT) aggregation, is usually associated with ethylenediaminetetraacetic acid (EDTA)-dependent antibodies and cold aggluti-nins against PLT antigens. The aim of this study was to identify the PTCP and discover the most practical method to distinguish it from real thrombocytopenia. This study included 85 patients without hemorrhagic abnormalities and suspected PTCP. Blood samples containing EDTA, citrate and EDTA-kanamycin (KN) were analyzed at room temperature and 37°C. PTCP was detected in 24 of 85 patients. In 23 of 24 patients, EDTA-dependent pseudothrombocytopenia (EDTA-PTCP) was detected; 5 of whom had also the cold agglutinin-dependent PTCP. In only 1 of 24 patients, the cold agglu-tinin-dependent PTCP was found. In this study, no significant difference was observed in leukocyte counts comparing EDTA and citrate blood samples in cases with EDTA-PTCP. In clinical laboratories, a significant portion of the cases with low PLT counts was attributable to EDTA-PTCP and, therefore, did not require treatment. Even if these cases can be detected by bringing the blood samples containing EDTA to 37°C or by adding KN to blood samples containing EDTA, the use of blood samples containing citrate taken for erythrocyte sedimentation rate analysis is a more practical priority method.
Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2
NASA Technical Reports Server (NTRS)
Ray, Ranjan; Jha, Sunil C.
1987-01-01
Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.
NASA Astrophysics Data System (ADS)
Samanta, Amit K.; Pandey, Prasenjit; Bandyopadhyay, Biman; Mukhopadhyay, Anamika; Chakraborty, Tapas
2011-05-01
Mid-infrared spectra of 3-methyl-1,2-cyclopentanedione (3-MeCPD) have been recorded by isolating the molecule in a cold argon matrix (8 K) and also in CCl 4 solution at room temperature. The spectral features reveal that in both media, the molecule exists exclusively in an enol tautomeric form, which is stabilized by an intramolecular O sbnd H⋯O hydrogen bond. NBO analysis shows that the preferred conformer is further stabilized because of hyperconjugation interaction between the methyl and vinyl group of the enol tautomer. In CCl 4 solution, the molecule undergoes extensive self association and generates a doubly hydrogen bonded centrosymmetric dimer. The dimerization constant ( K d) is estimated to have a value of ˜9 L mol -1 at room temperature (25 °C) and the thermodynamic parameters, Δ H°, Δ S° and Δ G°, of dimerization are estimated by measuring K d at several temperatures within the range 22-60 °C. The same dimer is also produced when the matrix is annealed at a higher temperature. In addition, a non-centrosymmetric singly hydrogen bonded dimer is also identified in the argon matrix. A comparison between the spectral features of the two dimers indicates that the dimerization effect on doubly H-bonded case is influenced by cooperative interaction between the two H-bonds.
NASA Technical Reports Server (NTRS)
Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.
1994-01-01
Calibration of the visible and near-infrared channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1991 FIRE-Cirrus field experiment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Laboratory tests during the FIRE Cirrus field experiment were conducted to calibrate the hemisphere and from the hemisphere to the MAS. The purpose of this report is to summarize the FIRE-Cirrus hemisphere calibration, and then describe how the MAS was calibrated from observations of the hemisphere data. All MAS calibration measurements are presented, and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. Thermal sensitivity of the MAS visible and near-infrared calibration is also discussed. Typically, the MAS in-flight is 30 to 60 degrees C colder than the room temperature laboratory calibration. Results from in-flight temperature measurements and tests of the MAS in a cold chamber are given, and from these, equations are derived to adjust the MAS in-flight data to what the value would be at laboratory conditions. For FIRE-Cirrus data, only channels 3 through 6 were found to be temperature sensitive. The final section of this report describes comparisons to an independent MAS (room temperature) calibration by Ames personnel using their 30-inch integrating sphere.
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2011-02-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
Fernandes, Elizabeth S; Russell, Fiona A; Alawi, Khadija M; Sand, Claire; Liang, Lihuan; Salamon, Robin; Bodkin, Jennifer V; Aubdool, Aisah A; Arno, Matthew; Gentry, Clive; Smillie, Sarah-Jane; Bevan, Stuart; Keeble, Julie E; Malcangio, Marzia; Brain, Susan D
2016-01-11
The effect of cold temperature on arthritis symptoms is unclear. The aim of this study was to investigate how environmental cold affects pain and blood flow in mono-arthritic mice, and examine a role for transient receptor potential ankyrin 1 (TRPA1), a ligand-gated cation channel that can act as a cold sensor. Mono-arthritis was induced by unilateral intra-articular injection of complete Freund's adjuvant (CFA) in CD1 mice, and in mice either lacking TRPA1 (TRPA1 KO) or respective wildtypes (WT). Two weeks later, nociception and joint blood flow were measured following exposure to 10 °C (1 h) or room temperature (RT). Primary mechanical hyperalgesia in the knee was measured by pressure application apparatus; secondary mechanical hyperalgesia by automated von Frey system; thermal hyperalgesia by Hargreaves technique, and weight bearing by the incapacitance test. Joint blood flow was recorded by full-field laser perfusion imager (FLPI) and using clearance of (99m)Technetium. Blood flow was assessed after pretreatment with antagonists of either TRPA1 (HC-030031), substance P neurokinin 1 (NK1) receptors (SR140333) or calcitonin gene-related peptide (CGRP) (CGRP8-37). TRPA1, TAC-1 and CGRP mRNA levels were examined in dorsal root ganglia, synovial membrane and patellar cartilage samples. Cold exposure caused bilateral primary mechanical hyperalgesia 2 weeks after CFA injection, in a TRPA1-dependent manner. In animals maintained at RT, clearance techniques and FLPI showed that CFA-treated joints exhibited lower blood flow than saline-treated joints. In cold-exposed animals, this reduction in blood flow disappears, and increased blood flow in the CFA-treated joint is observed using FLPI. Cold-induced increased blood flow in CFA-treated joints was blocked by HC-030031 and not observed in TRPA1 KOs. Cold exposure increased TRPA1 mRNA levels in patellar cartilage, whilst reducing it in synovial membranes from CFA-treated joints. We provide evidence that environmental cold exposure enhances pain and increases blood flow in a mono-arthritis model. These changes are dependent on TRPA1. Thus, TRPA1 may act locally within the joint to influence blood flow via sensory nerves, in addition to its established nociceptive actions.
Renshaw, Mark A; Olds, Brett P; Jerde, Christopher L; McVeigh, Margaret M; Lodge, David M
2015-01-01
Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2-week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol-chloroform-isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction. © 2014 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.
Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos
2016-06-14
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.
Cold Atmosphere Plasma in Cancer Therapy
NASA Astrophysics Data System (ADS)
Keidar, Michael
2012-10-01
Plasma is an ionized gas that is typically generated in high-temperature laboratory conditions. Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Areas of potential application of cold atmospheric plasmas (CAP) include dentistry, drug delivery, dermatology, cosmetics, wound healing, cellular modifications, and cancer treatment. Various diagnostic tools have been developed for characterization of CAP including intensified charge-coupled device cameras, optical emission spectroscopy and electrical measurements of the discharge propertied. Recently a new method for temporally resolved measurements of absolute values of plasma density in the plasma column of small-size atmospheric plasma jet utilizing Rayleigh microwave scattering was proposed [1,2]. In this talk we overview state of the art of CAP diagnostics and understanding of the mechanism of plasma action of biological objects. The efficacy of cold plasma in a pre-clinical model of various cancer types (long, bladder, and skin) was recently demonstrated [3]. Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. For instance a strong selective effect was observed; the resulting 60--70% of lung cancer cells were detached from the plate in the zone treated with plasma, whereas no detachment was observed in the treated zone for the normal lung cells under the same treatment conditions. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasma induces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at about 24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed. [4pt] [1] Shashurin A., Shneider M.N., Dogariu A., Miles R.B. and Keidar M. Appl. Phys. Lett. (2010) 96, 171502.[0pt] [2] Shashurin A., Shneider M.N., Keidar M. Plasma Sources Sci. Technol. 21 (2012) 034006.[0pt] [3]. M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta , R. Ravi, R. Guerrero-Preston, B. Trink, British Journal of Cancer, 105, 1295-1301, 2011
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.
Gronlund, Carina J; Sullivan, Kyle P; Kefelegn, Yonathan; Cameron, Lorraine; O'Neill, Marie S
2018-08-01
Cold and hot weather are associated with mortality and morbidity. Although the burden of temperature-associated mortality may shift towards high temperatures in the future, cold temperatures may represent a greater current-day problem in temperate cities. Hot and cold temperature vulnerabilities may coincide across several personal and neighborhood characteristics, suggesting opportunities for increasing present and future resilience to extreme temperatures. We present a narrative literature review encompassing the epidemiology of cold- and heat-related mortality and morbidity, related physiologic and environmental mechanisms, and municipal responses to hot and cold weather, illustrated by Detroit, Michigan, USA, a financially burdened city in an economically diverse metropolitan area. The Detroit area experiences sharp increases in mortality and hospitalizations with extreme heat, while cold temperatures are associated with more gradual increases in mortality, with no clear threshold. Interventions such as heating and cooling centers may reduce but not eliminate temperature-associated health problems. Furthermore, direct hemodynamic responses to cold, sudden exertion, poor indoor air quality and respiratory epidemics likely contribute to cold-related mortality. Short- and long-term interventions to enhance energy and housing security and housing quality may reduce temperature-related health problems. Extreme temperatures can increase morbidity and mortality in municipalities like Detroit that experience both extreme heat and prolonged cold seasons amidst large socioeconomic disparities. The similarities in physiologic and built-environment vulnerabilities to both hot and cold weather suggest prioritization of strategies that address both present-day cold and near-future heat concerns. Copyright © 2018. Published by Elsevier B.V.
Effect of radiator position and mass flux on the dryer room heat transfer rate
NASA Astrophysics Data System (ADS)
Mirmanto, M.; Sulistyowati, E. D.; Okariawan, I. D. K.
A room radiator as usually used in cold countries, is actually able to be used as a heat source to dry goods, especially in the rainy season where the sun seldom shines due to much rain and cloud. Experiments to investigate effects of radiator position and mass flux on heat transfer rate were performed. This study is to determine the best position of the radiator and the optimum mass flux. The radiator used was a finned radiator made of copper pipes and aluminum fins with an overall dimension of 220 mm × 50 mm × 310 mm. The prototype room was constructed using plywood and wood frame with an overall size of 1000 mm × 1000 mm × 1000 mm. The working fluid was heated water flowing inside the radiator and air circulating naturally inside the prototype room. The nominal mass fluxes employed were 800, 900 and 1000 kg/m2 s. The water was kept at 80 °C at the radiator entrance, while the initial air temperature inside the prototype room was 30 °C. Three positions of the radiator were examined. The results show that the effect of the mass flux on the forced and free convection heat transfer rate is insignificant but the radiator position strongly affects the heat transfer rate for both forced and free convection.
Hypersensitivity to Cold Stimuli in Symptomatic Contact Lens Wearers
Situ, Ping; Simpson, Trefford; Begley, Carolyn
2016-01-01
Purpose To examine the cooling thresholds and the estimated sensation magnitude at stimulus detection in controls and symptomatic and asymptomatic contact lens (CL) wearers, in order to determine whether detection thresholds depend on the presence of symptoms of dryness and discomfort. Methods 49 adapted CL wearers and 15 non-lens wearing controls had room temperature pneumatic thresholds measured using a custom Belmonte esthesiometer, during Visits 1 and 2 (Baseline CL), Visit 3 (2 weeks no CL wear) and Visit 4 (2 weeks after resuming CL wear). CL wearers were subdivided into symptomatic and asymptomatic groups based on comfortable wearing time (CWT) and CLDEQ-8 score (<8 hours CWT and ≥14 CLDEQ-8 stratified the symptom groups). Detection thresholds were estimated using an ascending method of limits and each threshold was the average of the three first-reported flow rates. The magnitude of intensity, coolness, irritation and pain at detection of the stimulus were estimated using a 1-100 scale (1 very mild, 100 very strong). Results In all measurement conditions, the symptomatic CL wearers were the most sensitive, the asymptomatic CL wearers were the least sensitive and the control group was between the two CL wearing groups (group factor p < 0.001, post hoc asymptomatic vs. symptomatic group, all p’s < 0.015). Similar patterns were found for the estimated magnitude of intensity and irritation (group effect p=0.027 and 0.006 for intensity and irritation, respectively) but not for cooling (p>0.05) at detection threshold. Conclusions Symptomatic CL wearers have higher cold detection sensitivity and report greater intensity and irritation sensation at stimulus detection than the asymptomatic wearers. Room temperature pneumatic esthesiometry may help to better understand the process of sensory adaptation to CL wear. PMID:27046090
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.
2018-07-01
The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.
NASA Technical Reports Server (NTRS)
Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.
2015-01-01
A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.
2018-05-01
The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.
Experiences issues with plastic parts at cold temperatures
NASA Technical Reports Server (NTRS)
Sandor, Mike; Agarwal, Shri
2005-01-01
Missions to MARS/planets/asteroids require electronic parts to operate and survive at extreme cold conditions. At extreme cold temperatures many types of cold related failures can occur. Office 514 is currently evaluating plastic parts under various cold temperature conditions and applications. Evaluations, screens, and qualifications are conducted on flight parts.
Young, Jennifer D; Abbate, Vincenzo; Imberti, Cinzia; Meszaros, Levente K; Ma, Michelle T; Terry, Samantha Y A; Hider, Robert C; Mullen, Greg E; Blower, Philip J
2017-08-01
The clinical impact and accessibility of 68 Ga tracers for the prostate-specific membrane antigen (PSMA) and other targets would be greatly enhanced by the availability of a simple, 1-step kit-based labeling process. Radiopharmacy staff are accustomed to such procedures in the daily preparation of 99m Tc radiopharmaceuticals. Currently, chelating agents used in 68 Ga radiopharmaceuticals do not meet this ideal. The aim of this study was to develop and evaluate preclinically a 68 Ga radiotracer for imaging PSMA expression that could be radiolabeled simply by addition of 68 Ga generator eluate to a cold kit. Methods: A conjugate of a tris(hydroxypyridinone) (THP) chelator with the established urea-based PSMA inhibitor was synthesized and radiolabeled with 68 Ga by adding generator eluate directly to a vial containing the cold precursors THP-PSMA and sodium bicarbonate, with no further manipulation. It was analyzed after 5 min by instant thin-layer chromatography and high-performance liquid chromatography. The product was subjected to in vitro studies to determine PSMA affinity using PSMA-expressing DU145-PSMA cells, with their nonexpressing analog DU145 as a control. In vivo PET imaging and ex vivo biodistribution studies were performed in mice bearing xenografts of the same cell lines, comparing 68 Ga-THP-PSMA with 68 Ga-HBED-CC-PSMA. Results: Radiolabeling was complete (>95%) within 5 min at room temperature, showing a single radioactive species by high-performance liquid chromatography that was stable in human serum for more than 6 h and showed specific binding to PSMA-expressing cells (concentration giving 50% inhibition of 361 ± 60 nM). In vivo PET imaging showed specific uptake in PSMA-expressing tumors, reaching 5.6 ± 1.2 percentage injected dose per cubic centimeter at 40-60 min and rapid clearance from blood to kidney and bladder. The tumor uptake, biodistribution, and pharmacokinetics were not significantly different from those of 68 Ga-HBED-CC-PSMA except for reduced uptake in the spleen. Conclusion: 68 Ga-THP-PSMA has equivalent imaging properties but greatly simplified radiolabeling compared with other 68 Ga-PSMA conjugates. THP offers the prospect of rapid, simple, 1-step, room-temperature syringe-and-vial radiolabeling of 68 Ga radiopharmaceuticals. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Resolution of Serologic Problems Due to Cold Agglutinins in Chronic Lymphocytic Leukemia.
Javed, Rizwan; Datta, Suvro Sankha; Basu, Sabita; Chakrapani, Anupam
2016-06-01
Autoimmune hemolytic anemia can be classified depending on presence of warm, cold or mixed type of autoantibodies that are directed against antigens on the red blood cell surface. Here we report a case of pathological cold agglutinin disease which was eventually detected due to blood group discrepancy. A request was sent to the blood bank for two units of packed red cells in a diagnosed case of CLL which showed type IV discrepancy during blood grouping.The discrepancy was subsequently resolved after warm saline washing of red cells along with repetition of reverse grouping with pre-warmed serum. The direct antiglobulin test was positive and revealed autoanibodies against C3b/C3d only. Indirect antiglobulin test was performed with 3-cell panel in a polyspecific gel card (IgG+C3d) showed a pan-reactive pattern along with a positive autocontrol. Subsequently a cold agglutinin titration was performed and titers of 1024 at 4 °C; titer of 2 at room temperature were detected. Dithiothreitol (DTT) treatment of serum was undertaken and IgM type of autoantibody was detected in this case confirming a case of secondary cold agglutinin disease in this patient. Two units of red cells were transfused to this patient after successfully performing cross-match with pre-warmed serum. It was advised from the blood bank that the blood should be transfused slowly through a blood-warmer and patient should be kept in warm condition to avoid in-vivo hemolysis due to high titer of cold agglutinin. The transfusion was uneventful and patient is on regular follow-up till now. Thus we concluded that serological discrepancies observed in blood bank can successfully guide the bedside transfusion protocol in case of cold agglutinin disease.
8. FIRST FLOOR INTERIOR, ONE OF THREE MAIN REFRIGERATIONFREEZER ROOMS ...
8. FIRST FLOOR INTERIOR, ONE OF THREE MAIN REFRIGERATION-FREEZER ROOMS (NO. 4), FROM CENTRAL CORRIDOR OPPOSITE ENTRANCE, LOOKING WEST. - Oakland Naval Supply Center, Cold Storage Warehouse, South of C Street between First & Second Street, Oakland, Alameda County, CA
Dong, Juan; Gasmalla, Mohammed A A; Zhao, Wei; Sun, Jingtao; Liu, Wenyu; Wang, Mingming; Han, Liang; Yang, Ruijin
2017-09-01
A cold-adapted esterase-producing strain named T1-39 was isolated from Glacier No. 1, Tianshan, People's Republic of China and identified as Pseudomonas sp. from 16S rRNA sequence analysis. The esterase (EstT1-39) secreted by this strain preferentially hydrolyzed esters of glycerol with short- and medium-chain fatty acids. Mutants of T1-39 were generated by the atmospheric and room temperature plasma method and screened for enhanced esterase activity. Among all the mutants, strain TB11 had 4.45-fold higher esterase productivity than T1-39, with high genetic stability over 10 generations of continuous cultivation. Maximum activity of EstT1-39 and EstTB11 was observed at 30 ℃, pH 9.0 and 25 ℃, pH 8.5, respectively. EstTB11 was thermally more stable (50 ℃ for 1 H) and active over a broader pH range than EstT1-39. EstTB11 also retained 38% of its maximal activity at 0 ℃ and was found to be able to hydrolyze milk fats into short- and medium-chain fatty acids at 4 ℃. The characteristics of EstT1-39 made it a cold-adapted enzyme and the EstTB11 from the mutant, with its higher activity at lower temperatures, may be suitable for the production of aromas and flavors in the dairy industry. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Diaz Martinez, Myriam; Ghamari-Langroudi, Masoud; Gifford, Aliya; Cone, Roger; Welch, E. B.
2015-03-01
Evidence of leptin resistance is indicated by elevated leptin levels together with other hallmarks of obesity such as a defect in energy homeostasis.1 As obesity is an increasing epidemic in the US, the investigation of mechanisms by which leptin resistance has a pathophysiological impact on energy is an intensive field of research.2 However, the manner in which leptin resistance contributes to the dysregulation of energy, specifically thermoregulation,3 is not known. The aim of this study was to investigate whether the leptin receptor expressed in paraventricular nucleus (PVN) neurons plays a role in thermoregulation at different temperatures. Non-contact infrared (NCIR) thermometry was employed to measure surface body temperature (SBT) of nonanesthetized mice with a specific deletion of the leptin receptor in the PVN after exposure to room (25 °C) and cold (4 °C) temperature. Dorsal side infrared images of wild type (LepRwtwt/sim1-Cre), heterozygous (LepRfloxwt/sim1-Cre) and knock-out (LepRfloxflox/sim1-Cre) mice were collected. Images were input to an automated post-processing pipeline developed in MATLAB to calculate average and maximum SBTs. Linear regression was used to evaluate the relationship between sex, cold exposure and leptin genotype with SBT measurements. Findings indicate that average SBT has a negative relationship to the LepRfloxflox/sim1-Cre genotype, the female sex and cold exposure. However, max SBT is affected by the LepRfloxflox/sim1-Cre genotype and the female sex. In conclusion this data suggests that leptin within the PVN may have a neuroendocrine role in thermoregulation and that NCIR thermometry combined with an automated imaging-processing pipeline is a promising approach to determine SBT in non-anesthetized mice.
Fastener load tests and retention systems tests for cryogenic wind-tunnel models
NASA Technical Reports Server (NTRS)
Wallace, J. W.
1984-01-01
A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.
Changes in energy metabolism accompanying pitting in blueberries stored at low temperature.
Zhou, Qian; Zhang, Chunlei; Cheng, Shunchang; Wei, Baodong; Liu, Xiuying; Ji, Shujuan
2014-12-01
Low-temperature storage and transport of blueberries is widely practiced in commercial blueberry production. In this research, the storage life of blueberries was extended at low temperature, but fruit stored for 30 d at 0°C pitted after 2d at room-temperature. Fruit cellular structure and physiological parameters accompanying pitting in blueberries were changed. The objective of this research was to characterise properties of energy metabolism accompanying pitting in blueberries during storage, including adenosine phosphates and mitochondrial enzymes involved in stress responses. Physiological and metabolic disorders, changes in cell ultrastructure, energy content and ATPase enzyme activity were observed in pitting blueberries. Energy shortages and increased activity of phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were observed in fruit kept at shelf life. The results suggested that sufficient available energy status and a stable enzymatic system in blueberries collectively contribute to improve chilling tolerance, thereby alleviating pitting and maintaining quality of blueberry fruit in long-term cold storage. Copyright © 2014 Elsevier Ltd. All rights reserved.
On the use of bismuth as a neutron filter
NASA Astrophysics Data System (ADS)
Adib, M.; Kilany, M.
2003-02-01
A formula is given which, for neutron energies in the range 10 -4< E<10 eV, permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of bismuth temperature and crystalline form. Computer programs have been developed which allow calculations for the Bi rhombohedral structure in its poly-crystalline form and its equivalent hexagonal close-packed structure. The calculated total neutron cross-sections for poly-crystalline Bi at different temperatures were compared with the measured values. An overall agreement is indicated between the formula fits and experimental data. Agreement was also obtained for values of Bi-single crystals, at room and liquid nitrogen temperatures. A feasibility study for use of Bi in powdered form, as a cold neutron filter, is detailed in terms of the optimum Bi-single crystal thickness, mosaic spread, temperature and cutting plane for efficient transmission of thermal-reactor neutrons, and also for rejection of the accompanying fast neutrons and gamma rays.
Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.
2016-01-01
Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.
NASA Astrophysics Data System (ADS)
Soltani, Mohammadreza; Atrian, Amir
2018-02-01
This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.
Solvent- and catalyst-free mechanochemical synthesis of alkali metal monohydrides
Hlova, Ihor Z.; Castle, Andra; Goldston, Jennifer F.; ...
2016-07-06
Alkali metal monohydrides, AH (A = Li–Cs) have been synthesized in quantitative yields at room temperature by reactive milling of alkali metals in the presence of hydrogen gas at 200 bar or less. The mechanochemical approach reported here eliminates problems associated with the malleability of alkali metals — especially Li, Na, and K — and promotes effective solid–gas reactions, ensuring their completion. This is achieved by incorporating a certain volume fraction of the corresponding hydride powder as a process control agent, which allows continuous and efficient milling primarily by coating the surface of metal particles, effectively blocking cold welding. Formationmore » of high-purity crystalline monohydrides has been confirmed by powder X-ray diffraction, solid-state NMR spectroscopy, and volumetric analyses of reactively desorbed H 2 from as-milled samples. The proposed synthesis method is scalable and particularly effective for extremely air-sensitive materials, such as alkali and alkaline earth metal hydrides. Furthermore, the technique may also be favorable for production in continuous reactors operating at room temperature, thereby reducing the total processing time, energy consumption and, hence, the cost of production of these hydrides or their derivatives and composites.« less
The impact of vegan production on the kimchi microbiome.
Zabat, Michelle A; Sano, William H; Cabral, Damien J; Wurster, Jenna I; Belenky, Peter
2018-09-01
Despite previous inquiry into the fermentative bacterial community of kimchi, there has been little insight into the impacts of starting ingredients on the establishment and dynamics of the microbial community. Recently some industrial producers have begun to utilize vegan production methods that omit fermented seafood ingredients. The community-level impacts of this change are unknown. In this study, we investigated the differences in the taxonomic composition of the microbial communities of non-vegan kimchi and vegan kimchi prepared through quick fermentation at room temperature. In addition to tracking the community dynamics over the fermentation process, we looked at the impact of the constituent ingredients and the production facility environment on the microbial community of fermenting kimchi. Our results indicate that the bacterial community of the prepared vegan product closely mirrors the progression and final structure of the non-vegan final product. We also found that room temperature-fermented kimchi differs minimally from more traditional cold-fermented kimchi. Finally, we found that the bacterial community of the starting ingredients show a low relative abundance of the lactic acid bacteria in fermented kimchi, whereas the production facility is dominated by these bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng
2017-02-15
Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.
Anomalous Annealing of a High-Resistivity CCD Irradiated at Low Temperature
NASA Astrophysics Data System (ADS)
Bautz, M.; Prigozhin, G.; Kissel, S.; LaMarr, B.; Grant, C.; Brown, S.
2005-04-01
The front-illuminated charge-coupled device (CCD) detectors in the Chandra X-ray Observatory's ACIS instrument suffered radiation damage from soft protons focused by the telescope mirror early in the mission. In the course of assessing this damage, the focal plane was temporarily warmed from its normal operating temperature (then -100/spl deg/C) to +30/spl deg/C. Following this "bakeout", the radiation-damaged CCDs exhibited significantly greater charge transfer inefficiency (CTI). We performed a laboratory experiment with a sibling of the flight detectors in an attempt to reproduce and better understand this phenomenon. The test CCD was cooled to -100/spl deg/C, irradiated by 120 keV protons and then warmed to +30/spl deg/C for 8 hours. As expected, after the initial irradiation, but before detector warmup, a substantial CTI increase was observed. The subsequent warmup itself then produced an additional factor /spl ap/2.5 increase in CTI. Following smaller subsequent irradiations with the detector cold, a "bakeout" for 8 hours at -60/spl deg/C produced no observable increase in CTI. However, a subsequent bakeout to +30/spl deg/C for another 8 hours resulted in an additional increase in CTI of roughly 15%. The CTI changes produced by the room temperature bakeout are accompanied by dramatic changes in the de-trapping times of electron traps responsible for the CTI. The distributions of signal amplitudes in the pixels trailing X-ray events indicate that annealing at room temperature can cause large changes of the trap emission times, from which we infer that conversion of trapping defects takes place. The observed phenomena can be explained by the previously suggested mechanism of carbon-related defect transformation. Specifically, the room-temperature annealing may allow carbon interstitials to form metastable complexes with phosphorus and/or carbon substitutional atoms.
Superconducting Meissner effect bearings for cryogenic turbomachines, phase 2
NASA Astrophysics Data System (ADS)
Valenzuela, Javier A.; Martin, Jerry L.
1994-02-01
This is the final report of a Phase 2 SBIR project to develop Meissner effect bearings for miniature cryogenic turbomachines. The bearing system was designed for use in miniature cryogenic turboexpanders in reverse-Brayton-cycle cryocoolers. The cryocoolers are designed to cool sensors on satellites. Existing gas bearings for this application run in a relatively warm state. The heat loss from the bearings into the shaft and into the cold process gas imposes a penalty on the cycle efficiency. By using cold Meissner effect bearings, this heat loss could be minimized, and the input power per unit of cooling for these cryocoolers could be reduced. Two bearing concepts were explored in this project. The first used an all-magnetic passive radial suspension to position the shaft over a range of temperatures from room temperature to 77 K. This bearing concept was proven to be feasible, but impractical for the miniature high-speed turbine application since it lacked the required shaft positioning accuracy. A second bearing concept was then developed. In this concept, the Meissner effect bearings are combined with self-acting gas bearings. The Meissner effect bearing provides the additional stiffness and damping required to stabilize the shaft at low temperature, while the gas bearing provides the necessary accuracy to allow very small turbine tip clearances (5mm) and high speeds (greater than 500,000 rpm).
The heat is on: room temperature affects laboratory equipment--an observational study.
Butler, Julia M; Johnson, Jane E; Boone, William R
2013-10-01
To evaluate the effect of ambient room temperature on equipment typically used in in vitro fertilization (IVF). We set the control temperature of the room to 20 °C (+/-0.3) and used CIMScan probes to record temperatures of the following equipment: six microscope heating stages, four incubators, five slide warmers and three heating blocks. We then increased the room temperature to 26 °C (+/-0.3) or decreased it to 17 °C (+/-0.3) and monitored the same equipment again. We wanted to determine what role, if any, changing room temperature has on equipment temperature fluctuation. There was a direct relationship between room temperature and equipment temperature stability. When room temperature increased or decreased, equipment temperature reacted in a corresponding manner. Statistical differences between equipment were found when the room temperature changed. What is also noteworthy is that temperature of equipment responded within 5 min to a change in room temperature. Clearly, it is necessary to be aware of the affect of room temperature on equipment when performing assisted reproductive procedures. Room and equipment temperatures should be monitored faithfully and adjusted as frequently as needed, so that consistent culture conditions can be maintained. If more stringent temperature control can be achieved, human assisted reproduction success rates may improve.
Okahashi, N; Nishida, Y; Futakami, K; Hamada, S
1985-04-01
A hybridoma (F4B) which produced a monoclonal antibody (mAb) specific for serotype g carbohydrate antigen (RRg) of Streptococcus mutans 6715 was obtained. The F4B mAb cross-reacted with purified carbohydrate antigens of serotype d (RRd) and serotype h (TCAh). In immunodiffusion tests, F4B mAb produced a stable precipitin band with RRg, while the band developed between the mAb and RRd/TCAh in the cold disappeared when incubated at room temperature. The immunoprecipitin reaction between F4B mAb and RRg was strongly inhibited upon addition of lactose.
Choi, Y J; Park, M I; Park, S J; Moon, W; Kim, S E; Kwon, H J; Kim, J H; Jeon, W S
2014-11-01
Ingestion of cold fluids may induce pain in patients with esophageal motility disorders. Hot fluids, on the other hand, may help to relieve pain. We studied changes in esophageal motility as a variable of water bolus temperature using high-resolution manometry (HRM) in healthy human. Thirty-two healthy subjects were recruited at Kosin University Hospital. HRM was performed in a sitting position, with room temperature (RT, 25 °C), hot (45 °C), and cold (2 °C) water swallowed in that order. This exam included single swallowing (10 swallows of 5 mL water, 30 s intervals) and multiple water swallows (MWS; 100 mL water within 30 s). In the single swallowing, hot water caused a decrease in lower esophageal sphincter (LES) residual pressure (5.87 ± 4.20 mmHg vs 7.45 ± 4.17 mmHg (RT), p = 0.001) and duration of esophageal body (EB) contraction (3.01 ± 0.80 s vs 3.15 ± 1.16 s (RT), p = 0.009). Cold water caused an increase in the duration of EB contraction (3.52 ± 0.87 s vs 3.15 ± 1.16 s (RT), p = 0.001) and a decrease in contractile front velocity (CFV) (4.43 ± 1.50 cm/s vs 4.90 ± 2.53 cm/s (RT), p = 0.007). Similarly, in the MWS, hot water caused a decrease in the duration of EB contraction (12.95 ± 5.02 s vs 16.33 ± 5.94 s (RT), p = 0.024) and an increase in the amplitude of EB contraction (114.27 ± 83.36 mmHg vs 82.70 ± 46.77 mmHg (RT), p = 0.007). Cold water caused an increase in the duration of EB contraction (27.38 ± 2.89 s vs 16.33 ± 5.94 s (RT), p = 0.03) and a decrease in the amplitude of EB contraction (51.68 ± 33.94 mmHg vs 82.70 ± 46.77 mmHg (RT), p = 0.001). This study showed changes in esophageal motility to be dependent on water temperature. Especially, MWS showed clear changes in esophageal motility at different temperatures of water. © 2014 John Wiley & Sons Ltd.
Anti-icing properties of superhydrophobic ZnO/PDMS composite coating
NASA Astrophysics Data System (ADS)
Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad
2016-01-01
We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Philippa J.L.; Codd, Rachel, E-mail: rachel.codd@sydney.edu.au; School of Medical Sciences
2011-11-04
Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity ofmore » periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo-MGD cofactor. Two mesophilic {r_reversible} psychrophilic substitutions (Asn {r_reversible} His, Val {r_reversible} Trp) occurred in a region close to the surface of the NapA substrate funnel resulting in potential interdomain {pi}-{pi} and/or cation-{pi} interactions. Three mesophilic {r_reversible} psychrophilic substitutions occurred within 4.5 A of the Mo-MGD cofactor (Phe {r_reversible} Met, Ala {r_reversible} Ser, Ser {r_reversible} Thr) resulting in local regions that varied in hydrophobicity and hydrogen bonding networks. These results contribute to the understanding of thermal protein adaptation in a redox-active mononuclear molybdenum enzyme and have implications in optimizing the design of low-temperature environmental biosensors.« less
Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.
2015-07-21
The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features inmore » a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.« less
Artificial Permafrost and the Application to the Low Temperature Storage for Foodstuffs
NASA Astrophysics Data System (ADS)
Ryokai, Kimitoshi; Fukuda, Masami
In the cold regions like Hokkaido and Tohoku Districts, they have been advocating snow-overcoming, advantages of snow and effective utilization of cold climate. In fact, they have been positively trying to make use of snow and coldness as water resources, energy sources, structural materials and so on. One of energy utilization is for low temperature storage of foods. Since the potatoes have properties of adapting themselves to cold temperature when they are stored under cold environment, they have the tendency of growing in their sugar contents. As the results, all those foods which are stored under these cold environments will be the products of higher additional value. Here we will introduce the present situation of low temperature storage of foods by artificial permafrost, not only as the construction materials for cold storage house itself but also utilizing its own cold temperature.
Kobey, Robert L.; Montooth, Kristi L.
2013-01-01
SUMMARY Survival at cold temperatures is a complex trait, primarily because of the fact that the physiological cause of injury may differ across degrees of cold exposure experienced within the lifetime of an ectothermic individual. In order to better understand how chill-sensitive insects experience and adapt to low temperatures, we investigated the physiological basis for cold survival across a range of temperature exposures from −4 to 6°C in five genetic lines of the fruit fly Drosophila melanogaster. Genetic effects on cold survival were temperature dependent and resulted in a significant genotype–temperature interaction for survival across cold temperature exposures that differ by as little as 2°C. We investigated desiccation as a potential mechanism of injury across these temperature exposures. Flies were dehydrated following exposures near 6°C, whereas flies were not dehydrated following exposures near −4°C. Furthermore, decreasing humidity during cold exposure decreased survival, and increasing humidity during cold exposure increased survival at 6°C, but not at −4°C. These results support the conclusion that in D. melanogaster there are multiple physiological mechanisms of cold-induced mortality across relatively small differences in temperature, and that desiccation contributes to mortality for exposures near 6°C but not for subzero temperatures. Because D. melanogaster has recently expanded its range from tropical to temperate latitudes, the complex physiologies underlying cold tolerance are likely to be important traits in the recent evolutionary history of this fruit fly. PMID:23197100
Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months
NASA Astrophysics Data System (ADS)
Pelliccia, Maria; Andreozzi, Patrizia; Paulose, Jayson; D'Alicarnasso, Marco; Cagno, Valeria; Donalisio, Manuela; Civra, Andrea; Broeckel, Rebecca M.; Haese, Nicole; Jacob Silva, Paulo; Carney, Randy P.; Marjomäki, Varpu; Streblow, Daniel N.; Lembo, David; Stellacci, Francesco; Vitelli, Vincenzo; Krol, Silke
2016-11-01
Up to 80% of the cost of vaccination programmes is due to the cold chain problem (that is, keeping vaccines cold). Inexpensive, biocompatible additives to slow down the degradation of virus particles would address the problem. Here we propose and characterize additives that, already at very low concentrations, improve the storage time of adenovirus type 5. Anionic gold nanoparticles (10-8-10-6 M) or polyethylene glycol (PEG, molecular weight ~8,000 Da, 10-7-10-4 M) increase the half-life of a green fluorescent protein expressing adenovirus from ~48 h to 21 days at 37 °C (from 7 to >30 days at room temperature). They replicate the known stabilizing effect of sucrose, but at several orders of magnitude lower concentrations. PEG and sucrose maintained immunogenicity in vivo for viruses stored for 10 days at 37 °C. To achieve rational design of viral-vaccine stabilizers, our approach is aided by simplified quantitative models based on a single rate-limiting step.
Characterization of a cold-rolled 2101 lean duplex stainless steel.
Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene
2013-08-01
Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.
Thermoregulatory effects of swaddling in Mongolia: a randomised controlled study.
Tsogt, Bazarragchaa; Manaseki-Holland, Semira; Pollock, Jon; Blair, Peter S; Fleming, Peter
2016-02-01
To investigate thermal balance of infants in a Mongolian winter, and compare the effects of traditional swaddling with an infant sleeping-bag in apartments or traditional tents (Gers). A substudy within a randomised controlled trial. Community in Ulaanbaatar, Mongolia. A stratified randomly selected sample of 40 swaddled and 40 non-swaddled infants recruited within 48 h of birth. Sleeping-bags and baby outfits of total thermal resistance equivalent to that of swaddled babies. Digital recordings of infants' core, peripheral, environmental and microenvironmental temperatures at 30-s intervals over 24 h at ages 1 month and 3 months. In Gers, indoor temperatures varied greatly (<0->25°C), but remained between 20°C and 22°C, in apartments. Despite this, heavy wrapping, bed sharing and partial head covering, infant core and peripheral temperatures were similar and no infants showed evidence of significant heat or cold stress whether they were swaddled or in sleeping-bags. At 3 months, infants in sleeping-bags showed the 'mature' diurnal pattern of a fall in core temperature after sleep onset, accompanied by a rise in peripheral temperature, with a reverse pattern later in the night, just before awakening. This pattern was not related to room temperature, and was absent in the swaddled infants, suggesting that the mature diurnal pattern may develop later in them. No evidence of cold stress was found. Swaddling had no identifiable thermal advantages over sleeping-bags during the coldest times, and in centrally heated apartments could contribute to the risk of overheating during the daytime. ISRTN01992617. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703
Cold Blooded: Evaluating Brain Temperature by MRI During Surface Cooling of Human Subjects.
Curran, Eric J; Wolfson, Daniel L; Watts, Richard; Freeman, Kalev
2017-10-01
Targeted temperature management (TTM) confers neurological and survival benefits for post-cardiac arrest patients with return of spontaneous circulation (ROSC) who remain comatose. Specialized equipment for induction of hypothermia is not available in the prehospital setting, and there are no reliable methods for emergency medical services personnel to initiate TTM. We hypothesized that the application of surface cooling elements to the neck will decrease brain temperature and act as initiators of TTM. Magnetic resonance (MR) spectroscopy was used to evaluate the effect of a carotid surface cooling element on brain temperature in healthy adults. Six individuals completed this study. We measured a temperature drop of 0.69 ± 0.38 °C (95% CI) in the cortex of the brain following the application of the cooling element. Application of a room temperature element also caused a measurable decrease in brain temperature of 0.66 ± 0.41 °C (95% CI) which may be attributable to baroreceptor activation. The application of surface cooling elements to the neck decreased brain temperature and may serve as a method to initiate TTM in the prehospital setting.
1983-05-01
in mouth ൕ/12 1728 02 +T Ś 1739 E7 Cold Ř 1745 E6 Lac. tongue ൝/12 1749 E7 Rabies shot Ř 1805 03 +T /12 1829 E6 Cold ř 1839 E6 Poss. strep ...Cold,abd. pain ŕ 1310 E6 Diarrhea ř 1312 E8 +T,vomit Ś 1334 CW2 Cold,sore throat " 7/12 1342 03 +T Ŗ 1405 E4 Vcmit " 13/12 1405 E4 Vomit Ŝ/12 1418
Nonlinear Impact of Temperature on Mortality in France
NASA Astrophysics Data System (ADS)
Zhang, A. T.
2016-12-01
Anthropogenic climate change is posing unprecedented challenges to human welfare, yet there is much uncertainty about the cost of its impact. Accurate quantification of the social cost of carbon is crucial for designing effective climate policies that reduce emissions and mitigate the adverse impact of global warming, and human health is an important component of the calculation. Despite a growing body of literature documenting the relationship between temperature and mortality in the U.S., similar results using nationwide data have not been clearly established in other countries. Using random monthly variations in temperature for over a decade, this paper finds a statistically significant nonlinear relationship between monthly mortality rate and daily temperature in France between 1998 and 2012. Extremely hot days are associated with significantly higher mortality rates: One additional day with a mean temperature above 30°C, relative to a day in the 12°C to 15°C range, leads to 10 extra all-age, all-gender monthly deaths per 100,000. The effect of cold temperatures is milder: An extremely cold day with an average temperature from -9 °C to -6 °C increases all-age, all-gender mortality rate by about 1.2 per 100,000 each month. There is also notable heterogeneity in the observed nonlinear relationship across age groups and gender, in which males and the elderly are generally more susceptible to extreme temperatures than females and the young. This highlights that children and youth may be well protected through adaptive behaviors, such as spending more time indoors in temperature-controlled rooms and staying hydrated. Compared to studies done in the U.S., extremely hot days >30°C leads to considerably more deaths in France. Preliminary evidence suggests that there has been very limited adaptation despite two prominent heat waves in 2003 and 2006, although further analysis of electricity consumption and air conditioning usage is needed to ascertain the extent to which protective behavior mitigates mortality risks from temperature extremes.
ENSO's far reaching connection to Indian cold waves.
Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio
2016-11-23
During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.
Mountain Warfare and Cold Weather Operations
2016-04-29
military purposes, cold regions are defined as any region where cold temperatures , unique terrain, and snowfall have a significant effect on military...because of the wind’s effect on the body’s perceived temperature . Wet cold leads to hypothermia, frost bite, and trench foot. Wet cold conditions are...combined cooling effect of ambient temperature and wind (wind chill) experienced by their troops (see Figure 1-5). The Environment ATP 3-90.97
Quality of Golden papaya stored under controlled atmosphere conditions.
Martins, Derliane Ribeiro; de Resende, Eder Dutra
2013-10-01
This work evaluated physicochemical parameters of Golden papaya stored under refrigeration in controlled atmospheres. The fruits were kept at 13 in chambers containing either 3 or 6% O2 combined with 6%, 10% or 15% CO2. Moreover, a normal atmosphere was produced with 20.8% O2 and 0.03% CO2 with ethylene scrubbing, and a control treatment was used with ambient conditions. Evaluations were performed at the following times: before storage, after 30 days of storage in controlled atmosphere, and after removal from controlled atmosphere and storage for 7 days in the cold room. At the lower O2 levels and higher CO2 levels, the ripening rate was decreased. The drop in pulp acidity was avoided after 30 days of storage at 3% O2, but the fruits reached normal acidity after removal from controlled atmosphere and storage for 7 days in the cold room. The reducing sugars remained at a higher concentration after 30 days under 3% O2 and 15% CO2 even 7 days after removal from controlled atmosphere and storage in the cold room. This atmosphere also preserved the content of ascorbic acid at a higher level.
Effects of temperature on mortality in Hong Kong: a time series analysis
NASA Astrophysics Data System (ADS)
Yi, Wen; Chan, Albert P. C.
2015-07-01
Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95 % confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95 % CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.
Effects of temperature on mortality in Hong Kong: a time series analysis.
Yi, Wen; Chan, Albert P C
2015-07-01
Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95% confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95% CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.
Cold-sensing regulates Drosophila growth through insulin-producing cells
Li, Qiaoran; Gong, Zhefeng
2015-01-01
Across phyla, body size is linked to climate. For example, rearing fruit flies at lower temperatures results in bigger body sizes than those observed at higher temperatures. The underlying molecular basis of this effect is poorly understood. Here we provide evidence that the temperature-dependent regulation of Drosophila body size depends on a group of cold-sensing neurons and insulin-producing cells (IPCs). Electrically silencing IPCs completely abolishes the body size increase induced by cold temperature. IPCs are directly innervated by cold-sensing neurons. Stimulation of these cold-sensing neurons activates IPCs, promotes synthesis and secretion of Drosophila insulin-like peptides and induces a larger body size, mimicking the effects of rearing the flies in cold temperature. Taken together, these findings reveal a neuronal circuit that mediates the effects of low temperature on fly growth. PMID:26648410
Guo, Yuming; Li, Shanshan; Zhang, Yanshen; Armstrong, Ben; Jaakkola, Jouni J K; Tong, Shilu; Pan, Xiaochuan
2013-02-01
To examine the effects of extremely cold and hot temperatures on ischaemic heart disease (IHD) mortality in five cities (Beijing, Tianjin, Shanghai, Wuhan and Guangzhou) in China; and to examine the time relationships between cold and hot temperatures and IHD mortality for each city. A negative binomial regression model combined with a distributed lag non-linear model was used to examine city-specific temperature effects on IHD mortality up to 20 lag days. A meta-analysis was used to pool the cold effects and hot effects across the five cities. 16 559 IHD deaths were monitored by a sentinel surveillance system in five cities during 2004-2008. The relationships between temperature and IHD mortality were non-linear in all five cities. The minimum-mortality temperatures in northern cities were lower than in southern cities. In Beijing, Tianjin and Guangzhou, the effects of extremely cold temperatures were delayed, while Shanghai and Wuhan had immediate cold effects. The effects of extremely hot temperatures appeared immediately in all the cities except Wuhan. Meta-analysis showed that IHD mortality increased 48% at the 1st percentile of temperature (extremely cold temperature) compared with the 10th percentile, while IHD mortality increased 18% at the 99th percentile of temperature (extremely hot temperature) compared with the 90th percentile. Results indicate that both extremely cold and hot temperatures increase IHD mortality in China. Each city has its characteristics of heat effects on IHD mortality. The policy for response to climate change should consider local climate-IHD mortality relationships.
Direct Comparison of Surface and Bulk Relaxation of PS - A Temperature Dependent Study
NASA Astrophysics Data System (ADS)
Wu, Wen-Li; Sambasivan, Sharadha; Wang, Chia-Ying; Genzer, Jan; Fischer, Daniel A.
2005-03-01
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to measure simultaneously the relaxation rates of polystyrene (PS) molecules at the free surface and in the bulk. The samples were uniaxially oriented at room temperature via a modified cold rolling process. The density of the oriented samples as determined by liquid immersion technique is identical to that of bulk PS. At temperatures below its bulk glass transition temperature the rate of surface and bulk chain relaxation was monitored by measuring the partial-electron yield (PEY) and the fluorescence NEXAFS yields (FS), respectively, both parallel and perpendicular to the stretching direction. The decay rate of the dichroic ratios from both PEY and FY at various temperatures was taken as a measure of the relaxation rate of surface and bulk molecules respectively. In addition, the decay rate of the optical birefringence was also measured to provide an independent measure of the bulk relaxation. Relaxation of PS chains was found to occur faster on the surface relative to the bulk. The magnitude of the surface glass transition temperature suppression over the bulk was estimated to be 18 C based on the measured temperature dependence of the relaxation rates.
Coral larvae conservation: physiology and reproduction.
Hagedorn, M; Pan, R; Cox, E F; Hollingsworth, L; Krupp, D; Lewis, T D; Leong, J C; Mazur, P; Rall, W F; MacFarlane, D R; Fahy, G; Kleinhans, F W
2006-02-01
Coral species throughout the world's oceans are facing severe environmental pressures. We are interested in conserving coral larvae by means of cryopreservation, but little is known about their cellular physiology or cryobiology. These experiments examined cryoprotectant toxicity, dry weight, water and cryoprotectant permeability using cold and radiolabeled glycerol, spontaneous ice nucleation temperatures, chilling sensitivity, and settlement of coral larvae. Our two test species of coral larvae, Pocillopora damicornis (lace coral), and Fungia scutaria (mushroom coral) demonstrated a wide tolerance to cryoprotectants. Computer-aided morphometry determined that F. scutaria larvae were smaller than P. damicornis larvae. The average dry weight for P. damicornis was 24.5%, while that for F. scutaria was 17%, yielding osmotically inactive volumes (V(b)) of 0.22 and 0.15, respectively. The larvae from both species demonstrated radiolabeled glycerol uptake over time, suggesting they were permeable to the glycerol. Parameter fitting of the F. scutaria larvae data yielded a water permeability 2 microm/min/atm and a cryoprotectant permeability = 2.3 x 10(-4) cm/min while modeling indicated that glycerol reached 90% of final concentration in the larvae within 25 min. The spontaneous ice nucleation temperature for F. scutaria larvae in filtered seawater was -37.8+/-1.4 degrees C. However, when F. scutaria larvae were chilled from room temperature to -11 degrees C at various rates, they exhibited 100% mortality. When instantly cooled from room temperature to test temperatures, they showed damage below 10 degrees C. These data suggest that they are sensitive to both the rate of chilling and the absolute temperature, and indicate that vitrification may be the only means to successfully cryopreserve these organisms. Without prior cryopreservation, both species of coral settled under laboratory conditions.
Thermal equation of state of CaFe 2O 4-type MgAl 2O 4
NASA Astrophysics Data System (ADS)
Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi
2009-05-01
In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.
Conventional physics can explain cold fusion excess heat
NASA Astrophysics Data System (ADS)
Chubb, S. R.
In 1989, when Fleischmann, Pons and Hawkins (FP), claimed they had created room temperature, nuclear fusion in a solid, a firestorm of controversy erupted. Beginning in 1991, the Office of Naval Research began a decade-long study of the FP excess heat effect. This effort documented the fact that the excess heat that FP observed is the result of a form of nuclear fusion that can occur in solids at reduced temperature, dynamically, through a deuteron (d)+d□4He reaction, without high-energy particles or □ rays. A key reason this fact has not been accepted is the lack of a cogent argument, based on fundamental physical ideas, justifying it. In the paper, this question is re-examined, based on a generalization of conventional energy band theory that applies to finite, periodic solids, in which d's are allowed to occupy wave-like, ion band states, similar to the kinds of states that electrons occupy in ordinary metals. Prior to being experimentally observed, the Ion Band State Theory (IBST) of cold fusion predicted a potential d+d□4He reaction, without high energy particles, would explain the excess heat, the 4He would be found in an unexpected place (outside heat-producing electrodes), and high-loading, x□1, in PdDx, would be required.
Development of a novel cold forging process to manufacture eccentric shafts
NASA Astrophysics Data System (ADS)
Pasler, Lukas; Liewald, Mathias
2018-05-01
Since the commercial usage of compact combustion engines, eccentric shafts have been used to transform translational into rotational motion. Over the years, several processes to manufacture these eccentric shafts or crankshafts have been developed. Especially for single-cylinder engines manufactured in small quantities, built crankshafts disclose advantages regarding tooling costs and performance. Those manufacturing processes do have one thing in common: They are all executed at elevated temperatures to enable the material to be formed to high forming degree. In this paper, a newly developed cold forging process is presented, which combines lateral extrusion and shifting for manufacturing a crank in one forming operation at room temperature. In comparison to the established upsetting and shifting methods to manufacture such components, the tool cavity or crank web thickness remains constant. Therefore, the developed new process presented in this paper consists of a combination of shifting and extrusion of the billet, which allows pushing material into the forming zone during shifting. In order to reduce the tensile stresses induced by the shifting process, compressive stresses are superimposed. It is expected that the process limits will be expanded regarding the horizontal displacement and form filling. In the following report, the simulation and design of the tooling concept are presented. Experiments were conducted and compared with corresponding simulation results afterwards.
Hypothermic general cold adaptation induced by local cold acclimation.
Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H
1996-01-01
To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P < 0.05) without a change either in metabolic heat production or in lower limb skin temperatures during SCAT after LCA. It was concluded that local cold adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P < 0.05). However, the hypothermic insulative general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P < 0.05) was observed but was rather related to a "T3 polar syndrome" occurring during LCA.
Do mitochondrial properties explain intraspecific variation in thermal tolerance?
Fangue, Nann A; Richards, Jeffrey G; Schulte, Patricia M
2009-02-01
As global temperatures rise, there is a growing need to understand the physiological mechanisms that determine an organism's thermal niche. Here, we test the hypothesis that increases in mitochondrial capacity with cold acclimation and adaptation are associated with decreases in thermal tolerance using two subspecies of killifish (Fundulus heteroclitus) that differ in thermal niche. We assessed whole-organism metabolic rate, mitochondrial amount and mitochondrial function in killifish acclimated to several temperatures. Mitochondrial enzyme activities and mRNA levels were greater in fish from the northern subspecies, particularly in cold-acclimated fish, suggesting that the putatively cold-adapted northern subspecies has a greater capacity for increases in mitochondrial amount in response to cold acclimation. When tested at the fish's acclimation temperature, maximum ADP-stimulated (State III) rates of mitochondrial oxygen consumption in vitro were greater in cold-acclimated northern fish than in southern fish but did not differ between subspecies at higher acclimation temperatures. Whole-organism metabolic rate was greater in fish of the northern subspecies at all acclimation temperatures. Cold acclimation also changed the response of mitochondrial respiration to acute temperature challenge. Mitochondrial oxygen consumption was greater in cold-acclimated northern fish than in southern fish at low test temperatures, but the opposite was true at high test temperatures. These differences were reflected in whole-organism oxygen consumption. Our data indicate that the plasticity of mitochondrial function and amount differs between killifish subspecies, with the less high-temperature tolerant, and putatively cold adapted, northern subspecies having greater ability to increase mitochondrial capacity in the cold. However, there were few differences in mitochondrial properties between subspecies at warm acclimation temperatures, despite differences in both whole-organism oxygen consumption and thermal tolerance at these temperatures.
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picturemore » of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.« less
Power control electronics for cryogenic instrumentation
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.
Adewola, A; Mage, R; Hansen, M; Barbaro, B; Mendoza-Elias, J; Harvat, T; Morel, P H; Oberholzer, J; Wang, Y
2010-01-01
Two different approaches of controlled cooling of the COBE 2991 cell-separator for islet purification were evaluated. The first method is the new Geneva COBE cooling system (GCCS), which consists of an electronically controlled liquid nitrogen injection system. The second is the University of Illinois at Chicago cooling system (UICCS), which consists of a specially designed "Cold Room" maintained at 1-8 C. For the GCCS, the mean temperatures of the gradient solutions were measured at the beginning and end of centrifugation were found to be 7 +/-0.7 C and 6.8 +/-0.6 C respectively. For the UICCS, the mean temperature of the gradients at the beginning and end of centrifugation were 4.7 +/-0.53 C and 7.03 C+/-0.91 C respectively. The presented COBE cooling systems can easily be adapted to a COBE 2991 cell-separator and are efficient in maintaining gradient solutions at a defined low temperature during centrifugation.
Influence of limb temperature on cutaneous silent periods.
Kofler, Markus; Valls-Solé, Josep; Vasko, Peter; Boček, Václav; Štetkárová, Ivana
2014-09-01
The cutaneous silent period (CSP) is a spinal inhibitory reflex mediated by small-diameter afferents (A-delta fibers) and large-diameter efferents (alpha motoneurons). The effect of limb temperature on CSPs has so far not been assessed. In 27 healthy volunteers (11 males; age 22-58 years) we recorded median nerve motor and sensory action potentials, median nerve F-wave and CSPs induced by noxious digit II stimulation in thenar muscles in a baseline condition at room temperature, and after randomly submersing the forearm in 42 °C warm or 15 °C cold water for 20 min each. In cold limbs, distal and proximal motor and sensory latencies as well as F-wave latencies were prolonged. Motor and sensory nerve conduction velocities were reduced. Compound motor and sensory nerve action potential amplitudes did not differ significantly from baseline. CSP onset and end latencies were more delayed than distal and proximal median nerve motor and sensory latencies, whereas CSP duration was not affected. In warm limbs, opposite but smaller changes were seen in nerve conduction studies and CSPs. The observed CSP shift "en bloc" towards longer latencies without affecting CSP duration during limb cooling concurs with slower conduction velocity in both afferent and efferent fibers. Disparate conduction slowing in afferents and efferents, however, suggests that nociceptive EMG suppression is mediated by fibers of different size in the afferent than in the efferent arm, indirectly supporting the contribution of A-delta fibers as the main afferent input. Limb temperature should be taken into account when testing CSPs in the clinical setting, as different limb temperatures affect CSP latencies more than large-diameter fiber conduction function. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles.
George, Ingrid J; Hays, Michael D; Herrington, Jason S; Preston, William; Snow, Richard; Faircloth, James; George, Barbara Jane; Long, Thomas; Baldauf, Richard W
2015-11-03
Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 and 24 °C). The cold start driving phase and cold ambient temperature increased VOC and MSAT emissions up to several orders of magnitude compared to emissions during other vehicle operation phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials (OFPs) were 7 to 21 times greater for the cold starts during cold temperature tests than comparable warm temperature tests. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, at the same ambient temperature, the VOC emissions from the E0 and E10 fuels and OFPs from all fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles.
Lin, Yu-Kai; Wang, Yu-Chun; Lin, Pay-Liam; Li, Ming-Hsu; Ho, Tsung-Jung
2013-09-01
This study aimed to identify optimal cold-temperature indices that are associated with the elevated risks of mortality from, and outpatient visits for all causes and cardiopulmonary diseases during the cold seasons (November to April) from 2000 to 2008 in Northern, Central and Southern Taiwan. Eight cold-temperature indices, average, maximum, and minimum temperatures, and the temperature humidity index, wind chill index, apparent temperature, effective temperature (ET), and net effective temperature and their standardized Z scores were applied to distributed lag non-linear models. Index-specific cumulative 26-day (lag 0-25) mortality risk, cumulative 8-day (lag 0-7) outpatient visit risk, and their 95% confidence intervals were estimated at 1 and 2 standardized deviations below the median temperature, comparing with the Z score of the lowest risks for mortality and outpatient visits. The average temperature was adequate to evaluate the mortality risk from all causes and circulatory diseases. Excess all-cause mortality increased for 17-24% when average temperature was at Z=-1, and for 27-41% at Z=-2 among study areas. The cold-temperature indices were inconsistent in estimating risk of outpatient visits. Average temperature and THI were appropriate indices for measuring risk for all-cause outpatient visits. Relative risk of all-cause outpatient visits increased slightly by 2-7% when average temperature was at Z=-1, but no significant risk at Z=-2. Minimum temperature estimated the strongest risk associated with outpatient visits of respiratory diseases. In conclusion, the relationships between cold temperatures and health varied among study areas, types of health event, and the cold-temperature indices applied. Mortality from all causes and circulatory diseases and outpatient visits of respiratory diseases has a strong association with cold temperatures in the subtropical island, Taiwan. Copyright © 2013 Elsevier B.V. All rights reserved.
COLD-PCR enriches low-level variant DNA sequences and increases the sensitivity of genetic testing.
Castellanos-Rizaldos, Elena; Milbury, Coren A; Guha, Minakshi; Makrigiorgos, G Mike
2014-01-01
Detection of low-level mutations is important for cancer biomarker and therapy targets discovery, but reliable detection remains a technical challenge. The newly developed method of CO-amplification at Lower Denaturation temperature PCR (COLD-PCR) helps to circumvent this issue. This PCR-based technology preferentially enriches minor known or unknown variants present in samples with a high background of wild type DNA which often hampers the accurate identification of these minority alleles. This is a simple process that consists of lowering the temperature at the denaturation step during the PCR-cycling protocol (critical denaturation temperature, T c) and inducing DNA heteroduplexing during an intermediate step. COLD-PCR in its simplest forms does not need additional reagents or specific instrumentation and thus, can easily replace conventional PCR and at the same time improve the mutation detection sensitivity limit of downstream technologies. COLD-PCR can be applied in two basic formats: fast-COLD-PCR that can enrich T m-reducing mutations and full-COLD-PCR that can enrich all mutations, though it requires an intermediate cross-hybridization step that lengthens the thermocycling program. An improved version of full-COLD-PCR (improved and complete enrichment, ice-COLD-PCR) has also been described. Finally, most recently, we developed yet another form of COLD-PCR, temperature-tolerant-COLD-PCR, which gradually increases the denaturation temperature during the COLD-PCR reaction, enriching diverse targets using a single cycling program. This report describes practical considerations for application of fast-, full-, ice-, and temperature-tolerant-COLD-PCR for enrichment of mutations prior to downstream screening.
Physiological and Thermal Responses of MS Patients to Head and Vest Cooling: A Case Study
NASA Technical Reports Server (NTRS)
Luna, Bernadette; Webbon, Bruce W.; Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Kliss, Mark (Technical Monitor)
1997-01-01
Personal cooling systems are used to alleviate symptoms of multiple sclerosis (MS) and to prevent increased core temperature during daily activities. The objective of this study was to determine the operating characteristics and the physiologic changes produced by short term application of the stationary thermal control system used by most clinical institutions. The Life Enhancement Tech (LET) Mark VII portable cooling system and a lightweight Head-vest active cooling garment were used to cool the head and chest regions of 4 male and 3 female MS patients (30 to 66 yrs. old) in this study. The subjects, seated in an upright position at normal room temperature (approx. 24 C), were tested for 60 min. with the liquid cooling garment (LCG) operated at 50 F. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures, heart rate, respiration, and an activity index were recorded continuously on a U.F.I., Inc., Biolog ambulatory monitor. All temperature responses showed extreme variation among subjects. The cold-sensitive subject's rectal temperature increased initially in response to cooling; the heat sensitive subject's rectal temperature decreased. After 40 min. of cooling and during recovery, all subjects'rectal temperatures decreased. Oral temperatures began to decrease after 30 min. of cooling. After 60 min. of cooling, temperature drops ranged from approx. 0.3 - 0.8 C. Oral temperatures continued to decrease during recovery (approx. 0.2 C). The car temperature of the heat sensitive subject was increased after cooling, other subjects exhibited an ear temperature decrease (0.0 - 0.5 C). These data indicate that head and vest cooling may be used to reduce the oral temperatures of MS patients by the approximate amount needed for symptomatic relief as shown by other researchers. The combination of a small subject population and a large subject variance does not permit us to draw statistical conclusions about the temperature response of MS patients. An individual's heat or cold sensitivity may influence their thermal response to cooling. This factor should be considered in the prescribed use of liquid cooling garments in the therapeutic management of MS.
Credit PSR. This interior view of the building equipment room ...
Credit PSR. This interior view of the building equipment room displays heat exchangers and fan units with insulated piping for hot and cold water at left. Environmental controls and fire fighting system controls appear at right - Jet Propulsion Laboratory Edwards Facility, Propellant Curing Building, Edwards Air Force Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Mohamad Ibrahim, Norlia; Nizar Ismail, Khairul; Che Amat, Roshazita; Mohamad Ghazali, Mohamad Iqbal
2018-03-01
Cold-bonded pelletizing technique is frequently used in aggregate manufacturing process as it can minimise the energy consumption. It has contributed to both economical and environmental advantages because it helps to reduce the gas emissions problems. Bottom ash collected from municipal solid waste incineration (MSWI) plant was selected as raw material in this study and was utilised as a partial replacement for cement for artificial aggregate production. Several percentage of ash replacement was selected ranged from 10 to 50%. Aggregate pellets were subjected to different types of curing condition which is room-water (RW), room-room (RR), oven-room (OR) and oven-water (OW) condition. Properties of aggregate pellets were examined to obtain its density, water absorption, aggregate impact value (AIV) and specific gravity (SG). The results indicated that the most efficient curing regime is by exposing the aggregate in RW condition. The optimum aggregate was selected at 20% where it has satisfied the required density of 739.5kg/m3, and classified as strong aggregate with AIV 14. However, the water absorption of aggregate increased proportionately with the increment of ash content.
Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy
NASA Technical Reports Server (NTRS)
Gayle, Frank W.; Heubaum, Frank H.; Pickens, Joseph R.
1990-01-01
The structure and properties of the strengthening phases formed during aging in an Al-Cu-Li-Ag-Mg alloy (Weldalite 049) were elulcidated, by following the development of the microstructure by means of TEM. The results of observations showed that the Weldalite 049 alloy has a series of unusual and technologically useful combinations of mechanical properties in different aging conditions, such as natural aging without prior cold work to produce high strengths, a reversion temper of lower yield strength and unusually high ductility, a room temperature reaging of the reversion temper eventually leading to the original T4 hardness, and ultrahigh-strength T6 properties.
Extraction and analysis of adenosine triphosphate from aquatic environments
Stephens, Doyle W.; Shultz, David J.
1981-01-01
A variety of adenosine triphosphate (ATP) extraction procedures have been investigated for their applicability to samples from aquatic environments. The cold sulfuric-oxalic acid procedure was best suited to samples consisting of water, periphyton, and sediments. Due to cation and fulvic acid interferences, a spike with a known quantity of ATP was necessary to estimate losses when sediments were extracted. Variable colonization densities for periphyton required that several replicates be extracted to characterize acdurately the periphyton community. Extracted samples were stable at room temperature for one to five hours, depending on the ATP concentration, if the pH was below 2. Neutralized samples which were quick frozen and stored at -30°C were stable for months.
Novel and unexpected clearance mechanisms for cold platelets
Rumjantseva, Viktoria; Hoffmeister, Karin M.
2015-01-01
Storage at room temperature is limited to 5 days because of the risk of bacterial growth and loss of platelet functionality. Platelet refrigeration remains impossible, because once chilled, platelets are rapidly removed from circulation. Chilling platelets (<4 h) clusters glycoprotein (GP) Ibα receptors, and β2 integrins on hepatic macrophages recognize clustered βGlcNAc residues leading to rapid clearance of acutely chilled platelets. Prolonged refrigeration increases the exposure of galactose residues such that, unexpectedly, hepatocytes remove platelets using their asialoglycoprotein receptors. Here we review current knowledge of the mechanisms of platelet removal, the existing knowledge of refrigerated platelet function, and methods to preserve platelet concentrates long-term for transfusion. PMID:19932055
Shibata, Hiroyuki; Honjo, Toshimori; Shimizu, Kaoru
2014-09-01
We report the first quantum key distribution (QKD) experiment over a 72 dB channel loss using superconducting nanowire single-photon detectors (SSPD, SNSPD) with the dark count rate (DCR) of 0.01 cps. The DCR of the SSPD, which is dominated by the blackbody radiation at room temperature, is blocked by introducing cold optical bandpass filter. We employ the differential phase shift QKD (DPS-QKD) scheme with a 1 GHz system clock rate. The quantum bit error rate (QBER) below 3% is achieved when the length of the dispersion shifted fiber (DSF) is 336 km (72 dB loss), which is low enough to generate secure keys.
Fatal hemolytic transfusion reaction due to anti-Ku in a Knull patient.
Lin, M; Wang, C L; Chen, F S; Ho, L H
2003-01-01
A fatal transfusion reaction due to anti-Ku in a Knull (Ko) patient is reported. The patient was transfused with 34 units of incompatible RBCs during 44 days of hospitalization. Apart from the first transfusion, all subsequent transfusions failed to raise the patient's Hb. No serum antibody was identified until he was transferred to another hospital for dialysis. A compatibility test demonstrated a weak antibody and autocontrol reacting at room temperature by a manual polybrene method. The antibody was considered to be a "cold agglutinin." A blood sample was sent to a reference laboratory where the patient was found to be Knull and the antibody was identified as anti-Ku.
Effects of cold temperature and ethanol content on VOC ...
Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 °C and 24 °C). The cold start phase and cold ambient temperature increased VOC and MSAT emissions dramatically by up to several orders of magnitude compared to emissions during other phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials during the cold starts were significantly higher during cold temperature tests by 7 to 21 times the warm temperature values. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, the VOC emissions from E0 and E10 fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles. This manuscript communicates APPCD research activities on air toxics VOC emissions from mobile sources from the EPAct dynamometer study. Speciated VOC emissions from light-duty vehicles running on gasoline and ethanol blends at cold tem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, T.S.C.
1997-05-01
Low transition temperature (low-{Tc}) and high-{Tc} Superconducting QUantum Interference Devices (SQUIDs) have been used to perform high-resolution magnetic measurements on samples whose temperatures are much higher than the operating temperatures of the devices. Part 1 of this work focuses on measurements of the rigidity of flux vortices in high-{Tc} superconductors using two low-{Tc} SQUIDs, one on either side of a thermally-insulated sample. The correlation between the signals of the SQUIDs is a direct measure of the extent of correlation between the movements of opposite ends of vortices. These measurements were conducted under the previously-unexplored experimental conditions of nominally-zero applied magneticmore » field, such that vortex-vortex interactions were unimportant, and with zero external current. At specific temperatures, the authors observed highly-correlated noise sources, suggesting that the vortices moved as rigid rods. At other temperatures, the noise was mostly uncorrelated, suggesting that the relevant vortices were pinned at more than one point along their length. Part 2 describes the design, construction, performance, and applications of a scanning high-{Tc} SQUID microscope optimized for imaging room-temperature objects with very high spatial resolution and magnetic source sensitivity.« less
Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
1999-01-01
Analytical models were developed to model the heat transfer through high-temperature fibrous insulation used in metallic thermal protection systems on reusable launch vehicles. The optically thick approximation was used to simulate radiation heat transfer through the insulation. Different models for gaseous conduction and solid conduction in the fibers, and for combining the various modes of heat transfer into a local, volume-averaged, thermal conductivity were considered. The governing heat transfer equations were solved numerically, and effective thermal conductivities were calculated from the steady-state results. An experimental apparatus was developed to measure the apparent thermal conductivity of insulation subjected to pressures, temperatures and temperature gradients representative of re-entry conditions for launch vehicles. The apparent thermal conductivity of an alumina fiber insulation was measured at nominal densities of 24, 48 and 96 kg/cu m. Data were obtained at environmental pressures from 10(exp 4) to 760 torr, with the insulation cold side maintained at room temperature and its hot side temperature varying up to 1000 C. The experimental results were used to evaluate the analytical models. The best analytical model resulted in effective thermal conductivity predictions that were within 8% of experimental results.
Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma.
Maisch, Tim; Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L
2012-06-01
Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm(2)). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log(10) to 5 log(10) reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided.
Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma
Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L.
2012-01-01
Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm2). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log10 to 5 log10 reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided. PMID:22467505
Reference breast temperature: proposal of an equation.
Souza, Gladis Aparecida Galindo Reisemberger de; Brioschi, Marcos Leal; Vargas, José Viriato Coelho; Morais, Keli Cristiane Correia; Dalmaso Neto, Carlos; Neves, Eduardo Borba
2015-01-01
To develop an equation to estimate the breast reference temperature according to the variation of room and core body temperatures. Four asymptomatic women were evaluated for three consecutive menstrual cycles. Using thermography, the temperature of breasts and eyes was measured as indirect reference of core body and room temperatures. To analyze the thermal behavior of the breasts during the cycle, the core body and room temperatures were normalized by means of a mathematical equation. We performed 180 observations and the core temperature had the highest correlation with the breast temperature, followed by room temperature. The proposed prediction model could explain 45.3% of the breast temperature variation, with variable room temperature variable; it can be accepted as a way to estimate the reference breast temperature at different room temperatures. The average breast temperature in healthy women had a direct relation with the core and room temperature and can be estimated mathematically. It is suggested that an equation could be used in clinical practice to estimate the normal breast reference temperature in young women, regardless of the day of the cycle, therefore assisting in evaluation of anatomical studies.
Preparation and evaluation of gelling granules to improve oral administration.
Ito, Ikumi; Ito, Akihiko; Unezaki, Sakae
2015-06-01
We investigated the preparation of oral granules that are solid when stored and that will swell and gel via water absorption, to address problems experienced by patients when taking medication. Important physical properties of gelling granules include elasticity that is normally smooth, quick water absorption and swelling properties that allow easy swallowing. We selected gelatin (GEL), succinylated gelatin (SUC-GEL) and ι-carrageenan (CAR) as matrix polymers that can undergo gelation at room temperature or at cold temperatures. Saccharide and polyethylene glycol (PEG) were added to prepare the experimental granules. The best matrix gelling granule was SUC-GEL. When xylitol (XYL), sorbitol (SOR) and maltitol (MAL) were added, elasticity was improved, and PEG improved the granule's water absorption behavior, which is an important element involved in gelation. The best granules were prepared by selecting SUC-GEL as the matrix and adding a small amount of PEG and XYL in amounts equal to that of SUC-GEL.
A 0.6 T/650 mm RT Bore Solid Nitrogen Cooled MgB2 Demonstration Coil for MRI—a Status Report
Bascuñán, Juan; Lee, Haigunan; Bobrov, Emmanuel S.; Hahn, Seungyong; Iwasa, Yukikazu; Tomsic, Mike; Rindfleisch, Matt
2014-01-01
Aiming to demonstrate feasibility and practicality of a low cost superconducting MRI magnet system targeted for use in small hospitals, rural communities and underdeveloped countries, MIT-Francis Bitter Magnet Laboratory has developed a 0.6 T/650 mm room temperature bore demonstration coil wound with multifilament MgB2 conductor and cooled via an innovative cryogenic design/operation. The coil is to be maintained cold by solid nitrogen kept in the solid state by a cryocooler. In the event of a power failure the cryocooler is automatically thermally decoupled from the system. In this paper we present details of the MgB2 conductor, winding process, and preliminary theoretical analysis of the current-carrying performance of the conductively cooled coils in zero background field and over the 10–30 K temperature range. PMID:25580068
"Deflategate": Time, Temperature, and Moisture Effects on Football Pressure
NASA Astrophysics Data System (ADS)
Blumenthal, Jack; Beljak, Lauren; Macatangay, Dahlia-Marie; Helmuth-Malone, Lilly; McWilliams, Catharina; Raptis, Sofia
2016-09-01
In a recent paper in TPT, DiLisi and Rarick used the National Football League "Deflategate" controversy to introduce to physics students the physics of a bouncing ball. In this paper, we measure and analyze the environmental effects of time, ambient temperature, and moisture on the internal pressure of an NFL football. We focus on the rate of pressure recovery that occurs when a cold football (either wet or dry) is returned to the warm locker room environment where the pressure was initially measured. Both studies stem from the so-called NFL "Deflategate" controversy in which footballs that initially met a minimum internal pressure requirement were rechecked at halftime of the AFC Championship game, and in some cases were reported to have fallen below the minimum pressure requirement. The question is whether the pressure changes were due to environmental exposure or rather to some air being released from the balls, or both.
Kaufhold, T; Fiedler, K; Jung, G; Lindner, M; Gassel, R P
1997-04-01
Reasons for indoor-moisture beyond the normal level can be caused by penetrating dampness, condensation-water, and apartment misuse. A fall in the air temperature below the dew point in connection with moulding inside buildings becomes evident mostly at places like badly insulated outer-walls or room-corners. In a number of houses built between 1980 and 1983 in the so called "Plattenbauweise" (prefabricated slabs), exclusively the inner-walls were covered in mould around cracks in the walls. Examinations showed connections between the apartment and the outer-corridor with a slight exchange of air through the cracks. Warm, wet air escaped from the apartment into the outer-corridor, and cold air entered the apartment from the outer-corridor. This temporary fall below the dewpoint caused by suitable variation of temperature probably resulted in the building materials and wallpapers becoming damp, as well as the growth of mould.
High efficiency Brayton cycles using LNG
Morrow, Charles W [Albuquerque, NM
2006-04-18
A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.
The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1
NASA Technical Reports Server (NTRS)
Aikin, R. M., Jr.
1990-01-01
The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.
Li, Xi-Hong; Wu, Mao-Yu; Wang, Ai-Li; Jiang, Yu-Qian; Jiang, Yun-Hong
2012-01-01
Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. ‘Wujiuxiang’), anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic genes in ‘Wujiuxiang’ pears during developmental ripening and temperature-induced storage. The expression of genes that encode flavanone 3-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, and R2R3 MYB transcription factor (PcMYB10) was strongly positively correlated with anthocyanin accumulation in ‘Wujiuxiang’ pears in response to both developmental and cold-temperature induction. Hierarchical clustering analysis revealed the expression patterns of the set of target genes, of which PcMYB10 and most anthocyanin biosynthetic genes were related to the same cluster. The present work may help explore the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stress at the transcriptional level in plants. PMID:23029391
Genetic variation of germination cold tolerance in Japanese rice germplasm
Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L.C.; Chamma, Helena Pescarin; Pinheiro, José Baldin
2012-01-01
Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold. PMID:23226080
Genetic variation of germination cold tolerance in Japanese rice germplasm.
Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L C; Chamma, Helena Pescarin; Pinheiro, José Baldin
2012-09-01
Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold.
Surfing Silicon Nanofacets for Cold Cathode Electron Emission Sites.
Basu, Tanmoy; Kumar, Mohit; Saini, Mahesh; Ghatak, Jay; Satpati, Biswarup; Som, Tapobrata
2017-11-08
Point sources exhibit low threshold electron emission due to local field enhancement at the tip. In the case of silicon, however, the realization of tip emitters has been hampered by unwanted oxidation, limiting the number of emission sites and the overall current. In contrast to this, here, we report the fascinating low threshold (∼0.67 V μm -1 ) cold cathode electron emission from silicon nanofacets (Si-NFs). The ensembles of nanofacets fabricated at different time scales, under low energy ion impacts, yield tunable field emission with a Fowler-Nordheim tunneling field in the range of 0.67-4.75 V μm -1 . The local probe surface microscopy-based tunneling current mapping in conjunction with Kelvin probe force microscopy measurements revealed that the valleys and a part of the sidewalls of the nanofacets contribute more to the field emission process. The observed lowest turn-on field is attributed to the absence of native oxide on the sidewalls of the smallest facets as well as their lowest work function. In addition, first-principle density functional theory-based simulation revealed a crystal orientation-dependent work function of Si, which corroborates well with our experimental observations. The present study demonstrates a novel way to address the origin of the cold cathode electron emission sites from Si-NFs fabricated at room temperature. In principle, the present methodology can be extended to probe the cold cathode electron emission sites from any nanostructured material.
Harada, E; Kanno, T
1976-01-01
1. The secretory function of the exocrine pancreas and the stomach have been studied in the course of cold acclimation of rats that had been fed at an ambient temperature of 1 degree C in a climatic room. 2. The secretory responses of pancreatic enzymes evoked by continuous infusion of pancreozymin (PZ, 2-5 mu./kg. hr) and a rapid single injection of PZ (1.7 mu./kg) reached a maximum in the group of rats fed at 1 degree C for 4 weeks, and fell to the control levels after 8 weeks. The increase in the flow of pancreatic juice evoked by single injection of PZ was maximal at 4 weeks and slightly decreased after 8 weeks. 3. The insulin (3-0 i.u./kg) evoked secretion of pancreatic enzymes gradually increased after cold exposure, reached a maximum at 4 weeks and fell to the control levels after 8 weeks. The flow of pancreatic juice after insulin injection was almost the same in every group throughout the course of cold exposure. 4. The ratio of amylase to the total amount of the protein in the pancreatic juice decreased abruptly, in contrast to an increase in the ratio of protease in the process of cold acclimation. The change in the ratio of enzyme activity in the pancreatic juice may reflect parallel changes in enzyme activity in the exocrine pancreas. 5. The gastric secretion in response to insulin and bile secretion in the group fed at 1 degree C for 7 weeks was significantly higher than that in the control group. 6. It was thus concluded that the secretory activities of digestive system were enhanced by prolonged cold exposure and then returned to control level, and that the activites of the pancreatic enzymes were altered in the process of cold acclimation in rats. PMID:978571
Korhonen, I; Hassi, J; Leppäluoto, J
2001-11-01
We exposed six healthy men to 1-h cold air (10 degrees C) daily for 11 days and measured adrenal and thyroid hormones and TSH in serum before and after the cold air exposure on days 0, 5 and 10. We observed that on days 0, 5 and 10 the resting levels and the levels after the cold exposure in serum adrenaline, thyroid hormones and TSH did not significantly change, whereas the serum noradrenaline levels showed a significant 2.2-2.5-fold increase in response to the cold air exposures. The increases were similar indicating that the subjects did not show signs of habituation in their noradrenaline responses. Therefore the 1-h cold air exposure is not sufficiently intensive to reduce the cold-induced sympathetic response.
Zarka, Daniel G.; Vogel, Jonathan T.; Cook, Daniel; Thomashow, Michael F.
2003-01-01
The Arabidopsis CBF1, 2, and 3 genes (also known as DREB1b, c, and a, respectively) encode transcriptional activators that have a central role in cold tolerance. CBF1-3 are rapidly induced upon exposing plants to low temperature, followed by expression of CBF-targeted genes, the CBF regulon, resulting in an increase in plant freezing tolerance. At present, little is known about the cold-sensing mechanism that controls CBF expression. Results presented here indicate that this mechanism does not require a cold shock to bring about the accumulation of CBF transcripts, but instead, absolute temperature is monitored with a greater degree of input, i.e. lower temperature, resulting in a greater output, i.e. higher levels of CBF transcripts. Temperature-shift experiments also indicate that the cold-sensing mechanism becomes desensitized to a given low temperature, such as 4°C, and that resensitization to that temperature requires between 8 and 24 h at warm temperature. Gene fusion experiments identified a 125-bp section of the CBF2 promoter that is sufficient to impart cold-responsive gene expression. Mutational analysis of this cold-responsive region identified two promoter segments that work in concert to impart robust cold-regulated gene expression. These sequences, designated ICEr1 and ICEr2 (induction of CBF expression region 1 or 2), were also shown to stimulate transcription in response to mechanical agitation and the protein synthesis inhibitor, cycloheximide. PMID:14500791
An Overview of Signaling Regulons During Cold Stress Tolerance in Plants
Pareek, Amit; Khurana, Ashima; Sharma, Arun K.; Kumar, Rahul
2017-01-01
Plants, being sessile organisms, constantly withstand environmental fluctuations, including low-temperature, also referred as cold stress. Whereas cold poses serious challenges at both physiological and developmental levels to plants growing in tropical or sub-tropical regions, plants from temperate climatic regions can withstand chilling or freezing temperatures. Several cold inducible genes have already been isolated and used in transgenic approach to generate cold tolerant plants. The conventional breeding methods and marker assisted selection have helped in developing plant with improved cold tolerance, however, the development of freezing tolerant plants through cold acclimation remains an unaccomplished task. Therefore, it is essential to have a clear understanding of how low temperature sensing strategies and corresponding signal transduction act during cold acclimation process. Herein, we synthesize the available information on the molecular mechanisms underlying cold sensing and signaling with an aim that the summarized literature will help develop efficient strategies to obtain cold tolerant plants. PMID:29204079
Efficacy and toxicity of formalin solutions containing paraformaldehyde for fish and egg treatments
Howe, G.E.; Marking, L.L.; Bills, T.D.; Schreier, Theresa M.
1995-01-01
Formalin used for fish and egg treatments at hatcheries often develops a white precipitate called paraformaldehyde when stored at low temperatures. This presents a problem for hatchery managers because most of the literature and treatment procedures claim that formalin containing paraformaldehyde is more toxic than pure formalin and is not safe for fish or egg treatments. Acute toxicity tests with rainbow trout (Oncorhynchus mykiss) and channel catfish (Ictalurus punctatus) showed that the toxicity of formalin solutions containing a moderate amount of fine paraformaldehyde was similar to that of pure formalin. In efficacy tests on fish eggs, the bottom fraction of a formalin solution containing paraformaldehyde and a sample from the clear top fraction were equally effective in controlling fungal infection on rainbow trout eggs and caused no treatment-related mortality. Chemical assays found on average a 3% difference in formaldehyde concentration between top and bottom fractions of a formalin solution containing paraformaldehyde. We recommend normal use of formalin solutions containing light to moderate amounts of fine paraformaldehyde. Allowing solutions to warm to room temperature may resolubilize moderate amounts of paraformaldehyde if the exposure to cold was not prolonged. If precipitation is heavier, clear top fractions can be decanted and used as normal because paraformaldehyde settles to the bottom of containers. Formalin solutions that have been exposed to freezing temperatures for long periods (more than 6 weeks) and have developed large amounts of paraformaldehyde solids should not be used and resolubilization by warming is not possible. Formation of paraformaldehyde in formalin solutions can be easily avoided by storing formalin at room temperature.
Physiological and subjective responses to low relative humidity.
Sunwoo, Yujin; Chou, Chinmei; Takeshita, Junko; Murakami, Motoko; Tochihara, Yutaka
2006-01-01
In order to investigate the influence of low relative humidity, we measured saccharin clearance time (SCT), frequency of blinking, heart rate (HR), blood pressure, hydration state of skin, transepidermal water loss (TEWL), recovery sebum level and skin temperature as physiological responses. We asked subjects to judge thermal, dryness and comfort sensations as subjective responses using a rating scale. Sixteen non-smoking healthy male students were selected. The pre-room conditions were maintained at an air temperature (Ta) of 25 degrees C and a relative humidity (RH) of 50%. The test room conditions were adjusted to provide a Ta of 25 degrees C and RH levels of 10%, 30% and 50%.RH had no effect on the activity of the sebaceous gland and on cardiovascular reactions like blood pressure and HR. However, it was obvious that low RH affects SCT, the dryness of the ocular mucosa and the stratum corneum of the skin and causes a decrease in mean skin temperature. Under 30% RH, the eyes and skin become dry, and under 10% RH the nasal mucous membrane becomes dry as well as the eyes and skin, and the mean skin temperature decreases. These findings suggested that to avoid dryness of the eyes and skin, it is necessary to maintain an RH greater than 30%, and to avoid dryness of the nasal mucous membrane, it is necessary to maintain an RH greater than 10%. Subjects felt cold immediately after a change in RH while they had only a slight perception of dryness at the change of humidity.
Lin, Shao; Lawrence, Wayne R; Lin, Ziqiang; DiRienzo, Stephen; Lipton, Kevin; Dong, Guang-Hui; Leung, Ricky; Lauper, Ursula; Nasca, Philip; Stuart, Neil
2018-10-15
More extreme cold weather and larger weather variations have raised concerns regarding their effects on public health. Although prior studies assessed the effects of cold air temperature on health, especially mortality, limited studies evaluated wind chill temperatures on morbidity, and health effects under the current cold warning threshold. This study identified the thresholds, lag periods, and best indicators of extreme cold on cardiovascular disease (CVD) by comparing effects of wind chill temperatures and cold air temperatures on CVD emergency department (ED) visits in winter and winter transition months. Information was collected on 662,625 CVD ED visits from statewide hospital discharge dataset in New York State. Meteorological factors, including air temperature, wind speed, and barometric pressure were collected from National Oceanic and Atmospheric Administration. A case-crossover approach was used to assess the extreme cold-CVD relationship in winter (December-February) and transition months (November and March) after controlling for PM 2.5 . Conditional logistic regression models were employed to analyze the association between cold weather factors and CVD ED visits. We observed CVD effects occurred when wind chill temperatures were as high as -3.8 °C (25 °F), warmer than current wind chill warning standard (≤-28.8 °C or ≤-20 °F). Wind chill temperature was a more sensitive indicator of CVD ED visits during winter with temperatures ≤ -3.8 °C (25 °F) with delay effect (lag 6); however, air temperature was better during transition months for temperatures ≤ 7.2 °C (45 °F) at earlier lag days (1-3). Among all CVD subtypes, hypertension ED visit had the strongest negative association with both wind chill temperature and air temperature. This study recommends modifying the current cold warning temperature threshold given larger proportions of CVD cases are occurring at considerably higher temperatures than the current criteria. We also recommend issuing cold warnings in winter transitional months. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, Eunyoung; Lee, Bum-Jin; Ha, Jaehyoun; Shin, Hyun-Jung; Chung, Jin-Oh
2016-09-01
This study was aimed at assessing the therapeutic efficacy of green tea on peripheral skin for cold hypersensitive subjects, who had the feeling of cold hands and feet at cold temperatures, one of the most common complaints in Asian women. This randomized and placebo-controlled clinical study included 60 female Korean subjects who had the feeling of cold hands and feet at cold temperatures. The subjects were randomly assigned into two groups to receive fermented green tea or a placebo (hot water). The skin temperature of the hands and feet was measured using digital infrared thermography at the baseline and at 15, 30, 45, and 60 min after the oral administration of the tea or placebo. The skin temperature of the hands and feet of the fermented green tea-administered group was significantly higher than that of the placebo-administered group. The temperature difference between the finger and the dorsum of the hand was significantly lower in the fermented green tea-administered group than that in the placebo group. Fermented green tea is helpful for cold hypersensitivity. This is the first clinical study to evaluate the efficacy of fermented green tea on peripheral skin in subjects having the feeling of cold hands and feet at cold temperatures by infrared thermography. However, further studies are necessary to evaluate the long-term effects of the fermented green tea for cold hypersensitivity and to elucidate the underlying physiological mechanism. © 2015 Wiley Periodicals, Inc.
Erenberk, Ufuk; Torun, Emel; Ozkaya, Emin; Uzuner, Selcuk; Demir, Aysegul Dogan; Dundaroz, Rusen
2013-12-01
The aim of this study was to determine if the skin temperature of febrile children is affected by the child's exposure to cold outdoor temperatures immediately prior to the taking of that temperature. A total of 150 febrile and non-febrile children (aged 3-10 years) who had walked to the hospital's pediatric emergency department and were thus exposed to outside cold weather were enrolled in the study. Using infrared thermometry, forehead and chest skin temperatures were simultaneously measured every 2 min during the first 14 min after presentation. Temperatures were recorded and differences between the two measurements were calculated. By the fifth evaluation (10 min from the first reading), skin temperatures from forehead and chest had equalized. Determination of fever from the body parts that had been exposed to cold environmental conditions may cause contradictory results if taken while the child is still chilled from exposure to the cold. For accuracy, children should be acclimated to the indoor temperature before taking body temperature readings. Acclimation takes at least 10 min after coming in from cold weather outside. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.
Ding, Zan; Li, Liujiu; Wei, Ruqin; Dong, Wenya; Guo, Pi; Yang, Shaoyi; Liu, Ju; Zhang, Qingying
2016-10-01
Consistent evidence has shown excess mortality associated with cold temperature, but some important details of the cold-mortality association (e.g. slope and threshold) have not been adequately investigated and few studies focused on the cold effect in high-altitude areas of developing countries. We attempted to quantify the cold effect on mortality, identify the details, and evaluate effect modification in the distinct subtropical plateau monsoon climate of Yuxi, a high plateau region in southwest China. From daily mortality and meteorological data during 2009-2014, we used a quasi-Poisson model combined with a "natural cubic spline-natural cubic spline" distributed lag non-linear model to estimate the temperature-mortality relationship and then a simpler "hockey-stick" model to investigate the cold effect and details. Cold temperature was associated with increased mortality, and the relative risk of cold effect (1st relative to 10th temperature percentile) on non-accidental, cardiovascular, and respiratory mortality for lag 0-21 days was 1.40 (95% confidence interval: 1.19-1.66), 1.61 (1.28-2.02), and 1.13 (0.78-1.64), respectively. A 1°C decrease below a cold threshold of 9.1°C (8th percentile) for lags 0-21 was associated with a 7.35% (3.75-11.09%) increase in non-accidental mortality. The cold-mortality association was not significantly affected by cause-specific mortality, gender, age, marital status, ethnicity, occupation, or previous history of hypertension. There is an adverse impact of cold on mortality in Yuxi, China, and a temperature of 9.1°C is an important cut-off for cold-related mortality for residents. Copyright © 2016 Elsevier Inc. All rights reserved.
Bansal, Sheel; St Clair, J Bradley; Harrington, Constance A; Gould, Peter J
2015-10-01
The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool-temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed-source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool-temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3-fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed-source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed-source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed-source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Instrument Packages for the Cold, Dark, High Radiation Environments
NASA Technical Reports Server (NTRS)
Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.
2011-01-01
We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.
Gaydos, Nelson J; Cutter, Catherine N; Campbell, Jonathan A
2016-10-01
Preservation by pickling has been used for many years to extend the shelf life of various types of food products. By storing meat products in a brine solution containing an organic acid, salt, spices, as well as other preservatives, the pH of the product is reduced, thus increasing the safety and shelf life of the product. Pickling may involve the use of heated brines to further add to the safety of the food product. When precooked, ready-to-eat (RTE) sausages are pickled with a heated brine solution, the process is referred to as hot filling. However, hot filling has been shown to affect the clarity of the brine, making the product cloudy and unappealing to consumers. Because of the potential quality defects caused by higher temperatures associated with hot fill pickling, cold fill pickling, which uses room temperature brine, is preferred by some pickled sausage manufacturers. Because little information exists on the safety of cold fill, pickled sausages, a challenge study was designed using a brine solution (5% acetic acid and 5% salt at 25°C) to pickle precooked, RTE sausages inoculated with a pathogen cocktail consisting of Salmonella Typhimurium, Salmonella Senftenberg, Salmonella Montevideo, Listeria monocytogenes , and Staphylococcus aureus . All pathogens were reduced ~6.80 log CFU/g in 72 h when enumerated on nonselective media. On selective media, Salmonella and L. monocytogenes decreased 6.33 and 6.35 log CFU/g in 12 h, respectively whereas S. aureus was reduced 6.80 log CFU/g in 24 h. Sausages experienced significant (P ≤ 0.05) decreases in pH over the 28 days of storage, whereas no significant differences were observed in water activity (P =0.1291) or salt concentration of the sausages (P =0.1445) or brine (P =0.3180). The results of this experiment demonstrate that cold fill pickling can effectively reduce and inhibit bacterial pathogens.
Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato
USDA-ARS?s Scientific Manuscript database
Storing potato (Solanum tuberosum) tubers at cold temperatures prevents sprouting and minimizes losses due to disease. Unfortunately, cold storage triggers an accumulation of reducing sugars, a phenomenon referred to as cold-induced sweetening (CIS). High-temperature processing of potato tubers wit...
Reference breast temperature: proposal of an equation
de Souza, Gladis Aparecida Galindo Reisemberger; Brioschi, Marcos Leal; Vargas, José Viriato Coelho; Morais, Keli Cristiane Correia; Dalmaso, Carlos; Neves, Eduardo Borba
2015-01-01
ABSTRACT Objective To develop an equation to estimate the breast reference temperature according to the variation of room and core body temperatures. Methods Four asymptomatic women were evaluated for three consecutive menstrual cycles. Using thermography, the temperature of breasts and eyes was measured as indirect reference of core body and room temperatures. To analyze the thermal behavior of the breasts during the cycle, the core body and room temperatures were normalized by means of a mathematical equation. Results We performed 180 observations and the core temperature had the highest correlation with the breast temperature, followed by room temperature. The proposed prediction model could explain 45.3% of the breast temperature variation, with variable room temperature variable; it can be accepted as a way to estimate the reference breast temperature at different room temperatures. Conclusion The average breast temperature in healthy women had a direct relation with the core and room temperature and can be estimated mathematically. It is suggested that an equation could be used in clinical practice to estimate the normal breast reference temperature in young women, regardless of the day of the cycle, therefore assisting in evaluation of anatomical studies. PMID:26761549
Mäkinen, Tiina M; Juvonen, Raija; Jokelainen, Jari; Harju, Terttu H; Peitso, Ari; Bloigu, Aini; Silvennoinen-Kassinen, Sylvi; Leinonen, Maija; Hassi, Juhani
2009-03-01
The association between cold exposure and acute respiratory tract infections (RTIs) has remained unclear. The study examined whether the development of RTIs is potentiated by cold exposure and lowered humidity in a northern population. A population study where diagnosed RTI episodes, outdoor temperature and humidity among conscripts (n=892) were analysed. Altogether 643 RTI episodes were diagnosed during the follow-up period. Five hundred and ninety-five episodes were upper (URTI) and 87 lower (LRTI) RTIs. The mean average daily temperature preceding any RTIs was -3.7+/-10.6; for URTI and LRTI they were -4.1+/-10.6 degrees C and -1.1+/-10.0 degrees C, respectively. Temperature was associated with common cold (p=0.017), pharyngitis (p=0.011) and LRTI (p=0.048). Absolute humidity was associated with URTI (p<0.001). A 1 degrees C decrease in temperature increased the estimated risk for URTI by 4.3% (p<0.0001), for common cold by 2.1% (p=0.004), for pharyngitis by 2.8% (p=0.019) and for LRTI by 2.1% (p=0.039). A decrease of 1g/m(-3) in absolute humidity increased the estimated risk for URTI by 10.0% (p<0.001) and for pharyngitis by 10.8% (p=0.023). The average outdoor temperature decreased during the preceding three days of the onset of any RTIs, URTI, LRTI or common cold. The temperature for the preceding 14 days also showed a linear decrease for any RTI, URTI or common cold. Absolute humidity decreased linearly during the preceding three days before the onset of common cold, and during the preceding 14 days for all RTIs, common cold and LRTI. Cold temperature and low humidity were associated with increased occurrence of RTIs, and a decrease in temperature and humidity preceded the onset of the infections.
Cold resistance depends on acclimation and behavioral caste in a temperate ant
NASA Astrophysics Data System (ADS)
Modlmeier, Andreas P.; Pamminger, Tobias; Foitzik, Susanne; Scharf, Inon
2012-10-01
Adjusting to low temperatures is important for animals living in cold environments. We studied the chill-coma recovery time in temperate ant workers ( Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill-coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.
NASA Astrophysics Data System (ADS)
Sai Anuhya, Danam; Gupta, Ashutosh; Nayan, Niraj; Narayana Murty, S. V. S.; Manna, R.; Sastry, G. V. S.
2014-08-01
Al-Cu-Mg alloys are extensively used for riveting applications in aerospace industries due to their relatively high shear strength coupled with high plasticity. The significant advantage of using V65 aluminum alloy ((Al-4Cu-0.2Mg) for rivet application also stems from its significantly slower natural aging kinetics, which gives operational flexibility to carryout riveting operation even after 4 days of solution heat treatment, in contrast to its equivalent alloy AA2024.Rivets are usually made by cold heading of wire rods. In order to form a defect free rivet head, grain size control in wire rods is essential at each and every stage of processing right from casting onwards upto the final wire drawing stage. Wire drawing is carried out at room temperature to reduce diameter as well as impart good surface finish. In the present study, different microstructures in V65 alloy bars were produced by rolling at different temperatures (room temperature to 523K) and subsequently deformed by equal channel angular pressing (ECAP) at 423K upto an equivalent strain of 7. ECAP was carried out to study the effect of initial microstructure on grain refinement and degree of deformation on the evolution of ultrafine grain structure. The refinement of V65 alloy by ECAP is significantly influenced by Initial microstructure but amount of deformation strongly affects the evolution processes as revealed by optical microscopy and transmission electron microscopy.
Advanced processing of CdTe pixel radiation detectors
NASA Astrophysics Data System (ADS)
Gädda, A.; Winkler, A.; Ott, J.; Härkönen, J.; Karadzhinova-Ferrer, A.; Koponen, P.; Luukka, P.; Tikkanen, J.; Vähänen, S.
2017-12-01
We report a fabrication process of pixel detectors made of bulk cadmium telluride (CdTe) crystals. Prior to processing, the quality and defect density in CdTe material was characterized by infrared (IR) spectroscopy. The semiconductor detector and Flip-Chip (FC) interconnection processing was carried out in the clean room premises of Micronova Nanofabrication Centre in Espoo, Finland. The chip scale processes consist of the aluminum oxide (Al2O3) low temperature thermal Atomic Layer Deposition (ALD), titanium tungsten (TiW) metal sputtering depositions and an electroless Nickel growth. CdTe crystals with the size of 10×10×0.5 mm3 were patterned with several photo-lithography techniques. In this study, gold (Au) was chosen as the material for the wettable Under Bump Metalization (UBM) pads. Indium (In) based solder bumps were grown on PSI46dig read out chips (ROC) having 4160 pixels within an area of 1 cm2. CdTe sensor and ROC were hybridized using a low temperature flip-chip (FC) interconnection technique. The In-Au cold weld bonding connections were successfully connecting both elements. After the processing the detector packages were wire bonded into associated read out electronics. The pixel detectors were tested at the premises of Finnish Radiation Safety Authority (STUK). During the measurement campaign, the modules were tested by exposure to a 137Cs source of 1.5 TBq for 8 minutes. We detected at the room temperature a photopeak at 662 keV with about 2 % energy resolution.
Cho, GyeYoon; Han, KyuChul; Yoon, JinYoung
2015-01-01
Objectives: Scolopendra subspinipes mutilans (S. subspinipes mutilans) is known as a traditional medicine and includes various amino acids, peptides and proteins. The amino acids in the pharmacopuncture extracted from S. subspinipes mutilans by using derivatization methods were analyzed quantitatively and qualitatively by using high performance liquid chromatography (HPLC) over a 12 month period to confirm its stability. Methods: Amino acids of pharmacopuncture extracted from S. subspinipes mutilans were derived by using O-phthaldialdehyde (OPA) & 9-fluorenyl methoxy carbonyl chloride (FMOC) reagent and were analyzed using HPLC. The amino acids were detected by using a diode array detector (DAD) and a fluorescence detector (FLD) to compare a mixed amino acid standard (STD) to the pharmacopuncture from centipedes. The stability tests on the pharmacopuncture from centipedes were done using HPLC for three conditions: a room temperature test chamber, an acceleration test chamber, and a cold test chamber. Results: The pharmacopuncture from centipedes was prepared by using the method of the Korean Pharmacopuncture Institute (KPI) and through quantitative analyses was shown to contain 9 amino acids of the 16 amino acids in the mixed amino acid STD. The amounts of the amino acids in the pharmacopuncture from centipedes were 34.37 ppm of aspartate, 123.72 ppm of arginine, 170.63 ppm of alanine, 59.55 ppm of leucine and 57 ppm of lysine. The relative standard deviation (RSD %) results for the pharmacopuncture from centipedes had a maximum value of 14.95% and minimum value of 1.795% on the room temperature test chamber, the acceleration test chamber and the cold test chamber stability tests. Conclusion: Stability tests on and quantitative and qualitative analyses of the amino acids in the pharmacopuncture extracted from centipedes by using derivatization methods were performed by using HPLC. Through research, we hope to determine the relationship between time and the concentrations of the amino acids in the pharmacopuncture extracted from centipedes. PMID:25830058
Cho, GyeYoon; Han, KyuChul; Yoon, JinYoung
2015-03-01
Scolopendra subspinipes mutilans (S. subspinipes mutilans) is known as a traditional medicine and includes various amino acids, peptides and proteins. The amino acids in the pharmacopuncture extracted from S. subspinipes mutilans by using derivatization methods were analyzed quantitatively and qualitatively by using high performance liquid chromatography (HPLC) over a 12 month period to confirm its stability. Amino acids of pharmacopuncture extracted from S. subspinipes mutilans were derived by using O-phthaldialdehyde (OPA) & 9-fluorenyl methoxy carbonyl chloride (FMOC) reagent and were analyzed using HPLC. The amino acids were detected by using a diode array detector (DAD) and a fluorescence detector (FLD) to compare a mixed amino acid standard (STD) to the pharmacopuncture from centipedes. The stability tests on the pharmacopuncture from centipedes were done using HPLC for three conditions: a room temperature test chamber, an acceleration test chamber, and a cold test chamber. The pharmacopuncture from centipedes was prepared by using the method of the Korean Pharmacopuncture Institute (KPI) and through quantitative analyses was shown to contain 9 amino acids of the 16 amino acids in the mixed amino acid STD. The amounts of the amino acids in the pharmacopuncture from centipedes were 34.37 ppm of aspartate, 123.72 ppm of arginine, 170.63 ppm of alanine, 59.55 ppm of leucine and 57 ppm of lysine. The relative standard deviation (RSD %) results for the pharmacopuncture from centipedes had a maximum value of 14.95% and minimum value of 1.795% on the room temperature test chamber, the acceleration test chamber and the cold test chamber stability tests. Stability tests on and quantitative and qualitative analyses of the amino acids in the pharmacopuncture extracted from centipedes by using derivatization methods were performed by using HPLC. Through research, we hope to determine the relationship between time and the concentrations of the amino acids in the pharmacopuncture extracted from centipedes.
Adequacy of solar energy to keep babies warm.
Daga, S R; Sequera, D; Goel, S; Desai, B; Gajendragadkar, A
1996-02-01
Solar energy could be used as an alternate energy source for keeping neonates warm especially in tropical countries. The present study investigated the efficacy of solar powered room heating system. Referral center for neonatal care. A fluid system heated by solar panels and circulated into a room was used to maintain room temperature. A servocontrolled heating device was used to regulate and maintain desired room temperature. Neonatal rectal temperature and room temperature. Infants between 1750-2250 g were observed to require a mean room temperature of 32.5 degrees C to maintain normothermia. In 85 infants less than 1500 g, of the 5050 infant temperature records, only 3% showed a record less than 36 degrees C. Solar powered room heating is effective in maintaining infant temperature and is cost-effective as compared to the existing warming devices.
A&M. TAN607 second floor plan for cold assembly area. Metallurgical ...
A&M. TAN-607 second floor plan for cold assembly area. Metallurgical lab, chemistry lab, nuclear instrument lab, equipment rooms. Ralph M. Parsons 902-ANP-607-A 102. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-693-106754 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Altered thermogenesis and impaired bone remodeling in Misty mice
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J
2013-01-01
Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a and less sympathetic innervation compared to wildtype (+/+)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hr), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2 and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wildtype. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wildtype and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular BV/TV loss in the distal femur of Misty mice without affecting wildtype. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling. PMID:23553822
Patients' experiences of cold exposure during ambulance care.
Aléx, Jonas; Karlsson, Stig; Saveman, Britt-Inger
2013-06-06
Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients' experiences of cold exposure and to identify related factors. During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients' finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from -22.3°C to 8.4°C. Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons.
Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu
2018-04-01
Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum , thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.
Qiu, Hong; Sun, Shengzhi; Tang, Robert; Chan, King-Pan; Tian, Linwei
2016-10-15
The growth of pathogens potentially relevant to respiratory tract infection may be triggered by changes in ambient temperature. Few studies have examined the association between ambient temperature and pneumonia incidence, and no studies have focused on the susceptible elderly population. We aimed to examine the short-term association between ambient temperature and geriatric pneumonia and to assess the disease burden attributable to cold and hot temperatures in Hong Kong, China. Daily time-series data on emergency hospital admissions for geriatric pneumonia, mean temperature, relative humidity, and air pollution concentrations between January 2005 and December 2012 were collected. Distributed-lag nonlinear modeling integrated in quasi-Poisson regression was used to examine the exposure-lag-response relationship between temperature and pneumonia hospitalization. Measures of the risk attributable to nonoptimal temperature were calculated to summarize the disease burden. Subgroup analyses were conducted to examine the sex difference. We observed significant nonlinear and delayed associations of both cold and hot temperatures with pneumonia in the elderly, with cold temperatures having stronger effect estimates. Among the 10.7% of temperature-related pneumonia hospitalizations, 8.7% and 2.0% were attributed to cold and hot temperatures, respectively. Most of the temperature-related burden for pneumonia hospitalizations in Hong Kong was attributable to cold temperatures, and elderly men had greater susceptibility. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Mondelain, Didier; Payan, Sebastien; Deng, Wenping; Camy-Peyret, Claude; Hurtmans, Daniel; Mantz, Arlan W.
2007-01-01
We measured the temperature dependence of the nitrogen broadening, narrowing and line-mixing coefficients of four lines of the P9 manifold in the v3 band of 12CH4 for atmospheric purposes. The data were collected using our tunable diode laser (TDL) spectrometer with active wavenumber control coupled to a newly developed cold Herriott cell with a path length of 5.37 m and a temperature uniformity of better than 0.01 K along the cell. We recorded and analyzed spectra recorded at sample temperature between 90 K and room temperature. We have investigate the influence of our new results in the inversion model used to retrieve methane profiles from atmospheric spectra; our new results make it possible to retrieve significantly more precise methane profiles. The atmospheric spectra we utilized were obtained by several of us with a balloon-born Fourier Transform infrared experiment in a limb configuration. Differences up to 7% on the retrieved volume mixing ratio were found compared to an inversion model using only HITRAN04 spectroscopic parameters.
Work climate and work load measurement in production room of Batik Merak Manis Laweyan
NASA Astrophysics Data System (ADS)
Suhardi, Bambang; Simanjutak, Sry Yohana; Laksono, Pringgo Widyo; Herjunowibowo, Dewanto
2017-11-01
The work environment is everything around the labours that can affect them in the exercise of duties and work that is charged. In a work environment, there are workplace climate and workload which affect the labour in force carrying out its work. The working climate is one of the physical factors that could potentially cause health problems towards labour at extreme conditions of hot and cold that exceed the threshold limit value allowed by the standards of health. The climate works closely related to the workload accepted by workers in the performance of their duties. The influence of workload is pretty dominant against the performance of human resources and may cause negative effects to the safety and health of the labours. This study aims to measure the effect of the work climate and the workload against workers productivity. Furthermore, some suggestions to increase the productivity also been recommended. The research conducted in production room of Batik Merak Manis Laweyan. The results showed that the workplace climate and the workload at eight stations in production room of Merak Manis does not agree to the threshold limit value that has been set. Therefore, it is recommended to add more opening windows to add air velocity inside the building thus the humidity and temperature might be reduced.
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
Experimental Results Obtained with Air Liquide Cold Compression System: CERN LHC and SNS Projects
NASA Astrophysics Data System (ADS)
Delcayre, F.; Courty, J.-C.; Hamber, F.; Hilbert, B.; Monneret, E.; Toia, J.-L.
2006-04-01
Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high-capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC will be detailed. The principles of control for the CCC in series will be detailed.
Barthel, Erik R; Pierce, James R
2012-06-01
Hypothermia results in vital sign lability, coagulopathy, wound infections, and other sequelae. Normothermia can be restored by several modalities, including passive blanket heating, warm forced-air devices, and active fluid warming (AFW). In AFW, intravenously administered fluids are heated to 40 to 45 °C to minimize net thermal losses and to raise body temperature. Clinical studies have demonstrated the efficacy of AFW as part of a strategy encompassing several methods, but the isolated contribution of AFW to warming has not been theoretically examined in detail. A calorimetric model is derived to determine the functional dependence of warming on patient weight, hypothermia severity, infusion temperature, and volume infused. A second heat transfer model is derived to describe the time-dependent temperature changes of the periphery and core after warmed-fluid infusion. There is an inverse linear relationship between the patient's initial temperature and the amount of warming achieved with a given volume. In contrast, as the temperature of the infusion approaches the desired final temperature, the volume required for a fixed temperature change increases nonlinearly. For weight-based boluses, the temperature change scales appropriately with patient mass. Infusion of 2 L of room-temperature crystalloid results in a decrease in body temperature of approximately one-third degree Celsius in the average normothermic adult. For the heat transfer model, previously reported rates of temperature drop and recovery after the intravenous infusion of cold fluids are qualitatively reproduced with a blood mixing time of approximately 15 minutes. Our calculations reveal that AFW has a larger measurable beneficial effect for patients with more severe hypothermia, but true rewarming of the patient with AFW alone would require prohibitively large fluid volumes (more than 10 L of 40 °C fluid) or dangerously hot fluid (20 mL/kg of 80 °C fluid for a 1 °C increase). The major beneficial effect of AFW is the prevention of further net heat loss. Copyright © 2012 by Lippincott Williams & Wilkins.
The cold driver: Cold stress while driving results in dangerous behavior.
Morris, Drew M; Pilcher, June J
2016-10-01
Cool vehicle cabin temperatures can induce short-term non-hypothermic cold stress. The current study created a cold condition to examine the impact of cold stress on driving behavior. Forty-four participants drove a high-fidelity driving simulator during a thermal neutral or local torso cooled condition. Participants performed additional tasks to assess attention, psychomotor vigilance, and manual dexterity. Skin temperature was significantly lower in the cold condition while internal temperature was unaffected. Participants who had higher subjective ratings of cold followed lead vehicles closer and started to brake later. Participants in the cold condition followed the lead car 22% (0.82s) closer and started braking 20% (2.35s) later when approaching a stop sign during the car-following task. No change in attention, psychomotor vigilance, or dexterity was observed. The current results suggest that cold environmental conditions can contribute to dangerous driving behaviors. Measures of cold perception were also shown to predict changes in driving behavior. Copyright © 2016 Elsevier B.V. All rights reserved.
Extracerebral deep-body cold sensitivity in the Pekin duck.
Inomoto, T; Simon, E
1981-09-01
Pekin ducks, in which cerebral cold sensitivity is negligible, were submitted to general body cooling at warm, thermoneutral, and cold ambient temperature (Ta) with an intestinal thermode. In some animals, hypothermia was enhanced by additional hypothalamic cooling that suppressed cold defense. In other animals, the spinal cord was cooled, either selectively or during intestinal cooling. From core temperature (Tc) and metabolic heat production (M) an overall cold sensitivity of about -5 to -6 W . kg-1 . degrees C-1 was determined at thermoneutrality. Maximum M amounted to four to five times the resting M of 3.8 W . kg-1 and was attained when Tc fell by 2.5 degrees C or more. In the cold, threshold Tc for the activation of M was elevated; overall cold sensitivity remained constant. In the warmth, threshold Tc was lowered; overall cold sensitivity was reduced, if mean skin temperature (Tsk) remained at aout 39 degrees C or higher. Spinal cold sensitivity amounted to about -0.25 W . kg-1 . degrees C-1 at normal Tc and thermoneutral and warm Ta; it increased to aout -0.50 W . kg-1 . degrees C-1 in the cold and during hypothermia. Peripheral cold sensitivity was estimated from Tsk and M as -0.4 to -0.8 W . kg-1 . degrees C-1. It is concluded that overall cold sensitivity in ducks mainly depends on deep-body temperature sensors outside of the central nervous system.
Cold chain monitoring during cold transportation of human corneas for transplantation.
Net, M; Trias, E; Navarro, A; Ruiz, A; Diaz, P; Fontenla, J R; Manyalich, M
2003-08-01
As recommended by international standards the cornea should be maintained in a specific temperature range (2 degrees -8 degrees C) to guarantee its viability. However, there is no standard packaging method to maintain these conditions during transport. Our packaging system is similar to those used by the main eye banks in Spain and elsewhere in Europe. The objective is to monitor the cold chain in the current packaging method to validate the maintenance of temperature within the adequate range for a minimum 24-hour period. The effects of the following variables were studied: number and freezing temperature of the cold packs; air volume in the packaging system; position of the cornea in the packaging system; and the wall section of the container. Exterior temperature was maintained constant at 20 degrees to 24 degrees C. The cold chain was monitored using a device that measures temperature continuously and for which a histogram of temperature variation can be downloaded to a computer for further analysis. When the cold packs were frozen to -40 degrees C or the number of cold packs increased to four, the temperature decreased quickly to 0 degrees C and the transport period was not prolonged. The main objective was to improve isolation by reducing inner air volume, and maintaining the position of the cornea in the container. The currently used cold packaging systems (not frozen, 4 degrees C) do not maintain the temperature within the accepted range for the required distribution period. The improved system maintains the cornea at between 2 degrees C and 6 degrees C for a minimum of 24 hours.
Moon, Seong-Cheol; Joo, Su-Yeon; Chung, Tae-Wook; Choi, Hee-Jung; Park, Mi-Ju; Choi, Hee-Jin; Bae, Sung-Jin; Kim, Keuk-Jun; Kim, Cheorl-Ho; Joo, Myungsoo; Ha, Ki-Tae
2016-07-29
Ambient cold temperature, as an abiotic stress, regulates the survival, stability, transmission, and infection of pathogens. However, the effect of cold temperature on the host receptivity to the pathogens has not been fully studied. In this study, the expression of terminal α-2,3- and α-2,6-sialic acids were increased in murine lung tissues, especially bronchial epithelium, by exposure to cold condition. The expression of several sialyltransferases were also increased by exposure to cold temperature. Furthermore, in human bronchial epithelial BEAS-2B cells, the expressions of α-2,3- and α-2,6-sialic acids, and mRNA levels of sialyltransferases were increased in the low temperature condition at 33 °C. On the other hand, the treatment of Lith-Gly, a sialyltransferase inhibitor, blocked the cold-induced expression of sialic acids on surface of BEAS-2B cells. The binding of influenza H1N1 hemagglutinin (HA) toward BEAS-2B cells cultured at low temperature condition was increased, compared to 37 °C. In contrast, the cold-increased HA binding was blocked by treatment of lithocholicglycine and sialyl-N-acetyl-D-lactosamines harboring α-2,3- and α-2,6-sialyl motive. These results suggest that the host receptivity to virus at cold temperature results from the expressions of α-2,3- and α-2,6-sialic acids through the regulation of sialyltransferase expression. Copyright © 2016 Elsevier Inc. All rights reserved.
Cold-Cap Temperature Profile Comparison between the Laboratory and Mathematical Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.
2015-06-01
The rate of waste vitrification in an electric melter is connected to the feed-to-glass conversion process, which occurs in the cold cap, a layer of reacting feed on top of molten glass. The cold cap consists of two layers: a low temperature (~100°C – ~800°C) region of unconnected feed and a high temperature (~800°C – ~1100°C) region of foam with gas bubbles and cavities mixed in the connected glass melt. A recently developed mathematical model describes the effect of the cold cap on glass production. For verification of the mathematical model, a laboratory-scale melter was used to produce a coldmore » cap that could be cross-sectioned and polished in order to determine the temperature profile related to position in the cold cap. The cold cap from the laboratory-scale melter exhibited an accumulation of feed ~400°C due to radiant heat from the molten glass creating dry feed conditions in the melter, which was not the case in the mathematical model where wet feed conditions were calculated. Through the temperature range from ~500°C – ~1100°C, there was good agreement between the model and the laboratory cold cap. Differences were observed between the two temperature profiles due to the temperature of the glass melts and the lack of secondary foam, large cavities, and shrinkage of the primary foam bubbles upon the cooling of the laboratory-scale cold cap.« less
Heated insufflation with or without humidification for laparoscopic abdominal surgery.
Birch, Daniel W; Dang, Jerry T; Switzer, Noah J; Manouchehri, Namdar; Shi, Xinzhe; Hadi, Ghassan; Karmali, Shahzeer
2016-10-19
Intraoperative hypothermia during both open and laparoscopic abdominal surgery may be associated with adverse events. For laparoscopic abdominal surgery, the use of heated insufflation systems for establishing pneumoperitoneum has been described to prevent hypothermia. Humidification of the insufflated gas is also possible. Past studies on heated insufflation have shown inconclusive results with regards to maintenance of core temperature and reduction of postoperative pain and recovery times. To determine the effect of heated gas insufflation compared to cold gas insufflation on maintaining intraoperative normothermia as well as patient outcomes following laparoscopic abdominal surgery. We searched Cochrane Colorectal Cancer Specialised Register (September 2016), the Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library 2016, Issue 8), Ovid MEDLINE (1950 to September 2016), Ovid Embase (1974 to September 2016), International Pharmaceutical Abstracts (IPA) (September 2016), Web of Science (1985 to September 2016), Scopus, www.clinicaltrials.gov and the National Research Register (1956 to September 2016). We also searched grey literature and cross references. Searches were limited to human studies without language restriction. Only randomised controlled trials comparing heated (with or without humidification) with cold gas insufflation in adult and paediatric populations undergoing laparoscopic abdominal procedures were included. We assessed study quality in regards to relevance, design, sequence generation, allocation concealment, blinding, possibility of incomplete data and selective reporting. Two review authors independently selected studies for the review, with any disagreement resolved in consensus with a third co-author. Two review authors independently performed screening of eligible studies, data extraction and methodological quality assessment of the trials. We classified a study as low-risk of bias if all of the first six main criteria indicated in the 'Risk of Bias Assessment' table were assessed as low risk. We used data sheets to collect data from eligible studies. We presented results using mean differences for continuous outcomes and relative risks for dichotomous outcomes, with 95% confidence intervals. We used Review Manager (RevMan) 5.3 software to calculate the estimated effects. We took publication bias into consideration and compiled funnel plots. We included 22 studies in this updated analysis, including six new trials with 584 additional participants, resulting in a total of 1428 participants. The risk of bias was low in 11 studies, high in one study and unclear in the remaining studies, due primarily to failure to report methodology for randomisation, and allocation concealment or blinding, or both. Fourteen studies examined intraoperative core temperatures among heated and humidified insufflation cohorts and core temperatures were higher compared to cold gas insufflation (MD 0.31 °C, 95% CI, 0.09 to 0.53, I 2 = 88%, P = 0.005) (low-quality evidence). If the analysis was limited to the eight studies at low risk of bias, this result became non-significant but remained heterogeneous (MD 0.18 °C, 95% CI, -0.04 to 0.39, I 2 = 81%, P = 0.10) (moderate-quality evidence).In comparison to the cold CO 2 group, the meta-analysis of the heated, non-humidified group also showed no statistically significant difference between groups. Core temperature was statistically, significantly higher in the heated, humidified CO 2 with external warming groups (MD 0.29 °C, 95% CI, 0.05 to 0.52, I 2 = 84%, P = 0.02) (moderate-quality evidence). Despite the small difference in temperature of 0.31 °C with heated CO 2 , this is unlikely to be of clinical significance.For postoperative pain scores, there were no statistically significant differences between heated and cold CO 2 , either overall, or for any of the subgroups assessed. Interestingly, morphine-equivalent use was homogeneous and higher in heated, non-humidified insufflation compared to cold insufflation for postoperative day one (MD 11.93 mg, 95% CI 0.92 to 22.94, I 2 = 0%, P = 0.03) (low-quality evidence) and day two (MD 9.79 mg, 95% CI 1.58 to 18.00, I 2 = 0%, P = 0.02) (low-quality evidence). However, morphine use was not significantly different six hours postoperatively or in any humidified insufflation groups.There was no apparent effect on length of hospitalisation, lens fogging or length of operation with heated compared to cold gas insufflation, with or without humidification. Recovery room time was shorter in the heated cohort (MD -26.79 minutes, 95% CI -51.34 to -2.25, I 2 = 95%, P = 0.03) (low-quality evidence). When the one and only unclear-risk study was removed from the analysis, the difference in recovery-room time became non-significant and the studies were statistically homogeneous (MD -1.22 minutes, 95% CI, -6.62 to 4.17, I 2 = 12%, P = 0.66) (moderate-quality evidence).There were also no differences in the frequency of major adverse events that occurred in the cold or heated cohorts.These results should be interpreted with caution due to some limitations. Heterogeneity of core temperature remained significant despite subgroup analysis, likely due to variations in the study design of the individual trials, as the trials had variations in insufflation gas temperatures (35 ºC to 37 ºC), humidity ranges (88% to 100%), gas volumes and location of the temperature probes. Additionally, some of the trials lacked specific study design information making evaluation difficult. While heated, humidified gas leads to mildly smaller decreases in core body temperatures, clinically this does not account for improved patient outcomes, therefore, there is no clear evidence for the use of heated gas insufflation, with or without humidification, compared to cold gas insufflation in laparoscopic abdominal surgery.
Real-time modeling of heat distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, Hendrik F.; Li, Hongfei; Yarlanki, Srinivas
Techniques for real-time modeling temperature distributions based on streaming sensor data are provided. In one aspect, a method for creating a three-dimensional temperature distribution model for a room having a floor and a ceiling is provided. The method includes the following steps. A ceiling temperature distribution in the room is determined. A floor temperature distribution in the room is determined. An interpolation between the ceiling temperature distribution and the floor temperature distribution is used to obtain the three-dimensional temperature distribution model for the room.
NASA Astrophysics Data System (ADS)
Jiang, Qingfeng; Zhuang, Ming; Zhang, Qiyong; Zhu, Zhigang; Geng, Maofei; Sheng, Linhai; Zhu, Ping
2018-04-01
Efficient and compact plate-fin heat exchangers are critical for large-scale helium liquefaction/refrigeration systems as they constitute major part in the cold box. This study experimentally explores the heat transfer and pressure drop behaviors of helium gas at low temperature in four types of plate-fin channels, namely offset-strip and perforated fins, with different geometrical parameters. A series of cryogenic experiments at approximately liquid nitrogen temperature are carried out to measure the Colburn j factors and Fanning friction f factors with a wide range of Reynolds number. Besides, to reveal the performance variations under different operating temperatures, comparative experiments respectively conducted at room temperature and liquid nitrogen temperature are implemented. The results show that in comparison with the performance data at room temperature, most of j factors are relatively smaller perhaps because the lower aluminum thermal conductivity and higher Prandtl Number at low temperature. Meanwhile, the f factors corresponding to cryogenic conditions exhibit slightly larger even though the core pressure drops show considerable reductions. In contrast to the calculated results from the frequently-used performance curves (Chen and Shen, 1993), the Root Mean Squared Errors of j and f values are correlated within 8.38% and 6.97% for one perforated fin core, 41.29% and 34.97% for three OSF cores, respectively. For OSFs, further comparisons with the previous empirical correlations from literatures are conducted to verify the accuracy of each correlation. Generally, most of the calculated results predict acceptably within the deviations of ±25% for the j factors, while the predicted results express relatively large deviations for the f factors. Therefore, it may be revealed that most of the existing correlations were not able to accurately predict the experimental data in consideration of the performance differences under realistic cryogenic operating conditions, which could have significant influences during the design process of cryogenic heat exchangers.
34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...
34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
Code of Federal Regulations, 2013 CFR
2013-04-01
... of cold storage rooms shall not be required. All such places where food is prepared, served, or stored shall be so constructed and maintained as to be clean and free from flies, rodents, and other... accessible to all rooms in which food is prepared and utensils are cleaned. (d) All plumbing shall be so...
Code of Federal Regulations, 2011 CFR
2011-04-01
... of cold storage rooms shall not be required. All such places where food is prepared, served, or stored shall be so constructed and maintained as to be clean and free from flies, rodents, and other... accessible to all rooms in which food is prepared and utensils are cleaned. (d) All plumbing shall be so...
Code of Federal Regulations, 2012 CFR
2012-04-01
... of cold storage rooms shall not be required. All such places where food is prepared, served, or stored shall be so constructed and maintained as to be clean and free from flies, rodents, and other... accessible to all rooms in which food is prepared and utensils are cleaned. (d) All plumbing shall be so...
Code of Federal Regulations, 2014 CFR
2014-04-01
... of cold storage rooms shall not be required. All such places where food is prepared, served, or stored shall be so constructed and maintained as to be clean and free from flies, rodents, and other... accessible to all rooms in which food is prepared and utensils are cleaned. (d) All plumbing shall be so...
The influence of room temperature on Mg isotope measurements by MC-ICP-MS.
Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min
2018-03-24
We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.
Christensen, A. Kent
1971-01-01
A simple method has been developed that allows frozen thin sections of fresh-frozen tissue to be cut on a virtually unmodified ultramicrotome kept at room temperature. A bowl-shaped Dewar flask with a knifeholder in its depths replaces the stage of the microtome; a bar extends down into the bowl from the microtome's cutting arm and bears the frozen tissue near its lower end. When the microtome is operated, the tissue passes a glass or diamond knife in the depths of the bowl as in normal cutting. The cutting temperature is maintained by flushing the bowl with cold nitrogen gas, and can be set anywhere from about -160°C up to about -30°C. The microtome is set for a cutting thickness of 540–1000 A. Sections are picked up from the dry knife edge, and are placed on membrane-coated grids, flattened with the polished end of a copper rod, and either dried in nitrogen gas or freeze-dried. Throughout the entire process the tissue is kept cold and does not come in contact with any solvent. The morphology seen in frozen thin sections of rat pancreas and liver generally resembles that in conventional preparations, although freezing damage and low contrast limit the detail that can be discerned. Among unusual findings is a frequent abundance of mitochondrial granules in material prepared by this method. PMID:4942776
Tam, Ka Ian; Esona, Mathew D.; Williams, Alice; Ndze, Valentine N.; Boula, Angeline; Bowen, Michael D.
2015-01-01
Rotavirus is the most important cause of severe childhood gastroenteritis worldwide. Rotavirus vaccines are available and rotavirus surveillance is carried out to assess vaccination impact. In surveillance studies, stool samples are stored typically at 4°C or frozen to maintain sample quality. Uninterrupted cold storage is a problem in developing countries because of power interruptions. Cold-chain transportation of samples from collection sites to testing laboratories is costly. In this study, we evaluated the use of BBL™ Sensi-Discs™ and FTA® cards for storage and transportation of samples for virus isolation, EIA, and RT-PCR testing. Infectious rotavirus was recovered after 30 days of storage on Sensi-Discs™ at room temperature. We were able to genotype 98–99% of samples stored on Sensi-Discs™ and FTA® cards at temperatures ranging from −80°C to 37°C up to 180 days. A field sampling test using samples prepared and shipped from Cameroon, showed that both matrices yielded 100% genotyping success compared with whole stool and Sensi-Discs™ demonstrated 95% concordance with whole stool in EIA testing. The utilization of BBL™ Sensi-Discs™ and FTA® cards for stool sample storage and shipment has the potential to have great impact on global public health by facilitating surveillance and epidemiological investigations of rotavirus strains worldwide at a reduced cost. PMID:26022083
Tam, Ka Ian; Esona, Mathew D; Williams, Alice; Ndze, Valantine N; Boula, Angeline; Bowen, Michael D
2015-09-15
Rotavirus is the most important cause of severe childhood gastroenteritis worldwide. Rotavirus vaccines are available and rotavirus surveillance is carried out to assess vaccination impact. In surveillance studies, stool samples are stored typically at 4°C or frozen to maintain sample quality. Uninterrupted cold storage is a problem in developing countries because of power interruptions. Cold-chain transportation of samples from collection sites to testing laboratories is costly. In this study, we evaluated the use of BBL™ Sensi-Discs™ and FTA(®) cards for storage and transportation of samples for virus isolation, EIA, and RT-PCR testing. Infectious rotavirus was recovered after 30 days of storage on Sensi-Discs™ at room temperature. We were able to genotype 98-99% of samples stored on Sensi-Discs™ and FTA(®) cards at temperatures ranging from -80°C to 37°C up to 180 days. A field sampling test using samples prepared and shipped from Cameroon, showed that both matrices yielded 100% genotyping success compared with whole stool and Sensi-Discs™ demonstrated 95% concordance with whole stool in EIA testing. The utilization of BBL™ Sensi-Discs™ and FTA(®) cards for stool sample storage and shipment has the potential to have great impact on global public health by facilitating surveillance and epidemiological investigations of rotavirus strains worldwide at a reduced cost. Published by Elsevier B.V.
Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen
2015-05-01
Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cold pleasure. Why we like ice drinks, ice-lollies and ice cream.
Eccles, R; Du-Plessis, L; Dommels, Y; Wilkinson, J E
2013-12-01
This review discusses how the ingestion of cold foods and drinks may be perceived as pleasant because of the effects of cooling of the mouth. The case is made that man has originated from a tropical environment and that cold stimuli applied to the external skin may initiate thermal discomfort and reflexes such as shivering and vasoconstriction that defend body temperature, whereas cold stimuli applied to the mouth are perceived as pleasant because of pleasure associated with satiation of thirst and a refreshing effect. Cold water is preferred to warm water as a thirst quencher and cold products such as ice cream may also be perceived as pleasant because oral cooling satiates thirst. The case is made that cold stimuli may be perceived differently in the skin and oral mucosa, leading to different effects on temperature regulation, and perception of pleasure or displeasure, depending on the body temperature and the temperature of the external environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
A primer on clothing systems for cold-weather field work
Denner, Jon
1990-01-01
Conducting field work in cold weather is a demanding task. The most important safety consideration for field personnel is to maintain normal body temperature and avoid hypothermia.The human body adjusts to cold temperatures through different physiological processes. Heat production is enhanced by increases in the rates of basal metabolism, specific dynamic action, and physical exercise, and heat loss is reduced by vasoconstriction.Physiological adaptations alone are inadequate to stop rapid heat loss in cold temperatures. Additional insulation in the form of cold-weather clothing is necessary to retain heat.The most practical method of dressing for winter conditions is the layering system. Wearing multiple thin layers allows one to fine tune the insulation needed for different temperatures and activity levels.
Prenatal exposure to ambient temperature variation increases the risk of common cold in children.
Lu, Chan; Miao, Yufeng; Zeng, Ji; Jiang, Wei; Shen, Yong-Ming; Deng, Qihong
2018-06-15
Common cold is a frequent upper respiratory tract infection, but the role of ambient temperature in the infection is unclear. We investigated the role of prenatal exposure to diurnal temperature variation (DTV), the difference between the daily maximal and minimal temperatures, in the risk of common cold in children. We conducted a cohort study of 2598 preschool children in Changsha, China. Occurrence of common cold during the past year was surveyed using questionnaire. We then estimated each child's prenatal exposure to DTV during pregnancy. Multivariate logistic regression model was used to examine the association between occurrence of common cold and prenatal exposure to DTV in terms of odds ratios (OR) and 95% confidence interval (CI). About 45% children have common cold (≥3 times) during the past year. We found that common cold in children was associated with maternal DTV exposure during pregnancy, particularly during the first trimester with adjusted OR (95% CI) = 1.27 (1.10-1.46). Male and atopic children were more susceptible to the effect of DTV during pregnancy. The risk of common cold due to DTV is higher in children living in the suburban areas and the bigger houses and in those exposed to environmental tobacco smoke, mold/dampness, new furniture and redecoration. We observed that the risk of common cold in children has been increased in recent years due to increasing DTV. Common cold in children was associated with maternal exposure to temperature variation during pregnancy, suggesting that the risk of common cold may originate in pregnancy. Copyright © 2018 Elsevier Inc. All rights reserved.
Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong
2016-05-01
The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Habuka, Hitoshi; Otsuka, Toru; Qu, Wei-Feng
1999-11-01
This study evaluates the overall chemical reaction in a chlorine trifluoride silicon nitrogen system at atmospheric pressure, based on the observation of the dominant chemical species in the gas phase using a quadrupole mass spectra analyzer coupled with a horizontal cold-wall single-wafer epitaxial reactor. Chlorine trifluoride gas etches the silicon surface, producing two major products, silicon tetrafluoride gas and chlorine gas, at room temperature and 530 K. The production of chlorosilanes was not observed in this study. The results obtained in this study indicate that the dominant overall chemical reaction in a chlorine trifluoride silicon nitrogen system is 3Si + 4ClF3 →3SiF4 ↑+ 2Cl2 ↑.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco, S.L.; Gimenez, J.L.; Sanchez, F.M.
The effectiveness of ethylene oxide and the gamma irradiation sterilizing treatments on the microbiological population was studied in three types of Spanish paprika, stored in a cold chamber (4/sup 0/C) and at room temperature (16-38.8/sup 0/C) over an experimental period of 285 days. The controlled microorganisms were: mesophilic aerobes, coliforms, sulfite reducing anaerobes, yeasts, molds, and Salmonella. The presence of aflatoxins was also studied. The results showed that both sterilizing treatments reduced the microbiological population to below the permissible levels recommended by the International Commission on Microbiological Specification for Food. Nevertheless, it was interesting that the gamma irradiation treatment wasmore » more effective.« less
Cold-Chain Adaptability During Introduction of Inactivated Polio Vaccine in Bangladesh, 2015.
Billah, Mallick M; Zaman, K; Estivariz, Concepcion F; Snider, Cynthia J; Anand, Abhijeet; Hampton, Lee M; Bari, Tajul I A; Russell, Kevin L; Chai, Shua J
2017-07-01
Introduction of inactivated polio vaccine creates challenges in maintaining the cold chain for vaccine storage and distribution. We evaluated the cold chain in 23 health facilities and 36 outreach vaccination sessions in 8 districts and cities of Bangladesh, using purposive sampling during August-October 2015. We interviewed immunization and cold-chain staff, assessed equipment, and recorded temperatures during vaccine storage and transportation. All health facilities had functioning refrigerators, and 96% had freezers. Temperature monitors were observed in all refrigerators and freezers but in only 14 of 66 vaccine transporters (21%). Recorders detected temperatures >8°C for >60 minutes in 5 of 23 refrigerators (22%), 3 of 6 cold boxes (50%) transporting vaccines from national to subnational depots, and 8 of 48 vaccine carriers (17%) used in outreach vaccination sites. Temperatures <2°C were detected in 4 of 19 cold boxes (21%) transporting vaccine from subnational depots to health facilities and 14 of 48 vaccine carriers (29%). Bangladesh has substantial cold-chain storage and transportation capacity after inactivated polio vaccine introduction, but temperature fluctuations during vaccine transport could cause vaccine potency loss that could go undetected. Bangladesh and other countries should strive to ensure consistent and sufficient cold-chain storage and monitor the cold chain during vaccine transportation at all levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury
NASA Astrophysics Data System (ADS)
Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae
2016-08-01
Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.
Towards Cryogenic Liquid-Vapor Energy Storage Units for space applications
NASA Astrophysics Data System (ADS)
Afonso, Josiana Prado
With the development of mechanical coolers and very sensitive cryogenic sensors, it could be interesting to use Energy Storage Units (ESU) and turn off the cryocooler to operate in a free micro vibration environment. An ESU would also avoid cryogenic systems oversized to attenuate temperature fluctuations due to thermal load variations which is useful particularly for space applications. In both cases, the temperature drift must remain limited to keep good detector performances. In this thesis, ESUs based on the high latent heat associated to liquid-vapor phase change to store energy have been studied. To limit temperature drifts while keeping small size cell at low temperature, a potential solution consists in splitting the ESU in two volumes: a low temperature cell coupled to a cryocooler cold finger through a thermal heat switch and an expansion volume at room temperature to reduce the temperature increase occurring during liquid evaporation. To obtain a vanishing temperature drift, a new improvement has been tested using two-phase nitrogen: a controlled valve was inserted between the two volumes in order to control the cold cell pressure. In addition, a porous material was used inside the cell to turn the ESU gravity independent and suitable for space applications. In this case, experiments reveal not fully understood results concerning both energy storage and liquid-wall temperature difference. To capture the thermal influence of the porous media, a dedicated cell with poorly conductive lateral wall was built and operated with two-phase helium. After its characterization outside the saturation conditions (conduction, convection), experiments were performed, with and without porous media, heating at the top or the bottom of the cell with various heat fluxes and for different saturation temperatures. In parallel, a model describing the thermal response for a cell containing liquid and vapor with a porous medium heated at the top ("against gravity") was developed. The experimental data were then used as a benchmark for this model based on a balance of three forces: capillarity force, gravity force and pressure drop induced by the liquid flow.
Effects of temperature on mortality in Chiang Mai city, Thailand: a time series study
2012-01-01
Background The association between temperature and mortality has been examined mainly in North America and Europe. However, less evidence is available in developing countries, especially in Thailand. In this study, we examined the relationship between temperature and mortality in Chiang Mai city, Thailand, during 1999–2008. Method A time series model was used to examine the effects of temperature on cause-specific mortality (non-external, cardiopulmonary, cardiovascular, and respiratory) and age-specific non-external mortality (<=64, 65–74, 75–84, and > =85 years), while controlling for relative humidity, air pollution, day of the week, season and long-term trend. We used a distributed lag non-linear model to examine the delayed effects of temperature on mortality up to 21 days. Results We found non-linear effects of temperature on all mortality types and age groups. Both hot and cold temperatures resulted in immediate increase in all mortality types and age groups. Generally, the hot effects on all mortality types and age groups were short-term, while the cold effects lasted longer. The relative risk of non-external mortality associated with cold temperature (19.35°C, 1st percentile of temperature) relative to 24.7°C (25th percentile of temperature) was 1.29 (95% confidence interval (CI): 1.16, 1.44) for lags 0–21. The relative risk of non-external mortality associated with high temperature (31.7°C, 99th percentile of temperature) relative to 28°C (75th percentile of temperature) was 1.11 (95% CI: 1.00, 1.24) for lags 0–21. Conclusion This study indicates that exposure to both hot and cold temperatures were related to increased mortality. Both cold and hot effects occurred immediately but cold effects lasted longer than hot effects. This study provides useful data for policy makers to better prepare local responses to manage the impact of hot and cold temperatures on population health. PMID:22613086
Sympathoadrenal responses to cold and ketamine anesthesia in the rhesus monkey
NASA Technical Reports Server (NTRS)
Kolka, M. A.; Elizondo, R. S.; Weinberg, R. P.
1983-01-01
The effect of cold exposure on the sympathoadrenal system is investigated in eight adult rhesus monekys with and without ketamine anesthesia. It is found that a 3 hr cold exposure (12 c) was associated with a 175 percent increase above control levels of norepinephrine (NE) and a 100 percent increase in epinephrine (E). Also observed were decreases in the core temperature, mean skin temperature, and mean body temperature. No change in the plasma levels of NE and E from the control values was found during continuous infusion of ketamine; while the core temperature, mean skin temperature, and mean body temperature all showed greater declines with the addition of ketamine infusion to the cold exposure. Water exposure (28 C) under ketamine anesthesia resulted in a reduction of the core temperature to 33 C within 1 hr. Plasma levels of NE and E were found to be unchanged from control values at core temperatures of 35 and 33 C. It is concluded that the administration of ketamine abolishes both the thermoregulatory response and the catecholamine response to acute cold exposure.
Gao, Chuansi; Lin, Li-Yen; Halder, Amitava; Kuklane, Kalev; Holmér, Ingvar
2015-01-01
American standard ASTM F2732 estimates the lowest environmental temperature for thermal comfort for cold weather protective clothing. International standard ISO 11079 serves the same purpose but expresses cold stress in terms of required clothing insulation for a given cold climate. The objective of this study was to validate and compare the temperature ratings using human subject tests at two levels of metabolic rates (2 and 4 MET corresponding to 116.4 and 232.8 W/m(2)). Nine young and healthy male subjects participated in the cold exposure at 3.4 and -30.6 °C. The results showed that both standards predict similar temperature ratings for an intrinsic clothing insulation of 1.89 clo and for 2 MET activity. The predicted temperature rating for 2 MET activity is consistent with test subjects' thermophysiological responses, perceived thermal sensation and thermal comfort. For 4 MET activity, however, the whole body responses were on the cold side, particularly the responses of the extremities. ASTM F2732 is also limited due to its omission and simplification of three climatic variables (air velocity, radiant temperature and relative humidity) and exposure time in the cold which are of practical importance. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Remote refilling of LN2 cryostats for high sensitivity astronomical applications
NASA Astrophysics Data System (ADS)
l'Allemand, J. L. Lizon a.
2017-12-01
The most sensitive observation mode of the ESO VLT (European Southern Observatory Very Large Telescope) is the interferometric mode, where the 4 Units Telescopes are directed to the same stellar object in order to operate as a gigantic interferometer. The beam is then re-combined in the main interferometry laboratory and fed into the analyzing instruments. In order not to disturb the performance of the Interferometer, this room is considered as a sanctuary where one enters only in case of extreme need. A simple opening of the door would create air turbulences affecting the stability for hours. Any cold spot in the room could also cause convection which might change the optical path by fraction of a micron. Most of the instruments are operating at cryogenic temperatures using passive cooling based on LN2 bath cryostat. For this reason, dedicated strategy has been developed for the transfer of LN2 to the various instruments. The present document describes the various aspects and care taken in order to guarantee the very high thermal and mechanical environmental stability.
40 CFR 86.1864-10 - How to comply with the fleet average cold temperature NMHC standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1864-10... life requirements. Full useful life requirements for cold temperature NMHC standards are defined in § 86.1805-04(g). There is not an intermediate useful life standard for cold temperature NMHC standards...
40 CFR 86.1864-10 - How to comply with the fleet average cold temperature NMHC standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1864-10... life requirements. Full useful life requirements for cold temperature NMHC standards are defined in § 86.1805-04(g). There is not an intermediate useful life standard for cold temperature NMHC standards...
40 CFR 86.1864-10 - How to comply with the fleet average cold temperature NMHC standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1864-10... life requirements. Full useful life requirements for cold temperature NMHC standards are defined in § 86.1805-04(g). There is not an intermediate useful life standard for cold temperature NMHC standards...
Noguchi, Ko; Yamori, Wataru; Hikosaka, Kouki; Terashima, Ichiro
2015-07-01
The temperature dependence of plant respiratory rate (R) changes in response to growth temperature. Here, we used a modified Arrhenius model incorporating the temperature dependence of activation energy (Eo ), and compared the temperature dependence of R between cold-sensitive and cold-tolerant species. We analyzed the temperature dependences of leaf CO2 efflux rate of plants cultivated at low (LT) or high temperature (HT). In plants grown at HT (HT plants), Eo at low measurement temperature varied among species, but Eo at growth temperature in HT plants did not vary and was comparable to that in plants grown at LT (LT plants), suggesting that the limiting process was similar at the respective growth temperatures. In LT plants, the integrated value of loge R, a measure of respiratory capacity, in cold-sensitive species was lower than that in cold-tolerant species. When plants were transferred from HT to LT, the respiratory capacity changed promptly after the transfer compared with the other parameters. These results suggest that a similar process limits R at different growth temperatures, and that the lower capacity of the respiratory system in cold-sensitive species may explain their low growth rate at LT. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Hemodynamic and thermoregulatory responses to lower body water immersion.
Muller, Matthew D; Kim, Cihul-Ho; Seo, Yongsuk; Ryan, Edward J; Glickman, Ellen L
2012-10-01
Lower body water immersion (LBWI) is experienced in the marine industry but the physiological responses to LBWI are unclear. The purpose of the current experiment was to test the effects of water temperature and immersion duration on rectal temperature, heart rate, stroke volume, blood pressure, metabolic rate, and thermal sensation in healthy subjects. Nine young men underwent two 60-min trials of seated LBWI to the iliac crest in a counterbalanced fashion. On one occasion, the water was 35 degrees C (LBWI-Neutral) and on the other it was 13 degrees C (LBWI-Cold); the upper body remained thermoneutral and dry throughout. As expected, exposure to cold water reduced mean skin temperature and individuals reported cold thermal sensation. Mean arterial pressure was significantly higher at 60 min of LBWI-Cold (86 +/- 7 mmHg) compared to LBWI-Neutral (76 +/- 5 mmHg) while heart rate tended to be lower. The change in rectal temperature from baseline to 30 min of LBWI-Cold (delta = -0.01 +/- 0.21degrees C) was significantly smaller than the change in T(re) from 30 to 60 min of LBWI-Cold (delta = -0.46 +/- 0.16 degrees C). Despite this accelerated drop in core temperature during minutes 30-60, metabolic rate did not increase significantly. LBWI-Cold reduces core temperature and increases arterial blood pressure via an increase in total peripheral resistance. This experimental model may help scientists better understand the body during cold stress. Further, people who are occupationally exposed to cold water (when the torso, hands, and arms remain thermoneutral) may be at increased risk for hypothermia.
Khanday, M A; Hussain, Fida
2015-02-01
During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions
NASA Technical Reports Server (NTRS)
Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.
2011-01-01
This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.
Steuer, Walter
2007-09-13
A PROBLEM THAT IS OFTEN OVERLOOKED OR SIMPLY NOT GIVEN ENOUGH ATTENTION: the food served to patients from the kitchen is not sterile. If food is allowed to stand at room temperature for a long time, both in the case of food cooked for lunch and of food intended for supper which has been previously chilled, there is the possibility of massive spore germination or of dangerous toxin formation. Therefore regulations on how to handle food and beverages (e.g. tea) must be set out in the infection control policy, and checks carried out to monitor compliance with the rules relating to temperature checks, duration and type of storage, need for reheating, etc. Making staff aware of the issues involved is of paramount importance. These include monitoring hygiene standards in the ward kitchen, formulation of a cleaning policy, periodic bacteriological checks (not only of workstations but also of the dishwasher results), whenever possible the use of disposable cloths for working surfaces and equipment, changing cleaning cloths at least once daily and hygienic hand disinfection before and after handing out food. Foodstuffs brought in by visitors represent a special hygienic and organizational problem because in many cases they already have a high baseline microbial count. Visitors must be made aware that, for example, slices of cake left in the patient's room and often eaten only hours later can pose a risk of infection.In summary, the following principles of food hygiene must be observed on the wards:Maintenance of the cold-hot chainNot only reheat food, but ensure it is well heated throughout Avoid situations giving rise to spore germination in foodstuffs brought in by visitorsCleanliness and minimal contamination of kitchen worktopsCleanliness of crockery and kitchen towels Do not allow food to stand at room temperature for a long time, in particular desserts and confectionery A standard policy must be enforced to define the hygienic status and organization for food distribution for ward kitchens too.
Correlation of Wissler Human Thermal Model Blood Flow and Shiver Algorithms
NASA Technical Reports Server (NTRS)
Bue, Grant; Makinen, Janice; Cognata, Thomas
2010-01-01
The Wissler Human Thermal Model (WHTM) is a thermal math model of the human body that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. The model has been shown to predict core temperature and skin temperatures higher and lower, respectively, than in tests of subjects in crew escape suit working in a controlled hot environments. Conversely the model predicts core temperature and skin temperatures lower and higher, respectively, than in tests of lightly clad subjects immersed in cold water conditions. The blood flow algorithms of the model has been investigated to allow for more and less flow, respectively, for the cold and hot case. These changes in the model have yielded better correlation of skin and core temperatures in the cold and hot cases. The algorithm for onset of shiver did not need to be modified to achieve good agreement in cold immersion simulations
Vitrification, a complementary cryopreservation method for Betula pendula Roth.
Ryynänen, Leena; Aronen, Tuija
2005-10-01
Cryopreservation--the storage of plant germplasm in liquid nitrogen--provides a modern tool for the conservation of forest genetic resources. It is especially applicable for species in which their micropropagation can be initiated from mature tree buds, e.g., silver birch (Betula pendula Roth), thus enabling the conservation of specific genotypes: endangered elite trees and trees expressing rare, valuable or interesting characteristics. The aim of the present study was to develop a vitrification protocol applicable for the cryostorage of silver birch that avoids the use of expensive sophisticated freezers. The average recovery of vitrified axillary silver birch buds was 71% using a protocol that started with four-week cold hardening of bud-bearing in vitro donor shoots on modified medium under short day conditions. After cold hardening, the excised axillary buds were precultivated on medium containing 0.7 M sucrose for 24 h under the same conditions as during the cold hardening period. Following preculture, the buds were treated with loading solution containing 2M glycerol and 0.4 M sucrose for 20 min at room temperature. Finally, the buds were dehydrated with PVS2 cryoprotectant for 120 min followed by direct immersion in liquid nitrogen. According to the morphology and the RAPD profiles of regenerated plants in the greenhouse, the genetic fidelity of the vitrified birch material seems to have remained unchanged.
Quality Evaluation of Pork with Various Freezing and Thawing Methods
2014-01-01
In this study, the physicochemical and sensory quality characteristics due to the influence of various thawing methods on electro-magnetic and air blast frozen pork were examined. The packaged pork samples, which were frozen by air blast freezing at −45℃ or electro-magnetic freezing at −55℃, were thawed using 4 different methods: refrigeration (4±1℃), room temperature (RT, 25℃), cold water (15℃), and microwave (2450 MHz). Analyses were carried out to determine the drip and cooking loss, water holding capacity (WHC), moisture content and sensory evaluation. Frozen pork thawed in a microwave indicated relatively less thawing loss (0.63-1.24%) than the other thawing methods (0.68-1.38%). The cooking loss after electro-magnetic freezing indicated 37.4% by microwave thawing, compared with 32.9% by refrigeration, 36.5% by RT, and 37.2% by cold water in ham. The thawing of samples frozen by electro-magnetic freezing showed no significant differences between the methods used, while the moisture content was higher in belly thawed by microwave (62.0%) after electro-magnetic freezing than refrigeration (54.8%), RT (61.3%), and cold water (61.1%). The highest overall acceptability was shown for microwave thawing after electro-magnetic freezing but there were no significant differences compared to that of the other samples. PMID:26761493
Is freezing in the vaccine cold chain an ongoing issue? A literature review.
Hanson, Celina M; George, Anupa M; Sawadogo, Adama; Schreiber, Benjamin
2017-04-19
Vaccine exposure to temperatures below recommended ranges in the cold chain may decrease vaccine potency of freeze-sensitive vaccines leading to a loss of vaccine investments and potentially places children at risk of contracting vaccine preventable illnesses. This literature review is an update to one previously published in 2007 (Matthias et al., 2007), analyzing the prevalence of vaccine exposure to temperatures below recommendations throughout various segments of the cold chain. Overall, 45 studies included in this review assess temperature monitoring, of which 29 specifically assess 'too cold' temperatures. The storage segments alone were evaluated in 41 articles, 15 articles examined the transport segment and 4 studied outreach sessions. The sample size of the studies varied, ranging from one to 103 shipments and from three to 440 storage units. Among reviewed articles, the percentage of vaccine exposure to temperatures below recommended ranges during storage was 33% in wealthier countries and 37.1% in lower income countries. Vaccine exposure to temperatures below recommended ranges occurred during shipments in 38% of studies from higher income countries and 19.3% in lower income countries. This review highlights continuing issues of vaccine exposure to temperatures below recommended ranges during various segments of the cold chain. Studies monitoring the number of events vaccines are exposed to 'too cold' temperatures as well as the duration of these events are needed. Many reviewed studies emphasize the lack of knowledge of health workers regarding freeze damage of vaccines and how this has an effect on temperature monitoring. It is important to address this issue by educating vaccinators and cold chain staff to improve temperature maintenance and supply chain management, which will facilitate the distribution of potent vaccines to children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Wantha, Channarong
2018-02-01
This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.
[Research advances in mathematical model of coniferous trees cold hardiness].
Zhang, Gang; Wang, Ai-Fang
2007-07-01
Plant cold hardiness has complicated attributes. This paper introduced the research advances in establishing the dynamic models of coniferous trees cold hardiness, with the advantages and disadvantages of the models presented and the further studies suggested. In the models established initially, temperature was concerned as the only environmental factor affecting the cold hardiness, and the concept of stationary level of cold hardiness was introduced. Due to the obvious prediction errors of these models, the stationary level of cold hardiness was modeled later by assuming the existence of an additive effect of temperature and photoperiod on the increase of cold hardiness. Furthermore, the responses of the annual development phases for cold hardiness to environment were considered. The model researchers have paid more attention to the additive effect models, and run some experiments to test the additivity principle. However, the research results on Scots pine (Pinus sylvestris) indicated that its organs did not support the presumption of an additive response of cold hardiness by temperature and photoperiod, and the interaction between environmental factors should be taken into account. The mathematical models of cold hardiness need to be developed and improved.
Gosset, James R; Beaumont, Kevin; Matsuura, Tomomi; Winchester, Wendy; Attkins, Neil; Glatt, Sophie; Lightbown, Ian; Ulrich, Kristina; Roberts, Sonia; Harris, Jolie; Mesic, Emir; van Steeg, Tamara; Hijdra, Diana; van der Graaf, Piet H
2017-11-15
PF-05105679 is a moderately potent TRPM8 blocker which has been evaluated for the treatment of cold pain sensitivity. The TRPM8 channel is responsible for the sensation of cold environmental temperatures and has been implicated in regulation of core body temperature. Consequently, blockade of TRPM8 has been suggested to result in lowering of core body temperature. As part of the progression to human studies, the effect of PF-05105679 on core body temperature has been investigated in animals. Safety pharmacology studies showed that PF-05105679 reduced core body temperature in a manner that was inversely related to body weight of the species tested (greater exposure to PF-05105679 was required to lower temperature by 1°C in higher species). Based on an allometric (body weight) relationship, it was hypothesized that PF-05105679 would not lower core body temperature in humans at exposures that could exhibit pharmacological effects on cold pain sensation. On administration to humans, PF-05105679 was indeed effective at reversing the cold pain sensation associated with the cold pressor test in the absence of effects on core body temperature. Copyright © 2017 Elsevier B.V. All rights reserved.
Cui, Yan; Yin, Fei; Deng, Ying; Volinn, Ernest; Chen, Fei; Ji, Kui; Zeng, Jing; Zhao, Xing; Li, Xiaosong
2016-12-10
Background : Although studies from many countries have estimated the impact of ambient temperature on mortality, few have compared the relative impacts of heat and cold on health, especially in basin climate cities. We aimed to quantify the impact of ambient temperature on mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu (Sichuan Province, China); Methods : We estimated the temperature-mortality association with a distributed lag non-linear model (DLNM) with a maximum lag-time of 21 days while controlling for long time trends and day of week. We calculated the mortality risk attributable to heat and cold, which were defined as temperatures above and below an "optimum temperature" that corresponded to the point of minimum mortality. In addition, we explored effects of individual characteristics; Results : The analysis provides estimates of the overall mortality burden attributable to temperature, and then computes the components attributable to heat and cold. Overall, the total fraction of deaths caused by both heat and cold was 10.93% (95%CI: 7.99%-13.65%). Taken separately, cold was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%-12.81%), while the fraction attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%-2.35%). The attributable risk (AR) of respiratory diseases was higher (19.69%, 95%CI: 14.45%-24.24%) than that of cardiovascular diseases (11.40%, 95%CI: 6.29%-16.01%); Conclusions : In Chengdu, temperature was responsible for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days. There is potential to reduce respiratory-associated mortality especially among the aged population in basin climate cities when the temperature deviates beneath the optimum. The result may help to comprehensively assess the impact of ambient temperature in basin cities, and further facilitate an appropriate estimate of the health consequences of various climate-change scenarios.
Temperature-Controlled Clamping and Releasing Mechanism
NASA Technical Reports Server (NTRS)
Rosing, David; Ford, Virginia
2005-01-01
A report describes the development of a mechanism that automatically clamps upon warming and releases upon cooling between temperature limits of approx. =180 K and approx. =293 K. The mechanism satisfied a need specific to a program that involved repeated excursions of a spectrometer between a room-temperature atmospheric environment and a cryogenic vacuum testing environment. The mechanism was also to be utilized in the intended application of the spectrometer, in which the spectrometer would be clamped for protection during launch of a spacecraft and released in the cold of outer space to allow it to assume its nominal configuration for scientific observations. The mechanism is passive in the sense that its operation does not depend on a control system and does not require any power other than that incidental to heating and cooling. The clamping and releasing action is effected by bolt-preloaded stacks of shape-memory-alloy (SMA) cylinders. In designing this mechanism, as in designing other, similar SMA mechanisms, it was necessary to account for the complex interplay among thermal expansion, elastic and inelastic deformation under load, and SMA thermomechanical properties.
Cold atmospheric air plasma jet for medical applications
NASA Astrophysics Data System (ADS)
Kolb, Juergen F.; Price, Robert O.; Stacey, Michael; Swanson, R. James; Bowman, Angela; Chiavarini, Robert L.; Schoenbach, Karl H.
2008-10-01
By flowing ambient air through the discharge channel of a microhollow cathode geometry, we were able to sustain a stable 1.5-2 cm long afterglow plasma jet with dc voltages of only a few hundred volts. The temperature in this expelled afterglow plasma is close to room temperature. Emission spectra show atomic oxygen, hydroxyl ions and various nitrogen compounds. The low heavy-particle temperature allows us to use this exhaust stream on biological samples and tissues without thermal damage. The high levels of reactive species suggest an effective treatment for pathological skin conditions caused, in particular, by infectious agents. In first experiments, we have successfully tested the efficacy on Candida kefyr (a yeast), E.coli, and a matching E.coli strain-specific virus. All pathogens investigated responded well to the treatment. In the yeast case, complete eradication of the organism in the treated area could be achieved with an exposure of 90 seconds at a distance of 5 mm. A 10-fold increase of exposure, to 900 seconds caused no observable damage to murine integument.
Infrared Signature Masking by Air Plasma Radiation
NASA Technical Reports Server (NTRS)
Kruger, Charles H.; Laux, C. O.
2001-01-01
This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).
Spatiotemporal variability of extreme temperature frequency and amplitude in China
NASA Astrophysics Data System (ADS)
Zhang, Yuanjie; Gao, Zhiqiu; Pan, Zaitao; Li, Dan; Huang, Xinhui
2017-03-01
Temperature extremes in China are examined based on daily maximum and minimum temperatures from station observations and multiple global climate models. The magnitude and frequency of extremes are expressed in terms of return values and periods, respectively, estimated by the fitted Generalized Extreme Value (GEV) distribution of annual extreme temperatures. The observations suggest that changes in temperature extremes considerably exceed changes in the respective climatological means during the past five decades, with greater amplitude of increases in cold extremes than in warm extremes. The frequency of warm (cold) extremes increases (decreases) over most areas, with an increasingly faster rate as the extremity level rises. Changes in warm extremes are more dependent on the varying shape of GEV distribution than the location shift, whereas changes in cold extremes are more closely associated with the location shift. The models simulate the overall pattern of temperature extremes during 1961-1981 reasonably well in China, but they show a smaller asymmetry between changes in warm and cold extremes primarily due to their underestimation of increases in cold extremes especially over southern China. Projections from a high emission scenario show the multi-model median change in warm and cold extremes by 2040 relative to 1971 will be 2.6 °C and 2.8 °C, respectively, with the strongest changes in cold extremes shifting southward. By 2040, warm extremes at the 1971 20-year return values would occur about every three years, while the 1971 cold extremes would occur once in > 500 years.
Maufrais, Claire; Sarafian, Delphine; Dulloo, Abdul; Montani, Jean-Pierre
2018-01-01
Aim: Tea is usually consumed at two temperatures (as hot tea or as iced tea). However, the importance of drink temperature on the cardiovascular system and on metabolism has not been thoroughly investigated. The purpose of this study was to compare the cardiovascular, metabolic and cutaneous responses to the ingestion of caffeinated herbal tea (Yerba Mate) at cold or hot temperature in healthy young subjects. We hypothesized that ingestion of cold tea induces a higher increase in energy expenditure than hot tea without eliciting any negative effects on the cardiovascular system. Methods: Cardiovascular, metabolic and cutaneous responses were analyzed in 23 healthy subjects (12 men and 11 women) sitting comfortably during a 30-min baseline and 90 min following the ingestion of 500 mL of an unsweetened Yerba Mate tea ingested over 5 min either at cold (~3°C) or hot (~55°C) temperature, according to a randomized cross-over design. Results: Averaged over the 90 min post-drink ingestion and compared to hot tea, cold tea induced (1) a decrease in heart rate (cold tea: -5 ± 1 beats.min -1 ; hot tea: -1 ± 1 beats.min -1 , p < 0.05), double product, skin blood flow and hand temperature and (2) an increase in baroreflex sensitivity, fat oxidation and energy expenditure (cold tea: +8.3%; hot tea: +3.7%, p < 0.05). Averaged over the 90 min post-drink ingestion, we observed no differences of tea temperature on cardiac output work and mean blood pressure responses. Conclusion: Ingestion of an unsweetened caffeinated herbal tea at cold temperature induced a greater stimulation of thermogenesis and fat oxidation than hot tea while decreasing cardiac load as suggested by the decrease in the double product. Further experiments are needed to evaluate the clinical impact of unsweetened caffeinated herbal tea at a cold temperature for weight control.
Patients’ experiences of cold exposure during ambulance care
2013-01-01
Background Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients’ experiences of cold exposure and to identify related factors. Method During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients’ finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. Results In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from −22.3°C to 8.4°C. Conclusion Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons. PMID:23742143
Maufrais, Claire; Sarafian, Delphine; Dulloo, Abdul; Montani, Jean-Pierre
2018-01-01
Aim: Tea is usually consumed at two temperatures (as hot tea or as iced tea). However, the importance of drink temperature on the cardiovascular system and on metabolism has not been thoroughly investigated. The purpose of this study was to compare the cardiovascular, metabolic and cutaneous responses to the ingestion of caffeinated herbal tea (Yerba Mate) at cold or hot temperature in healthy young subjects. We hypothesized that ingestion of cold tea induces a higher increase in energy expenditure than hot tea without eliciting any negative effects on the cardiovascular system. Methods: Cardiovascular, metabolic and cutaneous responses were analyzed in 23 healthy subjects (12 men and 11 women) sitting comfortably during a 30-min baseline and 90 min following the ingestion of 500 mL of an unsweetened Yerba Mate tea ingested over 5 min either at cold (~3°C) or hot (~55°C) temperature, according to a randomized cross-over design. Results: Averaged over the 90 min post-drink ingestion and compared to hot tea, cold tea induced (1) a decrease in heart rate (cold tea: −5 ± 1 beats.min−1; hot tea: −1 ± 1 beats.min−1, p < 0.05), double product, skin blood flow and hand temperature and (2) an increase in baroreflex sensitivity, fat oxidation and energy expenditure (cold tea: +8.3%; hot tea: +3.7%, p < 0.05). Averaged over the 90 min post-drink ingestion, we observed no differences of tea temperature on cardiac output work and mean blood pressure responses. Conclusion: Ingestion of an unsweetened caffeinated herbal tea at cold temperature induced a greater stimulation of thermogenesis and fat oxidation than hot tea while decreasing cardiac load as suggested by the decrease in the double product. Further experiments are needed to evaluate the clinical impact of unsweetened caffeinated herbal tea at a cold temperature for weight control. PMID:29681860
Room temperature single-photon detectors for high bit rate quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comandar, L. C.; Patel, K. A.; Engineering Department, Cambridge University, 9 J J Thomson Ave., Cambridge CB3 0FA
We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.