Sample records for cold temperature

  1. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold-sensing

    PubMed Central

    Kanda, Hirosato; Gu, Jianguo G.

    2016-01-01

    Except a small population of primary afferent neurons for sensing cold to generate the sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of other primary afferent neurons that are not for cold-sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In the present study we have found that not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (regarded as cold-ineffective neurons) or suppress (regarded as cold-suppressive neurons) their membrane excitability. For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by the increases in action potential (AP) firing numbers and/or reduction of AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. PMID:26709732

  2. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold sensing.

    PubMed

    Kanda, Hirosato; Gu, Jianguo G

    2017-05-01

    Aside from a small population of primary afferent neurons for sensing cold, which generate sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of primary afferent neurons not responsible for cold sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In this study we have found that the not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, a cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (cold-ineffective neurons) or suppress their membrane excitability (cold-suppressive neurons). For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by increases in action potential (AP) firing numbers and/or the reduction in AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing, but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. This article is part of the special article series "Pain". © 2015 International Society for Neurochemistry.

  3. Climate change and temperature extremes: A review of heat- and cold-related morbidity and mortality concerns of municipalities.

    PubMed

    Gronlund, Carina J; Sullivan, Kyle P; Kefelegn, Yonathan; Cameron, Lorraine; O'Neill, Marie S

    2018-08-01

    Cold and hot weather are associated with mortality and morbidity. Although the burden of temperature-associated mortality may shift towards high temperatures in the future, cold temperatures may represent a greater current-day problem in temperate cities. Hot and cold temperature vulnerabilities may coincide across several personal and neighborhood characteristics, suggesting opportunities for increasing present and future resilience to extreme temperatures. We present a narrative literature review encompassing the epidemiology of cold- and heat-related mortality and morbidity, related physiologic and environmental mechanisms, and municipal responses to hot and cold weather, illustrated by Detroit, Michigan, USA, a financially burdened city in an economically diverse metropolitan area. The Detroit area experiences sharp increases in mortality and hospitalizations with extreme heat, while cold temperatures are associated with more gradual increases in mortality, with no clear threshold. Interventions such as heating and cooling centers may reduce but not eliminate temperature-associated health problems. Furthermore, direct hemodynamic responses to cold, sudden exertion, poor indoor air quality and respiratory epidemics likely contribute to cold-related mortality. Short- and long-term interventions to enhance energy and housing security and housing quality may reduce temperature-related health problems. Extreme temperatures can increase morbidity and mortality in municipalities like Detroit that experience both extreme heat and prolonged cold seasons amidst large socioeconomic disparities. The similarities in physiologic and built-environment vulnerabilities to both hot and cold weather suggest prioritization of strategies that address both present-day cold and near-future heat concerns. Copyright © 2018. Published by Elsevier B.V.

  4. Experiences issues with plastic parts at cold temperatures

    NASA Technical Reports Server (NTRS)

    Sandor, Mike; Agarwal, Shri

    2005-01-01

    Missions to MARS/planets/asteroids require electronic parts to operate and survive at extreme cold conditions. At extreme cold temperatures many types of cold related failures can occur. Office 514 is currently evaluating plastic parts under various cold temperature conditions and applications. Evaluations, screens, and qualifications are conducted on flight parts.

  5. Body temperature and cold sensation during and following exercise under temperate room conditions in cold-sensitive young trained females.

    PubMed

    Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-11-01

    We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n  = 7) and non-cold-sensitive (Control, n  = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?

    USGS Publications Warehouse

    Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.

    2016-01-01

    Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.

  7. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features inmore » a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.« less

  8. Artificial Permafrost and the Application to the Low Temperature Storage for Foodstuffs

    NASA Astrophysics Data System (ADS)

    Ryokai, Kimitoshi; Fukuda, Masami

    In the cold regions like Hokkaido and Tohoku Districts, they have been advocating snow-overcoming, advantages of snow and effective utilization of cold climate. In fact, they have been positively trying to make use of snow and coldness as water resources, energy sources, structural materials and so on. One of energy utilization is for low temperature storage of foods. Since the potatoes have properties of adapting themselves to cold temperature when they are stored under cold environment, they have the tendency of growing in their sugar contents. As the results, all those foods which are stored under these cold environments will be the products of higher additional value. Here we will introduce the present situation of low temperature storage of foods by artificial permafrost, not only as the construction materials for cold storage house itself but also utilizing its own cold temperature.

  9. Mortality from desiccation contributes to a genotype–temperature interaction for cold survival in Drosophila melanogaster

    PubMed Central

    Kobey, Robert L.; Montooth, Kristi L.

    2013-01-01

    SUMMARY Survival at cold temperatures is a complex trait, primarily because of the fact that the physiological cause of injury may differ across degrees of cold exposure experienced within the lifetime of an ectothermic individual. In order to better understand how chill-sensitive insects experience and adapt to low temperatures, we investigated the physiological basis for cold survival across a range of temperature exposures from −4 to 6°C in five genetic lines of the fruit fly Drosophila melanogaster. Genetic effects on cold survival were temperature dependent and resulted in a significant genotype–temperature interaction for survival across cold temperature exposures that differ by as little as 2°C. We investigated desiccation as a potential mechanism of injury across these temperature exposures. Flies were dehydrated following exposures near 6°C, whereas flies were not dehydrated following exposures near −4°C. Furthermore, decreasing humidity during cold exposure decreased survival, and increasing humidity during cold exposure increased survival at 6°C, but not at −4°C. These results support the conclusion that in D. melanogaster there are multiple physiological mechanisms of cold-induced mortality across relatively small differences in temperature, and that desiccation contributes to mortality for exposures near 6°C but not for subzero temperatures. Because D. melanogaster has recently expanded its range from tropical to temperate latitudes, the complex physiologies underlying cold tolerance are likely to be important traits in the recent evolutionary history of this fruit fly. PMID:23197100

  10. Murder or Not? Cold Temperature Makes Criminals Appear to Be Cold-Blooded and Warm Temperature to Be Hot-Headed

    PubMed Central

    Gockel, Christine; Kolb, Peter M.; Werth, Lioba

    2014-01-01

    Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent. PMID:24788725

  11. Murder or not? Cold temperature makes criminals appear to be cold-blooded and warm temperature to be hot-headed.

    PubMed

    Gockel, Christine; Kolb, Peter M; Werth, Lioba

    2014-01-01

    Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent.

  12. ENSO's far reaching connection to Indian cold waves.

    PubMed

    Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio

    2016-11-23

    During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.

  13. Mountain Warfare and Cold Weather Operations

    DTIC Science & Technology

    2016-04-29

    military purposes, cold regions are defined as any region where cold temperatures , unique terrain, and snowfall have a significant effect on military...because of the wind’s effect on the body’s perceived temperature . Wet cold leads to hypothermia, frost bite, and trench foot. Wet cold conditions are...combined cooling effect of ambient temperature and wind (wind chill) experienced by their troops (see Figure 1-5). The Environment ATP 3-90.97

  14. Effects of temperature on mortality in Hong Kong: a time series analysis

    NASA Astrophysics Data System (ADS)

    Yi, Wen; Chan, Albert P. C.

    2015-07-01

    Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95 % confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95 % CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.

  15. Effects of temperature on mortality in Hong Kong: a time series analysis.

    PubMed

    Yi, Wen; Chan, Albert P C

    2015-07-01

    Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95% confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95% CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.

  16. Cold-sensing regulates Drosophila growth through insulin-producing cells

    PubMed Central

    Li, Qiaoran; Gong, Zhefeng

    2015-01-01

    Across phyla, body size is linked to climate. For example, rearing fruit flies at lower temperatures results in bigger body sizes than those observed at higher temperatures. The underlying molecular basis of this effect is poorly understood. Here we provide evidence that the temperature-dependent regulation of Drosophila body size depends on a group of cold-sensing neurons and insulin-producing cells (IPCs). Electrically silencing IPCs completely abolishes the body size increase induced by cold temperature. IPCs are directly innervated by cold-sensing neurons. Stimulation of these cold-sensing neurons activates IPCs, promotes synthesis and secretion of Drosophila insulin-like peptides and induces a larger body size, mimicking the effects of rearing the flies in cold temperature. Taken together, these findings reveal a neuronal circuit that mediates the effects of low temperature on fly growth. PMID:26648410

  17. Extremely cold and hot temperatures increase the risk of ischaemic heart disease mortality: epidemiological evidence from China.

    PubMed

    Guo, Yuming; Li, Shanshan; Zhang, Yanshen; Armstrong, Ben; Jaakkola, Jouni J K; Tong, Shilu; Pan, Xiaochuan

    2013-02-01

    To examine the effects of extremely cold and hot temperatures on ischaemic heart disease (IHD) mortality in five cities (Beijing, Tianjin, Shanghai, Wuhan and Guangzhou) in China; and to examine the time relationships between cold and hot temperatures and IHD mortality for each city. A negative binomial regression model combined with a distributed lag non-linear model was used to examine city-specific temperature effects on IHD mortality up to 20 lag days. A meta-analysis was used to pool the cold effects and hot effects across the five cities. 16 559 IHD deaths were monitored by a sentinel surveillance system in five cities during 2004-2008. The relationships between temperature and IHD mortality were non-linear in all five cities. The minimum-mortality temperatures in northern cities were lower than in southern cities. In Beijing, Tianjin and Guangzhou, the effects of extremely cold temperatures were delayed, while Shanghai and Wuhan had immediate cold effects. The effects of extremely hot temperatures appeared immediately in all the cities except Wuhan. Meta-analysis showed that IHD mortality increased 48% at the 1st percentile of temperature (extremely cold temperature) compared with the 10th percentile, while IHD mortality increased 18% at the 99th percentile of temperature (extremely hot temperature) compared with the 90th percentile. Results indicate that both extremely cold and hot temperatures increase IHD mortality in China. Each city has its characteristics of heat effects on IHD mortality. The policy for response to climate change should consider local climate-IHD mortality relationships.

  18. Hypothermic general cold adaptation induced by local cold acclimation.

    PubMed

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P < 0.05) without a change either in metabolic heat production or in lower limb skin temperatures during SCAT after LCA. It was concluded that local cold adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P < 0.05). However, the hypothermic insulative general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P < 0.05) was observed but was rather related to a "T3 polar syndrome" occurring during LCA.

  19. Do mitochondrial properties explain intraspecific variation in thermal tolerance?

    PubMed

    Fangue, Nann A; Richards, Jeffrey G; Schulte, Patricia M

    2009-02-01

    As global temperatures rise, there is a growing need to understand the physiological mechanisms that determine an organism's thermal niche. Here, we test the hypothesis that increases in mitochondrial capacity with cold acclimation and adaptation are associated with decreases in thermal tolerance using two subspecies of killifish (Fundulus heteroclitus) that differ in thermal niche. We assessed whole-organism metabolic rate, mitochondrial amount and mitochondrial function in killifish acclimated to several temperatures. Mitochondrial enzyme activities and mRNA levels were greater in fish from the northern subspecies, particularly in cold-acclimated fish, suggesting that the putatively cold-adapted northern subspecies has a greater capacity for increases in mitochondrial amount in response to cold acclimation. When tested at the fish's acclimation temperature, maximum ADP-stimulated (State III) rates of mitochondrial oxygen consumption in vitro were greater in cold-acclimated northern fish than in southern fish but did not differ between subspecies at higher acclimation temperatures. Whole-organism metabolic rate was greater in fish of the northern subspecies at all acclimation temperatures. Cold acclimation also changed the response of mitochondrial respiration to acute temperature challenge. Mitochondrial oxygen consumption was greater in cold-acclimated northern fish than in southern fish at low test temperatures, but the opposite was true at high test temperatures. These differences were reflected in whole-organism oxygen consumption. Our data indicate that the plasticity of mitochondrial function and amount differs between killifish subspecies, with the less high-temperature tolerant, and putatively cold adapted, northern subspecies having greater ability to increase mitochondrial capacity in the cold. However, there were few differences in mitochondrial properties between subspecies at warm acclimation temperatures, despite differences in both whole-organism oxygen consumption and thermal tolerance at these temperatures.

  20. Cold Temperatures Increase Cold Hardiness in the Next Generation Ophraella communa Beetles

    PubMed Central

    Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao

    2013-01-01

    The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%–4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R 0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates. PMID:24098666

  1. Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles.

    PubMed

    George, Ingrid J; Hays, Michael D; Herrington, Jason S; Preston, William; Snow, Richard; Faircloth, James; George, Barbara Jane; Long, Thomas; Baldauf, Richard W

    2015-11-03

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 and 24 °C). The cold start driving phase and cold ambient temperature increased VOC and MSAT emissions up to several orders of magnitude compared to emissions during other vehicle operation phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials (OFPs) were 7 to 21 times greater for the cold starts during cold temperature tests than comparable warm temperature tests. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, at the same ambient temperature, the VOC emissions from the E0 and E10 fuels and OFPs from all fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles.

  2. Relationships between cold-temperature indices and all causes and cardiopulmonary morbidity and mortality in a subtropical island.

    PubMed

    Lin, Yu-Kai; Wang, Yu-Chun; Lin, Pay-Liam; Li, Ming-Hsu; Ho, Tsung-Jung

    2013-09-01

    This study aimed to identify optimal cold-temperature indices that are associated with the elevated risks of mortality from, and outpatient visits for all causes and cardiopulmonary diseases during the cold seasons (November to April) from 2000 to 2008 in Northern, Central and Southern Taiwan. Eight cold-temperature indices, average, maximum, and minimum temperatures, and the temperature humidity index, wind chill index, apparent temperature, effective temperature (ET), and net effective temperature and their standardized Z scores were applied to distributed lag non-linear models. Index-specific cumulative 26-day (lag 0-25) mortality risk, cumulative 8-day (lag 0-7) outpatient visit risk, and their 95% confidence intervals were estimated at 1 and 2 standardized deviations below the median temperature, comparing with the Z score of the lowest risks for mortality and outpatient visits. The average temperature was adequate to evaluate the mortality risk from all causes and circulatory diseases. Excess all-cause mortality increased for 17-24% when average temperature was at Z=-1, and for 27-41% at Z=-2 among study areas. The cold-temperature indices were inconsistent in estimating risk of outpatient visits. Average temperature and THI were appropriate indices for measuring risk for all-cause outpatient visits. Relative risk of all-cause outpatient visits increased slightly by 2-7% when average temperature was at Z=-1, but no significant risk at Z=-2. Minimum temperature estimated the strongest risk associated with outpatient visits of respiratory diseases. In conclusion, the relationships between cold temperatures and health varied among study areas, types of health event, and the cold-temperature indices applied. Mortality from all causes and circulatory diseases and outpatient visits of respiratory diseases has a strong association with cold temperatures in the subtropical island, Taiwan. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. COLD-PCR enriches low-level variant DNA sequences and increases the sensitivity of genetic testing.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Guha, Minakshi; Makrigiorgos, G Mike

    2014-01-01

    Detection of low-level mutations is important for cancer biomarker and therapy targets discovery, but reliable detection remains a technical challenge. The newly developed method of CO-amplification at Lower Denaturation temperature PCR (COLD-PCR) helps to circumvent this issue. This PCR-based technology preferentially enriches minor known or unknown variants present in samples with a high background of wild type DNA which often hampers the accurate identification of these minority alleles. This is a simple process that consists of lowering the temperature at the denaturation step during the PCR-cycling protocol (critical denaturation temperature, T c) and inducing DNA heteroduplexing during an intermediate step. COLD-PCR in its simplest forms does not need additional reagents or specific instrumentation and thus, can easily replace conventional PCR and at the same time improve the mutation detection sensitivity limit of downstream technologies. COLD-PCR can be applied in two basic formats: fast-COLD-PCR that can enrich T m-reducing mutations and full-COLD-PCR that can enrich all mutations, though it requires an intermediate cross-hybridization step that lengthens the thermocycling program. An improved version of full-COLD-PCR (improved and complete enrichment, ice-COLD-PCR) has also been described. Finally, most recently, we developed yet another form of COLD-PCR, temperature-tolerant-COLD-PCR, which gradually increases the denaturation temperature during the COLD-PCR reaction, enriching diverse targets using a single cycling program. This report describes practical considerations for application of fast-, full-, ice-, and temperature-tolerant-COLD-PCR for enrichment of mutations prior to downstream screening.

  4. Effects of cold temperature and ethanol content on VOC ...

    EPA Pesticide Factsheets

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 °C and 24 °C). The cold start phase and cold ambient temperature increased VOC and MSAT emissions dramatically by up to several orders of magnitude compared to emissions during other phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials during the cold starts were significantly higher during cold temperature tests by 7 to 21 times the warm temperature values. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, the VOC emissions from E0 and E10 fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles. This manuscript communicates APPCD research activities on air toxics VOC emissions from mobile sources from the EPAct dynamometer study. Speciated VOC emissions from light-duty vehicles running on gasoline and ethanol blends at cold tem

  5. Genetic variation of germination cold tolerance in Japanese rice germplasm

    PubMed Central

    Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L.C.; Chamma, Helena Pescarin; Pinheiro, José Baldin

    2012-01-01

    Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold. PMID:23226080

  6. Genetic variation of germination cold tolerance in Japanese rice germplasm.

    PubMed

    Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L C; Chamma, Helena Pescarin; Pinheiro, José Baldin

    2012-09-01

    Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold.

  7. Cold Induction of Arabidopsis CBF Genes Involves Multiple ICE (Inducer of CBF Expression) Promoter Elements and a Cold-Regulatory Circuit That Is Desensitized by Low Temperature1

    PubMed Central

    Zarka, Daniel G.; Vogel, Jonathan T.; Cook, Daniel; Thomashow, Michael F.

    2003-01-01

    The Arabidopsis CBF1, 2, and 3 genes (also known as DREB1b, c, and a, respectively) encode transcriptional activators that have a central role in cold tolerance. CBF1-3 are rapidly induced upon exposing plants to low temperature, followed by expression of CBF-targeted genes, the CBF regulon, resulting in an increase in plant freezing tolerance. At present, little is known about the cold-sensing mechanism that controls CBF expression. Results presented here indicate that this mechanism does not require a cold shock to bring about the accumulation of CBF transcripts, but instead, absolute temperature is monitored with a greater degree of input, i.e. lower temperature, resulting in a greater output, i.e. higher levels of CBF transcripts. Temperature-shift experiments also indicate that the cold-sensing mechanism becomes desensitized to a given low temperature, such as 4°C, and that resensitization to that temperature requires between 8 and 24 h at warm temperature. Gene fusion experiments identified a 125-bp section of the CBF2 promoter that is sufficient to impart cold-responsive gene expression. Mutational analysis of this cold-responsive region identified two promoter segments that work in concert to impart robust cold-regulated gene expression. These sequences, designated ICEr1 and ICEr2 (induction of CBF expression region 1 or 2), were also shown to stimulate transcription in response to mechanical agitation and the protein synthesis inhibitor, cycloheximide. PMID:14500791

  8. An Overview of Signaling Regulons During Cold Stress Tolerance in Plants

    PubMed Central

    Pareek, Amit; Khurana, Ashima; Sharma, Arun K.; Kumar, Rahul

    2017-01-01

    Plants, being sessile organisms, constantly withstand environmental fluctuations, including low-temperature, also referred as cold stress. Whereas cold poses serious challenges at both physiological and developmental levels to plants growing in tropical or sub-tropical regions, plants from temperate climatic regions can withstand chilling or freezing temperatures. Several cold inducible genes have already been isolated and used in transgenic approach to generate cold tolerant plants. The conventional breeding methods and marker assisted selection have helped in developing plant with improved cold tolerance, however, the development of freezing tolerant plants through cold acclimation remains an unaccomplished task. Therefore, it is essential to have a clear understanding of how low temperature sensing strategies and corresponding signal transduction act during cold acclimation process. Herein, we synthesize the available information on the molecular mechanisms underlying cold sensing and signaling with an aim that the summarized literature will help develop efficient strategies to obtain cold tolerant plants. PMID:29204079

  9. Are the current thresholds, indicators, and time window for cold warning effective enough to protect cardiovascular health?

    PubMed

    Lin, Shao; Lawrence, Wayne R; Lin, Ziqiang; DiRienzo, Stephen; Lipton, Kevin; Dong, Guang-Hui; Leung, Ricky; Lauper, Ursula; Nasca, Philip; Stuart, Neil

    2018-10-15

    More extreme cold weather and larger weather variations have raised concerns regarding their effects on public health. Although prior studies assessed the effects of cold air temperature on health, especially mortality, limited studies evaluated wind chill temperatures on morbidity, and health effects under the current cold warning threshold. This study identified the thresholds, lag periods, and best indicators of extreme cold on cardiovascular disease (CVD) by comparing effects of wind chill temperatures and cold air temperatures on CVD emergency department (ED) visits in winter and winter transition months. Information was collected on 662,625 CVD ED visits from statewide hospital discharge dataset in New York State. Meteorological factors, including air temperature, wind speed, and barometric pressure were collected from National Oceanic and Atmospheric Administration. A case-crossover approach was used to assess the extreme cold-CVD relationship in winter (December-February) and transition months (November and March) after controlling for PM 2.5 . Conditional logistic regression models were employed to analyze the association between cold weather factors and CVD ED visits. We observed CVD effects occurred when wind chill temperatures were as high as -3.8 °C (25 °F), warmer than current wind chill warning standard (≤-28.8 °C or ≤-20 °F). Wind chill temperature was a more sensitive indicator of CVD ED visits during winter with temperatures ≤ -3.8 °C (25 °F) with delay effect (lag 6); however, air temperature was better during transition months for temperatures ≤ 7.2 °C (45 °F) at earlier lag days (1-3). Among all CVD subtypes, hypertension ED visit had the strongest negative association with both wind chill temperature and air temperature. This study recommends modifying the current cold warning temperature threshold given larger proportions of CVD cases are occurring at considerably higher temperatures than the current criteria. We also recommend issuing cold warnings in winter transitional months. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Efficacy of fermented green tea on peripheral skin temperature: a randomized and placebo-controlled clinical study.

    PubMed

    Lee, Eunyoung; Lee, Bum-Jin; Ha, Jaehyoun; Shin, Hyun-Jung; Chung, Jin-Oh

    2016-09-01

    This study was aimed at assessing the therapeutic efficacy of green tea on peripheral skin for cold hypersensitive subjects, who had the feeling of cold hands and feet at cold temperatures, one of the most common complaints in Asian women. This randomized and placebo-controlled clinical study included 60 female Korean subjects who had the feeling of cold hands and feet at cold temperatures. The subjects were randomly assigned into two groups to receive fermented green tea or a placebo (hot water). The skin temperature of the hands and feet was measured using digital infrared thermography at the baseline and at 15, 30, 45, and 60 min after the oral administration of the tea or placebo. The skin temperature of the hands and feet of the fermented green tea-administered group was significantly higher than that of the placebo-administered group. The temperature difference between the finger and the dorsum of the hand was significantly lower in the fermented green tea-administered group than that in the placebo group. Fermented green tea is helpful for cold hypersensitivity. This is the first clinical study to evaluate the efficacy of fermented green tea on peripheral skin in subjects having the feeling of cold hands and feet at cold temperatures by infrared thermography. However, further studies are necessary to evaluate the long-term effects of the fermented green tea for cold hypersensitivity and to elucidate the underlying physiological mechanism. © 2015 Wiley Periodicals, Inc.

  11. Skin temperature measurement using an infrared thermometer on patients who have been exposed to cold.

    PubMed

    Erenberk, Ufuk; Torun, Emel; Ozkaya, Emin; Uzuner, Selcuk; Demir, Aysegul Dogan; Dundaroz, Rusen

    2013-12-01

    The aim of this study was to determine if the skin temperature of febrile children is affected by the child's exposure to cold outdoor temperatures immediately prior to the taking of that temperature. A total of 150 febrile and non-febrile children (aged 3-10 years) who had walked to the hospital's pediatric emergency department and were thus exposed to outside cold weather were enrolled in the study. Using infrared thermometry, forehead and chest skin temperatures were simultaneously measured every 2 min during the first 14 min after presentation. Temperatures were recorded and differences between the two measurements were calculated. By the fifth evaluation (10 min from the first reading), skin temperatures from forehead and chest had equalized. Determination of fever from the body parts that had been exposed to cold environmental conditions may cause contradictory results if taken while the child is still chilled from exposure to the cold. For accuracy, children should be acclimated to the indoor temperature before taking body temperature readings. Acclimation takes at least 10 min after coming in from cold weather outside. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  12. Association of cold temperature and mortality and effect modification in the subtropical plateau monsoon climate of Yuxi, China.

    PubMed

    Ding, Zan; Li, Liujiu; Wei, Ruqin; Dong, Wenya; Guo, Pi; Yang, Shaoyi; Liu, Ju; Zhang, Qingying

    2016-10-01

    Consistent evidence has shown excess mortality associated with cold temperature, but some important details of the cold-mortality association (e.g. slope and threshold) have not been adequately investigated and few studies focused on the cold effect in high-altitude areas of developing countries. We attempted to quantify the cold effect on mortality, identify the details, and evaluate effect modification in the distinct subtropical plateau monsoon climate of Yuxi, a high plateau region in southwest China. From daily mortality and meteorological data during 2009-2014, we used a quasi-Poisson model combined with a "natural cubic spline-natural cubic spline" distributed lag non-linear model to estimate the temperature-mortality relationship and then a simpler "hockey-stick" model to investigate the cold effect and details. Cold temperature was associated with increased mortality, and the relative risk of cold effect (1st relative to 10th temperature percentile) on non-accidental, cardiovascular, and respiratory mortality for lag 0-21 days was 1.40 (95% confidence interval: 1.19-1.66), 1.61 (1.28-2.02), and 1.13 (0.78-1.64), respectively. A 1°C decrease below a cold threshold of 9.1°C (8th percentile) for lags 0-21 was associated with a 7.35% (3.75-11.09%) increase in non-accidental mortality. The cold-mortality association was not significantly affected by cause-specific mortality, gender, age, marital status, ethnicity, occupation, or previous history of hypertension. There is an adverse impact of cold on mortality in Yuxi, China, and a temperature of 9.1°C is an important cut-off for cold-related mortality for residents. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations.

    PubMed

    Bansal, Sheel; St Clair, J Bradley; Harrington, Constance A; Gould, Peter J

    2015-10-01

    The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool-temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed-source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool-temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3-fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed-source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed-source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed-source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  14. Instrument Packages for the Cold, Dark, High Radiation Environments

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.

    2011-01-01

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.

  15. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato

    USDA-ARS?s Scientific Manuscript database

    Storing potato (Solanum tuberosum) tubers at cold temperatures prevents sprouting and minimizes losses due to disease. Unfortunately, cold storage triggers an accumulation of reducing sugars, a phenomenon referred to as cold-induced sweetening (CIS). High-temperature processing of potato tubers wit...

  16. Thermal responses from repeated exposures to severe cold with intermittent warmer temperatures.

    PubMed

    Ozaki, H; Enomoto-Koshimizu, H; Tochihara, Y; Nakamura, K

    1998-09-01

    This study was conducted to evaluate physiological reaction and manual performance during exposure to warm (30 degrees C) and cool (10 degrees C) environments after exposure to very low temperatures (-25 degrees C). Furthermore, this experiment was conducted to study whether it is desirable to remove cold-protective jackets in warmer rooms after severe cold exposure. Eight male students remained in an extremely cold room for 20 min, after which they transferred into either the warm room or the cool room for 20 min. This pattern was repeated three times, and the total cold exposure time was 60 min. In the warm and cool rooms, the subjects either removed their cold-protective jackets (Condition A), or wore them continuously (Condition B). Rectal temperature, skin temperatures, manual performance, blood pressure, thermal, comfort and pain sensations were measured during the experiment. The effects of severe cold on almost all measurements in the cool (10 degrees C) environment were greater than those in the warm (30 degrees C) environment under both clothing conditions. The effects of severe cold on all measurements under Condition A except rectal temperature and toe skin temperature were significantly greater than those under Condition B in the cool environment but, not at all differences between Condition A and Condition B in the warm environments were significant. It was recognized that to remove cold-protective jackets in the cool room (10 degrees C) after severe cold exposure promoted the effects of severe cold. When rewarming in the warm resting room (30 degrees C), the physiological and psychological responses and manual performance were not influenced by the presence or absence of cold-protective clothing. These results suggest that it is necessary for workers to make sure to rewarm in the warm room outside of the cold storage and continue to wear cold-protective clothing in the cool room.

  17. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections.

    PubMed

    Mäkinen, Tiina M; Juvonen, Raija; Jokelainen, Jari; Harju, Terttu H; Peitso, Ari; Bloigu, Aini; Silvennoinen-Kassinen, Sylvi; Leinonen, Maija; Hassi, Juhani

    2009-03-01

    The association between cold exposure and acute respiratory tract infections (RTIs) has remained unclear. The study examined whether the development of RTIs is potentiated by cold exposure and lowered humidity in a northern population. A population study where diagnosed RTI episodes, outdoor temperature and humidity among conscripts (n=892) were analysed. Altogether 643 RTI episodes were diagnosed during the follow-up period. Five hundred and ninety-five episodes were upper (URTI) and 87 lower (LRTI) RTIs. The mean average daily temperature preceding any RTIs was -3.7+/-10.6; for URTI and LRTI they were -4.1+/-10.6 degrees C and -1.1+/-10.0 degrees C, respectively. Temperature was associated with common cold (p=0.017), pharyngitis (p=0.011) and LRTI (p=0.048). Absolute humidity was associated with URTI (p<0.001). A 1 degrees C decrease in temperature increased the estimated risk for URTI by 4.3% (p<0.0001), for common cold by 2.1% (p=0.004), for pharyngitis by 2.8% (p=0.019) and for LRTI by 2.1% (p=0.039). A decrease of 1g/m(-3) in absolute humidity increased the estimated risk for URTI by 10.0% (p<0.001) and for pharyngitis by 10.8% (p=0.023). The average outdoor temperature decreased during the preceding three days of the onset of any RTIs, URTI, LRTI or common cold. The temperature for the preceding 14 days also showed a linear decrease for any RTI, URTI or common cold. Absolute humidity decreased linearly during the preceding three days before the onset of common cold, and during the preceding 14 days for all RTIs, common cold and LRTI. Cold temperature and low humidity were associated with increased occurrence of RTIs, and a decrease in temperature and humidity preceded the onset of the infections.

  18. Cold resistance depends on acclimation and behavioral caste in a temperate ant

    NASA Astrophysics Data System (ADS)

    Modlmeier, Andreas P.; Pamminger, Tobias; Foitzik, Susanne; Scharf, Inon

    2012-10-01

    Adjusting to low temperatures is important for animals living in cold environments. We studied the chill-coma recovery time in temperate ant workers ( Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill-coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.

  19. Patients' experiences of cold exposure during ambulance care.

    PubMed

    Aléx, Jonas; Karlsson, Stig; Saveman, Britt-Inger

    2013-06-06

    Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients' experiences of cold exposure and to identify related factors. During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients' finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from -22.3°C to 8.4°C. Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons.

  20. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation.

    PubMed

    Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu

    2018-04-01

    Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum , thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.

  1. Pneumonia Hospitalization Risk in the Elderly Attributable to Cold and Hot Temperatures in Hong Kong, China.

    PubMed

    Qiu, Hong; Sun, Shengzhi; Tang, Robert; Chan, King-Pan; Tian, Linwei

    2016-10-15

    The growth of pathogens potentially relevant to respiratory tract infection may be triggered by changes in ambient temperature. Few studies have examined the association between ambient temperature and pneumonia incidence, and no studies have focused on the susceptible elderly population. We aimed to examine the short-term association between ambient temperature and geriatric pneumonia and to assess the disease burden attributable to cold and hot temperatures in Hong Kong, China. Daily time-series data on emergency hospital admissions for geriatric pneumonia, mean temperature, relative humidity, and air pollution concentrations between January 2005 and December 2012 were collected. Distributed-lag nonlinear modeling integrated in quasi-Poisson regression was used to examine the exposure-lag-response relationship between temperature and pneumonia hospitalization. Measures of the risk attributable to nonoptimal temperature were calculated to summarize the disease burden. Subgroup analyses were conducted to examine the sex difference. We observed significant nonlinear and delayed associations of both cold and hot temperatures with pneumonia in the elderly, with cold temperatures having stronger effect estimates. Among the 10.7% of temperature-related pneumonia hospitalizations, 8.7% and 2.0% were attributed to cold and hot temperatures, respectively. Most of the temperature-related burden for pneumonia hospitalizations in Hong Kong was attributable to cold temperatures, and elderly men had greater susceptibility. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. 40 CFR 86.213-11 - Fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...

  3. 40 CFR 86.213-11 - Fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...

  4. 40 CFR 86.213-11 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...

  5. 40 CFR 86.213-11 - Fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...

  6. The cold driver: Cold stress while driving results in dangerous behavior.

    PubMed

    Morris, Drew M; Pilcher, June J

    2016-10-01

    Cool vehicle cabin temperatures can induce short-term non-hypothermic cold stress. The current study created a cold condition to examine the impact of cold stress on driving behavior. Forty-four participants drove a high-fidelity driving simulator during a thermal neutral or local torso cooled condition. Participants performed additional tasks to assess attention, psychomotor vigilance, and manual dexterity. Skin temperature was significantly lower in the cold condition while internal temperature was unaffected. Participants who had higher subjective ratings of cold followed lead vehicles closer and started to brake later. Participants in the cold condition followed the lead car 22% (0.82s) closer and started braking 20% (2.35s) later when approaching a stop sign during the car-following task. No change in attention, psychomotor vigilance, or dexterity was observed. The current results suggest that cold environmental conditions can contribute to dangerous driving behaviors. Measures of cold perception were also shown to predict changes in driving behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Extracerebral deep-body cold sensitivity in the Pekin duck.

    PubMed

    Inomoto, T; Simon, E

    1981-09-01

    Pekin ducks, in which cerebral cold sensitivity is negligible, were submitted to general body cooling at warm, thermoneutral, and cold ambient temperature (Ta) with an intestinal thermode. In some animals, hypothermia was enhanced by additional hypothalamic cooling that suppressed cold defense. In other animals, the spinal cord was cooled, either selectively or during intestinal cooling. From core temperature (Tc) and metabolic heat production (M) an overall cold sensitivity of about -5 to -6 W . kg-1 . degrees C-1 was determined at thermoneutrality. Maximum M amounted to four to five times the resting M of 3.8 W . kg-1 and was attained when Tc fell by 2.5 degrees C or more. In the cold, threshold Tc for the activation of M was elevated; overall cold sensitivity remained constant. In the warmth, threshold Tc was lowered; overall cold sensitivity was reduced, if mean skin temperature (Tsk) remained at aout 39 degrees C or higher. Spinal cold sensitivity amounted to about -0.25 W . kg-1 . degrees C-1 at normal Tc and thermoneutral and warm Ta; it increased to aout -0.50 W . kg-1 . degrees C-1 in the cold and during hypothermia. Peripheral cold sensitivity was estimated from Tsk and M as -0.4 to -0.8 W . kg-1 . degrees C-1. It is concluded that overall cold sensitivity in ducks mainly depends on deep-body temperature sensors outside of the central nervous system.

  8. Cold chain monitoring during cold transportation of human corneas for transplantation.

    PubMed

    Net, M; Trias, E; Navarro, A; Ruiz, A; Diaz, P; Fontenla, J R; Manyalich, M

    2003-08-01

    As recommended by international standards the cornea should be maintained in a specific temperature range (2 degrees -8 degrees C) to guarantee its viability. However, there is no standard packaging method to maintain these conditions during transport. Our packaging system is similar to those used by the main eye banks in Spain and elsewhere in Europe. The objective is to monitor the cold chain in the current packaging method to validate the maintenance of temperature within the adequate range for a minimum 24-hour period. The effects of the following variables were studied: number and freezing temperature of the cold packs; air volume in the packaging system; position of the cornea in the packaging system; and the wall section of the container. Exterior temperature was maintained constant at 20 degrees to 24 degrees C. The cold chain was monitored using a device that measures temperature continuously and for which a histogram of temperature variation can be downloaded to a computer for further analysis. When the cold packs were frozen to -40 degrees C or the number of cold packs increased to four, the temperature decreased quickly to 0 degrees C and the transport period was not prolonged. The main objective was to improve isolation by reducing inner air volume, and maintaining the position of the cornea in the container. The currently used cold packaging systems (not frozen, 4 degrees C) do not maintain the temperature within the accepted range for the required distribution period. The improved system maintains the cornea at between 2 degrees C and 6 degrees C for a minimum of 24 hours.

  9. Abiotic stress of ambient cold temperature regulates the host receptivity to pathogens by cell surfaced sialic acids.

    PubMed

    Moon, Seong-Cheol; Joo, Su-Yeon; Chung, Tae-Wook; Choi, Hee-Jung; Park, Mi-Ju; Choi, Hee-Jin; Bae, Sung-Jin; Kim, Keuk-Jun; Kim, Cheorl-Ho; Joo, Myungsoo; Ha, Ki-Tae

    2016-07-29

    Ambient cold temperature, as an abiotic stress, regulates the survival, stability, transmission, and infection of pathogens. However, the effect of cold temperature on the host receptivity to the pathogens has not been fully studied. In this study, the expression of terminal α-2,3- and α-2,6-sialic acids were increased in murine lung tissues, especially bronchial epithelium, by exposure to cold condition. The expression of several sialyltransferases were also increased by exposure to cold temperature. Furthermore, in human bronchial epithelial BEAS-2B cells, the expressions of α-2,3- and α-2,6-sialic acids, and mRNA levels of sialyltransferases were increased in the low temperature condition at 33 °C. On the other hand, the treatment of Lith-Gly, a sialyltransferase inhibitor, blocked the cold-induced expression of sialic acids on surface of BEAS-2B cells. The binding of influenza H1N1 hemagglutinin (HA) toward BEAS-2B cells cultured at low temperature condition was increased, compared to 37 °C. In contrast, the cold-increased HA binding was blocked by treatment of lithocholicglycine and sialyl-N-acetyl-D-lactosamines harboring α-2,3- and α-2,6-sialyl motive. These results suggest that the host receptivity to virus at cold temperature results from the expressions of α-2,3- and α-2,6-sialic acids through the regulation of sialyltransferase expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Cold-Cap Temperature Profile Comparison between the Laboratory and Mathematical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-01

    The rate of waste vitrification in an electric melter is connected to the feed-to-glass conversion process, which occurs in the cold cap, a layer of reacting feed on top of molten glass. The cold cap consists of two layers: a low temperature (~100°C – ~800°C) region of unconnected feed and a high temperature (~800°C – ~1100°C) region of foam with gas bubbles and cavities mixed in the connected glass melt. A recently developed mathematical model describes the effect of the cold cap on glass production. For verification of the mathematical model, a laboratory-scale melter was used to produce a coldmore » cap that could be cross-sectioned and polished in order to determine the temperature profile related to position in the cold cap. The cold cap from the laboratory-scale melter exhibited an accumulation of feed ~400°C due to radiant heat from the molten glass creating dry feed conditions in the melter, which was not the case in the mathematical model where wet feed conditions were calculated. Through the temperature range from ~500°C – ~1100°C, there was good agreement between the model and the laboratory cold cap. Differences were observed between the two temperature profiles due to the temperature of the glass melts and the lack of secondary foam, large cavities, and shrinkage of the primary foam bubbles upon the cooling of the laboratory-scale cold cap.« less

  11. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale.

    PubMed

    Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen

    2015-05-01

    Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cold pleasure. Why we like ice drinks, ice-lollies and ice cream.

    PubMed

    Eccles, R; Du-Plessis, L; Dommels, Y; Wilkinson, J E

    2013-12-01

    This review discusses how the ingestion of cold foods and drinks may be perceived as pleasant because of the effects of cooling of the mouth. The case is made that man has originated from a tropical environment and that cold stimuli applied to the external skin may initiate thermal discomfort and reflexes such as shivering and vasoconstriction that defend body temperature, whereas cold stimuli applied to the mouth are perceived as pleasant because of pleasure associated with satiation of thirst and a refreshing effect. Cold water is preferred to warm water as a thirst quencher and cold products such as ice cream may also be perceived as pleasant because oral cooling satiates thirst. The case is made that cold stimuli may be perceived differently in the skin and oral mucosa, leading to different effects on temperature regulation, and perception of pleasure or displeasure, depending on the body temperature and the temperature of the external environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A primer on clothing systems for cold-weather field work

    USGS Publications Warehouse

    Denner, Jon

    1990-01-01

    Conducting field work in cold weather is a demanding task. The most important safety consideration for field personnel is to maintain normal body temperature and avoid hypothermia.The human body adjusts to cold temperatures through different physiological processes. Heat production is enhanced by increases in the rates of basal metabolism, specific dynamic action, and physical exercise, and heat loss is reduced by vasoconstriction.Physiological adaptations alone are inadequate to stop rapid heat loss in cold temperatures. Additional insulation in the form of cold-weather clothing is necessary to retain heat.The most practical method of dressing for winter conditions is the layering system. Wearing multiple thin layers allows one to fine tune the insulation needed for different temperatures and activity levels.

  14. Prenatal exposure to ambient temperature variation increases the risk of common cold in children.

    PubMed

    Lu, Chan; Miao, Yufeng; Zeng, Ji; Jiang, Wei; Shen, Yong-Ming; Deng, Qihong

    2018-06-15

    Common cold is a frequent upper respiratory tract infection, but the role of ambient temperature in the infection is unclear. We investigated the role of prenatal exposure to diurnal temperature variation (DTV), the difference between the daily maximal and minimal temperatures, in the risk of common cold in children. We conducted a cohort study of 2598 preschool children in Changsha, China. Occurrence of common cold during the past year was surveyed using questionnaire. We then estimated each child's prenatal exposure to DTV during pregnancy. Multivariate logistic regression model was used to examine the association between occurrence of common cold and prenatal exposure to DTV in terms of odds ratios (OR) and 95% confidence interval (CI). About 45% children have common cold (≥3 times) during the past year. We found that common cold in children was associated with maternal DTV exposure during pregnancy, particularly during the first trimester with adjusted OR (95% CI) = 1.27 (1.10-1.46). Male and atopic children were more susceptible to the effect of DTV during pregnancy. The risk of common cold due to DTV is higher in children living in the suburban areas and the bigger houses and in those exposed to environmental tobacco smoke, mold/dampness, new furniture and redecoration. We observed that the risk of common cold in children has been increased in recent years due to increasing DTV. Common cold in children was associated with maternal exposure to temperature variation during pregnancy, suggesting that the risk of common cold may originate in pregnancy. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Cold-Chain Adaptability During Introduction of Inactivated Polio Vaccine in Bangladesh, 2015.

    PubMed

    Billah, Mallick M; Zaman, K; Estivariz, Concepcion F; Snider, Cynthia J; Anand, Abhijeet; Hampton, Lee M; Bari, Tajul I A; Russell, Kevin L; Chai, Shua J

    2017-07-01

    Introduction of inactivated polio vaccine creates challenges in maintaining the cold chain for vaccine storage and distribution. We evaluated the cold chain in 23 health facilities and 36 outreach vaccination sessions in 8 districts and cities of Bangladesh, using purposive sampling during August-October 2015. We interviewed immunization and cold-chain staff, assessed equipment, and recorded temperatures during vaccine storage and transportation. All health facilities had functioning refrigerators, and 96% had freezers. Temperature monitors were observed in all refrigerators and freezers but in only 14 of 66 vaccine transporters (21%). Recorders detected temperatures >8°C for >60 minutes in 5 of 23 refrigerators (22%), 3 of 6 cold boxes (50%) transporting vaccines from national to subnational depots, and 8 of 48 vaccine carriers (17%) used in outreach vaccination sites. Temperatures <2°C were detected in 4 of 19 cold boxes (21%) transporting vaccine from subnational depots to health facilities and 14 of 48 vaccine carriers (29%). Bangladesh has substantial cold-chain storage and transportation capacity after inactivated polio vaccine introduction, but temperature fluctuations during vaccine transport could cause vaccine potency loss that could go undetected. Bangladesh and other countries should strive to ensure consistent and sufficient cold-chain storage and monitor the cold chain during vaccine transportation at all levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  16. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  17. Recovery benefits of using a heat and moisture exchange mask during sprint exercise in cold temperatures.

    PubMed

    Seifert, John G; Frost, Jeremy; St Cyr, John A

    2017-01-01

    Breathing cold air can lead to bronchoconstriction and peripheral vasoconstriction, both of which could impact muscular performance by affecting metabolic demands during exercise. Successful solutions dealing with these physiological changes during exercise in the cold has been lacking; therefore, we investigated the influence of a heat and moisture exchange mask during exercise in the cold. There were three trial arms within this study: wearing the heat and moisture exchange mask during the rest periods in the cold, no-mask application during the rest periods in the cold, and a trial at room temperature (22°C). Eight subjects cycled in four 35 kJ sprint sessions with each session separated by 20 min rest period. Workload was 4% of body mass. Mean sprint times were faster with heat and moisture exchange mask and room temperature trial than cold, no-mask trial (133.8 ± 8.6, 134.9 ± 8.8, and 138.0 ± 8.4 s (p = 0.001)). Systolic blood pressure and mean arterial pressure were greater during the cold trial with no mask (15% and 13%, respectively), and heart rate was 10 bpm less during the third rest or recovery period during cold, no mask compared to the heat and moisture exchange mask and room temperature trials. Subjects demonstrated significant decreases in vital capacity and peak expiratory flow rate during the cold with no mask applied during the rest periods. These negative responses to cold exposure were alleviated by the use of a heat and moisture exchange mask worn during the rest intervals by minimizing cold-induced temperature stress on the respiratory system with subsequent maintenance of cardiovascular function.

  18. Effects of temperature on mortality in Chiang Mai city, Thailand: a time series study

    PubMed Central

    2012-01-01

    Background The association between temperature and mortality has been examined mainly in North America and Europe. However, less evidence is available in developing countries, especially in Thailand. In this study, we examined the relationship between temperature and mortality in Chiang Mai city, Thailand, during 1999–2008. Method A time series model was used to examine the effects of temperature on cause-specific mortality (non-external, cardiopulmonary, cardiovascular, and respiratory) and age-specific non-external mortality (<=64, 65–74, 75–84, and > =85 years), while controlling for relative humidity, air pollution, day of the week, season and long-term trend. We used a distributed lag non-linear model to examine the delayed effects of temperature on mortality up to 21 days. Results We found non-linear effects of temperature on all mortality types and age groups. Both hot and cold temperatures resulted in immediate increase in all mortality types and age groups. Generally, the hot effects on all mortality types and age groups were short-term, while the cold effects lasted longer. The relative risk of non-external mortality associated with cold temperature (19.35°C, 1st percentile of temperature) relative to 24.7°C (25th percentile of temperature) was 1.29 (95% confidence interval (CI): 1.16, 1.44) for lags 0–21. The relative risk of non-external mortality associated with high temperature (31.7°C, 99th percentile of temperature) relative to 28°C (75th percentile of temperature) was 1.11 (95% CI: 1.00, 1.24) for lags 0–21. Conclusion This study indicates that exposure to both hot and cold temperatures were related to increased mortality. Both cold and hot effects occurred immediately but cold effects lasted longer than hot effects. This study provides useful data for policy makers to better prepare local responses to manage the impact of hot and cold temperatures on population health. PMID:22613086

  19. Sympathoadrenal responses to cold and ketamine anesthesia in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Kolka, M. A.; Elizondo, R. S.; Weinberg, R. P.

    1983-01-01

    The effect of cold exposure on the sympathoadrenal system is investigated in eight adult rhesus monekys with and without ketamine anesthesia. It is found that a 3 hr cold exposure (12 c) was associated with a 175 percent increase above control levels of norepinephrine (NE) and a 100 percent increase in epinephrine (E). Also observed were decreases in the core temperature, mean skin temperature, and mean body temperature. No change in the plasma levels of NE and E from the control values was found during continuous infusion of ketamine; while the core temperature, mean skin temperature, and mean body temperature all showed greater declines with the addition of ketamine infusion to the cold exposure. Water exposure (28 C) under ketamine anesthesia resulted in a reduction of the core temperature to 33 C within 1 hr. Plasma levels of NE and E were found to be unchanged from control values at core temperatures of 35 and 33 C. It is concluded that the administration of ketamine abolishes both the thermoregulatory response and the catecholamine response to acute cold exposure.

  20. Validation of standard ASTM F2732 and comparison with ISO 11079 with respect to comfort temperature ratings for cold protective clothing.

    PubMed

    Gao, Chuansi; Lin, Li-Yen; Halder, Amitava; Kuklane, Kalev; Holmér, Ingvar

    2015-01-01

    American standard ASTM F2732 estimates the lowest environmental temperature for thermal comfort for cold weather protective clothing. International standard ISO 11079 serves the same purpose but expresses cold stress in terms of required clothing insulation for a given cold climate. The objective of this study was to validate and compare the temperature ratings using human subject tests at two levels of metabolic rates (2 and 4 MET corresponding to 116.4 and 232.8 W/m(2)). Nine young and healthy male subjects participated in the cold exposure at 3.4 and -30.6 °C. The results showed that both standards predict similar temperature ratings for an intrinsic clothing insulation of 1.89 clo and for 2 MET activity. The predicted temperature rating for 2 MET activity is consistent with test subjects' thermophysiological responses, perceived thermal sensation and thermal comfort. For 4 MET activity, however, the whole body responses were on the cold side, particularly the responses of the extremities. ASTM F2732 is also limited due to its omission and simplification of three climatic variables (air velocity, radiant temperature and relative humidity) and exposure time in the cold which are of practical importance. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. 40 CFR 86.1864-10 - How to comply with the fleet average cold temperature NMHC standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1864-10... life requirements. Full useful life requirements for cold temperature NMHC standards are defined in § 86.1805-04(g). There is not an intermediate useful life standard for cold temperature NMHC standards...

  2. 40 CFR 86.1864-10 - How to comply with the fleet average cold temperature NMHC standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1864-10... life requirements. Full useful life requirements for cold temperature NMHC standards are defined in § 86.1805-04(g). There is not an intermediate useful life standard for cold temperature NMHC standards...

  3. 40 CFR 86.1864-10 - How to comply with the fleet average cold temperature NMHC standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1864-10... life requirements. Full useful life requirements for cold temperature NMHC standards are defined in § 86.1805-04(g). There is not an intermediate useful life standard for cold temperature NMHC standards...

  4. Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model.

    PubMed

    Noguchi, Ko; Yamori, Wataru; Hikosaka, Kouki; Terashima, Ichiro

    2015-07-01

    The temperature dependence of plant respiratory rate (R) changes in response to growth temperature. Here, we used a modified Arrhenius model incorporating the temperature dependence of activation energy (Eo ), and compared the temperature dependence of R between cold-sensitive and cold-tolerant species. We analyzed the temperature dependences of leaf CO2 efflux rate of plants cultivated at low (LT) or high temperature (HT). In plants grown at HT (HT plants), Eo at low measurement temperature varied among species, but Eo at growth temperature in HT plants did not vary and was comparable to that in plants grown at LT (LT plants), suggesting that the limiting process was similar at the respective growth temperatures. In LT plants, the integrated value of loge R, a measure of respiratory capacity, in cold-sensitive species was lower than that in cold-tolerant species. When plants were transferred from HT to LT, the respiratory capacity changed promptly after the transfer compared with the other parameters. These results suggest that a similar process limits R at different growth temperatures, and that the lower capacity of the respiratory system in cold-sensitive species may explain their low growth rate at LT. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Hemodynamic and thermoregulatory responses to lower body water immersion.

    PubMed

    Muller, Matthew D; Kim, Cihul-Ho; Seo, Yongsuk; Ryan, Edward J; Glickman, Ellen L

    2012-10-01

    Lower body water immersion (LBWI) is experienced in the marine industry but the physiological responses to LBWI are unclear. The purpose of the current experiment was to test the effects of water temperature and immersion duration on rectal temperature, heart rate, stroke volume, blood pressure, metabolic rate, and thermal sensation in healthy subjects. Nine young men underwent two 60-min trials of seated LBWI to the iliac crest in a counterbalanced fashion. On one occasion, the water was 35 degrees C (LBWI-Neutral) and on the other it was 13 degrees C (LBWI-Cold); the upper body remained thermoneutral and dry throughout. As expected, exposure to cold water reduced mean skin temperature and individuals reported cold thermal sensation. Mean arterial pressure was significantly higher at 60 min of LBWI-Cold (86 +/- 7 mmHg) compared to LBWI-Neutral (76 +/- 5 mmHg) while heart rate tended to be lower. The change in rectal temperature from baseline to 30 min of LBWI-Cold (delta = -0.01 +/- 0.21degrees C) was significantly smaller than the change in T(re) from 30 to 60 min of LBWI-Cold (delta = -0.46 +/- 0.16 degrees C). Despite this accelerated drop in core temperature during minutes 30-60, metabolic rate did not increase significantly. LBWI-Cold reduces core temperature and increases arterial blood pressure via an increase in total peripheral resistance. This experimental model may help scientists better understand the body during cold stress. Further, people who are occupationally exposed to cold water (when the torso, hands, and arms remain thermoneutral) may be at increased risk for hypothermia.

  6. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    PubMed

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.

    PubMed

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.

  8. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms

    PubMed Central

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee’s physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems. PMID:25961447

  9. Correlation of Wissler Human Thermal Model Blood Flow and Shiver Algorithms

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2010-01-01

    The Wissler Human Thermal Model (WHTM) is a thermal math model of the human body that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. The model has been shown to predict core temperature and skin temperatures higher and lower, respectively, than in tests of subjects in crew escape suit working in a controlled hot environments. Conversely the model predicts core temperature and skin temperatures lower and higher, respectively, than in tests of lightly clad subjects immersed in cold water conditions. The blood flow algorithms of the model has been investigated to allow for more and less flow, respectively, for the cold and hot case. These changes in the model have yielded better correlation of skin and core temperatures in the cold and hot cases. The algorithm for onset of shiver did not need to be modified to achieve good agreement in cold immersion simulations

  10. Is freezing in the vaccine cold chain an ongoing issue? A literature review.

    PubMed

    Hanson, Celina M; George, Anupa M; Sawadogo, Adama; Schreiber, Benjamin

    2017-04-19

    Vaccine exposure to temperatures below recommended ranges in the cold chain may decrease vaccine potency of freeze-sensitive vaccines leading to a loss of vaccine investments and potentially places children at risk of contracting vaccine preventable illnesses. This literature review is an update to one previously published in 2007 (Matthias et al., 2007), analyzing the prevalence of vaccine exposure to temperatures below recommendations throughout various segments of the cold chain. Overall, 45 studies included in this review assess temperature monitoring, of which 29 specifically assess 'too cold' temperatures. The storage segments alone were evaluated in 41 articles, 15 articles examined the transport segment and 4 studied outreach sessions. The sample size of the studies varied, ranging from one to 103 shipments and from three to 440 storage units. Among reviewed articles, the percentage of vaccine exposure to temperatures below recommended ranges during storage was 33% in wealthier countries and 37.1% in lower income countries. Vaccine exposure to temperatures below recommended ranges occurred during shipments in 38% of studies from higher income countries and 19.3% in lower income countries. This review highlights continuing issues of vaccine exposure to temperatures below recommended ranges during various segments of the cold chain. Studies monitoring the number of events vaccines are exposed to 'too cold' temperatures as well as the duration of these events are needed. Many reviewed studies emphasize the lack of knowledge of health workers regarding freeze damage of vaccines and how this has an effect on temperature monitoring. It is important to address this issue by educating vaccinators and cold chain staff to improve temperature maintenance and supply chain management, which will facilitate the distribution of potent vaccines to children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    NASA Astrophysics Data System (ADS)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  12. [Research advances in mathematical model of coniferous trees cold hardiness].

    PubMed

    Zhang, Gang; Wang, Ai-Fang

    2007-07-01

    Plant cold hardiness has complicated attributes. This paper introduced the research advances in establishing the dynamic models of coniferous trees cold hardiness, with the advantages and disadvantages of the models presented and the further studies suggested. In the models established initially, temperature was concerned as the only environmental factor affecting the cold hardiness, and the concept of stationary level of cold hardiness was introduced. Due to the obvious prediction errors of these models, the stationary level of cold hardiness was modeled later by assuming the existence of an additive effect of temperature and photoperiod on the increase of cold hardiness. Furthermore, the responses of the annual development phases for cold hardiness to environment were considered. The model researchers have paid more attention to the additive effect models, and run some experiments to test the additivity principle. However, the research results on Scots pine (Pinus sylvestris) indicated that its organs did not support the presumption of an additive response of cold hardiness by temperature and photoperiod, and the interaction between environmental factors should be taken into account. The mathematical models of cold hardiness need to be developed and improved.

  13. A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679.

    PubMed

    Gosset, James R; Beaumont, Kevin; Matsuura, Tomomi; Winchester, Wendy; Attkins, Neil; Glatt, Sophie; Lightbown, Ian; Ulrich, Kristina; Roberts, Sonia; Harris, Jolie; Mesic, Emir; van Steeg, Tamara; Hijdra, Diana; van der Graaf, Piet H

    2017-11-15

    PF-05105679 is a moderately potent TRPM8 blocker which has been evaluated for the treatment of cold pain sensitivity. The TRPM8 channel is responsible for the sensation of cold environmental temperatures and has been implicated in regulation of core body temperature. Consequently, blockade of TRPM8 has been suggested to result in lowering of core body temperature. As part of the progression to human studies, the effect of PF-05105679 on core body temperature has been investigated in animals. Safety pharmacology studies showed that PF-05105679 reduced core body temperature in a manner that was inversely related to body weight of the species tested (greater exposure to PF-05105679 was required to lower temperature by 1°C in higher species). Based on an allometric (body weight) relationship, it was hypothesized that PF-05105679 would not lower core body temperature in humans at exposures that could exhibit pharmacological effects on cold pain sensation. On administration to humans, PF-05105679 was indeed effective at reversing the cold pain sensation associated with the cold pressor test in the absence of effects on core body temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Heat or Cold: Which One Exerts Greater Deleterious Effects on Health in a Basin Climate City? Impact of Ambient Temperature on Mortality in Chengdu, China.

    PubMed

    Cui, Yan; Yin, Fei; Deng, Ying; Volinn, Ernest; Chen, Fei; Ji, Kui; Zeng, Jing; Zhao, Xing; Li, Xiaosong

    2016-12-10

    Background : Although studies from many countries have estimated the impact of ambient temperature on mortality, few have compared the relative impacts of heat and cold on health, especially in basin climate cities. We aimed to quantify the impact of ambient temperature on mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu (Sichuan Province, China); Methods : We estimated the temperature-mortality association with a distributed lag non-linear model (DLNM) with a maximum lag-time of 21 days while controlling for long time trends and day of week. We calculated the mortality risk attributable to heat and cold, which were defined as temperatures above and below an "optimum temperature" that corresponded to the point of minimum mortality. In addition, we explored effects of individual characteristics; Results : The analysis provides estimates of the overall mortality burden attributable to temperature, and then computes the components attributable to heat and cold. Overall, the total fraction of deaths caused by both heat and cold was 10.93% (95%CI: 7.99%-13.65%). Taken separately, cold was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%-12.81%), while the fraction attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%-2.35%). The attributable risk (AR) of respiratory diseases was higher (19.69%, 95%CI: 14.45%-24.24%) than that of cardiovascular diseases (11.40%, 95%CI: 6.29%-16.01%); Conclusions : In Chengdu, temperature was responsible for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days. There is potential to reduce respiratory-associated mortality especially among the aged population in basin climate cities when the temperature deviates beneath the optimum. The result may help to comprehensively assess the impact of ambient temperature in basin cities, and further facilitate an appropriate estimate of the health consequences of various climate-change scenarios.

  15. Spatiotemporal variability of extreme temperature frequency and amplitude in China

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanjie; Gao, Zhiqiu; Pan, Zaitao; Li, Dan; Huang, Xinhui

    2017-03-01

    Temperature extremes in China are examined based on daily maximum and minimum temperatures from station observations and multiple global climate models. The magnitude and frequency of extremes are expressed in terms of return values and periods, respectively, estimated by the fitted Generalized Extreme Value (GEV) distribution of annual extreme temperatures. The observations suggest that changes in temperature extremes considerably exceed changes in the respective climatological means during the past five decades, with greater amplitude of increases in cold extremes than in warm extremes. The frequency of warm (cold) extremes increases (decreases) over most areas, with an increasingly faster rate as the extremity level rises. Changes in warm extremes are more dependent on the varying shape of GEV distribution than the location shift, whereas changes in cold extremes are more closely associated with the location shift. The models simulate the overall pattern of temperature extremes during 1961-1981 reasonably well in China, but they show a smaller asymmetry between changes in warm and cold extremes primarily due to their underestimation of increases in cold extremes especially over southern China. Projections from a high emission scenario show the multi-model median change in warm and cold extremes by 2040 relative to 1971 will be 2.6 °C and 2.8 °C, respectively, with the strongest changes in cold extremes shifting southward. By 2040, warm extremes at the 1971 20-year return values would occur about every three years, while the 1971 cold extremes would occur once in > 500 years.

  16. Cardiovascular and Metabolic Responses to the Ingestion of Caffeinated Herbal Tea: Drink It Hot or Cold?

    PubMed

    Maufrais, Claire; Sarafian, Delphine; Dulloo, Abdul; Montani, Jean-Pierre

    2018-01-01

    Aim: Tea is usually consumed at two temperatures (as hot tea or as iced tea). However, the importance of drink temperature on the cardiovascular system and on metabolism has not been thoroughly investigated. The purpose of this study was to compare the cardiovascular, metabolic and cutaneous responses to the ingestion of caffeinated herbal tea (Yerba Mate) at cold or hot temperature in healthy young subjects. We hypothesized that ingestion of cold tea induces a higher increase in energy expenditure than hot tea without eliciting any negative effects on the cardiovascular system. Methods: Cardiovascular, metabolic and cutaneous responses were analyzed in 23 healthy subjects (12 men and 11 women) sitting comfortably during a 30-min baseline and 90 min following the ingestion of 500 mL of an unsweetened Yerba Mate tea ingested over 5 min either at cold (~3°C) or hot (~55°C) temperature, according to a randomized cross-over design. Results: Averaged over the 90 min post-drink ingestion and compared to hot tea, cold tea induced (1) a decrease in heart rate (cold tea: -5 ± 1 beats.min -1 ; hot tea: -1 ± 1 beats.min -1 , p < 0.05), double product, skin blood flow and hand temperature and (2) an increase in baroreflex sensitivity, fat oxidation and energy expenditure (cold tea: +8.3%; hot tea: +3.7%, p < 0.05). Averaged over the 90 min post-drink ingestion, we observed no differences of tea temperature on cardiac output work and mean blood pressure responses. Conclusion: Ingestion of an unsweetened caffeinated herbal tea at cold temperature induced a greater stimulation of thermogenesis and fat oxidation than hot tea while decreasing cardiac load as suggested by the decrease in the double product. Further experiments are needed to evaluate the clinical impact of unsweetened caffeinated herbal tea at a cold temperature for weight control.

  17. Patients’ experiences of cold exposure during ambulance care

    PubMed Central

    2013-01-01

    Background Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients’ experiences of cold exposure and to identify related factors. Method During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients’ finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. Results In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from −22.3°C to 8.4°C. Conclusion Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons. PMID:23742143

  18. Cardiovascular and Metabolic Responses to the Ingestion of Caffeinated Herbal Tea: Drink It Hot or Cold?

    PubMed Central

    Maufrais, Claire; Sarafian, Delphine; Dulloo, Abdul; Montani, Jean-Pierre

    2018-01-01

    Aim: Tea is usually consumed at two temperatures (as hot tea or as iced tea). However, the importance of drink temperature on the cardiovascular system and on metabolism has not been thoroughly investigated. The purpose of this study was to compare the cardiovascular, metabolic and cutaneous responses to the ingestion of caffeinated herbal tea (Yerba Mate) at cold or hot temperature in healthy young subjects. We hypothesized that ingestion of cold tea induces a higher increase in energy expenditure than hot tea without eliciting any negative effects on the cardiovascular system. Methods: Cardiovascular, metabolic and cutaneous responses were analyzed in 23 healthy subjects (12 men and 11 women) sitting comfortably during a 30-min baseline and 90 min following the ingestion of 500 mL of an unsweetened Yerba Mate tea ingested over 5 min either at cold (~3°C) or hot (~55°C) temperature, according to a randomized cross-over design. Results: Averaged over the 90 min post-drink ingestion and compared to hot tea, cold tea induced (1) a decrease in heart rate (cold tea: −5 ± 1 beats.min−1; hot tea: −1 ± 1 beats.min−1, p < 0.05), double product, skin blood flow and hand temperature and (2) an increase in baroreflex sensitivity, fat oxidation and energy expenditure (cold tea: +8.3%; hot tea: +3.7%, p < 0.05). Averaged over the 90 min post-drink ingestion, we observed no differences of tea temperature on cardiac output work and mean blood pressure responses. Conclusion: Ingestion of an unsweetened caffeinated herbal tea at cold temperature induced a greater stimulation of thermogenesis and fat oxidation than hot tea while decreasing cardiac load as suggested by the decrease in the double product. Further experiments are needed to evaluate the clinical impact of unsweetened caffeinated herbal tea at a cold temperature for weight control. PMID:29681860

  19. The effects of ambient temperature on cerebrovascular mortality: an epidemiologic study in four climatic zones in China

    PubMed Central

    2014-01-01

    Background Little evidence is available about the association between temperature and cerebrovascular mortality in China. This study aims to examine the effects of ambient temperature on cerebrovascular mortality in different climatic zones in China. Method We obtained daily data on weather conditions, air pollution and cerebrovascular deaths from five cities (Beijing, Tianjin, Shanghai, Wuhan, and Guangzhou) in China during 2004-2008. We examined city-specific associations between ambient temperature and the cerebrovascular mortality, while adjusting for season, long-term trends, day of the week, relative humidity and air pollution. We examined cold effects using a 1°C decrease in temperature below a city-specific threshold, and hot effects using a 1°C increase in temperature above a city-specific threshold. We used a meta-analysis to summarize the cold and hot effects across the five cities. Results Beijing and Tianjin (with low mean temperature) had lower thresholds than Shanghai, Wuhan and Guangzhou (with high mean temperature). In Beijing, Tianjin, Wuhan and Guangzhou cold effects were delayed, while in Shanghai there was no or short induction. Hot effects were acute in all five cities. The cold effects lasted longer than hot effects. The hot effects were followed by mortality displacement. The pooled relative risk associated with a 1°C decrease in temperature below thresholds (cold effect) was 1.037 (95% confidence interval (CI): 1.020, 1.053). The pooled relative risk associated with a 1°C increase in temperature above thresholds (hot effect) was 1.014 (95% CI: 0.979, 1.050). Conclusion Cold temperatures are significantly associated with cerebrovascular mortality in China, while hot effect is not significant. People in colder climate cities were sensitive to hot temperatures, while people in warmer climate cities were vulnerable to cold temperature. PMID:24690204

  20. Vernalizing cold is registered digitally at FLC.

    PubMed

    Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I; Dean, Caroline; Howard, Martin

    2015-03-31

    A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor flowering locus C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure.

  1. Vernalizing cold is registered digitally at FLC

    PubMed Central

    Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I.; Dean, Caroline; Howard, Martin

    2015-01-01

    A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor FLOWERING LOCUS C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure. PMID:25775579

  2. Laboratory study on the kinetics of the warming of cold fluids-A hot topic.

    PubMed

    Mendibil, Alexandre; Jost, Daniel; Thiry, Aurélien; Garcia, Delphine; Trichereau, Julie; Frattini, Benoit; Dang-Minh, Pascal; Maurin, Olga; Margerin, Sylvie; Domanski, Laurent; Tourtier, Jean-Pierre

    2016-10-01

    In case of mild therapeutic hypothermia after an out-of-hospital cardiac arrest, several techniques could limit the cold fluid rewarming during its perfusion. We aimed to evaluate cold fluid temperature evolution and to identify the factors responsible for rewarming in order to suggest a prediction model of temperature evolution. This was a laboratory experimental study. We measured temperature at the end of the infusion line tubes (ILT). A 500ml saline bag at 4°C was administered at 15 and 30ml/min, with and without cold packs applied to the cold fluid bag or to the ILT. Cold fluid temperature was integrated in a linear mixed model. Then we performed a mathematical modelization of the thermal transfer across the ILT. The linear mixed model showed that the mean temperature of the cold fluid was 1°C higher (CI 95%: [0.8-1.2]) with an outflow rate of 15 versus 30ml/min (P<0.001). Similarly, the mean temperature of the cold fluid was 0.7°C higher (CI 95%: [0.53-0.9]) without cold pack versus with cold packs (P<0.001). Mathematical modelization of the thermal transfer across the ILT suggested that the cold fluid warming could be reduced by a shorter and a wider ILT. As expected, use of CP has also a noticeable influence on warning reduction. The combination of multiple parameters working against the rewarming of the solution should enable the infusion of a solute with retained caloric properties. By limiting this "ILT effect," the volume required for inducing mild therapeutic hypothermia could be reduced, leading to a safer and a more efficient treatment. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  3. Windowpane flounder (Scophthalmus aquosus) and winter flounder (Pseudopleuronectes americanus) responses to cold temperature extremes in a Northwest Atlantic estuary

    NASA Astrophysics Data System (ADS)

    Wilber, Dara H.; Clarke, Douglas G.; Alcoba, Catherine M.; Gallo, Jenine

    2016-01-01

    The effect of climate variability on flatfish includes not only the effects of warming on sensitive life history stages, but also impacts from more frequent or unseasonal extreme cold temperatures. Cold weather events can affect the overwintering capabilities of flatfish near their low temperature range limits. We examined the responses of two flatfish species, the thin-bodied windowpane (Scophthalmus aquosus) and cold-tolerant winter flounder (Pseudopleuronectes americanus), to variable winter temperatures in a Northwest Atlantic estuary using abundance and size data collected during a monitoring study, the Aquatic Biological Survey, conducted from 2002 to 2010. Winter and spring abundances of small (50 to 120 mm total length) juvenile windowpane were positively correlated with adult densities (spawning stock) and fall temperatures (thermal conditions experienced during post-settlement development for the fall-spawned cohort) of the previous year. Windowpane abundances in the estuary were significantly reduced and the smallest size class was nearly absent after several consecutive years with cold (minimum temperatures < 1 °C) winters. Interannual variation in winter flounder abundances was unrelated to the severity of winter temperatures. A Paulik diagram illustrates strong positive correlations between annual abundances of sequential winter flounder life history stages (egg, larval, Age-1 juvenile, and adult male) within the estuary, reflecting residency within the estuary through their first year of life. Temperature variables representing conditions during winter flounder larval and post-settlement development were not significant factors in multiple regression models exploring factors that affect juvenile abundances. Likewise, densities of predators known to consume winter flounder eggs and/or post-settlement juveniles were not significantly related to interannual variation in winter flounder juvenile abundances. Colder estuarine temperatures through the first year of life were associated with smaller Age-1 winter flounder body size. For example, Age-1 winter flounder developing under conditions that differed by 1.9 °C in mean daily water temperature, averaged 98.7 mm total length (TL) and 123.1 mm TL, for the relatively cold vs. moderate years, respectively. More frequent cold temperature extremes associated with climate variability may negatively impact the overwintering capabilities of some flatfish near their cold temperature range limits, whereas cold-tolerant species may experience reduced growth, which imparts the ecological challenges associated with smaller body size.

  4. Peripheral cold acclimatization in Antarctic scuba divers.

    PubMed

    Bridgman, S A

    1991-08-01

    Peripheral acclimatization to cold in scuba divers stationed at the British Antarctic Survey's Signy Station was investigated during a year in Antarctica. Five divers and five non-diver controls underwent monthly laboratory tests of index finger immersion in cold water for 30 min. Index finger pulp temperature and time of onset of cold-induced vasodilatation (CIVD) were measured. Pain was recorded with verbal and numerical psychophysical subjective pain ratings. Average finger temperatures and median finger pain from 6-30 min of immersion, maximum finger temperatures during the first CIVD cycle, and finger temperatures at the onset of CIVD were calculated. Comparison of the variables recorded from divers and non-divers were performed with analysis of variance. No significant differences were found among the variables recorded from divers and non-divers. From a review of the literature, divers have responses typical of non-cold-adapted Caucasians. There is, therefore, no evidence that Signy divers peripherally acclimatized to cold. We suggest that these findings occur because either the whole body cooling which divers undergo inhibits peripheral acclimatization or because of insufficiently frequent or severe cold exposure while diving. Further basic studies on the duration, frequency and severity of cold exposure necessary to induce peripheral cold acclimatization are required before this question can be satisfactorily answered.

  5. A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2015-01-01

    The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.

  6. Winter Season Mortality: Will Climate Warming Bring Benefits?

    PubMed

    Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  7. Winter season mortality: will climate warming bring benefits?

    NASA Astrophysics Data System (ADS)

    Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  8. Immersion in Cold-Water Evaluation (ICE) and self-reported cold intolerance are reliable but unrelated measures.

    PubMed

    Traynor, Robyn; MacDermid, Joy C

    2008-09-01

    Intolerance to the cold is common following peripheral nerve injury and surgery of the upper extremity. Despite its prevalence, the exact pathophysiology and natural history of this condition are not well understood. Subjective, self-report questionnaires have been created and validated as reliable measures of post-traumatic cold intolerance. The difficulty currently lies in assigning an objective measure to this predominantly subjective phenomenon. The present study evaluated the test-retest reliability of a proposed objective measure of cold intolerance, the Immersion in Cold-water Evaluation (ICE), and its correlation with subjective measures in healthy control subjects. Two age groups were also compared to investigate the effect of age on cold intolerance and temperature recovery. On two separate testing days, subjects completed three health-related questionnaires and submersed their dominant hands in cold water. The temperature of their second and fifth digits was monitored during recovery. Both the objective cold-provocation testing and the subjective self-report questionnaires were highly reliable albeit not significantly correlated. No significant temperature recovery trend was noted between the age groups. Post-traumatic cold intolerance is postulated to have both a vascular and neural etiology among other contributing causes. The protocol studied here was centered predominantly on the former etiology, examining peripheral blood flow and associated temperature recovery. This study established ICE as a reliable means to objectively measure cold response, supplementing information provided by previously validated self-report methods.

  9. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    PubMed

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  10. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    PubMed Central

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  11. 40 CFR 1066.701 - Applicability and general provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Cold Temperature Test Procedures § 1066.701 Applicability and...) temperature range. (b) Do not apply the humidity correction factor in § 1066.615(a) for cold temperature...

  12. Impact of cold temperature on Euro 6 passenger car emissions.

    PubMed

    Suarez-Bertoa, Ricardo; Astorga, Covadonga

    2018-03-01

    Hydrocarbons, CO, NOx, NH 3 , N 2 O, CO 2 and particulate matter emissions affect air quality, global warming and human health. Transport sector is an important source of these pollutants and high pollution episodes are often experienced during the cold season. However, EU vehicle emissions regulation at cold ambient temperature only addresses hydrocarbons and CO vehicular emissions. For that reason, we have studied the impact that cold ambient temperatures have on Euro 6 diesel and spark ignition (including: gasoline, ethanol flex-fuel and hybrid vehicles) vehicle emissions using the World-harmonized Light-duty Test Cycle (WLTC) at -7 °C and 23 °C. Results indicate that when facing the WLTC at 23 °C the tested vehicles present emissions below the values set for type approval of Euro 6 vehicles (still using NEDC), with the exception of NOx emissions from diesel vehicles that were 2.3-6 times higher than Euro 6 standards. However, emissions disproportionally increased when vehicles were tested at cold ambient temperature (-7 °C). High solid particle number (SPN) emissions (>1 × 10 11 # km -1 ) were measured from gasoline direct injection (GDI) vehicles and gasoline port fuel injection vehicles. However, only diesel and GDI SPN emissions are currently regulated. Results show the need for a new, technology independent, procedure that enables the authorities to assess pollutant emissions from vehicles at cold ambient temperatures. Harmful pollutant emissions from spark ignition and diesel vehicles are strongly and negatively affected by cold ambient temperatures. Only hydrocarbon, CO emissions are currently regulated at cold temperature. Therefore, it is of great importance to revise current EU winter vehicle emissions regulation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Heat or Cold: Which One Exerts Greater Deleterious Effects on Health in a Basin Climate City? Impact of Ambient Temperature on Mortality in Chengdu, China

    PubMed Central

    Cui, Yan; Yin, Fei; Deng, Ying; Volinn, Ernest; Chen, Fei; Ji, Kui; Zeng, Jing; Zhao, Xing; Li, Xiaosong

    2016-01-01

    Background: Although studies from many countries have estimated the impact of ambient temperature on mortality, few have compared the relative impacts of heat and cold on health, especially in basin climate cities. We aimed to quantify the impact of ambient temperature on mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu (Sichuan Province, China); Methods: We estimated the temperature-mortality association with a distributed lag non-linear model (DLNM) with a maximum lag-time of 21 days while controlling for long time trends and day of week. We calculated the mortality risk attributable to heat and cold, which were defined as temperatures above and below an “optimum temperature” that corresponded to the point of minimum mortality. In addition, we explored effects of individual characteristics; Results: The analysis provides estimates of the overall mortality burden attributable to temperature, and then computes the components attributable to heat and cold. Overall, the total fraction of deaths caused by both heat and cold was 10.93% (95%CI: 7.99%–13.65%). Taken separately, cold was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%–12.81%), while the fraction attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%–2.35%). The attributable risk (AR) of respiratory diseases was higher (19.69%, 95%CI: 14.45%–24.24%) than that of cardiovascular diseases (11.40%, 95%CI: 6.29%–16.01%); Conclusions: In Chengdu, temperature was responsible for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days. There is potential to reduce respiratory-associated mortality especially among the aged population in basin climate cities when the temperature deviates beneath the optimum. The result may help to comprehensively assess the impact of ambient temperature in basin cities, and further facilitate an appropriate estimate of the health consequences of various climate-change scenarios. PMID:27973401

  14. Old age potentiates cold-induced tau phosphorylation: linking thermoregulatory deficit with Alzheimer's disease.

    PubMed

    Tournissac, Marine; Vandal, Milène; François, Arnaud; Planel, Emmanuel; Calon, Frédéric

    2017-02-01

    Thermoregulatory deficits coincide with a rise in the incidence of Alzheimer's disease (AD) in old age. Lower body temperature increases tau phosphorylation, a neuropathological hallmark of AD. To determine whether old age potentiates cold-induced tau phosphorylation, we compared the effects of cold exposure (4 °C, 24 hours) in 6- and 18-month-old mice. Cold-induced changes in body temperature, brown adipose tissue activity, and phosphorylation of tau at Ser202 were not different between 6- and 18-month-old mice. However, following cold exposure, only old mice displayed a significant rise in soluble tau pThr181 and pThr231, which was correlated with body temperature. Inactivation of glycogen synthase kinase 3β was more prominent in young mice, suggesting a protective mechanism against cold-induced tau phosphorylation. These results suggest that old age confers higher susceptibility to tau hyperphosphorylation following a change in body temperature, thereby contributing to an enhanced risk of developing AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A transcriptomic analysis of bermudagrass (Cynodon dactylon) provides novel insights into the basis of low temperature tolerance.

    PubMed

    Chen, Liang; Fan, Jibiao; Hu, Longxing; Hu, Zhengrong; Xie, Yan; Zhang, Yingzi; Lou, Yanhong; Nevo, Eviatar; Fu, Jinmin

    2015-09-11

    Cold stress is regarded as a key factor limiting widespread use for bermudagrass (Cynodon dactylon). Therefore, to improve cold tolerance for bermudagrass, it is urgent to understand molecular mechanisms of bermudagrass response to cold stress. However, our knowledge about the molecular responses of this species to cold stress is largely unknown. The objective of this study was to characterize the transcriptomic response to low temperature in bermudagrass by using RNA-Seq platform. Ten cDNA libraries were generated from RNA samples of leaves from five different treatments in the cold-resistant (R) and the cold-sensitive (S) genotypes, including 4 °C cold acclimation (CA) for 24 h and 48 h, freezing (-5 °C) treatments for 4 h with or without prior CA, and controls. When subjected to cold acclimation, global gene expressions were initiated more quickly in the R genotype than those in the S genotype. The R genotype activated gene expression more effectively in response to freezing temperature after 48 h CA than the S genotype. The differentially expressed genes were identified as low temperature sensing and signaling-related genes, functional proteins and transcription factors, many of which were specifically or predominantly expressed in the R genotype under cold treatments, implying that these genes play important roles in the enhanced cold hardiness of bermudagrass. KEGG pathway enrichment analysis for DEGs revealed that photosynthesis, nitrogen metabolism and carbon fixation pathways play key roles in bermudagrass response to cold stress. The results of this study may contribute to our understanding the molecular mechanism underlying the responses of bermudagrass to cold stress, and also provide important clues for further study and in-depth characterization of cold-resistance breeding candidate genes in bermudagrass.

  16. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-05-01

    Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.

  17. Molecular cloning and expression analysis of KIN10 and cold-acclimation related genes in wild banana 'Huanxi' (Musa itinerans).

    PubMed

    Liu, Weihua; Cheng, Chunzhen; Lai, Gongti; Lin, Yuling; Lai, Zhongxiong

    2015-01-01

    Banana cultivars may experience chilling or freezing injury in some of their cultivated regions, where wild banana can still grow very well. The clarification of the cold-resistant mechanism of wild banana is vital for cold-resistant banana breeding. In this study, the central stress integrator gene KIN10 and some cold-acclimation related genes (HOS1 and ICE1s) from the cold-resistant wild banana 'Huanxi' (Musa itinerans) were cloned and their expression patterns under different temperature treatments were analyzed. Thirteen full-length cDNA transcripts including 6 KIN10s, 1 HOS1 and 6 ICE1s were successfully cloned. Quantitative real-time PCR (qRT-PCR) results showed that all these genes had the highest expression levels at the critical temperature of banana (13 °C). Under chilling temperature (4 °C), the expression level of KIN10 reduced significantly but the expression of HOS1 was still higher than that at the optimal temperature (28 °C, control). Both KIN10 and HOS1 showed the lowest expression levels at 0 °C, the expression level of ICE1, however, was higher than control. As sucrose plays role in plant cold-acclimation and in regulation of KIN10 and HOS1 bioactivities, the sucrose contents of wild banana under different temperatures were detected. Results showed that the sucrose content increased as temperature lowered. Our result suggested that KIN10 may participate in cold stress response via regulating sucrose biosynthesis, which is helpful in regulating cold acclimation pathway in wild banana.

  18. Temperature inversions and cold-air pools study in Picos de Europa surroundings

    NASA Astrophysics Data System (ADS)

    Iglesias González, Miguel; Yagüe, Carlos; Maqueda, Gregorio

    2017-04-01

    Using surface temperature data from dataloggers located at the bottom of four different high-altitude (2000 m MSL) glaciokarstic depressions in Picos de Europa (Cantabrian Cordillera, Spain) from January 2012 to September 2016, we have analyzed the evolution of more than 200 different cold-air pools events according to different geomorphologic parameters. The ski-view determinates the cold-air pool occurrence and the temperature range, and the depression's depth is a very important factor in the permanent cold-air pools (PCAP) formation. Depending on the structure of the thermal curve, we classified all cold-air pools in each depression by using a conceptual model with eight different modes. With wind and relative humidity data, supplied by a weather station situated near the depressions, and NCAR-NCEP reanalysis data, we have characterized them at mesoscale and synoptic scale. If the ski-view is small enough, we can have undisturbed cold-air pools even though disturbed wind conditions. Snow-covered and non-snow-covered events were measured during the campaign, which allow us to recognize its influence on the temperature inversions. We also identified and analyze several permanent cold-air pools events where December minimum temperature record of -30,6°C in the Iberian Peninsula was measured. We also make a deep analyze of the Iberian Peninsula historical minimal temperature record of -32,7°C, which was measured on February 2016. Finally we use and test a simplified three-layer radiative model to describe and verify the influence of different geomorphologic factors in the cooling process of all the cold-air pools.

  19. Comparison of UTCI with Other Thermal Indices in the Assessment of Heat and Cold Effects on Cardiovascular Mortality in the Czech Republic

    PubMed Central

    Urban, Aleš; Kyselý, Jan

    2014-01-01

    We compare the recently developed Universal Thermal Climate Index (UTCI) with other thermal indices in analysing heat- and cold-related effects on cardiovascular (CVD) mortality in two different (urban and rural) regions in the Czech Republic during the 16-year period from 1994–2009. Excess mortality is represented by the number of deaths above expected daily values, the latter being adjusted for long-term changes, annual and weekly cycles, and epidemics of influenza/acute respiratory infections. Air temperature, UTCI, Apparent Temperature (AT) and Physiologically Equivalent Temperature (PET) are applied to identify days with heat and cold stress. We found similar heat effects on CVD mortality for air temperature and the examined thermal indices. Responses of CVD mortality to cold effects as characterised by different indices were much more varied. Particularly important is the finding that air temperature provides a weak cold effect in comparison with the thermal indices in both regions, so its application—still widespread in epidemiological studies—may underestimate the magnitude of cold-related mortality. These findings are important when possible climate change effects on heat- and cold-related mortality are estimated. AT and PET appear to be more universal predictors of heat- and cold- related mortality than UTCI when both urban and rural environments are of concern. UTCI tends to select windy rather than freezing days in winter, though these show little effect on mortality in the urban population. By contrast, significant cold-related mortality in the rural region if UTCI is used shows potential for UTCI to become a useful tool in cold exposure assessments. PMID:24413706

  20. Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum)rubber-producing tissue

    USDA-ARS?s Scientific Manuscript database

    Natural rubber biosynthesis in guayule (Parthenium argentatum) is associated with moderately cold night temperatures. To begin to dissect the molecular events triggered by cold temperatures that govern rubber synthesis induction in guayule, the transcriptome of bark tissue, where rubber is produced...

  1. Physiological responses and manual performance in humans following repeated exposure to severe cold at night.

    PubMed

    Ozaki, H; Nagai, Y; Tochihara, Y

    2001-04-01

    We evaluated human physiological responses and the performance of manual tasks during exposure to severe cold (-25 degrees C) at night (0300-0500 hours) and in the afternoon (1500-1700 hours). Thirteen male students wearing standard cold protective clothing occupied a severely cold room (-25 degrees C) for 20 min, and were then transferred to a cool room (10 degrees C) for 20 min. This pattern of exposure was repeated three times, for a total time of exposure to extreme cold of 60 min. The experiments were started either at 1500 hours or 0300 hours and measurements of rectal temperature, skin temperature, blood pressure, performance in a counting task, hand tremor, and subjective responses were made in each condition. At the end of the experiment at night the mean decrease in rectal temperature [0.68 (SEM 0.04) degree C] was significantly greater than that at the end of the experiment in the afternoon [0.55 (SEM 0.08) degree C, P < 0.01]. After the second cold exposure at night the mean increase in diastolic blood pressure [90 (SEM 2.0) mmHg] was significantly greater than that at the end of the second cold exposure in the afternoon [82 (SEM 2.8) mmHg, P < 0.01]. At the end of the second cold exposure at night, mean finger skin temperature [11.8 (SEM 0.8) degrees C] was significantly higher than that at the comparable time in the afternoon [9.0 (SEM 0.7) degrees C, P < 0.01]. Similarly for the toe, mean skin temperature at the start of the second cold exposure at night [25.6 (SEM 1.5) degrees C] was significantly higher than in the afternoon [20.1 (SEM 0.8) degrees C, P < 0.01]. The increased skin temperatures in the periphery resulted in increased heat loss. Since peripheral skin temperatures were highest at night, the subjects noted diminished sensations of thermal cold and pain at that time. Manual dexterity at the end of the first cold exposure at night [mean 83.7 (SEM 3.6) times.min-1] had decreased significantly more than at the end of the first cold exposure in the afternoon [mean 89.4 (SEM 3.5) times.min-1, P < 0.01]. These findings of a lowered rectal temperature and diminished manual dexterity suggest that there is an increased risk of both hypothermia and accidents for those who work at night.

  2. Both low and high temperature may increase the risk of stroke mortality

    PubMed Central

    Chen, Renjie; Wang, Cuicui; Meng, Xia; Chen, Honglei; Thach, Thuan Quoc; Wong, Chit-Ming

    2013-01-01

    Objective: To examine temperature in relation to stroke mortality in a multicity time series study in China. Methods: We obtained data on daily temperature and mortality from 8 large cities in China. We used quasi-Poisson generalized additive models and distributed lag nonlinear models to estimate the accumulative effects of temperature on stroke mortality across multiple days, adjusting for long-term and seasonal trends, day of the week, air pollution, and relative humidity. We applied the Bayesian hierarchical model to pool city-specific effect estimates. Results: Both cold and hot temperatures were associated with increased risk of stroke mortality. The potential effect of cold temperature might last more than 2 weeks. The pooled relative risks of extreme cold (first percentile of temperature) and cold (10th percentile of temperature) temperatures over lags 0–14 days were 1.39 (95% posterior intervals [PI] 1.18–1.64) and 1.11 (95% PI 1.06–1.17), compared with the 25th percentile of temperature. In contrast, the effect of hot temperature was more immediate. The relative risks of stroke mortality over lags 0–3 days were 1.06 (95% PI 1.02–1.10) for extreme hot temperature (99th percentile of temperature) and 1.14 (95% PI 1.05–1.24) for hot temperature (90th percentile of temperature), compared with the 75th percentile of temperature. Conclusions: This study showed that both cold and hot temperatures were associated with increased risk of stroke mortality in China. Our findings may have important implications for stroke prevention in China. PMID:23946311

  3. Both low and high temperature may increase the risk of stroke mortality.

    PubMed

    Chen, Renjie; Wang, Cuicui; Meng, Xia; Chen, Honglei; Thach, Thuan Quoc; Wong, Chit-Ming; Kan, Haidong

    2013-09-17

    To examine temperature in relation to stroke mortality in a multicity time series study in China. We obtained data on daily temperature and mortality from 8 large cities in China. We used quasi-Poisson generalized additive models and distributed lag nonlinear models to estimate the accumulative effects of temperature on stroke mortality across multiple days, adjusting for long-term and seasonal trends, day of the week, air pollution, and relative humidity. We applied the Bayesian hierarchical model to pool city-specific effect estimates. Both cold and hot temperatures were associated with increased risk of stroke mortality. The potential effect of cold temperature might last more than 2 weeks. The pooled relative risks of extreme cold (first percentile of temperature) and cold (10th percentile of temperature) temperatures over lags 0-14 days were 1.39 (95% posterior intervals [PI] 1.18-1.64) and 1.11 (95% PI 1.06-1.17), compared with the 25th percentile of temperature. In contrast, the effect of hot temperature was more immediate. The relative risks of stroke mortality over lags 0-3 days were 1.06 (95% PI 1.02-1.10) for extreme hot temperature (99th percentile of temperature) and 1.14 (95% PI 1.05-1.24) for hot temperature (90th percentile of temperature), compared with the 75th percentile of temperature. This study showed that both cold and hot temperatures were associated with increased risk of stroke mortality in China. Our findings may have important implications for stroke prevention in China.

  4. Physiological response to low temperature in the freshwater apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae).

    PubMed

    Matsukura, Keiichiro; Tsumuki, Hisaaki; Izumi, Yohei; Wada, Takashi

    2009-08-01

    Cold hardiness of the freshwater apple snail, Pomacea canaliculata, varies seasonally. We investigated lethal factors and physiological changes arising from exposure of P. canaliculata to low temperatures. Snails did not survive freezing. The supercooling point of cold-acclimated (cold tolerant) snails (-6.6+/-0.8 degrees C) did not differ significantly from that of non-acclimated ones (-7.1+/-1.5 degrees C) under laboratory conditions. Furthermore, snails died even under more moderately low temperatures approaching 0 degrees C. These results indicate that indirect chilling injury is a factor in the death of P. canaliculata at low temperatures. Regardless of whether the snails were acclimated to low temperatures, all of the dead, and even some of the snails still alive at 0 degrees C, had injured mantles, indicating that the mantle may be the organ most susceptible to the effects of low temperatures. The concentration of glucose in the posterior chamber of the kidney and concentration of glycerol in the digestive gland were significantly higher in cold-acclimated snails than in non-acclimated ones, suggesting carbohydrate metabolic pathways are altered in snails during cold acclimation.

  5. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis

    PubMed Central

    Cook, Daniel; Fowler, Sarah; Fiehn, Oliver; Thomashow, Michael F.

    2004-01-01

    The Arabidopsis CBF cold response pathway has a central role in cold acclimation, the process whereby plants increase in freezing tolerance in response to low nonfreezing temperatures. Here we examined the changes that occur in the Arabidopsis metabolome in response to low temperature and assessed the role of the CBF cold response pathway in bringing about these modifications. Of 434 metabolites monitored by GC-time-of-flight MS, 325 (75%) were found to increase in Arabidopsis Wassilewskija-2 (Ws-2) plants in response to low temperature. Of these 325 metabolites, 256 (79%) also increased in nonacclimated Ws-2 plants in response to overexpression of C-repeat/dehydration responsive element-binding factor (CBF)3. Extensive cold-induced changes also occurred in the metabolome of Arabidopsis Cape Verde Islands-1 (Cvi-1) plants, which were found to be less freezing tolerant than Ws-2 plants. However, low-temperature-induced expression of CBF1, CBF2, CBF3, and CBF-targeted genes was much lower in Cvi-1 than in Ws-2 plants, and the low-temperature metabolome of Cvi-1 plants was depleted in metabolites affected by CBF3 overexpression. Taken together, the results indicate that the metabolome of Arabidopsis is extensively reconfigured in response to low temperature, and that the CBF cold response pathway has a prominent role in this process. PMID:15383661

  6. The Arabidopsis 14-3-3 Protein RARE COLD INDUCIBLE 1A Links Low-Temperature Response and Ethylene Biosynthesis to Regulate Freezing Tolerance and Cold Acclimation[C][W

    PubMed Central

    Catalá, Rafael; López-Cobollo, Rosa; Mar Castellano, M.; Angosto, Trinidad; Alonso, José M.; Ecker, Joseph R.; Salinas, Julio

    2014-01-01

    In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis. PMID:25122152

  7. Ambient temperature influences the neural benefits of exercise.

    PubMed

    Maynard, Mark E; Chung, Chasity; Comer, Ashley; Nelson, Katharine; Tran, Jamie; Werries, Nadja; Barton, Emily A; Spinetta, Michael; Leasure, J Leigh

    2016-02-15

    Many of the neural benefits of exercise require weeks to manifest. It would be useful to accelerate onset of exercise-driven plastic changes, such as increased hippocampal neurogenesis. Exercise represents a significant challenge to the brain because it produces heat, but brain temperature does not rise during exercise in the cold. This study tested the hypothesis that exercise in cold ambient temperature would stimulate hippocampal neurogenesis more than exercise in room or hot conditions. Adult female rats had exercise access 2h per day for 5 days at either room (20 °C), cold (4.5 °C) or hot (37.5 °C) temperature. To label dividing hippocampal precursor cells, animals received daily injections of BrdU. Brains were immunohistochemically processed for dividing cells (Ki67+), surviving cells (BrdU+) and new neurons (doublecortin, DCX) in the hippocampal dentate gyrus. Animals exercising at room temperature ran significantly farther than animals exercising in cold or hot conditions (room 1490 ± 400 m; cold 440 ± 102 m; hot 291 ± 56 m). We therefore analyzed the number of Ki67+, BrdU+ and DCX+ cells normalized for shortest distance run. Contrary to our hypothesis, exercise in either cold or hot conditions generated significantly more Ki67+, BrdU+ and DCX+ cells compared to exercise at room temperature. Thus, a limited amount of running in either cold or hot ambient conditions generates more new cells than a much greater distance run at room temperature. Taken together, our results suggest a simple means by which to augment exercise effects, yet minimize exercise time. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Thermal, cardiac and adrenergic responses to repeated local cooling.

    PubMed

    Janský, L; Matousková, E; Vávra, V; Vybíral, S; Janský, P; Jandová, D; Knízková, I; Kunc, P

    2006-01-01

    The aim of this study was to ascertain whether repeated local cooling induces the same or different adaptational responses as repeated whole body cooling. Repeated cooling of the legs (immersion into 12 degrees C water up to the knees for 30 min, 20 times during 4 weeks = local cold adaptation - LCA) attenuated the initial increase in heart rate and blood pressure currently observed in control subjects immersed in cold water up to the knees. After LCA the initial skin temperature decrease tended to be lower, indicating reduced vasoconstriction. Heart rate and systolic blood pressure appeared to be generally lower during rest and during the time course of cooling in LCA humans, when compared to controls. All these changes seem to indicate attenuation of the sympathetic tone. In contrast, the sustained skin temperature in different areas of the body (finger, palm, forearm, thigh, chest) appeared to be generally lower in LCA subjects than in controls (except for temperatures on the forehead). Plasma levels of catecholamines (measured 20 and 40 min after the onset of cooling) were also not influenced by local cold adaptation. Locally cold adapted subjects, when exposed to whole body cold water immersion test, showed no change in the threshold temperature for induction of cold thermogenesis. This indicates that the hypothermic type of cold adaptation, typically occurring after systemic cold adaptation, does not appear after local cold adaptation of the intensity used. It is concluded that in humans the cold adaptation due to repeated local cooling of legs induces different physiological changes than systemic cold adaptation.

  9. Characterization of biologic response modifiers in the supernatant of conventional, refrigerated, and cryopreserved platelets.

    PubMed

    Johnson, Lacey; Tan, Shereen; Jenkins, Emily; Wood, Ben; Marks, Denese C

    2018-04-01

    Alternatives to room temperature storage of platelets (PLTs) are of interest to support blood banking logistics. The aim of this study was to compare the presence of biologic response modifiers (BRMs) in PLT concentrates stored under conventional room temperature conditions with refrigerated or cryopreserved PLTs. A three-arm pool-and-split study was carried out using buffy coat-derived PLTs stored in 30% plasma/70% SSP+. The three matched treatment arms were as follows: room temperature (20-24°C), cold (2-6°C), and cryopreserved (-80°C with DMSO). Liquid-stored PLTs were tested over a 21-day period, while cryopreserved PLTs were tested immediately after thawing and reconstitution in 30% plasma/70% SSP+ and after storage at room temperature. Coagulation factor activity was comparable between room temperature and cold PLTs, with the exception of protein S, while cryopreserved PLTs had reduced Factor (F)V and FVIII activity. Cold-stored PLTs retained α-granule proteins better than room temperature or cryopreserved PLTs. Cryopreservation resulted in 10-fold higher microparticle generation than cold-stored PLTs, but both groups contained significantly more microparticles than those stored at room temperature. The supernatant from both cold and cryopreserved PLTs initiated faster clot formation and thrombin generation than room temperature PLTs. Cold storage and cryopreservation alter the composition of the soluble fraction of stored PLTs. These differences in coagulation proteins, cytokines, and microparticles likely influence both the hemostatic capacity of the components and the auxiliary functions. © 2017 AABB.

  10. Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris.

    PubMed

    Spindelböck, Joachim P; Cook, Zoë; Daws, Matthew I; Heegaard, Einar; Måren, Inger E; Vandvik, Vigdis

    2013-09-01

    Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season.

  11. Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris

    PubMed Central

    Spindelböck, Joachim P.; Cook, Zoë; Daws, Matthew I.; Heegaard, Einar; Måren, Inger E.; Vandvik, Vigdis

    2013-01-01

    Background and Aims Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Methods Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Key Results Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Conclusions Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season. PMID:23884396

  12. A computer model for predicting grapevine cold hardiness

    USDA-ARS?s Scientific Manuscript database

    We developed a robust computer model of grapevine bud cold hardiness that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model uses time steps of 1 day along with the measured daily mean air temperature to ca...

  13. 40 CFR 86.1432 - Vehicle preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cold temperature compliance pathway, the temperature of the fuel prior to its delivery to the fuel tank... is the Cold CO Test Procedure, performed in accordance with subpart C of this part. (ii) Testing by...). (C) Cold CO Test Procedure, in accordance with subpart C of this part. (c) Soak—(1) Manufacturer's...

  14. 40 CFR 86.1432 - Vehicle preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cold temperature compliance pathway, the temperature of the fuel prior to its delivery to the fuel tank... is the Cold CO Test Procedure, performed in accordance with subpart C of this part. (ii) Testing by...). (C) Cold CO Test Procedure, in accordance with subpart C of this part. (c) Soak—(1) Manufacturer's...

  15. Parallel circuits control temperature preference in Drosophila during ageing.

    PubMed

    Shih, Hsiang-Wen; Wu, Chia-Lin; Chang, Sue-Wei; Liu, Tsung-Ho; Lai, Jason Sih-Yu; Fu, Tsai-Feng; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-07-16

    The detection of environmental temperature and regulation of body temperature are integral determinants of behaviour for all animals. These functions become less efficient in aged animals, particularly during exposure to cold environments, yet the cellular and molecular mechanisms are not well understood. Here, we identify an age-related change in the temperature preference of adult fruit flies that results from a shift in the relative contributions of two parallel mushroom body (MB) circuits—the β'- and β-systems. The β'-circuit primarily controls cold avoidance through dopamine signalling in young flies, whereas the β-circuit increasingly contributes to cold avoidance as adult flies age. Elevating dopamine levels in β'-afferent neurons of aged flies restores cold sensitivity, suggesting that the alteration of cold avoidance behaviour with ageing is functionally reversible. These results provide a framework for investigating how molecules and individual neural circuits modulate homeostatic alterations during the course of senescence.

  16. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  17. Parallel circuits control temperature preference in Drosophila during ageing

    PubMed Central

    Shih, Hsiang-Wen; Wu, Chia-Lin; Chang, Sue-Wei; Liu, Tsung-Ho; Sih-Yu Lai, Jason; Fu, Tsai-Feng; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    The detection of environmental temperature and regulation of body temperature are integral determinants of behaviour for all animals. These functions become less efficient in aged animals, particularly during exposure to cold environments, yet the cellular and molecular mechanisms are not well understood. Here, we identify an age-related change in the temperature preference of adult fruit flies that results from a shift in the relative contributions of two parallel mushroom body (MB) circuits—the β′- and β-systems. The β′-circuit primarily controls cold avoidance through dopamine signalling in young flies, whereas the β-circuit increasingly contributes to cold avoidance as adult flies age. Elevating dopamine levels in β′-afferent neurons of aged flies restores cold sensitivity, suggesting that the alteration of cold avoidance behaviour with ageing is functionally reversible. These results provide a framework for investigating how molecules and individual neural circuits modulate homeostatic alterations during the course of senescence. PMID:26178754

  18. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog (Engystomops pustulosus).

    PubMed

    Vo, Pacific; Gridi-Papp, Marcos

    2017-05-01

    Many frogs from temperate climates can tolerate low temperatures and increase their thermal tolerance through hardening and acclimation. Most tropical frogs, on the other hand, fail to acclimate to low temperatures. This lack of acclimation ability is potentially due to lack of selection pressure for acclimation because cold weather is less common in the tropics. We tested the generality of this pattern by characterizing the critical temperature minimum (CTMin), hardening, and acclimation responses of túngara frogs (Engystomops pustulosus). These frogs belong to a family with unknown thermal ecology. They are found in a tropical habitat with a highly constant temperature regime. The CTMin of the tadpoles was on average 12.5°C. Pre-metamorphic tadpoles hardened by 1.18°C, while metamorphic tadpoles hardened by 0.36°C. When raised at 21°C, tadpoles acclimated expanding their cold tolerance by 1.3°C in relation to larvae raised at 28°C. These results indicate that the túngara frog has a greatly reduced cold tolerance when compared to species from temperate climates, but it responds to cold temperatures with hardening and acclimation comparable to those of temperate-zone species. Cold tolerance increased with body length but cold hardening was more extensive in pre-metamorphic tadpoles than in metamorphic ones. This study shows that lack of acclimation ability is not general to the physiology of tropical anurans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nonshivering thermogenesis and adaptation to fasting in king penguin chicks.

    PubMed

    Duchamp, C; Barre, H; Delage, D; Rouanet, J L; Cohen-Adad, F; Minaire, Y

    1989-10-01

    The ability to develop nonshivering thermogenesis (NST) and the effect of fasting on thermogenic response to cold were studied in winter-acclimatized king penguin chicks. Metabolic rate (MR) and integrated electrical muscle activity were measured at different ambient temperatures. In cold-acclimatized (5 degrees C) fed chicks, shivering threshold temperature (STT) was 9.4 degrees C lower than lower critical temperature (LCT), indicating that NST (0.7 W/kg) occurs at moderate cold, whereas in control chicks fed and reared at 25 degrees C for 3 wk, LCT and STT were similar. Chicks reared in the cold and fasting for 3 wk or 4-5 mo (natural winter fast) developed an NST of 0.8 and 2.4 W/kg, respectively, despite the fast. In fasting chicks, the intercept of the metabolic curve with the abscissa at zero MR was far below body temperature, contrasting with the classic model for heat loss. Their low LCT indicates the capacity of a large reduction in convective conductance characteristic of diving animals and allows energy sparing in moderate cold. Below LCT, conductance reincreases progressively, leading to a steeper than expected slope of the metabolic curve and allowing preservation of a threshold temperature in the shell. These results show for the first time in a wild young bird the development of NST after cold acclimatization. Further, at the temperature of cold acclimatization, an energy-sparing mechanism is shown in response to long-term fast adaptation.

  20. Effect of cold compress application on tissue temperature in healthy dogs.

    PubMed

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of cold compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 (superficial), 1.0 (middle), and 1.5 (deep) cm into a shaved, lumbar, epaxial region to measure tissue temperature. Cold (-16.8°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no cold compress. Mean temperature associated with 5 minutes of application at the superficial depth was significantly decreased, compared with control temperatures. Application for 10 and 20 minutes significantly reduced the temperature at all depths, compared with controls and 5 minutes of application. Twenty minutes of application significantly decreased temperature at only the middle depth, compared with 10 minutes of application. With this method of cold treatment, increasing application time from 10 to 20 minutes caused a further significant temperature change at only the middle tissue depth; however, for maximal cooling, the minimum time of application should be 20 minutes. Possible changes in tissue temperature and adverse effects of application > 20 minutes require further evaluation.

  1. Basal tolerance to heat and cold exposure of the spotted wing drosophila, Drosophila suzukii

    PubMed Central

    Enriquez, Thomas

    2017-01-01

    The spotted wing Drosophila, Drosophila suzukii, is a new pest in Europe and America which causes severe damages, mostly to stone fruit crops. Temperature and humidity are among the most important abiotic factors governing insect development and fitness. In many situations, temperature can become stressful thus compromising survival. The ability to cope with thermal stress depends on basal level of thermal tolerance. Basic knowledge on temperature-dependent mortality of D. suzukii is essential to facilitate management of this pest. The objective of the present study was to investigate D. suzukii basal cold and heat tolerance. Adults and pupae were subjected to six low temperatures (−5–7.5 °C) and seven high temperatures (30–37 °C) for various durations, and survival-time-temperature relationships were investigated. Data showed that males were globally more cold tolerant than females. At temperature above 5 °C, adult cold mortality became minor even after prolonged exposures (e.g., only 20% mortality after one month at 7.5 °C). Heat tolerance of males was lower than that of females at the highest tested temperatures (34, 35 and 37 °C). Pupae appeared much less cold tolerant than adults at all temperatures (e.g., Lt50 at 5° C: 4–5 d for adults vs. 21 h for pupae). Pupae were more heat tolerant than adults at the most extreme high temperatures (e.g., Lt50 at 37 °C: 30 min for adults vs. 4 h for pupae). The pupal thermal tolerance was further investigated under low vs. high humidity. Low relative humidity did not affect pupal cold survival, but it reduced survival under heat stress. Overall, this study shows that survival of D. suzukii under heat and cold conditions can vary with stress intensity, duration, humidity, sex and stage, and the methodological approach used here, which was based on thermal tolerance landscapes, provides a comprehensive description of D. suzukiithermal tolerance and limits. PMID:28348931

  2. Temperature Studies with the Asian Citrus Psyllid, Diaphorina citri: Cold Hardiness and Temperature Thresholds for Oviposition

    PubMed Central

    Hall, David G.; Wenninger, Erik J.; Hentz, Matthew G.

    2011-01-01

    This study was conducted to obtain information on the cold hardiness of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in Florida and to assess upper and lower temperature thresholds for oviposition. The psyllid is an important pest in citrus because it transmits the bacterial pathogens responsible for citrus greening disease, Huanglongbing, considered the most serious citrus disease worldwide. D. citri was first found in Florida during 1998, and the disease was discovered during 2005. Little was known regarding cold hardiness of D. citri, but Florida citrus is occasionally subjected to notable freeze events. Temperature and duration were each significant sources of variation in percent mortality of D. citri subjected to freeze events. Relatively large percentages of adults and nymphs survived after being exposed for several hours to temperatures as low as -5 to -6° C. Relatively large percentages of eggs hatched after being exposed for several hours to temperatures as low as -8° C. Research results indicated that adult D. citri become cold acclimated during the winter through exposure to cooler winter temperatures. There was no evidence that eggs became cold acclimated during winter. Cold acclimation in nymphs was not investigated. Research with adult D. citri from laboratory and greenhouse colonies revealed that mild to moderate freeze events were usually nonlethal to the D. citri irrespective of whether they were cold acclimated or not. Upper and lower temperature thresholds for oviposition were investigated because such information may be valuable in explaining the geographic distribution and potential spread of the pest from Florida as well as how cooler winter temperatures might limit population growth. The estimated lower and upper thresholds for oviposition were 16.0 and 41.6° C, respectively; the estimated temperature of peak oviposition over a 48 h period was 29.6° C. PMID:21870969

  3. Temperature studies with the Asian citrus psyllid, Diaphorina citri: cold hardiness and temperature thresholds for oviposition.

    PubMed

    Hall, David G; Wenninger, Erik J; Hentz, Matthew G

    2011-01-01

    This study was conducted to obtain information on the cold hardiness of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in Florida and to assess upper and lower temperature thresholds for oviposition. The psyllid is an important pest in citrus because it transmits the bacterial pathogens responsible for citrus greening disease, Huanglongbing, considered the most serious citrus disease worldwide. D. citri was first found in Florida during 1998, and the disease was discovered during 2005. Little was known regarding cold hardiness of D. citri, but Florida citrus is occasionally subjected to notable freeze events. Temperature and duration were each significant sources of variation in percent mortality of D. citri subjected to freeze events. Relatively large percentages of adults and nymphs survived after being exposed for several hours to temperatures as low as -5 to -6 °C. Relatively large percentages of eggs hatched after being exposed for several hours to temperatures as low as -8 °C. Research results indicated that adult D. citri become cold acclimated during the winter through exposure to cooler winter temperatures. There was no evidence that eggs became cold acclimated during winter. Cold acclimation in nymphs was not investigated. Research with adult D. citri from laboratory and greenhouse colonies revealed that mild to moderate freeze events were usually nonlethal to the D. citri irrespective of whether they were cold acclimated or not. Upper and lower temperature thresholds for oviposition were investigated because such information may be valuable in explaining the geographic distribution and potential spread of the pest from Florida as well as how cooler winter temperatures might limit population growth. The estimated lower and upper thresholds for oviposition were 16.0 and 41.6 °C, respectively; the estimated temperature of peak oviposition over a 48 h period was 29.6 °C.

  4. Task-dependent cold stress during expeditions in Antarctic environments.

    PubMed

    Morris, Drew M; Pilcher, June J; Powell, Robert B

    2017-01-01

    This study seeks to understand the degree of body cooling, cold perception and physical discomfort during Antarctic tour excursions. Eight experienced expedition leaders across three Antarctic cruise voyages were monitored during occupational tasks: kayaking, snorkelling and zodiac outings. Subjective cold perception and discomfort were recorded using a thermal comfort assessment and skin temperature was recorded using a portable data logger. Indoor cabin temperature and outdoor temperature with wind velocity were used as measures of environmental stress. Physical activity level and clothing insulation were estimated using previous literature. Tour leaders experienced a 6°C (2°C wind chill) environment for an average of 6 hours each day. Leaders involved in kayaking reported feeling colder and more uncomfortable than other leaders, but zodiac leaders showed greater skin temperature cooling. Occupational experience did not predict body cooling or cold stress perception. These findings indicate that occupational cold stress varies by activity and measurement methodology. The current study effectively used objective and subjective measures of cold-stress to identify factors which can contribute to risk in the Antarctic tourism industry. Results suggest that the type of activity may moderate risk of hypothermia, but not discomfort, potentially putting individuals at risk for cognitive related mistakes and cold injuries.

  5. Evaluation of cold workplaces: an overview of standards for assessment of cold stress.

    PubMed

    Holmér, Ingvar

    2009-07-01

    Many persons world wide are exposed to cold environments, either indoors for example in cold stores, or outdoors. Cold is a hazard to health and may affect safety and performance of work. Basis for the creation of safe and optimal working conditions may be obtained by the application of relevant international standards. ISO 11079 presents a method for evaluation of whole body heat balance. On the basis of climate and activity a required clothing insulation (IREQ) for heat balance is determined. For clothing with known insulation value an exposure time limited is calculated. ISO 11079 also includes criteria for assessment of local cooling. Finger temperatures should not be below 24 degrees C during prolonged exposures or 15 degrees C occasionally. Wind chill temperature indicates the risk of bare skin to freeze for combinations of wind and low temperatures. Special protection of airways is recommended at temperatures below -20 degrees C, in particular during heavy work. Additional standards are available describing evaluation strategies, work place observation checklists and checklist for medical screening. Risks associated with contact with cold surfaces can be evaluated with ISO 13732. The strategy and principles for assessment and prevention of cold stress are reviewed in this paper.

  6. Transcriptomic characterization of temperature stress responses in larval zebrafish.

    PubMed

    Long, Yong; Li, Linchun; Li, Qing; He, Xiaozhen; Cui, Zongbin

    2012-01-01

    Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28 °C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16 °C) or heat (34 °C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish.

  7. Non-stationary Drainage Flows and Cold Pools in Gentle Terrain

    NASA Astrophysics Data System (ADS)

    Mahrt, L.

    2015-12-01

    Previous studies have concentrated on organized topography with well-defined slopes or valleys in an effort to understand the flow dynamics. However, most of the Earth's land surface consists of gentle terrain that is quasi three dimensional. Different scenarios are briefly classified. A network of measurements are analyzed to examine shallow cold pools and drainage flow down the valley which develop for weak ambient wind and relatively clear skies. However, transient modes constantly modulate or intermittently eliminate the cold pool, which makes extraction and analysis of the horizontal structure of the cold pool difficult with traditional analysis methods. Singular value decomposition successfully isolates the effects of large-scale flow from local down-valley cold air drainage within the cold pool in spite of the intermittent nature of this local flow. The traditional concept of a cold pool must be generalized to include cold pool intermittency, complex variation of temperature related to some three-dimensionality and a diffuse cold pool top. Different types of cold pools are classified in terms of the stratification and gradient of potential temperature along the slope. The strength of the cold pool is related to a forcing temperature scale proportional to the net radiative cooling divided by the wind speed above the valley. The scatter is large partly due to nonstationarity of the marginal cold pool in this shallow valley

  8. Cold Temperature Encoding by Cutaneous TRPA1 and TRPM8-Carrying Fibers in the Mouse

    PubMed Central

    Winter, Zoltan; Gruschwitz, Philipp; Eger, Stephanie; Touska, Filip; Zimmermann, Katharina

    2017-01-01

    Previous research identified TRPM8 and TRPA1 cold transducers with separate functions, one being functional in the non-noxious range and the second one being a nociceptive transducer. TRPM8-deficient mice present overt deficits in the detection of environmental cool, but not a lack of cold avoidance and TRPA1-deficient mice show clear deficits in some cold nocifensive assays. The extent of TRPA1's contribution to cold sensing in vivo is still unclear, because mice lacking both TRPM8 and TRPA1 (DKO) were described with unchanged cold avoidance from TRPM8−/− based on a two-temperature-choice assay and by c-fos measurement. The present study was designed to differentiate how much TRPM8 alone and combined TRPA1 and TRPM8 contribute to cold sensing. We analyzed behavior in the thermal ring track assay adjusted between 30 and 5°C and found a large reduction in cold avoidance of the double knockout mice as compared to the TRPM8-deficient mice. We also revisited skin-nerve recordings from saphenous-nerve skin preparations with regard to nociceptors and thermoreceptors. We compared the frequency and characteristics of the cold responses of TRPM8-expressing and TRPM8-negative C-fiber nociceptors in C57BL/6J mice with nociceptors of TRPM8-deficient and DKO mice and found that TRPM8 enables nociceptors to encode cold temperatures with higher firing rates and larger responses with sustained, static component. In TRPM8−/−, C-fiber cold nociceptors were markedly reduced and appeared further reduced in DKO. Nevertheless, the remaining cold responses in both knockout strains were similar in their characteristics and they were indifferent from the TRPM8-negative cold responses found in C57BL/6J mice. TRPM8 had a comparably essential role for encoding cold in thermoreceptors and lack of TRPM8 reduced response magnitude, peak and mean firing rates and the incidence of thermoreceptors. The encoding deficits were similar in the DKO strain. Our data illustrate that lack of TRPA1 in TRPM8-deficient mice results in a disproportionately large reduction in cold avoidance behavior and also affects the incidence of cold encoding fiber types. Presumably TRPA1 compensates for lack of TRPM8 to a certain extent and both channels cooperate to cover the entire cold temperature range, making cold-temperature encoding by TRPA1—although less powerful—synergistic to TRPM8. PMID:28713241

  9. Cold Exposure Exacerbates the Development of Diabetic Polyneuropathy in the Rat

    PubMed Central

    Kasselman, Lora J.; Veves, Aristidis; Gibbons, Christopher H.; Rutkove, Seward B.

    2009-01-01

    Diabetic polyneuropathy (DPN) and cold-induced nerve injury share several pathogenic mechanisms. This study explores whether cold exposure contributes to the development of DPN. Streptozotocin-induced diabetic rats and controls were exposed to a room temperature (23°C) or cold environment (10°C). H-reflex, tail and sciatic motor, and sensory nerve conduction studies were performed. Analyses of sural nerve, intraepidermal nerve fibers, and skin and nerve nitrotyrosine ELISAs were performed. Diabetic animals exposed to a cold environment had an increased H-reflex four weeks earlier than diabetic room temperature animals (P = .03). Cold-exposed diabetic animals also had greater reduction in motor conduction velocities at 20 weeks (P = .017), decreased skin nerve fiber density (P = .037), and increased skin nitrotyrosine levels (P = .047). Cold exposure appears to hasten the development of DPN in the rat STZ model of diabetes. These findings support that further study into the relationship between ambient temperature and DPN is warranted. PMID:20130819

  10. Unsteady Heat Transfer Behavior of Reinforced Concrete Wall of Cold Storage

    NASA Astrophysics Data System (ADS)

    Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki

    The authors had already clarified that the heat transfer behaviors between internal and external insulated reinforced concrete wall of cold storage are different each others when inside and outside temperature of wall is flactuating. From that conclusion, we must consider the application method of wall insulation of cold storages in actual design. The theme of the paper is to get the analyzing method and unsteady heat transfer characteristics of concrete walls of cold storage during daily variation of outside temperature of walls, and to give the basis for efficient design and cost optimization of insulate wall of cold storage. The difference of unsteady heat transfer characteristics between internal and external insulate wall, when outside temperature of the wall follewed daily varation, was clarified in experiment and in situ measurement of practical cold storage. The analyzing method with two dimentional unsteady FEM was introduced. Using this method, it is possible to obtain the time variation of heat flux, which is important basic factor for practical design of cold storage, through the wall.

  11. Critical temperature: A quantitative method of assessing cold tolerance

    Treesearch

    D.H. DeHayes; M.W., Jr. Williams

    1989-01-01

    Critical temperature (Tc), defined as the highest temperature at which freezing injury to plant tissues can be detected, provides a biologically meaningful and statistically defined assessment of the relative cold tolerance of plant tissues. A method is described for calculating critical temperatures in laboratory freezing studies that use...

  12. Thermal Recovery from Cold-Working in Type K Bare-Wire Thermocouples

    NASA Astrophysics Data System (ADS)

    Greenen, A. D.; Webster, E. S.

    2017-12-01

    Cold-working of most thermocouples has a significant, direct impact on the Seebeck coefficient which can lead to regions of thermoelectric inhomogeneity and accelerated drift. Cold-working can occur during the wire swaging process, when winding the wire onto a bobbin, or during handling by the end user—either accidentally or deliberately. Swaging-induced cold-work in thermocouples, if uniformly applied, may result in a high level of homogeneity. However, on exposure to elevated temperatures, the subsequent recovery process from the cold-working can then result in significant drift, and this can in turn lead to erroneous temperature measurements, often in excess of the specified manufacturer tolerances. Several studies have investigated the effects of cold-work in Type K thermocouples usually by bending, or swaging. However, the amount of cold-work applied to the thermocouple is often difficult to quantify, as the mechanisms for applying the strains are typically nonlinear when applied in this fashion. A repeatable level of cold-working is applied to the different wires using a tensional loading apparatus to apply a known yield displacement to the thermoelements. The effects of thermal recovery from cold-working can then be accurately quantified as a function of temperature, using a linear gradient furnace and a high-resolution homogeneity scanner. Variation in these effects due to differing alloy compositions in Type K wire is also explored, which is obtained by sourcing wire from a selection of manufacturers. The information gathered in this way will inform users of Type K thermocouples about the potential consequences of varying levels of cold-working and its impact on the Seebeck coefficient at a range of temperatures between ˜ 70°C and 600° C. This study will also guide users on the temperatures required to rapidly alleviate the effects of cold-working using thermal annealing treatments.

  13. Cold-induced ependymin expression in zebrafish and carp brain: implications for cold acclimation.

    PubMed

    Tang, S J; Sun, K H; Sun, G H; Lin, G; Lin, W W; Chuang, M J

    1999-10-01

    Cold acclimation has been suggested to be mediated by alternations in the gene expression pattern in the cold-adapted fish. To investigate the mechanism of cold acclimation in fish brain at the molecular level, relevant subsets of differentially expressed genes of interest were identified and cloned by the PCR-based subtraction suppression hybridization. Characterization of the selected cold-induced cDNA clones revealed one encoding ependymin. This gene was shown to be brain-specific. The expression of ependymin was induced by a temperature shift from 25 degrees C to 6 degrees C in Cyprinus carpio or 12 degrees C in Danio rerio. Activation of ependymin was detected 2 h after cold exposure and peaked at more than 10-fold at 12 h. This peak level remains unchanged until the temperature returns to 25 degrees C. Although the amount of soluble ependymin protein in brain was not changed by cold treatment, its level in the fibrous insoluble polymers increased 2-fold after exposure to low temperature. These findings indicate that the increase in ependymin expression is an early event that may play an important role in the cold acclimation of fish.

  14. Can Winter-Active Bumblebees Survive the Cold? Assessing the Cold Tolerance of Bombus terrestris audax and the Effects of Pollen Feeding

    PubMed Central

    Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  15. The ABCs of Front Management

    USDA-ARS?s Scientific Manuscript database

    Frost protection or protecting plants from cold temperatures where they could be damaged must be a major consideration in orchard planning. Cold temperature protection events commonly occur during "radiation" frost conditions when the sky is clear, there is little wind and temperature inversions ca...

  16. Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969-2012)

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.

    2017-08-01

    Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.

  17. Order-picking in deep cold--physiological responses of younger and older females. Part 2: body core temperature and skin surface temperature.

    PubMed

    Baldus, Sandra; Kluth, Karsten; Strasser, Helmut

    2012-01-01

    So far, it was unclear to what extent working in deep cold-storage depots has an influence on female order-pickers body core temperature and skin surface temperature considering different age groups. Physiological effects of order-picking in a chill room (+3°C) and cold store (-24°C) were examined on 30 female subjects (Ss), classified in two age groups (20- to 35- year-olds and 40- to 65-year-olds). The body core temperature was taken every 15 min at the tympanum and the skin surface temperature was recorded continuously at seven different positions. Working in the chill room induced a decrease of the body core temperature up to 0.5K in comparison to the value at the outset for both age groups which could be compensated by all Ss during the breaks. Working in the cold store caused a decline up to 1.1K for the younger Ss and 1.3K for the older Ss. A complete warming-up during the breaks was often not possible. Regarding the skin surface temperature, working in the chill room can be considered as unproblematic, whereas significantly lower temperatures at nose, fingers and toes, associated with substantial negative subjective sensations, were recorded while working in the cold store.

  18. Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes

    PubMed Central

    Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F.

    2015-01-01

    The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h–1 to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as –6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as –14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. PMID:25788733

  19. FK506-Binding Protein 22 from a Psychrophilic Bacterium, a Cold Shock-Inducible Peptidyl Prolyl Isomerase with the Ability to Assist in Protein Folding

    PubMed Central

    Budiman, Cahyo; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2011-01-01

    Adaptation of microorganisms to low temperatures remains to be fully elucidated. It has been previously reported that peptidyl prolyl cis-trans isomerases (PPIases) are involved in cold adaptation of various microorganisms whether they are hyperthermophiles, mesophiles or phsycrophiles. The rate of cis-trans isomerization at low temperatures is much slower than that at higher temperatures and may cause problems in protein folding. However, the mechanisms by which PPIases are involved in cold adaptation remain unclear. Here we used FK506-binding protein 22, a cold shock protein from the psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) as a model protein to decipher the involvement of PPIases in cold adaptation. SIB1 FKBP22 is homodimer that assumes a V-shaped structure based on a tertiary model. Each monomer consists of an N-domain responsible for dimerization and a C-catalytic domain. SIB1 FKBP22 is a typical cold-adapted enzyme as indicated by the increase of catalytic efficiency at low temperatures, the downward shift in optimal temperature of activity and the reduction in the conformational stability. SIB1 FKBP22 is considered as foldase and chaperone based on its ability to catalyze refolding of a cis-proline containing protein and bind to a folding intermediate protein, respectively. The foldase and chaperone activites of SIB1 FKBP22 are thought to be important for cold adaptation of Shewanella sp. SIB1. These activities are also employed by other PPIases for being involved in cold adaptation of various microorganisms. Despite other biological roles of PPIases, we proposed that foldase and chaperone activities of PPIases are the main requirement for overcoming the cold-stress problem in microorganisms due to folding of proteins. PMID:21954357

  20. Increased coronary heart disease and stroke hospitalisations from ambient temperatures in Ontario

    PubMed Central

    Bai, Li; Li, Qiongsi; Wang, Jun; Lavigne, Eric; Gasparrini, Antonio; Copes, Ray; Yagouti, Abderrahmane; Burnett, Richard T; Goldberg, Mark S; Cakmak, Sabit; Chen, Hong

    2018-01-01

    Objective To assess the associations between ambient temperatures and hospitalisations for coronary heart disease (CHD) and stroke. Methods Our study comprised all residents living in Ontario, Canada, 1996–2013. For each of 14 health regions, we fitted a distributed lag non-linear model to estimate the cold and heat effects on hospitalisations from CHD, acute myocardial infarction (AMI), stroke and ischaemic stroke, respectively. These effects were pooled using a multivariate meta-analysis. We computed attributable hospitalisations for cold and heat, defined as temperatures above and below the optimum temperature (corresponding to the temperature of minimum morbidity) and for moderate and extreme temperatures, defined using cut-offs at the 2.5th and 97.5th temperature percentiles. Results Between 1996 and 2013, we identified 1.4 million hospitalisations from CHD and 355 837 from stroke across Ontario. On cold days with temperature corresponding to the 1st percentile of temperature distribution, we found a 9% increase in daily hospitalisations for CHD (95% CI 1% to 16%), 29% increase for AMI (95% CI 15% to 45%) and 11% increase for stroke (95% CI 1% to 22%) relative to days with an optimal temperature. High temperatures (the 99th percentile) also increased CHD hospitalisations by 6% (95% CI 1% to 11%) relative to the optimal temperature. These estimates translate into 2.49% of CHD hospitalisations attributable to cold and 1.20% from heat. Additionally, 1.71% of stroke hospitalisations were attributable to cold. Importantly, moderate temperatures, rather than extreme temperatures, yielded the most of the cardiovascular burdens from temperatures. Conclusions Ambient temperatures, especially in moderate ranges, may be an important risk factor for cardiovascular-related hospitalisations. PMID:29101264

  1. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging

    NASA Astrophysics Data System (ADS)

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo ( N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females ( N = 25) and young females from a rural area ( N = 15) and an urban area ( N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females ( P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups ( P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  2. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging.

    PubMed

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo (N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females (N = 25) and young females from a rural area (N = 15) and an urban area (N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females (P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups (P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  3. High-dose diazepam facilitates core cooling during cold saline infusion in healthy volunteers.

    PubMed

    Hostler, David; Northington, William E; Callaway, Clifton W

    2009-08-01

    Studies have suggested that inducing mild hypothermia improves neurologic outcomes after traumatic brain injury, major stroke, cardiac arrest, or exertional heat illness. While infusion of cold normal saline is a simple and inexpensive method for reducing core temperature, human cold-defense mechanisms potentially make this route stressful or ineffective. We hypothesized that intravenous administration of diazepam during a rapid infusion of 30 mL.kg-1 of cold (4 degrees C) 0.9% saline to healthy subjects would be more comfortable and reduce core body temperature more than the administration of cold saline alone. Fifteen subjects received rapidly infused cold (4 degrees C) 0.9% saline. Subjects were randomly assigned to receive, intravenously, 20 mg diazepam (HIGH), 10 mg diazepam (LOW), or placebo (CON). Main outcomes were core temperature, skin temperature, and oxygen consumption. Data for the main outcomes were analyzed with generalized estimating equations to identify differences in group, time, or a group x time interaction. Core temperature decreased in all groups (CON, 1.0 +/- 0.2 degrees C; LOW, 1.4 +/- 0.2 degrees C; HIGH, 1.5 +/- 0.2 degrees C), while skin temperature was unchanged. Mean (95% CI) oxygen consumption was 315.3 (253.8, 376.9) mL.kg-1.min-1 in the CON group, 317.9 (275.5, 360.3) in the LOW group, and 226.1 (216.4, 235.9) in the HIGH group. Significant time and group x time interaction was observed for core temperature and oxygen consumption (p < 0.001). Administration of high-dose diazepam resulted in decreased oxygen consumption during cold saline infusion, suggesting that 20 mg of intravenous diazepam may reduce the shivering threshold without compromising respiratory or cardiovascular function.

  4. Prediction of facial cooling while walking in cold wind.

    PubMed

    Tikuisis, Peter; Ducharme, Michel B; Brajkovic, Dragan

    2007-09-01

    A dynamic model of cheek cooling has been modified to account for increased skin blood circulation of individuals walking in cold wind. This was achieved by modelling the cold-induced vasodilation response to cold as a varying blood perfusion term, which provided a source of convective heat to the skin tissues of the model. Physiologically-valid blood perfusion was fitted to replicate the cheek skin temperature responses of 12 individuals experimentally exposed to air temperatures from -10 to 10 degrees C at wind speeds from 2 to 8 ms(-1). Resultant cheek skin temperatures met goodness-of-fit criteria and implications on wind chill predictions are discussed.

  5. Mental and cognitive performance in the cold.

    PubMed

    Palinkas, L A

    2001-08-01

    Vigilance, attention, memory, and motivation are essential to adapting to the physiological changes that occur with prolonged exposure to the cold and to avoiding both the environmental hazards associated with cold and the health-related consequences of these hazards. This paper summarizes the effects of cold temperatures on cognitive performance and mood. Although the effects of hypothermic-induced cold temperatures on cognitive performance and mood have been well documented, evidence of nonhypothermic effects has been inconsistent. There is evidence of a dose-response relation involving decrements in cognitive performance with respect to decline in core body temperature and complexity of tasks performed. However, it is unclear whether these effects are due to distraction or increased arousal. Likewise, further research is required to test the efficacy of existing and proposed pharmacologic and nutritional countermeasures.

  6. Modulation of fatty acid composition and growth in Sporosarcina species in response to temperatures and exogenous branched-chain amino acids.

    PubMed

    Tsuda, Kentaro; Nagano, Hideaki; Ando, Akinori; Shima, Jun; Ogawa, Jun

    2017-06-01

    Psychrotolerant endospore-forming Sporosarcina species have been predominantly isolated from minced fish meat (surimi), which is stored under refrigeration after heat treatment. To develop a better method for preserving surimi-based food products, we studied the growth and fatty acid compositions of the isolated strain S92h as well as Sporosarcina koreensis and Sporosarcina aquimarina at cold and moderate temperatures. The growth rates of strain S92h and S. koreensis were the fastest and slowest at cold temperatures, respectively, although these strains grew at a similar rate at moderate temperatures. In all three strains, the proportions of anteiso-C 15:0 and unsaturated fatty acids (UFAs) were significantly higher at cold temperatures than at moderate temperatures. Furthermore, supplementation with valine, leucine, and isoleucine resulted in proportional increases in iso-C 16:0 , iso-C 15:0 , and anteiso-C 15:0 , respectively, among the fatty acid compositions of these strains. The proportions of the UFAs were also altered by the supplementation. At cold temperatures, the growth rates of strain S92h and S. koreensis, but not of S. aquimarina, were affected by supplementation with leucine. Supplementation with isoleucine enhanced the growth of S. koreensis at cold temperatures but not that of the other strains. Valine did not affect the growth of any strain. These results indicate that anteiso-C 15:0 and UFAs both play important roles in the cold tolerance of the genus Sporosarcina and that these bacteria modulate their fatty acid compositions in response to the growth environment.

  7. Temperature-related mortality in 17 large Chinese cities: how heat and cold affect mortality in China.

    PubMed

    Ma, Wenjuan; Chen, Renjie; Kan, Haidong

    2014-10-01

    Few multicity studies have been conducted to investigate the acute health effects of cold and hot temperatures in China. We aimed to examine the relationship between temperature and daily mortality in 17 large Chinese cities. We first calculated city-specific effect of temperature using time-series regression models combined with distributed lag nonlinear models; then we pooled the city-specific estimates with the Bayesian hierarchical models. The cold effects lasted longer than the hot effects. For the cold effects, a 1 °C decrease from the 25th to 1st percentiles of temperature over lags 0-14 days was associated with increases of 1.69% [95% posterior intervals (PI): 1.01%, 2.36%], 2.49% (95% PI: 1.53%, 3.46%) and 1.60% (95% PI: 0.32%, 2.87%) in total, cardiovascular and respiratory mortality, respectively. For the hot effects, a 1 °C increase from the 75th to 99th percentiles of temperature was associated with corresponding increases of 2.83% (95% PI: 1.42%, 4.24%), 3.02% (95% PI: 1.33%, 4.71%) and 4.64% (95% PI: 1.96%, 7.31%). The latitudes, number of air conditioning per household and disposable income per capita were significant modifiers for cold effects; the proportion of the elderly was a significant modifier for hot effects. This largest epidemiological study of temperature to date in China suggested that both cold and hot temperatures were associated with increased mortality. Our findings may have important implications for the public health policies in China. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The lag effects and vulnerabilities of temperature effects on cardiovascular disease mortality in a subtropical climate zone in China.

    PubMed

    Huang, Jixia; Wang, Jinfeng; Yu, Weiwei

    2014-04-11

    This research quantifies the lag effects and vulnerabilities of temperature effects on cardiovascular disease in Changsha--a subtropical climate zone of China. A Poisson regression model within a distributed lag nonlinear models framework was used to examine the lag effects of cold- and heat-related CVD mortality. The lag effect for heat-related CVD mortality was just 0-3 days. In contrast, we observed a statistically significant association with 10-25 lag days for cold-related CVD mortality. Low temperatures with 0-2 lag days increased the mortality risk for those ≥65 years and females. For all ages, the cumulative effects of cold-related CVD mortality was 6.6% (95% CI: 5.2%-8.2%) for 30 lag days while that of heat-related CVD mortality was 4.9% (95% CI: 2.0%-7.9%) for 3 lag days. We found that in Changsha city, the lag effect of hot temperatures is short while the lag effect of cold temperatures is long. Females and older people were more sensitive to extreme hot and cold temperatures than males and younger people.

  9. Cold and warm electrons at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; Engelhardt, I. A. D.; André, M.; Boström, R.; Edberg, N. J. T.; Johansson, F. L.; Odelstad, E.; Vigren, E.; Wahlund, J.-E.; Henri, P.; Lebreton, J.-P.; Miloch, W. J.; Paulsson, J. J. P.; Simon Wedlund, C.; Yang, L.; Karlsson, T.; Jarvinen, R.; Broiles, T.; Mandt, K.; Carr, C. M.; Galand, M.; Nilsson, H.; Norberg, C.

    2017-09-01

    Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims: Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma. Methods: In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas. Results: LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5-10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order - 10 V. Conclusions: The warm (5-10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that we observe as pulses.

  10. Thermal acclimation in American alligators: Effects of temperature regime on growth rate, mitochondrial function, and membrane composition.

    PubMed

    Price, Edwin R; Sirsat, Tushar S; Sirsat, Sarah K G; Kang, Gurdeep; Keereetaweep, Jantana; Aziz, Mina; Chapman, Kent D; Dzialowski, Edward M

    2017-08-01

    We investigated the ability of juvenile American alligators (Alligator mississippiensis) to acclimate to temperature with respect to growth rate. We hypothesized that alligators would acclimate to cold temperature by increasing the metabolic capacity of skeletal muscles and the heart. Additionally, we hypothesized that lipid membranes in the thigh muscle and liver would respond to low temperature, either to maintain fluidity (via increased unsaturation) or to maintain enzyme reaction rates (via increased docosahexaenoic acid). Alligators were assigned to one of 3 temperature regimes beginning at 9 mo of age: constant warm (30°C), constant cold (20°C), and daily cycling for 12h at each temperature. Growth rate over the following 7 mo was highest in the cycling group, which we suggest occurred via high digestive function or feeding activity during warm periods and energy-saving during cold periods. The warm group also grew faster than the cold group. Heart and liver masses were proportional to body mass, while kidney was proportionately larger in the cold group compared to the warm animals. Whole-animal metabolic rate was higher in the warm and cycling groups compared to the cold group - even when controlling for body mass - when assayed at 30°C, but not at 20°C. Mitochondrial oxidative phosphorylation capacity in permeabilized fibers of thigh muscle and heart did not differ among treatments. Membrane fatty acid composition of the brain was largely unaffected by temperature treatment, but adjustments were made in the phospholipid headgroup composition that are consistent with homeoviscous adaptation. Thigh muscle cell membranes had elevated polyunsaturated fatty acids in the cold group relative to the cycling group, but this was not the case for thigh muscle mitochondrial membranes. Liver mitochondria from cold alligators had elevated docosahexaenoic acid, which might be important for maintenance of reaction rates of membrane-bound enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Simulation of SRAM SEU Sensitivity at Reduced Operating Temperatures

    NASA Technical Reports Server (NTRS)

    Sanathanamurthy, S.; Ramachandran, V.; Alles, M. L.; Reed, R. A.; Massengill, L. W.; Raman, A.; Turowski, M.; Mantooth, A.; Woods, B.; Barlow, M.; hide

    2009-01-01

    A new NanoTCAD-to-Spectre interface is applied to perform mixed-mode SEU simulations of an SRAM cell. Results using newly calibrated TCAD cold temperature substrate mobility models, and BSIM3 compact models extracted explicitly for the cold temperature designs, indicate a 33% reduction in SEU threshold for the range of temperatures simulated.

  12. Effects of hot and cold temperature exposure on performance : a meta-analytic review

    DOT National Transportation Integrated Search

    2002-01-01

    Adjusting to and working under hot or cold temperatures has long been a challenge for people living under immoderate weather conditions. In spite of the ability in industrialized societies to control indoor temperatures, a similar challenge continues...

  13. Cold and heat strain during cold-weather field training with nuclear, biological, and chemical protective clothing.

    PubMed

    Rissanen, Sirkka; Rintamäki, Hannu

    2007-02-01

    The objective of this study was to quantify the thermal strain of soldiers wearing nuclear, biological, and chemical protective clothing during short-term field training in cold conditions. Eleven male subjects performed marching exercises at moderate and heavy activity levels for 60 minutes. Rectal temperature (Tre), skin temperatures, and heart rate were monitored. Ambient temperature (Ta) varied from -33 to 0 degrees C. Tre was affected by changes in metabolism, rather than in Ta. Tre increased above 38 degrees during heavy exercise even at -33 degrees C. The mean skin temperature decreased to tolerance level (25 degrees C) at Ta below -25 degrees C with moderate exercise. Finger temperature decreased below 15 degrees C (performance degradation) at Ta of -15 degrees C or cooler. The present results from the field confirm the previous results based on laboratory studies and show that risk of both heat and cold strain is evident, with cooling of extremities being most critical, while wearing nuclear, biological, and chemical protective clothing during cold-weather training.

  14. Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation

    PubMed Central

    Kurepin, Leonid V.; Dahal, Keshav P.; Savitch, Leonid V.; Singh, Jas; Bode, Rainer; Ivanov, Alexander G.; Hurry, Vaughan; Hüner, Norman P. A.

    2013-01-01

    Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways. PMID:23778089

  15. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature1

    PubMed Central

    Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro

    2008-01-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  16. Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing.

    PubMed

    Zhang, Yuhong; Wu, Hongsheng; Xie, Jiaqin; Jiang, Ruixin; Deng, Congshuang; Pang, Hong

    2015-11-19

    Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect's ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses. Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect's response to heat- and cold-stress. These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.

  17. Mortality related to extreme temperature for 15 cities in northeast Asia.

    PubMed

    Chung, Yeonseung; Lim, Youn-Hee; Honda, Yasushi; Guo, Yue-Liang Leon; Hashizume, Masahiro; Bell, Michelle L; Chen, Bing-Yu; Kim, Ho

    2015-03-01

    Multisite time-series studies for temperature-related mortality have been conducted mainly in the United States and Europe, but are lacking in Asia. This multisite time-series study examined mortality related to extreme temperatures (both cold and hot) in Northeast Asia, focusing on 15 cities of 3 high-income countries. This study includes 3 cities in Taiwan for 1994-2007, 6 cities in Korea for 1992-2010, and 6 cities in Japan for 1972-2009. We used 2-stage Bayesian hierarchical Poisson semiparametric regression to model the nonlinear relationship between temperature and mortality, providing city-specific and country-wide estimates for cold and heat effects. Various exposure time frames, age groups, and causes of death were considered. Cold effects had longer time lags (5-11 days) than heat effects, which were immediate (1-3 days). Cold effects were larger for cities in Taiwan, whereas heat effects were larger for cities in Korea and Japan. Patterns of increasing effects with age were observed in both cold and heat effects. Both cold and heat effects were larger for cardiorespiratory mortality than for other causes of death. Several city characteristics related to weather or air pollution were associated with both cold and heat effects. Mortality increased with either cold or hot temperature in urban populations of high-income countries in Northeast Asia, with spatial variations of effects among cities and countries. Findings suggest that climate factors are major contributors to the spatial heterogeneity of effects in this region, although further research is merited to identify other factors as determinants of variability.

  18. Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.

    PubMed

    Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick

    2012-06-01

    Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.

  19. 40 CFR 86.201-11 - General applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-11 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emissions from 1994...

  20. 40 CFR 86.201-94 - General applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-94 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emission from 1994...

  1. 40 CFR 86.201-94 - General applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-94 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emission from 1994...

  2. 40 CFR 86.201-94 - General applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-94 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emission from 1994...

  3. 40 CFR 86.201-11 - General applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-11 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emissions from 1994...

  4. 40 CFR 86.201-11 - General applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.201-11 General applicability. (a) This subpart describes procedures for determining the cold temperature carbon monoxide (CO) emissions from 1994...

  5. Evaluation of Temperature Gradient in Advanced Automated Directional Solidification Furnace (AADSF) by Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1996-01-01

    A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).

  6. Long Term Decline in Eastern US Winter Temperature Extremes.

    NASA Astrophysics Data System (ADS)

    Trenary, L. L.; DelSole, T. M.; Tippett, M. K.; Doty, B.

    2016-12-01

    States along the US eastern seaboard have experienced successively harsh winter conditions in recent years. This has prompted speculation that climate change is leading to more extreme winter conditions. In this study we quantify changes in the observed winter extremes over the period 1950-2015, by examining year-to-year differences in intensity, frequency and likelihood of daily cold temperature extremes in the north, mid, and south Atlantic states along the US east coast. Analyzing station data for these three regions, we find that while the north and mid-Atlantic regions experienced record-breaking cold temperatures in 2015, there is no long-term increase in the intensity of cold extremes anywhere along the eastern seaboard. Likewise, despite the record number of cold days in these two regions during 2014 and 2015, there is no systematic increase in the frequency of cold extremes. To determine whether the observed changes are natural or human-forced, we repeat our analysis using a suite of climate simulations, with and without external forcing. Generally, model simulations suggest that human-induced forcing does not significantly influence the range of daily winter temperature. Combining this result with the fact that the observed winter temperatures are becoming warmer and less variable, we conclude that the recent intensification of eastern US cold extremes is only temporary.

  7. Technology Application of Environmental Friendly Refrigeration (Green Refrigeration) on Cold Storage for Fishery Industry

    NASA Astrophysics Data System (ADS)

    Rasta, IM; Susila, IDM; Subagia, IWA

    2018-01-01

    The application of refrigeration technology to postharvest fishery products is an very important. Moreover, Indonesia is a tropical region with relatively high temperatures. Fish storage age can be prolonged with a decrease in temperature. Frozen fish can even be stored for several months. Fish freezing means preparing fish for storage in low-temperature cold storage. The working fluid used in cold storage to cool low-temperature chambers and throw heat into high-temperature environments is refrigerant. So far refrigerant used in cold storage is Hydrochloroflourocarbons (HCFC) that is R-22. Chlor is a gas that causes ODP (Ozone Depleting Potential), while Flour is a gas that causes GWP (Global Warming Potential). Government policy began in 2015 to implement Hydrochloroflourocarbons Phase-Out Management Plan. Hydrocarbon (HC) is an alternative substitute for R-22. HC-22 (propane ≥ 99.5%) has several advantages, among others: environmentally friendly, indicated by a zero ODP value, and GWP = 3 (negligible), thermophysical property and good heat transfer characteristics, vapor phase density Which is low, and good solubility with mineral lubricants. The use of HC-22 in cold storage is less than R-22. From the analysis results obtained, cold storage system using HC-22 has better performance and energy consumption is more efficient than the R-22.

  8. Vulnerabilities to Temperature Effects on Acute Myocardial Infarction Hospital Admissions in South Korea

    PubMed Central

    Kwon, Bo Yeon; Lee, Eunil; Lee, Suji; Heo, Seulkee; Jo, Kyunghee; Kim, Jinsun; Park, Man Sik

    2015-01-01

    Most previous studies have focused on the association between acute myocardial function (AMI) and temperature by gender and age. Recently, however, concern has also arisen about those most susceptible to the effects of temperature according to socioeconomic status (SES). The objective of this study was to determine the effect of heat and cold on hospital admissions for AMI by subpopulations (gender, age, living area, and individual SES) in South Korea. The Korea National Health Insurance (KNHI) database was used to examine the effect of heat and cold on hospital admissions for AMI during 2004–2012. We analyzed the increase in AMI hospital admissions both above and below a threshold temperature using Poisson generalized additive models (GAMs) for hot, cold, and warm weather. The Medicaid group, the lowest SES group, had a significantly higher RR of 1.37 (95% CI: 1.07–1.76) for heat and 1.11 (95% CI: 1.04–1.20) for cold among subgroups, while also showing distinctly higher risk curves than NHI for both hot and cold weather. In additions, females, older age group, and those living in urban areas had higher risks from hot and cold temperatures than males, younger age group, and those living in rural areas. PMID:26580643

  9. System and method for crystalline sheet growth using a cold block and gas jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellerman, Peter L.; Mackintosh, Brian; Carlson, Frederick M.

    A crystallizer for growing a crystalline sheet from a melt may include a cold block having a cold block surface that faces an exposed surface of the melt, the cold block configured to generate a cold block temperature at the cold block surface that is lower than a melt temperature of the melt at the exposed surface. The system may also include a nozzle disposed within the cold block and configured to deliver a gas jet to the exposed surface, wherein the gas jet and the cold block are interoperative to generate a process zone that removes heat from themore » exposed surface at a first heat removal rate that is greater than a second heat removal rate from the exposed surface in outer regions outside of the process zone.« less

  10. You Turn Me Cold: Evidence for Temperature Contagion

    PubMed Central

    Featherstone, Eric; Voon, Valerie; Singer, Tania; Critchley, Hugo D.; Harrison, Neil A.

    2014-01-01

    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p<0.001. Participants' own hands also showed a significant temperature-dependent effect: hands were significantly colder when observing cold vs. warm videos F(1,34) = 13.83, p = 0.001 with post-hoc t-test demonstrating a significant reduction in participants' own left (t(35) = −3.54, p = 0.001) and right (t(35) = −2.33, p = 0.026) hand temperature during observation of cold videos but no change to warm videos (p>0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation. PMID:25551826

  11. Induction of DREB2A pathway with repression of E2F, Jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation specific freeze resistant wheat crown

    USDA-ARS?s Scientific Manuscript database

    Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold acclimation specific processes and pathways, we utilized co...

  12. Estimating and projecting the effect of cold waves on mortality in 209 US cities.

    PubMed

    Wang, Yan; Shi, Liuhua; Zanobetti, Antonella; Schwartz, Joel D

    2016-09-01

    The frequency, duration, and intensity of cold waves are expected to decrease in the near future under the changing climate. However, there is a lack of understanding on future mortality related to cold waves. The present study conducted a large-scale national projection to estimate future mortality attributable to cold waves during 1960-2050 in 209 US cities. Cold waves were defined as two, three, or at least four consecutive days with daily temperature lower than the 5th percentile of temperatures in each city. The lingering period of a cold wave was defined as the non-cold wave days within seven days following that cold wave period. First, with 168million residents in 209 US cities during 1962-2006, we fitted over-dispersed Poisson regressions to estimate the immediate and lingering effects of cold waves on mortality and tested if the associations were modified by the duration of cold waves, the intensity of cold waves, and mean winter temperature (MWT). Then we projected future mortality related to cold waves using 20 downscaled climate models. Here we show that the cold waves (both immediate and lingering) were associated with an increased but small risk of mortality. The associations varied substantially across climate regions. The risk increased with the duration and intensity of cold waves but decreased with MWT. The projected mortality related to cold waves would decrease from 1960 to 2050. Such a decrease, however, is small and may not be able to offset the potential increase in heat-related deaths if the adaptation to heat is not adequate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Task-dependent cold stress during expeditions in Antarctic environments

    PubMed Central

    Morris, Drew M.; Pilcher, June J.; Powell, Robert B.

    2017-01-01

    ABSTRACT This study seeks to understand the degree of body cooling, cold perception and physical discomfort during Antarctic tour excursions. Eight experienced expedition leaders across three Antarctic cruise voyages were monitored during occupational tasks: kayaking, snorkelling and zodiac outings. Subjective cold perception and discomfort were recorded using a thermal comfort assessment and skin temperature was recorded using a portable data logger. Indoor cabin temperature and outdoor temperature with wind velocity were used as measures of environmental stress. Physical activity level and clothing insulation were estimated using previous literature. Tour leaders experienced a 6°C (2°C wind chill) environment for an average of 6 hours each day. Leaders involved in kayaking reported feeling colder and more uncomfortable than other leaders, but zodiac leaders showed greater skin temperature cooling. Occupational experience did not predict body cooling or cold stress perception. These findings indicate that occupational cold stress varies by activity and measurement methodology. The current study effectively used objective and subjective measures of cold-stress to identify factors which can contribute to risk in the Antarctic tourism industry. Results suggest that the type of activity may moderate risk of hypothermia, but not discomfort, potentially putting individuals at risk for cognitive related mistakes and cold injuries. PMID:28990466

  14. Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8

    PubMed Central

    Brauchi, Sebastian; Orio, Patricio; Latorre, Ramon

    2004-01-01

    The cold and menthol receptor, TRPM8, also designated CMR1, is a member of the transient receptor potential (TRP) family of excitatory ion channels. TRPM8 is a channel activated by cold temperatures, voltage, and menthol. In this study, we characterize the cold- and voltage-induced activation of TRPM8 channel in an attempt to identify the temperature- and voltage-dependent components involved in channel activation. Under equilibrium conditions, decreasing temperature has two effects. (i) It shifts the normalized conductance vs. voltage curves toward the left, along the voltage axis. This effect indicates that the degree of order is higher when the channel is in the open configuration. (ii) It increases the maximum channel open probability, suggesting that temperature affects both voltage-dependent and -independent pathways. In the temperature range between 18°C and 25°C, large changes in enthalpy (ΔH = -112 kcal/mol) and entropy (ΔS = -384 cal/mol K) accompany the activation process. The Q10 calculated in the same temperature range is 24. This thermodynamic analysis strongly suggests that the process of opening involves large conformational changes of the channel-forming protein. Therefore, the highly temperature-dependent transition between open and closed configurations is possible because enthalpy and entropy are both large and compensate each other. Our data also demonstrate that temperature and voltage interact allosterically to enhance channel opening. PMID:15492228

  15. Is distribution of cold stenotherms constrained by temperature? The case of the Arctic fairy shrimp (Branchinecta paludosa O.F. Müller 1788).

    PubMed

    Lindholm, M; Hessen, D O; Færøvig, P J; Rognerud, B; Andersen, T; Stordal, F

    2015-10-01

    Small water bodies in cold climate respond fast to global warming, and species adapted to such habitats may be valuable indicators for climate change. We investigated the geographical and physiological temperature limits of the Arctic fairy shrimp (Branchinecta paludosa), which is common in cold water arctic ponds, but at present retracts its range in alpine areas along its southern outreach of Norway. Seasonal logging of water temperatures along an altitudinal transect revealed an upper temperature limit of 12.7°C for its presence, which closely matched a calculated upper temperature limit of 12.9°C throughout its entire Norwegian range. Field data hence point to cold stenotherm features, which would be consistent with its Arctic, circumpolar distribution. Lab experiments, on the other hand, revealed a linear increase in respiration over 10-20°C. When fed ad libitum somatic growth increased with temperature, as well, without negative physiological impacts of higher temperatures. The absence of Branchinecta paludosa in ponds warmer than 13°C could still be due to a mismatch between temperature dependent metabolism and limited energy supply in these ultraoligotrophic water bodies. We discuss the concept of cold stenothermy in this context, and the impacts of regional warming on the future distribution of the Arctic fairy shrimp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock

    PubMed Central

    Singh, Karan; Kochar, Ekta; Prasad, N. G.

    2015-01-01

    Background Ability to resist temperature shock is an important component of fitness of insects and other ectotherms. Increased resistance to temperature shock is known to affect life-history traits. Temperature shock is also known to affect reproductive traits such as mating ability and viability of gametes. Therefore selection for increased temperature shock resistance can affect the evolution of reproductive traits. Methods We selected replicate populations of Drosophila melanogaster for resistance to cold shock. We then investigated the evolution of reproductive behavior along with other components of fitness- larval survivorship, adult mortality, fecundity, egg viability in these populations. Results We found that larval survivorship, adult mortality and fecundity post cold shock were not significantly different between selected and control populations. However, compared to the control populations, the selected populations laid significantly higher percentage of fertile eggs (egg viability) 24 hours post cold shock. The selected populations had higher mating frequency both with and without cold shock. After being subjected to cold shock, males from the selected populations successfully mated with significantly more non-virgin females and sired significantly more progeny compared to control males. Conclusions A number of studies have reported the evolution of survivorship in response to selection for temperature shock resistance. Our results clearly indicate that adaptation to cold shock can involve changes in components of reproductive fitness. Our results have important implications for our understanding of how reproductive behavior can evolve in response to thermal stress. PMID:26065704

  17. The effect of low ambient temperature on the febrile responses of rats to semi-purified human endogenous pyrogen.

    PubMed

    Stitt, J T; Shimada, S G

    1985-01-01

    The febrile responses of Sprague-Dawley rats to semi-purified human endogenous pyrogen were studied at a thermoneutral ambient temperature (26 degrees C) and in the cold (3 degrees C). It was found that while rats developed typical monophasic febrile responses at thermoneutrality, febrile responses were absent in the cold-exposed rats. Experiments were conducted to determine whether this lack of febrile responses in cold-exposed rats was due to an inability of these animals to generate or retain heat in the cold. Thermogenesis and vasoconstriction were stimulated in cold-exposed rats by selectively cooling the hypothalamus, using chronically implanted thermodes. It was shown that, using this stimulus, metabolic rate could be increased by more than 50 percent and body temperature could be driven up at a rate of 5 degrees C/hour in rats exposed to the cold. Therefore, it was concluded that the lack of febrile responses of cold-exposed rats to pyrogen is in no way due to a physical or physiological inability to retain heat. Instead, it appears that in some manner cold exposure suppresses the sensitivity or responsiveness of the rat to pyrogenic stimuli.

  18. Hormonal control of cold stress responses in plants.

    PubMed

    Eremina, Marina; Rozhon, Wilfried; Poppenberger, Brigitte

    2016-02-01

    Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.

  19. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE PAGES

    Drager, Aryeh J.; van den Heever, Susan C.

    2017-05-09

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  20. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drager, Aryeh J.; van den Heever, Susan C.

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  1. The Shift of Thermoneutral Zone in Striped Hamster Acclimated to Different Temperatures

    PubMed Central

    Zhao, Zhi-Jun; Chi, Qing-Sheng; Liu, Quan-Sheng; Zheng, Wei-Hong; Liu, Jin-Song; Wang, De-Hua

    2014-01-01

    Temperature affects all biological functions and will therefore modulate ecologically significant interactions between animals and their environment. Here, we examined the effect of ambient temperature (Ta) on the thermal biology and energy budget in striped hamsters acclimated to cold (5°C), warm (21°C) and hot temperatures (31°C). Thermoneutral zone (TNZ) was 22.5–32.5°C, 25–32.5°C and 30–32.5°C in the cold-, warm- and hot-acclimated hamsters, respectively. The cold acclimation decreased the lower critical temperature and made the TNZ wider, and hot exposure elevated the lower critical temperature, resulting in a narrow TNZ. Within the TNZ, cold-acclimated hamsters showed a significantly higher rate of metabolism and thermogenesis than those acclimated to hot temperature. Digestive enzymes activities, including intestinal sucrase, maltase, L-alanine aminopeptidase-N and leucine aminopeptidase were higher in the cold than in the hot. The changes in metabolic rate and thermogenesis at different temperatures were in parallel with cytochrome c oxidase activity and uncoupling protein 1 gene expression of brown adipose tissue. This suggests that the shift of the lower critical temperature of TNZ is possibly associated with the rate of metabolism and thermogenesis, as well as with the digestive capacity of the gastrointestinal tract at different Ta. The upper critical temperature of TNZ may be independent of the changes in Ta. The changes of lower critical temperature of TNZ are an important strategy in adaption to variations of Ta. PMID:24400087

  2. Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden

    PubMed Central

    Rocklöv, Joacim; Forsberg, Bertil; Ebi, Kristie; Bellander, Tom

    2014-01-01

    Background Ambient temperatures can cause an increase in mortality. A better understanding is needed of how health status and other factors modify the risk associated with high and low temperatures, to improve the basis of preventive measures. Differences in susceptibility to temperature and to heat and cold wave duration are relatively unexplored. Objectives We studied the associations between mortality and temperature and heat and cold wave duration, stratified by age and individual and medical factors. Methods Deaths among all residents of Stockholm County between 1990 and 2002 were linked to discharge diagnosis data from hospital admissions, and associations were examined using the time stratified case-crossover design. Analyses were stratified by gender, age, pre-existing disease, country of origin, and municipality level wealth, and adjusted for potential confounding factors. Results The effect on mortality by heat wave duration was higher for lower ages, in areas with lower wealth, for hospitalized patients younger than age 65. Odds were elevated among females younger than age 65, in groups with a previous hospital admission for mental disorders, and in persons with previous cardiovascular disease. Gradual increases in summer temperatures were associated with mortality in people older than 80 years, and with mortality in groups with a previous myocardial infarction and with chronic obstructive pulmonary disease (COPD) in the population younger than 65 years. During winter, mortality was associated with a decrease in temperature particularly in men and with the duration of cold spells for the population older than 80. A history of hospitalization for myocardial infarction increased the odds associated with cold temperatures among the population older than 65. Previous mental disease or substance abuse increased the odds of death among the population younger than 65. Conclusion To increase effectiveness, we suggest preventive efforts should not assume susceptible groups are the same for warm and cold days and heat and cold waves, respectively. PMID:24647126

  3. Modeling Shasta Dam operations to regulate temperatures for Chinook salmon under extreme climate and climate change

    NASA Astrophysics Data System (ADS)

    Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.

    2014-12-01

    Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.

  4. Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes.

    PubMed

    Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F

    2015-07-01

    The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h(-1) to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as -6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as -14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens.

    PubMed

    Loyau, T; Collin, A; Yenisey, C; Crochet, S; Siegel, P B; Akşit, M; Yalçin, S

    2014-08-01

    Cyclically cold incubation temperatures have been suggested as a means to improve resistance of broiler chickens to ascites; however, the underlying mechanisms are not known. Nine hundred eggs obtained from 48 wk Ross broiler breeders were randomly assigned to 2 incubation treatments: control I eggs were incubated at 37.6°C throughout, whereas for cold I eggs the incubation temperature was reduced by 1°C for 6 h daily from 10 to 18 d of incubation. Thereafter, chickens were reared at standard temperatures or under cold exposure that was associated or not with a postnatal cold acclimation at d 5 posthatch. At hatch, hepatic catalase activity and malondialdehyde content were measured. Serum thyroid hormone and triglyceride concentrations, and muscle expression of several genes involved in the regulation of energy metabolism and oxidative stress were also measured at hatch and 5 and 25 d posthatch. Cold incubation induced modifications in antioxidant pathways with higher catalase activity, but lower expression of avian uncoupling protein 3 at hatch. However, long-term enhancement in the expression of avian uncoupling protein 3 was observed, probably caused by an increase in the expression of the transcription factor peroxisome proliferator activated receptor-γ coactivator-1α. These effects were not systematically associated with an increase in serum triiodothyronine concentrations that were observed only in chickens exposed to both cold incubation and later acclimation at 5 d with cold rearing. Our results suggest that these conditions of cyclically cold incubation resulted in the long-term in changes in antioxidant pathways and energy metabolism, which could enhance the health of chickens reared under cold conditions. © Poultry Science Association Inc.

  6. Who is more vulnerable to death from extremely cold temperatures? A case-only approach in Hong Kong with a temperate climate

    NASA Astrophysics Data System (ADS)

    Qiu, Hong; Tian, Linwei; Ho, Kin-fai; Yu, Ignatius T. S.; Thach, Thuan-Quoc; Wong, Chit-Ming

    2016-05-01

    The short-term effects of ambient cold temperature on mortality have been well documented in the literature worldwide. However, less is known about which subpopulations are more vulnerable to death related to extreme cold. We aimed to examine the personal characteristics and underlying causes of death that modified the association between extreme cold and mortality in a case-only approach. Individual information of 197,680 deaths of natural causes, daily temperature, and air pollution concentrations in cool season (November-April) during 2002-2011 in Hong Kong were collected. Extreme cold was defined as those days with preceding week with a daily maximum temperature at or less than the 1st percentile of its distribution. Logistic regression models were used to estimate the effects of modification, further controlling for age, seasonal pattern, and air pollution. Sensitivity analyses were conducted by using the 5th percentile as cutoff point to define the extreme cold. Subjects with age of 85 and older were more vulnerable to extreme cold, with an odds ratio (OR) of 1.33 (95 % confidence interval (CI), 1.22-1.45). The greater risk of extreme cold-related mortality was observed for total cardiorespiratory diseases and several specific causes including hypertensive diseases, stroke, congestive heart failure, chronic obstructive pulmonary disease (COPD), and pneumonia. Hypertensive diseases exhibited the greatest vulnerability to extreme cold exposure, with an OR of 1.37 (95 % CI, 1.13-1.65). Sensitivity analyses showed the robustness of these effect modifications. This evidence on which subpopulations are vulnerable to the adverse effects of extreme cold is important to inform public health measures to minimize those effects.

  7. Heat and cold acclimation in helium-cold hypothermia in the hamster.

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1972-01-01

    A study was made of the effects of acclimation of hamsters to high (34-35 C) and low (4-5 C) temperatures for periods up to 6 weeks on the induction of hypothermia in hamsters. Hypothermia was achieved by exposing hamsters to a helox mixture of 80% helium and 20% oxygen at 0 C. Hypothermic induction was most rapid (2-3 hr) in heat-acclimated hamsters and slowest (6-12 hr) in cold-acclimated hamsters. The induction period was intermediate (5-8 hr) in room temperature nonacclimated animals (controls). Survival time in hypothermia was relatable to previous temperature acclimations. The hypothesis that thermogenesis in cold-acclimated hamsters would accentuate resistance to induction of hypothermia was substantiated.

  8. Cold episodes in the Peruvian Central Andes: Composites, Types, and their Impacts over South America (1958-2014)

    NASA Astrophysics Data System (ADS)

    Sulca, J. C.; Vuille, M. F.; Roundy, P. E.; Trasmonte, G.; Silva, Y.; Takahashi, K.

    2015-12-01

    The Mantaro basin (MB) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during austral summer (January-March), that strongly damage crops. However, little is known about the causes and impacts of such cold episodes. The main goal of this study is thus to characterize cold episodes in the MB and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MB daily minimum temperature (Tmin) for the period 1958-2014 from Huayao station, located within the MB was used. A cold episode is defined when daily minimum temperature drops below its 10-percentile for at least one day. Additionally, to study the sensitivity between physical mechanisms associated with cold episodes and temperature, cold episodes are classified in three groups: Weak cold episodes (7.5 ≤ Tmin ≤ 10 percentile), strong cold episodes (Tmin ≤ 2.5 percentile), but excluding the 9 coldest events (Tmin ≤ 0 ͦ C), henceforth referred to as extraordinary cold episodes. Several gridded reanalysis were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events. Weak and strong cold episodes in the MB are mainly associated with a weakening of the Bolivian High-Nordeste Low system by tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the development of cloud cover (e.g., positive OLR anomalies over MB). The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below 10-percentile. Simultaneously, northeastern Brazil (NEB) registers negative OLR anomalies, strong convection and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of its climatologic position. By contrast, extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. On interannual timescales, El Niño may limit the occurrence of all types of cold episodes in the MB through enhanced tropical tropospheric background warming.

  9. Monitoring temperatures in the vaccine cold chain in Bolivia.

    PubMed

    Nelson, Carib; Froes, Paulo; Dyck, Anne Mie Van; Chavarría, Jeaneth; Boda, Enrique; Coca, Alberto; Crespo, Gladys; Lima, Heinz

    2007-01-05

    This study monitored vaccine cold chain temperatures during routine DTP-HB-Hib vaccine shipments from central stores to 11 communities in 3 provinces of Bolivia. In all 11 monitored shipments, vaccines were exposed to freezing temperatures at one or more points. In each of the shipments, temperatures below 0 degrees C were recorded for 2-50% of the monitoring period. Freezing occurred at almost every level of the cold chain distribution system, especially during district and health center storage and during transport to the province and district levels. Seven of the 11 shipments were exposed to temperatures above 8 degrees C, although none were exposed to excessive heat longer than 1.3% of the total monitoring period.

  10. Potential vorticity regimes over East Asia during winter

    NASA Astrophysics Data System (ADS)

    Huang, Wenyu; Chen, Ruyan; Wang, Bin; Wright, Jonathon S.; Yang, Zifan; Ma, Wenqian

    2017-02-01

    Nine potential vorticity (PV) regimes over East Asia are identified by applying a Self-Organizing Map and Hierarchical Ascendant Classification regime analysis to the daily PV reanalysis fields on the 300 K isentropic surface for December-March 1948-2014. According to the surface temperature anomalies over East Asia, these nine regimes are further classified into three classes, i.e., cold class (three regimes), warm class (four regimes), and neutral class (two regimes). The PV-based East Asian winter monsoon index (EAWMI) is used to study the relationship between PV distributions and the temperature anomalies. The magnitude of cold (warm) anomalies over the land areas of East Asia increases (decreases) quasi-linearly with the EAWMI. Regression analysis reveals that cold temperature anomalies preferentially occur when the EAWMI exceeds a threshold at ˜0.2 PVU (where 1 PVU ≡ 10-6 m2 K kg-1 s-1). PV inversion uncovers the mechanisms behind the relationships between the PV regimes and surface temperature anomalies and reveals that cold (warm) PV regimes are associated with significant warming (cooling) in the upper troposphere and lower stratosphere. On average, cold regimes have longer durations than warm regimes. Interclass transition probabilities are much higher for paths from warm/neutral regimes to cold regimes than for paths from cold regimes to warm/neutral regimes. Besides, intraclass transitions are rare within the warm or neutral regimes. The PV regime analysis provides insight into the causes of severe cold spells over East Asia, with blocking circulation patterns identified as the primary factor in initiating and maintaining these cold spells.

  11. Low-temperature tolerance and cold hardening of cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 300 m altitude in southern Wyoming, were quite cold tolerant. Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivitymore » accounted for the approx. = 600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species. A decrease from 50/sup 0//40/sup 0/ to 10/sup 0//0/sup 0/ lowered by 4/sup 0/ the temperature at which the fraction of the chlorenchyma cells taking up stain was reduced 50% for both D. rhodacantha and T. candicans, with a half-time for the shift of approx. = 3 d. The tolerance of subzero temperatures and the ability to cold harden allow cacti to range into regions with considerable wintertime freezing.« less

  12. Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures.

    PubMed

    Paget, Caroline Mary; Schwartz, Jean-Marc; Delneri, Daniela

    2014-11-01

    Temperature is one of the leading factors that drive adaptation of organisms and ecosystems. Remarkably, many closely related species share the same habitat because of their different temporal or micro-spatial thermal adaptation. In this study, we seek to find the underlying molecular mechanisms of the cold-tolerant phenotype of closely related yeast species adapted to grow at different temperatures, namely S. kudriavzevii CA111 (cryo-tolerant) and S. cerevisiae 96.2 (thermo-tolerant). Using two different systems approaches, i. thermodynamic-based analysis of a genome-scale metabolic model of S. cerevisiae and ii. large-scale competition experiment of the yeast heterozygote mutant collection, genes and pathways important for the growth at low temperature were identified. In particular, defects in lipid metabolism, oxidoreductase and vitamin pathways affected yeast fitness at cold. Combining the data from both studies, a list of candidate genes was generated and mutants for two predicted cold-favouring genes, GUT2 and ADH3, were created in two natural isolates. Compared with the parental strains, these mutants showed lower fitness at cold temperatures, with S. kudriavzevii displaying the strongest defect. Strikingly, in S. kudriavzevii, these mutations also significantly improve the growth at warm temperatures. In addition, overexpression of ADH3 in S. cerevisiae increased its fitness at cold. These results suggest that temperature-induced redox imbalances could be compensated by increased glycerol accumulation or production of cytosolic acetaldehyde through the deletion of GUT2 or ADH3, respectively. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  13. FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in Arabidopsis thaliana1[OPEN

    PubMed Central

    Dyson, Beth C.; Miller, Matthew A.E.; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G.

    2016-01-01

    Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing. PMID:27440755

  14. Towards a wearable sensor system for continuous occupational cold stress assessment

    PubMed Central

    AUSTAD, Hanne; WIGGEN, Øystein; FÆREVIK, Hilde; SEEBERG, Trine M.

    2018-01-01

    This study investigated the usefulness of continuous sensor data for improving occupational cold stress assessment. Eleven volunteer male subjects completed a 90–120-min protocol in cold environments, consisting of rest, moderate and hard work. Biomedical data were measured using a smart jacket with integrated temperature, humidity and activity sensors, in addition to a custom-made sensor belt worn around the chest. Other relevant sensor data were measured using commercially available sensors. The study aimed to improve decision support for workers in cold climates, by taking advantage of the information provided by data from the rapidly growing market of wearable sensors. Important findings were that the subjective thermal sensation did not correspond to the measured absolute skin temperature and that large differences were observed in both metabolic energy production and skin temperatures under identical exposure conditions. Temperature, humidity, activity and heart rate were found to be relevant parameters for cold stress assessment, and the locations of the sensors in the prototype jacket were adequate. The study reveals the need for cold stress assessment and indicates that a generalised approached is not sufficient to assess the stress on an individual level. PMID:29353859

  15. Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Chao, Tony; Porter, Craig; Annamalai, Palam; Yfanti, Christina; Labbe, Sebastien M.; Hurren, Nicholas M.; Malagaris, Ioannis; Cesani, Fernardo; Sidossis, Labros S.

    2016-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT−) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT− group only (−0.34°C, 95% CI: −0.6 to −0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT− subjects (BAT+ vs. BAT−, 0.43°C, 95% CI: 0.20–0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT− group, BAT+ subjects tolerated a lower ambient temperature (BAT−: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114). PMID:27148068

  16. Risk of hospitalization for fire-related burns during extreme cold weather.

    PubMed

    Ayoub, Aimina; Kosatsky, Tom; Smargiassi, Audrey; Bilodeau-Bertrand, Marianne; Auger, Nathalie

    2017-10-01

    Environmental factors are important predictors of fires, but no study has examined the association between outdoor temperature and fire-related burn injuries. We sought to investigate the relationship between extremely cold outdoor temperatures and the risk of hospitalization for fire-related burns. We carried out a time-stratified case-crossover study of 2470 patients hospitalized for fire-related burn injuries during cold months between 1989 and 2014 in Quebec, Canada. The main exposure was the minimum outdoor temperature on the day of and the day before the burn. We computed odds ratios (OR) and 95% confidence intervals (CI) to evaluate the relationship between minimum temperature and fire-related burns, and assessed how associations varied across sex and age. Exposure to extreme cold temperature was associated with a significantly higher risk of hospitalization for fire-related burns. Compared with 0°C, exposure to a minimum temperature of -30°C was associated with an OR of 1.51 (95% CI 1.22-1.87) for hospitalization for fire-related burns. The associations were somewhat stronger for women, youth, and the elderly. Compared with 0°C, a minimum temperature of -30°C was associated with an OR for fire-related burn hospitalization of 1.65 for women (95% CI 1.13-2.40), 1.60 for age < 25 years (95% CI 1.02-2.52), and 1.73 for age ≥ 65 years (95% CI 1.08-2.77). Extremely cold outdoor temperature is a risk factor for fire-related burns. Measures to prevent fires should be implemented prior to the winter season, and enhanced during extreme cold. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. [Influence of cold spot temperature on 253.7 nm resonance spectra line of electrodeless discharge lamps].

    PubMed

    Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan

    2012-01-01

    As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.

  18. A New Approach to Defining Human Touch Temperature Standards

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene; Stroud, Kenneth

    2010-01-01

    Defining touch temperature limits for skin contact with both hot and cold objects is important to prevent pain and skin damage, which may affect task performance or become a safety concern. Pain and skin damage depend on the skin temperature during contact, which depends on the contact thermal conductance, the object's initial temperature, and its material properties. However, previous spacecraft standards have incorrectly defined touch temperature limits in terms of a single object temperature value for all materials, or have provided limited material-specific values which do not cover the gamut of likely designs. A new approach has been developed for updated NASA standards, which defines touch temperature limits in terms of skin temperature at pain onset for bare skin contact with hot and cold objects. The authors have developed an analytical verification method for safe hot and cold object temperatures for contact times from 1 second to infinity.

  19. A New Approach to Defining Human Touch Temperature Standards

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene; Stroud, Kenneth

    2009-01-01

    Defining touch temperature limits for skin contact with both hot and cold objects is important to prevent pain and skin damage, which may affect task performance or become a safety concern. Pain and skin damage depend on the resulting skin temperature during contact, which depends on the object s initial temperature, its material properties and its ability to transfer heat. However, previous spacecraft standards have incorrectly defined touch temperature limits in terms of a single object temperature value for all materials, or have provided limited material-specific values which do not cover the gamut of most designs. A new approach is being used in new NASA standards, which defines touch temperature limits in terms of skin temperature at pain onset for bare skin contact with hot and cold objects. The authors have developed an analytical verification method for safe hot and cold object temperatures for contact times from 1 second to infinity.

  20. Evaluation of two cold thermoregulatory models for prediction of core temperature during exercise in cold water.

    PubMed

    Castellani, John W; O'Brien, Catherine; Tikuisis, Peter; Sils, Ingrid V; Xu, Xiaojiang

    2007-12-01

    Cold thermoregulatory models (CTM) have primarily been developed to predict core temperature (T(core)) responses during sedentary immersion. Few studies have examined their efficacy to predict T(core) during exercise cold exposure. The purpose of this study was to compare observed T(core) responses during exercise in cold water with the predicted T(core) from a three-cylinder (3-CTM) and a six-cylinder (6-CTM) model, adjusted to include heat production from exercise. A matrix of two metabolic rates (0.44 and 0.88 m/s walking), two water temperatures (10 and 15 degrees C), and two immersion depths (chest and waist) were used to elicit different rates of T(core) changes. Root mean square deviation (RMSD) and nonparametric Bland-Altman tests were used to test for acceptable model predictions. Using the RMSD criterion, the 3-CTM did not fit the observed data in any trial, whereas the 6-CTM fit the data (RMSD less than standard deviation) in four of eight trials. In general, the 3-CTM predicted a rapid decline in core temperature followed by a plateau. For the 6-CTM, the predicted T(core) appeared relatively tight during the early part of immersion, but was much lower during the latter portions of immersion, accounting for the nonagreement between RMSD and SD values. The 6-CTM was rerun with no adjustment for exercise metabolism, and core temperature and heat loss predictions were tighter. In summary, this study demonstrated that both thermoregulatory models designed for sedentary cold exposure, currently, cannot be extended for use during partial immersion exercise in cold water. Algorithms need to be developed to better predict heat loss during exercise in cold water.

  1. Investigating the impact of atmospheric blocking on temperature extremes across Europe using an objective index

    NASA Astrophysics Data System (ADS)

    Brunner, Lukas; Steiner, Andrea; Sillmann, Jana

    2017-04-01

    Atmospheric blocking is a key contributor to European temperature extremes. It leads to stable, long-lasting weather patterns, which favor the development of cold and warm spells. The link between blocking and such temperature extremes differs significantly across Europe. In northern Europe a majority of warm spells are connected to blocking, while cold spells are suppressed during blocked conditions. In southern Europe the opposite picture arises with most cold spells occurring during blocking and warm spells suppressed. Building on earlier work by Brunner et al. (2017) this study aims at a better understanding of the connection between blocking and temperature extremes in Europe. We investigate cold and warm spells with and without blocking in observations from the European daily high-resolution gridded dataset (E-OBS) from 1979 to 2015. We use an objective extreme index (Russo et al. 2015) to identify and compare cold and warm spells across Europe. Our work is lead by the main question: Are cold/warm spells coinciding with blocking different from cold/warm spells during unblocked conditions in regard to duration, extend, or amplitude? Here we present our research question and the study setup, and show first results of our analysis on European temperature extremes. Brunner, L., G. Hegerl, and A. Steiner (2017): Connecting Atmospheric Blocking to European Temperature Extremes in Spring. J. Climate, 30, 585-594, doi: 10.1175/JCLI-D-16-0518.1. Russo, S., J. Sillmann, and E. M. Fischer (2015): Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10.12, S. 124003. doi: 10.1088/1748-9326/10/12/124003.

  2. Acclimation to cold and warm temperatures is associated with differential expression of male carp blood proteins involved in acute phase and stress responses, and lipid metabolism.

    PubMed

    Dietrich, Mariola A; Hliwa, Piotr; Adamek, Mikołaj; Steinhagen, Dieter; Karol, Halina; Ciereszko, Andrzej

    2018-05-01

    The environmental temperature affects plasma biochemical indicators, antioxidant status and hematological and immunological parameters in fish. So far, only single blood proteins have been identified in response to temperature changes. The aim of this study was to compare the proteome of carp blood plasma from males acclimated to warm (30 °C) and cold (10 °C) temperatures by two-dimensional differential gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry. A total of 47 spots were found to be differentially regulated by temperature (>1.2-fold change, p < 0.05): 25 protein spots were more abundant in warm-acclimated males and 22 were enriched in cold-acclimated males. The majority of differentially regulated proteins were associated with acute phase response signalling involved in: i) activation of the complement system (complement C3-H1), ii) neutralization of proteolytic enzymes (inter-alpha inhibitor H3, fetuin, serpinA1, antithrombin, alpha2-macroglobulin), iii) scavenging of free hemoglobin and radicals (haptoglobin, Wap65 kDa), iv) clot-formation (fibrinogen beta and alpha chain, T-kininogen) and v) the host's immune response modulation (ApoA1 and ApoA2). However, quite different sets of these proteins or proteoforms were involved in response to cold and warm temperatures. In addition, cold acclimation seems to be related to the proteins involved in lipid metabolism (apolipoproteins A and 14 kDa) and stress response (corticosteroid binding globulin). We discovered a strongly regulated protein Cap31 upon cold acclimation, which can serve as a potential blood biomarker of cold response in carp. These studies significantly extend our knowledge concerning mechanisms underlying thermal adaptation in poikilotherms. Copyright © 2018. Published by Elsevier Ltd.

  3. Influence of Xylella fastidiosa cold shock proteins on pathogenesis in grapevine.

    USDA-ARS?s Scientific Manuscript database

    Cold shock proteins (CSPs), a family of nucleic acid binding proteins are an essential part of microbial adaptation to temperature changes. Bacterial CSPs are often expressed in a temperature-dependent manner, and act as chaperones, facilitating translation at low temperature by stabilizing mRNA. In...

  4. 40 CFR 86.1432 - Vehicle preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transient test procedure—(1) CST performed as a stand-alone procedure. For the first CST compliance pathway... cold temperature compliance pathway, the temperature of the fuel prior to its delivery to the fuel tank... operation, or any of the succeeding steps in the CST sequence. (ii) For the cold temperature pathway only...

  5. 40 CFR 86.1432 - Vehicle preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transient test procedure—(1) CST performed as a stand-alone procedure. For the first CST compliance pathway... cold temperature compliance pathway, the temperature of the fuel prior to its delivery to the fuel tank... operation, or any of the succeeding steps in the CST sequence. (ii) For the cold temperature pathway only...

  6. Mortality risks during extreme temperature events (ETEs) using a distributed lag non-linear model

    NASA Astrophysics Data System (ADS)

    Allen, Michael J.; Sheridan, Scott C.

    2018-01-01

    This study investigates the relationship between all-cause mortality and extreme temperature events (ETEs) from 1975 to 2004. For 50 U.S. locations, these heat and cold events were defined based on location-specific thresholds of daily mean apparent temperature. Heat days were defined by a 3-day mean apparent temperature greater than the 95th percentile while extreme heat days were greater than the 97.5th percentile. Similarly, calculations for cold and extreme cold days relied upon the 5th and 2.5th percentiles. A distributed lag non-linear model assessed the relationship between mortality and ETEs for a cumulative 14-day period following exposure. Subsets for season and duration effect denote the differences between early- and late-season as well as short and long ETEs. While longer-lasting heat days resulted in elevated mortality, early season events also impacted mortality outcomes. Over the course of the summer season, heat-related risk decreased, though prolonged heat days still had a greater influence on mortality. Unlike heat, cold-related risk was greatest in more southerly locations. Risk was highest for early season cold events and decreased over the course of the winter season. Statistically, short episodes of cold showed the highest relative risk, suggesting unsettled weather conditions may have some relationship to cold-related mortality. For both heat and cold, results indicate higher risk to the more extreme thresholds. Risk values provide further insight into the role of adaptation, geographical variability, and acclimatization with respect to ETEs.

  7. Relationships between skin temperature and temporal summation of heat and cold pain.

    PubMed

    Mauderli, Andre P; Vierck, Charles J; Cannon, Richard L; Rodrigues, Anthony; Shen, Chiayi

    2003-07-01

    Temporal summation of heat pain during repetitive stimulation is dependent on C nociceptor activation of central N-methyl-d-aspartate (NMDA) receptor mechanisms. Moderate temporal summation is produced by sequential triangular ramps of stimulation that control skin temperature between heat pulses but do not elicit distinct first and second pain sensations. Dramatic summation of second pain is produced by repeated contact of the skin with a preheated thermode, but skin temperature between taps is not controlled by this procedure. Therefore relationships between recordings of skin temperature and psychophysical ratings of heat pain were evaluated during series of repeated skin contacts. Surface and subcutaneous recordings of skin temperatures revealed efficient thermoregulatory compensation for heat stimulation at interstimulus intervals (ISIs) ranging from 2 to 8 s. Temporal summation of heat pain was strongly influenced by the ISIs and cannot be explained by small increases in skin temperature between taps or by heat storage throughout a stimulus series. Repetitive brief contact with a precooled thermode was utilized to evaluate whether temporal summation of cold pain occurs, and if so, whether it is influenced by skin temperature. Surface and subcutaneous recordings of skin temperature revealed a sluggish thermoregulatory compensation for repetitive cold stimulation. In contrast to heat stimulation, skin temperature did not recover between cold stimuli throughout ISIs of 3-8 s. Psychophysically, repetitive cold stimulation produced an aching pain sensation that progressed gradually and radiated beyond the site of stimulation. The magnitude of aching pain was well related to skin temperature and thus appeared to be established primarily by peripheral factors.

  8. Cold Tolerance of the Male Gametophyte during Germination and Tube Growth Depends on the Flowering Time

    PubMed Central

    Wagner, Johanna; Gastl, Evelyn; Kogler, Martin; Scheiber, Michaela

    2016-01-01

    In temperate climates, most plants flower during the warmer season of the year to avoid negative effects of low temperatures on reproduction. Nevertheless, few species bloom in midwinter and early spring despite severe and frequent frosts at that time. This raises the question of adaption of sensible progamic processes such as pollen germination and pollen tube growth to low temperatures. The performance of the male gametophyte of 12 herbaceous lowland species flowering in different seasons was examined in vitro at different test temperatures using an easy to handle testing system. Additionally, the capacity to recover after the exposure to cold was checked. We found a clear relationship between cold tolerance of the activated male gametophyte and the flowering time. In most summer-flowering species, pollen germination stopped between 1 and 5 °C, whereas pollen of winter and early spring flowering species germinated even at temperatures below zero. Furthermore, germinating pollen was exceptionally frost tolerant in cold adapted plants, but suffered irreversible damage already from mild sub-zero temperatures in summer-flowering species. In conclusion, male gametophytes show a high adaptation potential to cold which might exceed that of female tissues. For an overall assessment of temperature limits for sexual reproduction it is therefore important to consider female functions as well. PMID:28036058

  9. Gene expression analysis to understand cold tolerance in citrus

    USDA-ARS?s Scientific Manuscript database

    Citrus cultivars show a wide range of tolerance to cold temperatures. Lemons and limes are known to be sensitive to cold while certain mandarins and trifoliate oranges can endure severe winters. To understand the mechanism of cold tolerance in citrus, we selected three known cold-sensitive and three...

  10. Thermal games in crayfish depend on establishment of social hierarchies.

    PubMed

    Tattersall, Glenn J; Luebbert, Joshua P; LePine, Olivia K; Ormerod, Kiel G; Mercier, A Joffre

    2012-06-01

    An unequal resource distribution is commonly seen in dominance hierarchies, in which the individual with the higher status is more successful in obtaining the resource. One possible resource is preferred temperature. When situations allow, ectotherms regulate their body temperature by behaviourally selecting different environmental conditions, achieving, when possible, a preferred temperature. Using a shuttlebox, the preferred temperature for Procambarus clarkii was determined to be 23.9°C with upper and lower voluntary escape temperatures of 25.9 and 21.8°C, respectively. If this preferred temperature zone (21.8-25.9°C) was valued as a resource, given the choice between a preferred temperature and a non-preferred temperature, crayfish should compete over the preferred temperature, with the dominant individual of dyadic pairs achieving the preferred temperature more often than the subordinate. Using a dual-choice experimental tank, competition over a binary temperature choice between rank-established paired crayfish was determined under both warm and cold challenge conditions (warm vs preferred temperature and cold vs preferred temperature, respectively). In naive pairings, similar levels of competition over the preferred temperature occurred in both warm and cold challenge trials, as predicted by game theory. In established pairings, however, dominant crayfish gained significantly greater access to preferred temperature in both warm and cold challenge conditions. These results demonstrate that crayfish engage in a cost-benefit assessment during their initial agonistic contests over temperature, but as hierarchies mature, these thermal games are decided by the dominant animal gaining primary access to the temperature resource.

  11. The influence of cold on energy expenditure at rest and during exercise in person in the North.

    PubMed

    Grishin, O V; Ustuzaninova, N V

    2007-01-01

    In the majority of research on human adaptation in the North signs of hypoxia were found. In physiology studies of animals it is established that adaptive changes to cold and hypoxia have much in common, for example, the decrease of spent energy (hypometabolism). This phenomenon has been studied much less in humans than in animals. The first study was that of A. Hemingway and L. Birzis which showed that under the influence of air temperature of -3 degrees C on natives of Kalahari deserts the average body temperature and level of metabolism decrease. The reduction of lung ventilation and decrease of heat loss in humans was interpreted as the result of cold. However, it is obvious that ventilation decrease in humans in cold air leads to reduction of oxygen consumption, i.e. to hypoxia. It is possible to assume that adaptation of Northerners is closely connected with cold and hypoxia. At hypoxia and under cold conditions the decrease of energy expenditure is the natural phenomenon. Y. Gauiter and M. Bonora, S. Wood consider that the fall of body temperature observable at hypoxia is a consequence of the decrease in oxygen consumption and reduction of energy expenditure. Besides, the decrease in oxygen consumption (Vo2) always precedes the fall of body temperature. In the work of C. Pedraz, J. Mortola it is shown that the external warming at hypoxia in newborn cats and dogs during restoration of body temperature up to the reference values is not accompanied by authentic change of metabolism. It remains lowered as under the previous conditions of hypoxia (before warming). It specifies that the fall in body temperature at hypoxia is a consequence instead of the reason of Vo2 fall. This is an important question for the human's adaptation--the influence of cold and hypoxia on spent energy. The paper presents the results of research into the effects of cold on resting and exercise energy expenditure among Northerners of the Russian North.

  12. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures.

    PubMed

    Guo, Yan; Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang

    2002-05-28

    Low temperature regulates gene expression in bacteria, yeast, and animals as well as in plants. However, the signal transduction cascades mediating the low temperature responses are not well understood in any organism. To identify components in low temperature signaling genetically, we isolated Arabidopsis thaliana mutants in which cold-responsive genes are no longer induced by low temperatures. One of these mutations, los1-1, specifically blocks low temperature-induced transcription of cold-responsive genes. Surprisingly, cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element binding factors (CBF/DREB1s), is enhanced by the los1-1 mutation. The los1-1 mutation also reduces the capacity of plants to develop freezing tolerance but does not impair the vernalization response. Genetic analysis indicated that los1-1 is a recessive mutation in a single nuclear gene. The LOS1 gene encodes a translation elongation factor 2-like protein. Protein labeling studies show that new protein synthesis is blocked in los1-1 mutant plants specifically in the cold. These results reveal a critical role of new protein synthesis in the proper transduction of low temperature signals. Our results also suggest that cold-induced transcription of CBF/DREB1s is feedback inhibited by their gene products or by products of their downstream target genes.

  13. Characterization of photosynthetic ferredoxin from the Antarctic alga Chlamydomonas sp. UWO241 reveals novel features of cold adaptation.

    PubMed

    Cvetkovska, Marina; Szyszka-Mroz, Beth; Possmayer, Marc; Pittock, Paula; Lajoie, Gilles; Smith, David R; Hüner, Norman P A

    2018-05-08

    The objective of this work was to characterize photosynthetic ferredoxin from the Antarctic green alga Chlamydomonas sp. UWO241, a key enzyme involved in distributing photosynthetic reducing power. We hypothesize that ferredoxin possesses characteristics typical of cold-adapted enzymes, namely increased structural flexibility and high activity at low temperatures, accompanied by low stability at moderate temperatures. To address this objective, we purified ferredoxin from UWO241 and characterized the temperature dependence of its enzymatic activity and protein conformation. The UWO241 ferredoxin protein, RNA, and DNA sequences were compared with homologous sequences from related organisms. We provide evidence for the duplication of the main ferredoxin gene in the UWO241 nuclear genome and the presence of two highly similar proteins. Ferredoxin from UWO241 has both high activity at low temperatures and high stability at moderate temperatures, representing a novel class of cold-adapted enzymes. Our study reveals novel insights into how photosynthesis functions in the cold. The presence of two distinct ferredoxin proteins in UWO241 could provide an adaptive advantage for survival at cold temperatures. The primary amino acid sequence of ferredoxin is highly conserved among photosynthetic species, and we suggest that subtle differences in sequence can lead to significant changes in activity at low temperatures. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. Differences between the most used equations in BAT-human studies to estimate parameters of skin temperature in young lean men.

    PubMed

    Martinez-Tellez, Borja; Sanchez-Delgado, Guillermo; Acosta, Francisco M; Alcantara, Juan M A; Boon, Mariëtte R; Rensen, Patrick C N; Ruiz, Jonatan R

    2017-09-05

    Cold exposure is necessary to activate human brown adipose tissue (BAT), resulting in heat production. Skin temperature is an indirect measure to monitor the body's reaction to cold. The aim of this research was to study whether the most used equations to estimate parameters of skin temperature in BAT-human studies measure the same values of temperature in young lean men (n = 11: 23.4 ± 0.5 years, fat mass: 19.9 ± 1.2%). Skin temperature was measured with 26 ibuttons at 1-minute intervals in warm and cold room conditions. We used 12 equations to estimate parameters of mean, proximal, and distal skin temperature as well as skin temperature gradients. Data were analysed with Temperatus software. Significant differences were found across equations to measure the same parameters of skin temperature in warm and cold room conditions, hampering comparison across studies. Based on these findings, we suggest to use a set of 14 ibuttons at anatomical positions reported by ISO STANDARD 9886:2004 plus five ibuttons placed on the right supraclavicular fossa, right middle clavicular bone, right middle upper forearm, right top of forefinger, and right upper chest.

  15. Impact of temperature on mortality in Hubei, China: a multi-county time series analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yunquan; Yu, Chuanhua; Bao, Junzhe; Li, Xudong

    2017-03-01

    We examined the impact of extreme temperatures on mortality in 12 counties across Hubei Province, central China, during 2009-2012. Quasi-Poisson generalized linear regression combined with distributed lag non-linear model was first applied to estimate county-specific relationship between temperature and mortality. A multivariable meta-analysis was then used to pool the estimates of county-specific mortality effects of extreme cold temperature (1st percentile) and hot temperature (99th percentile). An inverse J-shaped relationship was observed between temperature and mortality at the provincial level. Heat effect occurred immediately and persisted for 2-3 days, whereas cold effect was 1-2 days delayed and much longer lasting. Higher mortality risks were observed among females, the elderly aged over 75 years, persons dying outside the hospital and those with high education attainment, especially for cold effects. Our data revealed some slight differences in heat- and cold- related mortality effects on urban and rural residents. These findings may have important implications for developing locally-based preventive and intervention strategies to reduce temperature-related mortality, especially for those susceptible subpopulations. Also, urbanization should be considered as a potential influence factor when evaluating temperature-mortality association in future researches.

  16. Projections of Seasonal Patterns in Temperature- Related Deaths for Manhattan, New York

    NASA Technical Reports Server (NTRS)

    Li, Tiantian; Horton, Radley M.; Kinney, Patrick L.

    2013-01-01

    Global average temperatures have been rising for the past half-century, and the warming trend has accelerated in recent decades. Further warming is expected over the next few decades, with significant regional variations. These warming trends will probably result in more frequent, intense and persistent periods of hot temperatures in summer, and generally higher temperatures in winter. Daily death counts in cities increase markedly when temperatures reach levels that are very high relative to what is normal in a given location. Relatively cold temperatures also seem to carry risk. Rising temperatures may result in more heat-related mortality but may also reduce cold-related mortality, and the net impact on annual mortality remains uncertain. Here we use 16 downscaled global climate models and two emissions scenarios to estimate present and future seasonal patterns in temperature-related mortality in Manhattan, New York. All 32 projections yielded warm-season increases and cold-season decreases in temperature-related mortality, with positive net annual temperature-related deaths in all cases. Monthly analyses showed that the largest percentage increases may occur in May and September. These results suggest that, over a range of models and scenarios of future greenhouse gas emissions, increases in heat-related mortality could outweigh reductions in cold-related mortality, with shifting seasonal patterns.

  17. Temperature and Nutrients Interact to Control Nitrogen Fixation in a Subalpine Stream: An Experimental Examination

    NASA Astrophysics Data System (ADS)

    Marcarelli, A. M.

    2005-05-01

    To test the importance of factors controlling N-fixation in subalpine streams, I conducted a stream-side mesocosm experiment with epilithic communities and nutrient diffusing substrates (NDS) to test how temperature and nutrients interact to influence algal communities. Within two days, warm temperature (18°C) stimulated N-fixation by Calothrix in the epilithic community 2X above cold temperature (13°C), indicating a strong physiological response. Community responses measured on NDS indicated that cold-water diatoms dominated by day 45 in the cold treatment, while diatoms containing N-fixing endosymbionts dominated only in warm treatments with added phosphorus. There was a significant interaction between nutrient supply and temperature on N-fixation rates in the experiment. On nutrient controls, warm temperature boosted fixation 2X above cold temperature, but when P was added, temperature increased fixation 20X. This study indicates that N-fixation is stimulated both by temperature and nutrients in this stream, but the magnitude of response to phosphorus was much greater than to temperature. Furthermore, our results support the hypothesis that biological characteristics in streams, including community structure and biogeochemical processes, can be altered in complex ways by disturbances like grazing and logging that alter multiple controlling factors simultaneously.

  18. Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim

    2018-05-01

    NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.

  19. Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Hazwan bin; Katanoda, Hiroshi; Morita, Hiromitsu

    2015-02-01

    In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube (VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.

  20. The cold effect of ambient temperature on ischemic and hemorrhagic stroke hospital admissions: A large database study in Beijing, China between years 2013 and 2014-Utilizing a distributed lag non-linear analysis.

    PubMed

    Luo, Yanxia; Li, Haibin; Huang, Fangfang; Van Halm-Lutterodt, Nicholas; Qin Xu; Wang, Anxin; Guo, Jin; Tao, Lixin; Li, Xia; Liu, Mengyang; Zheng, Deqiang; Chen, Sipeng; Zhang, Feng; Yang, Xinghua; Tan, Peng; Wang, Wei; Xie, Xueqin; Guo, Xiuhua

    2018-01-01

    The effects of ambient temperature on stroke death in China have been well addressed. However, few studies are focused on the attributable burden for the incident of different types of stroke due to ambient temperature, especially in Beijing, China. We purpose to assess the influence of ambient temperature on hospital stroke admissions in Beijing, China. Data on daily temperature, air pollution, and relative humidity measurements and stroke admissions in Beijing were obtained between 2013 and 2014. Distributed lag non-linear model was employed to determine the association between daily ambient temperature and stroke admissions. Relative risk (RR) with 95% confidence interval (CI) and Attribution fraction (AF) with 95% CI were calculated based on stroke subtype, gender and age group. A total number of 147, 624 stroke admitted cases (including hemorrhagic and ischemic types of stroke) were documented. A non-linear acute effect of cold temperature on ischemic and hemorrhagic stroke hospital admissions was evaluated. Compared with the 25th percentile of temperature (1.2 °C), the cumulative RR of extreme cold temperature (first percentile of temperature, -9.6 °C) was 1.51 (95% CI: 1.08-2.10) over lag 0-14 days for ischemic type and 1.28 (95% CI: 1.03-1.59) for hemorrhagic stroke over lag 0-3 days. Overall, 1.57% (95% CI: 0.06%-2.88%) of ischemic stroke and 1.90% (95% CI: 0.40%-3.41%) of hemorrhagic stroke was attributed to the extreme cold temperature over lag 0-7 days and lag 0-3 days, respectively. The cold temperature's impact on stroke admissions was found to be more obvious in male gender and the youth compared to female gender and the elderly. Exposure to extreme cold temperature is associated with increasing both ischemic and hemorrhagic stroke admissions in Beijing, China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Intramuscular temperature modulates glutamate-evoked masseter muscle pain intensity in humans.

    PubMed

    Sato, Hitoshi; Castrillon, Eduardo E; Cairns, Brian E; Bendixen, Karina H; Wang, Kelun; Nakagawa, Taneaki; Wajima, Koichi; Svensson, Peter

    2015-01-01

    To determine whether glutamate-evoked jaw muscle pain is altered by the temperature of the solution injected. Sixteen healthy volunteers participated and received injections of hot (48°C), neutral (36°C), or cold (3°C) solutions (0.5 mL) of glutamate or isotonic saline into the masseter muscle. Pain intensity was assessed with an electronic visual analog scale (eVAS). Numeric rating scale (NRS) scores of unpleasantness and temperature perception, pain-drawing areas, and pressure pain thresholds (PPTs) were also measured. Participants filled out the McGill Pain Questionnaire (MPQ). Two-way or three-way repeated measures ANOVA were used for data analyses. Injection of hot glutamate and cold glutamate solutions significantly increased and decreased, respectively, the peak pain intensity compared with injection of neutral glutamate solution. The duration of glutamate-evoked pain was significantly longer when hot glutamate was injected than when cold glutamate was injected. No significant effect of temperature on pain intensity was observed when isotonic saline was injected. No effect of solution temperature was detected on unpleasantness, heat perception, cold perception, area of pain drawings, or PPTs. There was a significantly greater use of the "numb" term in the MPQ to describe the injection of cold solutions compared to the injection of both neutral and hot solutions. Glutamate-evoked jaw muscle pain was significantly altered by the temperature of the injection solution. Although temperature perception in the jaw muscle is poor, pain intensity is increased when the muscle tissue temperature is elevated.

  2. Post-treatment with Ma-Huang-Tang ameliorates cold-warm-cycles induced rat lung injury.

    PubMed

    Xiao, Meng-Meng; Pan, Chun-Shui; Liu, Yu-Ying; Ma, Li-Qian; Yan, Li; Fan, Jing-Yu; Wang, Chuan-She; Huang, Rong; Han, Jing-Yan

    2017-03-22

    Frequent and drastic ambient temperature variation may cause respiratory diseases such as common cold and pneumonia, the mechanism for which is not fully understood, however, due to lack of appropriate animal models. Ma-Huang-Tang (MHT) is widely used in China for treatment of respiratory diseases. The present study aimed to investigate the effect of MHT on temperature alternation induced rat lung injury and explore underlying mechanisms. Male Sprague-Dawley rats were exposed to a cold environment for 1 h and then shifted to a warm environment for 30 min. This cold and warm alteration cycled 4 times. Rats were administrated with MHT (1.87 g/kg) by gavage 6 h after cold-warm-cycles. Cold-warm-cycles induced pulmonary microcirculatory disorders, lung edema and injury, decrease in the expression of tight junction proteins, increase in VE-cadherin activation, increase in the expression and activation of Caveolin-1, Src and NF-κB, and NADPH oxidase subunits p47 phox , p40 phox and p67 phox membrane translocation and inflammatory cytokines production. All alterations were significantly ameliorated by post-treatment with MHT. This study showed that rats subjected to cold-warm-cycles may be used as an animal model to investigate ambient temperature variation-induced lung injury, and suggested MHT as a potential strategy to combat lung injury induced by temperature variation.

  3. Cold Environment Exacerbates Brain Pathology and Oxidative Stress Following Traumatic Brain Injuries: Potential Therapeutic Effects of Nanowired Antioxidant Compound H-290/51.

    PubMed

    Sharma, Aruna; Muresanu, Dafin F; Lafuente, José Vicente; Sjöquist, Per-Ove; Patnaik, Ranjana; Ryan Tian, Z; Ozkizilcik, Asya; Sharma, Hari S

    2018-01-01

    The possibility that traumatic brain injury (TBI) occurring in a cold environment exacerbates brain pathology and oxidative stress was examined in our rat model. TBI was inflicted by making a longitudinal incision into the right parietal cerebral cortex (2 mm deep and 4 mm long) in cold-acclimatized rats (5 °C for 3 h daily for 5 weeks) or animals at room temperature under Equithesin anesthesia. TBI in cold-exposed rats exhibited pronounced increase in brain lucigenin (LCG), luminol (LUM), and malondialdehyde (MDA) and marked pronounced decrease in glutathione (GTH) as compared to identical TBI at room temperature. The magnitude and intensity of BBB breakdown to radioiodine and Evans blue albumin, edema formation, and neuronal injuries were also exacerbated in cold-exposed rats after injury as compared to room temperature. Nanowired delivery of H-290/51 (50 mg/kg) 6 and 8 h after injury in cold-exposed group significantly thwarted brain pathology and oxidative stress whereas normal delivery of H-290/51 was neuroprotective after TBI at room temperature only. These observations are the first to demonstrate that (i) cold aggravates the pathophysiology of TBI possibly due to an enhanced production of oxidative stress, (ii) and in such conditions, nanodelivery of antioxidant compound has superior neuroprotective effects, not reported earlier.

  4. Cold acclimation and cognitive performance: A review.

    PubMed

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Protection of Pyruvate,Pi Dikinase from Maize against Cold Lability by Compatible Solutes 1

    PubMed Central

    Krall, John P.; Edwards, Gerald E.; Andreo, Carlos S.

    1989-01-01

    Most C4 species are chilling sensitive and certain enzymes like pyruvate,Pi dikinase of the C4 pathway are also cold labile. The ability of cations and compatible solutes to protect maize (Zea mays) dikinase against cold lability was examined. The enzyme in desalted extracts at pH 8 from preilluminated leaves could be protected against cold lability (at 0°C) by the divalent cations Mn2+, Mg2+, and Ca2+. There was substantial protection by sulfate based salts but little protection by chloride based salts of potassium or ammonium (concentration 250 millimolar). The degree of protection against cold lability under limiting MgCl2 (5 millimolar) was pH sensitive (maximum protection at pH 8), but independent of ionic strength (up to 250 millimolar by addition of KCl). In catalysis Mg2+ is required and Mn2+ could not substitute as a cofactor. Several compatible solutes reduced or prevented the cold inactivation of dikinase (in desalted extracts and the partially purified enzyme), including glycerol, proline, glycinebetaine and trimethylamine-N-oxide (TMAO). TMAO and Mg2+ had an additive effect in protecting dikinase against cold inactivation. TMAO could largely substitute for the divalent cation and addition of TMAO during cold treatment prevented further inactivation. Cold inactivation was partially reversed by incubation at room temperature; with addition of TMAO reversal was complete. The temperature dependence of inactivation at pH 8 and 3 millimolar MgCl2 was evaluated by incubation at 2 to 17°C for 45 minutes, followed by assay at room temperature. At preincubation temperatures below 11°C there was a progressive inactivation which could be prevented by TMAO (450 millimolar). The results are discussed relative to possible effects of the solutes on the quaternary structure of this enzyme, which is known to dissociate at low temperatures. PMID:16666527

  6. [Development of wireless monitoring system based on Zigbee technology in blood and bacterin cold chain].

    PubMed

    Zhao, Peng; Sun, Jian-Jun; Wu, Tai-Hu

    2008-11-01

    Real-time monitoring for temperature is required in cold chain for the medical products that are sensible with temperature, such as blood and bacterin, to guarantee the quality and reduce their wastage. This wireless monitoring system in cold chain is developed with Zigbee technology. Functions such as real-time monitoring, analyzing, alarming are realized. The system boasts such characteristics as low power consumption, low cost, big capacity and high reliability, and could improve the capability of real-time monitoring and management in cold chain effectively.

  7. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients' temperatures in prehospital emergency care--an intervention study.

    PubMed

    Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger

    2015-01-01

    The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients' exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients' temperatures in the prehospital emergency care. A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, p<0.001). At arrival, finger, ear and compartment air temperature showed no statistical significant difference between groups. Mean transport time was approximately 15 minutes. The use of active heat from underneath increases the patients' thermal comfort and may prevent the negative consequences of cold stress.

  8. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  9. [Impact of daily mean temperature, cold spells, and heat waves on stroke mortality a multivariable Meta-analysis from 12 counties of Hubei province, China].

    PubMed

    Zhang, Y Q; Yu, C H; Bao, J Z

    2017-04-10

    Objective: To assess the acute effects of daily mean temperature, cold spells, and heat waves on stroke mortality in 12 counties across Hubei province, China. Methods: Data related to daily mortality from stroke and meteorology in 12 counties across Hubei province during 2009-2012, were gathered. Distributed lag nonlinear model (DLNM) was first used, to estimate the county-specific associations between daily mean temperature, cold spells, heat waves and stroke mortality. Multivariate Meta-analysis was then applied to pool the community-specific relationships between temperature and stroke mortality (exposure-response relationship) as well as both cold- and- heat-associated risks on mortality at different lag days (lag-response relationship). Results: During 2009-2012, a total population of 6.7 million was included in this study with 42 739 persons died of stroke. An average of 2.7 (from 0.5 to 6.0) stroke deaths occurred daily in each county, with annual average mean temperature as 16.6 ℃ (from 14.7 ℃ to 17.4 ℃) during the study period. An inverse J-shaped association between temperature and stroke mortality was observed at the provincial level. Pooled mortality effect of cold spells showed a 2-3-day delay and lasted about 10 days, while effect of heat waves appeared acute but attenuated within a few days. The mortality risks on cold-spell days ranged from 0.968 to 1.523 in 12 counties at lag 3-14, with pooled effect as 1.180 (95 %CI: 1.043-1.336). The pooled mortality risk (ranged from 0.675 to 2.066) on heat-wave days at lag 0-2 was 1.114 (95 %CI: 1.012-1.227). Conclusions: An inverse J-shaped association between temperature and stroke mortality was observed in Hubei province, China. Both cold spells and heat waves were associated with increased stroke mortality, while different lag patterns were observed in the mortality effects of heat waves and cold spells.

  10. Environmental temperature variation influences fitness trade-offs and tolerance in a fish-tapeworm association.

    PubMed

    Franke, Frederik; Armitage, Sophie A O; Kutzer, Megan A M; Kurtz, Joachim; Scharsack, Jörn P

    2017-06-02

    Increasing temperatures are predicted to strongly impact host-parasite interactions, but empirical tests are rare. Host species that are naturally exposed to a broad temperature spectrum offer the possibility to investigate the effects of elevated temperatures on hosts and parasites. Using three-spined sticklebacks, Gasterosteus aculeatus L., and tapeworms, Schistocephalus solidus (Müller, 1776), originating from a cold and a warm water site of a volcanic lake, we subjected sympatric and allopatric host-parasite combinations to cold and warm conditions in a fully crossed design. We predicted that warm temperatures would promote the development of the parasites, while the hosts might benefit from cooler temperatures. We further expected adaptations to the local temperature and mutual adaptations of local host-parasite pairs. Overall, S. solidus parasites grew faster at warm temperatures and stickleback hosts at cold temperatures. On a finer scale, we observed that parasites were able to exploit their hosts more efficiently at the parasite's temperature of origin. In contrast, host tolerance towards parasite infection was higher when sticklebacks were infected with parasites at the parasite's 'foreign' temperature. Cold-origin sticklebacks tended to grow faster and parasite infection induced a stronger immune response. Our results suggest that increasing environmental temperatures promote the parasite rather than the host and that host tolerance is dependent on the interaction between parasite infection and temperature. Sticklebacks might use tolerance mechanisms towards parasite infection in combination with their high plasticity towards temperature changes to cope with increasing parasite infection pressures and rising temperatures.

  11. Thermoregulatory and Immune Responses During Cold Exposure: Effects of Repeated Cold Exposure and Acute Exercise

    DTIC Science & Technology

    2000-03-01

    shivering thermogenesis and vasoconstriction) during cold exposure is unknown. Thus, a series of experiments were executed to determine if serial cold ...to cold exposure? The results of these studies suggest that 1) serial cold water blunts shivering leadmg™ower core temperatures, 2) thermoregulatory...fatigues (i.e., causes blunted shivering thermogenesis and vasoconstriction) during cold exposure is unknown. Thus, a series of experiments were

  12. Contamination of the cold water distribution system of health care facilities by Legionella pneumophila: do we know the true dimension?

    PubMed

    Arvand, M; Jungkind, K; Hack, A

    2011-04-21

    German water guidelines do not recommend routine assessment of cold water for Legionella in healthcare facilities, except if the water temperature at distal sites exceeds 25°C. This study evaluates Legionella contamination in cold and warm water supplies of healthcare facilities in Hesse, Germany, and analyses the relationship between cold water temperature and Legionella contamination. Samples were collected from four facilities, with cases of healthcare-associated Legionnaires' disease or notable contamination of their water supply. Fifty-nine samples were from central lines and 625 from distal sites, comprising 316 cold and 309 warm water samples. Legionella was isolated from central lines in two facilities and from distal sites in four facilities. 17% of all central and 32% of all distal samples were contaminated. At distal sites, cold water samples were more frequently contaminated with Legionella (40% vs 23%, p <0.001) and with higher concentrations of Legionella (≥1,000 colony-forming unit/100 ml) (16% vs 6%, p<0.001) than warm water samples. There was no clear correlation between the cold water temperature at sampling time and the contamination rate. 35% of cold water samples under 20 °C at collection were contaminated. Our data highlight the importance of assessing the cold water supply of healthcare facilities for Legionella in the context of an intensified analysis.

  13. Cold-induced mortality of invasive Burmese pythons in south Florida

    USGS Publications Warehouse

    Mazzotti, Frank J.; Cherkiss, Michael S.; Hart, Kristen M.; Snow, Ray W.; Rochford, Michael R.; Dorcas, Michael E.; Reed, Robert N.

    2011-01-01

    A recent record cold spell in southern Florida (2–11 January 2010) provided an opportunity to evaluate responses of an established population of Burmese pythons (Python molurus bivittatus) to a prolonged period of unusually cold weather. We observed behavior, characterized thermal biology, determined fate of radio-telemetered (n = 10) and non-telemetered (n = 104) Burmese pythons, and analyzed habitat and environmental conditions experienced by pythons during and after a historic cold spell. Telemetered pythons had been implanted with radio-transmitters and temperature-recording data loggers prior to the cold snap. Only one of 10 telemetered pythons survived the cold snap, whereas 59 of 99 (60%) non-telemetered pythons for which we determined fate survived. Body temperatures of eight dead telemetered pythons fluctuated regularly prior to 9 January 2010, then declined substantially during the cold period (9–11 January) and exhibited no further evidence of active thermoregulation indicating they were likely dead. Unusually cold temperatures in January 2010 were clearly associated with mortality of Burmese pythons in the Everglades. Some radio-telemetered pythons appeared to exhibit maladaptive behavior during the cold spell, including attempting to bask instead of retreating to sheltered refugia. We discuss implications of our findings for persistence and spread of introduced Burmese pythons in the United States and for maximizing their rate of removal.

  14. Improved Comfort | Efficient Windows Collaborative

    Science.gov Websites

    temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior

  15. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, Peter M.

    1987-01-01

    A method of treating cold-worked zirconium alloys to reduce large grain gth during thermal treatment at temperatures above the recrystallization temperature of the alloy comprising heating the cold-worked alloy between about 1300.degree.-1350.degree. F. for 1 to 3 hours prior to treatment above its recrystallization temperature.

  16. High Blood Glucose: What It Means and How To Treat It

    MedlinePlus

    ... your insulin exposed to very hot or cold temperatures? Has your insulin expired? Take the right dose ... strips been exposed to very hot or cold temperatures or not been kept in an airtight, dry, ...

  17. Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence

    NASA Astrophysics Data System (ADS)

    Yu, Weiwei; Mengersen, Kerrie; Wang, Xiaoyu; Ye, Xiaofang; Guo, Yuming; Pan, Xiaochuan; Tong, Shilu

    2012-07-01

    The impact of climate change on the health of vulnerable groups such as the elderly has been of increasing concern. However, to date there has been no meta-analysis of current literature relating to the effects of temperature fluctuations upon mortality amongst the elderly. We synthesised risk estimates of the overall impact of daily mean temperature on elderly mortality across different continents. A comprehensive literature search was conducted using MEDLINE and PubMed to identify papers published up to December 2010. Selection criteria including suitable temperature indicators, endpoints, study-designs and identification of threshold were used. A two-stage Bayesian hierarchical model was performed to summarise the percent increase in mortality with a 1°C temperature increase (or decrease) with 95% confidence intervals in hot (or cold) days, with lagged effects also measured. Fifteen studies met the eligibility criteria and almost 13 million elderly deaths were included in this meta-analysis. In total, there was a 2-5% increase for a 1°C increment during hot temperature intervals, and a 1-2 % increase in all-cause mortality for a 1°C decrease during cold temperature intervals. Lags of up to 9 days in exposure to cold temperature intervals were substantially associated with all-cause mortality, but no substantial lagged effects were observed for hot intervals. Thus, both hot and cold temperatures substantially increased mortality among the elderly, but the magnitude of heat-related effects seemed to be larger than that of cold effects within a global context.

  18. Development of material formula and structure property indicators for low cold-resistant characterization of Cables’ Material

    NASA Astrophysics Data System (ADS)

    Sun, W.; Cai, Y. G.; Feng, Y. M.; Li, Y. L.; Zhou, H. Y.; Zhou, Y.

    2018-01-01

    Alpine regions account for about 27.9% of total land area in China. Northeast China, Inner Mongolia, Northwest China and other regions are located in alpine regions, wherein the above regions are rich in energy. However, the low-temperature impact embrittlement temperature of traditional PVC cable materials is between -15°C and -20°C, which is far lower than actual operation requirements. Cable insulation and sheath are always damaged during cable laying in alpine regions. Therefore, it is urgent to develop low-temperature-resistant cables applicable to low-temperature environment in alpine regions, and safe and stable operation of power grids in the alpine regions can be guaranteed. In the paper, cold-resistant PVC formula systems were mainly trial-manufactured and studied. Appropriate production technologies and formulas were determined through selecting raw materials and modified materials. The low-temperature impact embrittlement temperature was adjusted below -50°C under the precondition that PVC cable materials met national standard property requirements. Cold-resistant PVC cable materials were prepared, which were characterized by excellent physical and mechanical properties, and sound extrusion process, and cold-resistant PVC cable materials can meet production requirements of low-temperature-resistant cables. Meanwhile, the prepared cold-resistant cable material was used for extruding finished product cables and trial-manufacturing sample cables. Type tests of low temperature elongation ratio, 15min withstand voltage, etc. were completed for 35kV and lower sample cables in Mohe Low-temperature Test Site. All properties were consistent with standard requirements.

  19. On the nature of low temperature internal friction peaks in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khonik, V.A.; Spivak, L.V.

    Low temperature (30 < T < 300 K) internal friction in a metallic glass Ni{sub 60}Nb{sub 40} subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs viamore » formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin.« less

  20. Program on immunization and cold chain monitoring: the status in eight health districts in Cameroon.

    PubMed

    Ateudjieu, Jérôme; Kenfack, Bruno; Nkontchou, Blaise Wakam; Demanou, Maurice

    2013-03-16

    Cold chain monitoring is a precondition to ensure immunization quality, efficacy and safety. In Cameroon, the Expanded Program on Immunization (EPI) has National Standard Operating Procedure (SOP) that describes the vaccines, the cold chain system and equipment, its use and recommended procedures to control and monitor the temperatures and the cold chain. This study was conducted to assess the status of cold chain in eight health districts in Cameroon. The study was carried out in eight health districts out of fifty with poor immunization coverage rate. Data were collected using a validated form by observation and consultation of related documents. District Health Services (DHS) and four Integrated. Health Centers (IHC) randomly selected were targeted per health district. Forty health facilities were included. Twenty eight (70.0%) had at least one functional refrigerator for EPI activities. The power supply was reported to be permanent in 7 (20.6%) out of 34. (85.0%) health facilities with access to power supply. The temperature monitoring chart was pasted on 27 (96.4%) of the cold chain equipment. On 16 (59.3%) of these charts, the temperature was recorded twice daily as recommended. Seven (25.9%) of 27 refrigerators assessed had temperature out of the recommended range of 2 to 8°C. Almost 23.30% of health centers did not received any supervision on cold chain monitoring during a vaccination campaign. This study documents failure of the cold chain maintenance and questions the efficacy and safety of vaccines administered during EPI activities in Cameroun. These findings indicate that appropriate actions are needed to ensure monitoring of EPI cold chain in the country.

  1. Intense cold and mortality in Castile-La Mancha (Spain): study of mortality trigger thresholds from 1975 to 2003

    NASA Astrophysics Data System (ADS)

    Miron, Isidro J.; Montero, Juan Carlos; Criado-Alvarez, Juan José; Linares, Cristina; Díaz, Julio

    2012-01-01

    Studies on temperature-mortality time trends especially address heat, so that any contribution on the subject of cold is necessarily of interest. This study describes the modification of the lagged effects of cold on mortality in Castile-La Mancha from 1975 to 2003, with the novelty of also approaching this aspect in terms of mortality trigger thresholds. Cross-correlation functions (CCFs) were thus established with 15 lags, after application of ARIMA models to the mortality data and minimum daily temperatures (from November to March), and the results for the periods 1975-1984, 1985-1994 and 1995-2003 were then compared. In addition, daily mortality residuals for the periods 1975-1989 and 1990-2003 were related to minimum temperatures grouped in 2°C intervals, with a cold threshold temperature being obtained in cases where such residuals increased significantly ( p < 0.05) with respect to the mean for the study period. A cold-related mortality trigger threshold of -3°C was obtained for Ciudad Real for the period 1990-2003. The significant number of lags ( p < 0.05) in the CCFs declined every 10 years in Toledo (5-2-0), Cuenca (4-2-0), Albacete (4-3-0) and Ciudad Real (3-2-1). This meant that, while the trend in cold-related mortality trigger thresholds in the region could not be ascertained, it was possible to establish a reduction in the lagged effects of cold on mortality, attributable to the improvement in socio-economic conditions over the study period. Evidence was shown of the effects of cold on mortality, a finding that renders the adoption of preventive measures advisable in any case where intense cold is forecast.

  2. Effect of cold storage on larval and adult Anastrepha ludens (Diptera: Tephritidae) viability in commercially ripe, artificially infested Persea americana 'Hass'.

    PubMed

    Aluja, M; Díaz-Fleischer, F; Arredondo, J; Valle-Mora, J; Rull, J

    2010-12-01

    Commercially ripe 'Hass' avocados, Persea americana Mill, artificially exposed to wild Anastrepha ludens (Loew) (Diptera: Tephritidae) females 24 h after harvest were placed in a cold storage facility to determine the effect of low temperature on larval survival and adult viability. Fruit were left for 3, 6, 9, and 12 d in a cold room at 5 degrees C followed by a 20-25-d period at ambient temperature to allow for larval development and pupation. Hass avocados and grapefruit, Citrus paradisi Macfadyen, maintained at ambient temperature served as controls. Overall, only 0.23% of the Hass avocados and 19.30% of the grapefruit were infested. The number of infested fruit increased with decreasing exposure time to cold. Puparia from cold-treated Hass avocados were significantly smaller than those stemming from cold-treated grapefruit. Hass avocados exposed for 12 d to 5 degrees C yielded no puparia, and those exposed for 6 and 9 d yielded 22 and two puparia, respectively, but no adults. Although Hass avocados exposed to cold temperature for 3 d yielded adults that reached sexual maturity (N = 16), females laid inviable eggs. Grapefruit exposed to cold for 12 d yielded normal-sized puparia (but no adults), whereas those exposed over 9 d yielded females able to lay viable eggs. We conclude that exposing fruit to cold storage after packing and during transport represents an effective risk-mitigating procedure in the highly improbable event that a gravid A. ludens female might lay eggs in a commercially ripe Hass avocado that had been left unprotected in a packinghouse.

  3. Program on immunization and cold chain monitoring: the status in eight health districts in Cameroon

    PubMed Central

    2013-01-01

    Background Cold chain monitoring is a precondition to ensure immunization quality, efficacy and safety. In Cameroon, the Expanded Program on Immunization (EPI) has National Standard Operating Procedure (SOP) that describes the vaccines, the cold chain system and equipment, its use and recommended procedures to control and monitor the temperatures and the cold chain. This study was conducted to assess the status of cold chain in eight health districts in Cameroon. Findings The study was carried out in eight health districts out of fifty with poor immunization coverage rate. Data were collected using a validated form by observation and consultation of related documents. District Health Services (DHS) and four Integrated. Health Centers (IHC) randomly selected were targeted per health district. Forty health facilities were included. Twenty eight (70.0%) had at least one functional refrigerator for EPI activities. The power supply was reported to be permanent in 7 (20.6%) out of 34. (85.0%) health facilities with access to power supply. The temperature monitoring chart was pasted on 27 (96.4%) of the cold chain equipment. On 16 (59.3%) of these charts, the temperature was recorded twice daily as recommended. Seven (25.9%) of 27 refrigerators assessed had temperature out of the recommended range of 2 to 8°C. Almost 23.30% of health centers did not received any supervision on cold chain monitoring during a vaccination campaign. Conclusion This study documents failure of the cold chain maintenance and questions the efficacy and safety of vaccines administered during EPI activities in Cameroun. These findings indicate that appropriate actions are needed to ensure monitoring of EPI cold chain in the country. PMID:23497720

  4. Relative roles of temperature and photoperiod as drivers of metabolic flexibility in dark-eyed juncos.

    PubMed

    Swanson, David; Zhang, Yufeng; Liu, Jin-Song; Merkord, Christopher L; King, Marisa O

    2014-03-15

    Seasonal phenotypic flexibility in small birds produces a winter phenotype with elevated maximum cold-induced metabolic rates (=summit metabolism, Msum). Temperature and photoperiod are candidates for drivers of seasonal phenotypes, but their relative impacts on metabolic variation are unknown. We examined photoperiod and temperature effects on Msum, muscle masses and activities of key catabolic enzymes in winter dark-eyed juncos (Junco hyemalis). We randomly assigned birds to four treatment groups varying in temperature (cold=3°C; warm=24°C) and photoperiod [short day (SD)=8 h:16 h light:dark; long day (LD)=16 h:8 h light:dark] in a two-by-two design. We measured body mass (Mb), flight muscle width and Msum before and after 3 and 6 weeks of acclimation, and flight muscle and heart masses after 6 weeks. Msum increased for cold-exposed, but not for warm-exposed, birds. LD birds gained more Mb than SD birds, irrespective of temperature. Flight muscle size and mass did not differ significantly among groups, but heart mass was larger in cold-exposed birds. Citrate synthase, carnitine palmitoyl transferase and β-hydroxyacyl Co-A dehydrogenase activities in the pectoralis were generally higher for LD and cold groups. The cold-induced changes in Msum and heart mass parallel winter changes for small birds, but the larger Mb and higher catabolic enzyme activities in LD birds suggest photoperiod-induced changes associated with migratory disposition. Temperature appears to be a primary driver of flexibility in Msum in juncos, but photoperiod-induced changes in Mb and catabolic enzyme activities, likely associated with migratory disposition, interact with temperature to contribute to seasonal phenotypes.

  5. Influence of body heat content on hand function during prolonged cold exposures.

    PubMed

    Flouris, A D; Cheung, S S; Fowles, J R; Kruisselbrink, L D; Westwood, D A; Carrillo, A E; Murphy, R J L

    2006-09-01

    We examined the influence of 1) prior increase [preheating (PHT)], 2) increase throughout [heating (HT)], and 3) no increase [control (Con)] of body heat content (H(b)) on neuromuscular function and manual dexterity of the hands during a 130-min exposure to -20 degrees C (coldEx). Ten volunteers randomly underwent three passive coldEx, incorporating a 10-min moderate-exercise period at the 65th min while wearing a liquid conditioning garment (LCG) and military arctic clothing. In PHT, 50 degrees C water was circulated in the LCG before coldEx until core temperature was increased by 0.5 degrees C. In HT, participants regulated the inlet LCG water temperature throughout coldEx to subjective comfort, while the LCG was not operating in Con. Thermal comfort, rectal temperature, mean skin temperature, mean finger temperature (T(fing)), change in H(b) (DeltaH(b)), rate of body heat storage, Purdue pegboard test, finger tapping, handgrip, maximum voluntary contraction, and evoked twitch force of the first dorsal interosseus muscle were recorded. Results demonstrated that, unlike in HT and PHT, thermal comfort, rectal temperature, mean skin temperature, twitch force, maximum voluntary contraction, and finger tapping declined significantly in Con. In contrast, T(fing) and Purdue pegboard test remained constant only in HT. Generalized estimating equations demonstrated that DeltaH(b) and T(fing) were associated over time with hand function, whereas no significant association was detected for rate of body heat storage. It is concluded that increasing H(b) not only throughout but also before a coldEx is effective in maintaining hand function. In addition, we found that the best indicator of hand function is DeltaH(b) followed by T(fing).

  6. Effect of ambient temperature on human pain and temperature perception.

    PubMed

    Strigo, I A; Carli, F; Bushnell, M C

    2000-03-01

    Animal studies show reduced nociceptive responses to noxious heat stimuli and increases in endogenous beta-endorphin levels in cold environments, suggesting that human pain perception may be dependent on ambient temperature. However, studies of changes in local skin temperature on human pain perception have yielded variable results. This study examines the effect of both warm and cool ambient temperature on the perception of noxious and innocuous mechanical and thermal stimuli. Ten subjects (7 men and 3 women, aged 20-23 yr) used visual analog scales to rate the stimulus intensity, pain intensity, and unpleasantness of thermal (0-50 degrees C) and mechanical (1.2-28.9 g) stimuli applied on the volar forearm with a 1-cm2 contact thermode and von Frey filaments, respectively. Mean skin temperatures were measured throughout the experiment by infrared pyrometer. Each subject was tested in ambient temperatures of 15 degrees C (cool), 25 degrees C (neutral), and 35 degrees C (warm) on separate days, after a 30-min acclimation to the environment. Studies began in the morning after an 8-h fast. Mean skin temperature was altered by ambient temperature (cool room: 30.1 degrees C; neutral room: 33.4 degrees C; warm room: 34.5 degrees C; P < 0.0001). Ambient temperature affected both heat (44-50 degrees C) and cold (25-0 degrees C) perception (P < 0.01). Stimulus intensity ratings tended to be lower in the cool than in the neutral environment (P < 0.07) but were not different between the neutral and warm environments. Unpleasantness ratings revealed that cold stimuli were more unpleasant than hot stimuli in the cool room and that noxious heat stimuli were more unpleasant in a warm environment. Environmental temperature did not alter ratings of warm (37 and 40 degrees C) or mechanical stimuli. These results indicate that, in humans, a decrease in skin temperature following exposure to cool environments reduces thermal pain. Suppression of Adelta primary afferent cold fiber activity has been shown to increase cold pain produced by skin cooling. Our current findings may represent the reverse phenomenon, i.e., a reduction in thermal nociceptive transmission by the activation of Adelta cutaneous cold fibers.

  7. Thermal Management of a Nitrogen Cryogenic Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, Ph.; Yan, T.

    2010-04-01

    Efficient thermal links are needed to ease the distribution of the cold power in satellites. Loop heat pipes are widely used at room temperature as passive thermal links based on a two-phase flow generated by capillary forces. Transportation of the cold power at cryogenic temperatures requires a specific design. In addition to the main loop, the cryogenic loop heat pipe (CLHP) features a hot reservoir and a secondary loop with a cold reservoir and a secondary evaporator which allows the cool down and the thermal management of the thermal link in normal cold operation. We have studied the influence of a heated cold reservoir and investigated the effect of parasitic heat loads on the performance of a nitrogen CLHP at around 80 K. It is shown that heating of the cold reservoir with a small amount of power (0.1 W) allows controlling the system temperature difference, which can be kept constant at a very low level (1 K) regardless of the transferred cold power (0-10 W). Parasitic heat loads have a significant effect on the thermal resistance, and the power applied on the secondary evaporator has to be increased up to 4 W to get stable operation.

  8. A pilot study exploring the effects of reflexology on cold intolerance.

    PubMed

    Zhang, Wenping; Takahashi, Shougo; Miki, Takashi; Fujieda, Hisayo; Ishida, Torao

    2010-03-01

    Cold intolerance is an inability to tolerate cold temperatures and is accompanied by symptoms including headache, shoulder discomfort, dizziness and palpitations. The current study was performed to examine whether reflexology therapy affected cold intolerance in human subjects and whether the treatment was systemically effective. Ten female volunteer examinees with subjective feelings of cold were examined. After a 5-minute foot bath, 10 minutes of reflexology therapy was performed on their left foot. Skin temperature and blood flow were estimated before and after treatment, together with an interview concerning their feelings of cold and daily habits. In addition, how the recovery rate was affected by the application of a chilled-water load was also estimated. Along with significant increases in skin temperature and blood flow compared with pre-treatment at the bilateral points of KI-1, LR-3, and BL-60, a faster recovery after the application of the chilled-water load was also seen in the lower limbs on both sides. From these results, we conclude that reflexology has systemic effects and is an alternative method for treating cold intolerance. Copyright (c) 2010 Korean Pharmacopuncture Institute. Published by .. All rights reserved.

  9. Relationship between seasonal cold acclimatization and mtDNA haplogroup in Japanese

    PubMed Central

    2012-01-01

    Background The purpose of this study was to elucidate the interaction between mtDNA haplogroup and seasonal variation that contributes to cold adaptation. Methods There were 15 subjects (seven haplotype D subjects and eight haplotype non-D subjects). In summer and winter, the subjects were placed in an environment where the ambient temperature dropped from 27 °C to 10 °C in 30 minutes. After that, they were exposed to cold for 60 minutes. Results In summer, the decrease in rectal temperature and increase in oxygen consumption was smaller and cold tolerance was higher in the haplotype non-D group than in the haplotype D group. In winter, no significant differences were seen in rectal temperature or oxygen consumption, but the respiratory exchange ratio decreased in the haplotype D group. Conclusions The results of the present study suggest that haplogroup D subjects are a group that changes energy metabolism more, and there appears to be a relationship between differences in cold adaptability and mtDNA polymorphism within the population. Moreover, group differences in cold adaptability seen in summer may decrease in winter due to supplementation by seasonal cold acclimatization. PMID:22929588

  10. [Computerized temperature monitoring of the vaccine cold chain in a tropical climate, Chad].

    PubMed

    Schlumberger, M; Mireux, F; Tchang, S G; Mboutbogol, D; Cheikh, D O; Hissein, A A; Youssouf, B O; Brahimi, M M; Gamatié, Y

    2011-06-01

    Because new EPI liquid vaccines are highly sensitive to freezing and overheating, close monitoring of the cold chain is mandatory. The new Testostore 171-1 electronic thermometer (Testo) provides more reliable monitoring of cold chain temperature than freezer indicators, vaccine vial monitors and color strips that only indicate if vaccines are out-of-date. The Testo thermometer uses a probe placed in refrigeration units to periodically measure and store temperature readings. Temperature curves are displayed via a USB connection on a laptop computer running special software (Comfort software light). Testo temperature data can easily be communicated to all management levels by e-mail. The first experience using the Testo system in Africa involved regional EPI supervision in Mondou, Logone Occidental, Chad. After a preliminary mission in Chad in 2006 showed the feasibility of using this method to manage the national cold chain at all levels, a nurse was appointed as EPI supervisor and given a refresher course in Chad's capital Ndjamena in March 2009. In April-May 2009, the supervisor was sent back to the Logone Occidental Region to monitor, by himself, refrigeration units making up the regional and district cold chain for vaccine storage in five health centers (rural and urban). Temperature curve readings were performed on site in the presence of the medical staff and results were compared to those recorded twice a day on conventional temperature charts using lamellar thermometers installed in refrigerators doors. Testo curves showed that liquid vaccine storage temperatures fell below freezing too frequently and that temperatures readings of door thermometers were often inaccurate. Testo readings also detected power outages in refrigeration units used in urban settings and flame extinctions in kerosene lamp refrigerators due to refrigerator breakdown or windy weather conditions before the rainy season. The main advantage of this monitoring method is to provide reliable data as a basis not only for detection of possible freezing of liquid vaccines but also for discussion of cold chain management and improvement with medical staff.

  11. Impact of cold climates on vehicle emissions: the cold start air toxics pulse : final report.

    DOT National Transportation Integrated Search

    2016-09-21

    This project measured cold start emissions from four vehicles in winter using fast response instrumentation to accurately measure the : time variation of the cold start emission pulse. Seventeen successful tests were conducted over a temperature rang...

  12. Huddling Conserves Energy, Decreases Core Body Temperature, but Increases Activity in Brandt's Voles (Lasiopodomys brandtii)

    PubMed Central

    Sukhchuluun, Gansukh; Zhang, Xue-Ying; Chi, Qing-Sheng; Wang, De-Hua

    2018-01-01

    Huddling as social thermoregulatory behavior is commonly used by small mammals to reduce heat loss and energy expenditure in the cold. Our study aimed to determine the effect of huddling behavior on energy conservation, thermogenesis, core body temperature (Tb) regulation and body composition in Brandt's voles (Lasiopodomys brandtii). Adult captive-bred female Brandt's voles (n = 124) (~50 g) in 31 cages with 4 individuals each were exposed to cool (23 ± 1°C) and cold (4 ± 1°C) ambient temperatures (Ta) and were allowed to huddle or were physically separated. The cold huddling (Cold-H) groups significantly reduced food intake by 29% and saved digestible energy 156.99 kJ/day compared with cold separated groups (Cold-S); in cool huddling groups (Cool-H) the reduction in food intake was 26% and digestible energy was saved by 105.19 kJ/day in comparison to the separated groups (Cool-S). Resting metabolic rate (RMR) of huddling groups was 35.7 and 37.2% lower than in separated groups at cold and cool Tas, respectively. Maximum non-shivering thermogenesis (NSTmax) of huddling voles was not affected by Ta, but in Cold-S voles it was significantly increased in comparison to Cool-S. Huddling groups decreased wet thermal conductance by 39% compared with separated groups in the cold, but not in the cool Ta. Unexpectedly, huddling voles significantly decreased Tb by 0.25 – 0.50°C at each Ta. Nevertheless, activity of Cold-H voles was higher than in Cold-S voles. Thus, huddling is energetically highly effective because of reduced metabolic rate, thermogenic capacity and relaxed Tb regulation despite the increase of activity. Therefore, Brandt's voles can remain active and maintain their body condition without increased energetic costs during cold exposure. This study highlights the ecological significance of huddling behavior for maintenance of individual fitness at low costs, and thus survival of population during severe winter in small mammals. PMID:29867585

  13. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana

    PubMed Central

    Pino, María-Teresa; Jeknić, Zoran; Zou, Cheng; Shiu, Shin-Han; Chen, Tony H. H.; Thomashow, Michael F.

    2011-01-01

    Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112–156 million years, it seems likely that these conserved cold-regulated genes—many of which encode transcription factors and proteins of unknown function—have fundamental roles in plant growth and development at low temperature. PMID:21511909

  14. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana.

    PubMed

    Carvallo, Marcela A; Pino, María-Teresa; Jeknic, Zoran; Zou, Cheng; Doherty, Colleen J; Shiu, Shin-Han; Chen, Tony H H; Thomashow, Michael F

    2011-07-01

    Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112-156 million years, it seems likely that these conserved cold-regulated genes-many of which encode transcription factors and proteins of unknown function-have fundamental roles in plant growth and development at low temperature.

  15. Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires

    NASA Astrophysics Data System (ADS)

    Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo

    2002-07-01

    In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.

  16. Application of Coamplification at Lower Denaturation Temperature-PCR Sequencing for Early Detection of Antiviral Drug Resistance Mutations of Hepatitis B Virus

    PubMed Central

    Wong, Danny Ka-Ho; Tsoi, Ottilia; Huang, Fung-Yu; Seto, Wai-Kay; Fung, James; Lai, Ching-Lung

    2014-01-01

    Nucleoside/nucleotide analogue for the treatment of chronic hepatitis B virus (HBV) infection is hampered by the emergence of drug resistance mutations. Conventional PCR sequencing cannot detect minor variants of <20%. We developed a modified co-amplification at lower denaturation temperature-PCR (COLD-PCR) method for the detection of HBV minority drug resistance mutations. The critical denaturation temperature for COLD-PCR was determined to be 78°C. Sensitivity of COLD-PCR sequencing was determined using serially diluted plasmids containing mixed proportions of HBV reverse transcriptase (rt) wild-type and mutant sequences. Conventional PCR sequencing detected mutations only if they existed in ≥25%, whereas COLD-PCR sequencing detected mutations when they existed in 5 to 10% of the viral population. The performance of COLD-PCR was compared to conventional PCR sequencing and a line probe assay (LiPA) using 215 samples obtained from 136 lamivudine- or telbivudine-treated patients with virological breakthrough. Among these 215 samples, drug resistance mutations were detected in 155 (72%), 148 (69%), and 113 samples (53%) by LiPA, COLD-PCR, and conventional PCR sequencing, respectively. Nineteen (9%) samples had mutations detectable by COLD-PCR but not LiPA, while 26 (12%) samples had mutations detectable by LiPA but not COLD-PCR, indicating both methods were comparable (P = 0.371). COLD-PCR was more sensitive than conventional PCR sequencing. Thirty-five (16%) samples had mutations detectable by COLD-PCR but not conventional PCR sequencing, while none had mutations detected by conventional PCR sequencing but not COLD-PCR (P < 0.0001). COLD-PCR sequencing is a simple method which is comparable to LiPA and superior to conventional PCR sequencing in detecting minor lamivudine/telbivudine resistance mutations. PMID:24951803

  17. Convectively-driven cold layer and its influences on moisture in the UTLS

    NASA Astrophysics Data System (ADS)

    Kim, J.; Randel, W. J.; Birner, T.

    2016-12-01

    Characteristics of the cold anomaly in the tropical tropopause layer (TTL) that is commonly observed with deep convection are examined using CloudSat and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Deep convection is sampled based on the cloud top height (>17 km) from CloudSat 2B-CLDCLASS, and then temperature profiles from COSMIC are composited around the deep convection. The composite temperature shows anomalously warm troposphere (up to 14 km) and a significantly cold layer near the tropopause (at 16-18 km) in the regions of deep convection. Generally in the tropics, the cold layer has very large horizontal scale (2,000 - 6,000 km) compared to that of mesoscale convective cluster, and it lasts one or two weeks with minimum temperature anomaly of - 2K. The cold layer shows slight but clear eastward-tilted vertical structure in the deep tropics indicating a large-scale Kelvin wave response. Further analyses on circulation patterns suggest that the anomaly can be explained as a part of Gill-type response in the TTL to deep convective heating in the troposphere. Response of moisture to the cold layer is also examined in the upper troposphere and lower stratosphere using microwave limb sounder (MLS) measurements. The water vapor anomalies show coherent structures with the temperature and circulation anomalies. A clear dry anomaly is found in the cold layer and its outflow region, implying a large-scale dehydration process due to the convectively driven cold layer in the upper TTL.

  18. De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments

    PubMed Central

    Li, Jin; Liu, Hailiang; Xia, Wenwen; Mu, Jianqiang; Feng, Yujie; Liu, Ruina; Yan, Panyao; Wang, Aiying; Lin, Zhongping; Guo, Yong; Zhu, Jianbo; Chen, Xianfeng

    2017-01-01

    Saussurea involucrata grows in high mountain areas covered by snow throughout the year. The temperature of this habitat can change drastically in one day. To gain a better understanding of the cold response signaling pathways and molecular metabolic reactions involved in cold stress tolerance, genome-wide transcriptional analyses were performed using RNA-Seq technologies. A total of 199,758 transcripts were assembled, producing 138,540 unigenes with 46.8 Gb clean data. Overall, 184,416 (92.32%) transcripts were successfully annotated. The 365 transcription factors identified (292 unigenes) belonged to 49 transcription factor families associated with cold stress responses. A total of 343 transcripts on the signal transduction (132 upregulated and 212 downregulated in at least any one of the conditions) were strongly affected by cold temperature, such as the CBL-interacting serine/threonine-protein kinase (CIPKs), receptor-like protein kinases, and protein kinases. The circadian rhythm pathway was activated by cold adaptation, which was necessary to endure the severe temperature changes within a day. There were 346 differentially expressed genes (DEGs) related to transport, of which 138 were upregulated and 22 were downregulated in at least any one of the conditions. Under cold stress conditions, transcriptional regulation, molecular transport, and signal transduction were involved in the adaptation to low temperature in S. involucrata. These findings contribute to our understanding of the adaptation of plants to harsh environments and the survival traits of S. involucrata. In addition, the present study provides insight into the molecular mechanisms of chilling and freezing tolerance. PMID:28590406

  19. Repeatability of a cold stress test to assess cold sensitization.

    PubMed

    House, C M; Taylor, R J; Oakley, E H N

    2015-10-01

    Non-freezing cold injury (NFCI) is a syndrome in which damage to peripheral tissues occurs without the tissues freezing following exposure to low ambient temperatures. To assess the test-retest reliability of a cold stress test (CST) used to assess cold sensitization. Volunteers with no self-reported history of NFCI undertook the CST on three occasions. Thermal images were taken of the foot and hand before, immediately after and 5min after immersion of the limb in cold water for 2min. Cold sensitization was graded by the two clinicians and the lead author. Spot temperatures from the toe and finger pads were recorded. There were 30 white and 19 black male participants. The ratings indicated substantial agreement [a Cohen's kappa (κ) value of 0.61-0.8] to within ± one grading category for the hands and feet of the white volunteers and the hands of the black volunteers. Limits of agreement (LoA) analysis for toe and finger pad temperatures indicated high agreement (absolute 95% LoA < 5.5°C). Test-retest reliability for the feet of the black volunteers was not supported by the gradings (κ = 0.38) and toe pad temperatures (absolute 95% LoA = 9.5°C and coefficient of variation = 11%). The test-retest reliability of the CST is considered adequate for the assessment of the cold sensitization of the hands and feet of white and the hands of black healthy non-patients. The study should be repeated with patients who have suffered a NFCI. © Crown copyright 2015.

  20. Conflicts of thermal adaptation and fever--a cybernetic approach based on physiological experiments.

    PubMed

    Werner, J; Beckmann, U

    1998-01-01

    Cold adaptation aims primarily at a better economy, i.e., preservation of energy often at the cost of a lower mean body temperature during cold stress, whereas heat adaptation whether achieved by exposure to a hot environment or by endogenous heat produced by muscle exercise, often brings about a higher efficiency of control, i.e., a lower mean body temperature during heat stress, at the cost of a higher water loss. While cold adaptation is beneficial in a cold environment, it may constitute a detrimental factor for exposure to a hot environment, mainly because of morphological adaptation. Heat adaptation may be maladaptive for cold exposure, mainly because of functional adaptation. Heat adaptation clearly is best suited to avoid higher body temperatures in fever, no matter which environmental conditions prevail. On the other hand, cold adaptation is detrimental for coping with fever in hot environment. Yet, in the cold, preceding cold adaptation may, because of reduced metabolic heat production, result in lower febrile increase of body temperature. Apparently controversial effects and results may be analyzed in the framework of a cybernetic approach to the main mechanisms of thermal adaptation and fever. Morphological adaptations alter the properties of the heat transfer characteristics of the body ("passive system"), whereas functional adaptation and fever concern the subsystems of control, namely sensors, integrative centers and effectors. In a closed control-loop the two types of adaptation have totally different consequences. It is shown that the experimental results are consistent with the predictions of such an approach.

  1. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat

    PubMed Central

    Hashim, Noor Haza Fazlin; Bharudin, Izwan; Abu Bakar, Mohd Faizal; Huang, Kie Kyon; Alias, Halimah; Lee, Bernard K. B.; Mat Isa, Mohd Noor; Mat-Sharani, Shuhaila; Sulaiman, Suhaila; Tay, Lih Jinq; Zolkefli, Radziah; Muhammad Noor, Yusuf; Law, Douglas Sie Nguong; Abdul Rahman, Siti Hamidah; Md-Illias, Rosli; Abu Bakar, Farah Diba; Najimudin, Nazalan; Abdul Murad, Abdul Munir; Mahadi, Nor Muhammad

    2018-01-01

    Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival. PMID:29385175

  2. Cold-adapted tubulins in the glacier ice worm, Mesenchytraeus solifugus.

    PubMed

    Tartaglia, Lawrence J; Shain, Daniel H

    2008-11-01

    Glacier ice worms, Mesenchytraeus solifugus and related species, are the only known annelids that survive obligately in glacier ice and snow. One fundamental component of cold temperature adaptation is the ability to polymerize tubulin, which typically depolymerizes at low physiological temperatures (e.g., <10 degrees C) in most temperate species. In this study, we isolated two alpha-tubulin (Msalpha1, Msalpha2) and two beta-tubulin (Msbeta1, Msbeta2) subunits from an ice worm cDNA library, and compared their predicted amino acid sequences with homologues from other cold-adapted organisms (e.g., Antarctic fish, ciliate) in an effort to identify species-specific amino acid substitutions that contribute to cold temperature-dependent tubulin polymerization. Our comparisons and predicted protein structures suggest that ice worm-specific amino acid substitutions stabilize lateral contact associations, particularly between beta-tubulin protofilaments, but these substitutions occur at different positions in comparison with other cold-adapted tubulins. The ice worm tubulin gene family appears relatively small, comprising one primary alpha- and one primary beta-tubulin monomers, though minor isoforms and pseudogenes were identified. Our analyses suggest that variation occurs in the strategies (i.e., species-specific amino acid substitutions, gene number) by which cold-adapted taxa have evolved the ability to polymerize tubulin at low physiological temperatures.

  3. Supraclavicular skin temperature as a measure of 18F-FDG uptake by BAT in human subjects.

    PubMed

    Boon, Mariëtte R; Bakker, Leontine E H; van der Linden, Rianne A D; Pereira Arias-Bouda, Lenka; Smit, Frits; Verberne, Hein J; van Marken Lichtenbelt, Wouter D; Jazet, Ingrid M; Rensen, Patrick C N

    2014-01-01

    Brown adipose tissue (BAT) has emerged as a novel player in energy homeostasis in humans and is considered a potential new target for combating obesity and related diseases. The current 'gold standard' for quantification of BAT volume and activity is cold-induced 18F-FDG uptake in BAT. However, use of this technique is limited by cost and radiation exposure. Given the fact that BAT is a thermogenic tissue, mainly located in the supraclavicular region, the aim of the current study was to investigate whether cold-induced supraclavicular skin temperature and core body temperature may be alternative markers of BAT activation in humans. BAT volume and activity were measured in 24 healthy lean adolescent males (mean age 24.1±0.8 years), using cold-induced 18F-FDG uptake with PET-CT. Core body temperature was measured continuously in the small intestine with use of an ingestible telemetric capsule and skin temperature was measured by eighteen wireless iButtons attached to the skin following ISO-defined locations. Proximal and distal (hand/feet) skin temperatures markedly decreased upon cold exposure, while supraclavicular skin temperature significantly increased (35.2±0.1 vs. 35.5±0.1°C, p = 0.001). Furthermore, cold-induced supraclavicular skin temperature positively correlated with both total (R2 = 0.28, P = 0.010) and clavicular BAT volume (R2 = 0.20, P = 0.030) and clavicular SUVmax (R2 = 0.27, P = 0.010), while core body temperature did not. Supraclavicular skin temperature as measured by iButtons may have predictive value for BAT detection in adult humans. This is highly desirable considering the increasing interest in pharmacological interventions to stimulate BAT in human subjects. NTR 2473.

  4. [Managing the cold chain in healthcare facilities].

    PubMed

    Royer, Mathilde; Breton Marchand, Justine; Pons, David

    2017-11-01

    The storage of temperature-sensitive healthcare products requires control of the cold chain. Healthcare facilities must have the appropriate equipment at their disposal and ensure the traceability and monitoring of temperatures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2018-02-01

    Cold stress is an adverse stimulus that affects plant growth and development, and the C-repeat binding factor (CBF) cold-regulatory cascade has been regarded as a master regulator in the plant response to cold stress. Here, we showed that a NAC transcription factor modulated low-temperature tolerance. MdNAC029/MdNAP, an apple NAC gene was isolated and its role in regulating cold tolerance was investigated. MdNAC029 was responsive to low-temperature treatment, and over-expression of MdNAC029 reduced cold tolerance in apple calli and Arabidopsis. Furthermore, EMSA assays and transient expression assays demonstrated that MdNAC029 directly repressed the expression of MdCBF1 and MdCBF4 by binding to their promoters. Taken together, our data suggest that MdNAC029 functions as a negative regulator in regulating plant cold tolerance in a CBF-dependent manner, providing a deeper understanding of NAC transcription-factor-mediated cold tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. The Nuclear Receptor Rev-erbα Controls Circadian Thermogenic Plasticity

    PubMed Central

    Gerhart-Hines, Zachary; Everett, Logan J.; Loro, Emanuele; Briggs, Erika R.; Bugge, Anne; Hou, Catherine; Ferrara, Christine; Seale, Patrick; Pryma, Daniel A.; Khurana, Tejvir S.; Lazar, Mitchell A.

    2013-01-01

    Circadian oscillation of body temperature is a basic, evolutionary-conserved feature of mammalian biology1. Additionally, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure2. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbα, a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare dramatically better at 5 AM (Zeitgeber time 22) when Rev-erbα is barely expressed than at 5 PM (ZT10) when Rev-erbα is abundant. Deletion of Rev-erbα markedly improves cold tolerance at 5 PM, indicating that overcoming Rev-erbα-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (UCP1) by cold temperatures is preceded by rapid down-regulation of Rev-erbα in BAT. Rev-erbα represses UCP1 in a brown adipose cell-autonomous manner and BAT UCP1 levels are high in Rev-erbα-null mice even at thermoneutrality. Genetic loss of Rev-erbα also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbα acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands. PMID:24162845

  7. Assessment of temperatures in the vaccine cold chain in two provinces in Lao People's Democratic Republic: a cross-sectional pilot study.

    PubMed

    Kitamura, Tomomi; Bouakhasith, Viraneth; Phounphenghack, Kongxay; Pathammavong, Chansay; Xeuatvongsa, Anonh; Norizuki, Masataro; Okabayashi, Hironori; Mori, Yoshio; Machida, Munehito; Hachiya, Masahiko

    2018-04-27

    All childhood vaccines, except the oral polio vaccine, should be kept at 2-8 °C, since the vaccine potency can be damaged by heat or freezing temperature. A temperature monitoring study conducted in 2008-2009 reported challenges in cold chain management from the provincial level downwards. The present cross-sectional pilot study aimed to assess the current status of the cold chain in two provinces (Saravan and Xayabouly) of Lao People's Democratic Republic between March-April 2016. Two types of temperature data loggers recorded the temperatures and the proportions of time exposed to < 0 or > 8 °C were calculated. The temperature remained within the appropriate range in the central and provincial storages. However, the vaccines were frequently exposed to > 8 °C in Saravan and < 0 °C in Xayabouly in the district storage. Vaccines were exposed to > 8 °C during the transportation in Saravan and to both > 8 and < 0 °C in Xayabouly. Thus, challenges in managing the cold chain in the district storage and during transportation remain, despite improvements at the provincial storage. A detailed up-to-date nationwide analysis of the current situation of the cold chain is warranted to identify the most appropriate intervention to tackle the remaining challenges.

  8. The effect of extreme cold temperatures on the risk of death in the two major Portuguese cities

    NASA Astrophysics Data System (ADS)

    Antunes, Liliana; Silva, Susana Pereira; Marques, Jorge; Nunes, Baltazar; Antunes, Sílvia

    2017-01-01

    It is well known that meteorological conditions influence the comfort and human health. Southern European countries, including Portugal, show the highest mortality rates during winter, but the effects of extreme cold temperatures in Portugal have never been estimated. The objective of this study was the estimation of the effect of extreme cold temperatures on the risk of death in Lisbon and Oporto, aiming the production of scientific evidence for the development of a real-time health warning system. Poisson regression models combined with distributed lag non-linear models were applied to assess the exposure-response relation and lag patterns of the association between minimum temperature and all-causes mortality and between minimum temperature and circulatory and respiratory system diseases mortality from 1992 to 2012, stratified by age, for the period from November to March. The analysis was adjusted for over dispersion and population size, for the confounding effect of influenza epidemics and controlled for long-term trend, seasonality and day of the week. Results showed that the effect of cold temperatures in mortality was not immediate, presenting a 1-2-day delay, reaching maximum increased risk of death after 6-7 days and lasting up to 20-28 days. The overall effect was generally higher and more persistent in Lisbon than in Oporto, particularly for circulatory and respiratory mortality and for the elderly. Exposure to cold temperatures is an important public health problem for a relevant part of the Portuguese population, in particular in Lisbon.

  9. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures

    PubMed Central

    Guo, Yan; Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang

    2002-01-01

    Low temperature regulates gene expression in bacteria, yeast, and animals as well as in plants. However, the signal transduction cascades mediating the low temperature responses are not well understood in any organism. To identify components in low temperature signaling genetically, we isolated Arabidopsis thaliana mutants in which cold-responsive genes are no longer induced by low temperatures. One of these mutations, los1–1, specifically blocks low temperature-induced transcription of cold-responsive genes. Surprisingly, cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element binding factors (CBF/DREB1s), is enhanced by the los1–1 mutation. The los1–1 mutation also reduces the capacity of plants to develop freezing tolerance but does not impair the vernalization response. Genetic analysis indicated that los1–1 is a recessive mutation in a single nuclear gene. The LOS1 gene encodes a translation elongation factor 2-like protein. Protein labeling studies show that new protein synthesis is blocked in los1–1 mutant plants specifically in the cold. These results reveal a critical role of new protein synthesis in the proper transduction of low temperature signals. Our results also suggest that cold-induced transcription of CBF/DREB1s is feedback inhibited by their gene products or by products of their downstream target genes. PMID:12032361

  10. Intensity of Cold Water and its effects on marine culturing farms along the southeast coast of Korea

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Hwa; Shim, JeongHee; Choi, Yang-Ho; Kim, Sang-Woo; Shim, Jeong-Min

    2017-04-01

    To understand the characteristics and strength of the cold water that has caused damage to marine-culturing farms around Guryongpo, in the southeast coast of Korea, surface and water column temperatures were collected from temperature loggers deployed at a sea squirt farm during August-November 2007 and from a Real-time Information System for aquaculture environments operated by NIFS during July-August 2015 and 2016. During the study period, surface temperature at Guryongpo decreased sharply when south/southwestern winds prevailed (the 18-26th of August and 20-22nd of September 2007 and the 13-15th of July 2015) as a result of upwelling. However, the deep-water (20-30m) temperature increased during periods of strong north/northeasterly winds (the 5-7th and 16-18th of September 2007) as a result of downwelling. Among the cold water events that occurred at Guryongpo, the mass death of cultured fish followed strong cold water events (surface temperatures below 10℃) that were caused by more than two days of successive south/southeastern winds with maximum speeds higher than 5 m/s. A Cold Water Index (CWI) was defined and calculated using maximum wind speed and direction as measured daily at Pohang Meteorological Observatory. When the average CWI over two days (CWI2d) was higher than 100, mass fish mortality occurred. The four-day average CWI (CWI4d) showed a high negative correlation with surface temperature from July-August in the Guryongpo area (R2 = 0.5), suggesting that CWI is a good index for predicting strong cold water events and massive mortality. In October 2007, the sea temperature at a depth of 30 m showed a high fluctuation that ranged from 7-23℃, with frequency and spectrum coinciding with tidal levels at Ulsan, affected by the North Korean Cold Current. If temperature variations at the depth of fish cages also regularly fluctuate within this range, damage may be caused to the fish industry along the southeast coast of Korea.

  11. Observations of Cold Pool Properties during GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Mayne, S. L.; Schumacher, C.; MacDonald, L.; Turner, D. D.

    2017-12-01

    Convectively generated cold pools are instrumental in both the development of the sub-cloud layer and the organization of deep convection. Despite this, analyses of cold pools in the tropics are constrained by a lack of observational data; insight into the phenomena therefore relies heavily on numerical models. GoAmazon2014/5, a 2-year DOE-sponsored field campaign centered on Manacapuru, Brazil in the central Amazon, provides a unique opportunity to characterize tropical cold pools and allows for the comparison of observational data with theoretical results from model cold pool simulations and parameterizations. This investigation analyzes radar, disdrometer, and profiler measurements at the DOE mobile facility site to study tropical cold pool characteristics. The Brazilian military (SIPAM) operational S-band radar in Manaus is used to provide a broad context of convective systems, while measurements from Parsivel disdrometers are used to assess drop-size distributions (DSDs) at the surface. A unique aspect of this research is the use of the Atmospheric Emitted Radiance Interferometer (AERI) instrument, which utilizes down-welling IR measurements to obtain vertical profiles of thermodynamic quantities such as temperature and water vapor in the lowest few km of the atmosphere. Combined with surface observations and sounding data, these datasets will result in a thorough investigation of the horizontal and vertical characteristics of cold pools over the tropical rain forest. Preliminary analyses of 20 events reveal a mean cold pool height of 220 m and a mean radius of approximately 8.5 km. The average cold pool experienced a temperature (specific humidity) decrease of approximately 1 K (0.4 g/kg) at the surface. The temperature decrease is consistent with modeling studies and limited observations from previous studies over the tropics. The small decrease in specific humidity is attributed to the high moisture content within the cold pools. AERI retrievals of potential temperature and specific humidity profiles show promising similarities with theoretical results produced using the cold pool parameterization presented by Del Genio et al. (2015); however, results are sensitive to both the mass of air injected into the cold pool after its formation, and the thermodynamic characteristics of the downdraft.

  12. Specific temperature-induced perturbations of secondary mRNA structures are associated with the cold-adapted temperature-sensitive phenotype of influenza A virus.

    PubMed

    Chursov, Andrey; Kopetzky, Sebastian J; Leshchiner, Ignaty; Kondofersky, Ivan; Theis, Fabian J; Frishman, Dmitrij; Shneider, Alexander

    2012-10-01

    For decades, cold-adapted, temperature-sensitive (ca/ts) strains of influenza A virus have been used as live attenuated vaccines. Due to their great public health importance it is crucial to understand the molecular mechanism(s) of cold adaptation and temperature sensitivity that are currently unknown. For instance, secondary RNA structures play important roles in influenza biology. Thus, we hypothesized that a relatively minor change in temperature (32-39°C) can lead to perturbations in influenza RNA structures and, that these structural perturbations may be different for mRNAs of the wild type (wt) and ca/ts strains. To test this hypothesis, we developed a novel in silico method that enables assessing whether two related RNA molecules would undergo (dis)similar structural perturbations upon temperature change. The proposed method allows identifying those areas within an RNA chain where dissimilarities of RNA secondary structures at two different temperatures are particularly pronounced, without knowing particular RNA shapes at either temperature. We identified such areas in the NS2, PA, PB2 and NP mRNAs. However, these areas are not identical for the wt and ca/ts mutants. Differences in temperature-induced structural changes of wt and ca/ts mRNA structures may constitute a yet unappreciated molecular mechanism of the cold adaptation/temperature sensitivity phenomena.

  13. Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions.

    PubMed

    Johnson, Lacey; Tan, Shereen; Wood, Ben; Davis, April; Marks, Denese C

    2016-07-01

    Alternatives to room temperature storage of platelets (PLTs) may be beneficial to extend the limited shelf life and support transfusion logistics in rural and military areas. The aim of this study was to assess the morphologic, metabolic, and functional aspects of PLTs stored at room temperature or in refrigerated conditions or cryopreserved. A three-arm pool-and-split study was carried out using buffy coat-derived PLTs stored in 30% plasma/70% SSP+. The three matched treatment arms were room temperature stored (20-24°C), cold-stored (2-6°C), and cryopreserved (-80°C with dimethyl sulfoxide). Liquid-stored PLTs were tested over a 21-day period, while cryopreserved PLTs were examined immediately after thawing and after 6 and 24 hours of storage at room temperature. Cold-stored and cryopreserved PLTs underwent a significant shape change, although the cryopreserved PLTs appeared to recover from this during subsequent storage. Glycolytic metabolism was reduced in cold-stored PLTs, but accelerated in cryopreserved PLTs, while oxidative phosphorylation was negatively affected by both storage conditions. PLT aggregation was potentiated by cold storage and diminished by cryopreservation in comparison to room temperature-stored PLTs. Cold storage and cryopreservation resulted in faster clot formation (R-time; thromboelastography), which was associated with an increase in microparticles. Cold storage and cryopreservation of PLTs led to morphologic and metabolic changes. However, storage under these conditions appears to maintain or even enhance certain aspects of in vitro PLT function. © 2016 AABB.

  14. The cellular code for mammalian thermosensation.

    PubMed

    Pogorzala, Leah A; Mishra, Santosh K; Hoon, Mark A

    2013-03-27

    Mammalian somatosenory neurons respond to thermal stimuli and allow animals to reliably discriminate hot from cold and to select their preferred environments. Previously, we generated mice that are completely insensitive to temperatures from noxious cold to painful heat (-5 to 55°C) by ablating several different classes of nociceptor early in development. In the present study, we have adopted a selective ablation strategy in adult mice to study this phenotype and have demonstrated that separate populations of molecularly defined neurons respond to hot and cold. TRPV1-expressing neurons are responsible for all behavioral responses to temperatures between 40 and 50°C, whereas TRPM8 neurons are required for cold aversion. We also show that more extreme cold and heat activate additional populations of nociceptors, including cells expressing Mrgprd. Therefore, although eliminating Mrgprd neurons alone does not affect behavioral responses to temperature, when combined with ablation of TRPV1 or TRPM8 cells, it significantly decreases responses to extreme heat and cold, respectively. Ablation of TRPM8 neurons distorts responses to preferred temperatures, suggesting that the pleasant thermal sensation of warmth may in fact just reflect reduced aversive input from TRPM8 and TRPV1 neurons. As predicted by this hypothesis, mice lacking both classes of thermosensor exhibited neither aversive nor attractive responses to temperatures between 10 and 50°C. Our results provide a simple cellular basis for mammalian thermosensation whereby two molecularly defined classes of sensory neurons detect and encode both attractive and aversive cues.

  15. Extremely cold events and sudden air temperature drops during winter season in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Crhová, Lenka; Valeriánová, Anna; Holtanová, Eva; Müller, Miloslav; Kašpar, Marek; Stříž, Martin

    2014-05-01

    Today a great attention is turned to analysis of extreme weather events and frequency of their occurrence under changing climate. In most cases, these studies are focused on extremely warm events in summer season. However, extremely low values of air temperature during winter can have serious impacts on many sectors as well (e.g. power engineering, transportation, industry, agriculture, human health). Therefore, in present contribution we focus on extremely and abnormally cold air temperature events in winter season in the Czech Republic. Besides the seasonal extremes of minimum air temperature determined from station data, the standardized data with removed annual cycle are used as well. Distribution of extremely cold events over the season and the temporal evolution of frequency of occurrence during the period 1961-2010 are analyzed. Furthermore, the connection of cold events with extreme sudden temperature drops is studied. The extreme air temperature events and events of extreme sudden temperature drop are assessed using the Weather Extremity Index, which evaluates the extremity (based on return periods) and spatial extent of the meteorological extreme event of interest. The generalized extreme value distribution parameters are used to estimate return periods of daily temperature values. The work has been supported by the grant P209/11/1990 funded by the Czech Science Foundation.

  16. Thermal acclimation is not induced by habitat-of-origin, maintenance temperature, or acute exposure to low or high temperatures in a pit-building wormlion (Vermileo sp.).

    PubMed

    Bar-Ziv, Michael A; Scharf, Inon

    2018-05-01

    Wormlions are sit-and-wait insect predators that construct pit-traps to capture arthropod prey. They require loose soil and shelter from direct sun, both common in Mediterranean cities, and explaining their high abundance in urban habitats. We studied different aspects of thermal acclimation in wormlions. We compared chill-coma recovery time (CCRT) and heat-shock recovery time (HSRT) of wormlions from urban, semi-urban and natural habitats, expecting those originating from the urban habitat to be more heat tolerant and less cold tolerant. However, no differences were detected among the three habitats. We then examined whether maintenance temperature affects CCRT and HSRT, and expected beneficial acclimation. However, CCRT was unaffected by maintenance temperature, while temperature affected HSRT in an opposite direction to our prediction: wormlions maintained under the higher temperatures took longer to recover. When testing with two successive thermal shocks, wormlions took longer to recover from both cold and heat shock after applying an initial cold shock. We therefore conclude that cold shock inflicts some damage rather than induces acclimation. Finally, both cold- and heat-shocked wormlions constructed smaller pits than wormlions of a control group. Smaller pits probably translate to a lower likelihood of capturing prey and also limit the size of the prey, indicating a concrete cost of thermal shock. In summary, we found no evidence for thermal acclimation related either to the habitat-of-origin or to maintenance temperatures, but, rather, negative effects of unfavorable temperatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Measurements of Thermal Effects on Acoustic Screech in a Choked Circular Jet Emanating from a Sharp-Edged Orifice

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2012-01-01

    Experiments are performed in a 24.4 mm diameter choked circular hot and cold jets issuing from a sharp-edged orifice at a fully expanded jet Mach number of 1.85. The stagnation temperature of the hot and the cold jets are 319 K and 299 K respectively. The results suggest that temperature effects on the screech amplitude and frequency are manifested for the fundamental, with a reduced amplitude and increased frequency for hot jet relative to the cold jet. Temperature effects on the second harmonic are also observed.

  18. Anthocyanin-rich Aronia melanocarpa extract improves body temperature maintenance in healthy women with a cold constitution.

    PubMed

    Sonoda, Keisuke; Aoi, Wataru; Iwata, Tomoaki; Li, Yanmei

    2013-01-01

    Specific anthocyanin-rich dietary factors have been shown to improve metabolic functions associated with thermogenesis in animal studies. Aronia melanocarpa, commonly known as wild chokeberry, contains a high level of anthocyanin that would be expected to maintain body temperature through thermogenesis. We here investigated the effects of Aronia melanocarpa extracts on body temperature and peripheral blood flow in healthy women with a cold constitution. A pre/post comparison trial was performed in 11 women with a cold constitution, who were taking Aronia melanocarpa extracts (150 mg/day) for 4 weeks. Physiological and biochemical parameters, along with psychological tests were examined. The subjects' body surface temperature was significantly higher in the post-trial than in the pre-trial. In psychological tests, factors related to cold were significantly improved by Aronia intake. On the other hand, peripheral blood flow was not affected by Aronia supplementation. Plasma noradrenalin level was significantly elevated by Aronia intake, and subjects with a higher level of 8-hydroxy-2'-deoxyguanosine in the pre-trial showed decreased levels in the post-trial. These data suggest that dietary Aronia melanocarpa extract improves the maintenance of body temperature in healthy women with a cold constitution, which may be mediated by noradrenalin and oxidative stress levels.

  19. [Acute effect of daily mean temperature on ischemic heart disease mortality: a multivariable meta-analysis from 12 counties across Hubei Province, China].

    PubMed

    Zhang, Y Q; Yu, C H; Bao, J Z

    2016-11-06

    Objective: To evaluate the acute effects of daily mean temperature on ischemic heart disease (IHD) mortality in 12 counties across Hubei Province, China. Methods: We obtained the daily IHD mortality data and meteorological data of the 12 counties for 2009-2012. The distributed lag nonlinear model (DLNM) was used to estimate the community-specific association between mean temperature and IHD mortality. A multivariate meta-analysis was then applied to pool the community-specific relationship between temperature and IHD mortality, and the effects of cold and heat on mortality risk. Results: In 2009-2012, of the 6 702 012 people included in this study, 19 688 died of IHD. A daily average of 1.2 IHD deaths occurred in each community. The annual average mean temperature was 16.6 ℃ during the study period. A nonlinear temperature-IHD mortality relationship was observed for different cumulative lag days at the provincial level. The pooled heat effect was acute but attenuated within 2 days. In contrast, the cold effect was delayed and persisted for more than 2 weeks. Compared with a reference temperature (25 th percentile of mean temperature during the study period, P 25 ), the cold effect for P 10 of mean temperature was associated with IHD mortality, the RR (95% CI ) was 1.084 (1.008-1.167) at lag 0-14, and 1.149 (1.053-1.253) at lag 0-21. For the P 1 cold temperature, the mortality RR (95% CI ) values were 1.116 (0.975-1.276) and 1.220 (1.04-1.428), respectively. We found no significant association between high temperatures and IHD mortality in the present study at different lag days. Conclusion: In Hubei Province, low temperature was associated with increased IHD mortality risk, and cold effects lasted for several days; no significant effect of high temperature was observed.

  20. Overwintering biology and limits of cold tolerance in larvae of pistachio twig borer, Kermania pistaciella.

    PubMed

    Mollaei, M; Izadi, H; Šimek, P; Koštál, V

    2016-08-01

    Pistachio twig borer, Kermania pistaciella is an important pest of pistachio trees. It has an univoltine life-cycle and its larvae tunnel and feed inside pistachio twigs for almost 10 months each year. The last larval instars overwinter inside the twigs. Survival/mortality associated with low temperatures during overwintering stage is currently unknown. We found that overwintering larvae of the Rafsanjan (Iran) population of K. pistaciella rely on maintaining a stably high supercooling capacity throughout the cold season. Their supercooling points (SCPs) ranged between -19.4 and -22.7°C from October to February. Larvae were able to survive 24 h exposures to -15°C anytime during the cold season. During December and January, larvae were undergoing quiescence type of dormancy caused probably by low ambient temperatures and/or changes in host tree physiology (tree dormancy). Larvae attain highest cold tolerance (high survival at -20°C) during dormancy, which offers them sufficient protection against geographically and ecologically relevant cold spells. High cold tolerance during dormancy was not associated with accumulation of any low-molecular mass cryoprotective substances. The SCP sets the limit of cold tolerance in pistachio twig borer, meaning that high mortality of overwintering populations can be expected only in the regions or years where or when the temperatures fall below the average larval SCP (i.e., below -20°C). Partial mortality can be expected also when temperatures repeatedly drop close to the SCP on a diurnal basis.

  1. A variable conductance gas switch for intermediate temperature operation of liquid He/liquid N2 cryostats

    NASA Technical Reports Server (NTRS)

    Rayner, J. T.; Chuter, T. C.; Mclean, I. S.; Radostitz, J. V.; Nolt, I. G.

    1988-01-01

    A technique for establishing a stable intermediate temperature stage in liquid He/liquid N2 double vessel cryostats is described. The tertiary cold stage, which can be tuned to any temperature between 10 and 60 K, is ideal for cooling IR sensors for use in astronomy and physics applications. The device is called a variable-conductance gas switch. It is essentially a small chamber, located between the cold stage and liquid helium cold-face, whose thermal conductance may be controlled by varying the pressure of helium gas within the chamber. A key feature of this device is the large range of temperature control achieved with a very small (less than 10 mW) heat input from the cryogenic temperature control switch.

  2. Low temperature tolerance and cold hardening of cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 3000 m altitude in southern Wyoming, were quite cold tolerant (50% inhibition of staining occurred from -17/sup 0/ to -20/sup 0/C), while O. bigelovii and O. ramosissima, which are restricted to much warmer habitats, were not very cold tolerant (50%more » inhibition from -4/sup 0/ to -7/sup 0/). Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivity accounted for the =600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs. Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Differences in both morphology and tissue cold sensitivity apparently influenced the relative northern ranges of Lophocereus schottii with respect to the other columnar cacti and F. covillei with respect to the other barrel cacti, as well as the relative elevational range of Denmoza rhodacantha with respect to Trichocereus candicans in northcentral Argentina. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species.« less

  3. Effects of cold front passage on turbulent fluxes over a large inland water

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, H.

    2011-12-01

    Turbulent fluxes of sensible and latent heat over a large inland water in southern USA were measured using the eddy covariance method through the year of 2008. In addition, net radiation, air temperatures and relative humidity, and water temperature in different depths were also measured. The specific objective of this study is to examine effects of a cold front passage on the surface energy fluxes. For the typical cold front event selected from April 11 to 14, air temperature decreased by 16°C, while surface temperature only dropped 6°C. Atmospheric vapor pressure decreased by 1.6 kPa, while that in the water-air interface dropped 0.7 kPa. The behavior difference in the water-air interface was caused by the passage of cold, dry air masses immediately behind the cold front. During the cold front event, sensible heat and latent heat flux increased by 171 W m-2 and 284 W m-2, respectively. Linear aggression analysis showed that the sensible heat flux was proportional to the product of wind speed and the temperature gradient of water-air interface, with a correlation coefficient of 0.95. Latent heat flux was proportional to the product of wind speed and vapor pressure difference between the water surface and overlaying atmosphere, with a correlation coefficient of 0.81. Also, the correlations between both fluxes and the wind speed were weak. This result indicated that the strong wind associated with the cold front event contributed to the turbulent mixing, which indirectly enhanced surface energy exchange between the water surface and the atmosphere. The relationship between the water heat storage energy and turbulent fluxes was also examined.

  4. Changes in apoplastic peroxidase activity and cell wall composition are associated with cold-induced morpho-anatomical plasticity of wheat leaves.

    PubMed

    Lorenzo, M; Pinedo, M L; Equiza, M A; Fernández, P V; Ciancia, M; Ganem, D G; Tognetti, J A

    2018-02-14

    Temperate grasses, such as wheat, become compact plants with small thick leaves after exposure to low temperature. These responses are associated with cold hardiness, but their underlying mechanisms remain largely unknown. Here we analyse the effects of low temperature on leaf morpho-anatomical structure, cell wall composition and activity of extracellular peroxidases, which play key roles in cell elongation and cell wall thickening, in two wheat cultivars with contrasting cold-hardening ability. A combined microscopy and biochemical approach was applied to study actively growing leaves of winter (ProINTA-Pincén) and spring (Buck-Patacón) wheat developed under constant warm (25 °C) or cool (5 °C) temperature. Cold-grown plants had shorter leaves but longer inter-stomatal epidermal cells than warm-grown plants. They had thicker walls in metaxylem vessels and mestome sheath cells, paralleled with accumulation of wall components, predominantly hemicellulose. These effects were more pronounced in the winter cultivar (Pincén). Cold also induced a sharp decrease in apoplastic peroxidase activity within the leaf elongating zone of Pincén, and a three-fold increase in the distal mature zone of the leaf. This was consistent with the enhanced cell length and thicker cell walls in this cultivar at 5 °C. The different response to low temperature of apoplastic peroxidase activity and hemicellulose between leaf zones and cultivar types suggests they might play a central role in the development of cold-induced compact morphology and cold hardening. New insights are presented on the potential temperature-driven role of peroxidases and hemicellulose in cell wall dynamics of grasses. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  5. Thermal and metabolic responses of military divers during a 6-hour static dive in cold water.

    PubMed

    Riera, Florence; Horr, Reed; Xu, Xiaojiang; Melin, Bruno; Regnard, Jacques; Bourdon, Lionel

    2014-05-01

    Human thermal responses during prolonged whole-body immersion in cold water are of interest for the military, especially French SEALS. This study aims at describing the thermo-physiological responses. There were 10 male military divers who were randomly assigned to a full immersion in neutral (34 degrees C), moderately cold (18 degrees C), and cold (10 degrees C) water wearing their operational protective devices (5.5 mm wetsuit with 3.0 mm thick underwear) for 6 h in a static position. Rectal temperature (T(re)) and 14 skin temperatures (T(sk)), blood analysis (stress biomarkers, metabolic substrates), and oxygen consumption (Vo2) were collected. At 34 degrees C, there were no significant modifications of the thermo-physiological responses over time. The most interesting result was that rates of rectal temperature decrease (0.15 +/- 0.02 degrees C x min(-1)) were the same between the two cold stress experimental conditions (at 18 degrees C and 10 degrees C). At the final experiment, rectal temperature was not significantly different between the two cold stress experimental conditions. Mean T(sk) decreased significantly during the first 3 h of immersion and then stabilized at a lower level at 10 degrees C (25.6 +/- 0.8 degrees C) than at 18 degrees C (29.3 +/- 0.9 degrees C). Other results demonstrate that the well-trained subjects developed effective physiological reactions. However, these reactions are consistently too low to counterbalance the heat losses induced by cold temperature conditions and long-duration immersion. This study shows that providing divers with thermal protection is efficient for a long-duration immersion from a medical point of view, but not from an operational one when skin extremities were taken into account.

  6. The Effects of In-Hospital Intravenous Cold Saline in Postcardiac Arrest Patients Treated with Targeted Temperature Management.

    PubMed

    Suppogu, Nissi; Panza, Gregory A; Kilic, Sena; Gowdar, Shreyas; Kallur, Kamala R; Jayaraman, Ramya; Lundbye, Justin; Fernandez, Antonio B

    2018-03-01

    Recent data suggest that rapid infusion of intravenous (IV) cold saline for Targeted Temperature Management (TTM) after cardiac arrest is associated with higher rates of rearrest, pulmonary edema, and hypoxia, with no difference in neurologic outcomes or survival when administered by Emergency Medical Services. We sought to determine the effects of IV cold saline administration in the hospital setting in postcardiac arrest patients to achieve TTM and its effect on clinical parameters and neurologic outcomes. A cohort of 132 patients who completed TTM after cardiac arrest in a single institution was retrospectively studied. Patients who did not receive cold saline were matched by age, gender, Glasgow coma scale, downtime, and presenting rhythm to patients who received cold saline. Demographics, cardiac rearrest, diuretic use, time to target temperature, and Cerebral Performance Category (CPC) scores were recorded among other variables. Patients who received cold saline achieved target temperature sooner (280 vs. 345 minutes, p = 0.05), had lower lactate levels on day 1 (4.2 ± 3.5 mM vs. 6.0 ± 4.9 mM, p = 0.019) and day 2 (1.3 ± 2.2 mM vs. 2.2 ± 3.2 mM, p = 0.046), increased incidence of pulmonary edema (51.5% vs. 31.8%, p = 0.006), and increased diuretic utilization (63.6% vs. 42.4%, p = 0.014). There was no significant difference in cardiac rearrest, arterial oxygenation, and CPC scores (ps > 0.05). Infusion of IV cold saline is associated with shorter time to target temperature, increased incidence of pulmonary edema, and diuretic use, with no difference in cardiac rearrest, survival, and neurologic outcomes.

  7. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.

    PubMed

    Bilyk, Kevin T; Cheng, C-H Christina

    2014-12-01

    Through evolution in the isolated, freezing (-1.9°C) Southern Ocean, Antarctic notothenioid fish have become cold-adapted as well as cold-specialized. Notothenioid cold specialization is most evident in their limited tolerance to heat challenge, and an apparent loss of the near universal inducible heat shock (HSP70) response. Beyond these it remains unclear how broadly cold specialization pervades the underlying tissue-wide cellular responses. We report the first analysis of massively parallel RNA sequencing (RNA-seq) to identify gene expression changes in the liver in response to elevated body temperature of a high-latitude Antarctic nototheniid, the highly cold-adapted and cold-specialized cryopelagic bald notothen, Pagothenia borchgrevinki. From a large (14,873) mapped set of qualified, annotated liver transcripts, we identified hundreds of significantly differentially expressed genes following two and four days of 4°C exposure, suggesting substantial transcriptional reorganization in the liver when body temperature was raised 5°C above native water temperature. Most notably, and in sharp contrast to heat stressed non-polar fish species, was a widespread down-regulation of nearly all classes of molecular chaperones including HSP70, as well as polyubiquitins that are associated with proteosomal degradation of damaged proteins. In parallel, genes involved in the cell cycle were down-regulated by day two of 4°C exposure, signifying slowing cellular proliferation; by day four, genes associated with transcriptional and translational machineries were down-regulated, signifying general slowing of protein biosynthesis. The log2 fold differential transcriptional changes are generally of small magnitudes but significant, and in total portray a broad down turn of cellular activities in response to four days of elevated body temperature in the cold-specialized bald notothen. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients' temperatures in prehospital emergency care - an intervention study.

    PubMed

    Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger

    2015-01-01

    Background The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients' exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients' temperatures in the prehospital emergency care. Methods A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Results Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, p<0.001). At arrival, finger, ear and compartment air temperature showed no statistical significant difference between groups. Mean transport time was approximately 15 minutes. Conclusions The use of active heat from underneath increases the patients' thermal comfort and may prevent the negative consequences of cold stress.

  9. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in prehospital emergency care – an intervention study

    PubMed Central

    Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger

    2015-01-01

    Background The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients’ exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in the prehospital emergency care. Methods A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Results Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, p<0.001). At arrival, finger, ear and compartment air temperature showed no statistical significant difference between groups. Mean transport time was approximately 15 minutes. Conclusions The use of active heat from underneath increases the patients’ thermal comfort and may prevent the negative consequences of cold stress. PMID:26374468

  10. Infrared thermal imaging as a method to evaluate heat loss in newborn lambs.

    PubMed

    Labeur, L; Villiers, G; Small, A H; Hinch, G N; Schmoelzl, S

    2017-12-01

    Thermal imaging technology has been identified as a potential method for non-invasive study of thermogenesis in the neonatal lamb. In comparison to measurement of the core body temperature, infrared thermography may observe thermal loss and thermogenesis linked to subcutaneous brown fat depots. This study aimed to identify a suitable method to measure heat loss in the neonatal lamb under a cold challenge. During late pregnancy (day 125), ewes were subjected to either shearing (n=15) or mock handling (sham-shorn for 2min mimicking the shearing movements) (n=15). Previous studies have shown an increase in brown adipose tissue deposition in lambs born to ewes shorn during pregnancy and we hypothesized that the shearing treatment would impact thermoregulatory capacities in newborn lambs. Lambs born to control ewes (n=14; CONTROL) and shorn ewes (n=13; SHORN) were subjected to a cold challenge of 1h duration at 4h after birth. During the cold challenge, thermography images were taken every 10min, from above, at a fixed distance from the dorsal midline. On each image, four fixed-size areas were identified (shoulder, mid loin, hips and rump) and the average and maximum temperatures of each recorded. In all lambs, body surface temperature decreased over time. Overall the SHORN lambs appeared to maintain body surface temperature better than CONTROL lambs, while CONTROL lambs appeared to have higher core temperature. At 30min post cold challenge SHORN lambs tended to have higher body surface temperatures than lambs (P=0.0474). Both average and maximum temperatures were highest at the hips. Average temperature was lowest at the shoulder (P<0.05), while maximum temperatures were lowest at both shoulder and rump (P<0.005). These results indicate that lambs born to shorn ewes maintained their radiated body surface temperature better than CONTROL lambs. In conjunction with core temperature changes under cold challenge, this insight will allow us to understand whether increased body surface temperature contributes to increased overall heat loss or whether increased body surface temperature is indeed a mechanism contributing to maintenance of core body temperature under cold challenge conditions. This study has confirmed the utility of infrared thermography images to capture and identify different levels of thermoregulatory capacity in newborn lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response.

    PubMed

    Dahlsten, Elias; Isokallio, Marita; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.

  12. Effect of Cold Rolling and Heat Treatment on Microstructure and Mechanical Properties of Ti-4Al-1Mn Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Gaur, Rishi; Gupta, R. K.; AnilKumar, V.; Banwait, S. S.

    2018-05-01

    Mechanical behavior of Ti-4Al-1Mn titanium alloy has been studied in annealed, cold-rolled and heat-treated conditions. Room temperature tensile strength as well as % elongation has been found to be low with increasing amount of cold rolling. Lowering of strength in cold worked condition is attributed to premature failure. However, the same has been mitigated after heat treatment. Significant effect of cooling media (air and water) from heat treatment temperature on microstructure was not found except for the degree of fineness of α plates. Optimum properties (strength as well as ductility) were exhibited by samples subjected to 15% cold rolling and heat treatment below β transus temperature, which can be attributed to presence of recrystallized microstructure. In cold worked condition, the microstructure shows fine fragmented α plates/Widmanstätten morphology with high dislocation density along with a large amount of strain fields and twinning, which gets transformed to recrystallized equiaxed microstructure and with plate-like morphology after near β heat treatment. Prior cold work is found to have a significant effect on mechanical properties supported by evolution of microstructure. Twinning is found to be assisting in deformation as well as in recrystallization through the formation of deformation and annealing twins during cold working and heat treatment. Fracture analysis of the tested sample with prior cold work and heat-treated condition revealed quasi-ductile failure as compared to only ductile failure features seen for samples heat treated without prior cold work.

  13. Comparison of Cold Water Sponging and Acetaminophen in Control of Fever Among Children Attending a Tertiary Hospital in South Nigeria

    PubMed Central

    Aluka, Tony M.; Gyuse, Abraham N.; Udonwa, Ndifreke E.; Asibong, Udeme E.; Meremikwu, Martin M.; Oyo-Ita, Angela

    2013-01-01

    Background: A wide range of childhood illnesses are accompanied by fever, leading to varied attempts at treatment by caregivers at home before coming to a hospital. Common modalities of treatment include use of antipyretics and physical methods such as cold water sponging, fanning and removal of clothing. These treatment modalities have been received with varied attitudes among physicians and the scientific community. This study was to assess the efficacy of both modalities in first-line management of fever in our area. Objectives: The main aim of the study is to compare the effectiveness of cold water sponging with that of oral paracetamol in the treatment of fever in children attending the University of Calabar Teaching Hospital, Calabar. Subjects and Methods: This is a randomized clinical trial. Eighty-eight children aged 12-120 months who presented to the Children Outpatient Clinic (CHOP) and the Children Emergency Room (CHER) of University of Calabar Teaching Hospital, Calabar, with acute febrile illness and axillary temperatures spanning ≥ 38.0-40.0°C. All children within the age limit whose caregivers gave consent were recruited into the study and were randomized to receive either cold water sponging or oral paracetamol. Axillary temperature, pulse rate, respiratory rate and assessment of discomforts (crying, shivering, goose pimples and convulsions) were recorded every 30 min for 2 h. The results were analyzed using the SPSS statistical software and have been presented in the tables. Results: Cold water sponging was very effective in temperature reduction within the first 30 min, with 29 (70.73%) having their temperature reduced to within normal limits. This declined to 12 (29.26%) at 60 min and 4 (10.53%) at 120 min, with the mean temperature differences from the baseline value following the same trends (1.63°C by 30 min, 0.91°C by 60 min and 0.39°C by 120 min). When compared with paracetamol, cold water sponging was more effective in temperature reduction within the first 30 min (P = 0.000), with the difference in effect at 60 min less significant between these two groups (P = 0.229). Paracetamol demonstrated a gradual and sustained reduction in temperature with the proportions of afebrile children in this group increasing from 7 (16.27%) at 30 min to 33 (78.57%) at 120 min. The mean temperature differences from the baseline value also showed the same trend. Children who received cold water sponging had more discomforts compared with those who received only oral paracetamol. Conclusions: It is concluded that cold water sponging, although producing rapid reduction in temperature compared with paracetamol, has effects that last only for a short time. Paracetamol on the other hand produces a gradual but sustained effect. The discomforts experienced should not be a limiting factor to the use of cold water sponging in reducing the body temperature of febrile children. Cold water sponging is safe and its use by mothers and primary caregivers should be encouraged while preparing to take the child to the nearest health facility for definitive treatment of the underlying cause of the fever. PMID:24479070

  14. Comparison of cold water sponging and acetaminophen in control of Fever among children attending a tertiary hospital in South Nigeria.

    PubMed

    Aluka, Tony M; Gyuse, Abraham N; Udonwa, Ndifreke E; Asibong, Udeme E; Meremikwu, Martin M; Oyo-Ita, Angela

    2013-04-01

    A wide range of childhood illnesses are accompanied by fever, leading to varied attempts at treatment by caregivers at home before coming to a hospital. Common modalities of treatment include use of antipyretics and physical methods such as cold water sponging, fanning and removal of clothing. These treatment modalities have been received with varied attitudes among physicians and the scientific community. This study was to assess the efficacy of both modalities in first-line management of fever in our area. The main aim of the study is to compare the effectiveness of cold water sponging with that of oral paracetamol in the treatment of fever in children attending the University of Calabar Teaching Hospital, Calabar. This is a randomized clinical trial. Eighty-eight children aged 12-120 months who presented to the Children Outpatient Clinic (CHOP) and the Children Emergency Room (CHER) of University of Calabar Teaching Hospital, Calabar, with acute febrile illness and axillary temperatures spanning ≥ 38.0-40.0°C. All children within the age limit whose caregivers gave consent were recruited into the study and were randomized to receive either cold water sponging or oral paracetamol. Axillary temperature, pulse rate, respiratory rate and assessment of discomforts (crying, shivering, goose pimples and convulsions) were recorded every 30 min for 2 h. The results were analyzed using the SPSS statistical software and have been presented in the tables. Cold water sponging was very effective in temperature reduction within the first 30 min, with 29 (70.73%) having their temperature reduced to within normal limits. This declined to 12 (29.26%) at 60 min and 4 (10.53%) at 120 min, with the mean temperature differences from the baseline value following the same trends (1.63°C by 30 min, 0.91°C by 60 min and 0.39°C by 120 min). When compared with paracetamol, cold water sponging was more effective in temperature reduction within the first 30 min (P = 0.000), with the difference in effect at 60 min less significant between these two groups (P = 0.229). Paracetamol demonstrated a gradual and sustained reduction in temperature with the proportions of afebrile children in this group increasing from 7 (16.27%) at 30 min to 33 (78.57%) at 120 min. The mean temperature differences from the baseline value also showed the same trend. Children who received cold water sponging had more discomforts compared with those who received only oral paracetamol. It is concluded that cold water sponging, although producing rapid reduction in temperature compared with paracetamol, has effects that last only for a short time. Paracetamol on the other hand produces a gradual but sustained effect. The discomforts experienced should not be a limiting factor to the use of cold water sponging in reducing the body temperature of febrile children. Cold water sponging is safe and its use by mothers and primary caregivers should be encouraged while preparing to take the child to the nearest health facility for definitive treatment of the underlying cause of the fever.

  15. Influence of Locally Derived Recharge on the Water Quality and Temperature of Springs in Hot Springs National Park, Arkansas

    USGS Publications Warehouse

    Bell, Richard W.; Hays, Phillip D.

    2007-01-01

    The hot springs of Hot Springs National Park consist of a mixture of water from two recharge components: a primary hot-water component and a secondary cold-water component. Widespread distribution of fractures enables mixing of the hot- and cold-water components of flow near the discharge area for the springs. Urbanization in the area near the hot springs of Hot Springs National Park has increased the potential for degradation of the quality of surface-water runoff and locally derived ground-water recharge to the hot springs. Previous studies by the U.S. Geological Survey have indicated that water from some cold-water springs and wells in the vicinity of Hot Springs, Arkansas, showed evidence of contamination and that water from locally derived cold-water recharge might contribute 25 percent of the total flow to the hot springs after storms. Water samples were collected during base-flow conditions at nine hot springs and two cold-water springs in September 2000. Nine hot springs and one cold-water spring were resampled in October 2001 after a storm that resulted in a measurable decrease in water temperature in selected hot springs. Water samples were analyzed for a variety of dissolved chemical constituents (nutrients, major ions, trace elements, pesticides, semivolatile compounds, isotopes, and radiochemicals), physical properties, field measurements, and bacteria. Comparison of analyses of samples collected during base-flow conditions from the springs in 2000 and during a storm event in 2001 with the results from earlier studies dating back to the late 1800's indicates that little change in major, minor, and trace constituent chemistry has occurred and that the water continues to be of excellent quality. Water-quality data show distinguishable differences in water chemistry of the springs during base-flow and stormflow conditions, indicating changing input of cold-water recharge relative to hot-water recharge. Silica, total dissolved solids, strontium, barium, and sulfate show statistically significant differences between the median values of base-flow and stormflow samples. While variations in these constituents do not degrade water quality, the differences do provide evidence of variability in the factors controlling water quality of the hot springs and show that water quality is influenced by the locally derived, cold-water component of flow to the springs. Water temperature was measured continuously (3-minute intervals) between August 2000 and October 2002 at four hot springs. Continuous water-temperature data at the springs provide no indication of persistent long-term change in water temperature through time. Short time-scale water-temperature decreases occur in response to mixing of hot-springs water with locally derived recharge after storm events; the magnitude of these decreases varied inversely with the amount of rainfall. Maximum decreases in water temperature for specific storms had a non-linear relation with the amount of precipitation measured for the events. Response time for water temperature to begin decreasing from baseline temperature as a result of storm recharge was highly variable. Some springs began decreasing from baseline temperature as quickly as 1 hour after the beginning of a storm; one spring had an 8-hour minimum response time to show a storm-related temperature decrease. Water-quality, water-temperature, isotopic, and radiochemical data provide multiple lines of evidence supporting the importance of the contribution of cold-water recharge to hot springs. All the springs sampled indicated some measure of influence from local recharge. Binary mixing models using silica and total dissolved solids indicate that cold-water recharge from stormflow contributes an estimated 10 to 31 percent of the flow of hot springs. Models using water temperature indicate that cold-water recharge from stormflow contributes an estimated 1 to 35 percent of the flow of the various hot springs. Alth

  16. Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress.

    PubMed

    Dutilleul, Christelle; Chavarria, Heidy; Rézé, Nathalie; Sotta, Bruno; Baudouin, Emmanuel; Guillas, Isabelle

    2015-12-01

    Although sphingolipids emerged as important signals for plant response to low temperature, investigations have been limited so far to the function of long-chain base intermediates. The formation and function of ceramide phosphates (Cer-Ps) in chilled Arabidopsis were explored. Cer-Ps were analysed by thin layer chromatography (TLC) following in vivo metabolic radiolabelling. Ceramide kinase activity, gene expression and growth phenotype were determined in unstressed and cold-stressed wild type (WT) and Arabidopsis ceramide kinase mutant acd5. A rapid and transient formation of Cer-P occurs in cold-stressed WT Arabidopsis plantlets and cultured cells, which is strongly impaired in acd5 mutant. Although concomitant, Cer-P formation is independent of long-chain base phosphate (LCB-P) formation. No variation of ceramide kinase activity was measured in vitro in WT plantlets upon cold stress but the activity in acd5 mutant was further reduced by cold stress. At the seedling stage, acd5 response to cold was similar to that of WT. Nevertheless, acd5 seed germination was hypersensitive to cold and abscisic acid (ABA), and ABA-dependent gene expression was modified in acd5 seeds when germinated at low temperature. Our data involve for the first time Cer-P and ACD5 in low temperature response and further underline the complexity of sphingolipid signalling operating during cold stress. © 2015 John Wiley & Sons Ltd.

  17. Static and Fatigue Analysis of Wind Turbine Blades Subject to Cold Weather Conditions Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Lillo Gallardo, Patricio Andres

    Canada has aggressive targets for introducing wind energy across the country, but also faces challenges in achieving these goals due to the harsh Canadian climate. One issue which has received little attention in other countries not experiencing these extremes is the behaviour of composite blades in winter conditions. The scope of the work presented is to analyze the static stresses and fatigue response in cold climates using finite element models of the blade. The work opens with a quantification of the extremes of cold experienced in candidate Canadian wind turbine deployment locations. The thesis then narrows its focus to a consideration of the stresses in the root of the composite blades, specifically two common blade-hub connection methods: embedded root carrots and T-bolts. Finite element models of the root are proposed to properly simulate boundary conditions, applied loading and thermal stresses for a 1.5 MW wind turbine. It is shown that the blade root is strongly affected by the thermal stresses caused by the mismatch and orthotrophy of the coefficients of thermal expansion of the blade root constituents. Fatigue analysis of a blade is then presented using temperature dependent material properties including estimated fatigue coefficients.It was found that the natural frequencies of a 1.5 MW wind turbine blade are not significantly altered at cold temperatures. Additionally, cold temperatures slightly increase stresses in the composite blade skin when the blade is loaded, due to an increase in stiffness. Cold temperatures also lead to higher cyclic flapwise bending moments acting on the blade. However, this increase was found not to affect the lifetime fatigue damage. Finally, it was found that the cold climate as seen in Canada improves the fatigue strength of the saturated composite materials used in the blade. The predicted fatigue damage of the triaxial fabric and the spar cap layers in cold climates was therefore predicted to be half that of the fatigue damage at room temperature. This is caused solely by the temperature dependence of the fatigue coefficient b which requires further experimental verification to validate the numerical results of the current study.

  18. Hypothermia. An Educational Manual for Instruction of the Fleet Duty Corpsman Accompanying Personnel Performing Operations in Cold Water or Cold Weather

    DTIC Science & Technology

    1980-11-01

    been cases of epilepsy and dysphagia reported after recovery from severe hypothermia. These are extremely rare and thought to be due to some greater...temperatures are unsatisfactory since they are too peripheral; not close enough to the vital organs. Rectal and esophageal temperatures are the best...methods. Rectal temperatures very closely approximate the core temperature owing to the rich blood supply of the area. Esophageal temperature is

  19. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis

    USDA-ARS?s Scientific Manuscript database

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...

  20. 7 CFR 305.16 - Cold treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Cold treatment schedules. 305.16 Section 305.16... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Cold Treatments § 305.16 Cold treatment schedules. Treatment schedule Temperature ( °F) Exposure period T107-a 1 34 or below 14 days. 35 or below 16...

  1. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees

    Treesearch

    Glenn T. Howe; Sally N. Aitken; David B. Neale; Kathleen D. Jermstad; Nicholas C. Wheeler; Tony H.H Chen

    2003-01-01

    Adaptation to winter cold in temperate and boreal trees involves complex genetic, physiological, and developmental processes. Genecological studies demonstrate the existence of steep genetic clines for cold adaptation traits in relation to environmental (mostly temperature related) gradients. Population differentiation is generally stronger for cold adaptation traits...

  2. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)

    1992-01-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  3. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    NASA Astrophysics Data System (ADS)

    Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.

    1992-06-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  4. Human Physiological Responses to Acute and Chronic Cold Exposure

    NASA Technical Reports Server (NTRS)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  5. [Effects of low temperature on dormancy breaking and growth after planting in bulbs of Tulipa edulis].

    PubMed

    Yang, Ying; Zhu, Zai-Biao; Guo, Qiao-Sheng; Miao, Yuan-Yuan; Ma, Hong-Liang; Yang, Xiao-Hua

    2015-01-01

    The effect of low temperature storage on dormancy breaking, sprouting and growth after planting of Tulipa edulis was studied. The results showed that starch content and activity of amylases significantly decreased during 10 weeks of cold storage, soluble protein content raised at first then decreased, and the peak appeared at the 6th week. However, total soluble sugar content which in- creased slowly at first than rose sharply and reducing sugar content increased during the storage duration. The bulbs with cold storage treatment rooted in the 6th week, which was about 2 weeks earlier than room temperature storage, but there were less new roots in the late period of storage. After stored at a low temperature, bud lengths were longer than that with room temperature treatment. Cold storage treatment could promote earlier emergence, shorten germination time, prolong growth period and improve the yield of bulb, but rarely affect the emergence rate. It was not beneficial to flowering and fruiting. The results indicated that 6-8 weeks of cold storage was deemed to be the key period of dormancy breaking preliminary.

  6. 75 FR 68719 - Endangered and Threatened Wildlife and Plants; Emergency Rule To Establish a Manatee Refuge in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... Mexico water temperatures drop to about 68 [deg]F (20 [deg]C), manatees looking for warmer water will... shelter, rest, and feed free from harassment, manatees are at risk when exposed to cold temperatures for... harassment due to the cold temperatures that confine them to Kings Bay. Designating manatee protection areas...

  7. Expanding NevCAN capabilities: monitoring cold air drainage flow along a narrow wash within a Montane to PJ ecotone

    NASA Astrophysics Data System (ADS)

    Bird, B. M.; Devitt, D.

    2012-12-01

    Cold air drainage flows are a naturally occurring physical process of mountain systems. Plant communities that exist in cold air drainage basins respond to these localized cold air trends, and have been shown to be decoupled from larger global climate weather systems. The assumption that air temperature decreases with altitude is violated within these systems and climate model results based on this assumption would ultimately be inaccurate. In arid regions, high radiation loads lead to significant long wave radiation being emitted from the ground later in the day. As incoming radiation ceases, the surface very quickly loses energy through radiative processes, leading to surface inversions and enhanced cold air drainage opportunities. This study is being conducted in the Mojave desert on Sheep Mountain located between sites 3 and 4 of the NSF EPSCoR network. Monitoring of cold air drainage was initiated in September of 2011within a narrow ravine located between the 2164 and 2350 meter elevation. We have installed 25 towers (5 towers per location situated at the central low point in a ravine and at equal distances up the sides of the ravine on both the N and S facing slopes) to assess air temperatures from 0.1 meters to a height of 3 meters at 25m intervals. Our goal is to better understand the connection between cold air movement and plant physiological response. The species monitored in this study include: Pinus ponderosa (common name: Ponderosa Pine), Pinus pinyon (Pinyon Pine), Juniperus osteosperma (Utah juniper), Cercocarpus intricatus (Mountain Mahogany) and Symphoricarpos (snowberry). Hourly air temperature measurements within the wash are being captured from 100 ibuttons placed within PVC solar radiation shields. We are also developing a modeling approach to assess the three dimensional movement of cold air over time by incorporating wind vectors captured from 5 2D sonic anemometers. Wind velocities will be paired with air temperatures to better understand the thermal dynamics of cold air drainage. Granier probes were installed in the five test species to monitor transpirational flow relative to cold air movement. Mid day soil - plant - water measurements are also being taken on a monthly basis during the growing season at all locations. Measurements include: leaf xylem water potential, stomata conductance, chlorophyll index readings, canopy minus ambient temperatures and surface soil moisture contents. To date the monitoring system has revealed cold air drainage occurring during periods of every month. We will report the physiological response of the five plant species, with emphasis on assessing the linkages with cold air movement.

  8. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    NASA Astrophysics Data System (ADS)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  9. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  10. Cold-induced retrotransposition of fish LINEs.

    PubMed

    Chen, Shue; Yu, Mengchao; Chu, Xu; Li, Wenhao; Yin, Xiujuan; Chen, Liangbiao

    2017-08-20

    Classes of retrotransposons constitute a large portion of metazoan genome. There have been cases reported that genomic abundance of retrotransposons is correlated with the severity of low environmental temperatures. However, the molecular mechanisms underlying such correlation are unknown. We show here by cell transfection assays that retrotransposition (RTP) of a long interspersed nuclear element (LINE) from an Antarctic notothenioid fish Dissostichus mawsoni (dmL1) could be activated by low temperature exposure, causing increased dmL1 copies in the host cell genome. The cold-induced dmL1 propagation was demonstrated to be mediated by the mitogen-activated protein kinases (MAPK)/p38 signaling pathway, which is activated by accumulation of reactive oxygen species (ROS) in cold-stressed conditions. Surprisingly, dmL1 transfected cells showed an increase in the number of viable cells after prolonged cold exposures than non-transfected cells. Features of cold inducibility of dmL1 were recapitulated in LINEs of zebrafish origin both in cultured cell lines and tissues, suggesting existence of a common cold-induced LINE amplification in fishes. The findings reveal an important function of LINEs in temperature adaptation and provid insights into the MAPK/p38 stress responsive pathway that shapes LINE composition in fishes facing cold stresses. Copyright © 2017. Published by Elsevier Ltd.

  11. Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei-dong

    The room temperature creep behavior and deformation mechanisms of a Ti–Nb–Ta–Zr–O alloy, which is also called “gum metal”, were investigated with the nanoindentation creep and conventional creep tests. The microstructure was observed with electron backscattered diffraction analysis (EBSD) and transmission electron microscopy (TEM). The results show that the creep stress exponent of the alloy is sensitive to cold deformation history of the alloy. The alloy which was cold swaged by 85% shows high creep resistance and the stress exponent is approximately equal to 1. Microstructural observation shows that creep process of the alloy without cold deformation is controlled by dislocationmore » mechanism. The stress-induced α' martensitic phase transformation also occurs. The EBSD results show that the grain orientation changes after the creep tests, and thus, the creep of the cold-worked alloy is dominated by the shear deformation of giant faults without direct assistance from dislocations. - Highlights: •Nanoindentation was used to investigate room temperature creep behavior of gum metal. •The creep stress exponent of gum metal is sensitive to the cold deformation history. •The creep stress exponent of cold worked gum metal is approximately equal to 1. •The creep of the cold-worked gum metal is governed by the shear deformation of giant faults.« less

  12. Preliminary investigation of thermal behaviour of PCM based latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Pop, Octavian G.; Fechete Tutunaru, Lucian; Bode, Florin; Balan, Mugur C.

    2018-02-01

    Solid-liquid phase change is used to accumulate and release cold in latent heat thermal energy storage (LHTES) in order to reduce energy consumption of air cooling system in buildings. The storing capacity of the LHTES depends greatly on the exterior air temperatures during the summer nights. One approach in intensifying heat transfer is by increasing the air's velocity. A LHTES was designed to be integrated in the air cooling system of a building located in Bucharest, during the month of July. This study presents a numerical investigation concerning the impact of air inlet temperatures and air velocity on the formation of solid PCM, on the cold storing capacity and energy consumption of the LHTES. The peak amount of accumulated cold is reached at different air velocities depending on air inlet temperature. For inlet temperatures of 14°C and 15°C, an increase of air velocity above 50% will not lead to higher amounts of cold being stored. For Bucharest during the hottest night of the year, a 100 % increase in air velocity will result in 5.02% more cold being stored, at an increase in electrical energy consumption of 25.30%, when compared to the reference values.

  13. Identification of Arabidopsis mutants with altered freezing tolerance.

    PubMed

    Perea-Resa, Carlos; Salinas, Julio

    2014-01-01

    Low temperature is an important determinant in the configuration of natural plant communities and defines the range of distribution and growth of important crops. Some plants, including Arabidopsis, have evolved sophisticated adaptive mechanisms to tolerate low and freezing temperatures. Central to this adaptation is the process of cold acclimation. By means of this process, many plants from temperate regions are able to develop or increase their freezing tolerance in response to low, nonfreezing temperatures. The identification and characterization of factors involved in freezing tolerance are crucial to understand the molecular mechanisms underlying the cold acclimation response and have a potential interest to improve crop tolerance to freezing temperatures. Many genes implicated in cold acclimation have been identified in numerous plant species by using molecular approaches followed by reverse genetic analysis. Remarkably, however, direct genetic analyses have not been conveniently exploited in their capacity for identifying genes with pivotal roles in that adaptive response. In this chapter, we describe a protocol for evaluating the freezing tolerance of both non-acclimated and cold-acclimated Arabidopsis plants. This protocol allows the accurate and simple screening of mutant collections for the identification of novel factors involved in freezing tolerance and cold acclimation.

  14. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes.

    PubMed

    Ronges, Daria; Walsh, Jillian P; Sinclair, Brent J; Stillman, Jonathon H

    2012-06-01

    Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 h at 8°C enhanced cold tolerance during a 1 h exposure to -2°C relative to crabs acclimated to 18°C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm- and cold-acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12 h of thermal acclimation. Genes strongly upregulated in warm-acclimated crabs represented immune response and extracellular/intercellular processes, suggesting that warm-acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold-acclimated crabs included many that are involved in glucose production, suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold-acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene-expression-related changes in homeostasis begin within 12 h, the length of a tidal cycle.

  15. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger

    NASA Astrophysics Data System (ADS)

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P < 0.001), preferred hot thermal stimulation ( P = 0.006), and wore heavier clothing during daily life ( P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures ( T max) ( P = 0.040), smaller amplitude ( P = 0.029), and delayed onset time of CIVD ( P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  16. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger.

    PubMed

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance (P < 0.001), preferred hot thermal stimulation (P = 0.006), and wore heavier clothing during daily life (P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures (T max) (P = 0.040), smaller amplitude (P = 0.029), and delayed onset time of CIVD (P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude (P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  17. Effect of different shipping temperatures (∼22 °C vs. ∼7 °C) and holding media on blastocyst development after overnight holding of immature equine cumulus-oocyte complexes.

    PubMed

    Diaw, Mouhamadou; Salgado, Renato M; Canesin, Heloísa S; Gridley, Nell; Hinrichs, Katrin

    2018-04-15

    Intracytoplasmic sperm injection (ICSI) is an important tool for equine embryo production in both clinical and research settings. In clinical ICSI programs, immature equine cumulus-oocyte complexes (COCs) are often collected at the mare's location and shipped to the ICSI laboratory. To simplify shipment and aid scheduling of subsequent procedures, COCs can be held overnight at room temperature (∼22 °C) before placement into maturation culture, with no detrimental effect on meiotic or developmental competence. A recent study indicated that it might be possible to hold COCs overnight at cold (∼4 °C) temperatures. If so, this might allow longer holding periods that would ease shipping requirements. In this study, we compared oocyte maturation rates, as well as cleavage and blastocyst rates after ICSI, for COCs held at either room or cold temperatures overnight before the onset of in vitro maturation. In Exp. 1, COCs were shipped overnight in a commercial embryo holding medium, ViGRO (Vg), in insulated containers designed to hold at either room temperature (RT, ∼22 °C) or cold temperatures (Cold, ∼7 °C). Subsequent rates of in vitro maturation, cleavage and blastocyst formation were significantly higher in the RT treatment (39%, 90% and 41%, respectively) than in the Cold treatment (23%, 60% and 17%, respectively, P < .05). In Exp. 2, we compared Vg medium with a second commercial embryo holding medium, SYNGRO (Sy). There was no significant difference between Vg and Sy groups in any evaluated parameter within either RT or Cold treatments. Within each medium group and for both media combined, the rates of in vitro maturation, cleavage and blastocyst formation were significantly higher in the RT treatment (42%, 81% and 42%, respectively for the combined media) than in the Cold treatment (29%, 54% and 10%, respectively for the combined media, P < .05). We conclude that shipment of immature equine COCs at cold temperatures (∼7 °C) is detrimental to subsequent in vitro maturation and embryo production. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Metabolite Profiling of adh1 Mutant Response to Cold Stress in Arabidopsis

    PubMed Central

    Song, Yuan; Liu, Lijun; Wei, Yunzhu; Li, Gaopeng; Yue, Xiule; An, Lizhe

    2017-01-01

    As a result of global warming, vegetation suffers from repeated freeze-thaw cycles caused by more frequent short-term low temperatures induced by hail, snow, or night frost. Therefore, short-term freezing stress of plants should be investigated particularly in light of the current climatic conditions. Alcohol dehydrogenase (ADH) plays a central role in the metabolism of alcohols and aldehydes and it is a key enzyme in anaerobic fermentation. ADH1 responds to plant growth and environmental stress; however, the function of ADH1 in the response to short-term freezing stress remains unknown. Using real-time quantitative fluorescence PCR, the expression level of ADH1 was analyzed at low temperature (4°C). The lethal temperature was calculated based on the electrolyte leakage tests for both ADH1 deletion mutants (adh1) and wild type (WT) plants. To further investigate the relationship between ADH1 and cold tolerance in plants, low-Mr polar metabolite analyses of Arabidopsis adh1 and WT were performed at cold temperatures using gas chromatography-mass spectrometry. This investigation focused on freezing treatments (cold acclimation group: −6°C for 2 h with prior 4°C for 7 d, cold shock group: −6°C for 2 h without cold acclimation) and recovery (23°C for 24 h) with respect to seedling growth at optimum temperature. The experimental results revealed a significant increase in ADH1 expression during low temperature treatment (4°C) and at a higher lethal temperature in adh1 compared to that in the WT. Retention time indices and specific mass fragments were used to monitor 263 variables and annotate 78 identified metabolites. From these analyses, differences in the degree of metabolite accumulation between adh1 and WT were detected, including soluble sugars (e.g., sucrose) and amino acids (e.g., asparagine). In addition, the correlation-based network analysis highlighted some metabolites, e.g., melibiose, fumaric acid, succinic acid, glycolic acid, and xylose, which enhanced connectedness in adh1 network under cold chock. When considered collectively, the results showed that adh1 possessed a metabolic response to freezing stress and ADH1 played an important role in the cold stress response of a plant. These results expands our understanding of the short-term freeze response of ADH1 in plants. PMID:28123394

  19. COLD-PCR: improving the sensitivity of molecular diagnostics assays

    PubMed Central

    Milbury, Coren A; Li, Jin; Liu, Pingfang; Makrigiorgos, G Mike

    2011-01-01

    The detection of low-abundance DNA variants or mutations is of particular interest to medical diagnostics, individualized patient treatment and cancer prognosis; however, detection sensitivity for low-abundance variants is a pronounced limitation of most currently available molecular assays. We have recently developed coamplification at lower denaturation temperature-PCR (COLD-PCR) to resolve this limitation. This novel form of PCR selectively amplifies low-abundance DNA variants from mixtures of wild-type and mutant-containing (or variant-containing) sequences, irrespective of the mutation type or position on the amplicon, by using a critical denaturation temperature. The use of a lower denaturation temperature in COLD-PCR results in selective denaturation of amplicons with mutation-containing molecules within wild-type mutant heteroduplexes or with a lower melting temperature. COLD-PCR can be used in lieu of conventional PCR in several molecular applications, thus enriching the mutant fraction and improving the sensitivity of downstream mutation detection by up to 100-fold. PMID:21405967

  20. The study on a gas-coupled two-stage stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Chen, L. B.; Zhu, X. S.; Pan, C. Z.; Guo, J.; Wang, J. J.; Zhou, Y.

    2017-12-01

    A two-stage gas-coupled Stirling-type pulse tube cryocooler (SPTC) driven by a linear dual-opposed compressor has been designed, manufactured and tested. Both of the stages adopted coaxial structure for compactness. The effect of a cold double-inlet at the second stage on the cooling performance was investigated. The test results show that the cold double-inlet will help to achieve a lower cooling temperature, but it is not conducive to achieving a higher cooling capacity. At present, without the cold double-inlet, the second stage has achieved a no-load temperature of 11.28 K and a cooling capacity of 620 mW/20 K with an input electric power of 450 W. With the cold double-inlet, the no-load temperature is lowered to 9.4 K, but the cooling capacity is reduced to 400 mW/20 K. The structure of the developed cryocooler and the influences of charge pressure, operating frequency and hot end temperature will also be introduced in this paper.

  1. Global Expression Profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi

    PubMed Central

    Chawade, Aakash; Lindlöf, Angelica; Olsson, Björn; Olsson, Olof

    2013-01-01

    Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. PMID:24349120

  2. A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance.

    PubMed

    Wang, Yi; Hua, Jian

    2009-10-01

    Temperature has a profound effect on plant growth and development. However, the molecular mechanisms underlying this regulation are not well understood. In particular, how moderate temperature variations are perceived and transduced inside the plant cells remains obscure. In this study, we analyzed transcriptional responses to a moderate decrease in temperature (cooling) in Arabidopsis thaliana. The cooling response involves a weaker and more transient induction of cold-induced genes, such as COR15a, than cold response. This induction probably accounts for the increase in freezing tolerance by cooling acclimation. Cooling also induces some defense response genes, and their induction, but not that of COR15a, requires the salicylic acid signaling pathway. Analysis of the regulation of COR15a reveals that cooling induction is mediated through the same C repeat/dehydration-responsive (CRT/DRE) element as cold induction. Furthermore, we identified a role for CBF1 and CBF4 in transducing signals of moderate decreases in temperature. It appears that variants of the CBF signaling cascade are utilized in cold and cooling responses, and a moderate decrease in temperature may invoke an adaptive response to prepare plants to cope with a more drastic decrease in temperature.

  3. Mortality risk attributable to high and low ambient temperature: a multicountry observational study

    PubMed Central

    Gasparrini, Antonio; Guo, Yuming; Hashizume, Masahiro; Lavigne, Eric; Zanobetti, Antonella; Schwartz, Joel; Tobias, Aurelio; Tong, Shilu; Rocklöv, Joacim; Forsberg, Bertil; Leone, Michela; De Sario, Manuela; Bell, Michelle L; Guo, Yue-Liang Leon; Wu, Chang-fu; Kan, Haidong; Yi, Seung-Muk; de Sousa Zanotti Stagliorio Coelho, Micheline; Saldiva, Paulo Hilario Nascimento; Honda, Yasushi; Kim, Ho; Armstrong, Ben

    2015-01-01

    Summary Background Although studies have provided estimates of premature deaths attributable to either heat or cold in selected countries, none has so far offered a systematic assessment across the whole temperature range in populations exposed to different climates. We aimed to quantify the total mortality burden attributable to non-optimum ambient temperature, and the relative contributions from heat and cold and from moderate and extreme temperatures. Methods We collected data for 384 locations in Australia, Brazil, Canada, China, Italy, Japan, South Korea, Spain, Sweden, Taiwan, Thailand, UK, and USA. We fitted a standard time-series Poisson model for each location, controlling for trends and day of the week. We estimated temperature–mortality associations with a distributed lag non-linear model with 21 days of lag, and then pooled them in a multivariate metaregression that included country indicators and temperature average and range. We calculated attributable deaths for heat and cold, defined as temperatures above and below the optimum temperature, which corresponded to the point of minimum mortality, and for moderate and extreme temperatures, defined using cutoffs at the 2·5th and 97·5th temperature percentiles. Findings We analysed 74 225 200 deaths in various periods between 1985 and 2012. In total, 7·71% (95% empirical CI 7·43–7·91) of mortality was attributable to non-optimum temperature in the selected countries within the study period, with substantial differences between countries, ranging from 3·37% (3·06 to 3·63) in Thailand to 11·00% (9·29 to 12·47) in China. The temperature percentile of minimum mortality varied from roughly the 60th percentile in tropical areas to about the 80–90th percentile in temperate regions. More temperature-attributable deaths were caused by cold (7·29%, 7·02–7·49) than by heat (0·42%, 0·39–0·44). Extreme cold and hot temperatures were responsible for 0·86% (0·84–0·87) of total mortality. Interpretation Most of the temperature-related mortality burden was attributable to the contribution of cold. The effect of days of extreme temperature was substantially less than that attributable to milder but non-optimum weather. This evidence has important implications for the planning of public-health interventions to minimise the health consequences of adverse temperatures, and for predictions of future effect in climate-change scenarios. Funding UK Medical Research Council. PMID:26003380

  4. Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster

    PubMed Central

    Williams, CM; Watanabe, M; Guarracino, MR; Ferraro, MB; Edison, AS; Morgan, TJ; Boroujerdi, AFB; Hahn, DA

    2015-01-01

    When ectotherms are exposed to low temperatures, they enter a cold-induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill-coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using NMR spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold-induced perturbations. The metabolites of cold-hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations. PMID:25308124

  5. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.

    PubMed

    George, Iniga S; Pascovici, Dana; Mirzaei, Mehdi; Haynes, Paul A

    2015-09-01

    Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of ingestion of cold and hot water on the course of thermal changes in the stomach and intestine

    NASA Technical Reports Server (NTRS)

    Batinkov, Y. L.

    1979-01-01

    With the use of a thermocouple and mirror galvanometer, calibrated before the experiment and after each test, it was found that the normal temperature in the esophagus is 0.1-0.4 C higher than in the oral cavity, the temperature in the duodenum is somewhat less than in the stomach, but higher with cholecystitis, duodenitis or gastritis, the temperature in the normal stomach equals or is somewhat higher than in the esophagus, and that the temperature of distended stomachs frequently is lower than in the esophagus. It was found that hot water is retained in the stomach longer than cold water, and that both hot and cold water are allowed to pass into the duodenum when the water temperature becomes approximately equal to that of the surrounding organs.

  7. Laboratory plasma with cold electron temperature of the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Dickson, Shannon; Robertson, Scott

    2009-10-01

    For the first time, plasma with cold electron temperatures less than 300K has been created continuously in the laboratory. The plasma is created in a cylindrical double-walled vacuum chamber in which the inner chamber (18cm in diameter and 30cm long) is wrapped in copper tubing through which vapor from liquid nitrogen flows, providing a cooling mechanism for the neutral gas. The inner chamber has two negatively-biased filaments for plasma generation and a platinum wire Langmuir probe for diagnostic measurements. Neutral gas pressures of 1.6mTorr and a total filament emission current of 2mA are used to obtain plasma densities near 4 x 10^8 cm-3. When carbon monoxide is used as the working gas, decreasing the neutral gas temperature also decreases the cold electron temperatures, yielding cold electrons with 21meV (240K) when the neutral CO is at 150K. The same experiment conducted with H2, He, or Ar results in a doubling of the cold electron temperatures, yielding 80meV (930K) when the neutral gas is at 150K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a nonzero electric dipole moment which increases the cross section for electron energy exchange. Nitric oxide, a dominant constituent of the ionosphere, has a similar dipole moment and collision cross section as carbon monoxide and is likely to be equally effective at cooling electrons.

  8. Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, Craig B.; Whiteman, Charles D.; Horel, John D.

    2003-06-01

    The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K)more » developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.« less

  9. Thales Cryogenics rotary cryocoolers for HOT applications

    NASA Astrophysics Data System (ADS)

    Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Freche, Sébastien

    2012-06-01

    Thales Cryogenics has an extensive background in delivering reliable linear and rotary coolers for military, civil and space programs. Recent work carried out at detector level enable to consider a higher operation temperature for the cooled detectors. This has a direct impact on the cooling power required to the cryocooler. In continuation of the work presented last year, Thales cryogenics has studied the operation and optimization of the rotary cryocoolers at high cold regulation temperature. In this paper, the performances of the Thales Cryogenics rotary cryocoolers at elevated cold regulation temperature will be presented. From these results, some trade-offs can be made to combine correct operation of the cryocooler on all the ambient operational range and maximum efficiency of the cryocooler. These trade-offs and the impact on MTTF of elevated cold regulation temperature will be presented and discussed. In correlation with the increase of the cold operation temperature, the cryocooler input power is significantly decreased. As a consequence, the cooler drive electronics own consumption becomes relatively important and must be reduced in order to minimize global input power to the cooling function (cryocooler and cooler drive electronics). Thales Cryogenics has developed a new drive electronics optimized for low input power requirements. In parallel, improvements on RM1 and RM2 cryocoolers have been defined and implemented. The main impacts on performances of these new designs will be presented. Thales cryogenics is now able to propose an efficient cooling function for application requiring a high cold regulation temperature including a range of tuned rotary coolers.

  10. Ice-Water Immersion and Cold-Water Immersion Provide Similar Cooling Rates in Runners With Exercise-Induced Hyperthermia

    PubMed Central

    Clements, Julie M.; Casa, Douglas J.; Knight, J. Chad; McClung, Joseph M.; Blake, Alan S.; Meenen, Paula M.; Gilmer, Allison M.; Caldwell, Kellie A.

    2002-01-01

    Objective: To assess whether ice-water immersion or cold-water immersion is the more effective treatment for rapidly cooling hyperthermic runners. Design and Setting: 17 heat-acclimated highly trained distance runners (age = 28 ± 2 years, height = 180 ± 2 cm, weight = 68.5 ± 2.1 kg, body fat = 11.2 ± 1.3%, training volume = 89 ± 10 km/wk) completed a hilly trail run (approximately 19 km and 86 minutes) in the heat (wet-bulb globe temperature = 27 ± 1°C) at an individually selected “comfortable” pace on 3 occasions 1 week apart. The random, crossover design included (1) distance run, then 12 minutes of ice-water immersion (5.15 ± 0.20°C), (2) distance run, then 12 minutes of cold-water immersion (14.03 ± 0.28°C), or (3) distance run, then 12 minutes of mock immersion (no water, air temperature = 28.88 ± 0.76°C). Measurements: Each subject was immersed from the shoulders to the hip joints for 12 minutes in a tub. Three minutes elapsed between the distance run and the start of immersion. Rectal temperature was recorded at the start of immersion, at each minute of immersion, and 3, 6, 10, and 15 minutes postimmersion. No rehydration occurred during any trial. Results: Length of distance run, time to complete distance run, rectal temperature, and percentage of dehydration after distance run were similar (P > .05) among all trials, as was the wet-bulb globe temperature. No differences (P > .05) for cooling rates were found when comparing ice-water immersion, cold-water immersion, and mock immersion at the start of immersion to 4 minutes, 4 to 8 minutes, and the start of immersion to 8 minutes. Ice-water immersion and cold-water immersion cooling rates were similar (P > .05) to each other and greater (P < .05) than mock immersion at 8 to 12 minutes, the start of immersion to 10 minutes, and the start of immersion to every other time point thereafter. Rectal temperatures were similar (P > .05) between ice-water immersion and cold-water immersion at the completion of immersion and 15 minutes postimmersion, but ice-water immersion rectal temperatures were less (P < .05) than cold-water immersion at 6 and 10 minutes postimmersion. Conclusions: Cooling rates were nearly identical between ice-water immersion and cold-water immersion, while both were 38% more effective in cooling after 12 minutes of immersion than the mock-immersion trial. Given the similarities in cooling rates and rectal temperatures between ice-water immersion and cold-water immersion, either mode of cooling is recommended for treating the hyperthermic individual. PMID:12937427

  11. Cold-induced bradycardia in man during sleep in Arctic winter nights

    NASA Astrophysics Data System (ADS)

    Buguet, A. G. C.

    1987-03-01

    Two young male Caucasians volunteered for a study on the effects of cold exposure during night sleep in winter in the Arctic. The 14-day experiment was divided in three consecutive periods, baseline (2 nights), cold exposure (10 night) and recovery (2 nights). Both baseline and recovery data were obtained in neutral thermal conditions in a laboratory. The subjects slept in a sleeping bag under an unheated tent during the cold exposure. Apart from polysomnographic and body temperature recordings, electrocardiograms were taken through a telemetric system for safety purposes. Heart rates were noted at 5-min intervals and averaged hourly. In both environmental conditions, heart rate decreased within the first two hours of sleep. Comparison of the data obtained during cold exposure vs. thermal neutrality revealed lower values of heart rate in the cold, while body temperatures remained within normal range. This cold-induced bradycardia supervening during night sleep is discussed in terms of the occurrence of a vagal reflex preventing central blood pressure to rise.

  12. Protracted effects of chronic stress on serotonin-dependent thermoregulation.

    PubMed

    Natarajan, Reka; Northrop, Nicole A; Yamamoto, Bryan K

    2015-01-01

    Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. The body temperature is controlled in part, by the medial preoptic area (mPOA) of the hypothalamus. To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress (CUS) paradigm produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 d of CUS. Four days after the last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10 °C were recorded. The CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that the CUS induced changes to the 5HTergic system alter mPOA function in thermoregulation. These findings help us to explain the mechanisms underlying chronic stress-induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed.

  13. Protracted effects of chronic stress on serotonin dependent thermoregulation

    PubMed Central

    Natarajan, Reka; Northrop, Nicole A.; Yamamoto, Bryan K.

    2016-01-01

    Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. Body temperature is controlled in part, by the medial preoptic area of the hypothalamus (mPOA). To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress paradigm (CUS) produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 days of CUS. Four days after last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10°C were recorded. CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that CUS induced changes to the 5HTergic system alters mPOA function in thermoregulation. These findings help explain mechanisms underlying chronic stress induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed. PMID:26414686

  14. Ambient temperature and neck EMG with +Gz loading on a trampoline.

    PubMed

    Sovelius, Roope; Oksa, Juha; Rintala, Harri; Huhtala, Heini; Siitonen, Simo

    2007-06-01

    Fighter pilots who are frequently exposed to severe cold ambient temperatures experience neck pain disabilities and occupational disorders more often than those who are not so exposed. We hypothesized that a cold-induced increase in muscle strain might lead to in-flight neck injuries. The aims of this study were to measure the level of cooling before takeoff and to determine muscle strain under Gz loading (0 to +4 Gz) at different temperatures. Test subjects' (n = 14) skin temperature (T(skin)) over the trapezoids was measured before the walk to the aircraft and again in the cockpit (air temperature -14 degrees C). The subjects then performed trampoline exercises in two different ambient temperatures (-2 degrees C and +21 degrees C) after a 30-min period at the respective temperatures. EMG activity of the sternocleidomastoid (SCM), cervical erector spinae (CES), trapezoid (TRA), thoracic erector spinae (TES) muscles, and Tskin of the SCM and TRA were measured. Tskin over the trapezoids decreased from 30.1 +/- 1.7 degrees C to 27.8 +/- 2.6 degrees C (p < 0.001) before takeoff. The change of muscle strain in cold was +11.0% in SCM, +14.9% in CES, +3.7% in TRA, and -1.7% in TES. Change was statistically significant in the cervical, uncovered area (SCM, CES). The linear regression model indicated a 2.6% increase in muscle strain per every decreased degree centigrade in skin temperature over the SCM. Superficial cooling over the neck muscles was significant prior to takeoff. Muscle loading in the cold caused higher EMG activity. A major increase in muscle strain was seen in the cervical muscles. These findings suggest a cold-induced increase in muscle strain during in-flight Gz loading.

  15. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  16. Exposure to heat and freezing in the vaccine cold chain in Thailand.

    PubMed

    Techathawat, Sirirat; Varinsathien, Porpit; Rasdjarmrearnsook, Aimorn; Tharmaphornpilas, Piyanit

    2007-01-26

    This study investigated exposure to heat and freezing of vaccines used in Thailand's National Immunization Program. Cold chain temperatures on 48 randomly selected shipment routes nationwide were monitored. Measles and hepatitis B vaccines were despatched with recording devices and subsequently tested. The study found that extremes of cold appear to be the more significant problem. Heat exposure was relatively brief and not at very high temperatures, so vaccine deterioration was unlikely, as was confirmed by measles vaccine testing. Exposure to temperatures below -0.5 degrees C was widespread, which would be expected to damage hepatitis B vaccine, but shake tests did not detect damage.

  17. Effects of cold and hot temperature on dehydration: a mechanism of cardiovascular burden.

    PubMed

    Lim, Youn-Hee; Park, Min-Seon; Kim, Yoonhee; Kim, Ho; Hong, Yun-Chul

    2015-08-01

    The association between temperature (cold or heat) and cardiovascular mortality has been well documented. However, few studies have investigated the underlying mechanism of the cold or heat effect. The main goal of this study was to examine the effect of temperature on dehydration markers and to explain the pathophysiological disturbances caused by changes of temperature. We investigated the relationship between outdoor temperature and dehydration markers (blood urea nitrogen (BUN)/creatinine ratio, urine specific gravity, plasma tonicity and haematocrit) in 43,549 adults from Seoul, South Korea, during 1995-2008. We used piece-wise linear regression to find the flexion point of apparent temperature and estimate the effects below or above the apparent temperature. Levels of dehydration markers decreased linearly with an increase in the apparent temperature until a point between 22 and 27 °C, which was regarded as the flexion point of apparent temperature, and then increased with apparent temperature. Because the associations between temperature and cardiovascular mortality are known to be U-shaped, our findings suggest that temperature-related changes in hydration status underlie the increased cardiovascular mortality and morbidity during high- or low-temperature conditions.

  18. Researching of the possibility of using absorption heat exchangers for creating the low return temperature heat supply systems based on CHP generation

    NASA Astrophysics Data System (ADS)

    Yavorovsky, Y. V.; Malenkov, A. S.; Zhigulina, Y. V.; Romanov, D. O.; Kurzanov, S. Y.

    2017-11-01

    This paper deals with the variant of modernization of the heat point within urban heat supply network in order to create the system of heat and cold supply on its basis, providing the suppliers with heat in cold months and with heat and cold in warm months. However, in cold months in the course of heating system operation, the reverse delivery water temperature is maintained below 40 °C. The analysis of heat and power indicators of the heat and cold supply system under different operating conditions throughout the year was conducted. The possibility to use the existing heat networks for the cold supply needs was estimated. The advantages of the system over the traditional heat supply systems that use Combined Heat and Power (CHP) plant as a heat source as exemplified by heat supply system from CHP with ST-80 turbine were demonstrated.

  19. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  20. Seedling phenology and cold hardiness: Moving targets

    Treesearch

    Diane L. Haase

    2011-01-01

    Phenology is the annual cycle of plant development as influenced by seasonal variations. Dormancy and cold hardiness are two aspects of the annual cycle. In temperate plants, the development of cold hardiness results in the ability to withstand subfreezing winter temperatures. Cold hardiness is also a reflection of overall stress resistance. In addition to describing...

  1. Cold hardiness of Helicoverpa zea (Lepidoptera: Noctuidae) pupae

    Treesearch

    A.C. Morey; W.D. Hutchison; R.C. Venette; E.C. Burkness

    2012-01-01

    An insect's cold hardiness affects its potential to overwinter and outbreak in different geographic regions. In this study, we characterized the response of Helicoverpa zea (Boddie) pupae to low temperatures by using controlled laboratory measurements of supercooling point (SCP), lower lethal temperature (LT50), and lower...

  2. RNA metabolism in Xylella fastidiosa during cold adaptation and survival responses

    USDA-ARS?s Scientific Manuscript database

    Fastidious plant pathogen Xylella fastidiosa has a reduced ability to adapt to cold temperatures, limiting persistence in perennial hosts, such as grapevine, growing in colder regions. RNA metabolism is an essential part of bacterial response to low temperature, including inducible expression of RNA...

  3. Effect of a 5-min cold-water immersion recovery on exercise performance in the heat.

    PubMed

    Peiffer, J J; Abbiss, C R; Watson, G; Nosaka, K; Laursen, P B

    2010-05-01

    This study examined the effect of a 5-min cold-water immersion (14 degrees C) recovery intervention on repeated cycling performance in the heat. 10 male cyclists performed two bouts of a 25-min constant-paced (254 (22) W) cycling session followed by a 4-km time trial in hot conditions (35 degrees C, 40% relative humidity). The two bouts were separated by either 15 min of seated recovery in the heat (control) or the same condition with 5-min cold-water immersion (5th-10th minute), using a counterbalanced cross-over design (CP(1)TT(1) --> CWI or CON --> CP(2)TT(2)). Rectal temperature was measured immediately before and after both the constant-paced sessions and 4-km timed trials. Cycling economy and Vo(2) were measured during the constant-paced sessions, and the average power output and completion times were recorded for each time trial. Compared with control, rectal temperature was significantly lower (0.5 (0.4) degrees C) in cold-water immersion before CP(2) until the end of the second 4-km timed trial. However, the increase in rectal temperature (0.5 (0.2) degrees C) during CP(2) was not significantly different between conditions. During the second 4-km timed trial, power output was significantly greater in cold-water immersion (327.9 (55.7) W) compared with control (288.0 (58.8) W), leading to a faster completion time in cold-water immersion (6.1 (0.3) min) compared with control (6.4 (0.5) min). Economy and Vo(2) were not influenced by the cold-water immersion recovery intervention. 5-min cold-water immersion recovery significantly lowered rectal temperature and maintained endurance performance during subsequent high-intensity exercise. These data indicate that repeated exercise performance in heat may be improved when a short period of cold-water immersion is applied during the recovery period.

  4. Variation in vulnerability to extreme-temperature-related mortality in Japan: A 40-year time-series analysis.

    PubMed

    Onozuka, Daisuke; Hagihara, Akihito

    2015-07-01

    Although the impact of extreme heat and cold on mortality has been documented in recent years, few studies have investigated whether variation in susceptibility to extreme temperatures has changed in Japan. We used data on daily total mortality and mean temperatures in Fukuoka, Japan, for 1973-2012. We used time-series analysis to assess the effects of extreme hot and low temperatures on all-cause mortality, stratified by decade, gender, and age, adjusting for time trends. We used a multivariate meta-analysis with a distributed lag non-linear model to estimate pooled non-linear lag-response relationships associated with extreme temperatures on mortality. The relative risk of mortality increased during heat extremes in all decades, with a declining trend over time. The mortality risk was higher during cold extremes for the entire study period, with a dispersed pattern across decades. Meta-analysis showed that both heat and cold extremes increased the risk of mortality. Cold effects were delayed and lasted for several days, whereas heat effects appeared quickly and did not last long. Our study provides quantitative evidence that extreme heat and low temperatures were significantly and non-linearly associated with the increased risk of mortality with substantial variation. Our results suggest that timely preventative measures are important for extreme high temperatures, whereas several days' protection should be provided for extreme low temperatures. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Thermosensory Perceptual Learning Is Associated with Structural Brain Changes in Parietal–Opercular (SII) Cortex

    PubMed Central

    Mano, Hiroaki; Kawato, Mitsuo

    2017-01-01

    The location of a sensory cortex for temperature perception remains a topic of substantial debate. Both the parietal–opercular (SII) and posterior insula have been consistently implicated in thermosensory processing, but neither region has yet been identified as the locus of fine temperature discrimination. Using a perceptual learning paradigm in male and female humans, we show improvement in discrimination accuracy for subdegree changes in both warmth and cool detection over 5 d of repetitive training. We found that increases in discriminative accuracy were specific to the temperature (cold or warm) being trained. Using structural imaging to look for plastic changes associated with perceptual learning, we identified symmetrical increases in gray matter volume in the SII cortex. Furthermore, we observed distinct, adjacent regions for cold and warm discrimination, with cold discrimination having a more anterior locus than warm. The results suggest that thermosensory discrimination is supported by functionally and anatomically distinct temperature-specific modules in the SII cortex. SIGNIFICANCE STATEMENT We provide behavioral and neuroanatomical evidence that perceptual learning is possible within the temperature system. We show that structural plasticity localizes to parietal–opercular (SII), and not posterior insula, providing the best evidence to date resolving a longstanding debate about the location of putative “temperature cortex.” Furthermore, we show that cold and warm pathways are behaviorally and anatomically dissociable, suggesting that the temperature system has distinct temperature-dependent processing modules. PMID:28847806

  6. Effect of prenatal temperature conditioning of laying hen embryos: Hatching, live performance and response to heat and cold stress during laying period.

    PubMed

    Kamanli, S; Durmuş, I; Yalçın, S; Yıldırım, U; Meral, Ö

    2015-07-01

    This study was designed to determine the effect of prenatal temperature conditioning on hatching and live performance of laying chickens, and response to heat and cold stress during laying period. A total of 3600 eggs obtained from ATAK-S brown parent stock were incubated at control (37.5°C, CONT-Inc), cyclic low (36.5°C/6h/d from 10 to 18d of incubation, LOW-Inc) or high (38.5°C/6h/d from 10-18d of incubation, HIGH-Inc) incubation temperatures. Hatched chicks per incubation temperature were reared under standard rearing conditions up to 26wk. From 27 to 30wk, hens from each incubation temperature were divided into 3 environmentally controlled rooms and reared at control (20±2°C, CONT-Room), low (12±2°C, COLDS) or high (32±2°C, HEATS) temperatures. Hatching performance, body weight, egg production, and plasma triiodothyronine (T3) and thyroxine (T4) levels and oxidant and antioxidant activities were evaluated. The highest hatchability was for LOW-Inc chicks while HIGH-Inc chick had similar hatchability to CONT-Inc. There was no effect of incubation temperatures on plasma MDA, GSH-Px, activities and T4 concentrations on day of hatch. LOW- Inc chicks had higher SOD activities and T3 concentrations compared to the other groups. Although chick weight was similar among incubation temperature groups, CONT-Inc chicks were heavier than those cyclic incubation temperature groups until 12wk of age. Incubation temperature had no effect on sexual maturity age and weight and egg production of laying hens. From 27 to 30wk, regardless of incubation temperature, HEATS hens lost weight from day 0 to 10, had the highest cloacal temperatures and lowest feed consumption and egg production while COLDS hens had the lowest cloacal temperatures. At day 5, T4 level was higher in LOW-Inc hens at COLDS but it was higher in HIGH-Inc hens at HEATS compared to CONT-Inc. These data may suggest a modification in thyroid activity of hens that were conditioned during the incubation period. Moreover under COLDS condition, SOD production of LOW-Inc hens was higher than those of CONT- and HIGH-Inc hens indicating an induction in antioxidant enzyme activity. Nonetheless, prenatal temperature conditioning of laying hen embryos had no advantage on laying performance of hens under temperature stress conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress.

    PubMed

    Jha, Uday Chand; Bohra, Abhishek; Jha, Rintu

    2017-01-01

    Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.

  8. Refrigeration is not necessary for measurement of uric acid in patients treated with rasburicase.

    PubMed

    Lindeman, Neal I; Melanson, Stacy E F; McDonnell, Anne; DeAngelo, Daniel J; Jarolim, Petr

    2013-05-01

    Rasburicase, used for hyperuricemia of tumor lysis syndrome, retains activity at room temperature (RT) in in vitro studies. Cold-temperature handling is recommended for uric acid measurements in patients receiving rasburicase: collection in prechilled tubes, transportation on ice, and 4°C centrifugation. We performed a prospective study of these requirements. A total of 65 pairs of blood samples were collected from 34 patients, 12-24 h after receiving rasburicase. The effect of temperature on uric acid concentration was tested on paired samples handled either at RT or when cold: centrifugation (18 sample pairs), collection tube (14 pairs), transportation (24 pairs), and nine pairs were retested after 1 h at RT. No significant temperature effect was seen on the uric acid measurements for any of the cold-handling steps: proportional, absolute biases were -1.4%, -0.06 mg/dL (centrifugation), -1.5%, +0.02 mg/dL (tube temperature), and -2.2%, -0.01 mg/dL (transportation). A 20% negative bias was seen in samples retested after 1 h at RT. Cold handling (prechilled tubes, iced transportation, 4°C centrifugation) was equivalent to RT for immediate measurement. An additional 1 h delay at RT led to a 20% decrease in uric acid. The cold handling measures required by the manufacturer are not necessary for uric acid testing of patients receiving rasburicase treatment, if testing is performed without delay.

  9. Cold habituation does not improve manual dexterity during rest and exercise in 5 °C

    NASA Astrophysics Data System (ADS)

    Muller, Matthew D.; Seo, Yongsuk; Kim, Chul-Ho; Ryan, Edward J.; Pollock, Brandon S.; Burns, Keith J.; Glickman, Ellen L.

    2014-04-01

    When exposed to a cold environment, a barehanded person experiences pain, cold sensation, and reduced manual dexterity. Both acute (e.g. exercise) and chronic (e.g. cold acclimatization or habituation) processes might lessen these negative effects. The purpose of this experiment was to determine the effect of cold habituation on physiology, perception, and manual dexterity during rest, exercise, and recovery in 5 °C. Six cold weather athletes (CWA) and eight non habituated men (NON) volunteered to participate in a repeated measures cross-over design. The protocol was conducted in 5 °C and was 90 min of resting cold exposure, 30 min of cycle ergometry exercise (50 % VO2 peak), and 60 min of seated recovery. Core and finger skin temperature, metabolic rate, Purdue Pegboard dexterity performance, hand pain, thermal sensation, and mood were quantified. Exercise-induced finger rewarming (EIFRW) was calculated for each hand. During 90 min of resting exposure to 5 °C, the CWA had a smaller reduction in finger temperature, a lower metabolic rate, less hand pain, and less negative mood. Despite this cold habituation, dexterity performance was not different between groups. In response to cycle ergometry, EIFRW was greater in CWA (~12 versus 7 °C) and occurred at lower core temperatures (37.02 versus 37.31 °C) relative to NON but dexterity was not greater during post-exercise recovery. The current data indicate that cold habituated men (i.e., CWA) do not perform better on the Purdue Pegboard during acute cold exposure. Furthermore, despite augmented EIFRW in CWA, dexterity during post-exercise recovery was similar between groups.

  10. Thermal acclimation to cold alters myosin content and contractile properties of rainbow smelt, Osmerus mordax, red muscle.

    PubMed

    Coughlin, David J; Shiels, Lisa P; Nuthakki, Seshuvardhan; Shuman, Jacie L

    2016-06-01

    Rainbow smelt (Osmerus mordax), a eurythermal fish, live in environments from -1.8 to 20°C, with some populations facing substantial annual variation in environmental temperature. These different temperature regimes pose distinct challenges to locomotion by smelt. Steady swimming performance, red muscle function and muscle myosin content were examined to assess the prediction that cold acclimation by smelt will lead to improved steady swimming performance and that any performance shift will be associated with changes in red muscle function and in its myosin heavy chain composition. Cold acclimated (4°C) smelt had a faster maximum steady swimming speed and swam with a higher tailbeat frequency than warm acclimated (10°C) smelt when tested at the same temperature (10°C). Muscle mechanics experiments demonstrated faster contractile properties in the cold acclimated fish when tested at 10°C. The red muscle of cold acclimated smelt had a shorter twitch times, a shorter relaxation times and a higher maximum shortening velocity. In addition, red muscle from cold acclimated fish displayed reduced thermal sensitivity to cold, maintaining higher force levels at 4°C compared to red muscle from warm acclimated fish. Immunohistochemistry suggests shifts in muscle myosin composition and a decrease in muscle cross-sectional area with cold acclimation. Dot blot analysis confirmed a shift in myosin content. Rainbow smelt do show a significant thermal acclimation response to cold. An examination of published values of maximum muscle shortening velocity in fishes suggests that smelt are particularly well suited to high levels of activity in very cold water. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.

    PubMed

    Mikkelsen, Michael D; Thomashow, Michael F

    2009-10-01

    The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.

  12. Relative contributions of synoptic and intraseasonal variations to strong cold events over eastern China

    NASA Astrophysics Data System (ADS)

    Song, Lei; Wu, Renguang; Jiao, Yang

    2018-06-01

    The present study investigates the relative roles of intraseasonal oscillations (ISOs) and synoptic variations in strong cold events over eastern China during the boreal winter. The ISOs and synoptic variations explain about 55% and 20% of the total area-mean temperature anomaly in eastern China, respectively. The advection of synoptic winds on synoptic temperature gradients has a leading contribution to the temperature decrease before the cold events and thus the synoptic variations are important in determining the time of peak cold anomalies. The ISOs have a larger role in sustaining the cold events. The height anomalies associated with ISOs and synoptic variations are manifested as Rossby wave trains propagating along the polar front jet over the Eurasian continent before the cold events. They both contribute to the deepening of the East Asian trough and the development of cold events. Compared to the ISO wave train, the synoptic wave train has a smaller spatial scale and moves faster. There are obvious intraseasonal signals in the stratosphere about 1 week before the cold events over eastern China. Large negative height anomalies associated with the weakening of the polar vortex are observed over the North Atlantic. These anomalies move eastwards and propagate downwards after reaching the west coast of Europe. The downward moving stratospheric signal triggers height anomalies in the troposphere over the entrance region of the polar front jet. Then the anomalies propagate towards East Asia along the wave train, contributing to the intensification of the Siberian high and the East Asian trough and the occurrence of cold events over eastern China.

  13. Dietary tyrosine benefits cognitive and psychomotor performance during body cooling.

    PubMed

    O'Brien, Catherine; Mahoney, Caroline; Tharion, William J; Sils, Ingrid V; Castellani, John W

    2007-02-28

    Supplemental tyrosine is effective at limiting cold-induced decreases in working memory, presumably by augmenting brain catecholamine levels, since tyrosine is a precursor for catecholamine synthesis. The effectiveness of tyrosine for preventing cold-induced decreases in physical performance has not been examined. This study evaluated the effect of tyrosine supplementation on cognitive, psychomotor, and physical performance following a cold water immersion protocol that lowered body core temperature. Fifteen subjects completed a control trial (CON) in warm (35 degrees C) water and two cold water trials, each spaced a week apart. Subjects ingested an energy bar during each trial; on one cold trial (TYR) the bar contained tyrosine (300 mg/kg body weight), and on the other cold trial (PLB) and on CON the bar contained no tyrosine. Following each water immersion, subjects completed a battery of performance tasks in a cold air (10 degrees C) chamber. Core temperature was lower (p=0.0001) on PLB and TYR (both 35.5+/-0.6 degrees C) than CON (37.1+/-0.3 degrees C). On PLB, performance on a Match-to-Sample task decreased 18% (p=0.02) and marksmanship performance decreased 14% (p=0.002), compared to CON, but there was no difference between TYR and CON. Step test performance decreased by 11% (p=0.0001) on both cold trials, compared to CON. These data support previous findings that dietary tyrosine supplementation is effective for mitigating cold-induced cognitive performance such as working memory, even with reduced core temperature, and extends those findings to include the psychomotor task of marksmanship.

  14. Effects of chronic environmental cold on growth, health, and select metabolic and immunologic responses of preruminant calves.

    PubMed

    Nonnecke, B J; Foote, M R; Miller, B L; Fowler, M; Johnson, T E; Horst, R L

    2009-12-01

    The physiological response of the preruminant calf to sustained exposure to moderate cold has not been studied extensively. Effects of cold on growth performance and health of preruminant calves as well as functional measures of energy metabolism, fat-soluble vitamin, and immune responsiveness were evaluated in the present study. Calves, 3 to 10 d of age, were assigned randomly to cold (n = 14) or warm (n = 15) indoor environments. Temperatures in the cold environment averaged 4.7 degrees C during the study. Frequent wetting of the environment and the calves was used to augment effects of the cold environment. Temperatures in the warm environment averaged 15.5 degrees C during the study. There was no attempt to increase the humidity in the warm environment. Preventative medications or vaccinations that might influence disease resistance were not administered. Nonmedicated milk replacer (20% crude protein and 20% fat fed at 0.45 kg/d) and a nonmedicated starter grain fed ad libitum were fed to all calves. Relative humidity was, on average, almost 10% higher in the cold environment. Warm-environment calves were moderately healthier (i.e., lower respiratory scores) and required less antibiotics. Scour scores, days scouring, and electrolyte costs, however, were unaffected by environmental temperature. Growth rates were comparable in warm and cold environments, although cold-environment calves consumed more starter grain and had lower blood glucose and higher blood nonesterified fatty acid concentrations. The nonesterified fatty acid and glucose values for cold-stressed calves, however, did not differ sufficiently from normal values to categorize these calves as being in a state of negative-energy balance. Levels of fat-soluble vitamin, antibody, tumor necrosis factor-alpha, and haptoglobin were unaffected by sustained exposure to moderate cold. These results support the contention that successful adaptation of the dairy calf to cold is dependent upon the availability of adequate nutrition.

  15. Dynamical prediction of flu seasonality driven by ambient temperature: influenza vs. common cold

    NASA Astrophysics Data System (ADS)

    Postnikov, Eugene B.

    2016-01-01

    This work presents a comparative analysis of Influenzanet data for influenza itself and common cold in the Netherlands during the last 5 years, from the point of view of modelling by linearised SIRS equations parametrically driven by the ambient temperature. It is argued that this approach allows for the forecast of common cold, but not of influenza in a strict sense. The difference in their kinetic models is discussed with reference to the clinical background.

  16. Alloy Development, Processing and Characterization of Devitrified Titanium Base Microcrystalline Alloys.

    DTIC Science & Technology

    1984-12-01

    quench rates (10V 10V [/sec). Since the heat transport and temperature profile of Ti melt in the cold copper crucible are not well known, melting...experiments in a cold copper crucible by arc heating were conducted using Ti-6.3Si alloy. The temperature measurement at both the surface and the bottom of the...melt spinning compart- ment B, and ribbon processing chamber C. The pre-melted alloy ingot is . - " charged directly into a cold copper crucible while

  17. Novel insights into the dynamics of cold-air drainage and pooling on a gentle slope from fiber-optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph

    2016-04-01

    Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (< 0.4 ms-1) near-surface winds directed perpendicular to the local slope and showed strong vertical decoupling of wind velocities and directions. The vertical and horizontal perturbation of the temperature as well as the cold-pool intensity was high and the two-point correlation coefficient decorrelated fast with increasing distance. In contrast, for the second mode the wind was aligned with the local slope and the wind velocities and directions agreed vertically. However, momentum exchange was much enhanced leading to intense shear-generated mixing and almost vanishing temperature perturbations, higher spatial coherence indicated by slower spatial decorrelations, and a cold-pool intensity of close to zero. In conclusion, the first mode was interpreted as a relatively weak non-local valley-scale cold-air drainage modulating the close to stationary cold-air pool filling the shallow depression the Botanical Gardens are located in. Here, the deeper cold-air drainage causes only weak local movements at the surface as both layers are largely decoupled. The second mode is possibly caused by a recirculation of a stronger valley-scale flow with sufficient synoptic forcing. Our findings challenge the common practice to predict cold-air dynamics solely based on micro-topographic analysis.

  18. Changes of body temperature and thermoregulatory responses of freely moving rats during GABAergic pharmacological stimulation to the preoptic area and anterior hypothalamus in several ambient temperatures.

    PubMed

    Ishiwata, Takayuki; Saito, Takehito; Hasegawa, Hiroshi; Yazawa, Toru; Kotani, Yasunori; Otokawa, Minoru; Aihara, Yasutsugu

    2005-06-28

    Action of gamma-aminobutyric acid (GABA) in the preoptic area and anterior hypothalamus (PO/AH) has been implicated to regulate body temperature (T(b)). However, its precise role in thermoregulation remains unclear. Moreover, little is known about its release pattern in the PO/AH during active thermoregulation. Using microdialysis and telemetry techniques, we measured several parameters related to thermoregulation of freely moving rats during pharmacological stimulation of GABA in normal (23 degrees C), cold (5 degrees C), and hot (35 degrees C) ambient temperatures. We also measured extracellular GABA levels in the PO/AH during cold (5 degrees C) and heat (35 degrees C) exposure combined with microdialysis and high performance liquid chromatography (HPLC). Perfusion of GABA(A) agonist muscimol into the PO/AH increased T(b), which is associated with increased heart rate (HR), as an index of heat production in all ambient temperatures. Although tail skin temperature (T(tail)) as an index of heat loss increased only under normal ambient temperatures, its response was relatively delayed in comparison with HR and T(b), suggesting that the increase in T(tail) was a secondary response to increased HR and T(b). Locomotor activity also increased in all ambient temperatures, but its response was not extraordinary. Interestingly, thermoregulatory responses were different after perfusion of GABA(A) antagonist bicuculline at each ambient temperature. In normal ambient temperature conditions, perfusion of bicuculline had no effect on any parameter. However, under cold ambient temperature, the procedure induced significant hypothermia concomitant with a decrease in HR in spite of hyperactivity and increase of T(tail). It induced hyperthermia with the increase of HR but no additional change of T(tail) in hot ambient temperature conditions. Furthermore, the extracellular GABA level increased significantly during cold exposure. Its release was lower during heat exposure than in a normal environment. These results indicate that GABA in the PO/AH is an important neurotransmitter for disinhibition of heat production and inhibition of heat loss under cold ambient temperature. It is a neurotransmitter for inhibition of heat production under hot ambient temperature.

  19. Improving the health forecasting alert system for cold weather and heat-waves in England: a case-study approach using temperature-mortality relationships

    NASA Astrophysics Data System (ADS)

    Masato, Giacomo; Cavany, Sean; Charlton-Perez, Andrew; Dacre, Helen; Bone, Angie; Carmicheal, Katie; Murray, Virginia; Danker, Rutger; Neal, Rob; Sarran, Christophe

    2015-04-01

    The health forecasting alert system for cold weather and heatwaves currently in use in the Cold Weather and Heatwave plans for England is based on 5 alert levels, with levels 2 and 3 dependent on a forecast or actual single temperature action trigger. Epidemiological evidence indicates that for both heat and cold, the impact on human health is gradual, with worsening impact for more extreme temperatures. The 60% risk of heat and cold forecasts used by the alerts is a rather crude probabilistic measure, which could be substantially improved thanks to the state-of-the-art forecast techniques. In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

  20. Effect of low incubation temperature and low ambient temperature until 21 days of age on performance and body temperature in fast-growing chickens

    PubMed Central

    Nyuiadzi, D; Travel, A; Méda, B; Berri, C; Guilloteau, L A; Coustham, V; Wang, Y; Tona, J K; Collin, A

    2017-01-01

    Abstract Thermal manipulation during embryogenesis was previously reported to decrease the occurrence of ascites and to potentially improve cold tolerance of broilers. The objective of our study was to explore the effects of the interaction of cold incubation temperatures and cool ambient temperatures until 21 d of age on performance and body temperature. Ross 308 eggs were incubated either under control conditions I0 (37.6°C) or with cyclic cold stimulations I1 (6 h/d at 36.6°C from d 10 to 18 of incubation) or with 2 cold stimulations I2 (30 min at 15°C) at d 18 and 19 of incubation. These treatments were followed by individual rearing and postnatal exposure to either standard rearing temperature T0 (from 33°C at hatching to 21°C at d 21) or continuously lower temperature T2 (from 28°C at hatching to 21°C at d 21) or exposure to cyclically lower temperature T1 (with circadian temperature oscillations). Treatments I1 and I2 did not significantly alter hatchability compared to control incubation (with 94.8, 95.1, and 92.3%, respectively), or hatching BW and overall chick quality. Hatching body temperature (Tb) was 0.5 and 0.3°C higher in I1 than in I0 and I2 groups, respectively (P = 0.007). A doubled occurrence of health problems was observed with T2 condition, regardless of incubation or sex. At d 3, BW was 2% lower with treatment I1 than with I0 and I2 and was 3% higher in T1 and T2 groups than in T0, but these effects disappeared with age. Group T2 presented a 5% higher feed intake than the control group T0 between 3 and 21 d of age (P = 0.025). Feed conversion ratio (FCR) was affected by experimental conditions (P < 0.001), with low FCR values obtained with I2 incubation in control or cyclically cold postnatal conditions. Maximal FCR values were observed in the continuously cold postnatal conditions, in males submitted to control incubation and in females submitted to I1 incubation, revealing sex-dependent effects of the treatments on performance. PMID:29053847

  1. Supraclavicular Skin Temperature as a Measure of 18F-FDG Uptake by BAT in Human Subjects

    PubMed Central

    van der Linden, Rianne A. D.; Pereira Arias-Bouda, Lenka; Smit, Frits; Verberne, Hein J.; van Marken Lichtenbelt, Wouter D.

    2014-01-01

    Background Brown adipose tissue (BAT) has emerged as a novel player in energy homeostasis in humans and is considered a potential new target for combating obesity and related diseases. The current ‘gold standard’ for quantification of BAT volume and activity is cold-induced 18F-FDG uptake in BAT. However, use of this technique is limited by cost and radiation exposure. Given the fact that BAT is a thermogenic tissue, mainly located in the supraclavicular region, the aim of the current study was to investigate whether cold-induced supraclavicular skin temperature and core body temperature may be alternative markers of BAT activation in humans. Subjects/Methods BAT volume and activity were measured in 24 healthy lean adolescent males (mean age 24.1±0.8 years), using cold-induced 18F-FDG uptake with PET-CT. Core body temperature was measured continuously in the small intestine with use of an ingestible telemetric capsule and skin temperature was measured by eighteen wireless iButtons attached to the skin following ISO-defined locations. Results Proximal and distal (hand/feet) skin temperatures markedly decreased upon cold exposure, while supraclavicular skin temperature significantly increased (35.2±0.1 vs. 35.5±0.1°C, p = 0.001). Furthermore, cold-induced supraclavicular skin temperature positively correlated with both total (R2 = 0.28, P = 0.010) and clavicular BAT volume (R2 = 0.20, P = 0.030) and clavicular SUVmax (R2 = 0.27, P = 0.010), while core body temperature did not. Conclusions Supraclavicular skin temperature as measured by iButtons may have predictive value for BAT detection in adult humans. This is highly desirable considering the increasing interest in pharmacological interventions to stimulate BAT in human subjects. Trial Registration NTR 2473 PMID:24922545

  2. Thyroid hormone fluctuations indicate a thermoregulatory function in both a tropical (Alouatta palliata) and seasonally cold-habitat (Macaca fuscata) primate.

    PubMed

    Thompson, Cynthia L; Powell, Brianna L; Williams, Susan H; Hanya, Goro; Glander, Kenneth E; Vinyard, Christopher J

    2017-11-01

    Thyroid hormones boost animals' basal metabolic rate and represent an important thermoregulatory pathway for mammals that face cold temperatures. Whereas the cold thermal pressures experienced by primates in seasonal habitats at high latitudes and elevations are often apparent, tropical habitats also display distinct wet and dry seasons with modest changes in thermal environment. We assessed seasonal and temperature-related changes in thyroid hormone levels for two primate species in disparate thermal environments, tropical mantled howlers (Alouatta palliata), and seasonally cold-habitat Japanese macaques (Macaca fuscata). We collected urine and feces from animals and used ELISA to quantify levels of the thyroid hormone triiodothyronine (fT 3 ). For both species, fT 3 levels were significantly higher during the cooler season (wet/winter), consistent with a thermoregulatory role. Likewise, both species displayed greater temperature deficits (i.e., the degree to which animals warm their body temperature relative to ambient) during the cooler season, indicating greater thermoregulatory pressures during this time. Independently of season, Japanese macaques displayed increasing fT 3 levels with decreasing recently experienced maximum temperatures, but no relationship between fT 3 and recently experienced minimum temperatures. Howlers increased fT 3 levels as recently experienced minimum temperatures decreased, although demonstrated the opposite relationship with maximum temperatures. This may reflect natural thermal variation in howlers' habitat: wet seasons had cooler minimum and mean temperatures than the dry season, but similar maximum temperatures. Overall, our findings support the hypothesis that both tropical howlers and seasonally cold-habitat Japanese macaques utilize thyroid hormones as a mechanism to boost metabolism in response to thermoregulatory pressures. This implies that cool thermal pressures faced by tropical primates are sufficient to invoke an energetically costly and relatively longer-term thermoregulatory pathway. The well-established relationship between thyroid hormones and energetics suggests that the seasonal hormonal changes we observed could influence many commonly studied behaviors including food choice, range use, and activity patterns. © 2017 Wiley Periodicals, Inc.

  3. 40 CFR 600.107-08 - Fuel specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Exhaust Emission Test Procedures § 600.107-08 Fuel specifications. (a) The test fuel specifications for... given in paragraph (b) of this section. (b)(1) Diesel test fuel used for cold temperature FTP testing... alternative fuel for cold temperature FTP testing. (c) Test fuels representing fuel types for which there are...

  4. 40 CFR 600.107-08 - Fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Exhaust Emission Test Procedures § 600.107-08 Fuel specifications. (a) The test fuel specifications for... given in paragraph (b) of this section. (b)(1) Diesel test fuel used for cold temperature FTP testing... alternative fuel for cold temperature FTP testing. (c) Test fuels representing fuel types for which there are...

  5. 40 CFR 600.107-08 - Fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Exhaust Emission Test Procedures § 600.107-08 Fuel specifications. (a) The test fuel specifications for... given in paragraph (b) of this section. (b)(1) Diesel test fuel used for cold temperature FTP testing... alternative fuel for cold temperature FTP testing. (c) Test fuels representing fuel types for which there are...

  6. 40 CFR 86.1809-12 - Prohibition of defeat devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...

  7. 40 CFR 86.1809-10 - Prohibition of defeat devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...

  8. 40 CFR 86.1809-12 - Prohibition of defeat devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...

  9. 40 CFR 86.1809-10 - Prohibition of defeat devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...

  10. 40 CFR 86.1809-10 - Prohibition of defeat devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...

  11. 40 CFR 86.1809-12 - Prohibition of defeat devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light... device. (c) For cold temperature CO and cold temperature NMHC emission control, the Administrator will...

  12. Temperature dependent RNA metabolism in Xylella fastidiosa during cold stress and grapevine infection

    USDA-ARS?s Scientific Manuscript database

    Re-occurrence of Pierce’s disease of grapes, caused by Xylella fastidiosa, is known to be influenced by environmental factors, particularly cold temperatures during overwintering. Grapevines in colder regions are often cured of X. fastidiosa infection over the winter season, depending on cultivar, t...

  13. In Vitro Evaluation Mimics Influences of Winter Cold Water Ingestion on Ruminal Function

    USDA-ARS?s Scientific Manuscript database

    Ingestion of cold feed and water may suddenly reduce ruminal temperature, which could result in decreased microbial activity and diet digestibility. The objective of this study was to investigate the association between critical rumen in vitro incubation temperature and activity of ruminal microorga...

  14. In vitro evaluation mimics influences of winter cold water ingestion on ruminal function

    USDA-ARS?s Scientific Manuscript database

    Ingestion of cold feed and water may suddenly reduce ruminal temperature, which could result in decreased microbial activity and diet digestibility. The objective of this study was to investigate the association between critical rumen in vitro incubation temperature and activity of ruminal microorga...

  15. Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland

    NASA Astrophysics Data System (ADS)

    Vitasse, Yann; Klein, Geoffrey; Kirchner, James W.; Rebetez, Martine

    2017-11-01

    Some of the world's valleys are famous for having particularly cold microclimates. The La Brevine valley, in the Swiss Jura Mountains, holds the record for the lowest temperature ever measured in an inhabited location in Switzerland. We studied cold air pools (CAPs) in this valley during the winter of 2014-2015 using 44 temperature data loggers distributed between 1033 and 1293 m asl. Our goals were to (i) describe the climatic conditions under which CAPs form in the valley, (ii) examine the spatial configuration and the temperature structure of the CAPs and (iii) quantify how often temperature inversions occur in winter using long-term series of temperature from the valley floor. Our results show that CAPs occurred every second night, on average, during the winter of 2014-2015 and were typically formed under cloudless, windless and high-pressure conditions. Strong temperature inversions up to 28 °C were detected between the valley floor and the surrounding hills. The spatial temperature structure of the CAPs varies among the different inversion days, with the upper boundary of the cold pool generally situated at about 1150 m asl. Although mean temperatures have increased in this area over the period 1960-2015 in connection with climate change, the occurrences of extreme cold temperatures did not decrease in winter and are highly correlated with the North Atlantic Oscillation and the East Atlantic indices. This suggests that CAPs in sheltered valleys are largely decoupled from the free atmosphere temperature and will likely continue to occur in the next decades under warmer conditions.

  16. Črna Jama as a cold air trap cave within Postojna Cave, Slovenia

    NASA Astrophysics Data System (ADS)

    Šebela, Stanka; Turk, Janez

    2017-10-01

    Črna Jama is the coldest section of cave within the Postojna Cave System. Mean annual air temperatures at the Črna Jama 2 site are 5.6 °C (2015) and 5.7 °C (2016), and at the Črna Jama 3 site 7.1 °C (2015) and 7.2 (2016), whereas the mean external air temperature was 10.3 °C (2015) and 10.0 °C (2016). In Lepe Jame, the passage most heavily visited by tourists, the mean cave-air temperature is 10.7 °C (2014-2017). Črna Jama exhibits winter and summer temperature regimes. During warm periods (Tcave < Tout), it acts as a cold air trap, exchanging no air with the outside atmosphere. Under such conditions the cave-air temperature shows no short-term diurnal temperature oscillations. Cave-air temperature is significantly stable and affected only by elevation of the groundwater table, which is associated with precipitation. During cold periods (Tcave > Tout), ventilation takes place and dense, cold, outside air sinks into Črna Jama because of the favourable cave entrance morphology. Recent Črna Jama air temperature data (2014-2017) indicate a < 0.5 °C higher temperature than that recorded in historical data since 1933. Črna Jama is the most appropriate place within the Postojna Cave System to study long-term climatic changes. There are hardly any tourist visits to the cave, and human impacts on the cave climate are essentially reduced.

  17. Developmental arrest during embryonic development of the common chameleon (Chamaeleo chamaeleon) in Spain.

    PubMed

    Andrews, Robin M; Díaz-Paniagua, Carmen; Marco, Adolfo; Portheault, Alexandre

    2008-01-01

    Embryonic development of the common chameleon, Chamaeleo chamaeleon, was monitored from oviposition to hatching at a field site in southwestern Spain and in the laboratory under five experimental temperature regimes. Embryos were diapausing gastrulae at the time of oviposition; developmental arrest in the field continued as cold torpor during winter. Postarrest development in the field commenced in April, and hatching occurred in August, for a total incubation period of 10.5 mo. In the laboratory, one group of eggs was incubated at a constant warm (26 degrees C) temperature. The remaining treatments simulated field conditions and consisted of initial periods of warm temperature of 0, 27, 46, and 71 d, a subsequent 4-mo period of cold winter (16 degrees C) temperature, and a final period of warm (26 degrees C) temperature. Embryos in the constant warm temperature treatment were in diapause an average of 3 mo, with clutch means ranging from 2 to 4 mo. Hatching among clutches occurred over 2 mo. In contrast, for field and experimental eggs that experienced cold winter conditions, hatching within treatments occurred over 2-14 d; "winter" conditions synchronized development. The length of time between the end of cold conditions and hatching did not differ among treatments; development thus resumed as soon as temperature was suitable regardless of the initial period of warm temperature. Diapause in nature thus insures that embryos remain gastrulae after oviposition despite nest temperatures that may be warm enough to support development.

  18. Co-amplification at lower denaturation temperature-PCR: methodology and applications.

    PubMed

    Liang, Hui; Chen, Guo-Jie; Yu, Yan; Xiong, Li-Kuan

    2018-03-20

    Co-amplification at lower denaturation temperature-polymerase chain reaction (COLD-PCR) is a novel form of PCR that selectively denatures and amplifies low-abundance mutations from mixtures of wild-type and mutation-containing sequences, enriching the mutation 10 to 100 folds. Due to the slightly altered melting temperature (Tm) of the double-stranded DNA and the formation of the mutation/wild-type heteroduplex DNA, COLD-PCR methods are sensitive, specific, accurate, cost-effective and easy to maneuver, and can enrich mutations of any type and at any position, even unknown mutations within amplicons. COLD-PCR and its improved methods are now applied in cancer, microorganisms, prenatal screening, animals and plants. They are extremely useful for early diagnosis, monitoring the prognosis of disease and the efficiency of the treatment, drug selection, prediction of prognosis, plant breeding and etc. In this review, we introduce the principles, key techniques, derived methods and applications of COLD-PCR.

  19. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Dokos, Adam G. (Inventor); Fesmire, James E. (Inventor)

    2014-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  20. Coding and Plasticity in the Mammalian Thermosensory System.

    PubMed

    Yarmolinsky, David A; Peng, Yueqing; Pogorzala, Leah A; Rutlin, Michael; Hoon, Mark A; Zuker, Charles S

    2016-12-07

    Perception of the thermal environment begins with the activation of peripheral thermosensory neurons innervating the body surface. To understand how temperature is represented in vivo, we used genetically encoded calcium indicators to measure temperature-evoked responses in hundreds of neurons across the trigeminal ganglion. Our results show how warm, hot, and cold stimuli are represented by distinct population responses, uncover unique functional classes of thermosensory neurons mediating heat and cold sensing, and reveal the molecular logic for peripheral warmth sensing. Next, we examined how the peripheral somatosensory system is functionally reorganized to produce altered perception of the thermal environment after injury. We identify fundamental transformations in sensory coding, including the silencing and recruitment of large ensembles of neurons, providing a cellular basis for perceptual changes in temperature sensing, including heat hypersensitivity, persistence of heat perception, cold hyperalgesia, and cold analgesia. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2016-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  2. Ngas Multi-Stage Coaxial High Efficiency Cooler (hec)

    NASA Astrophysics Data System (ADS)

    Nguyen, T.; Toma, G.; Jaco, C.; Raab, J.

    2010-04-01

    This paper presents the performance data of the single and two-stage High Efficiency Cooler (HEC) tested with coaxial cold heads. The single stage coaxial cold head has been optimized to operate at temperatures of 40 K and above. The two-stage parallel cold head configuration has been optimized to operate at 30 K and above and provides a long-life, low mass and efficient two-stage version of the Northrop Grumman Aerospace Systems (NGAS) flight qualified single stage HEC cooler. The HEC pulse tube cryocoolers are the latest generation of flight coolers with heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years. This paper presents the performance data of the one and two-stage versions of this cooler under a wide range of heat rejection temperature, cold head temperature and input power.

  3. Cold Spots in the Martian Polar Regions: Evidence of Carbon Dioxide Depletion?

    NASA Technical Reports Server (NTRS)

    Weiss, Benjamin P.; Ingersoll, Andrew P.

    2000-01-01

    Regions of very low, rapidly varying brightness temperatures have been observed near the martian winter poles by several spacecraft. One possibility is that the CO2 condensation temperature is lowered by depletion of CO2 in the air at the surface. We estimate the rate at which this low-molecular-weight air would disperse into the high-molecular-weight air above and show that it is generally faster than the rate of supply. This dispersal could be prevented if there is a strong temperature inversion (warm air above colder air) near the surface. Without an inversion, the entire atmospheric column could become depleted. However, depleted columns take a long time to form, and they are inconsistent with the rapid fluctuations in the cold spot locations and temperatures. Because low-altitude temperature inversions cannot be ruled out by existing observations, CO2 depletion is still a viable explanation for the martian cold spots.

  4. Guidelines for maintaining and managing the vaccine cold chain.

    PubMed

    2003-10-24

    In February 2002, the Advisory Committee on Immunization Practices (ACIP) and American Academy of Family Physicians (AAFP) released their revised General Recommendations on Immunization, which included recommendations on the storage and handling of immunobiologics. Because of increased concern over the potential for errors with the vaccine cold chain (i.e., maintaining proper vaccine temperatures during storage and handling to preserve potency), this notice advises vaccine providers of the importance of proper cold chain management practices. This report describes proper storage units and storage temperatures, outlines appropriate temperature-monitoring practices, and recommends steps for evaluating a temperature-monitoring program. The success of efforts against vaccine-preventable diseases is attributable in part to proper storage and handling of vaccines. Exposure of vaccines to temperatures outside the recommended ranges can affect potency adversely, thereby reducing protection from vaccine-preventable diseases. Good practices to maintain proper vaccine storage and handling can ensure that the full benefit of immunization is realized.

  5. Improving vaccination cold chain in the general practice setting.

    PubMed

    Page, Sue L; Earnest, Arul; Birden, Hudson; Deaker, Rachelle; Clark, Chris

    2008-10-01

    This study compared temperature control in different types of vaccine storing refrigerators in general practice and tested knowledge of general practice staff in vaccine storage requirements. Temperature data loggers were set to serially record the temperature within vaccine refrigerators in 28 general practices, recording at 12 minute intervals over a period of 10 days on each occasion. A survey of vaccine storage knowledge and records of divisions of general practice immunisation contacts were also obtained. There was a significant relationship between type of refrigerator and optimal temperature, with the odds ratio for bar style refrigerator being 0.005 (95% CI: 0.001-0.044) compared to the purpose built vaccine refrigerators. Score on a survey of vaccine storage was also positively associated with optimal storage temperature. General practices that invest in purpose built vaccine refrigerators will achieve standards of vaccine cold chain maintenance significantly more reliably than can be achieved through regular cold chain monitoring and practice supports.

  6. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. [DOE patent application

    DOEpatents

    O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  7. A cold ejector for closed-cycle helium refrigerators

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Daggett, D. L.

    1987-01-01

    The test results are presented of an initial cold helium ejector design that can be installed on a closed cycle refrigerator to provide refrigeration at temperatures below 4.2 K. The ejector, test apparatus, instrumentation, and test results are described. Tests were conducted both at room temperature and at cryogenic temperatures to provide operational experience with the ejector as well as for future use in the subsequent design of an ejector that will provide refrigeration at temperatures below 3 K.

  8. Instantaneous radioiodination of rose bengal at room temperature and a cold kit therefor

    DOEpatents

    O'Brien, Jr., Harold A.; Hupf, Homer B.; Wanek, Philip M.

    1981-01-01

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free .sup.125 I.sup.- is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  9. Comparative Assessment of the Effects of Climate Change on Heat- and Cold-Related Mortality in the United Kingdom and Australia

    PubMed Central

    Dear, Keith; Hajat, Shakoor; Heaviside, Clare; Eggen, Bernd; McMichael, Anthony J.

    2014-01-01

    Background: High and low ambient temperatures are associated with increased mortality in temperate and subtropical climates. Temperature-related mortality patterns are expected to change throughout this century because of climate change. Objectives: We compared mortality associated with heat and cold in UK regions and Australian cities for current and projected climates and populations. Methods: Time-series regression analyses were carried out on daily mortality in relation to ambient temperatures for UK regions and Australian cities to estimate relative risk functions for heat and cold and variations in risk parameters by age. Excess deaths due to heat and cold were estimated for future climates. Results: In UK regions, cold-related mortality currently accounts for more than one order of magnitude more deaths than heat-related mortality (around 61 and 3 deaths per 100,000 population per year, respectively). In Australian cities, approximately 33 and 2 deaths per 100,000 population are associated every year with cold and heat, respectively. Although cold-related mortality is projected to decrease due to climate change to approximately 42 and 19 deaths per 100,000 population per year in UK regions and Australian cities, heat-related mortality is projected to increase to around 9 and 8 deaths per 100,000 population per year, respectively, by the 2080s, assuming no changes in susceptibility and structure of the population. Conclusions: Projected changes in climate are likely to lead to an increase in heat-related mortality in the United Kingdom and Australia over this century, but also to a decrease in cold-related deaths. Future temperature-related mortality will be amplified by aging populations. Health protection from hot weather will become increasingly necessary in both countries, while protection from cold weather will be still needed. Citation: Vardoulakis S, Dear K, Hajat S, Heaviside C, Eggen B, McMichael AJ. 2014. Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia. Environ Health Perspect 122:1285–1292; http://dx.doi.org/10.1289/ehp.1307524 PMID:25222967

  10. Damage to southern Michigan conifers during the winter of 1976-77

    Treesearch

    Jonathan W. Wright; Donald DeHayes; Walter A. Lemmien

    1977-01-01

    In southern Michigan, the winter of 1976-1977 was marked by unseasonably cold weather in early December, prolonged cold weather in December and January, severe drought at the onset of cold weather, and by higher than average absolute minimum temperatures. Damage, presumably from the early December cold weather, was severe to southern seedlots of ponderosa pine,...

  11. Ambient temperature and coronary heart disease mortality in Beijing, China: a time series study

    PubMed Central

    2012-01-01

    Background Many studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on coronary heart disease (CHD) mortality, especially in China. In this study, we examined the relationship between ambient temperature and CHD mortality in Beijing, China during 2000 to 2011. In addition, we compared time series and time-stratified case-crossover models for the non-linear effects of temperature. Methods We examined the effects of temperature on CHD mortality using both time series and time-stratified case-crossover models. We also assessed the effects of temperature on CHD mortality by subgroups: gender (female and male) and age (age > =65 and age < 65). We used a distributed lag non-linear model to examine the non-linear effects of temperature on CHD mortality up to 15 lag days. We used Akaike information criterion to assess the model fit for the two designs. Results The time series models had a better model fit than time-stratified case-crossover models. Both designs showed that the relationships between temperature and group-specific CHD mortality were non-linear. Extreme cold and hot temperatures significantly increased the risk of CHD mortality. Hot effects were acute and short-term, while cold effects were delayed by two days and lasted for five days. The old people and women were more sensitive to extreme cold and hot temperatures than young and men. Conclusions This study suggests that time series models performed better than time-stratified case-crossover models according to the model fit, even though they produced similar non-linear effects of temperature on CHD mortality. In addition, our findings indicate that extreme cold and hot temperatures increase the risk of CHD mortality in Beijing, China, particularly for women and old people. PMID:22909034

  12. Global variation in the effects of ambient temperature on mortality: a systematic evaluation

    PubMed Central

    Guo, Yuming; Gasparrini, Antonio; Armstrong, Ben; Li, Shanshan; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; de Sousa Zanotti Stagliorio Coelho, Micheline; Leone, Michela; Pan, Xiaochuan; Tong, Shilu; Tian, Linwei; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Punnasiri, Kornwipa; Yi, Seung-Muk; Michelozzi, Paola; Saldiva, Paulo Hilario Nascimento; Williams, Gail

    2014-01-01

    Background Studies have examined the effects of temperature on mortality in a single city, country or region. However, less evidence is available on the variation in the associations between temperature and mortality in multiple countries, analyzed simultaneously. Methods We obtained daily data on temperature and mortality in 306 communities from 12 countries/regions (Australia, Brazil, Thailand, China, Taiwan, Korea, Japan, Italy, Spain, United Kingdom, United States and Canada). Two-stage analyses were used to assess the non-linear and delayed relationship between temperature and mortality. In the first stage, a Poisson regression allowing over-dispersion with distributed lag non-linear model was used to estimate the community-specific temperature-mortality relationship. In the second stage, a multivariate meta-analysis was used to pool the non-linear and delayed effects of ambient temperature at the national level, in each country. Results The temperatures associated with the lowest mortality were around the 75th percentile of temperature in all the countries/regions, ranging from 66th (Taiwan) to 80th (UK) percentiles. The estimated effects of cold and hot temperatures on mortality varied by community and country. Meta-analysis results show that both cold and hot temperatures increased the risk of mortality in all the countries/regions. Cold effects were delayed and lasted for many days, while hot effects appeared quickly and did not last long. Conclusions People have some ability to adapt to their local climate type, but both cold and hot temperatures are still associated with the risk of mortality. Public health strategies to alleviate the impact of ambient temperatures are important, in particular in the context of climate change. PMID:25166878

  13. Insulation Testing Using Cryostat Apparatus with Sleeve

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.

    1999-01-01

    The method and equipment of testing continuously rolled insulation materials is presented in this paper. Testing of blanket and molded products is also facilitated. Materials are installed around a cylindrical copper sleeve using a wrapping machine. The sleeve is slid onto the vertical cold mass of the cryostat. The gap between the cold mass and the sleeve measures less than 1 mm. The cryostat apparatus is a liquid nitrogen boiloff calorimeter system that enables direct measurement of the apparent thermal conductivity (k-value) of the insulation system at any vacuum level between 5 x 10(exp -5) and 760 torr. Sensors are placed between layers of the insulation to provide complete temperature-thickness profiles. The temperatures of the cold mass (maintained at 77.8 kelvin (K)), the sleeve (cold boundary temperature (CBT)), the insulation outer surface (warm boundary temperature (WBT)), and the vacuum can (maintained at 313 K by a thermal shroud) are measured. Plots of CBT, WBT, and layer temperature profiles as functions of vacuum level show the transitions between the three dominant heat transfer modes. For this cryostat apparatus, the measureable heat gain is from 0.2 to 20 watts. The steady-state measurement of k-value is made when all temperatures and the boiloff rate are stable.

  14. Study on cold head structure of a 300 Hz thermoacoustically driven pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Yu, G. Y.; Wang, X. T.; Dai, W.; Luo, E. C.

    2012-04-01

    High reliability, compact size and potentially high thermal efficiency make the high frequency thermoacoustically-driven pulse tube cryocooler quite promising for space use. With continuous efforts, the lowest temperature and the thermal efficiency of the coupled system have been greatly improved. So far, a cold head temperature below 60 K has been achieved on such kind of cryocooler with the operation frequency of around 300 Hz. To further improve the thermal efficiency and expedite its practical application, this work focuses on studying the influence of cold head structure on the system performance. Substantial numerical simulations were firstly carried out, which revealed that the cold head structure would greatly influence the cooling power and the thermal efficiency. To validate the predictions, a lot of experiments have been done. The experiments and calculations are in reasonable agreement. With 500 W heating power input into the engine, a no-load temperature of 63 K and a cooling power of 1.16 W at 80 K have been obtained with parallel-plate cold head, indicating encouraging improvement of the thermal efficiency.

  15. A TREND BETWEEN COLD DEBRIS DISK TEMPERATURE AND STELLAR TYPE: IMPLICATIONS FOR THE FORMATION AND EVOLUTION OF WIDE-ORBIT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.

    2013-09-20

    Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processesmore » (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.« less

  16. The Lysozyme from Insect (Manduca sexta) is a Cold-Adapted Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotelo-Mundo,R.; Lopez-Zavala, A.; Garcia-Orozco, K.

    Enzymatic activity is dependent on temperature, although some proteins have evolved to retain activity at low temperatures at the expense of stability. Cold adapted enzymes are present in a variety of organisms and there is ample interest in their structure-function relationships. Lysozyme (E.C. 3.2.1.17) is one of the most studied enzymes due to its antibacterial activity against Gram positive bacteria and is also a cold adapted protein. In this work the characterization of lysozyme from the insect Manduca sexta and its activity at low temperatures is presented. Both M. sexta lysozymes natural and recombinant showed a higher content of {alpha}-helixmore » secondary structure compared to that of hen egg white lysozyme and a higher specific enzymatic activity in the range of 5-30 {sup o}C. These results together with measured thermodynamic activation parameters support the designation of M. sexta lysozyme as a cold adapted enzyme. Therefore, the insect recombinant lysozyme is feasible as a model for structure-function studies for cold-adapted proteins.« less

  17. Directional selection on cold tolerance does not constrain plastic capacity in a butterfly.

    PubMed

    Franke, Kristin; Dierks, Anneke; Fischer, Klaus

    2012-12-05

    Organisms may respond to environmental change by means of genetic adaptation, phenotypic plasticity or both, which may result in genotype-environment interactions (G x E) if genotypes differ in their phenotypic response. We here specifically target the latter source of variation (i.e. G x E) by comparing plastic responses among lines of the tropical butterfly Bicyclus anynana that had been selected for increased cold tolerance and according controls. Our main aim here was to test the hypothesis that directional selection on cold tolerance will interfere with plastic capacities. Plastic responses to temperature and feeding treatments were strong, with e.g. higher compared to lower temperatures reducing cold tolerance, longevity, pupal mass, and development time. We report a number of statistically significant genotype-environment interactions (i.e. interactions between selection regime and environmental variables), but most of these were not consistent across treatment groups. We found some evidence though for larger plastic responses to different rearing temperatures in the selection compared to the control lines, while plastic responses to different adult temperatures and feeding treatments were overall very similar across selection regimes. Our results indicate that plastic capacities are not always constrained by directional selection (on cold tolerance) and therefore genetic changes in trait means, but may operate independently.

  18. Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter

    PubMed Central

    Rizzello, Antonia; Romano, Alessandro; Kottra, Gabor; Acierno, Raffaele; Storelli, Carlo; Verri, Tiziano; Daniel, Hannelore; Maffia, Michele

    2013-01-01

    Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. PMID:23569229

  19. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity

    USGS Publications Warehouse

    Isaak, Daniel J.; Young, Michael K; Luce, Charles H; Hostetler, Steven W.; Wengerd, Seth J.; Peterson, Erin E.; Ver Hoef, Jay; Groce, Matthew C.; Horan, Dona L.; Nagel, David E.

    2016-01-01

    The imminent demise of montane species is a recurrent theme in the climate change literature, particularly for aquatic species that are constrained to networks and elevational rather than latitudinal retreat as temperatures increase. Predictions of widespread species losses, however, have yet to be fulfilled despite decades of climate change, suggesting that trends are much weaker than anticipated and may be too subtle for detection given the widespread use of sparse water temperature datasets or imprecise surrogates like elevation and air temperature. Through application of large water-temperature databases evaluated for sensitivity to historical air-temperature variability and computationally interpolated to provide high-resolution thermal habitat information for a 222,000-km network, we estimate a less dire thermal plight for cold-water species within mountains of the northwestern United States. Stream warming rates and climate velocities were both relatively low for 1968–2011 (average warming rate = 0.101 °C/decade; median velocity = 1.07 km/decade) when air temperatures warmed at 0.21 °C/decade. Many cold-water vertebrate species occurred in a subset of the network characterized by low climate velocities, and three native species of conservation concern occurred in extremely cold, slow velocity environments (0.33–0.48 km/decade). Examination of aggressive warming scenarios indicated that although network climate velocities could increase, they remain low in headwaters because of strong local temperature gradients associated with topographic controls. Better information about changing hydrology and disturbance regimes is needed to complement these results, but rather than being climatic cul-de-sacs, many mountain streams appear poised to be redoubts for cold-water biodiversity this century.

  20. Habituation of the metabolic and ventilatory responses to cold-water immersion in humans.

    PubMed

    Tipton, Michael J; Wakabayashi, Hitoshi; Barwood, Martin J; Eglin, Clare M; Mekjavic, Igor B; Taylor, Nigel A S

    2013-01-01

    An experiment was undertaken to answer long-standing questions concerning the nature of metabolic habituation in repeatedly cooled humans. It was hypothesised that repeated skin and deep-body cooling would produce such a habituation that would be specific to the magnitude of the cooling experienced, and that skin cooling alone would dampen the cold-shock but not the metabolic response to cold-water immersion. Twenty-one male participants were divided into three groups, each of which completed two experimental immersions in 12°C water, lasting until either rectal temperature fell to 35°C or 90min had elapsed. Between these two immersions, the control group avoided cold exposures, whilst two experimental groups completed five additional immersions (12°C). One experimental group repeatedly immersed for 45min in average, resulting in deep-body (1.18°C) and skin temperature reductions. The immersions in the second experimental group were designed to result only in skin temperature reductions, and lasted only 5min. Only the deep-body cooling group displayed a significantly blunted metabolic response during the second experimental immersion until rectal temperature decreased by 1.18°C, but no habituation was observed when they were cooled further. The skin cooling group showed a significant habituation in the ventilatory response during the initial 5min of the second experimental immersion, but no alteration in the metabolic response. It is concluded that repeated falls of skin and deep-body temperature can habituate the metabolic response, which shows tissue temperature specificity. However, skin temperature cooling only will lower the cold-shock response, but appears not to elicit an alteration in the metabolic response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity

    PubMed Central

    Isaak, Daniel J.; Young, Michael K.; Luce, Charles H.; Hostetler, Steven W.; Wenger, Seth J.; Peterson, Erin E.; Ver Hoef, Jay M.; Groce, Matthew C.; Horan, Dona L.; Nagel, David E.

    2016-01-01

    The imminent demise of montane species is a recurrent theme in the climate change literature, particularly for aquatic species that are constrained to networks and elevational rather than latitudinal retreat as temperatures increase. Predictions of widespread species losses, however, have yet to be fulfilled despite decades of climate change, suggesting that trends are much weaker than anticipated and may be too subtle for detection given the widespread use of sparse water temperature datasets or imprecise surrogates like elevation and air temperature. Through application of large water-temperature databases evaluated for sensitivity to historical air-temperature variability and computationally interpolated to provide high-resolution thermal habitat information for a 222,000-km network, we estimate a less dire thermal plight for cold-water species within mountains of the northwestern United States. Stream warming rates and climate velocities were both relatively low for 1968–2011 (average warming rate = 0.101 °C/decade; median velocity = 1.07 km/decade) when air temperatures warmed at 0.21 °C/decade. Many cold-water vertebrate species occurred in a subset of the network characterized by low climate velocities, and three native species of conservation concern occurred in extremely cold, slow velocity environments (0.33–0.48 km/decade). Examination of aggressive warming scenarios indicated that although network climate velocities could increase, they remain low in headwaters because of strong local temperature gradients associated with topographic controls. Better information about changing hydrology and disturbance regimes is needed to complement these results, but rather than being climatic cul-de-sacs, many mountain streams appear poised to be redoubts for cold-water biodiversity this century. PMID:27044091

  2. Influence of temperature on the corticosterone stress-response: an experiment in the Children's python (Antaresia childreni).

    PubMed

    Dupoué, Andréaz; Brischoux, François; Lourdais, Olivier; Angelier, Frédéric

    2013-11-01

    To cope with environmental challenges, organisms have to adjust their behaviours and their physiology to the environmental conditions they face (i.e. allostasis). In vertebrates, such adjustments are often mediated through the secretion of glucocorticoids (GCs) that are well-known to activate and/or inhibit specific physiological and behavioural traits. In ectothermic species, most processes are temperature-dependent and according to previous studies, low external temperatures should be associated with low GC concentrations (both baseline and stress-induced concentrations). In this study, we experimentally tested this hypothesis by investigating the short term influence of temperature on the GC stress response in a squamate reptile, the Children's python (Antaresia childreni). Snakes were maintained in contrasting conditions (warm and cold groups), and their corticosterone (CORT) stress response was measured (baseline and stress-induced CORT concentrations), within 48h of treatment. Contrary to our prediction, baseline and stress-induced CORT concentrations were higher in the cold versus the warm treatment. In addition, we found a strong negative relationship between CORT concentrations (baseline and stress-induced) and temperature within the cold treatment. Although it remains unclear how cold temperatures can mechanistically result in increased CORT concentrations, we suggest that, at suboptimal temperature, high CORT concentrations may help the organism to maintain an alert state. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. [Strategies and mechanisms of soil springtails in adapting lower temperature environment: research progress].

    PubMed

    Liu, Jing; Wang, Yun-Biao; Wu, Dong-Hui

    2012-12-01

    Low temperature and drought are the main environmental factors threatening the animals living in arctic area and cold temperate regions. To adapt the severe environment, the animals should adopt appropriate strategies. As a group of arthopods with freeze-avoiding strategy, soil springtails have the similar ecological mechanisms and modes of cold resistance/tolerance as insects, manifesting in the cold acclimation and drought tolerance to decrease the damage of ice crystal formation. During cold acclimation, there are a rapid increase of glycerol, a rapid decrease of fucose and glucose, and the production of anti-freeze proteins (AFP) , and exists the inter-transformation of different kinds of lipids to improve the flow of cell membrane to protect the cell from low temperature injury. In addition, soil springtails have their own specific modes and mechanisms to tolerate low temperature stress, mainly the vertical migration under the protection of snow cover and the excretion of ice nucleator from haemolymph, illustrating that it's of significance to research the cryobiology of soil springtails. This paper summarized the modes and mechanisms of soil springtails in tolerating low temperature environment, reviewed the research progress on the eco-physiology of the springtails, discussed the existing problems of the researches on the low temperature tolerance of the springtails, and prospected the research directions of the springtails low temperature ecology under the background of global change.

  4. Effect of variability in lighting and temperature environments for mature gilts housed in gestation crates on measures of reproduction and animal well-being.

    PubMed

    Canaday, D C; Salak-Johnson, J L; Visconti, A M; Wang, X; Bhalerao, K; Knox, R V

    2013-03-01

    The effects of room temperature and light intensity before breeding and into early gestation were evaluated on the reproductive performance and well-being of gilts housed individually in crates. In eight replicates, estrus was synchronized in mature gilts (n = 198) and after last feeding of Matrix were randomly assigned to a room temperature of 15°C (COLD), 21°C (NEUTRAL), or 30°C (HOT) and a light intensity of 11 (DIM) or 433 (BRIGHT) lx. Estrous detection was performed daily and gilts inseminated twice. Blood samples were collected before and after breeding for determination of immune measures and cortisol concentrations. Gilt ADFI, BW, and body temperature were measured. On d 30 postbreeding, gilts were slaughtered to recover reproductive tracts to evaluate pregnancy and litter characteristics. There were no temperature × light intensity interactions for any response variable. Reproductive measures of follicle development, expression of estrus, ovulation rate, pregnancy rate (83.2%), litter size (14.3 ± 0.5), and fetal measures were not affected by temperature or lighting (P > 0.10). Gilts in COLD (37.6°C) had a lower (P < 0.05) rectal temperature than those in NEUTRAL (38.2°C) and HOT (38.6 ± 0.04°C). Both BW gain and final BW were greater (P < 0.0001) for gilts kept in HOT than those in NEUTRAL or COLD environments. Cortisol was greater (P < 0.01) for gilts kept in COLD compared with those kept in the HOT room. Gilts housed in the HOT environment made more postural changes (P < 0.05) than did those kept in either COLD or NEUTRAL temperatures. Gilts kept in the HOT temperature spent more total time lying and more time lying ventrally compared with those gilts housed in the NEUTRAL or COLD rooms. Total white blood cells and the percentage of neutrophils as well as neutrophil-to-lymphocyte ratio were all influenced (P < 0.05) by temperature but there was no effect (P > 0.10) of light or interaction with temperature on other immune cells or measures. These results indicate that temperatures in the range of 15 to 30°C or light intensity at 11 to 433 lx do not impact reproduction during the follicular phase and into early gestation for mature gilts housed in gestation crates. However, room temperature does impact physiological, behavioral, and immune responses of mature gilts and should be considered as a potential factor that may influence gilt well-being during the first 30 d postbreeding.

  5. Koroška 8000 Himalayan expedition: digit responses to cold stress following ascent to Broadpeak (Pakistan, 8051 m).

    PubMed

    Gorjanc, Jurij; Morrison, Shawnda A; McDonnell, Adam C; Mekjavic, Igor B

    2018-05-24

    Cold-induced vasodilatation (CIVD) is a peripheral blood flow response, observed in both the hands and feet. Exercise has been shown to enhance the response, specifically by increasing mean skin temperatures (T sk ), in part due to the increased number of CIVD waves. In contrast, hypobaric hypoxia has been suggested to impair digit skin temperature responses, particularly during subsequent hand rewarming following the cold stimulus. This study examined the combined effect of exercise and hypobaric hypoxia on the CIVD response. We compared the CIVD responses in the digits of both the hands and feet of a team of alpinists (N = 5) before and after a 35-day Himalayan expedition to Broadpeak, Pakistan (8051 m). Five elite alpinists participated in hand and foot cold water immersion tests 20 days before and immediately upon return from their expedition. The alpinists summited successfully without supplemental oxygen. Post-expedition, all alpinists demonstrated higher minimum T sk in their hands (pre: 9.9 ± 1.1, post: 10.1 ± 0.7 °C, p = 0.031). Four alpinists had either greater CIVD waves, and, consequently, higher mean T sk in their hands, or higher recovery temperatures (pre: 26.0 ± 5.5 °C post: 31.0 ± 4.1 °C, p = 0.052), or faster rewarming rate (pre: 2.6 ± 0.5 °C min -1 post: 3.1 ± 0.4 °C min -1, p = 0.052). In the feet, the responses varied: 1/5 had higher wave amplitudes and 1/5 had higher passive recovery temperatures, whereas 3/5 had lower mean toe temperatures during cold exposure. The results of the cold stress test suggest after a 35-day Himalayan expedition, alpinists experienced a slight cold adaptation of the hands, but not the feet.

  6. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature

    PubMed Central

    Almeida, M. Camila; Hew-Butler, Tamara; Soriano, Renato N.; Rao, Sara; Wang, Weiya; Wang, Judy; Tamayo, Nuria; Oliveira, Daniela L.; Nucci, Tatiane B.; Aryal, Prafulla; Garami, Andras; Bautista, Diana; Gavva, Narender R.; Romanovsky, Andrej A.

    2012-01-01

    We studied M8-B, a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (Tb) in Trpm8+/+ mice and rats, but not in Trpm8−/− mice, thus suggesting an on-target action. The intravenous administration of M8-B was more effective in decreasing Tb in rats than the intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect Tb at either a constantly high or a constantly low ambient temperature (Ta), but the same dose readily decreased Tb if rats were kept at a high Ta during the M8-B infusion and transferred to a low Ta immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail skin temperatures < 23°C, the magnitude of the M8-B-induced decrease in Tb was inversely related to skin temperature, thus suggesting that M8-B blocks thermal (cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system. PMID:22323721

  7. Dependence of present and future European heat waves and cold spells on the location of atmospheric blocking

    NASA Astrophysics Data System (ADS)

    Brunner, L.; Schaller, N.; Sillmann, J.; Steiner, A. K.

    2017-12-01

    Atmospheric blocking describes stationary anti-cyclones, which weaken or reverse the climatological flow at mid-latitudes. In the northern hemisphere one of the main blocking regions is located over the North Atlantic and Northern Europe. The link between blocking and European temperature extremes, such as heat waves and cold spells, strongly depends on several aspects like season, longitudinal location of the block, and location of the extremes (particularly Northern Europe versus Southern Europe). We use a 50-member ensemble of the Canadian CanESM2 model to investigate historical (1981-2010) and future (2070-2099) blocking cases and their relationship with European temperature extremes. For the historical period the model results are also compared to those from the ERA-Interim reanalysis. Atmospheric blocking is detected on a daily basis in different 30° longitude windows between 60°W and 60°E, using a standard geopotential height-based detection index. Temperature extremes are defined by the daily Heat/Cold Wave Magnitude Index (HWMId/CWMId). The role of cold advection is found particularly important in winter conditions leading to a more than threefold increase in cold wave occurrence during blocking between 60°W and 0°. During blocking over Northern Europe (0° to 60°E) a split relationship is found with cold wave occurrence being strongly increased in Southern Europe, while it is decreased in Northern Europe. Direct, radiative effects dominate in summer, therefore blocking westward of Europe has a weaker effect, while blocking over Northern Europe leads to an increase of heat waves by at least a factor three at the location of the block and a decrease in cold wave occurrence in almost all of Europe. Comparing the historical and future period we find the link between blocking and temperature extremes in Europe to be robust, even though blocking frequency and temperatures are changing.

  8. Cardiovascular function, compliance, and connective tissue remodeling in the turtle, Trachemys scripta, following thermal acclimation

    PubMed Central

    Keen, Adam N.; Crossley, Dane A.

    2016-01-01

    Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in the slider turtle. PMID:27101300

  9. Effects of thermal regime on ovarian maturation and plasma sex steroids in farmed white sturgeon, Acipenser transmontanus

    USGS Publications Warehouse

    Webb, M.A.H.; Van Eenennaam, J. P.; Feist, G.W.; Linares-Casenave, J.; Fitzpatrick, M.S.; Schreck, C.B.; Doroshov, S.I.

    2001-01-01

    Recently, commercial aquaculture farms in Northern California have exposed gravid, cultured white sturgeon females to cold water (12 ?? 1??C) throughout the late phase of vitellogenesis and ovarian follicle maturation resulting in improved ovulation rates and egg quality. However, the optimum timing for transfer of broodfish to the cold water and the capacity of transferred broodfish to maintain reproductive competence over an extended time in cold water had not been evaluated. Gravid white sturgeon females that have been raised at water temperatures of 16-20??C were transported to either cold water (12 ?? 1??C; Group 1) in November 1997 or maintained in ambient water temperatures (10-19??C; Group 2) until early spring. In March 1998, half of the fish in Group 2 had regressed ovaries, but the remaining females had intact ovarian follicles and were transported to the cold water. Ovarian follicles and blood were collected from females until they reached the stage of spawning readiness (determined by germinal vesicle position and an oocyte maturation assay) or underwent ovarian regression. Exposure of gravid sturgeon females to ambient water temperatures (14.5 ?? 2.3??C, mean ?? S.D.) from October to March led to a decrease in plasma sex steroids and a high incidence of ovarian regression in fish with a more advanced stage of oocyte development. Transfer of females with intact ovarian follicles to cold water (12 ?? 1??C) in the fall or early spring resulted in normal ovarian development in the majority of females. Holding females in cold water does not seem to override their endogenous reproductive rhythms but extends their capacity to maintain oocyte maturational competence over a longer period of time. A temperature-sensitive phase in ovarian development may occur during the transition from vitellogenic growth to oocyte maturation, and the degree and timing of sensitivity to environmental temperature are dependent on the female's endogenous reproductive rhythm. ?? 2001 Elsevier Science B.V. All Rights reserved.

  10. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    USGS Publications Warehouse

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  11. Thermal design and verification of an instrument cooling system for infrared detectors utilizing the Oxford Stirling cycle refrigerator

    NASA Technical Reports Server (NTRS)

    Werrett, Stephen; Seivold, Alfred L.

    1990-01-01

    A detailed nodal computer model was developed to thermally represent the hardware, and sensitivity studies were performed to evaluate design parameters and orbital environmental effects of an instrument cooling system for IR detectors. Thermal-vacuum testing showed excellent performance of the system and a correspondence with math model predictions to within 3 K. Results show cold stage temperature sensitivity to cold patch backload, outer stage external surface emittance degradation, and cold stage emittance degradation, respectively. The increase in backload on the cold patch over the mission lifetime is anticipated to be less than 3.0 watts, which translates to less than a 3-degree increase in detector temperatures.

  12. Role of the Excitability Brake Potassium Current IKD in Cold Allodynia Induced by Chronic Peripheral Nerve Injury.

    PubMed

    González, Alejandro; Ugarte, Gonzalo; Restrepo, Carlos; Herrera, Gaspar; Piña, Ricardo; Gómez-Sánchez, José Antonio; Pertusa, María; Orio, Patricio; Madrid, Rodolfo

    2017-03-22

    Cold allodynia is a common symptom of neuropathic and inflammatory pain following peripheral nerve injury. The mechanisms underlying this disabling sensory alteration are not entirely understood. In primary somatosensory neurons, cold sensitivity is mainly determined by a functional counterbalance between cold-activated TRPM8 channels and Shaker-like Kv1.1-1.2 channels underlying the excitability brake current I KD Here we studied the role of I KD in damage-triggered painful hypersensitivity to innocuous cold. We found that cold allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in mice, was related to both an increase in the proportion of cold-sensitive neurons (CSNs) in DRGs contributing to the sciatic nerve, and a decrease in their cold temperature threshold. I KD density was reduced in high-threshold CSNs from CCI mice compared with sham animals, with no differences in cold-induced TRPM8-dependent current density. The electrophysiological properties and neurochemical profile of CSNs revealed an increase of nociceptive-like phenotype among neurons from CCI animals compared with sham mice. These results were validated using a mathematical model of CSNs, including I KD and TRPM8, showing that a reduction in I KD current density shifts the thermal threshold to higher temperatures and that the reduction of this current induces cold sensitivity in former cold-insensitive neurons expressing low levels of TRPM8-like current. Together, our results suggest that cold allodynia is largely due to a functional downregulation of I KD in both high-threshold CSNs and in a subpopulation of polymodal nociceptors expressing TRPM8, providing a general molecular and neural mechanism for this sensory alteration. SIGNIFICANCE STATEMENT This paper unveils the critical role of the brake potassium current I KD in damage-triggered cold allodynia. Using a well-known form of nerve injury and combining behavioral analysis, calcium imaging, patch clamping, and pharmacological tools, validated by mathematical modeling, we determined that the functional expression of I KD is reduced in sensory neurons in response to peripheral nerve damage. This downregulation not only enhances cold sensitivity of high-threshold cold thermoreceptors signaling cold discomfort, but it also transforms a subpopulation of polymodal nociceptors signaling pain into neurons activated by mild temperature drops. Our results suggest that cold allodynia is linked to a reduction of I KD in both high-threshold cold thermoreceptors and nociceptors expressing TRPM8, providing a general model for this form of cold-induced pain. Copyright © 2017 the authors 0270-6474/17/373109-18$15.00/0.

  13. Health impact of the 2008 cold spell on mortality in subtropical China: the climate and health impact national assessment study (CHINAs)

    PubMed Central

    2014-01-01

    Background Many studies have investigated heat wave related mortality, but less attention has been given to the health effects of cold spells in the context of global warming. The 2008 cold spell in China provided a unique opportunity to estimate the effects of the 2008 cold spell on mortality in subtropical regions, spatial heterogeneity of the effects, stratification effect and added effects caused by sustained cold days. Methods Thirty-six study communities were selected from 15 provinces in subtropical China. Daily mortality and meteorological data were collected for each community from 2006 to 2010. A distributed lag linear non-linear model (DLNM) with a lag structure of up to 27 days was used to analyze the association between the 2008 cold spell and mortality. Multivariate meta-analyses were used to combine the cold effects across each community. Results The 2008 cold spell increased mortality by 43.8% (95% CI: 34.8% ~ 53.4%) compared to non-cold spell days with the highest effects in southern and central China. The effects were more pronounced for respiratory mortality (RESP) than for cardiovascular (CVD) or cerebrovascular mortality (CBD), for females more than for males, and for the elderly aged ≥75 years old more than for younger people. Overall, 148,279 excess deaths were attributable to the 2008 cold spell. The cold effect was mainly from extreme low temperatures rather than sustained cold days during this 2008 cold spell. Conclusions The 2008 cold spell increased mortality in subtropical China, which was mainly attributable to the low temperature rather than the sustained duration of the cold spell. The cold effects were spatially heterogeneous and modified by individual-specific characteristics such as gender and age. PMID:25060645

  14. A novel method for delivering ramped cooling reveals rat behaviours at innocuous and noxious temperatures: A comparative study of human psychophysics and rat behaviour.

    PubMed

    Dunham, James P; Hulse, Richard P; Donaldson, Lucy F

    2015-07-15

    Thermal sensory testing in rodents informs human pain research. There are important differences in the methodology for delivering thermal stimuli to humans and rodents. This is particularly true in cold pain research. These differences confound extrapolation and de-value nociceptive tests in rodents. We investigated cooling-induced behaviours in rats and psychophysical thresholds in humans using ramped cooling stimulation protocols. A Peltier device mounted upon force transducers simultaneously applied a ramped cooling stimulus whilst measuring contact with rat hind paw or human finger pad. Rat withdrawals and human detection, discomfort and pain thresholds were measured. Ramped cooling of a rat hind paw revealed two distinct responses: Brief paw removal followed by paw replacement, usually with more weight borne than prior to the removal (temperature inter-quartile range: 19.1 °C to 2.8 °C). Full withdrawal was evoked at colder temperatures (inter quartile range: -11.3 °C to -11.8 °C). The profile of human cool detection threshold and cold pain threshold were remarkably similar to that of the rat withdrawals behaviours. Previous rat cold evoked behaviours utilise static temperature stimuli. By utilising ramped cold stimuli this novel methodology better reflects thermal testing in patients. Brief paw removal in the rat is driven by non-nociceptive afferents, as is the perception of cooling in humans. This is in contrast to the nociceptor-driven withdrawal from colder temperatures. These findings have important implications for the interpretation of data generated in older cold pain models and consequently our understanding of cold perception and pain. Copyright © 2015. Published by Elsevier B.V.

  15. Contemporary formulation and distribution practices for cold-filled acid products: Australian industry survey and modeling of published pathogen inactivation data.

    PubMed

    Chapman, B; Scurrah, K J; Ross, T

    2010-05-01

    A survey of 12 Australian manufacturers indicated that mild-tasting acids and preservatives are used to partially replace acetic acid in cold-filled acid dressings and sauces. In contrast to traditional ambient temperature distribution practices, some manufacturers indicated that they supply the food service sector with cold-filled acid products prechilled for incorporation into ready-to-eat foods. The Comité des Industries des Mayonnaises et Sauces Condimentaires de la Communauté Economique Européenne (CIMSCEE) Code, a formulation guideline used by the industry to predict the safety of cold-filled acid formulations with respect to Salmonella enterica and Escherichia coli, does not extend to the use of acids and preservatives other than acetic acid nor does it consider the effects of chill distribution. We found insufficient data in the published literature to comprehensively model the response of S. enterica and E. coli to all of the predictor variables (i.e., pH, acetic acid, NaCl, sugars, other acids, preservatives, and storage temperature) of relevance for contemporary cold-filled acid products in Australia. In particular, we noted a lack of inactivation data for S. enterica at aqueous-phase NaCl concentrations of >3% (wt/wt). However, our simple models clearly identified pH and 1/absolute temperature of storage as the most important variables generally determining inactivation. To develop robust models to predict the effect of contemporary formulation and storage variables on product safety, additional empirical data are required. Until such models are available, our results support challenge testing of cold-filled acid products to ascertain their safety, as suggested by the CIMSCEE, but suggest consideration of challenging with both E. coli and S. enterica at incubation temperatures relevant to intended product distribution temperatures.

  16. Cutaneous vascular and core temperature responses to sustained cold exposure in hypoxia.

    PubMed

    Simmons, Grant H; Barrett-O'Keefe, Zachary; Minson, Christopher T; Halliwill, John R

    2011-10-01

    We tested the effect of hypoxia on cutaneous vascular regulation and defense of core temperature during cold exposure. Twelve subjects had two microdialysis fibres placed in the ventral forearm and were immersed to the sternum in a bathtub on parallel study days (normoxia and poikilocapnic hypoxia with an arterial O(2) saturation of 80%). One fibre served as the control (1 mM propranolol) and the other received 5 mM yohimbine (plus 1 mM propranolol) to block adrenergic receptors. Skin blood flow was assessed at each site (laser Doppler flowmetry), divided by mean arterial pressure to calculate cutaneous vascular conductance (CVC), and scaled to baseline. Cold exposure was first induced by a progressive reduction in water temperature from 36 to 23°C over 30 min to assess cutaneous vascular regulation, then by clamping the water temperature at 10°C for 45 min to test defense of core temperature. During normoxia, cold stress reduced CVC in control (-44 ± 4%) and yohimbine sites (-13 ± 7%; both P < 0.05 versus precooling). Hypoxia caused vasodilatation prior to cooling but resulted in greater reductions in CVC in control (-67 ± 7%) and yohimbine sites (-35 ± 11%) during cooling (both P < 0.05 versus precooling; both P < 0.05 versus normoxia). Core cooling rate during the second phase of cold exposure was unaffected by hypoxia (-1.81 ± 0.23°C h(-1) in normoxia versus -1.97 ± 0.33°C h(-1) in hypoxia; P > 0.05). We conclude that hypoxia increases cutaneous (non-noradrenergic) vasoconstriction during prolonged cold exposure, while core cooling rate is not consistently affected.

  17. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms.

    PubMed

    Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin

    2015-07-01

    Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype. © 2014 Scandinavian Plant Physiology Society.

  18. Cold stability of microtubules in wood-forming tissues of conifers during seasons of active and dormant cambium.

    PubMed

    Begum, Shahanara; Shibagaki, Masaki; Furusawa, Osamu; Nakaba, Satoshi; Yamagishi, Yusuke; Yoshimoto, Joto; Jin, Hyun-O; Sano, Yuzou; Funada, Ryo

    2012-01-01

    The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2-3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.

  19. Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation.

    PubMed

    Chen, Jiaming; Yang, Xiaoqiang; Huang, Xiaomao; Duan, Shihua; Long, Chuan; Chen, Jiakuan; Rong, Jun

    2017-02-28

    Cold tolerance is a key determinant of the geographical distribution range of a plant species and crop production. Cold acclimation can enhance freezing-tolerance of plant species through a period of exposure to low nonfreezing temperatures. As a subtropical evergreen broadleaf plant, oil-tea camellia demonstrates a relatively strong tolerance to freezing temperatures. Moreover, wild oil-tea camellia is an essential genetic resource for the breeding of cultivated oil-tea camellia, one of the four major woody oil crops in the world. The aims of our study are to identify variations in transcriptomes of wild oil-tea camellia from different latitudes and elevations, and discover candidate genes for cold acclimation. Leaf transcriptomes were obtained of wild oil-tea camellia from different elevations in Lu and Jinggang Mountains, China. Huge amounts of simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs) and insertion/deletions (InDels) were identified. Based on SNPs, phylogenetic analysis was performed to detect genetic structure. Wild oil-tea camellia samples were genetically differentiated mainly between latitudes (between Lu and Jinggang Mountains) and then among elevations (within Lu or Jinggang Mountain). Gene expression patterns of wild oil-tea camellia samples were compared among different air temperatures, and differentially expressed genes (DEGs) were discovered. When air temperatures were below 10 °C, gene expression patterns changed dramatically and majority of the DEGs were up-regulated at low temperatures. More DEGs concerned with cold acclimation were detected at 2 °C than at 5 °C, and a putative C-repeat binding factor (CBF) gene was significantly up-regulated only at 2 °C, suggesting a stronger cold stress at 2 °C. We developed a new method for identifying significant functional groups of DEGs. Among the DEGs, transmembrane transporter genes were found to be predominant and many of them encoded transmembrane sugar transporters. Our study provides one of the largest transcriptome dataset in the genus Camellia. Wild oil-tea camellia populations were genetically differentiated between latitudes. It may undergo cold acclimation when air temperatures are below 10 °C. Candidate genes for cold acclimation may be predominantly involved in transmembrane transporter activities.

  20. Late Miocene - Pliocene Evolution of the Pacific Warm Pool and Cold Tongue: Implications for El Niño

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pagani, M.

    2011-12-01

    The Western Pacific Warm Pool of the tropical Pacific Ocean retains the largest and warmest sea surface water body on Earth, while the eastern equatorial Pacific is characterized by strong upwelling of cold, nutrient-rich deep waters, termed the Pacific cold tongue. Evolution of the Pacific warm pool and cold tongue are important because they control the circum-Pacific climate and impact the globe via El Niño - Southern Oscillation (ENSO) teleconnections. Sea surface temperature (SST) reconstructions using a single site from the warm pool (ODP 806) and two sites from the cold tongue (ODP 846, 847) suggest that the temperature of the warm pool was "stable" throughout the Plio-Pleistocene, whereas the cold tongue was much warmer in the Pliocene and subsequently cooled. The absence of an east-west Pacific temperature gradient during the early Pliocene is the basis for the "permanent El Niño" hypothesis. However, annually-resolved fossil coral and evaporite records found 3-7 years climate variability during the Pliocene warm period and late Miocene, challenging a "permanent" or invariant climate state. Here we present a multi-proxy (TEX86, UK37, Mg/Ca), multi-site reconstruction of the late Miocene - Pliocene (ca. 12 Ma - 3 Ma) SST in the Pacific warm pool (ODP 806, ODP 769 in the Sulu Sea, ODP 1143 in the South China Sea) and the cold tongue (ODP 850, 849, 846). Our results show that the cold tongue was even warmer in the late Miocene than the Pliocene, and that the warm pool cooled 2-3°C from the late Miocene into the Pliocene - in contrast to the invariant character previously assumed. Temperature comparison between different sites suggests that the warm pool may have expanded in size in the late Miocene. Although eastern and western ends of the tropical Pacific were warmer, a persistent, but low east-west temperature gradient (~3°C) is apparent. This agrees with recent studies which have shown ENSO-related frequency of climate change in the late Miocene and early Pliocene.

  1. Role of Hsp-70 responses in cold acclimation of HUVEC-12 cells.

    PubMed

    Guan, Hao; Hu, Dahai; Zhao, Zhijing; Cai, Weixia; Zhou, Qin; Yang, Ximing; Yan, Ying; Zhu, Xiongxiang

    2015-01-01

    Endothelial recovery is a central feature of tissues after frostbite injuries. Thermo tolerance plays an important role in protecting cells against injury after frozen and thawing. The present study aimed to quantitatively assess the injury of human umbilical vein endothelial cells HUVEC-12 after repeated low temperature. Pretreatments (HUVEC-12) cells were repeatedly exposed to cold (1°C/min decrement to -20°C). Their proliferation, death, apoptosis, and protein and mRNA expressions of HSP70 were determined. Endothelial cells after repeated cold exposures were more resistant to apoptosis and necrosis than normal cells. The expressions of HSP70 in cells after repeated cold exposures were significantly higher than in normal HUVEC-12 cells (P < 0.05). Cold acclimation may induce the expression of HSP-70 which plays a protective role in the temperature tolerance.

  2. Monitoring the vaccine cold chain.

    PubMed

    Cheriyan, E

    1993-11-01

    Maintaining the vaccine cold chain is an essential part of a successful immunisation programme. A continuous electronic temperature monitor helped to identify breaks in the cold chain in the community and the study led to the issue of proper guidelines and replacement of faulty equipment.

  3. Seasonality in mortality and its relationship to temperature among the older population in Hanoi, Vietnam.

    PubMed

    Xuan, Le Thi Thanh; Egondi, Thaddaeus; Ngoan, Le Tran; Toan, Do Thi Thanh; Huong, Le Thi

    2014-01-01

    Several studies have established a relationship between temperature and mortality. In particular, older populations have been shown to be vulnerable to temperature effects. However, little information exists on the temperature-mortality relationship in Vietnam. This article aims to examine the monthly temperature-mortality relationship among older people in Hanoi, Vietnam, over the period between 2005 and 2010, and estimate seasonal patterns in mortality. We employed Generalized Additive Models, including smooth functions, to model the temperature-mortality relationships. A quasi-Poisson distribution was used to model overdispersion of death counts. Temporal trends, seasonality, and population size were adjusted for while estimating changes in monthly mortality over the study period. A cold month was defined as a month with a mean temperature below 19°C. This study found that the high peak of mortality coincided with low temperatures in the month of February 2008, during which the mean temperature was the lowest in the whole study period. There was a significant relationship between mean monthly temperature and mortality among the older people (p<0.01). Overall, there was a significant decrease in the number of deaths in the year 2009 during the study period. There was a 21% increase in the number of deaths during the cold season compared to the warm season. The increase in mortality during the cold period was higher among females compared to males (female: IRR [incidence relative risk] =1.23; male: IRR=1.18). Cold temperatures substantially increased mortality among the older population in Hanoi, Vietnam, and there were gender differences. Necessary preventive measures are required to mitigate temperature effects with greater attention to vulnerable groups.

  4. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis.

    PubMed

    Yoo, So Yeon; Kim, Yunhee; Kim, Soo Young; Lee, Jong Seob; Ahn, Ji Hoon

    2007-07-25

    Plants must integrate complex signals from environmental and endogenous cues to fine-tune the timing of flowering. Low temperature is one of the most common environmental stresses that affect flowering time; however, molecular mechanisms underlying the cold temperature regulation of flowering time are not fully understood. We report the identification of a novel regulator, LONG VEGETATIVE PHASE 1 (LOV1), that controls flowering time and cold response. An Arabidopsis mutant, longvegetative phase 1-1D (lov1-1D) showing the late-flowering phenotype, was isolated by activation tagging screening. Subsequent analyses demonstrated that the phenotype of the mutant resulted from the overexpression of a NAC-domain protein gene (At2g02450). Both gain- and loss-of-function alleles of LOV1 affected flowering time predominantly under long-day but not short-day conditions, suggesting that LOV1 may act within the photoperiod pathway. The expression of CONSTANS (CO), a floral promoter, was affected by LOV1 level, suggesting that LOV1 controls flowering time by negatively regulating CO expression. The epistatic relationship between CO and LOV1 was consistent with this proposed regulatory pathway. Physiological analyses to elucidate upstream signalling pathways revealed that LOV1 regulates the cold response in plants. Loss of LOV1 function resulted in hypersensitivity to cold temperature, whereas a gain-of-function allele conferred cold tolerance. The freezing tolerance was accompanied by upregulation of cold response genes, COLD-REGULATED 15A (COR15A) and COLD INDUCED 1 (KIN1) without affecting expression of the C-repeat-binding factor/dehydration responsive element-binding factor 1 (CBF/DREB1) family of genes. Our study shows that LOV1 functions as a floral repressor that negatively regulates CO expression under long-day conditions and acts as a common regulator of two intersecting pathways that regulate flowering time and the cold response, respectively. Our results suggest an overlapping pathway for controlling cold stress response and flowering time in plants.

  5. The effect of temperature and thermal acclimation on the sustainable performance of swimming scup.

    PubMed

    Rome, Lawrence C

    2007-11-29

    There is a significant reduction in overall maximum power output of muscle at low temperatures due to reduced steady-state (i.e. maximum activation) power-generating capabilities of muscle. However, during cyclical locomotion, a further reduction in power is due to the interplay between non-steady-state contractile properties of muscle (i.e. rates of activation and relaxation) and the stimulation and the length-change pattern muscle undergoes in vivo. In particular, even though the relaxation rate of scup red muscle is slowed greatly at cold temperatures (10 degrees C), warm-acclimated scup swim with the same stimulus duty cycles at cold as they do at warm temperature, not affording slow-relaxing muscle any additional time to relax. Hence, at 10 degrees C, red muscle generates extremely low or negative work in most parts of the body, at all but the slowest swimming speeds. Do scup shorten their stimulation duration and increase muscle relaxation rate during cold acclimation? At 10 degrees C, electromyography (EMG) duty cycles were 18% shorter in cold-acclimated scup than in warm-acclimated scup. But contrary to the expectations, the red muscle did not have a faster relaxation rate, rather, cold-acclimated muscle had an approximately 50% faster activation rate. By driving cold- and warm-acclimated muscle through cold- and warm-acclimated conditions, we found a very large increase in red muscle power during swimming at 10 degrees C. As expected, reducing stimulation duration markedly increased power output. However, the increased rate of activation alone produced an even greater effect. Hence, to fully understand thermal acclimation, it is necessary to examine the whole system under realistic physiological conditions.

  6. Response of Esophagus to High and Low Temperatures in Patients With Achalasia

    PubMed Central

    Ren, Yutang; Fang, Xiucai; Zhu, Liming; Sun, Xiaohong; Wang, Zhifeng; Wang, Ruifeng; Wei, Zhao; Wen, Ping; Xin, Haiwei; Chang, Min

    2012-01-01

    Background/Aims Achalasia patients would feel exacerbated dysphagia, chest pain and regurgitation when they drink cold beverages or eat cold food. But these symptoms would relieve when they drink hot water. Reasons are unknown. Methods Twelve achalasia patients (mean age, 34 ± 10 years; F:M, 3:9) who never had any invasive therapies were chosen from Peking Union Medical College Hospital. They were asked to fill in the questionnaire on eating habits including food temperature and related symptoms and to receive high-resolution manometry examination. The exam was done in 2 separated days, at swallowing room temperature (25℃) then hot (50℃) water, and at room temperature (25℃) then cold (2℃) water, respectively. Parameters associated with esophageal motility were analyzed. Results Most patients (9/12) reported discomfort when they ate cold food. All patients reported no additional discomfort when they ate hot food. Drinking hot water was effective in 5/8 patients who ever tried to relieve chest pain attacks. On manometry, cold water increased lower esophageal sphincter (LES) resting pressure (P = 0.003), and prolonged the duration of esophageal body contraction (P = 0.002). Hot water decreased LES resting pressure and residue pressure during swallow (P = 0.008 and P = 0.002), increased LES relaxation rate (P = 0.029) and shortened the duration of esophageal body contraction (P = 0.003). Conclusions Cold water could increase LES resting pressure, prolong the contraction duration of esophageal body, and exacerbate achalasia symptoms. Hot water could reduce LES resting pressure, assist LES relaxation, shorten the contraction duration of esophageal body and relieve symptoms. Thus achalasia patients are recommended to eat hot and warm food and avoid cold food. PMID:23105999

  7. Socioenvironmental factors associated with heat and cold-related mortality in Vadu HDSS, western India: a population-based case-crossover study

    NASA Astrophysics Data System (ADS)

    Ingole, Vijendra; Kovats, Sari; Schumann, Barbara; Hajat, Shakoor; Rocklöv, Joacim; Juvekar, Sanjay; Armstrong, Ben

    2017-10-01

    Ambient temperatures (heat and cold) are associated with mortality, but limited research is available about groups most vulnerable to these effects in rural populations. We estimated the effects of heat and cold on daily mortality among different sociodemographic groups in the Vadu HDSS area, western India. We studied all deaths in the Vadu HDSS area during 2004-2013. A conditional logistic regression model in a case-crossover design was used. Separate analyses were carried out for summer and winter season. Odds ratios (OR) and 95% confidence intervals (CI) were estimated for total mortality and population subgroups. Temperature above a threshold of 31 °C was associated with total mortality (OR 1.48, CI = 1.05-2.09) per 1 °C increase in daily mean temperature. Odds ratios were higher among females (OR 1.93; CI = 1.07-3.47), those with low education (OR 1.65; CI = 1.00-2.75), those owing larger agricultural land (OR 2.18; CI = 0.99-4.79), and farmers (OR 1.70; CI = 1.02-2.81). In winter, per 1 °C decrease in mean temperature, OR for total mortality was 1.06 (CI = 1.00-1.12) in lag 0-13 days. High risk of cold-related mortality was observed among people occupied in housework (OR = 1.09; CI = 1.00-1.19). Our study suggests that both heat and cold have an impact on mortality particularly heat, but also, to a smaller degree, cold have an impact. The effects may differ partly by sex, education, and occupation. These findings might have important policy implications in preventing heat and cold effects on particularly vulnerable groups of the rural populations in low and middle-income countries with hot semi-arid climate.

  8. Physiological responses to acute cold exposure in young lean men

    PubMed Central

    Martinez-Tellez, Borja; Sanchez-Delgado, Guillermo; A. Alcantara, Juan M.; Acosta-Manzano, Pedro; Morales-Artacho, Antonio J.; R. Ruiz, Jonatan

    2018-01-01

    The aim of this study was to comprehensively describe the physiological responses to an acute bout of mild cold in young lean men (n = 11, age: 23 ± 2 years, body mass index: 23.1 ± 1.2 kg/m2) to better understand the underlying mechanisms of non-shivering thermogenesis and how it is regulated. Resting energy expenditure, substrate metabolism, skin temperature, thermal comfort perception, superficial muscle activity, hemodynamics of the forearm and abdominal regions, and heart rate variability were measured under warm conditions (22.7 ± 0.2°C) and during an individualized cooling protocol (air-conditioning and water cooling vest) in a cold room (19.4 ± 0.1°C). The temperature of the cooling vest started at 16.6°C and decreased ~ 1.4°C every 10 minutes until participants shivered (93.5 ± 26.3 min). All measurements were analysed across 4 periods: warm period, at 31% and at 64% of individual´s cold exposure time until shivering occurred, and at the shivering threshold. Energy expenditure increased from warm period to 31% of cold exposure by 16.7% (P = 0.078) and to the shivering threshold by 31.7% (P = 0.023). Fat oxidation increased by 72.6% from warm period to 31% of cold exposure (P = 0.004), whereas no changes occurred in carbohydrates oxidation. As shivering came closer, the skin temperature and thermal comfort perception decreased (all P<0.05), except in the supraclavicular skin temperature, which did not change (P>0.05). Furthermore, the superficial muscle activation increased at the shivering threshold. It is noteworthy that the largest physiological changes occurred during the first 30 minutes of cold exposure, when the participants felt less discomfort. PMID:29734360

  9. Changing Susceptibility to Non-Optimum Temperatures in Japan, 1972-2012: The Role of Climate, Demographic, and Socioeconomic Factors.

    PubMed

    Chung, Yeonseung; Yang, Daewon; Gasparrini, Antonio; Vicedo-Cabrera, Ana M; Fook Sheng Ng, Chris; Kim, Yoonhee; Honda, Yasushi; Hashizume, Masahiro

    2018-05-02

    Previous studies have shown that population susceptibility to non-optimum temperatures has changed over time, but little is known about the related time-varying factors that underlie the changes. Our objective was to investigate the changing population susceptibility to non-optimum temperatures in 47 prefectures of Japan over four decades from 1972 to 2012, addressing three aspects: minimum mortality temperature (MMT) and heat- and cold-related mortality risks. In addition, we aimed to examine how these aspects of susceptibility were associated with climate, demographic, and socioeconomic variables. We first used a two-stage time-series design with a time-varying distributed lag nonlinear model and multivariate meta-analysis to estimate the time-varying MMT, heat- and cold-related mortality risks. We then applied linear mixed effects models to investigate the association between each of the three time-varying aspects of susceptibility and various time-varying factors. MMT increased from 23.2 [95% confidence interval (CI): 23, 23.6] to 28.7 (27.0, 29.7) °C. Heat-related mortality risk [relative risk (RR) for the 99th percentile of temperature vs. the MMT] decreased from 1.18 (1.15, 1.21) to 1.01 (0.98, 1.04). Cold-related mortality risk (RR for the first percentile vs. the MMT) generally decreased from 1.48 (1.41, 1.54) to 1.35 (1.32, 1.40), with the exception of a few eastern prefectures that showed increased risk. The changing patterns in all three aspects differed by region, sex, and causes of death. Higher mean temperature was associated ( p <0.01) with lower heat risk, whereas higher humidity was associated with higher cold risk. A higher percentage of elderly people was associated with a higher cold risk, whereas higher economic strength of the prefecture was related to lower cold risk. Population susceptibility to heat has decreased over the last four decades in Japan. Susceptibility to cold has decreased overall except for several eastern prefectures where it has either increased or remained unchanged. Certain climate, demographic, and socioeconomic factors explored in the current study might underlie this changing susceptibility. https://doi.org/10.1289/EHP2546.

  10. 76 FR 78832 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... outside the home. Household freezers offer storage space only at freezing temperatures. Products with both... systems, including cold storage cases, designed to chill food or keep it at a cold temperature for... Administration NOAEL--no observable adverse effect level NPRM--notice of proposed rulemaking NTTAA--National...

  11. Reactor Simulator Testing Overview

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael P.

    2013-01-01

    OBJECTIVE: Integrated testing of the TDU components TESTING SUMMARY: a) Verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. b) Thermal test heat regeneration design aspect of a cold trap purification filter. c) Pump performance test at pump voltages up to 150 V (targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V). TESTING HIGHLIGHTS: a) Gas and vacuum ground support test equipment performed effectively for NaK fill, loop pressurization, and NaK drain operations. b) Instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  12. Cold/hot pad differentiating assay of property differences of Mahuang and Maxingshigan decoctions.

    PubMed

    Zhao, Yanling; Jia, Lei; Wang, Jiabo; Zou, Wenjun; Yang, Hongbo; Xiao, Xiaohe

    2016-07-01

    Chinese medicines with different cold/hot properties have various pharmacological actions on multiple organisms. The objective of this study was to explore the cold/hot property differences of traditional Chinese medicine formulas of Mahuang and Maxingshigan decoctions. A novel cold/hot pad differentiating assay method based on the Intelligent Animal Temperature Tropism Behavior monitoring system at 20 °C (cold pad) and 30 °C (hot pad) was introduced to investigate the variability of temperature tropism among the mice treated by 0.4 mL/20 g (drug volume/body weight) of Mahuang decoction and Maxingshigan decoction, respectively. Meanwhile, the oxygen consumption and activities of adenosine triphosphatase (ATPase) were measured to explore the energy metabolism mechanism. Results showed that the differences between cold/hot properties of Mahuang decoction and Maxingshigan decoction were significant (p < 0.05). Mahuang decoction produced significant synergic effect (a combination index of 1.60), while Maxingshigan decoction expressed significant antagonistic effect (a combination index of 0.35). The changes of energy metabolism including ATPase activity and oxygen consumption might be the possible factors to result in the differences. Those influences tended to be coherent with the definition of cold/hot properties of Chinese medicines based on traditional Chinese medicinal theory. The results indicated that the method based on cold/hot pad differentiating array could objectively and quantitatively represent the cold/hot properties of different compatibilities of traditional Chinese medicines in an ethological way according to the changes of animal's temperature tropism. These findings would provide some experimental basis and data references as well as a novel evaluation method for the study of the regularity of recipe composition.

  13. Intermittent whole-body cold immersion induces similar thermal stress but different motor and cognitive responses between males and females.

    PubMed

    Solianik, Rima; Skurvydas, Albertas; Mickevičienė, Dalia; Brazaitis, Marius

    2014-10-01

    The main aim of this study was to compare the thermal responses and the responses of cognitive and motor functions to intermittent cold stress between males and females. The intermittent cold stress continued until rectal temperature (TRE) reached 35.5°C or for a maximum of 170 min. Thermal response and motor and cognitive performance were monitored. During intermittent cold stress, body temperature variables decreased in all subjects (P < 0.001) and did not differ between sexes. The presence of fast and slow cooling types for participants with similar effect on physiological variables were observed; thus the different rate coolers were grouped together and were attributed only sex specific responses. Overall, TRE cooling rate and cold strain index did not differ between sexes. Maximal voluntary contraction (MVC) decreased after intermittent cold exposure only in males (P < 0.001), whereas changes in muscle electromyography (EMG) activity did not differ between sexes. The effects of intermittent cold stress on electrically evoked muscle properties, spinal (H-reflex), and supraspinal (V-waves) reflexes did not differ between sexes. Intermittent cold-induced cognitive perturbation of attention and memory task performance was greater in males (P < 0.05). Contrary to our expectations, the results of the present study indicated that males and females experience similar thermal stress induced by intermittent whole-body cold immersion. Although no sex-specific differences were observed in muscle EMG activity, involuntary muscle properties, spinal and supraspinal reflexes, some of the sex differences observed (e.g., lower isometric MVC and greater cognitive perturbation in males) support the view of sex-specific physiological responses to core temperature decrease. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. International study of temperature, heat and urban mortality: the 'ISOTHURM' project.

    PubMed

    McMichael, Anthony J; Wilkinson, Paul; Kovats, R Sari; Pattenden, Sam; Hajat, Shakoor; Armstrong, Ben; Vajanapoom, Nitaya; Niciu, Emilia M; Mahomed, Hassan; Kingkeow, Chamnong; Kosnik, Mitja; O'Neill, Marie S; Romieu, Isabelle; Ramirez-Aguilar, Matiana; Barreto, Mauricio L; Gouveia, Nelson; Nikiforov, Bojidar

    2008-10-01

    This study describes heat- and cold-related mortality in 12 urban populations in low- and middle-income countries, thereby extending knowledge of how diverse populations, in non-OECD countries, respond to temperature extremes. The cities were: Delhi, Monterrey, Mexico City, Chiang Mai, Bangkok, Salvador, São Paulo, Santiago, Cape Town, Ljubljana, Bucharest and Sofia. For each city, daily mortality was examined in relation to ambient temperature using autoregressive Poisson models (2- to 5-year series) adjusted for season, relative humidity, air pollution, day of week and public holidays. Most cities showed a U-shaped temperature-mortality relationship, with clear evidence of increasing death rates at colder temperatures in all cities except Ljubljana, Salvador and Delhi and with increasing heat in all cities except Chiang Mai and Cape Town. Estimates of the temperature threshold below which cold-related mortality began to increase ranged from 15 degrees C to 29 degrees C; the threshold for heat-related deaths ranged from 16 degrees C to 31 degrees C. Heat thresholds were generally higher in cities with warmer climates, while cold thresholds were unrelated to climate. Urban populations, in diverse geographic settings, experience increases in mortality due to both high and low temperatures. The effects of heat and cold vary depending on climate and non-climate factors such as the population disease profile and age structure. Although such populations will undergo some adaptation to increasing temperatures, many are likely to have substantial vulnerability to climate change. Additional research is needed to elucidate vulnerability within populations.

  15. Mechano-stimulated modifications in the chloroplast antioxidant system and proteome changes are associated with cold response in wheat.

    PubMed

    Li, Xiangnan; Hao, Chenglong; Zhong, Jianwen; Liu, Fulai; Cai, Jian; Wang, Xiao; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2015-09-11

    Mechanical wounding can cause morphological and developmental changes in plants, which may affect the responses to abiotic stresses. However, the mechano-stimulation triggered regulation network remains elusive. Here, the mechano-stimulation was applied at two different times during the growth period of wheat before exposing the plants to cold stress (5.6 °C lower temperature than the ambient temperature, viz., 5.0 °C) at the jointing stage. Results showed that mechano-stimulation at the Zadoks growth stage 26 activated the antioxidant system, and substantially, maintained the homeostasis of reactive oxygen species. In turn, the stimulation improved the electron transport and photosynthetic rate of wheat plants exposed to cold stress at the jointing stage. Proteomic and transcriptional analyses revealed that the oxidative stress defense, ATP synthesis, and photosynthesis-related proteins and genes were similarly modulated by mechano-stimulation and the cold stress. It was concluded that mechano-stimulated modifications of the chloroplast antioxidant system and proteome changes are related to cold tolerance in wheat. The findings might provide deeper insights into roles of reactive oxygen species in mechano-stimulated cold tolerance of photosynthetic apparatus, and be helpful to explore novel approaches to mitigate the impacts of low temperature occurring at critical developmental stages.

  16. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica.

    PubMed

    Kawarasaki, Yuta; Teets, Nicholas M; Denlinger, David L; Lee, Richard E

    2013-10-15

    During the austral summer, larvae of the terrestrial midge Belgica antarctica (Diptera: Chironomidae) experience highly variable and often unpredictable thermal conditions. In addition to remaining freeze tolerant year-round, larvae are capable of swiftly increasing their cold tolerance through the rapid cold-hardening (RCH) response. The present study compared the induction of RCH in frozen versus supercooled larvae. At the same induction temperature, RCH occurred more rapidly and conferred a greater level of cryoprotection in frozen versus supercooled larvae. Furthermore, RCH in frozen larvae could be induced at temperatures as low as -12°C, which is the lowest temperature reported to induce RCH. Remarkably, as little as 15 min at -5°C significantly enhanced larval cold tolerance. Not only is protection from RCH acquired swiftly, but it is also quickly lost after thawing for 2 h at 2°C. Because the primary difference between frozen and supercooled larvae is cellular dehydration caused by freeze concentration of body fluids, we also compared the effects of acclimation in dehydrated versus frozen larvae. Because slow dehydration without chilling significantly increased larval survival to a subsequent cold exposure, we hypothesize that cellular dehydration caused by freeze concentration promotes the rapid acquisition of cold tolerance in frozen larvae.

  17. The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching.

    PubMed

    Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko

    2015-12-18

    The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones.

  18. Ambient temperature and cardiovascular mortality: a systematic review and meta-analysis

    PubMed Central

    Moghadamnia, Mohammad Taghi; Keshtkar, Abbas; Naddafi, Kazem; Yekaninejad, Mir Saeed

    2017-01-01

    Introduction Our study aims at identifying and quantifying the relationship between the cold and heat exposure and the risk of cardiovascular mortality through a systematic review and meta-analysis. Material and Methods A systematic review and meta-analysis were conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Peer-reviewed studies about the temperature and cardiovascular mortality were retrieved in the MEDLINE, Web of Science, and Scopus databases from January 2000 up to the end of 2015. The pooled effect sizes of short-term effect were calculated for the heat exposure and cold exposure separately. Also, we assessed the dose–response relationship of temperature-cardiovascular mortality by a change in units of latitudes, longitude, lag days and annual mean temperature by meta-regression. Result After screening the titles, abstracts and full texts, a total of 26 articles were included in the meta-analysis. The risk of cardiovascular mortality increased by 5% (RR, 1.055; 95% CI [1.050–1.060]) for the cold exposure and 1.3% (RR, 1.013; 95% CI [1.011–1.015]) for the heat exposure. The short-term effects of cold and heat exposure on the risk of cardiovascular mortality in males were 3.8% (RR, 1.038; 95% CI [1.034–1.043]) and 1.1%( RR, 1.011; 95% CI [1.009–1.013]) respectively. Moreover, the effects of cold and heat exposure on risk of cardiovascular mortality in females were 4.1% (RR, 1.041; 95% CI [1.037–1.045]) and 1.4% (RR, 1.014; 95% CI [1.011–1.017]) respectively. In the elderly, it was at an 8.1% increase and a 6% increase in the heat and cold exposure, respectively. The greatest risk of cardiovascular mortality in cold temperature was in the 14 lag days (RR, 1.09; 95% CI [1.07–1.010]) and in hot temperatures in the seven lag days (RR, 1.14; 95% CI [1.09–1.17]). The significant dose–response relationship of latitude and longitude in cold exposure with cardiovascular mortality was found. The results showed that the risk of cardiovascular mortality increased with each degree increased significantly in latitude and longitude in cold exposure (0.2%, 95% CI [0.006–0.035]) and (0.07%, 95% CI [0.0003–0.014]) respectively. The risk of cardiovascular mortality increased with each degree increase in latitude in heat exposure (0.07%, 95% CI [0.0008–0.124]). Conclusion Our findings indicate that the increase and decrease in ambient temperature had a relationship with the cardiovascular mortality. To prevent the temperature- related mortality, persons with cardiovascular disease and the elderly should be targeted. The review has been registered with PROSPERO (registration number CRD42016037673). PMID:28791197

  19. Effect of thermal stresses on the mechanism of tooth pain.

    PubMed

    Oskui, Iman Z; Ashtiani, Mohammed N; Hashemi, Ata; Jafarzadeh, Hamid

    2014-11-01

    Daily hot and cold thermal loadings on teeth may result in structural deformation, mechanical stress, and pain signaling. The aim of this study was to compare the adverse effects of hot and cold beverages on an intact tooth and, then, to provide physical evidence to support the hydrodynamic theory of tooth pain sensation mechanism. Three-dimensional finite element analysis was performed on a premolar model subjected to hot and cold thermal loadings. Elapsed times for heat diffusion and stress detection at the pulp-dentin junction were calculated as measures of the pain sensation. Extreme tensile stress within the enamel resulted in damage in cold loadings. Also, extreme values of stress at the pulpal wall occurred 21.6 seconds earlier than extreme temperatures in hot and cold loadings. The intact tooth was remarkably vulnerable to cold loading. Earlier changes in mechanical stress rather than temperature at the pulp-dentin junction indicate that the dental pain caused by hot or cold beverages may be based on the hydrodynamic theory. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Mortality related to cold and heat. What do we learn from dairy cattle?

    PubMed Central

    Cox, Bianca; Gasparrini, Antonio; Catry, Boudewijn; Delcloo, Andy; Bijnens, Esmée; Vangronsveld, Jaco; Nawrot, Tim S.

    2016-01-01

    Extreme temperatures are associated with increased mortality among humans. Because similar epidemiologic studies in animals may add to the existing evidence, we investigated the association between ambient temperature and the risk of mortality among dairy cattle. We used data on 87,108 dairy cow deaths in Belgium from 2006 to 2009, and we combined a case-crossover design with distributed lag non-linear models. Province-specific results were combined in a multivariate meta-analysis. Relative to the estimated minimum mortality temperature of 15.4 °C (75th percentile), the pooled cumulative relative risks over lag 0–25 days were 1.26 (95% CI: 1.11, 1.42) for extreme cold (1st percentile, −3.5 °C), 1.35 (95% CI: 1.19, 1.54) for moderate cold (5th percentile, −0.3 °C), 1.09 (95% CI: 1.02, 1.17) for moderate heat (95th percentile, 19.7 °C), and 1.26 (95% CI: 1.08; 1.48) for extreme heat (99th percentile, 22.6 °C). The temporal pattern of the temperature-mortality association was similar to that observed in humans, i.e. acute effects of heat and delayed and prolonged effects of cold. Seasonal analyses suggested that most of the temperature-related mortality, including cold effects, occurred in the warm season. Our study reinforces the evidence on the plausibility of causal effects in humans. PMID:27236362

  1. Changes in cold tolerance due to a 14-day stay in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Livingstone, S. D.; Romet, T.; Keefe, A. A.; Nolan, R. W.

    1996-12-01

    Responses to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the Arctic (average maximum and minimum temperatures -11 and -21° C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures -5 and -11° C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10° C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.

  2. Changes in cold tolerance due to a 14-day stay in the Canadian Arctic.

    PubMed

    Livingstone, S D; Romet, T; Keefe, A A; Nolan, R W

    1996-11-01

    Response to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the arctic (average maximum and minimum temperatures -11 and -21 degrees C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures -5 and -11 degrees C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10 degrees C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.

  3. Contemporary divergence in early life history in grayling (Thymallus thymallus).

    PubMed

    Thomassen, Gaute; Barson, Nicola J; Haugen, Thrond O; Vøllestad, L Asbjørn

    2011-12-13

    Following colonization of new habitats and subsequent selection, adaptation to environmental conditions might be expected to be rapid. In a mountain lake in Norway, Lesjaskogsvatnet, more than 20 distinct spawning demes of grayling have been established since the lake was colonized, some 20-25 generations ago. The demes spawn in tributaries consistently exhibiting either colder or warmer temperature conditions during spawning in spring and subsequent early development during early summer. In order to explore the degree of temperature-related divergence in early development, a multi-temperature common-garden experiment was performed on embryos from four different demes experiencing different spring temperatures. Early developmental characters were measured to test if individuals from the four demes respond differently to the treatment temperatures. There was clear evidence of among-deme differences (genotype - environment interactions) in larval growth and yolk-to-body-size conversion efficiency. Under the cold treatment regime, larval growth rates were highest for individuals belonging to cold streams. Individuals from warm streams had the highest yolk-consumption rate under cold conditions. As a consequence, yolk-to-body-mass conversion efficiency was highest for cold-deme individuals under cold conditions. As we observed response parallelism between individuals from demes belonging to similar thermal groups for these traits, some of the differentiation seems likely to result from local adaptation The observed differences in length at age during early larval development most likely have a genetic component, even though both directional and random processes are likely to have influenced evolutionary change in the demes under study.

  4. Parametric Study on the Tensile Properties of Ni-Based Alloy for a VHTR

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Jin; Jung, Su Jin; Mun, Byung Hak; Kim, Sung Woo; Lim, Yun Soo

    2015-01-01

    A very high-temperature reactor (VHTR) has been studied among generation IV nuclear power plants owing to its many advantages such as high-electric efficiency and massive hydrogen production. The material used for the heat exchanger should sustain structural integrity for its life even though the material is exposed to a harsh environment at 1223 K (950 °C) in an impure helium coolant. Therefore, an enhancement of the material performance at high temperature gives a margin in determining the operating temperature and life time. This work is an effort to find an optimum combination of alloying elements and processing parameters to improve the material performance. The tensile property and microstructure for nickel-based alloys fabricated in a laboratory were evaluated as a function of the heat treatment, cold working, and grain boundary strengthener using a tension test at 1223 K (950 °C), scanning electron microscopy, and transmission electron microscopy. Elongation to rupture was increased by additional heat treatment and cold working, followed by additional heat treatment in the temperature range from 1293 K to 1383 K (1020 °C to 1110 °C) implying that the intergranular carbide contributes to grain boundary strengthening. The temperature at which the grain boundary is improved by carbide decoration was higher for a cold-worked specimen, which was described by the difference in carbide stability and carbide formation kinetics between no cold-worked and cold-worked specimens. Zr and Hf played a scavenging effect of harmful elements causing an increase in ductility.

  5. Preventing cold-related morbidity and mortality in a changing climate

    PubMed Central

    Conlon, Kathryn C; Rajkovich, Nicholas B; White-Newsome, Jalonne L; Larsen, Larissa; Neill, Marie S O

    2011-01-01

    Winter weather patterns are anticipated to become more variable with increasing average global temperatures. Research shows that excess morbidity and mortality occurs during cold weather periods. We critically reviewed evidence relating temperature variability, health outcomes, and adaptation strategies to cold weather. Health outcomes included cardiovascular-, respiratory-, cerebrovascular-, and all-cause morbidity and mortality. Individual and contextual risk factors were assessed to highlight associations between individual- and neighborhood- level characteristics that contribute to a person’s vulnerability to variability in cold weather events. Epidemiologic studies indicate that the populations most vulnerable to variations in cold winter weather are the elderly, rural and, generally, populations living in moderate winter climates. Fortunately, cold-related morbidity and mortality are preventable and strategies exist for protecting populations from these adverse health outcomes. We present a range of adaptation strategies that can be implemented at the individual, building, and neighborhood level to protect vulnerable populations from cold-related morbidity and mortality. The existing research justifies the need for increased outreach to individuals and communities for education on protective adaptations in cold weather. We propose that future climate change adaptation research couple building energy and thermal comfort models with epidemiological data to evaluate and quantify the impacts of adaptation strategies. PMID:21592693

  6. The Nature of Cold-induced Dormancy in Urediospores of Puccinia graminis tritici

    PubMed Central

    Maheshwari, Ramesh; Sussman, Alfred S.

    1971-01-01

    When air-dry urediospores of the wheat stem rust, Puccinia graminis f. sp. tritici, are exposed to temperatures below freezing, their germinability is markedly reduced, even after prolonged thawing at room temperature. Germinability is fully restored by a brief heat-shock or by vapor phase hydration. We have found that this “cold dormancy” cannot be reversed once the spores contact liquid water. Enhanced loss of metabolites occurs immediately upon suspension of cold-dormant urediospores in liquid without a prior heat-shock. Such leakage is two to three times greater than from untreated or heatshocked cold-dormant spores and accounts for up to 70% of the soluble pool of metabolites normally present in germinating urediospores. Respiratory activity of cold-dormant urediospores declines rapidly during incubation in liquid. Incorporation of isotopic carbon into cold-dormant urediospores is only a fraction of that of untreated or heat-activated spores. Thus, cold shock transforms the spores into a state of supersensitivity to liquid water, which is reversed by heat-shock or slow hydration by vapor phase equilibration. The primary cause of damage to cold-dormant cells exposed to liquid water appears to be irreversible permeability damage, followed by metabolic injury. PMID:16657610

  7. Fever: exchange of shivering by nonshivering pyrogenesis in cold-acclimated guinea pigs.

    PubMed

    Blatteis, C M

    1976-01-01

    The pyrogenic response of adult, unanesthetized guinea pigs to 2 mug/kg iv of Salmonella enteritidis endotoxin was measured at 27 and 7 degrees C ambient temperatures, both before and after an 8-wk exposure to 7 degrees C. There were no significant differences between the onset, maximum height, and total duration of the fevers produced before and after cold acclimation in both thermal environments. However, in 27 degrees C, before cold acclimation, fever production was associated with vigorous shivering activity; two temperature maxima typically developed. After cold acclimation, visible shivering was not detectable during pyrogenesis; moreover, only a single maximum occurred, culminating during the interval between the two rises previously. In 7 degrees C, shivering occurred in both the non-cold- and cold-acclimated endotoxin-treated guinea pigs, but the increase in oxygen consumption was significantly greater in the latter. These results indicated, therefore, that nonshivering (NST) replaces shivering thermogenesis (ST) in a thermoneutral, while ST is added onto NST in a cold, environment in cold-acclimated guinea pigs in supplying the necessary heat for fever production, and that these effects involve alterations in the character of the febrile course.

  8. Laboratory Evaluation of Expedient Low-Temperature Concrete Admixtures for Repairing Blast Holes in Cold Weather

    DTIC Science & Technology

    2013-01-08

    This re- search ignores effects on long-term durability, trafficability, temperature rebar corrosion , and other concerns that are of minimal... concrete because it can cause corrosion of steel reinforcement. However, the corrosion problem develops slowly with time; therefore, this problem has a...ER D C/ CR RE L TR -1 3- 1 Laboratory Evaluation of Expedient Low- Temperature Concrete Admixtures for Repairing Blast Holes in Cold

  9. Investigations of Heat Transfer in Vacuum between Room Temperature and 80 K

    NASA Astrophysics Data System (ADS)

    Hooks, J.; Demko, J. A.; E Fesmire, J.; Matsumoto, T.

    2017-12-01

    The heat transfer between room temperature and 80 K is controlled using various insulating material combinations. The modes of heat transfer are well established to be conduction and thermal radiation when in a vacuum. Multi-Layer Insulation (MLI) in a vacuum has long been the best approach. Typically this layered system is applied to the cold surface. This paper investigates the application of MLI to both the cold and warm surface to see whether there is a significant difference. In addition if MLI is on the warm surface, the cold side of the MLI may be below the critical temperature of some high temperature superconducting (HTS) materials. It has been proposed that HTS materials can serve to block thermal radiation. An experiment is conducted to measure this effect. Boil-off calorimetry is the method of measuring the heat transfer.

  10. Toward understanding life under subzero conditions: the significance of exploring psychrophilic "cold-shock" proteins.

    PubMed

    Kuhn, Emanuele

    2012-11-01

    Understanding the behavior of proteins under freezing conditions is vital for detecting and locating extraterrestrial life in cold environments, such as those found on Mars and the icy moons of Jupiter and Saturn. This review highlights the importance of studying psychrophilic "cold-shock" proteins, a topic that has yet to be explored. A strategy for analyzing the psychrophilic RNA helicase protein CsdA (Psyc_1082) from Psychrobacter arcticus 273-4 as a key protein for life under freezing temperatures is proposed. The experimental model presented here was developed based on previous data from investigations of Escherichia coli, P. arcticus 273-4, and RNA helicases. P. arcticus 273-4 is considered a model for life in freezing environments. It is capable of growing in temperatures as cold as -10°C by using physiological strategies to survive not only in freezing temperatures but also under low-water-activity and limited-nutrient-availability conditions. The analyses of its genome, transcriptome, and proteome revealed specific adaptations that allow it to inhabit freezing environments by adopting a slow metabolic strategy rather than a cellular dormancy state. During growth at subzero temperatures, P. arcticus 273-4 genes related to energy metabolism and carbon substrate incorporation are downregulated, and genes for maintenance of membranes, cell walls, and nucleic acid motion are upregulated. At -6°C, P. arcticus 273-4 does not upregulate the expression of either RNA or protein chaperones; however, it upregulates the expression of its cold-shock induced DEAD-box RNA helicase protein A (CsdA - Psyc_1082). CsdA - Psyc_1082 was investigated as a key helper protein for sustaining life in subzero conditions. Proving CsdA - Psyc_1082 to be functional as a key protein for life under freezing temperatures may extend the known minimum growth temperature of a mesophilic cell and provide key information about the mechanisms that underlie cold-induced biological systems in icy worlds.

  11. An Assessment of Cold Hardiness and Biochemical Adaptations for Cold Tolerance Among Different Geographic Populations of the Bactrocera dorsalis (Diptera: Tephritidae) in China

    PubMed Central

    Wang, Junhua; Zeng, Ling; Han, Zhaojun

    2014-01-01

    Abstract The cold hardiness of larvae, pupae, and adults of the oriental fruit fly, Bactrocera Dorsalis (Hendel) (Diptera: Tephritidae) was characterized first, and then body water, total sugar and glycerol contents, and activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and alcohol dehydrogenase (ADH) of different geographical populations subjected to suitable rearing conditions and under sublethal low-temperature stress were compared. The cold hardiness of different populations was well correlated with the latitudes of distributions. The northern marginal population (31.6° N) had higher cold tolerance than southern populations (23.1° N and 24.3° N). Among different life stages, larvae had the least cold tolerance, whereas pupae had the most tolerance. Under suitable rearing conditions, the marginal population had lower activities of all four tested enzymes than that of the southern populations and also had lower body water and higher total sugar and glycerol contents. The low-temperature stress induced higher SOD, CAT, POD, and ADH activities of all tested life stages and of all tested populations with higher increase intensity in adults and pupae than in larvae. The increase intensity was higher in the marginal population than in the southern populations. Pupae in the marginal population and adults in the southern populations showed the largest activity enhancement, which agreed with the insect’s overwinter stages in their respective locations. Lower temperature stress lowered body water and total sugar contents and increased glycerol contents. The results revealed a strong correlation between the cold hardiness of a population and the concentration or activity of various biochemicals and enzymes known to be involved in cold tolerance. The marginal population of B. dorsalis might have evolved a new biotype with better adaption to low temperature. PMID:25527597

  12. Thermal imaging for cold air flow visualisation and analysis

    NASA Astrophysics Data System (ADS)

    Grudzielanek, M.; Pflitsch, A.; Cermak, J.

    2012-04-01

    In this work we present first applications of a thermal imaging system for animated visualization and analysis of cold air flow in field studies. The development of mobile thermal imaging systems advanced very fast in the last decades. The surface temperature of objects, which is detected with long-wave infrared radiation, affords conclusions in different problems of research. Modern thermal imaging systems allow infrared picture-sequences and a following data analysis; the systems are not exclusive imaging methods like in the past. Thus, the monitoring and analysing of dynamic processes became possible. We measured the cold air flow on a sloping grassland area with standard methods (sonic anemometers and temperature loggers) plus a thermal imaging system measuring in the range from 7.5 to 14µm. To analyse the cold air with the thermal measurements, we collected the surface infrared temperatures at a projection screen, which was located in cold air flow direction, opposite the infrared (IR) camera. The intention of using a thermal imaging system for our work was: 1. to get a general idea of practicability in our problem, 2. to assess the value of the extensive and more detailed data sets and 3. to optimise visualisation. The results were very promising. Through the possibility of generating time-lapse movies of the image sequences in time scaling, processes of cold air flow, like flow waves, turbulence and general flow speed, can be directly identified. Vertical temperature gradients and near-ground inversions can be visualised very well. Time-lapse movies will be presented. The extensive data collection permits a higher spatial resolution of the data than standard methods, so that cold air flow attributes can be explored in much more detail. Time series are extracted from the IR data series, analysed statistically, and compared to data obtained using traditional systems. Finally, we assess the usefulness of the additional measurement of cold air flow with thermal imaging systems.

  13. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance.

    PubMed

    Maulana, Frank; Weerasooriya, Dilooshi; Tesso, Tesfaye

    2017-01-01

    Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1) to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2) to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp 34, Xtxp 88, and Xtxp 319 as associated with seedling emergence, Xtxp 211 and Xtxp 304 with seedling dry weight, and Xtxp 20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance.

  14. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance

    PubMed Central

    Maulana, Frank; Weerasooriya, Dilooshi; Tesso, Tesfaye

    2017-01-01

    Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1) to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2) to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp34, Xtxp88, and Xtxp319 as associated with seedling emergence, Xtxp211 and Xtxp304 with seedling dry weight, and Xtxp20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance. PMID:28536596

  15. Cold Shock Response of Bacillus subtilis: Isoleucine-Dependent Switch in the Fatty Acid Branching Pattern for Membrane Adaptation to Low Temperatures†

    PubMed Central

    Klein, Wolfgang; Weber, Michael H. W.; Marahiel, Mohamed A.

    1999-01-01

    Bacillus subtilis has developed sophisticated mechanisms to withstand fluctuations in temperature. Membrane fatty acids are the major determinants for a sufficiently fluid membrane state to ensure the membrane’s function at all temperatures. The fatty acid profile of B. subtilis is characterized by a high content of branched fatty acids irrespective of the growth medium. Here, we report on the importance of isoleucine for B. subtilis to survive cold shock from 37 to 15°C. Cold shock experiments with strain JH642 revealed a cold-protective function for all intermediates of anteiso-branched fatty acid biosynthesis. Metabolites related to iso-branched or straight-chain fatty acid biosynthesis were not protective. Fatty acid profiles of different B. subtilis wild-type strains proved the altered branching pattern by an increase in the anteiso-branched fatty acid content and a concomitant decrease of iso-branched species during cold shock. There were no significant changes in the fatty acid saturation or acyl chain length. The cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine correlated with their inability to synthesize more anteiso-branched fatty acids, as shown by the fatty acid profile. The switch to a fatty acid profile dominated by anteiso-C15:0 and C17:0 at low temperatures and the cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine focused our attention on the critical role of anteiso-branched fatty acids in the growth of B. subtilis in the cold. PMID:10464205

  16. Thermodynamic and dynamic structure of atmosphere over the east coast of Peninsular Malaysia during the passage of a cold surge

    NASA Astrophysics Data System (ADS)

    Samah, Azizan Abu; Babu, C. A.; Varikoden, Hamza; Jayakrishnan, P. R.; Hai, Ooi See

    2016-08-01

    An intense field observation was carried out for a better understanding of cold surge features over Peninsular Malaysia during the winter monsoon season. The study utilizes vertical profiles of temperature, humidity and wind at high vertical and temporal resolution over Kota Bharu, situated in the east coast of Peninsular Malaysia. LCL were elevated during the passage of the cold surge as the relative humidity values decreased during the passage of cold surge. Level of Free Convection were below 800 hPa and equilibrium levels were close to the LFC in most of the cases. Convective available potential energy and convection inhibition energy values were small during most of the observations. Absence of local heating and instability mechanism are responsible for the peculiar thermodynamic structure during the passage of the cold surge. The wind in the lower atmosphere became northeasterly and was strong during the entire cold surge period. A slight increase in temperature near the surface and a drop in temperature just above the surface were marked by the passage of the cold surge. A remarkable increase in specific humidity was observed between 970 and 900 hPa during the cold surge period. Further, synoptic scale features were analyzed to identify the mechanism responsible for heavy rainfall. Low level convergence, upper level divergence and cyclonic vorticity prevailed over the region during the heavy rainfall event. Dynamic structure of the atmosphere as part of the organized convection associated with the winter monsoon was responsible for the vertical lifting and subsequent rainfall.

  17. A primer on clothing systems for cold-weather field work

    USGS Publications Warehouse

    Denner, J.C.

    1993-01-01

    Hypothermia in cold environments can be prevented by physiological adaptation and by the proper use of cold weather clothing. The human body adjusts to cold temperature by increasing the rates of basal metabolism, specific dynamic action, and physical exercise. Heat loss is reduced by vasoconstriction. Clothing systems for cold weather reduce loss by providing insulation and protection from the elements. Satisfactory cold- weather clothing is constructed of wool fabrics or the synthetic fibers polypropylene and polyester. Outerwear suitable for cold climates is insulated with down, high-loft polyester fiberfills, or the new synthetic thin insulators. (USGS)

  18. Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shingledecker, John P

    2007-01-01

    Creep-rupture experiments were conducted on HR6W and Haynes 230, candidate Ultrasupercritical (USC) alloys, tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of themore » creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.« less

  19. Metabolic insights into the cold survival strategy and overwintering of the common cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae).

    PubMed

    Zhu, Wei; Zhang, Huan; Meng, Qian; Wang, Menglong; Zhou, Guiling; Li, Xuan; Wang, Hongtuo; Miao, Lin; Qin, Qilian; Zhang, Jihong

    2017-07-01

    The common cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), is a destructive pest in Asia. Although overwintering in the field has not been reported for this species, their larvae are capable of long-term survival in fluctuating temperatures, i.e., 5°C (12h) plus 13°C (12h), if food is available. With an increase in climate change due to global warming and the widespread use of greenhouses, further understanding of their cold survival strategy is needed to predict and control their population in the future. In this study, metabolomics was performed to analyze the metabolic features of S. litura larvae exposed to two typical low temperatures: 15°C and 4°C, at which the development, locomotion and feeding activities are maintained or halted, respectively. The results showed that the strategies that regulate lipid and amino acid metabolism were similar at 15°C and 4°C. Cold exposure induced a metabolic shift of energy from carbohydrate to lipid and decreased free amino acids level. Biosynthesis likely contributed to the decrease in amino acids levels even at 4°C, a non-feeding temperature, suggesting an insufficient suppression of anabolism. This explains why food and high temperature pulses are necessary for their long-term cold survival. Glycometabolism was different between 15°C and 4°C. Carbohydrates were used rapidly at 15°C, while trehalose accumulated at 4°C. Interestingly, abundant trehalose and serine are prominent features of Spodoptera exigua larvae, an overwintering species, when compared to S. litura larvae. Exposure to 4°C also induced up-regulation of carbohydrase and protease in the guts of S. litura. Therefore, it is likely that concurrence of food supplement and fluctuating temperatures could facilitate the cold survival of S. litura larvae. We also found that exposure to 4°C could activate the mevalonate pathway in S. litura larvae, which might be related to glycometabolism at 4°C. Overall, our study describes systematically the responses of a cold susceptible insect, S. litura, to low temperatures and explains how fluctuating temperatures facilitate their long-term cold survival indicating the possibility for overwintering of S. litura larvae with global warming and agricultural reforms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For reference, the conventional AO index is shown by the gray line. (b) a 5-day running mean WP index, (c) area-averaged Surface Air Temperature anomalies in Japan, (d) Air Temperature anomalies, (e) heat flux anomalies, and (f) Sea Surface Temperature anomalies. The boxed area on the Sea of Japan indicates the area in which the (d)-(f) indexes were calculated.

  1. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings

    PubMed Central

    Chang, Christine Y.; Unda, Faride; Zubilewich, Alexandra; Mansfield, Shawn D.; Ensminger, Ingo

    2015-01-01

    Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus) under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE) experiment and exposed EWP seedlings to ambient (Control) or elevated temperature (ET, +1.5°C/+3°C during day/night). Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC), and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12 h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10 h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20–30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis, enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our field experiments. PMID:25852717

  2. Meteorological Drivers of Cold Temperatures in the Western Pacific TTL

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Ueyama, Rei; Jensen, Eric J.

    2017-01-01

    During the recent October 2016 aircraft sampling mission of the Tropical Tropopause Layer (POSIDON -- Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection), Western Pacific October TTL temperatures were anomalously cold due to a combination of La Nina conditions and a very stationary convective pattern. POSIDON also had more October Tropical Cyclones than typical, and tropical cyclones have substantial negative TTL temperatures associated with them. This paper investigates how meteorology in the troposphere drives TTL temperatures, and how these temperatures, coupled with the circulation, produce TTL clouds. We will also compare October TTL cloud distributions in different years, examining the relationship of clouds to October temperature anomalies.

  3. Energetics of sows and gilts in gestation crates in the cold.

    PubMed

    Verstegen, M W; Curtis, S E

    1988-11-01

    Seventy pregnant sows and gilts in gestation crates with unbedded concrete-slat floors and partitions in common (which permitted contact by neighbors) in a closed house with air temperature 10 to 12 degrees C during cold weather were studied for 3 wk. The animals' lower critical temperature and thermoregulatory heat and feed requirements were estimated from measured variables, including ME intake, body weight and its change and body surface temperature, and other calculated values and assumptions. Estimates for a 165-kg sow or gilt in such an environment were: lower critical temperature = 15 degrees C; thermoregulatory heat requirement = 126 to 161 kcal/d per 1 C degree of coldness (higher as pregnancy progresses); and thermoregulatory feed requirement = 42 to 54 g/d per 1 C degree of coldness (assuming 3 kcal ME/g of diet). The sow's lower critical temperature was affected by state of pregnancy; in late pregnancy it was 1.6 to 2.6 C degrees lower than in early pregnancy. These estimates of the pregnant sow's thermoregulatory heat and feed requirements at effective environmental temperatures below the lower critical temperature accord well with those published before. But this estimate of the pregnant sow's lower critical temperature is approximately 5 C degrees lower than several made in laboratory settings on animals held individually, with no opportunity to huddle. The fact that every sow and gilt in this experiment could make mechanical contact with at least one neighbor at all times, and sometimes two, might account for much of the difference in lower critical temperature estimates.

  4. Resource specialists lead local insect community turnover associated with temperature - analysis of an 18-year full-seasonal record of moths and beetles.

    PubMed

    Thomsen, Philip Francis; Jørgensen, Peter Søgaard; Bruun, Hans Henrik; Pedersen, Jan; Riis-Nielsen, Torben; Jonko, Krzysztof; Słowińska, Iwona; Rahbek, Carsten; Karsholt, Ole

    2016-01-01

    Insect responses to recent climate change are well documented, but the role of resource specialization in determining species vulnerability remains poorly understood. Uncovering local ecological effects of temperature change with high-quality, standardized data provides an important first opportunity for predictions about responses of resource specialists, and long-term time series are essential in revealing these responses. Here, we investigate temperature-related changes in local insect communities, using a sampling site with more than a quarter-million records from two decades (1992-2009) of full-season, quantitative light trapping of 1543 species of moths and beetles. We investigated annual as well as long-term changes in fauna composition, abundance and phenology in a climate-related context using species temperature affinities and local temperature data. Finally, we explored these local changes in the context of dietary specialization. Across both moths and beetles, temperature affinity of specialists increased through net gain of hot-dwelling species and net loss of cold-dwelling species. The climate-related composition of generalists remained constant over time. We observed an increase in species richness of both groups. Furthermore, we observed divergent phenological responses between cold- and hot-dwelling species, advancing and delaying their relative abundance, respectively. Phenological advances were particularly pronounced in cold-adapted specialists. Our results suggest an important role of resource specialization in explaining the compositional and phenological responses of insect communities to local temperature increases. We propose that resource specialists in particular are affected by local temperature increase, leading to the distinct temperature-mediated turnover seen for this group. We suggest that the observed increase in species number could have been facilitated by dissimilar utilization of an expanded growing season by cold- and hot-adapted species, as indicated by their oppositely directed phenological responses. An especially pronounced advancement of cold-adapted specialists suggests that such phenological advances might help minimize further temperature-induced loss of resource specialists. Although limited to a single study site, our results suggest several local changes in the insect fauna in concordance with expected change of larger-scale temperature increases. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  5. A prospective evaluation of the contribution of ambient temperatures and transport times on infrared thermometry readings of intravenous fluids utilized in EMS patients.

    PubMed

    Joslin, Jeremy; Fisher, Andrew; Wojcik, Susan; Cooney, Derek R

    2014-01-01

    During cold weather months in much of the country, the temperatures in which prehospital care is delivered creates the potential for inadvertently cool intravenous fluids to be administered to patients during their transport and care by emergency medical services (EMS). There is some potential for patient harm from unintentional infusion of cool intravenous fluids. Prehospital providers in these cold weather environments are likely using fluids that are well below room temperature when prehospital intravenous fluid (IVF) warming techniques are not being employed. It was hypothesized that cold ambient temperatures during winter months in the study location would lead to the inadvertent infusion of cold intravenous fluids during prehospital patient care. Trained student research assistants obtained three sequential temperature measurements using an infrared thermometer in a convenience sample of intravenous fluid bags connected to patients arriving via EMS during two consecutive winter seasons (2011 to 2013) at our receiving hospital in Syracuse, New York. Intravenous fluids contained in anything other than a standard polyvinyl chloride bag were not measured and were not included in the study. Outdoor temperature was collected by referencing National Weather Service online data at the time of arrival. Official transport times from the scene to the emergency department (ED) and other demographic data was collected from the EMS provider or their patient care record at the time of EMS interaction. Twenty-three intravenous fluid bag temperatures were collected and analyzed. Outdoor temperature was significantly related to the temperature of the intravenous fluid being administered, b = 0.69, t(21) = 4.3, p < 0.001. Transport time did not predict the measured intravenous fluid temperatures, b = 0.12, t(20) = 0.55, p < 0.6. Use of unwarmed intravenous fluid in the prehospital environment during times of cold ambient temperatures can lead to the infusion of cool intravenous fluid and may result in harm to patients. Short transport times do not limit this risk. Emergency departments should not rely on EMS agencies' use of intravenous fluid warming techniques and should consider replacing EMS intravenous fluids upon ED arrival to ensure patient safety.

  6. Effect of Extreme Cold Treatment on Morphology and Behavior of Hydrogels and Microgels (Poster Session)

    DTIC Science & Technology

    2017-08-20

    UNCLASSIFIED Effect of Extreme Cold Treatment on Morphology and Behavior of Hydrogels and Microgels BACKGROUND • Stimuli responsive hydrogel systems...particularly for cold weather and Arctic uniforms, • The effect of extreme cold on gel responsiveness however is not well studied • This project seeks...to understand the effect of cold temperature ( down to -80 ° C) on hydrogel and microgel particles properties and response to thermal stimuli • We

  7. [Comparative evaluation of heat state in workers exposed to heating microclimate during cold and warm seasons].

    PubMed

    Afanas'eva, R F; Prokopenko, L V; Kiladze, N A; Konstantinov, E I

    2009-01-01

    The authors demonstrated differences in heat state among workers exposed to heating microclimate during cold and warm seasons. Same external thermal load in cold season induces more humidity loss, lower weighted average skin temperature, higher pulse rate, increased systolic and diastolic blood pressure. With that, heat discomfort was more in cold season, than in warm one, this necessitates decrease of thermal load in cold season vs. the warm one.

  8. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue

    PubMed Central

    Chung, Nana; Park, Jonghoon; Lim, Kiwon

    2017-01-01

    [Purpose] The purpose of this study was to determine whether exercise or/and cold exposure regulate mitochondria biogenesis-related gene expression in soleus and inguinal adipose tissue of mice. [Methods] Forty ICR 5-week old male mice were divided into four groups: thermoneutrality-untrained (23 ± 1 °C in room temperature, n=10), cold-water immersion (24 ± 1 °C, n=10), exercise in neutral temperature (34 ± 1 °C, n=10), and exercise in cold temperature (24 ± 1 °C, n=10). The mice performed swimming exercise (30 min to 60 min, 5 times) for 8 weeks. After 8 weeks, we confirmed mitochondrial biogenesis-related gene expression changes for peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), nuclear respiratory factors 1 (NRF1), and mitochondrial transcription factor A (Tfam) in soleus muscle and inguinal adipose tissue, and the related protein expression in soleus muscle. [Results] In soleus muscle, PGC-1α expression significantly increased in response to cold exposure (p = 0.006) and exercise (p = 0.05). There was also significant interaction between exercise and cold exposure (p = 0.005). Only exercise had a significant effect on NRF1 relative expression (p=0.001). Neither cold exposure nor the interaction showed significant effects (p = 0.1222 and p = 0.875, respectively). Relative Tfam expression did not show any significant effect from exercise. In inguinal adipose tissue, relative PGC-1α expression did not significantly change in any group. NRF1 expression showed a significant change from exercise (p = 0.01) and cold exposure (p = 0.011). There was also a significant interaction between exercise and cold exposure (p = 0.000). Tfam mRNA expression showed a significant effect from exercise (p=0.000) and an interaction between exercise and cold exposure (p=0.001). Only temperature significantly affected PGC-1α protein levels (p=0.045). Neither exercise nor the interaction were significant (p = 0.397 and p = 0.292, respectively). NRF1 protein levels did not show a significant effect in any experimental treatments. Tfam protein levels showed a significant effect in the exercise group (p=0.012), but effects of neither cold exposure nor the interaction were significant (p = 0.085 and p=0.374, respectively). [Conclusion] Exercise and cold exposure promoted increased expression of mitochondrial biogenesis- related genes in soleus muscle. Only cold exposure had a significant effect on PGC-1α protein expression and only exercise had a significant effect on Tfam protein expression. In inguinal adipose tissue, there was interaction between exercise and cold exposure in expression of mitochondrial biogenesis-related genes. PMID:28715885

  9. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation

    PubMed Central

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D. Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-01-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4–8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.—Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation. PMID:27317670

  10. Heavy thunderstorms observed over land by the Nimbus 7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.; Olson, W. S.; Martin, D. W.; Weinman, J. A.; Santek, D. A.; Wu, R.

    1983-01-01

    Brightness temperatures obtained through examination of microwave data from the Nimbus 7 satellite are noted to be much lower than those expected on the strength of radiation emanating from rain-producing clouds. Very cold brightness temperature cases all coincided with heavy thunderstorm rainfall, with the cold temperatures being attributable to scattering by a layer of ice hydrometeors in the upper parts of the storms. It is accordingly suggested that brightness temperatures observed by satellite microwave radiometers can sometimes distinguish heavy rain over land.

  11. Physiological Acceptance Criteria for Cold Weather Clothing

    DTIC Science & Technology

    1991-04-01

    subjective feelings of thermal comfort and temperature sensation were examined. Under many conditions that Navy cold weather clothing items are worn, it...is not practical to expect that the optimal level of thermal comfort can be obtained. Allowing for a moderate level of cold sensation and thermal

  12. Dynamic thermal-time model of cold hardiness for dormant grapevine buds

    USDA-ARS?s Scientific Manuscript database

    Grapevine (Vitis spp.) cold hardiness varies dynamically throughout the dormant season, primarily in response to changes in temperature. We describe development and possible uses of a discrete-dynamic model of bud cold hardiness for three Vitis genotypes. Iterative methods were used to optimize and ...

  13. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis.

    PubMed

    Benforte, Florencia C; Colonnella, Maria A; Ricardi, Martiniano M; Solar Venero, Esmeralda C; Lizarraga, Leonardo; López, Nancy I; Tribelli, Paula M

    2018-01-01

    Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions.

  14. Characterization of cold-associated microRNAs in the freeze-tolerant gall fly Eurosta solidaginis using high-throughput sequencing.

    PubMed

    Lyons, Pierre J; Govaere, Louise; Crapoulet, Nicolas; Storey, Kenneth B; Morin, Pier Jr

    2016-12-01

    Significant physiological and biochemical changes are observed in freeze-tolerant insects when confronted with cold temperatures. These insects have adapted to winter by retreating into a hypometabolic state of diapause and implementing cryoprotective mechanisms that allow them to survive whole body freezing. MicroRNAs (miRNAs), a family of short ribonucleic acids, are emerging as likely molecular players underlying the process of cold adaptation. Unfortunately, the data is sparse concerning the signature of miRNAs that are modulated following cold exposure in the freeze-tolerant goldenrod gall fly Eurosta solidaginis. Leveraging for the first time a next-generation sequencing approach, differentially expressed miRNAs were evaluated in 5°C and -15°C-exposed E. solidaginis larvae. Next-generation sequencing expression data was subsequently validated by qRT-PCR for selected miRNA targets. Results demonstrate 24 differentially expressed freeze-responsive miRNAs. Notable, miR-1-3p, a miRNA modulated at low temperature in another cold-hardy insect, and miR-14-3p, a miRNA associated with stress response in the fruit fly, were shown to be significantly up-regulated in -15°C-exposed larvae. Overall, this work identifies, for the first time in a high-throughput manner, differentially expressed miRNAs in cold-exposed E. solidaginis larvae and further clarifies an emerging signature of miRNAs modulated at low temperatures in cold-hardy insects. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Lessons: Science: "Sinkholes." Students Observe What Happens When Ice-Cold Water Mingles with Warm Water.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2000-01-01

    This intermediate-level science activity has students observe the effect of ice-cold water mingling with warm water. Water's behavior and movement alters with shifts in temperature. Students must try to determine how temperature affects the movement of water. Necessary materials include a pencil, cup, glass jar, masking tape, warm water, ice…

  16. 40 CFR 86.1864-10 - How to comply with the fleet average cold temperature NMHC standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., manufacturers must obtain and apply sufficient NMHC credits as permitted under paragraph (o)(8) of this section... conformity (see paragraph (o)(8) of this section). A manufacturer will be subject to penalties on an... covered by a certificate. (o) Requirements for the cold temperature NMHC averaging, banking and trading...

  17. A cool way to live long.

    PubMed

    Conti, Bruno; Hansen, Malene

    2013-02-14

    In this issue, Xiao et al. challenge the notion that cold temperatures promote longevity solely through thermodynamic effects. They show that low temperatures activate a cold-sensitive cation channel, TRPA-1, which triggers a complex signaling pathway in both neurons and nonneuronal cells to extend the lifespan of Caenorhabditis elegans. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Associations between Temperature and Hospital Admissions for Subarachnoid Hemorrhage in Korea

    PubMed Central

    Lee, Suji; Guth, Matthias

    2017-01-01

    The relationship between temperature and subarachnoid hemorrhage (SAH) is less studied than that between temperature and myocardial infarction or other cardiovascular diseases. This study investigated the association between daily temperature and risk of SAH by analyzing the hospital admission records of 111,316 SAH patients from 2004 to 2012 in Korea. A Poisson regression model was used to examine the association between temperature and daily SAH hospital admissions. To analyze data and identify vulnerable groups, we used the following subgroups: sex, age, insurance type, area (rural or urban), and different climate zones. We confirmed a markedly higher SAH risk only for people of low socioeconomic status in both hot and cold temperatures; the relative risk (RR) in the Medicaid group was significantly increased and ranged from 1.04 to 1.11 for cold temperatures and 1.10 to 1.11 for hot temperatures. For the National Health Insurance group, the RR was increased to 1.02 for the maximum temperature only. The increased risk for SAH was highest in the temperate zone. An increase above the heat threshold temperature and a decrease below the cold threshold temperature were correlated with an increased risk of SAH in susceptible populations and were associated with different lag effects and RRs. PMID:28430143

  19. [Cold-therapy and cryotherapy in management patients with shoulder pain].

    PubMed

    Lisiński, Przemysław; Jóźwiak, Daniel; Samborski, Włodzimierz

    2005-01-01

    A shoulder pain is one of the most frequent disorders that obliged patients to visit orthopedic practices. A conservative treatment is based on special kind exercises accompanying by physical procedures. The aim of this study is making closer rules and effects of low temperatures in treatment of shoulder pain. Additionally introducing differenties between cold and cryotherapy. In practice we used temperatures higher than -100 degrees Celsius which are called cold-therapy and offers pain reducing, lower level of metabolism and slower velocity of pathologic reactions in damaged area. On the other hand we used temperatures lower than -100 degrees Celsius (cryotherapy) where the reflector hyperemia reaction exists and particularly analgesic effect is present. Both procedures are useful in a conservative treatment of shoulder pain.

  20. Radiation Damage Formation And Annealing In Mg-Implanted GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Sean; Kelly, Michael J.; Yan, John

    2005-06-30

    We have implanted GaN with Mg ions over an energy range of 200keV to 1MeV at substrate temperatures of -150 (cold) and +300 deg. C (hot). The radiation damage formation in GaN was increased for cold implants when compared to samples implanted at elevated temperatures. The increase in damage formation is due to a reduction in the dynamic defect annealing during ion irradiation. The dopant stopping in the solid also depends upon the implant temperature. For a fixed implant energy and dose, Mg ions have a shorter range in GaN for cold implants when compared to hot implants which ismore » caused by the increase in scattering centres (disorder)« less

  1. Human thermal responses during leg-only exercise in cold water.

    PubMed

    Golden, F S; Tipton, M J

    1987-10-01

    1. Exercise during immersion in cold water has been reported by several authors to accelerate the rate of fall of core temperature when compared with rates seen during static immersion. The nature of the exercise performed, however, has always been whole-body in nature. 2. In the present investigation fifteen subjects performed leg exercise throughout a 40 min head-out immersion in water at 15 degrees C. The responses obtained were compared with those seen when the subjects performed an identical static immersion. 3. Aural and rectal temperatures were found to fall by greater amounts during static immersion. 4. It is concluded that 'the type of exercise performed' should be included in the list of factors which affect core temperature during cold water immersion.

  2. Thermoregulation is impaired in an environment without circadian time cues

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Sulzman, F. M.; Moore-Ede, M. C.

    1978-01-01

    Thirteen adult male squirrel monkeys were restrained to a metabolism chair for periods of two or more weeks within an isolation chamber having controlled environmental lighting and ambient temperature. The monkeys were subjected to mild 6-hour cold exposures at all circadian phases of the day. It was found that a prominent circadian rhythm in body temperature, regulated against mild cold exposure, was present in those monkeys synchronized in a 24-hour light-dark cycle. Cold exposures were found to produce decreased core body temperatures when the circadian rhythms were free running or when environmental time indicators were not present. It is concluded that the thermoregulating system depends on the internal synchronization of the circadian time-keeping system.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, G.J.; Germano, S.

    Tests were undertaken with a Renault Express 1.4 litre converted to natural gas operation. The effect of cold starts at cold temperatures and vehicle weight on tail pipe emissions were investigated with petrol and natural gas operation over the FTP75 and the 91/441/EEC drive cycles. The results show that the emissions with natural gas are unaffected by cold temperature, unlike petrol emissions which are several times higher at -15{degree}-C than at 25{degree}-C. A crude simulation, accounting for the actual temperature, shows that the conversion of a significant quantity of light duty vehicles to natural gas operation could reduce the emissionsmore » of CO and HC by more than 90% in Switzerland. 15 refs., 17 figs., 8 tabs.« less

  4. [Temperature sensitivity and the indicators of respiration in humans in the normal state and during local cooling].

    PubMed

    Kozyreva, T V; Simonova, T G

    1991-01-01

    The examination has shown that people who have many cold spots on the forearm possess high ventilation volume and breathing frequency and low value of oxygen utilization. These facts can evidence for the effect of cold skin receptors on the respiratory patterns. The skin temperature, at which the maximal cooling-induced changes of respiratory parameters are observed depends on the dynamic activity of cold skin thermoreceptors: the greater number of cold spots in the hand and forearm, the lesser cooling is necessary to cause the maximal increase of oxygen consumption and change of respiratory volume. The latter increased in the case of hand cooling and decreased in the case of the forearm cooling.

  5. Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness

    PubMed Central

    Esposito Corcione, Carola; Freuli, Fabrizio; Frigione, Mariaenrica

    2014-01-01

    The curing reaction of a commercial cold-curing structural epoxy resin, specifically formulated for civil engineering applications, was analyzed by thermal analysis as a function of the curing time and the sample thickness. Original and remarkable results regarding the effects of curing time on the glass transition temperature and on the residual heat of reaction of the cold-cured epoxy were obtained. The influence of the sample thickness on the curing reaction of the cold-cured resin was also deeply investigated. A highly exothermal reaction, based on a self-activated frontal polymerization reaction, was supposed and verified trough a suitable temperature signal acquisition system, specifically realized for this measurement. This is one of the first studies carried out on the curing behavior of these peculiar cold-cured epoxy resins as a function of curing time and thickness. PMID:28788215

  6. Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness.

    PubMed

    Corcione, Carola Esposito; Freuli, Fabrizio; Frigione, Mariaenrica

    2014-09-22

    The curing reaction of a commercial cold-curing structural epoxy resin, specifically formulated for civil engineering applications, was analyzed by thermal analysis as a function of the curing time and the sample thickness. Original and remarkable results regarding the effects of curing time on the glass transition temperature and on the residual heat of reaction of the cold-cured epoxy were obtained. The influence of the sample thickness on the curing reaction of the cold-cured resin was also deeply investigated. A highly exothermal reaction, based on a self-activated frontal polymerization reaction, was supposed and verified trough a suitable temperature signal acquisition system, specifically realized for this measurement. This is one of the first studies carried out on the curing behavior of these peculiar cold-cured epoxy resins as a function of curing time and thickness.

  7. Postnatal hypothermia and cold stress among newborn infants in Nepal monitored by continuous ambulatory recording.

    PubMed

    Ellis, M; Manandhar, N; Shakya, U; Manandhar, D S; Fawdry, A; Costello, A M

    1996-07-01

    To describe the pattern of hypothermia and cold stress after delivery among a normal neonatal population in Nepal; to provide practical advice for improving thermal care in a resource limited maternity hospital. The principal government funded maternity hospital in Kathmandu, Nepal, with an annual delivery rate of 15,000 (constituting 40% of all Kathmandu Valley deliveries), severe resource limitations (annual budget Pounds 250,000), and a cold winter climate provided the setting. Thirty five healthy term neonates not requiring special care were enrolled for study within 90 minutes of birth. Continuous ambulatory temperature monitoring, using microthermistor skin probes for forehead and axilla, a flexible rectal probe, and a black ball probe placed next to the infant for ambient temperature, was carried out. All probes were connected to a compact battery powered Squirrel Memory Logger, giving a temperature reading to 0.2 degree C at five minute intervals for 24 hours. Severity and duration of hypothermia, using cutoff values of core temperature less than 36 degrees C, 34 degrees C, and 32 degrees C; and cold stress, using cutoff values of skin-core (forehead-axilla) temperature difference greater than 3 degrees C and 4 degrees C were the main outcome measures. Twenty four hour mean ambient temperatures were generally lower than the WHO recommended level of 25 degrees C (median 22.3 degrees C, range 15.1-27.5 degrees C). Postnatal hypothermia was prolonged, with axillary core temperatures only reaching 36 degrees C after a mean of 6.4 hours (range 0-21.1; SD 4.6). There was persistent and increasing cold stress over the first 24 hours with the core-skin (axillary-forehead) temperature gap exceeding 3 degrees C for more than half of the first 24 hours. Continuous ambulatory recording identifies weak links in the "warm chain" for neonates. The severity and duration of thermal problems was greater than expected even in a hospital setting where some of the WHO recommendations had already been implemented.

  8. Molecular Structural Basis for the Cold Adaptedness of the Psychrophilic β-Glucosidase BglU in Micrococcus antarcticus

    PubMed Central

    Miao, Li-Li; Hou, Yan-Jie; Fan, Hong-Xia; Qu, Jie; Qi, Chao; Liu, Ying

    2016-01-01

    Psychrophilic enzymes play crucial roles in cold adaptation of microbes and provide useful models for studies of protein evolution, folding, and dynamic properties. We examined the crystal structure (2.2-Å resolution) of the psychrophilic β-glucosidase BglU, a member of the glycosyl hydrolase 1 (GH1) enzyme family found in the cold-adapted bacterium Micrococcus antarcticus. Structural comparison and sequence alignment between BglU and its mesophilic and thermophilic counterpart enzymes (BglB and GlyTn, respectively) revealed two notable features distinct to BglU: (i) a unique long-loop L3 (35 versus 7 amino acids in others) involved in substrate binding and (ii) a unique amino acid, His299 (Tyr in others), involved in the stabilization of an ordered water molecule chain. Shortening of loop L3 to 25 amino acids reduced low-temperature catalytic activity, substrate-binding ability, the optimal temperature, and the melting temperature (Tm). Mutation of His299 to Tyr increased the optimal temperature, the Tm, and the catalytic activity. Conversely, mutation of Tyr301 to His in BglB caused a reduction in catalytic activity, thermostability, and the optimal temperature (45 to 35°C). Loop L3 shortening and H299Y substitution jointly restored enzyme activity to the level of BglU, but at moderate temperatures. Our findings indicate that loop L3 controls the level of catalytic activity at low temperatures, residue His299 is responsible for thermolability (particularly heat lability of the active center), and long-loop L3 and His299 are jointly responsible for the psychrophilic properties. The described structural basis for the cold adaptedness of BglU will be helpful for structure-based engineering of new cold-adapted enzymes and for the production of mutants useful in a variety of industrial processes at different temperatures. PMID:26801571

  9. Molecular Structural Basis for the Cold Adaptedness of the Psychrophilic β-Glucosidase BglU in Micrococcus antarcticus.

    PubMed

    Miao, Li-Li; Hou, Yan-Jie; Fan, Hong-Xia; Qu, Jie; Qi, Chao; Liu, Ying; Li, De-Feng; Liu, Zhi-Pei

    2016-01-22

    Psychrophilic enzymes play crucial roles in cold adaptation of microbes and provide useful models for studies of protein evolution, folding, and dynamic properties. We examined the crystal structure (2.2-Å resolution) of the psychrophilic β-glucosidase BglU, a member of the glycosyl hydrolase 1 (GH1) enzyme family found in the cold-adapted bacterium Micrococcus antarcticus. Structural comparison and sequence alignment between BglU and its mesophilic and thermophilic counterpart enzymes (BglB and GlyTn, respectively) revealed two notable features distinct to BglU: (i) a unique long-loop L3 (35 versus 7 amino acids in others) involved in substrate binding and (ii) a unique amino acid, His299 (Tyr in others), involved in the stabilization of an ordered water molecule chain. Shortening of loop L3 to 25 amino acids reduced low-temperature catalytic activity, substrate-binding ability, the optimal temperature, and the melting temperature (Tm). Mutation of His299 to Tyr increased the optimal temperature, the Tm, and the catalytic activity. Conversely, mutation of Tyr301 to His in BglB caused a reduction in catalytic activity, thermostability, and the optimal temperature (45 to 35°C). Loop L3 shortening and H299Y substitution jointly restored enzyme activity to the level of BglU, but at moderate temperatures. Our findings indicate that loop L3 controls the level of catalytic activity at low temperatures, residue His299 is responsible for thermolability (particularly heat lability of the active center), and long-loop L3 and His299 are jointly responsible for the psychrophilic properties. The described structural basis for the cold adaptedness of BglU will be helpful for structure-based engineering of new cold-adapted enzymes and for the production of mutants useful in a variety of industrial processes at different temperatures. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Variation of DNA Methylome of Zebrafish Cells under Cold Pressure

    PubMed Central

    Xu, Qiongqiong; Luo, Juntao; Shi, Yingdi; Li, Xiaoxia; Yan, Xiaonan; Zhang, Junfang

    2016-01-01

    DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure. PMID:27494266

  11. Delta and gamma oscillations in operculo-insular cortex underlie innocuous cold thermosensation

    PubMed Central

    Vinding, Mikkel C.; Allen, Micah; Jensen, Troels Staehelin; Finnerup, Nanna Brix

    2017-01-01

    Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1–4 Hz) and gamma (55–90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas. NEW & NOTEWORTHY Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage. PMID:28250150

  12. Characteristics of cold-induced dark, firm, dry broiler chicken breast meat.

    PubMed

    Dadgar, S; Lee, E S; Crowe, T G; Classen, H L; Shand, P J

    2012-01-01

    1. A study was designed to characterise dark, firm, dry (DFD) breast meat resulting from cold exposure of broilers and compare its properties with normal breast meat from cold-stressed and control birds. 2. A total of 140 broilers were selected from 5- and 6-week-old birds exposed to cold temperatures ranging from -18 to -4°C, or a control temperature of +20°C for 3 h in an environmental chamber. Half of these birds were slaughtered immediately following the cold exposure and the other half were given 2 h of lairage. 3. Breast meat samples were categorised based on ultimate pH (pH(u)) and colour L* (lightness) values into normal (5·7 ≤ pH(u)≤ 6·1; 46 ≤ L* ≤ 53) breast meat from control (control-normal) or cold-stressed (cold-normal) birds, and DFD (pH(u) > 6·1; L* < 46) breast meat, which only occurred in cold-stressed birds (cold-DFD). 4. Residual glycogen was not different between cold-DFD and control-normal breast meat. Lactate concentration was lower in cold-DFD compared with control-normal breast meat. Lactate concentration almost tripled for all the samples by 30 h post-mortem, which resulted in a drop in pH of normal meat, but did not have any effect on pH of DFD breast meat. Glycolytic potential at both 5 min and 30 h post-mortem was lower in DFD breast meat compared with the normal breast meat from both cold-stressed and control birds. 5. Cold-DFD breast meat was significantly darker, with higher pH(u), lower cook loss, higher water-binding capacity and processing cook yield than cold-normal and control-normal breast meat, which were not different from each other.

  13. Transcriptomic characterization of cold acclimation in larval zebrafish

    PubMed Central

    2013-01-01

    Background Temperature is one of key environmental parameters that affect the whole life of fishes and an increasing number of studies have been directed towards understanding the mechanisms of cold acclimation in fish. However, the adaptation of larvae to cold stress and the cold-specific transcriptional alterations in fish larvae remain largely unknown. In this study, we characterized the development of cold-tolerance in zebrafish larvae and investigated the transcriptional profiles under cold stress using RNA-seq. Results Pre-exposure of 96 hpf zebrafish larvae to cold stress (16°C) for 24 h significantly increased their survival rates under severe cold stress (12°C). RNA-seq generated 272 million raw reads from six sequencing libraries and about 92% of the processed reads were mapped to the reference genome of zebrafish. Differential expression analysis identified 1,431 up- and 399 down-regulated genes. Gene ontology enrichment analysis of cold-induced genes revealed that RNA splicing, ribosome biogenesis and protein catabolic process were the most highly overrepresented biological processes. Spliceosome, proteasome, eukaryotic ribosome biogenesis and RNA transport were the most highly enriched pathways for genes up-regulated by cold stress. Moreover, alternative splicing of 197 genes and promoter switching of 64 genes were found to be regulated by cold stress. A shorter isoform of stk16 that lacks 67 amino acids at the N-terminus was specifically generated by skipping the second exon in cold-treated larvae. Alternative promoter usage was detected for per3 gene under cold stress, which leading to a highly up-regulated transcript encoding a truncated protein lacking the C-terminal domains. Conclusions These findings indicate that zebrafish larvae possess the ability to build cold-tolerance under mild low temperature and transcriptional and post-transcriptional regulations are extensively involved in this acclimation process. PMID:24024969

  14. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions, exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.

  15. Impacts of cold weather on all-cause and cause-specific mortality in Texas, 1990-2011.

    PubMed

    Chen, Tsun-Hsuan; Li, Xiao; Zhao, Jing; Zhang, Kai

    2017-06-01

    Cold weather was estimated to account for more than half of weather-related deaths in the U.S. during 2006-2010. Studies have shown that cold-related excessive mortality is especially relevant with decreasing latitude or in regions with mild winter. However, only limited studies have been conducted in the southern U.S. The purpose of our study is to examine impacts of cold weather on mortality in 12 major Texas Metropolitan Areas (MSAs) for the 22-year period, 1990-2011. Our study used a two-stage approach to examine the cold-mortality association. We first applied distributed lag non-linear models (DLNM) to 12 major MSAs to estimate cold effects for each area. A random effects meta-analysis was then used to estimate pooled effects. Age-stratified and cause-specific mortalities were modeled separately for each MSA. Most of the MSAs were associated with an increased risk in mortality ranging from 0.1% to 5.0% with a 1 °C decrease in temperature below the cold thresholds. Higher increased mortality risks were generally observed in MSAs with higher average daily mean temperatures and lower latitudes. Pooled effect estimate was 1.58% (95% Confidence Interval (CI) [0.81, 2.37]) increase in all-cause mortality risk with a 1 °C decrease in temperature. Cold wave effects in Texas were also examined, and several MSAs along the Texas Gulf Coast showed statistically significant cold wave-mortality associations. Effects of cold on all-cause mortality were highest among people over 75 years old (1.86%, 95% CI [1.09, 2.63]). Pooled estimates for cause-specific mortality were strongest in myocardial infarction (4.30%, 95% CI [1.18, 7.51]), followed by respiratory diseases (3.17%, 95% CI [0.26, 6.17]) and ischemic heart diseases (2.54%, 95% CI [1.08, 4.02]). In conclusion, cold weather generally increases mortality risk significantly in Texas, and the cold effects vary with MSAs, age groups, and cause-specific deaths. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evolution of nonspectral rhodopsin function at high altitudes.

    PubMed

    Castiglione, Gianni M; Hauser, Frances E; Liao, Brian S; Lujan, Nathan K; Van Nynatten, Alexander; Morrow, James M; Schott, Ryan K; Bhattacharyya, Nihar; Dungan, Sarah Z; Chang, Belinda S W

    2017-07-11

    High-altitude environments present a range of biochemical and physiological challenges for organisms through decreases in oxygen, pressure, and temperature relative to lowland habitats. Protein-level adaptations to hypoxic high-altitude conditions have been identified in multiple terrestrial endotherms; however, comparable adaptations in aquatic ectotherms, such as fishes, have not been as extensively characterized. In enzyme proteins, cold adaptation is attained through functional trade-offs between stability and activity, often mediated by substitutions outside the active site. Little is known whether signaling proteins [e.g., G protein-coupled receptors (GPCRs)] exhibit natural variation in response to cold temperatures. Rhodopsin (RH1), the temperature-sensitive visual pigment mediating dim-light vision, offers an opportunity to enhance our understanding of thermal adaptation in a model GPCR. Here, we investigate the evolution of rhodopsin function in an Andean mountain catfish system spanning a range of elevations. Using molecular evolutionary analyses and site-directed mutagenesis experiments, we provide evidence for cold adaptation in RH1. We find that unique amino acid substitutions occur at sites under positive selection in high-altitude catfishes, located at opposite ends of the RH1 intramolecular hydrogen-bonding network. Natural high-altitude variants introduced into these sites via mutagenesis have limited effects on spectral tuning, yet decrease the stability of dark-state and light-activated rhodopsin, accelerating the decay of ligand-bound forms. As found in cold-adapted enzymes, this phenotype likely compensates for a cold-induced decrease in kinetic rates-properties of rhodopsin that mediate rod sensitivity and visual performance. Our results support a role for natural variation in enhancing the performance of GPCRs in response to cold temperatures.

  17. Experimental determination of the effects of annealing on the micro-structures and mechanical properties of cold-worked alpha-brass

    NASA Astrophysics Data System (ADS)

    Edward, Aghogho Bright; Izelu, Christopher

    2013-12-01

    Experimental determination of the effect of annealing on the microstructure and mechanical properties of a cold work 70 - 30 brass, was carried out by subjecting specimens of the material to various degrees of cold-work (20%, 40% and 60%), by straining using a tensile machine. The specimens for each degree of cold work were then annealed at 250°C, 350°C, 450°C and 600°C, for 30 minutes. The approach involves the use of metallographic techniques: grinding, polishing and etching to reveal the microstructure while tensile test was carried out on the specimen using a Monsanto tensometer so as to obtain the load/extension graph from which the tensile strength and hardness values were obtained. From the results obtained, it was conclusive that annealing produced finer grains and eliminates prior cold work whereby the material becomes ductile. However, there should be an appreciable deformation for this effect to be noticed. One important aspect of re-crystallization in structural materials is that there is a loss of strength which accompanies disappearance of the cold-worked grains when subjected to high temperature applications. Yet, it is often difficult to establish the exact range of permissible temperature. This work establishes a range for the re-crystallization of alpha brass as 350°C < TC < 450°C, where TC is the re-crystallization temperature. Thus, it will be safe to apply this material at temperatures below 350°C, without fear of structural changes with accompanying lost in strength.

  18. Effect of low incubation temperature and low ambient temperature until 21 days of age on performance and body temperature in fast-growing chickens.

    PubMed

    Nyuiadzi, D; Travel, A; Méda, B; Berri, C; Guilloteau, L A; Coustham, V; Wang, Y; Tona, J K; Collin, A

    2017-12-01

    Thermal manipulation during embryogenesis was previously reported to decrease the occurrence of ascites and to potentially improve cold tolerance of broilers. The objective of our study was to explore the effects of the interaction of cold incubation temperatures and cool ambient temperatures until 21 d of age on performance and body temperature. Ross 308 eggs were incubated either under control conditions I0 (37.6°C) or with cyclic cold stimulations I1 (6 h/d at 36.6°C from d 10 to 18 of incubation) or with 2 cold stimulations I2 (30 min at 15°C) at d 18 and 19 of incubation. These treatments were followed by individual rearing and postnatal exposure to either standard rearing temperature T0 (from 33°C at hatching to 21°C at d 21) or continuously lower temperature T2 (from 28°C at hatching to 21°C at d 21) or exposure to cyclically lower temperature T1 (with circadian temperature oscillations). Treatments I1 and I2 did not significantly alter hatchability compared to control incubation (with 94.8, 95.1, and 92.3%, respectively), or hatching BW and overall chick quality. Hatching body temperature (Tb) was 0.5 and 0.3°C higher in I1 than in I0 and I2 groups, respectively (P = 0.007). A doubled occurrence of health problems was observed with T2 condition, regardless of incubation or sex. At d 3, BW was 2% lower with treatment I1 than with I0 and I2 and was 3% higher in T1 and T2 groups than in T0, but these effects disappeared with age. Group T2 presented a 5% higher feed intake than the control group T0 between 3 and 21 d of age (P = 0.025). Feed conversion ratio (FCR) was affected by experimental conditions (P < 0.001), with low FCR values obtained with I2 incubation in control or cyclically cold postnatal conditions. Maximal FCR values were observed in the continuously cold postnatal conditions, in males submitted to control incubation and in females submitted to I1 incubation, revealing sex-dependent effects of the treatments on performance. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  19. A versatile substrate design for LEED and AES studies in uhv.

    NASA Technical Reports Server (NTRS)

    Holloway, P. H.; Hudson, J. B.

    1972-01-01

    A substrate design is described that incorporates a single crystal disk into an electrically isolated, electron bombardment heated mount. Electron and photon leakage from the bombarding filament are prevented, and LEED and AES may be used at elevated temperatures. A cold finger, thermally coupled to the mount, decreases the time lost between cleaning the crystal and cooling it to the desired observation temperature. The cold finger also allows observation at temperatures below ambient.

  20. Integrating new indicators of predictors that shape the public's perception of local extreme temperature in China.

    PubMed

    Ban, Jie; Huang, Lei; Chen, Chen; Guo, Yuming; He, Mike Z; Li, Tiantian

    2017-02-01

    The public's risk perception of local extreme heat or cold plays a critical role in community health and prevention under climate change. However, there is limited evidence on such issues in China where extreme weather is occurring more frequently due to climate change. Here, a total of 2500 residents were selected using a three-step sampling method and investigated by a questionnaire in two representative cities. We investigated risk perception of extreme heat in Beijing and extreme cold in Harbin in 2013, aiming to examine their possible correlations with multiple epidemiological factors. We found that exposure, vulnerability, and adaptive ability were significant predictors in shaping public risk perceptions of local extreme temperature. In particular, a 1°C increase in daily temperature resulted in an increased odds of perceiving serious extreme heat in Beijing (OR=1.091; 95% CI: 1.032, 1.153), while a 1°C increase in daily temperature resulted in a decreased odds of perceiving serious extreme cold in Harbin (OR=0.965; 95% CI: 0.939, 0.992). Therefore for both extreme heat and cold, frequent local extreme temperature exposure may amplify a stronger communication. Health interventions for extreme temperature should consider exposure, vulnerability, and adaptive ability factors. This will help improve the public's perception of climatic changes and their willingness to balance adaption and mitigation appropriately. Copyright © 2016 Elsevier B.V. All rights reserved.

Top