Sample records for cold winter months

  1. Winter Season Mortality: Will Climate Warming Bring Benefits?

    PubMed

    Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  2. Winter season mortality: will climate warming bring benefits?

    NASA Astrophysics Data System (ADS)

    Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  3. Are the current thresholds, indicators, and time window for cold warning effective enough to protect cardiovascular health?

    PubMed

    Lin, Shao; Lawrence, Wayne R; Lin, Ziqiang; DiRienzo, Stephen; Lipton, Kevin; Dong, Guang-Hui; Leung, Ricky; Lauper, Ursula; Nasca, Philip; Stuart, Neil

    2018-10-15

    More extreme cold weather and larger weather variations have raised concerns regarding their effects on public health. Although prior studies assessed the effects of cold air temperature on health, especially mortality, limited studies evaluated wind chill temperatures on morbidity, and health effects under the current cold warning threshold. This study identified the thresholds, lag periods, and best indicators of extreme cold on cardiovascular disease (CVD) by comparing effects of wind chill temperatures and cold air temperatures on CVD emergency department (ED) visits in winter and winter transition months. Information was collected on 662,625 CVD ED visits from statewide hospital discharge dataset in New York State. Meteorological factors, including air temperature, wind speed, and barometric pressure were collected from National Oceanic and Atmospheric Administration. A case-crossover approach was used to assess the extreme cold-CVD relationship in winter (December-February) and transition months (November and March) after controlling for PM 2.5 . Conditional logistic regression models were employed to analyze the association between cold weather factors and CVD ED visits. We observed CVD effects occurred when wind chill temperatures were as high as -3.8 °C (25 °F), warmer than current wind chill warning standard (≤-28.8 °C or ≤-20 °F). Wind chill temperature was a more sensitive indicator of CVD ED visits during winter with temperatures ≤ -3.8 °C (25 °F) with delay effect (lag 6); however, air temperature was better during transition months for temperatures ≤ 7.2 °C (45 °F) at earlier lag days (1-3). Among all CVD subtypes, hypertension ED visit had the strongest negative association with both wind chill temperature and air temperature. This study recommends modifying the current cold warning temperature threshold given larger proportions of CVD cases are occurring at considerably higher temperatures than the current criteria. We also recommend issuing cold warnings in winter transitional months. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over themore » Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.« less

  5. Linking the pacific decadal oscillation to seasonal stream discharge patterns in Southeast Alaska

    USGS Publications Warehouse

    Neal, E.G.; Todd, Walter M.; Coffeen, C.

    2002-01-01

    This study identified and examined differences in Southeast Alaskan streamflow patterns between the two most recent modes of the Pacific decadal oscillation (PDO). Identifying relationships between the PDO and specific regional phenomena is important for understanding climate variability, interpreting historical hydrological variability, and improving water-resources forecasting. Stream discharge data from six watersheds in Southeast Alaska were divided into cold-PDO (1947-1976) and warm-PDO (1977-1998) subsets. For all watersheds, the average annual streamflows during cold-PDO years were not significantly different from warm-PDO years. Monthly and seasonal discharges, however, did differ significantly between the two subsets, with the warm-PDO winter flows being typically higher than the cold-PDO winter flows and the warm-PDO summer flows being typically lower than the cold-PDO flows. These results were consistent with and driven by observed temperature and snowfall patterns for the region. During warm-PDO winters, precipitation fell as rain and ran-off immediately, causing higher than normal winter streamflow. During cold-PDO winters, precipitation was stored as snow and ran off during the summer snowmelt, creating greater summer streamflows. The Mendenhall River was unique in that it experienced higher flows for all seasons during the warm-PDO relative to the cold-PDO. The large amount of Mendenhall River discharge caused by glacial melt during warm-PDO summers offset any flow reduction caused by lack of snow accumulation during warm-PDO winters. The effect of the PDO on Southeast Alaskan watersheds differs from other regions of the Pacific Coast of North America in that monthly/seasonal discharge patterns changed dramatically with the switch in PDO modes but annual discharge did not. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Trends in streamflow in the Yukon River Basin from 1944 to 2005 and the influence of the Pacific Decadal Oscillation

    USGS Publications Warehouse

    Brabets, T.P.; Walvoord, Michelle Ann

    2009-01-01

    Streamflow characteristics in the Yukon River Basin of Alaska and Canada have changed from 1944 to 2005, and some of the change can be attributed to the two most recent modes of the Pacific Decadal Oscillation (PDO). Seasonal, monthly, and annual stream discharge data from 21 stations in the Yukon River Basin were analyzed for trends over the entire period of record, generally spanning 4-6 decades, and examined for differences between the two most recent modes of the PDO: cold-PDO (1944-1975) and warm-PDO (1976-2005) subsets. Between 1944 and 2005, average winter and April flow increased at 15 sites. Observed winter flow increases during the cold-PDO phase were generally limited to sites in the Upper Yukon River Basin. Positive trends in winter flow during the warm-PDO phase broadened to include stations in the Middle and Lower Yukon River drainage basins. Increases in winter streamflow most likely result from groundwater input enhanced by permafrost thawing that promotes infiltration and deeper subsurface flow paths. Increased April flow may be attributed to a combination of greater baseflow (from groundwater increases), earlier spring snowmelt and runoff, and increased winter precipitation, depending on location. Calculated deviations from long-term mean monthly discharges indicate below-average flow in the winter months during the cold PDO and above-average flow in the winter months during the warm PDO. Although not as strong a signal, results also support the reverse response during the summer months: above-average flow during the cold PDO and below-average flow during the warm PDO. Changes in the summer flows are likely an indirect consequence of the PDO, resulting from earlier spring snowmelt runoff and also perhaps increased summer infiltration and storage in a deeper active layer. Annual discharge has remained relatively unchanged in the Yukon River Basin, but a few glacier-fed rivers demonstrate positive trends, which can be attributed to enhanced glacier melting. A positive trend in annual flow during the warm PDO near the mouth of the Yukon River suggests that small increases in flow throughout the Yukon River Basin have resulted in an additive effect manifested in the downstream-most streamflow station. Many of the identified changes in streamflow patterns in the Yukon River Basin show a correlation to the PDO regime shift. This work highlights the importance of considering proximate climate forcings as well as global climate change when assessing hydrologic changes in the Arctic.

  7. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub

    Treesearch

    Charles Kwit; Douglas J. Levey; Cathryn H. Greenberg; Scott F. Pearson; John P. McCarty; Sarah Sargent

    2004-01-01

    We tested the hypothesis that winter removal rates of fruits of wax myrtle, Myrica cerifera, are higher in colder winters. Over a 9-year period, we monitored M. cerifera fruit crops in 13 0.1-ha study plots in South Carolina, U.S.A. Peak ripeness occurred in November, whereas peak removal occurred in the coldest months, December...

  8. IOCCG Report Number 16, 2015 Ocean Colour Remote Sensing in Polar Seas . Chapter 2; The Polar Environment: Sun, Clouds, and Ice

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Perovich, Don; Stamnes, Knut; Stuart, Venetia (Editor)

    2015-01-01

    The polar regions are places of extremes. There are months when the regions are enveloped in unending darkness, and months when they are in continuous daylight. During the daylight months the sun is low on the horizon and often obscured by clouds. In the dark winter months temperatures are brutally cold, and high winds and blowing snow are common. Even in summer, temperatures seldom rise above 0degC. The cold winter temperatures cause the ocean to freeze, forming sea ice. This sea ice cover acts as a barrier limiting the transfer of heat, moisture, and momentum between the atmosphere and the ocean. It also greatly complicates the optical signature of the surface. Taken together, these factors make the polar regions a highly challenging environment for optical remote sensing of the ocean.

  9. Intra-seasonal Characteristics of Wintertime Extreme Cold Events over South Korea

    NASA Astrophysics Data System (ADS)

    Park, Taewon; Jeong, Jeehoon; Choi, Jahyun

    2017-04-01

    The present study reveals the changes in the characteristics of extreme cold events over South Korea for boreal winter (November to March) in terms of the intra-seasonal variability of frequency, duration, and atmospheric circulation pattern. Influences of large-scale variabilities such as the Siberian High activity, the Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO) on extreme cold events are also investigated. In the early and the late of the winter during November and March, the upper-tropospheric wave-train for a life-cycle of the extreme cold events tends to pass quickly over East Asia. In addition, compared with the other months, the intensity of the Siberian High is weaker and the occurrences of strong negative AO are less frequent. It lead to events with weak amplitude and short duration. On the other hand, the amplified Siberian High and the strong negative AO occur more frequently in the mid of the winter from December to February. The extreme cold events are mainly characterized by a well-organized anticyclonic blocking around the Ural Mountain and the Subarctic. These large-scale circulation makes the extreme cold events for the midwinter last long with strong amplitude. The MJO phases 2-3 which provide a suitable condition for the amplification of extreme cold events occur frequently for November to January when the frequencies are more than twice those for February and March. While the extreme cold events during March have the least frequency, the weakest amplitude, and the shortest duration due to weak impacts of the abovementioned factors, the strong activities of the factors for January force the extreme cold events to be the most frequent, the strongest, and the longest among the boreal winter. Keywords extreme cold event, wave-train, blocking, Siberian High, AO, MJO

  10. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean

    PubMed Central

    Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard

    2013-01-01

    [1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales. PMID:26074634

  11. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean.

    PubMed

    Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard

    2013-12-16

    [1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales.

  12. Arctic sea ice loss and recent extreme cold winter in Eurasia

    NASA Astrophysics Data System (ADS)

    Mori, Masato; Watanabe, Masahiro; Ishii, Masayoshi; Kimoto, Masahide

    2014-05-01

    Extreme cold winter over the Eurasia has occurred more frequently in recent years. Observational evidence in recent studies shows that the wintertime cold anomalies over the Eurasia are associated with decline of Arctic sea ice in preceding autumn to winter season. However, the tropical and/or mid-latitude sea surface temperature (SST) anomalies have great influence on the mid- and high-latitude atmospheric variability, it is difficult to isolate completely the impacts of sea ice change from observational data. In this study, we examine possible linkage between the Arctic sea ice loss and the extreme cold winter over the Eurasia using a state-of-the-art MIROC4 (T106L56) atmospheric general circulation model (AGCM) to assess the pure atmospheric responses to sea ice reduction. We perform two sets of experiments with different realistic sea ice boundary conditions calculated by composite of observed sea ice concentration; one is reduced sea ice extent case (referred to as LICE run) and another is enhanced case (HICE run). In both experiments, the model is integrated 6-month from September to February with 100-member ensemble under the climatological SST boundary condition. The difference in ensemble mean of each experiment (LICE minus HICE) shows cold anomalies over the Eurasia in winter and its spatial pattern is very similar to corresponding observation, though the magnitude is smaller than observation. This result indicates that a part of observed cold anomaly can be attributed to the Arctic sea ice loss. We would like to introduce more important results and mechanisms in detail in my presentation.

  13. Comparison of the Impact of the Arctic Oscillation and East Atlantic - West Russia Teleconnection on Interannual Variation in East Asian Winter Temperatures and Monsoon

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Kim, Hae-Dong

    2014-01-01

    The large-scale impacts of the Arctic Oscillation (AO) and the East Atlantic/West Russia (EA/WR) teleconnection on the East Asian winter climate anomalies are compared for the past 34 winters focusing on 1) interannual monthly to seasonal temperature variability, 2) East Asian winter monsoon (EAWM), and 3) the Siberian high (SH) and cold surge. Regression analysis reveals warming by AO and EA/WR over mid-latitude East Asia during their positive phase and vice versa. The EA/WR impact is found to be comparable to the AO impact in affecting the East Asian temperature and monsoon. For example, warm (cold) months over mid-latitude East Asia during the positive (negative) AO are clearly seen when the AO and EA/WR are in the same phase. Near zero correlation is found between temperature and the AO phase when both teleconnections are in an opposite phase. The well-known negative relationship between SH and the AO phase is observed significantly more often when the AO is in the same phase with the EA/WR. Also, the indices of EAWM, cold surge, and SH are found to be more highly negative-correlated with the EA/WR rather than with the AO. The advective temperature change and associated circulation demonstrate that the anomalous large-scale field including the SH over the mid-latitude Asian inland is better represented by the EA/WR, influencing the East Asian winter climates. These results suggest that the impact of EA/WR should be considered more important than previously thought for a better understanding of East Asian winter temperature and monsoon variability.

  14. Use of ``Cold Spell'' indices to quantify excess chronic obstructive pulmonary disease (COPD) morbidity during winter (November to March 2000-2007): case study in Porto

    NASA Astrophysics Data System (ADS)

    Monteiro, Ana; Carvalho, Vânia; Góis, Joaquim; Sousa, Carlos

    2013-11-01

    The aim of this study was to examine the relationship between the occurrence of cold episodes and excess hospital admissions for chronic obstructive pulmonary disease (COPD) in Porto, Portugal, in order to further understand the effects of cold weather on health in milder climates. Excess COPD winter morbidity was calculated from admissions for November to March (2000-2007) in the Greater Porto Metropolitan Area (GPMA). Cold spells were identified using several indices (Díaz, World Meteorological Organization, Cold Spell Duration Index, Australian Index and Ondas’ Project Index) for the same period. Excess admissions in the periods before and after the occurrence of cold spells were calculated and related to the cold spells identified. The COPD seasonal variation admission coefficient (CVSA) showed excess winter admissions of 59 %, relative to other months. The effect of cold spell on the aggravation of COPD occurs with a lag of at least 2 weeks and differs according to the index used. This study indicates the important role of the persistence of cold periods of at least 2 weeks duration in the increase in COPD admissions. The persistence of moderate temperatures (Tmin ≤5 °C) for a week can be more significant for increasing COPD admissions than very low temperatures (Tmin ≤ 1.6 °C) for just a few days. The Ondas projects’ index provides the most accurate detection of the negative impacts of cold persistency on health, while the Diaz index is better at evaluating the consequences of short extreme cold events.

  15. A descriptive quantitative study of 7- and 8-year-old children’s outdoor recreation, cold exposure and symptoms in winter in Northern Finland

    PubMed Central

    Rasi, Hanna; Kuivila, Heli; Pölkki, Tarja; Bloigu, Risto; Rintamäki, Hannu; Tourula, Marjo

    2017-01-01

    ABSTRACT Background: In Finland, children spend a lot of time outdoors in winter. Outdoor recreation in winter has a wide variety of effects on children’s well-being. Although children are a subgroup that is vulnerable to cold exposure, remarkably little research has been done on the subject. Objective: The aim of this study was to describe children’s outdoor recreation, cold exposure and symptoms in winter in Northern Finland. Design: This was a descriptive quantitative study. The participants consisted of 30 children aged 7–8 years who were living in the provinces of Lapland and Northern Ostrobothnia in Finland. Data were collected by using electronic data-logging thermometers fixed on children’s outerwear for a month. The thermometers recorded the environmental temperature every five minutes and from that temperature data, we were able to discern the exact amount and duration of children’s outdoor recreation. In addition, information on the children’s cold symptoms was collected with structured daily entries. Results: Cold weather was not an obstacle to children’s outdoor activities in Finland. However, the duration of outdoor recreation shortened when the outdoor air temperature decreased. There were no significant differences between boys and girls in terms of time spent outdoors. Remarkably, every child reported symptoms associated with cold. Almost half of the children reported experiencing respiratory symptoms and some children also experienced cold pain and numbness. Conclusions: The results of this study illustrate the many and varied effects that cold exposure can have on children’s health and well-being. In order to prevent negative health effects of cold exposure on children, structured prevention strategies are needed: therefore, children’s exposure to cold should be studied more. Future research should also bring out more the positive health effects of outdoor recreation on children’s growth and development.​​​​ PMID:28346080

  16. Severe European winters in a secular perspective

    NASA Astrophysics Data System (ADS)

    Hoy, Andreas; Hänsel, Stephanie

    2017-04-01

    Temperature conditions during the winter time are substantially shaped by a strong year-to-year variability. European winters since the late 1980s - compared to previous decades and centuries - were mainly characterised by a high temperature level, including recent record-warm winters. Yet, comparably cold winters and severe cold spells still occur nowadays, like recently observed from 2009 to 2013 and in early 2017. Central England experienced its second coldest December since start of observations more than 350 years ago in 2010, and some of the lowest temperatures ever measured in northern Europe (below -50 °C in Lapland) were recorded in January 1999. Analysing thermal characteristics and spatial distribution of severe (historical) winters - using early instrumental data - helps expanding and consolidating our knowledge of past weather extremes. This contribution presents efforts towards this direction. We focus on a) compiling and assessing a very long-term instrumental, spatially widespread and well-distributed, high-quality meteorological data set to b) investigate very cold winter temperatures in Europe from early measurements until today. In a first step, we analyse the longest available time series of monthly temperature averages within Europe. Our dataset extends from the Nordic countries up to the Mediterranean and from the British Isles up to Russia. We utilise as much as possible homogenised times series in order to ensure reliable results. Homogenised data derive from the NORDHOM (Scandinavia) and HISTALP (greater alpine region) datasets or were obtained from national weather services and universities. Other (not specifically homogenised) data were derived from the ECA&D dataset or national institutions. The employed time series often start already during the 18th century, with Paris & Central England being the longest datasets (from 1659). In a second step, daily temperature averages are involved. Only some of those series are homogenised, but those available are sufficiently distributed throughout Europe to ensure reliable results. Furthermore, the comparably dense network of long-term observations allows an appropriate quality checking within the network. Additionally, the large collective of homogenised monthly data enables assessing the quality of many daily series. Daily data are used to sum up negative values for the respective winter periods to create times series of "cold summations", which are a good indicator for the severeness of winters in most parts of Europe. Additionally, days below certain thresholds may be counted or summed up. Future work will include daily minimum and maximum temperatures, allowing calculating and applying an extensive set of climate indices, refining the work presented here.

  17. Assessment of the APCC Coupled MME Suite in Predicting the Distinctive Climate Impacts of Two Flavors of ENSO during Boreal Winter

    NASA Technical Reports Server (NTRS)

    Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun

    2012-01-01

    Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.

  18. A Study of School Without Schools: The Columbus, Ohio Public Schools During the Natural Gas Shortage, Winter, 1977. Volume I and Volume II, Appendices.

    ERIC Educational Resources Information Center

    Sanders, James R.; Stufflebeam, Daniel L.

    The energy crisis, specifically a shortage of natural gas, caused by the unusually cold winter of 1977, resulted in the Columbus, Ohio, schools being closed for a month. Schools heated with gas were closed, but students met one day a week in school buildings that used coal, oil, or electricity. The educational program continued with school…

  19. Deacclimation may be crucial for winter survival of cereals under warming climate.

    PubMed

    Rapacz, Marcin; Jurczyk, Barbara; Sasal, Monika

    2017-03-01

    Climate warming can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted warm gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate warming may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled cold acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. Cold deacclimation resistance was shown to be independent from cold acclimation ability. Further, cold deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted cold acclimation may increase cold deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that cold deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Installation Restoration Program Records Search for 158 Tactical Fighter Group, Vermont Air National Guard, Burlington International Airport.

    DTIC Science & Technology

    1983-09-01

    cold winters. Coldest temperatures ir. winter months are caused by high pressure systems which move rapidly dohn from central Canada cr Hudson Eay... dolomitic marble; or sand (30 to 60 feet), Glacial till (30 to 50 feet), and bedrock. The materials occurring above the bedrock in the vicinity of the...Trenton Group Iberville formation Noncalcareous black shale interbedded with 1000 dolomite . Stony point formation Predominantly calcareous black shale

  1. A teleconnection study of interannual sea surface temperature fluctuations in the northern North Atlantic and precipitation and runoff over Western Siberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, S.; Mysak, L.A.

    The spatial distributions of northern North Atlantic sea surface temperature and the high-latitude Northern Hemisphere sea level pressure anomalies averaged over six consecutive warm SST winters (1951-1956) and six consecutive cold SST winters (1971-1976) are examined. Three SLP anomaly difference (i.e., warm - cold winters) centers, significant at the 5% level, are observed over the northern North Atlantic, Europe, and western Siberia. This anomaly pattern is consistent in principle with what was identified in a related analyses by Palmer and Sun, who used composite data from selected winter months. The SLP difference centers over the northern North Atlantic and westernmore » Siberia are in phase. The impact of the latter center upon the runoff from the underlying Ob and Yenisey rivers and especially the teleconnection between SST anomalies in the northern North Atlantic and runoff of those two rivers via the atmosphere are investigated. The temporal cross-correlation analyses of 50 years (1930-1979) of records of SST, precipitation, and runoff anomalies indicate that the winter SST anomalies in the northern North Atlantic are significantly correlated with the winter and following summer runoff fluctuations of the Ob and Yenisey rivers. Positive (negative) northern North Atlantic SST anomalies are related to less (more) precipitation, and hence, less (more) runoff, over western Siberia. Discussions of possible physical mechanisms and processes that lead to the above relationships are attempted. The analyses of spatial distributions of precipitation in the warm and cold SST winters suggest that precipitation fluctuations over Europe and western Siberia may be affected by shifts of cyclone tracks associated with the SST variations in the northern North Atlantic. 27 refs., 9 figs.« less

  2. Have Fun in the Snow--But Be Careful!

    ERIC Educational Resources Information Center

    Sparano, Vin T.

    1977-01-01

    During the winter months especially, many people do not protect themselves against the cold weather. This article discusses the causes, symptoms, and first aid treatment of hypothermia and frostbite. Methods for rescuing someone who has fallen through the ice on a lake are also mentioned. (MA)

  3. Preliminary economic analysis of aquifer winter-chill storage at the John F. Kennedy airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, E.C.; Thomas, J.F.

    A conceptual design was formulated in conjuction with a cost analysis to determine the feasibility of retrofitting the present John F. Kennedy (JFK) airport air-conditioning system with an aquifer cold water storage system. It appears technically feasible to chill and store aquifer water at the airport site during the winter months for later air-conditioning use. However, the economic analysis shows that although a significant energy savings is realized, the money saved from reduced energy costs would not be enough to recover the necessary capital investment over a 20-year period. JFK airport may be a poor economic choice for an aquifermore » cold water storage demonstration site due to site specific problems, and other sites may provide economic incentive.« less

  4. Winter diets of immature green turtles (Chelonia mydas) on a northern feeding ground: integrating stomach contents and stable isotope analyses

    USGS Publications Warehouse

    Williams, Natalie C.; Bjorndal, Karen A.; Lamont, Margaret M.; Carthy, Raymond R.

    2015-01-01

    The foraging ecology and diet of the green turtle, Chelonia mydas, remain understudied, particularly in peripheral areas of its distribution. We assessed the diet of an aggregation of juvenile green turtles at the northern edge of its range during winter months using two approaches. Stomach content analyses provide a single time sample, and stable isotope analyses integrate diet over a several-month period. We evaluated diet consistency in prey choice over time by comparing the results of these two approaches. We examined stomach contents from 43 juvenile green turtles that died during cold stunning events in St. Joseph Bay, Florida, in 2008 and 2011. Stomach contents were evaluated for volume, dry mass, percent frequency of occurrence, and index of relative importance of individual diet items. Juvenile green turtles were omnivorous, feeding primarily on seagrasses and tunicates. Diet characterizations from stomach contents differed from those based on stable isotope analyses, indicating the turtles are not feeding consistently during winter months. Evaluation of diets during warm months is needed.

  5. Windowpane flounder (Scophthalmus aquosus) and winter flounder (Pseudopleuronectes americanus) responses to cold temperature extremes in a Northwest Atlantic estuary

    NASA Astrophysics Data System (ADS)

    Wilber, Dara H.; Clarke, Douglas G.; Alcoba, Catherine M.; Gallo, Jenine

    2016-01-01

    The effect of climate variability on flatfish includes not only the effects of warming on sensitive life history stages, but also impacts from more frequent or unseasonal extreme cold temperatures. Cold weather events can affect the overwintering capabilities of flatfish near their low temperature range limits. We examined the responses of two flatfish species, the thin-bodied windowpane (Scophthalmus aquosus) and cold-tolerant winter flounder (Pseudopleuronectes americanus), to variable winter temperatures in a Northwest Atlantic estuary using abundance and size data collected during a monitoring study, the Aquatic Biological Survey, conducted from 2002 to 2010. Winter and spring abundances of small (50 to 120 mm total length) juvenile windowpane were positively correlated with adult densities (spawning stock) and fall temperatures (thermal conditions experienced during post-settlement development for the fall-spawned cohort) of the previous year. Windowpane abundances in the estuary were significantly reduced and the smallest size class was nearly absent after several consecutive years with cold (minimum temperatures < 1 °C) winters. Interannual variation in winter flounder abundances was unrelated to the severity of winter temperatures. A Paulik diagram illustrates strong positive correlations between annual abundances of sequential winter flounder life history stages (egg, larval, Age-1 juvenile, and adult male) within the estuary, reflecting residency within the estuary through their first year of life. Temperature variables representing conditions during winter flounder larval and post-settlement development were not significant factors in multiple regression models exploring factors that affect juvenile abundances. Likewise, densities of predators known to consume winter flounder eggs and/or post-settlement juveniles were not significantly related to interannual variation in winter flounder juvenile abundances. Colder estuarine temperatures through the first year of life were associated with smaller Age-1 winter flounder body size. For example, Age-1 winter flounder developing under conditions that differed by 1.9 °C in mean daily water temperature, averaged 98.7 mm total length (TL) and 123.1 mm TL, for the relatively cold vs. moderate years, respectively. More frequent cold temperature extremes associated with climate variability may negatively impact the overwintering capabilities of some flatfish near their cold temperature range limits, whereas cold-tolerant species may experience reduced growth, which imparts the ecological challenges associated with smaller body size.

  6. Randomized controlled trial of probiotics to reduce common cold in schoolchildren.

    PubMed

    Rerksuppaphol, Sanguansak; Rerksuppaphol, Lakkana

    2012-10-01

    The common cold is responsible for the largest proportion of school and work absenteeism and causes a huge economic burden. None of the current interventions is greatly effective for prevention. Our aim was to assess the efficacy of a two-strain combination probiotic for prevention of common cold symptoms in healthy schoolchildren. A double-blind randomized controlled trial was performed during the winter season in a public school of central Thailand. Children, aged 8-13 years, were randomized to receive either a two-strain combination probiotic (Lactobacillus acidophilus and Bifidobacterium bifidum) or placebo given twice a day for 3 months. The primary outcome was any symptom of cold during the 3-month study period while vomiting, diarrhea, use of antibiotics, school absence due to any cause, school absence due to cold and duration of all symptoms were secondary outcomes. Of the 40 children in each group, 31 (77%) in the probiotic group, compared to 38 (95%) in the placebo group (P= 0.048), developed at least one symptom of cold. Children in the probiotics group had significantly lower risk of fever, cough, rhinorrhea, school absence and school absence related to common cold compared to children in the placebo group. There was no impact on diarrhea and vomiting. A two-strain probiotic combination given twice a day for 3 months was able to reduce the symptoms of the common cold and school absenteeism in schoolchildren. © 2012 The Authors. Pediatrics International © 2012 Japan Pediatric Society.

  7. The winter gap effect in methane leak detection and repair with optical gas imaging cameras

    NASA Astrophysics Data System (ADS)

    Fox, T. A.; Barchyn, T.; Hugenholtz, C.

    2017-12-01

    Implementing effective leak detection and repair (LDAR) programs is essential for mitigating fugitive methane emissions from oil and gas operations. In Canada, newly proposed regulations will require that high-risk facilities be surveyed 3 times/yr for fugitive leaks. Like the United States, Canada promotes the use of Optical Gas Imaging cameras (OGIs) for detecting natural gas leaks during LDAR surveys. However, recent research suggests OGIs may perform poorly under adverse environmental conditions, especially in low temperatures. For regions like Canada that experience cold winters, OGIs may not be reliably used for months at a time, meaning that leaks may accumulate and emit for longer periods before being repaired. While considerable oil and gas activity occurs in high-latitude regions with cold winters, no research has explored how extended cold periods impact OGI-focused LDAR programs. To improve this understanding, we present a simple model exploring relationships among winter gap length, fugitive methane emissions, and investment input for LDAR programs employing OGI instruments in gas producing regions of different latitudes. Preliminary results suggest that longer gaps between LDAR surveys caused by cold temperatures result in either 1) higher total emissions for the year, or 2) greater time and equipment investment in LDAR programs to achieve emissions mitigation equivalent to LDAR programs operating under ideal conditions. When weather constraints are removed and LDAR surveys are evenly spaced throughout the year, emissions mitigation is optimized. However, as the winter gap duration and the size of the implicated area increases, fugitive leaks last longer. Furthermore, a spillover effect is observed as LDAR crews become overwhelmed with the high volume of work required as temperatures increase in the spring. Our model adds weight to the argument that LDAR programs should be tailored to regional needs, and that regulators should be more cognisant of sensor-specific limitations as they develop LDAR protocols.

  8. RATIONAL DETERMINATION METHOD OF PROBABLE FREEZING INDEX FOR n-YEARS CONSIDERING THE REGIONAL CHARACTERISTICS

    NASA Astrophysics Data System (ADS)

    Kawabata, Shinichiro; Hayashi, Keiji; Kameyama, Shuichi

    This paper investigates a method for ob taining the probable freezing index for n -years from past frostaction damage and meteorological data. From investigati on of Japanese cold winter data from the areas of Hokkaido, Tohoku and south of Tohoku, it was found that the extent of cold winter had regularity by location south or north. Also, after obtaining return periods of cold winters by area, obvious regional characteristics were found. Mild winters are rare in Hokkaido. However, it was clarified that when Hokkaido had cold winters, its size increased. It wa s effective to determine the probable freezing indices as 20-, 15- and 10-year return periods for Hokkaido, Tohoku and south of Tohoku, respectively.

  9. Effect of winter cold duration on spring phenology of the orange tip butterfly, Anthocharis cardamines.

    PubMed

    Stålhandske, Sandra; Lehmann, Philipp; Pruisscher, Peter; Leimar, Olof

    2015-12-01

    The effect of spring temperature on spring phenology is well understood in a wide range of taxa. However, studies on how winter conditions may affect spring phenology are underrepresented. Previous work on Anthocharis cardamines (orange tip butterfly) has shown population-specific reaction norms of spring development in relation to spring temperature and a speeding up of post-winter development with longer winter durations. In this experiment, we examined the effects of a greater and ecologically relevant range of winter durations on post-winter pupal development of A. cardamines of two populations from the United Kingdom and two from Sweden. By analyzing pupal weight loss and metabolic rate, we were able to separate the overall post-winter pupal development into diapause duration and post-diapause development. We found differences in the duration of cold needed to break diapause among populations, with the southern UK population requiring a shorter duration than the other populations. We also found that the overall post-winter pupal development time, following removal from winter cold, was negatively related to cold duration, through a combined effect of cold duration on diapause duration and on post-diapause development time. Longer cold durations also lead to higher population synchrony in hatching. For current winter durations in the field, the A. cardamines population of southern UK could have a reduced development rate and lower synchrony in emergence because of short winters. With future climate change, this might become an issue also for other populations. Differences in winter conditions in the field among these four populations are large enough to have driven local adaptation of characteristics controlling spring phenology in response to winter duration. The observed phenology of these populations depends on a combination of winter and spring temperatures; thus, both must be taken into account for accurate predictions of phenology.

  10. Application study of monthly precipitation forecast in Northeast China based on the cold vortex persistence activity index

    NASA Astrophysics Data System (ADS)

    Gang, Liu; Meihui, Qu; Guolin, Feng; Qucheng, Chu; Jing, Cao; Jie, Yang; Ling, Cao; Yao, Feng

    2018-03-01

    This paper introduces three quantitative indicators to conduct research for characterizing Northeast China cold vortex persistence activity: cold vortex persistence, generalized "cold vortex," and cold vortex precipitation. As discussed in the first part of paper, a hindcast is performed by multiple regressions using Northeast China precipitation from 2012 to 2014 combination with the previous winter 144 air-sea system factors. The results show that the mentioned three cold vortex index series can reflect the spatial and temporal distributions of observational precipitation in 2012-2014 and obtain results. The cold vortex factors are then added to the Forecast System on Dynamical and Analogy Skills (FODAS) to carry out dynamic statistical hindcast of precipitation in Northeast China from 2003 to 2012. Based on the characteristics and significance of each index, precipitation hindcast is carried out for Northeast China in May, June, July, August, May-June, and July-August. It turns out that the Northeast Cold Vortex Index Series, as defined in this paper, can make positive corrections to the FODAS forecast system, and most of the index correction results are higher than the system's own correction value. This study provides quantitative index products and supplies a solid technical foundation and support for monthly precipitation forecast in Northeast China.

  11. Livable Winter Cities--Leisure Attitudes and Activities.

    ERIC Educational Resources Information Center

    Neal, Larry; Coles, Roger, Ed.

    1989-01-01

    The nine articles included in this feature emphasize how leisure, recreation, health and physical activities make winter cities more livable. Specific topics include techniques for teaching about cold weather safety and cold related injuries, Arctic Winter Games, and results of a study on winter recreation in large North American communities. (IAH)

  12. Barriers to wheelchair use in the winter.

    PubMed

    Ripat, Jacquie D; Brown, Cara L; Ethans, Karen D

    2015-06-01

    To test the hypothesis that challenges to community participation posed by winter weather are greater for individuals who use scooters, manual and power wheelchairs (wheeled mobility devices [WMDs]) than for the general ambulatory population, and to determine what WMD users identify as the most salient environmental barriers to community participation during the winter. Cross-sectional survey organized around 5 environmental domains: technological, natural, physical, social/attitudinal, and policy. Urban community in Canada. Convenience sample of WMD users or their proxy (N=99). Not applicable. Not applicable. Forty-two percent identified reduced outing frequency in winter months, associated with increased age (χ(3)=6.4, P=.04), lack of access to family/friends for transportation (χ(2)=8.1, P=.04), and primary type of WMD used in the winter (scooter χ(2)=8.8, P=.003). Most reported tires/casters becoming stuck in the snow (95%) or slipping on the ice (91%), difficulty ascending inclines/ramps (92%), and cold hands while using controls or pushing rims (85%); fewer identified frozen wheelchair/scooter batteries, seat cushions/backrests, or electronics. Sidewalks/roads were reported to be problematic by 99%. Eighty percent reported needing additional help in the winter. Limited community access in winter led to a sense of loneliness/isolation, and fear/anxiety related to safety. Respondents identified policies that limited participation during winter. People who use WMDs decrease their community participation in cold weather because of multiple environmental barriers. Clinicians, researchers, and policymakers can take a multidimensional approach to mitigate these barriers in order to enhance community participation by WMD users in winter. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Decreasing but still significant facilitation effect of cold-season macrophytes on wetlands purification function during cold winter.

    PubMed

    Zou, Xiangxu; Zhang, Hui; Zuo, Jie; Wang, Penghe; Zhao, Dehua; An, Shuqing

    2016-06-01

    To identify the facilitation effect of a cool-season aquatic macrophyte (FEam) for use in effluent purification via constructed floating wetlands (CFWs) and to determine the possible pathways used during a winter period with an average temperature of less than 5 °C, pilot-scale CFWs were planted with the cold-season macrophyte Oenanthe clecumbens and were operated as batch systems. Although some leaves withered, the roots retained relatively high levels of activity during the winter, which had average air and water temperatures of 3.63 and 5.04 °C, respectively. The N and P removal efficiencies in CFWs decreased significantly in winter relative to those in late autumn. The presence of cool-season plants resulted in significant improvements in N and P removal, with a FEam of 15.23-25.86% in winter. Microbial N removal accounted for 71.57% of the total N removed in winter, and the decrease in plant uptake was the dominant factor in the wintertime decrease in N removal relative to that in late autumn. These results demonstrate the importance of cold-season plants in CFWs for the treatment of secondary effluent during cold winters.

  14. Kick, Glide, Pole! Cross-Country Skiing Fun (Part I)

    ERIC Educational Resources Information Center

    Duoos, Bridget A.

    2011-01-01

    Cross-country skiing is a great activity for taking a physical education class outside during the cold winter months. It is also a diverse activity that appeals to students of all ages, and is an excellent cardio-respiratory activity to keep students active. This article has provided the first steps in preparing a cross-country skiing lesson in…

  15. Geo-spatial analysis of temporal trends of temperature and its extremes over India using daily gridded (1°×1°) temperature data of 1969-2005

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.

    2017-10-01

    Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season ( kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics ( α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test ( α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.

  16. Long Term Decline in Eastern US Winter Temperature Extremes.

    NASA Astrophysics Data System (ADS)

    Trenary, L. L.; DelSole, T. M.; Tippett, M. K.; Doty, B.

    2016-12-01

    States along the US eastern seaboard have experienced successively harsh winter conditions in recent years. This has prompted speculation that climate change is leading to more extreme winter conditions. In this study we quantify changes in the observed winter extremes over the period 1950-2015, by examining year-to-year differences in intensity, frequency and likelihood of daily cold temperature extremes in the north, mid, and south Atlantic states along the US east coast. Analyzing station data for these three regions, we find that while the north and mid-Atlantic regions experienced record-breaking cold temperatures in 2015, there is no long-term increase in the intensity of cold extremes anywhere along the eastern seaboard. Likewise, despite the record number of cold days in these two regions during 2014 and 2015, there is no systematic increase in the frequency of cold extremes. To determine whether the observed changes are natural or human-forced, we repeat our analysis using a suite of climate simulations, with and without external forcing. Generally, model simulations suggest that human-induced forcing does not significantly influence the range of daily winter temperature. Combining this result with the fact that the observed winter temperatures are becoming warmer and less variable, we conclude that the recent intensification of eastern US cold extremes is only temporary.

  17. "Cold" and "hot" thermal anomalies/events during spring and autumn in Poland

    NASA Astrophysics Data System (ADS)

    Graczyk, Dariusz; Szwed, Małgorzata; Choryński, Adam

    2014-05-01

    Regular air temperatures' changes, as an effect of succession of the seasons, are a part of people's everyday life. When winters and summers are not characterised by extreme thermal conditions, people are well prepared and there are no losses for agriculture and economy or human health consequences observed. A similar situation takes place in case of typical springs and autumns, where normally no too low or too high air temperatures occur. The situation becomes totally different when the air temperature significantly exceeds frames of typical temperature for particular months or seasons. Appearance of winter conditions during months in which they are not expected may lead to losses in different branches of the economy e.g. transport or agriculture. Heat in non-summer months potentially brings less damages for the economy, but it might be a great threat for human health, especially for those with cardiological diseases, and it may result in thermal discomfort. If these conditions last for sufficient period of time, they may cause disorders in plant vegetation cycles. One element of the discussion held on the global warming which has been observed since the half of the twentieth century, is the question of how this effects the occurrence of climatic anomalies. Does it result in an decrease of "cold" thermal anomalies and in an increase of frequency of "hot" anomalies? Or does it increase the occurrence of both types of these events? In this research there will be performed an analysis of the occurrence of conditions typical for winter months, outside the climatic winter (December, January, February) at ten locations in the area of Poland. During the months directly close to this period (November and March) the threshold for winter conditions will be maximum temperature below 0 oC which means occurrence of frost all day long. For other non-summer months the threshold will be mean daily temperature below 0 oC meaning low temperatures during the day, not only morning frosts. A similar procedure will be used for summer conditions outside the climatic summer (June, July, August), where for months close to climatic summer (May and September) the thresholds will be set at maximum temperature higher than 30 oC and 25 oC for other spring and autumn months. In order to assess if, and to what extent , the occurrence of anomalies and rare thermal events changes, their number will be compared in three sub-periods: 1951-1980; 1961-1990; 1991-2013 (the period after 1990, where warming in Poland is observed). The final stage of the analysis will be detection of trend of anomalies calculated for ten meteorological stations in the multi-year period of 1951-2013, using statistical tests in time series.

  18. Damage to southern Michigan conifers during the winter of 1976-77

    Treesearch

    Jonathan W. Wright; Donald DeHayes; Walter A. Lemmien

    1977-01-01

    In southern Michigan, the winter of 1976-1977 was marked by unseasonably cold weather in early December, prolonged cold weather in December and January, severe drought at the onset of cold weather, and by higher than average absolute minimum temperatures. Damage, presumably from the early December cold weather, was severe to southern seedlots of ponderosa pine,...

  19. Intraseasonal Cold Air Outbreak over East Asia and the preceding atmospheric condition over the Barents-Kara Sea

    NASA Astrophysics Data System (ADS)

    Hori, M. E.; Inoue, J.

    2011-12-01

    Frequent occurrence of cold air outbreak is a dominant feature of the East Asian winter monsoon. A contributing factor for the this cold air outbreak is the role of stationary Rossby waves over the Eurasian continent which intensifies the surface Siberian High and the accompanying cold air outflow. Reduced sea ice and increase in turbulence heat flux is hypothesized as a source of such stationary waves (Honda et al. 2009). In particular, the winter of 2009/2010 saw a strong correlation of high pressure anomaly over the Barents/Kara sea and the following cold air buildup over the Eurasian continent and its advection towards East Asia (Hori et al. 2011). The lag correlation of surface temperature over Japan and the 850hPa geopotential height shows a cyclonic anomaly appearing over the Barents/Kara sea which creates a cold air advection over the Eurasian continent. The pressure anomaly subsequently shifted westward to mature into a blocking high which created a wave- train pattern downstream advecting the cold air buildup eastward toward East Asia and Japan (Fig1). We further examine this mechanism for other years including the 2005/2006, 2010/2011 winter and other winters with extreme cold air outbreaks. Overall, the existence of an anticyclonic anomaly over the Barents/Kara sea correlated well with the seasonal dominance of cold air over the Eurasian continent thereby creating a contrast of a warm Arctic and cold Eurasian continent.In the intraseasonal timescale, the existence of this anticyclone corresponds to a persisting atmospheric blocking in the high latitudes. In the presentation, we address the underlying chain of events leading up to a strong cold air outbreak over East Asia from an atmosphere - sea ice - land surafce interaction point of view for paritular cold winter years.

  20. Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover

    Treesearch

    Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder

    2009-01-01

    Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in...

  1. Persistency in monthly mean temperatures in Europe

    NASA Astrophysics Data System (ADS)

    Rasol, Dubravka; Ólafsson, Haraldur

    2016-04-01

    Time series from a number of weather stations in Europe have been studied in order to assess the persistency of montly mean temperatures. In most regions, the correlation between the mean temperatures of two months next to each other in time has maxima in the summer and in the winter, while there are minima in the sping and the autumn. An exception from this is in the oceanic warm climate in the southwest, where the spring minimum is missing. A plausible explanation for the positive correlation in the winter may be related to snow on the ground. The snow is associated with cold spells and increases the albedo, contributing to extension of the low temperatures. The summertime correlation may be related to the water content of the soil. A cold and rainy period results in wet soil and subsequently, relatively large part of the energy of the incoming solar radiation is consumed by evaporation, rather than sensible heating. In the spring, there is generally no snow on the ground and in the autumn, the air temperature is not as sensitive to the water content of the soil as in the summer. This may explain the low correlation in spring and autumn.

  2. Impacts of extreme climatic events on the energetics of long-lived vertebrates: the case of the greater flamingo facing cold spells in the Camargue.

    PubMed

    Deville, Anne-Sophie; Labaude, Sophie; Robin, Jean-Patrice; Béchet, Arnaud; Gauthier-Clerc, Michel; Porter, Warren; Fitzpatrick, Megan; Mathewson, Paul; Grémillet, David

    2014-10-15

    Most studies analyzing the effects of global warming on wild populations focus on gradual temperature changes, yet it is also important to understand the impact of extreme climatic events. Here we studied the effect of two cold spells (January 1985 and February 2012) on the energetics of greater flamingos (Phoenicopterus roseus) in the Camargue (southern France). To understand the cause of observed flamingo mass mortalities, we first assessed the energy stores of flamingos found dead in February 2012, and compared them with those found in other bird species exposed to cold spells and/or fasting. Second, we evaluated the monthly energy requirements of flamingos across 1980-2012 using the mechanistic model Niche Mapper. Our results show that the body lipids of flamingos found dead in 2012 corresponded to 2.6±0.3% of total body mass, which is close to results found in woodcocks (Scolopax rusticola) that died from starvation during a cold spell (1.7±0.1%), and much lower than in woodcocks which were fed throughout this same cold spell (13.0±2%). Further, Niche Mapper predicted that flamingo energy requirements were highest (+6-7%) during the 1985 and 2012 cold spells compared with 'normal' winters. This increase was primarily driven by cold air temperatures. Overall, our findings strongly suggest that flamingos starved to death during both cold spells. This study demonstrates the relevance of using mechanistic energetics modelling and body condition analyses to understand and predict the impact of extreme climatic events on animal energy balance and winter survival probabilities. © 2014. Published by The Company of Biologists Ltd.

  3. Genes critical for the induction of cold acclimation in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Phenotypic studies have shown that cold acclimation in wheat and its relatives start at different temperatures. To gain insight into the underlying mechanisms that regulate the induction of cold-acclimation process in cereals we compared the expression of genes in winter-habit (winter Norstar and w...

  4. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  5. Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969-2012)

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.

    2017-08-01

    Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.

  6. Fossils tell of mild winters in an ancient hothouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    Fossil evidence from the Eocene points to a warmer winter climate in the continental interior (e.g. North Dakota) than that predicted by computer models. Paleobotanists have been able to quantify approximate winter mean temperatures by using leaf characteristics. As one example, leaves from colder climates have toothed edges. Leaf structure was correlated with modern climate regimes, and these relations were then applied to Eocene fossils. They found cold-month mean temperatures of 1-8[degrees]C in Wyoming and Montana, well above model predictions. Climate models can be manipulated to reproduce these temperatures, but not without overheating the entire globe. The problem could bemore » that the Eocene atmospheric circulation was different from today, something not accounted for well by climate models.« less

  7. Winter-swimming as a building-up body resistance factor inducing adaptive changes in the oxidant/antioxidant status.

    PubMed

    Lubkowska, Anna; Dołęgowska, Barbara; Szyguła, Zbigniew; Bryczkowska, Iwona; Stańczyk-Dunaj, Małgorzata; Sałata, Daria; Budkowska, Marta

    2013-01-01

    The aim of our research was to examine whether winter-swimming for five consecutive months results in adaptational changes improving tolerance to stress induced by exposure to cryogenic temperatures during whole-body cryostimulation (WBC). The research involved 15 healthy men, with normal bodyweight, who had never been subjected to either WBC or cold water immersion. During the experiment, the participants were twice subjected to WBC (3 min/- 130°C), namely before the winter-swimming season and after the season. Blood was taken seven times: In the morning before each cryostimulation, 30 min after each cryostimulation and the next morning. Additionally, control blood was collected in the middle of the winter season, in February. Our analysis concerned changes in hematological parameters as well as in reduced glutathione and oxidized glutathione, total oxidant status, total antioxidant status and in components of the antioxidant system: Superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and 8-Isoprostanes as a sensitive indicator of oxidative stress. We found significant changes in hemoglobin concentration, the number of red blood cells, the hematocrit index and mean corpuscular volume of red blood cell and the percentage of monocytes and granulocytes after the winter swimming season. The response to cryogenic temperatures was milder after five months of winter-swimming. The obtained results may indicate positive adaptive changes in the antioxidant system of healthy winter-swimmers. These changes seem to increase the readiness of the human body to stress factors.

  8. Comparison of GPCP Monthly and Daily Precipitation Estimates with High-Latitude Gauge Observations

    NASA Technical Reports Server (NTRS)

    Bolvin, David T.; Adler, Robert G.; Nelkin, Eric J.; Poutiainen, Jani

    2008-01-01

    It is very important to know how much rain and snow falls around the world for uses that range from crop forecasting to disaster response, drought monitoring to flood forecasting, and weather analysis to climate research. Precipitation is usually measured with rain gauges, but rain gauges don t exist in areas that are sparsely populated, which tends to be a good portion of the globe. To overcome this, meteorologists use satellite data to estimate global precipitation. However, it is difficult to estimate rain and especially snow in cold climates using most current satellites. The satellite sensors are often "confused" by a snowy or frozen surface and therefore cannot distinguish precipitation. One commonly used satellite-based precipitation data set, the Global Precipitation Climatology Project (GPCP) data, overcomes this frozen-surface problem through the innovative use of two sources of satellite data, the Television Infrared Observation Satellite Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). Though the GPCP estimates are generally considered a very reliable source of precipitation, it has been difficult to assess the quality of these estimates in cold climates due to the lack of gauges. Recently, the Finnish Meteorological Institute (FMI) has provided a 12-year span of high-quality daily rain gauge observations, covering all of Finland, that can be used to compare with the GPCP data to determine how well the satellites estimate cold-climate precipitation. Comparison of the monthly GPCP satellite-based estimates and the FMI gauge observations shows remarkably good agreement, with the GPCP estimates being 6% lower in the amount of precipitation than the FMI observations. Furthermore, the month-to-month correlation between the GPCP and FMI is very high at 0.95 (1.0 is perfect). The daily GPCP estimates replicate the FMI daily occurrences of precipitation with a correlation of 0.55 in the summer and 0.45 in the winter. The winter result indicates the GPCP estimates have skill in "seeing" snowfall, which is the most challenging situation. Thus, the GPCP data set successfully overcomes a current limitation in satellite meteorology, namely the estimation of cold-climate precipitation. The success of the GPCP data set bodes well for future missions, whose instrumentation is specifically designed to give even more information for addressing cold-climate precipitation.

  9. Effects of mild wintering conditions on body mass and corticosterone levels in a temperate reptile, the aspic viper (Vipera aspis).

    PubMed

    Brischoux, François; Dupoué, Andréaz; Lourdais, Olivier; Angelier, Frédéric

    2016-02-01

    Temperate ectotherms are expected to benefit from climate change (e.g., increased activity time), but the impacts of climate warming during the winter have mostly been overlooked. Milder winters are expected to decrease body condition upon emergence, and thus to affect crucial life-history traits, such as survival and reproduction. Mild winter temperature could also trigger a state of chronic physiological stress due to inadequate thermal conditions that preclude both dormancy and activity. We tested these hypotheses on a typical temperate ectothermic vertebrate, the aspic viper (Vipera aspis). We simulated different wintering conditions for three groups of aspic vipers (cold: ~6 °C, mild: ~14 °C and no wintering: ~24 °C) during a one month long period. We found that mild wintering conditions induced a marked decrease in body condition, and provoked an alteration of some hormonal mechanisms involved in emergence. Such effects are likely to bear ultimate consequences on reproduction, and thus population persistence. We emphasize that future studies should incorporate the critical, albeit neglected, winter season when assessing the potential impacts of global changes on ectotherms. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The role of Xylella fastidiosa cold shock proteins in Pierce’s disease of grapes

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease of grapevine, caused by the bacterial pathogen Xylella fastidiosa (Xf) is limited to warmer climates, and plant infection can be eliminated by cold winter conditions. Milder winters can increase the likelihood of pathogen persistence from one growing season to the next. Cold adaptat...

  11. Can Winter-Active Bumblebees Survive the Cold? Assessing the Cold Tolerance of Bombus terrestris audax and the Effects of Pollen Feeding

    PubMed Central

    Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  12. Impact of northern Eurasian snow cover in autumn on the warm Arctic-cold Eurasia pattern during the following January and its linkage to stationary planetary waves

    NASA Astrophysics Data System (ADS)

    Xu, Xinping; He, Shengping; Li, Fei; Wang, Huijun

    2018-03-01

    The connection between Eurasian snow cover (SC) in autumn and Eurasian winter mean surface air temperature (SAT) has been identified by many studies. However, some recent observations indicate that early and late winter climate sometimes shows an out-of-phase relationship, suggesting that the winter mean situation might obscure the important relationships that are relevant for scientific research and applications. This study investigates the relationship between October northern Eurasian SC (NESC; 58°-68°N, 30°-90°E) and Eurasian SAT during the winter months and finds a significant relationship only exists in January. Generally, following reduced October NESC, the East Asian trough and Ural high are intensified in January, and anomalous northeasterly winds prevail in mid-latitudes, causing cold anomalies over Eurasia. Meanwhile, anomalous southwesterly winds along the northern fringe of the Ural high favor warm anomalies in the Arctic. The dynamical mechanism for the connection between NESC in October and the warm Arctic-cold Eurasia (WACE) anomaly in January is further investigated from the perspective of quasi-stationary planetary wave activity. It is found that planetary waves with zonal wavenumber-1 (ZWN1) play a dominant role in this process. Specifically, the ZWN1 pattern of planetary-scale waves concurrent with October NESC anomaly extends from the surface to the upper-stratosphere. It persists in the stratosphere through November-December and propagates downward to the surface by the following January, making the connection between October NESC and January climate possible. Additionally, the influence of October NESC on the January WACE pattern has intensified since the early-2000s.

  13. Defining Winter and Identifying Synoptic Air Mass Change in the Northeast and Northern Plains U.S. since 1950

    NASA Astrophysics Data System (ADS)

    Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.

    2017-12-01

    Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results demonstrate that Northeast winters have air mass conditions that have become warmer and drier in recent decades. Additionally, Northern Plains winters have air mass setups that have become warmer and more moist since the mid 1970s.

  14. Belaya smert: the white death.

    PubMed

    Rodway, George W

    2012-09-01

    In the late autumn of 1939, shortly after Second World War had commenced, the Soviet Union invaded Finland. This act of military aggression, henceforth known to history as the Winter War, was ostensibly carried out to secure a buffer state and better protect major urban areas such as St. Petersburg (then known as Leningrad). The Red Army's attack through the forests of northern Finland was a poorly calculated operation-in the little more than 3 months that the conflict lasted, the Soviets suffered extensive losses. The hit-and-run tactics of the small, winter-savvy Finnish Army resulted in a not significant number of Red Army casualties. But from the Soviet perspective, the Finnish soldiers were merely an annoyance compared with the real enemy--the environment. Cold injury reached epidemic proportions in the Red Army during this short conflict, apparently caused in large part by ignorance of environmental realities by the Soviet high command. Paradoxically, the Soviets arguably possessed the most extensive and sophisticated body of knowledge about cold injury prevention and treatment on earth by the late 1930s. There were significant lessons learned by the Soviets during the Winter War, however. When Germany invaded the Soviet Union in 1941, the Red Army very successfully applied these lessons during 4 years of vicious winter battles on the Eastern Front. Copyright © 2012 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  15. A montane Mediterranean climate supports year-round photosynthesis and high forest biomass.

    PubMed

    Kelly, Anne E; Goulden, Michael L

    2016-04-01

    The mid-elevation forest of California's Sierra Nevada poses a bioclimatic paradox. Mid-elevation trees experience a montane Mediterranean climate, with near-freezing winter days and rain-free summers. The asynchrony between warmth and water input suggests low primary production, limited by photosynthetic dormancy in winter cold, and again in summer and early autumn with drought, yet this forest is characterized by tall trees and high biomass. We used eddy covariance in a mid-elevation Sierra stand to understand how winter cold and summer drought limit canopy photosynthesis and production. The trees exhibited canopy photosynthesis year-round. Trees avoided winter dormancy, and daytime CO2uptake continued despite a deep snowpack and near-freezing temperatures. Photosynthesis on sunny days continued at half of maximum rates when air temperature was 0 °C. Likewise, the vegetation avoided summer drought dormancy, and high rates of daytime CO2uptake and transpiration continued despite a 5-month period with only negligible water input. We attribute this drought avoidance to deep rooting and availability of deep soil water. Year-round photosynthesis helps explain the large biomass observed in the Sierra Nevada, and implies adaptive strategies that may contribute to the resiliency or vulnerability of Sierran vegetation to climate change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Cold comfort at the Magh Mela: social identity processes and physical hardship.

    PubMed

    Pandey, Kavita; Stevenson, Clifford; Shankar, Shail; Hopkins, Nicholas P; Reicher, Stephen D

    2014-12-01

    Humans inhabit environments that are both social and physical, and in this article we investigate if and how social identity processes shape the experience and negotiation of physically demanding environmental conditions. Specifically, we consider how severe cold can be interpreted and experienced in relation to group members' social identity. Our data comprise ethnographic observation and semi-structured interviews with pilgrims attending a month-long winter Hindu religious festival that is characterized by near-freezing conditions. The analysis explores (1) how pilgrims appraised the cold and how these appraisals were shaped by their identity as pilgrims; (2) how shared identity with other pilgrims led to forms of mutual support that made it easier to cope with the cold. Our findings therefore extend theorizing on social identity processes to highlight their relevance to physical as well as social conditions. © 2013 The British Psychological Society.

  17. Analysis on energy-saving path of rural buildings in hot summer and cold winter zone

    NASA Astrophysics Data System (ADS)

    Huang, Mingqiang; Li, Jinheng

    2018-02-01

    Since the reform and opening policy, the construction of rural area in China has become more and more important. The idea of establishing green villages needs to be accepted and recognized by the public. The hot summer and cold winter zone combines two contradictory weather conditions that is cold winter and hot summer. So the living conditions are limited. In response to this climate, residents extensively use electric heaters or air conditioning to adjust the indoor temperature, resulting in energy waste and environmental pollution. In order to improve the living conditions of residents, rural area energy conservation has been put on the agenda. Based on the present situation and energy consumption analysis of the rural buildings in the hot summer and cold winter zone, this article puts forward several energy saving paths from government, construction technology and so on

  18. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes

    PubMed Central

    Lehmann, Jascha; Coumou, Dim

    2015-01-01

    Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. PMID:26657163

  19. Echinacea purpurea and Allium sativum as immunostimulants in fish culture using Nile tilapia (Oreochromis niloticus).

    PubMed

    Aly, S M; Mohamed, M F

    2010-10-01

    The study was conducted to evaluate the efficiency of echinacea (E) and garlic (G) supplemented diets as immunostimulant for tilapia (Oreochromis niloticus). Seven treatments were designed including a control (C). Fish were fed on 35% protein diet at a rate of 3% body weight per day. Echinacea (1.0 ppt) and garlic (3%) were incorporated in the feed, which was administered for periods of 1, 2 and 3 months (summer season), followed by basal diet for 4 more months (winter season). Neutrophil adherence and haematocrit values increased in both supplemented groups with prolonging period of application. The neutrophils adherence was significantly increased in all treatments except group administered echinacea for 1 month. The lymphocytic counts were significantly (p < 0.004) elevated that resulted in a significant increase in the total leucocytic count in groups administered echinacea for 1 and 2 months when compared with the control and/or other treatments. The gain in the body weight and specific growth rate was significantly increased in all supplemented groups (p < 0.004) during summer, but remained without any significant increase after winter. The survival rate was significantly high (>85%) in all the supplemented groups. The percentage of protection, after challenge infection using pathogenic Aeromonas hydrophila was the highest in groups supplemented with echinacea and garlic for 3 months after summer and winter seasons. It could be concluded that echinacea and garlic improve the gain in body weight, survival rate and resistance against challenge infection. Both compounds showed extended effects after withdrawal and improved resistance to cold stress during the winter season. However, a full commercial cost benefit analysis is necessary before recommending their application in aquaculture. © 2010 Blackwell Verlag GmbH.

  20. Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates

    PubMed Central

    Tamerius, James D.; Shaman, Jeffrey; Alonso, Wladmir J.; Bloom-Feshbach, Kimberly; Uejio, Christopher K.; Comrie, Andrew; Viboud, Cécile

    2013-01-01

    Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: “cold-dry” and “humid-rainy”. For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11–12 g/kg and 18–21°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates. PMID:23505366

  1. Seasonal changes of DNA fragmentation and quality of raw and cold-stored stallion spermatozoa.

    PubMed

    Wach-Gygax, L; Burger, D; Malama, E; Bollwein, H; Fleisch, A; Jeannerat, E; Thomas, S; Schuler, G; Janett, F

    2017-09-01

    In this study annual fluctuations of DNA fragmentation and quality of cold-stored equine sperm were evaluated. Ejaculates were collected weekly during one year from 15 stallions. Ejaculate volume, sperm concentration and total sperm count were determined and semen was then extended and cold-stored for 48 h. Sperm motility was evaluated by CASA before and after 24 as well as 48 h of cold storage. In addition, the percentages of sperm with intact plasma membrane and acrosome (PMAI %) and with low intracellular Ca 2+ level were determined in cold-stored semen (24 h, 48 h). SCSA™ was performed to assess mean DFI, SD of DFI and % DFI in raw frozen-thawed as well as in extended sperm after 24 and 48 h of storage. The month of semen collection affected (P < 0.05) all parameters evaluated in raw semen and all criteria except progressive motility as well as rapid cells in semen stored for 24 and 48 h, respectively. Ejaculate volume was higher and sperm concentration lower in summer compared to winter and motility lower in July than in any other month of the year (P < 0.05). In semen processed in April and stored for 24 h the percentage of rapid cells was improved compared to January and after 48 h of storage progressive motility (%) was higher in January and October than in July (P < 0.05). After 24 h of cold storage PMAI % was higher in October than in January and after 48 h values were higher in September compared to January and February as well as from April to July (P < 0.05). Regarding sperm with low intracellular Ca +2 level (%) after storage for 24 and 48 h, higher values were measured in winter and in October compared to April, June and July (P < 0.01). Seasonal changes in DNA fragmentation were most evident with respect to mean DFI. In raw frozen-thawed semen mean DFI was lower from August to November than in June and July (P < 0.001). Values were lower during winter compared to spring and early summer (P < 0.05) and lower in December than from April to September (P < 0.001). After 24 h of cold storage mean DFI was lower in September and October when compared to January, February, May, July and November (P < 0.05) and after 48 h storage mean DFI was reduced in spring and autumn compared to February, June and July (P < 0.05). In conclusion, a seasonal effect was evident on semen characteristics of raw and cold-stored sperm. Semen quality was impaired in midsummer when low sperm motility and viability were combined with an elevated DNA fragmentation and Ca 2+ level of sperm. Copyright © 2017. Published by Elsevier Inc.

  2. Comparison of subjective symptoms and cold prevention measures in winter between traffic control workers and construction workers in Japan.

    PubMed

    Inaba, Ryoichi; Kurokawa, Junichi; Mirbod, Seyed Mohammad

    2009-07-01

    To help making comfortable workplaces and to prevent health disorders induced by the exposure to moderate cold in two different groups of out-door workers, we conducted a survey to compare subjective symptoms and cold prevention measures in winter between traffic control workers and construction workers. The subjects of this study were 98 male traffic control workers and 149 male workers engaged in building construction. Work loads of traffic control workers and construction workers were estimated at RMR1-2 and RMR2-4, respectively. All subjects were asked to complete a self-administered questionnaire covering age, occupational career, working figure, present illness, past history of diseases, individual preventive measures to the cold, subjective symptoms in the winter (43 items) and subjective symptoms occurred during daytime working in the winter (6 items). In two parts of the construction workplaces (the place where a morning assembly was held and on the 7th floor of the construction site) dry bulb, wet bulb and globe temperatures were measured in January. Windchill Index (kcal/cm,(2) x h) was calculated by the measured dry bulb temperature and wind velocity. Mean values of dry bulb temperature between 9:00 and 16:30 in the place where a morning assembly was held for three days were between 4.8 +/- 1.2 degrees C at 9:00 am and 9.3 +/- 1.1 degrees C at noon. Mean values of Windchill Index in the place where a morning assembly was held were between 490.8+/-23.9 kcal/cm(2) x h at 9:30 am and 608.2+/-47.3 kcal/cm(2) x h at 2:30 pm. Occupational career, monthly working days, daily working hours, one way commuting hours, and daily smoking numbers of the traffic control workers were significantly shorter than the construction workers (p<0.01). There were no significant differences in the prevalence of chillness in the arms and legs between the traffic control workers (5.1%) and the construction workers (0.7%). Prevalence of wearing a warm underwear, body warmer, warm trousers, underpants, warm socks, shoe warmer and muffler in the traffic control workers were significantly higher than the construction workers. The subjective symptoms in winter complained most frequently were shoulder stiffness (51.0%), finger cold sensation (50.0%) and neck stiffness (48.0%) in the traffic control workers, and were easy to get fatigued (49.0%), lumbago (48.3%) and finger cold sensation (47.7%) in the construction workers. On the basis of the results obtained, it is clearly shown that the two groups are at the risk of disorders due to their working environment. Therefore, these workers are needed to undergo occupational health programs for prevention of cold exposure disorders. Applications of preventive countermeasures for both groups are discussed.

  3. The effects of climate change on heating energy consumption of office buildings in different climate zones in China

    NASA Astrophysics Data System (ADS)

    Meng, Fanchao; Li, Mingcai; Cao, Jingfu; Li, Ji; Xiong, Mingming; Feng, Xiaomei; Ren, Guoyu

    2017-06-01

    Climate plays an important role in heating energy consumption owing to the direct relationship between space heating and changes in meteorological conditions. To quantify the impact, the Transient System Simulation Program software was used to simulate the heating loads of office buildings in Harbin, Tianjin, and Shanghai, representing three major climate zones (i.e., severe cold, cold, and hot summer and cold winter climate zones) in China during 1961-2010. Stepwise multiple linear regression was performed to determine the key climatic parameters influencing heating energy consumption. The results showed that dry bulb temperature (DBT) is the dominant climatic parameter affecting building heating loads in all three climate zones across China during the heating period at daily, monthly, and yearly scales (R 2 ≥ 0.86). With the continuous warming climate in winter over the past 50 years, heating loads decreased by 14.2, 7.2, and 7.1 W/m2 in Harbin, Tianjin, and Shanghai, respectively, indicating that the decreasing rate is more apparent in severe cold climate zone. When the DBT increases by 1 °C, the heating loads decrease by 253.1 W/m2 in Harbin, 177.2 W/m2 in Tianjin, and 126.4 W/m2 in Shanghai. These results suggest that the heating energy consumption can be well predicted by the regression models at different temporal scales in different climate conditions owing to the high determination coefficients. In addition, a greater decrease in heating energy consumption in northern severe cold and cold climate zones may efficiently promote the energy saving in these areas with high energy consumption for heating. Particularly, the likely future increase in temperatures should be considered in improving building energy efficiency.

  4. [Incidence of proximal femur fractures in relation to seasons of the year and weather].

    PubMed

    Burget, F; Pleva, L; Kudrna, K; Kudrnová, Z

    2012-01-01

    The opinion that proximal femur fractures occur mainly in the winter season and are related to slippery surfaces prevails in both the lay and medical communities. The elucidation of this relationship would lead to a better understanding of the aetiology of these fractures and may help to prevent them in the elderly population. In a retrospective study conducted at two departments, the occurrence of proximal femur fractures in patients 60+ years old in relation to weather conditions (air temperature and its humidity, atmospheric pressure, rain and mist) between January 1, 2001 and December 31, 2005 was investigated. Patients with high-energy or pathological fractures were excluded. The results were evaluated by Statistika software. A total of 1720 patients were studied, of whom 1313 were women and 407 were men. The numbers of fractures did not differ significantly among either the seasons or months of the year. No correlation was found between the number of fractures and each of the weather characteristics (air temperature and its humidity, atmospheric pressure, wind speed and visibility). It is widely believed that hip fractures are connected with winter months and temperatures below zero. This is supported by several facts related to winter characteristics, such as slippery icy pavements, clumsiness due to warm bulky clothes, bodies affected by cold and thus predisposed to a fall and poorer visibility on shorter winter days. The effect of seasonal variation on hip fracture incidence has been investigated in 10 studies of which only one has taken the influence of daily temperature into consideration. All studies were conduced in the countries north of 40° latitude, i.e., in climatic conditions similar to our country, with temperatures falling below zero and ice-glazed pavements in winter months. Of them, six have found no relation between proximal femur fractures and weather conditions, two have reported an increased incidence of these fractures in winter months and two in summer months. Our study did not show any significant relationship between the incidence of proximal femur fractures and weather characteristics. Seasons of the year had no effect on the number of hip fractures or the length of hospital stay due to their treatment.

  5. Winter flounder antifreeze protein genes: demonstration of a cold-inducible promoter and gene transfer to other species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, R.C.; Gourlie, B.; Price, J.

    1987-05-01

    During the late fall and winter, the winter flounder produces a family of unique antifreeze proteins (AFP) to prevent the lethal formation of ice crystals in its blood. They have been able to induce winter flounder AFP mRNA synthesis in vivo by lowering the ambient temperature of the fish from 18/sup 0/C in the summer months when AFP synthesis is at a minimum to 4/sup 0/C. Furthermore, they have demonstrated and thoroughly investigated this cold induction of AFP mRNA synthesis in vitro in isolated liver tissue and in nuclear preparations isolated from liver tissue. A drug selection vector (pRSV/sub gpt/)more » which uses RSV promoter for the expression of xanthine-guanine phosphoribosyltransferase (gpt) gene and contains an AFP gene and 1.7 kb of its 5' upstream control region has been constructed for studies of gene transfer into cells of other fish species. These studies were made using a variety of gene transfer techniques into tissue culture cell lines derived from rainbow trout, bluegill, and salmon. Drug resistant colonies from all three species have been obtained and the presence of AFP DNA has been positively identified by Southern analysis. In addition, Northern blot analysis has shown that both gpt gene and AFP gene are active in these cells since mRNA/sub gpt/ and mRNA/sub AFP/ can be detected by probing with the respective gene sequences.« less

  6. Winter wheat response to irrigation, nitrogen fertilization, and cold hazards in the Community Land Model 5

    NASA Astrophysics Data System (ADS)

    Lu, Y.

    2017-12-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.

  7. Preventing cold-related morbidity and mortality in a changing climate

    PubMed Central

    Conlon, Kathryn C; Rajkovich, Nicholas B; White-Newsome, Jalonne L; Larsen, Larissa; Neill, Marie S O

    2011-01-01

    Winter weather patterns are anticipated to become more variable with increasing average global temperatures. Research shows that excess morbidity and mortality occurs during cold weather periods. We critically reviewed evidence relating temperature variability, health outcomes, and adaptation strategies to cold weather. Health outcomes included cardiovascular-, respiratory-, cerebrovascular-, and all-cause morbidity and mortality. Individual and contextual risk factors were assessed to highlight associations between individual- and neighborhood- level characteristics that contribute to a person’s vulnerability to variability in cold weather events. Epidemiologic studies indicate that the populations most vulnerable to variations in cold winter weather are the elderly, rural and, generally, populations living in moderate winter climates. Fortunately, cold-related morbidity and mortality are preventable and strategies exist for protecting populations from these adverse health outcomes. We present a range of adaptation strategies that can be implemented at the individual, building, and neighborhood level to protect vulnerable populations from cold-related morbidity and mortality. The existing research justifies the need for increased outreach to individuals and communities for education on protective adaptations in cold weather. We propose that future climate change adaptation research couple building energy and thermal comfort models with epidemiological data to evaluate and quantify the impacts of adaptation strategies. PMID:21592693

  8. Using GRACE to constrain precipitation amount over cold mountainous basins

    NASA Astrophysics Data System (ADS)

    Behrangi, Ali; Gardner, Alex S.; Reager, John T.; Fisher, Joshua B.

    2017-01-01

    Despite the importance for hydrology and climate-change studies, current quantitative knowledge on the amount and distribution of precipitation in mountainous and high-elevation regions is limited due to instrumental and retrieval shortcomings. Here by focusing on two large endorheic basins in High Mountain Asia, we show that satellite gravimetry (Gravity Recovery and Climate Experiment (GRACE)) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance equation. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger errors. It was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, Global Precipitation Climatology Project (GPCP) showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basins. In basins of appropriate size with an absence of dense ground measurements, as is a typical case in cold mountainous regions, we find GRACE can be a viable alternative to constrain monthly and seasonal precipitation estimates from other remotely sensed precipitation products that show large bias.

  9. [Health effects of volcanic air pollution--an analysis of the national health insurance].

    PubMed

    Wakisaka, I; Yanagihashi, T; Sato, M; Tomari, T

    1989-12-01

    Using the national health insurance bills covering the one-year period from January through December 1987, the morbidity figures for respiratory diseases, conjunctivitis and dermatitis were compared among four local districts; Ushine, Kaikata, Kunugibaru and Shinjo, in the city of Tarumizu. The former two districts are 10 km south-east of Mt. Sakurajima supposedly experience higher volcanic ash exposure compared to the latter two located 10 to 15 km from this volcano. Results obtained are as follows; 1) Age-adjusted rates of patients' consultations and existing patients were apparently higher in the Ushine and Kaikata districts than in the Kunugibaru and Shinjo districts for non-infectious or infectious respiratory diseases and the common cold. For the rates of other diagnostic categories of disease, i.e., rhinitis, other respiratory diseases, conjunctivitis and dermatitis, a difference between the district was not clearly noted. These figures are suggestive of an association of volcanic air pollution with an increased number of outpatient consultations for respiratory problems. 2) Variations of monthly clinical consultations for patients with diagnoses of non-infectious or infectious respiratory diseases and the common cold showed a seasonality, being highest in winter and lowest in summer, while another seasonality, highest in summer and lowest in winter, was proved in the variation of monthly clinical consultations for patients with dermatitis. Few or no stable seasonalities were shown in the variations of monthly clinical consultations for patients with the other diseases, studied, rhinitis, other respiratory diseases and conjunctivitis. In addition, the variations in the monthly averages of sulfur dioxide concentrations showed a stable seasonality with the highest peak in winter and the lowest in summer but there was no stable seasonality in the monthly variations of total suspended particles at the place in Arimura for which air pollution data were available. These facts suggest that in the area exposed to volcanic air pollution, the seasonal variation in the number of monthly clinical consultations for respiratory problems is partly modified by the exposure levels of sulfur dioxide rather than total suspended particles, although no adjustments were made for climatologic factors. 3) A few patients diagnosed as having "pneumoconiosis" were found in the Ushine and Kaikata districts. However, it is difficult to interpret these cases without information about occupational and other risk factors for the development of pneumoconiosis.

  10. The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions.

    PubMed

    Swanson, David L; Garland, Theodore

    2009-01-01

    Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.

  11. Preventing the common cold with a vitamin C supplement: a double-blind, placebo-controlled survey.

    PubMed

    Van Straten, Michael; Josling, Peter

    2002-01-01

    One hundred sixty-eight volunteers were randomized to receive a placebo or a vitamin C supplement, two tablets daily, over a 60-day period between November and February. They used a five-point scale to assess their health and recorded any common cold infections and symptoms in a daily diary. Compared with the placebo group, the active-treatment group had significantly fewer colds (37 vs 50, P<.05), fewer days challenged virally (85 vs 178), and a significantly shorter duration of severe symptoms (1.8 vs 3.1 days, P<.03). Consequently, volunteers in the active group were less likely to get a cold and recovered faster if infected. Few side effects occurred with the active treatment, and volunteers reported greatly increased satisfaction with the study supplement compared with any previous form of vitamin C. This well-tolerated vitamin C supplement may prevent the common cold and shorten the duration of symptoms. Volunteers were generally impressed by the protection afforded them during the winter months and the general acceptability of the study medication.

  12. Climate and respiratory disease in Auckland, New Zealand.

    PubMed

    Gosai, Ashmita; Salinger, James; Dirks, Kim

    2009-12-01

    Increases in the incidence of diseases are often observed during the cold winter months, particularly in cities in temperate climates. The study aim is to describe daily, monthly and seasonal trends in respiratory hospital admissions with climate in Auckland, New Zealand. Daily hospital admissions for total respiratory infections or inflammations (RII), total bronchitis and asthma (BA), and total whooping cough and acute bronchitis (TWCAB) for various age groups and ethnicities were obtained for the Auckland Region and compared with climate parameters on daily, monthly and seasonal time scales. Seasonal and monthly relationships with minimum temperature were very strong (p<0.001) for RII over all age groups, for BA in the older age groups (14-64, 65+) and for TWCAB in the <1 year old age group. European, NZ Māori and Pacific Islanders all showed increases in admissions as temperatures decreased. Pacific Islanders were particularly susceptible to RII. There was a lag in admissions of three to seven days after a temperature event. Results show that increases in respiratory admissions are strongly linked to minimum temperatures during winter, typical of cities with temperate climates and poorly-insulated houses. There are implications for hospital bed and staffing planning in Auckland hospitals.

  13. A randomized controlled trial of chelated zinc for prevention of the common cold in Thai school children.

    PubMed

    Rerksuppaphol, Sanguansak; Rerksuppaphol, Lakkana

    2013-08-01

    The common cold is responsible for the largest proportion of school and work absenteeism and is a huge economic burden. None of the currently available interventions is clearly effective for prevention or treatment. To assess the efficacy of 15-mg chelated zinc (zinc bis-glycinate) given once a day for 3 months during the winter season to healthy school children aged 8-13 years to prevent symptoms of the common cold. In a double-blind randomized controlled trial, zinc bis-glycinate 15 mg or matching placebo once a day for 3 months was administered to healthy school children aged 8-13 years. Primary outcomes were any symptom of cold (fever, cough, rhinorrhoea) during the study period, and secondary outcomes were vomiting, diarrhoea, use of antibiotics, school absence for any reason, school absence because of a cold and duration of all symptoms. Of 50 children in each group, 42 (84%) in the zinc group and 41 (82%) in the placebo group (P = 1.00) developed at least one symptom of a cold. There was no difference in the incidence of fever, cough, rhinorrhoea, school absence and school absence related to the common cold compared with children in the placebo group. However, duration of cough [median (IQR) 1.0 (0.0-6.0) vs 6.0 (0.0-13.3) days], rhinorrhoea [median (IQR) 2.0 (0.0-7.0) vs 5.5 (1.0-15.3) days] and the frequency of having two or more symptoms of the common cold [median (IQR) 0.0 (0.0-1.0) vs 1.0 (0.0-5.3) days] were reduced significantly in the intervention group (P<0.01). Zinc bis-glycinate given in a dose of 15 mg once a day for 3 months failed to reduce the incidence of the common cold in 8 to 13-year-old school children, but decreased the number of days on which children suffered from cough, rhinorrhoea and the likelihood of having two or more symptoms of the common cold.

  14. A prospective evaluation of the contribution of ambient temperatures and transport times on infrared thermometry readings of intravenous fluids utilized in EMS patients.

    PubMed

    Joslin, Jeremy; Fisher, Andrew; Wojcik, Susan; Cooney, Derek R

    2014-01-01

    During cold weather months in much of the country, the temperatures in which prehospital care is delivered creates the potential for inadvertently cool intravenous fluids to be administered to patients during their transport and care by emergency medical services (EMS). There is some potential for patient harm from unintentional infusion of cool intravenous fluids. Prehospital providers in these cold weather environments are likely using fluids that are well below room temperature when prehospital intravenous fluid (IVF) warming techniques are not being employed. It was hypothesized that cold ambient temperatures during winter months in the study location would lead to the inadvertent infusion of cold intravenous fluids during prehospital patient care. Trained student research assistants obtained three sequential temperature measurements using an infrared thermometer in a convenience sample of intravenous fluid bags connected to patients arriving via EMS during two consecutive winter seasons (2011 to 2013) at our receiving hospital in Syracuse, New York. Intravenous fluids contained in anything other than a standard polyvinyl chloride bag were not measured and were not included in the study. Outdoor temperature was collected by referencing National Weather Service online data at the time of arrival. Official transport times from the scene to the emergency department (ED) and other demographic data was collected from the EMS provider or their patient care record at the time of EMS interaction. Twenty-three intravenous fluid bag temperatures were collected and analyzed. Outdoor temperature was significantly related to the temperature of the intravenous fluid being administered, b = 0.69, t(21) = 4.3, p < 0.001. Transport time did not predict the measured intravenous fluid temperatures, b = 0.12, t(20) = 0.55, p < 0.6. Use of unwarmed intravenous fluid in the prehospital environment during times of cold ambient temperatures can lead to the infusion of cool intravenous fluid and may result in harm to patients. Short transport times do not limit this risk. Emergency departments should not rely on EMS agencies' use of intravenous fluid warming techniques and should consider replacing EMS intravenous fluids upon ED arrival to ensure patient safety.

  15. Relationship between seasonal cold acclimatization and mtDNA haplogroup in Japanese

    PubMed Central

    2012-01-01

    Background The purpose of this study was to elucidate the interaction between mtDNA haplogroup and seasonal variation that contributes to cold adaptation. Methods There were 15 subjects (seven haplotype D subjects and eight haplotype non-D subjects). In summer and winter, the subjects were placed in an environment where the ambient temperature dropped from 27 °C to 10 °C in 30 minutes. After that, they were exposed to cold for 60 minutes. Results In summer, the decrease in rectal temperature and increase in oxygen consumption was smaller and cold tolerance was higher in the haplotype non-D group than in the haplotype D group. In winter, no significant differences were seen in rectal temperature or oxygen consumption, but the respiratory exchange ratio decreased in the haplotype D group. Conclusions The results of the present study suggest that haplogroup D subjects are a group that changes energy metabolism more, and there appears to be a relationship between differences in cold adaptability and mtDNA polymorphism within the population. Moreover, group differences in cold adaptability seen in summer may decrease in winter due to supplementation by seasonal cold acclimatization. PMID:22929588

  16. Documentary evidence of climate variability during cold seasons in Lesotho, southern Africa, 1833-1900

    NASA Astrophysics Data System (ADS)

    Grab, Stefan W.; Nash, David J.

    2010-03-01

    This study presents the first 19th century cold season climate chronology for the Kingdom of Lesotho in southern Africa. The chronology is constructed using a variety of documentary sources including letters, diaries, reports, monographs and newspaper articles obtained from southern African and British archives. Information relating to cold season weather phenomena during the austral autumn, winter and early spring months were recorded verbatim. Each of the cold seasons from 1833 to 1900 was then classified as “very severe”, “severe” or “normal/mild”, with a confidence rating ranging from low (1) to high (3) awarded against each annual classification. The accuracy of the document-derived chronology was verified against temperature data for Maseru for the period 1893-1900. Excellent correspondence of the document-derived chronology with the Maseru instrumental data and also with other global proxy temperature records for the 19th century is achieved. The results indicate 12 (18% of the total) very severe, 16 (23%) severe and 40 (59%) normal/mild cold seasons between 1833 and 1900. The overall trend is for more severe and snow-rich cold seasons during the early part of the study period (1833-1854) compared with the latter half of the 19th century (with the exception of the 1880s). A reduction in the duration of the frost season by over 20 days during the 19th century is also tentatively identified. Several severe to very severe cold seasons in Lesotho follow after major tropical and SH volcanic eruptions; such years are usually characterized by early frosts, and frequent and heavy snowfalls. The blocking of solar radiation and the enhanced northward displacement of polar fronts that are directly or indirectly associated with volcanic events, may account for many of the most severe Lesotho winters during the 19th century.

  17. Logistic Regression Analysis of the Response of Winter Wheat to Components of Artificial Freezing Episodes

    USDA-ARS?s Scientific Manuscript database

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  18. High cold tolerance through four seasons and all free-living stages in an ectoparasite.

    PubMed

    Härkönen, Laura; Kaitala, Arja; Kaunisto, Sirpa; Repo, Tapani

    2012-06-01

    Off-host stages of temperate parasites must cope with low temperatures. Cold tolerance is often highest in winter, as a result of diapause and cold acclimation, and low during the active summer stages. In some blood-feeding ectoparasites, offspring provisioning determines cold tolerance through all the non-feeding, off-host stages. Large size increases survival in the cold, but so far seasonal variation in within-female offspring size has not been associated with offspring cold tolerance. The deer ked (Lipoptena cervi) reproduces on cervids from autumn to spring. Newborn pupae drop off the host, facing frosts without any acclimation. We examined cold tolerance through 4 seasons and from birth to adulthood by means of short- and long-term frost exposure. We expected females to produce more tolerant offspring in winter than in spring. Large spring pupae survived prolonged frosts better than did small winter pupae. Thus more tolerant offspring were not produced when the temperature outside the host is at its lowest. Unexpectedly, the freezing points were -20 °C or below all year round. We showed that high cold tolerance is possible without acclimation regardless of life stage, which presumably correlates with other survival characteristics, such as the starvation resistance of free-living ectoparasites.

  19. Overwintering of herbaceous plants in a changing climate. Still more questions than answers.

    PubMed

    Rapacz, Marcin; Ergon, Ashild; Höglind, Mats; Jørgensen, Marit; Jurczyk, Barbara; Ostrem, Liv; Rognli, Odd Arne; Tronsmo, Anne Marte

    2014-08-01

    The increase in surface temperature of the Earth indicates a lower risk of exposure for temperate grassland and crop to extremely low temperatures. However, the risk of low winter survival rate, especially in higher latitudes may not be smaller, due to complex interactions among different environmental factors. For example, the frequency, degree and length of extreme winter warming events, leading to snowmelt during winter increased, affecting the risks of anoxia, ice encasement and freezing of plants not covered with snow. Future climate projections suggest that cold acclimation will occur later in autumn, under shorter photoperiod and lower light intensity, which may affect the energy partitioning between the elongation growth, accumulation of organic reserves and cold acclimation. Rising CO2 levels may also disturb the cold acclimation process. Predicting problems with winter pathogens is also very complex, because climate change may greatly influence the pathogen population and because the plant resistance to these pathogens is increased by cold acclimation. All these factors, often with contradictory effects on winter survival, make plant overwintering viability under future climates an open question. Close cooperation between climatologists, ecologists, plant physiologists, geneticists and plant breeders is strongly required to predict and prevent possible problems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Dual effects of the winter monsoon on haze-fog variations in eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Sheng, Lifang; Cao, Ziqi; Diao, Yina; Wang, Wencai; Zhou, Yang

    2017-06-01

    Previous studies have revealed a negative correlation between the East Asian winter monsoon and wintertime haze-fog events in China. The winter monsoon reduces haze-fog by advecting away aerosol particles and supplying clean air through cold waves. However, it is found that the frequency of haze-fog events on subseasonal time scales displays no correlation with typical winter monsoon indices. The results show that the accumulating and maintaining effects of calm weather related to the Siberian High, which is also a part of the monsoon circulation system, are equally important for the development of haze-fog events during winter. Correlation analysis indicates that subseasonal variations in haze-fog are closely related to the intensity of the Siberian High (r = 0.49). The Siberian High may increase the occurrence of haze-fog events by reducing the near surface wind speed and enhancing the stratification stability. To quantify the contribution of these diverse effects of the winter monsoon on the variations in haze-fog events, we analyzed haze-fog events during periods of cold wave activity and calm weather separately and contrasted the relative contributions of these two effects on different time scales. On the subseasonal scale, the effect of the Siberian High was 2.0 times that of cold waves; on the interannual scale, the effect of cold waves was 2.4 times that of the Siberian High. This study reveals the dual effects of the East Asian winter monsoon on wintertime haze-fog variations in eastern China and provides a more comprehensive understanding of the relationship between the monsoon and haze-fog events.

  1. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For reference, the conventional AO index is shown by the gray line. (b) a 5-day running mean WP index, (c) area-averaged Surface Air Temperature anomalies in Japan, (d) Air Temperature anomalies, (e) heat flux anomalies, and (f) Sea Surface Temperature anomalies. The boxed area on the Sea of Japan indicates the area in which the (d)-(f) indexes were calculated.

  2. Seasonal change in the capacity for supercooling by neonatal painted turtles.

    PubMed

    Packard, G C; Packard, M J; McDaniel, L L

    2001-05-01

    Hatchlings of the North American painted turtle (Chrysemys picta) typically spend their first winter of life inside the shallow, subterranean nest where they completed incubation the preceding summer. This facet of their natural history commonly causes neonates in northerly populations to be exposed in mid-winter to ice and cold, which many animals survive by remaining unfrozen and supercooled. We measured the limit of supercooling in samples of turtles taken shortly after hatching and in other samples after 2 months of acclimation (or acclimatization) to a reduced temperature in the laboratory or field. Animals initially had only a limited capacity for supercooling, but they acquired an ability to undergo deeper supercooling during the course of acclimation. The gut of most turtles was packed with particles of soil and eggshell shortly after hatching, but not after acclimation. Thus, the relatively high limit of supercooling for turtles in the days immediately after hatching may have resulted from the ingestion of soil (and associated nucleating agents) by the animals as they were freeing themselves from their eggshell, whereas the relatively low limit of supercooling attained by acclimated turtles may have resulted from their purging their gut of its contents. Parallels may, therefore, exist between the natural-history strategy expressed by hatchling painted turtles and that expressed by numerous terrestrial arthropods that withstand the cold of winter by sustaining a state of supercooling.

  3. Winter is coming: hibernation reverses the outcome of sperm competition in a fly.

    PubMed

    Giraldo-Perez, P; Herrera, P; Campbell, A; Taylor, M L; Skeats, A; Aggio, R; Wedell, N; Price, T A R

    2016-02-01

    Sperm commonly compete within females to fertilize ova, but research has focused on short-term sperm storage: sperm that are maintained in a female for only a few days or weeks before use. In nature, females of many species store sperm for months or years, often during periods of environmental stress, such as cold winters. Here we examine the outcome of sperm competition in the fruit fly Drosophila pseudoobscura, simulating the conditions in which females survive winter. We mated females to two males and then stored the female for up to 120 days at 4°C. We found that the outcome of sperm competition was consistent when sperm from two males was stored for 0, 1 or 30 days, with the last male to mate fathering most of the offspring. However, when females were stored in the cold for 120 days, the last male to mate fathered less than 5% of the offspring. Moreover, when sperm were stored long term the first male fathered almost all offspring even when he carried a meiotic driving sex chromosome that drastically reduces sperm competitive success under short-term storage conditions. This suggests that long-term sperm storage can radically alter the outcome of sperm competition. © 2015 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  4. A synoptic approach to weather conditions discloses a relationship with ambulatory blood pressure in hypertensives.

    PubMed

    Morabito, Marco; Crisci, Alfonso; Orlandini, Simone; Maracchi, Giampiero; Gensini, Gian F; Modesti, Pietro A

    2008-07-01

    Higher blood pressure (BP) values in cold than in hot months has been documented in hypertensives. These changes may potentially contribute to the observed excess winter cardiovascular mortality. However, the association with weather has always been investigated by considering the relationship with a single variable rather than considering the combination of ground weather variables characterizing a specific weather pattern (air mass (AM)). We retrospectively investigate in Florence (Italy) the relationship between BP and specific AMs in hypertensive subjects (n = 540) referred to our Hypertension Unit for 24-h ambulatory BP monitoring during the period of the year characterized by the highest weather variability (winter). Five different winter daily AMs were classified according to the combination of ground weather data (air temperature, cloud cover, relative humidity, atmospheric pressure, wind speed, and direction). Multiple variable analysis selected the AM as a significant predictor of mean 24-h BP (P < 0.01 for diastolic BP (DBP) and P < 0.05 for systolic BP (SBP)), daytime DBP (P < 0.001) and nighttime BP (P < 0.01 for both SBP and DBP), with higher BP values observed in cyclonic (unstable, cloudy, and mild weather) than in anticyclonic (settled, cloudless, and cold weather) days. When the association with 2-day sequences of AMs was considered, an increase in ambulatory BP followed a sudden day-to-day change of weather pattern going from anticyclonic to cyclonic days. The weather considered as a combination of different weather variables may affect BP. The forecast of a sudden change of AM could provide important information helpful for hypertensives during winter.

  5. Preparing for Hiking and Rock-Climbing At Altitude

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    2002-01-01

    Exposure to altitude with or without exercise usually results in body dehydration. Psychological and physiological preparation for exercise at altitude involves consideration of maintaining body warmth in a cool to cold environment with progressively lower oxygen content (partial pressure) as altitude increases. However, this discussion will focus on altitudes below 14,000 it where supplemental breathing oxygen is not required for sojourns of healthy people. Background information and helpful advice for those who exercise in the cold can be found in selected articles in the 2001 Winter Issue of this Newsletter: M.B. Ducharme, Get ready for outdoor winter play: prepare yourself for the cold; C. O'Brien, Think layers when dressing for exercise in the cold; B.G. Rice and R. Ellis, Let it snow, let it snow, let it snow - but be aware of winter hazards; and L.B. Mayers, Exercise - induced asthma.

  6. 21st Century Trends in the Potential for Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.

    2009-05-01

    We find robust trends in the area where Antarctic stratospheric temperatures are below the threshold for polar stratospheric cloud (PSC) formation in Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. In late winter (September-October-November), cold area trends are consistent with the respective trends in equivalent effective stratospheric chlorine (EESC), i.e. negative cold area trends in 'realistic future' simulations where EESC decreases and the ozone layer recovers. In the early winter (April through June), regardless of EESC scenario, we find an increasing cold area trend in all simulations; multiple linear regression analysis shows that this early winter cooling trend is associated with the predicted increase in greenhouse gas concentrations in the future. We compare the seasonality of the potential for Antarctic ozone depletion in two versions of the GEOS CCM and assess the impact of the above-mentioned cold area trends on polar stratospheric chemistry.

  7. Variability in winter climate and winter extremes reduces population growth of an alpine butterfly.

    PubMed

    Roland, Jens; Matter, Stephen F

    2013-01-01

    We examined the long-term, 15-year pattern of population change in a network of 21 Rocky Mountain populations of Parnassius smintheus butterflies in response to climatic variation. We found that winter values of the broadscale climate variable, the Pacific Decadal Oscillation (PDO) index, were a strong predictor of annual population growth, much more so than were endogenous biotic factors related to population density. The relationship between PDO and population growth was nonlinear. Populations declined in years with extreme winter PDO values, when there were either extremely warm or extremely cold sea surface temperatures in the eastern Pacific relative to that in the western Pacific. Results suggest that more variable winters, and more frequent extremely cold or warm winters, will result in more frequent decline of these populations, a pattern exacerbated by the trend for increasingly variable winters seen over the past century.

  8. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number of cold nights, cold days, ice days and consecutive frost days over the western part of Europe. In the opposite case of low sea ice concentration over the Barents/Kara Seas an increase of up to 8 days/winter of cold nights and days is observed over the whole Europe and an increase of up to 4 days/winter in the number of ID and CFD is observed over the same regions. The cold winters over Europe (low sea ice years) are associated with anomalous anticyclone and the downstream development of a mid-latitude trough, which in turn favours the advection of cold air from the north, providing favourable conditions for severe winters over Europe. We suggest that these results can help to improve the seasonal predictions of winter extreme events over Europe. Due to the non-linear response to high vs. low sea ice years, the skill of the predictions might depend on the sign and amplitude of the anomalies.

  9. Seasonal changes in antifreeze protein gene transcription and water content of beetle Microdera punctipennis (Coleoptera, Tenebrionidae) from Gurbantonggut desert in Central Asia.

    PubMed

    Hou, F; Ma, J; Liu, X; Wang, Y; Liu, X N; Zhang, F C

    2010-01-01

    Desert beetle Microdera punctipennis (Coleoptera: Tenebriondae) is a special species in Gurbantonggut Desert in Central Asia. To investigate the possible strategy it employs for cold survival, seasonal changes in supercooling point (SCP), body water content, haemolymph osmolality and antifreeze protein gene (Mpafp) expression were measured over 13 months. Our results show SCPs in M. punctipennis adults changed from -8.0°C in summer to -18.7°C in winter. During winter, adults endured modest water loss; total water decreased from 65.4 percent in summer to 55.9% in winter. Mpafp mRNAs level increased by 13.1 fold from summer to early winter, and haemolymph osmolality increased accordingly from 550 mOsm to 1486 mOsm. Correlation coefficient of Mpafp mRNAs level and SCP indicates that Mpafp mRNA explained 65.3 percent of the variation in SCPs. The correlation between Mpafp mRNA level and total water reflected an indirect influence of antifreeze protein on water content via reducing SCP.

  10. Seasonal warming of the Middle Atlantic Bight Cold Pool

    NASA Astrophysics Data System (ADS)

    Lentz, S. J.

    2017-02-01

    The Cold Pool is a 20-60 m thick band of cold, near-bottom water that persists from spring to fall over the midshelf and outer shelf of the Middle Atlantic Bight (MAB) and Southern Flank of Georges Bank. The Cold Pool is remnant winter water bounded above by the seasonal thermocline and offshore by warmer slope water. Historical temperature profiles are used to characterize the average annual evolution and spatial structure of the Cold Pool. The Cold Pool gradually warms from spring to summer at a rate of order 1°C month-1. The warming rate is faster in shallower water where the Cold Pool is thinner, consistent with a vertical turbulent heat flux from the thermocline to the Cold Pool. The Cold Pool warming rate also varies along the shelf; it is larger over Georges Bank and smaller in the southern MAB. The mean turbulent diffusivities at the top of the Cold Pool, estimated from the spring to summer mean heat balance, are an order of magnitude larger over Georges Bank than in the southern MAB, consistent with much stronger tidal mixing over Georges Bank than in the southern MAB. The stronger tidal mixing causes the Cold Pool to warm more rapidly over Georges Bank and the eastern New England shelf than in the New York Bight or southern MAB. Consequently, the coldest Cold Pool water is located in the New York Bight from late spring to summer.

  11. Transcriptomic Insights into Phenological Development and Cold Tolerance of Wheat Grown in the Field1[OPEN

    PubMed Central

    Li, Qiang; Byrns, Brook; Badawi, Mohamed A.; Diallo, Abdoulaye Banire; Danyluk, Jean; Sarhan, Fathey; Zou, Jitao

    2018-01-01

    Cold acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex cold responses are mostly conducted in controlled environments that only consider the responses to single environmental variables. In this study, we have comprehensively profiled global transcriptional responses in crowns of field-grown spring and winter wheat (Triticum aestivum) genotypes and their near-isogenic lines with the VRN-A1 alleles swapped. This in-depth analysis revealed multiple signaling, interactive pathways that influence cold tolerance and phenological development to optimize plant growth and development in preparation for a wide range of over-winter stresses. Investigation of genetic differences at the VRN-A1 locus revealed that a vernalization requirement maintained a higher level of cold response pathways while VRN-A1 genetically promoted floral development. Our results also demonstrated the influence of genetic background on the expression of cold and flowering pathways. The link between delayed shoot apex development and the induction of cold tolerance was reflected by the gradual up-regulation of abscisic acid-dependent and C-REPEAT-BINDING FACTOR pathways. This was accompanied by the down-regulation of key genes involved in meristem development as the autumn progressed. The chromosome location of differentially expressed genes between the winter and spring wheat genetic backgrounds showed a striking pattern of biased gene expression on chromosomes 6A and 6D, indicating a transcriptional regulation at the genome level. This finding adds to the complexity of the genetic cascades and gene interactions that determine the evolutionary patterns of both phenological development and cold tolerance traits in wheat. PMID:29259104

  12. The Red River War 1874-1875: Evidence of Operational Art and Mission Command

    DTIC Science & Technology

    2014-05-22

    general charges of cruelty and inhumanity to tie their hands . . . these Indians, the enemies of our race and our civilization, shall not again be able to...when it began to turn cold the meat was dried and stored for use during the lean winter months. From the animal the Indians would fashion clothes...nearly all the stock be destroyed. Some of the animals were given to the scouts as rewards and some were used as replacement; but, well over a

  13. Winter CO2 efflux from cold semiarid sagebrush shrublands distributed across the rain-to-snow transition zone

    NASA Astrophysics Data System (ADS)

    Fellows, A.; Flerchinger, G. N.; Lohse, K. A.; Seyfried, M. S.

    2017-12-01

    Predicting winter CO2 efflux across the rain-to-snow transition zone is challenging in the cold semiarid northern Great Basin, USA, complicated by steep environmental gradients and marked heterogeneity in ecosystem properties. We therefore examined winter CO2 efflux over 9 site-years using 4 eddy covariance towers located in the Reynolds Creek Critical Zone Observatory. The sites were sagebrush shrublands located at 1425, 1680, 2098, and 2111 m, and spanned a large part of the rain-to-snow transition zone. We focused on two objectives. First, we quantified winter CO2 efflux at the sites, and considered how these varied with elevation. Second, we used a within-site and cross-site analysis to examine the biological and physical factors that impact winter CO2 efflux. Winter conditions were identified using temperature, snow depth, and CO2 exchange measurements and included 12,922 observations. The duration of winter conditions increased from 90 to 180 days with elevation. Peak snow depth increased from < 30 to > 100 cm with elevation. Cumulative winter CO2 efflux accounted for > 10% of the total annual CO2 efflux, increased with elevation, and was a key component of net ecosystem production at some sites in some years. The importance of winter CO2 efflux was accentuated by the region's long winters and also dry summers that decreased water availability and decomposition during non-winter periods. Preliminary regressions examining air temperature, soil temperature, wind speed, snow depth, and gross carbon uptake indicated some of these factors control the rate of winter CO2 efflux and require consideration, but that additional work is needed to disentangle co-linearity and assess the importance of these factors within and between sites. These findings suggest a consideration of winter CO2 efflux is warranted in cold winter-wet semiarid ecosystems, particularly where winters are long and non-winter CO2 efflux is strongly limited by water availability.

  14. Tolerance of subzero winter cold in kudzu (Pueraria montana var. lobata) and its implications for northward migration in a warming climate

    USDA-ARS?s Scientific Manuscript database

    Kudzu (Pueraria montana var. lobata) is an important invasive species that was planted throughout southeastern North America until the mid-20th century. Winter survival is commonly assumed to control its distribution; however, its cold tolerance thresholds have not been determined. Here, we used bio...

  15. Winter Weather Emergencies

    MedlinePlus

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  16. Gene expression analysis to understand cold tolerance in citrus

    USDA-ARS?s Scientific Manuscript database

    Citrus cultivars show a wide range of tolerance to cold temperatures. Lemons and limes are known to be sensitive to cold while certain mandarins and trifoliate oranges can endure severe winters. To understand the mechanism of cold tolerance in citrus, we selected three known cold-sensitive and three...

  17. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.

    PubMed

    Vu, Henry M; Duman, John G

    2017-08-01

    Upper lethal temperatures (ULTs) of cold-adapted insect species in winter have not been previously examined. We anticipated that as the lower lethal temperatures (LLTs) decreased (by 20-30°C) with the onset of winter, the ULTs would also decrease accordingly. Consequently, given the recent increases in winter freeze-thaw cycles and warmer winters due to climate change, it became of interest to determine whether ambient temperatures during thaws were approaching ULTs during the cold seasons. However, beetle Dendroides canadensis (Coleoptera: Pyrochroidae) larvae had higher 24 and 48 h ULT 50 (the temperature at which 50% mortality occurred) in winter than in summer. The 24 and 48 h ULT 50 for D. canadensis in winter were 40.9 and 38.7°C, respectively. For D. canadensis in summer, the 24 and 48 h ULT 50 were 36.7 and 36.4°C. During the transition periods of spring and autumn, the 24 h ULT 50 was 37.3 and 38.5°C, respectively. While D. canadensis in winter had a 24 h LT 50 range between LLT and ULT of 64°C, the summer range was only 41°C. Additionally, larvae of the beetle Cucujus clavipes clavipes (Coleoptera: Cucujidae) and the cranefly Tipula trivittata (Diptera: Tipulidae) also had higher ULTs in winter than in summer. This unexpected phenomenon of increased temperature survivorship at both lower and higher temperatures in the winter compared with that in the summer has not been previously documented. With the decreased high temperature tolerance as the season progresses from winter to summer, it was observed that environmental temperatures are closest to upper lethal temperatures in spring. © 2017. Published by The Company of Biologists Ltd.

  18. The thermal comfort and its changes in the 31 provincial capital cities of mainland China in the past 30 years

    NASA Astrophysics Data System (ADS)

    Chi, Xiaoli; Li, Rui; Cubasch, Ulrich; Cao, Wenting

    2018-04-01

    The thermal comfort and its changes in the 31 provincial capital cities of mainland China in the past 30 years were comprehensively evaluated using the Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) indicators. The PET and UTCI values were highly correlated with each other and presented similar thermal comfort pattern, although their sensitivities might differ slightly. The results showed that these cities covered, respectively, 4-8 and 6-8 thermal comfort classes of the PET and UTCI scale. On the whole, the annual cumulative number of pleasant days was more than 160 days/year. In terms of seasonal variations in thermal comfort conditions, the 31 provincial capital cities in mainland China can be classified into 5 types, which are, respectively, characterized by pleasant summer and severe cold winter (type-I); pleasant spring, autumn, winter, and severe hot summer (type-II); pleasant spring and autumn, slightly pleasant summer, and cold winter (type-III); pleasant spring and autumn, hot stress summer, and slightly cold winter (type-IV); and pleasant spring, summer, autumn, and cool winter (type-V). Type-II cities are rare winter resorts, while type-I cities are natural summer resorts. Type-V cities are the year round pleasant resorts. In the past three decades, the cities in mainland China had experienced increasing pleasant duration in late winter and early spring and intensifying heat stress in summer. The reduction in annual cumulative number of cold stress days in higher latitude/altitude cities outweighed the increase in duration of heat stress in subtropical cities. These may provide some references for urban planning and administration in mainland China.

  19. Cold truths: how winter drives responses of terrestrial organisms to climate change.

    PubMed

    Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J

    2015-02-01

    Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  20. Development of a new USDA plant hardiness zone map for the United States

    Treesearch

    C. Daly; M.P. Widrlechner; M.D. Halbleib; J.I. Smith; W.P. Gibson

    2012-01-01

    In many regions of the world, the extremes of winter cold are a major determinant of the geographic distribution of perennial plant species and of their successful cultivation. In the United States, the U.S. Department of Agriculture (USDA) Plant Hardiness Zone Map (PHZM) is the primary reference for defining geospatial patterns of extreme winter cold for the...

  1. Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the open field during winter in Qingdao.

    USDA-ARS?s Scientific Manuscript database

    As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...

  2. Impact of cold climates on vehicle emissions: the cold start air toxics pulse : final report.

    DOT National Transportation Integrated Search

    2016-09-21

    This project measured cold start emissions from four vehicles in winter using fast response instrumentation to accurately measure the : time variation of the cold start emission pulse. Seventeen successful tests were conducted over a temperature rang...

  3. Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes

    PubMed Central

    Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F.

    2015-01-01

    The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h–1 to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as –6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as –14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. PMID:25788733

  4. Miocene vegetation shift and climate change: Evidence from the Siwalik of Nepal

    NASA Astrophysics Data System (ADS)

    Srivastava, Gaurav; Paudayal, Khum N.; Utescher, Torsten; Mehrotra, R. C.

    2018-02-01

    We reconstruct climate and vegetation applying the Coexistence Approach (CA) methodology on two palaeofloras recovered from the Lower (middle Miocene; 13-11 Ma) and Middle Siwalik (late Miocene; 9.5-6.8 Ma) sediments of Surai Khola section, Nepal. The reconstructed mean annual temperature (MAT) and cold month mean temperature (CMT) show an increasing trend, while warm month mean temperature (WMT) remains nearly the same during the period. The reconstructed precipitation data indicates that the summer monsoon precipitation was nearly the same during the middle and late Miocene, while the winter season precipitation significantly decreased in the late Miocene. The overall precipitation infers increased rainfall seasonality during the late Miocene. The vegetation during the middle Miocene was dominated by wet evergreen taxa, whereas deciduous ones increased significantly during the late Miocene. The reconstructed climate data indicates that high temperature and significantly low precipitation during the winter season (dry season) in the late Miocene might have enhanced forest fire which favoured the expansion of C4 plants over C3 plants during the period. This idea gets further support not only from a recent forest fire in northern India that was caused by the weakening of winter precipitation, but also from the burnt wood recovered from the late Miocene Siwalik sediments of northern India.

  5. Climate change and the demographic demise of a hoarding bird living on the edge.

    PubMed

    Waite, Thomas A; Strickland, Dan

    2006-11-22

    Population declines along the lower-latitude edge of a species' range may be diagnostic of climate change. We report evidence that climate change has contributed to deteriorating reproductive success in a rapidly declining population of the grey jay (Perisoreus canadensis) at the southern edge of its range. This non-migratory bird of boreal and subalpine forest lives on permanent territories, where it hoards enormous amounts of food for winter and then breeds very early, under still-wintry conditions. We hypothesized that warmer autumns have increased the perishability of hoards and compromised subsequent breeding attempts. Our analysis confirmed that warm autumns, especially when followed by cold late winters, have led to delayed breeding and reduced reproductive success. Our findings uniquely show that weather months before the breeding season impact the timing and success of breeding. Warm autumns apparently represent hostile conditions for this species, because it relies on cold storage. Our study population may be especially vulnerable, because it is situated at the southern edge of the range, where the potential for hoard rot is most pronounced. This population's demise may signal a climate-driven range contraction through local extinctions along the trailing edge.

  6. Molecular characterization of three Hsp90 from Pieris and expression patterns in response to cold and thermal stress in summer and winter diapause of Pieris melete.

    PubMed

    Wu, Yue-Kun; Zou, Chao; Fu, Dao-Meng; Zhang, Wan-Na; Xiao, Hai-Jun

    2018-04-01

    Heat shock proteins (Hsps) have been linked to stresses and winter diapause in insects, but whether they are components of summer diapause is still unknown. In this study, complementary DNAs of Hsp90 from Pieris melete, Pieris rapae and Pieris canidia named PmHsp90, PrHsp90 and PcHsp90, respectively, were cloned and sequenced. The deduced amino acid sequence consisted of 718 amino acid residues with a putative molecular mass of 82.6, 82.6 and 82.7 kDa, respectively. The amino acid sequences contained all of the five conserved signature motifs in the Hsp90 family and a bHLH protein folding activity region. The differential expression pattern of PmHsp90 in response to summer diapause and winter diapause, which are related to heat/cold stress, was investigated. Cold stress induced Hsp90 up-regulation in summer and winter diapause pupae, but not in non-diapause individuals. Heat shock up-regulated PmHsp90 gradually with an increase in temperature in summer diapause, and PmHsp90 was rapidly up-regulated in winter diapause. After 30 min heat shock at 39°C, substantial up-regulation of PmHsp90 transcript levels were observed both in summer and winter diapause. However, in non-diapause a relatively stable expression was found under different durations of 39°C heat shock. Compared to the optimal treatment of 18°C for diapause development, a high temperature acclimation of 31°C induced PmHsp90 up-regulation in summer diapause, whereas a low temperature acclimation of 4°C induced up-regulation in winter diapause. The current results indicate that Hsp90 may play an important role in response to heat/cold stress both in summer and winter diapause. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  7. Predictability and prediction of the total number of winter extremely cold days over China

    NASA Astrophysics Data System (ADS)

    Luo, Xiao; Wang, Bin

    2018-03-01

    The current dynamical climate models have limited skills in predicting winter temperature in China. The present study uses physics-based empirical models (PEMs) to explore the sources and limits of the seasonal predictability in the total number of extremely cold days (NECD) over China. A combined cluster-rotated EOF analysis reveals two sub-regions of homogeneous variability among hundreds of stations, namely the Northeast China (NE) and Main China (MC). This reduces the large-number of predictands to only two indices, the NCED-NE and NCED-MC, which facilitates detection of the common sources of predictability for all stations. The circulation anomalies associated with the NECD-NE exhibit a zonally symmetric Arctic Oscillation-like pattern, whereas those associated with the NECD-MC feature a North-South dipolar pattern over Asia. The predictability of the NECD originates from SST and snow cover anomalies in the preceding September and October. However, the two regions have different SST predictors: The NE predictor is in the western Eurasian Arctic while the MC predictor is over the tropical-North Pacific. The October snow cover predictors also differ: The NE predictor primarily resides in the central Eurasia while the MC predictor is over the western and eastern Eurasia. The PEM prediction results suggest that about 60% (55%) of the total variance of winter NECD over the NE (Main) China are likely predictable 1 month in advance. The NECD at each station can also be predicted by using the four predictors that were detected for the two indices. The cross-validated temporal correlation skills exceed 0.70 at most stations. The physical mechanisms by which the autumn Arctic sea ice, snow cover, and tropical-North Pacific SST anomalies affect winter NECD over the NE and Main China are discussed.

  8. Evaluation of cold mixes for winter pothole repair.

    DOT National Transportation Integrated Search

    1995-01-01

    This study was conducted to evaluate the performance of 13 proprietary cold-mix patching materials, 4 of which are currently approved under a Virginia Department of Transportation (VDOT) Special Provision for High Quality Cold Patching Materials. Col...

  9. Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness

    USGS Publications Warehouse

    Bansal, Sheel; Harrington, Constance A; St. Clair, John Bradley

    2016-01-01

    Summary: 1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range. 3. Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms. 4. Our findings highlight the necessity to look beyond bivariate trait–climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species.

  10. From Sap to Syrup

    ERIC Educational Resources Information Center

    Bjork, Janna

    2005-01-01

    Warm days, cold nights, melting snow-signs winter is waning and spring is nearing. Though winter may just be getting started in some areas, it's always fun to appreciate the good things about winter, including the special time at the end of winter in New England known as "sugaring time." The sap starts flowing in the sugar maples, and…

  11. Ice conditions on the Chesapeake Bay as observed from LANDSAT during the winters of 1977, 1978 and 1979

    NASA Technical Reports Server (NTRS)

    Foster, J. L.

    1980-01-01

    The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.

  12. 40 CFR 86.213-11 - Fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...

  13. 40 CFR 86.213-11 - Fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...

  14. 40 CFR 86.213-11 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...

  15. 40 CFR 86.213-11 - Fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...

  16. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees

    Treesearch

    Glenn T. Howe; Sally N. Aitken; David B. Neale; Kathleen D. Jermstad; Nicholas C. Wheeler; Tony H.H Chen

    2003-01-01

    Adaptation to winter cold in temperate and boreal trees involves complex genetic, physiological, and developmental processes. Genecological studies demonstrate the existence of steep genetic clines for cold adaptation traits in relation to environmental (mostly temperature related) gradients. Population differentiation is generally stronger for cold adaptation traits...

  17. Cold-Weather Sports

    MedlinePlus

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  18. More Frequent Weak Stratospheric Polar Vortex States Linked to Cold Extremes

    NASA Astrophysics Data System (ADS)

    Kretschmer, M.; Coumou, D.; Agel, L. A.; Barlow, M. A.; Tziperman, E.; Cohen, J. L.

    2016-12-01

    The extra-tropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, referred to as the stratospheric polar vortex (SPV) which confines cold temperatures at high latitudes. Previous studies showed that a weak SPV can lead to cold-air outbreaks in the mid-latitudes but the exact relationships and mechanisms are still unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in Central and eastern Asia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid to late winter (January and February) has increased significantly accompanied by subsequent cold surface temperatures in the mid-latitudes. Furthermore, we show that stratospheric and El Niño/Southern Oscillation (ENSO) variability can explain most of the observed spatially heterogenic winter temperature trends in the era of Arctic amplification but the contribution of ENSO is less important. We show that the weakening of the SPV was related to a strengthening Siberian high and poleward heat flux. These findings support the hypothesis that a warming Arctic has weakened the SPV and thereby increased the frequency of cold-air outbreaks.

  19. Cold-induced bradycardia in man during sleep in Arctic winter nights

    NASA Astrophysics Data System (ADS)

    Buguet, A. G. C.

    1987-03-01

    Two young male Caucasians volunteered for a study on the effects of cold exposure during night sleep in winter in the Arctic. The 14-day experiment was divided in three consecutive periods, baseline (2 nights), cold exposure (10 night) and recovery (2 nights). Both baseline and recovery data were obtained in neutral thermal conditions in a laboratory. The subjects slept in a sleeping bag under an unheated tent during the cold exposure. Apart from polysomnographic and body temperature recordings, electrocardiograms were taken through a telemetric system for safety purposes. Heart rates were noted at 5-min intervals and averaged hourly. In both environmental conditions, heart rate decreased within the first two hours of sleep. Comparison of the data obtained during cold exposure vs. thermal neutrality revealed lower values of heart rate in the cold, while body temperatures remained within normal range. This cold-induced bradycardia supervening during night sleep is discussed in terms of the occurrence of a vagal reflex preventing central blood pressure to rise.

  20. The Aleutian Low and Winter Climatic Conditions in the Bering Sea. Part I: Classification

    NASA Astrophysics Data System (ADS)

    Rodionov, S. N.; Overland, J. E.; Bond, N. A.

    2005-01-01

    The Aleutian low is examined as a primary determinant of surface air temperature (SAT) variability in the Bering Sea during the winter (December-January-February-March (DJFM)) months. The Classification and Regression Tree (CART) method is used to classify five types of atmospheric circulation for anomalously warm months (W1-W5) and cold months (C1-C5). For the Bering Sea, changes in the position of the Aleutian low are shown to be more important than changes in its central pressure. The first two types, W1 and C1, account for 51% of the "warm" and 37% of the "cold" months. The W1-type pattern is characterized by the anomalously deep Aleutian low shifted west and north of its mean position. In this situation, an increased cyclonic activity occurs in the western Bering Sea. The C1-type pattern represents a split Aleutian low with one center in the northwestern Pacific and the other in the Gulf of Alaska. The relative frequency of the W1 to C1 types of atmospheric circulation varies on decadal time scales, which helps to explain the predominance of fluctuations on these time scales in the weather of the Bering Sea. Previous work has noted the prominence of multidecadal variability in the North Pacific. The present study finds multidecadal variations in frequencies of the W3 and C3 patterns, both of which are characterized by increased cyclonic activity south of 51°N. In general, the CART method is found to be a suitable means for characterizing the wintertime atmospheric circulation of the North Pacific in terms of its impact on the Bering Sea. The results show that similar pressure anomaly patterns for the North Pacific as a whole can actually result in different conditions for the Bering Sea, and that similar weather conditions in the Bering Sea can arise from decidedly different large-scale pressure patterns.

  1. Winter diversity and expression of proteorhodopsin genes in a polar ocean

    PubMed Central

    Nguyen, Dan; Maranger, Roxane; Balagué, Vanessa; Coll-Lladó, Montserrat; Lovejoy, Connie; Pedrós-Alió, Carlos

    2015-01-01

    Mixotrophy is a valuable functional trait used by microbes when environmental conditions vary broadly or resources are limited. In the sunlit waters of the ocean, photoheterotrophy, a form of mixotrophy, is often mediated by proteorhodopsin (PR), a seven helices transmembrane protein binding the retinal chromophore. Altogether, they allow bacteria to capture photic energy for sensory and proton gradient formation cell functions. The seasonal occurrence and diversity of the gene coding for PR in cold oligotrophic polar oceans is not known and PR expression has not yet been reported. Here we show that PR is widely distributed among bacterial taxa, and that PR expression decreased markedly during the winter months in the Arctic Ocean. Gammaproteobacteria-like PR sequences were always dominant. However, within the second most common affiliation, there was a transition from Flavobacteria-like PR in early winter to Alphaproteobacteria-like PR in late winter. The phylogenetic shifts followed carbon dynamics, where patterns in expression were consistent with community succession, as identified by DNA community fingerprinting. Although genes for PR were always present, the trend in decreasing transcripts from January to February suggested reduced functional utility of PR during winter. Under winter darkness, sustained expression suggests that PR may continue to be useful for non-ATP forming functions, such as environmental sensing or small solute transport. The persistence of PR expression in winter among some bacterial groups may offer a competitive advantage, where its multifunctionality enhances microbial survival under harsh polar conditions. PMID:25700336

  2. Winter diversity and expression of proteorhodopsin genes in a polar ocean.

    PubMed

    Nguyen, Dan; Maranger, Roxane; Balagué, Vanessa; Coll-Lladó, Montserrat; Lovejoy, Connie; Pedrós-Alió, Carlos

    2015-08-01

    Mixotrophy is a valuable functional trait used by microbes when environmental conditions vary broadly or resources are limited. In the sunlit waters of the ocean, photoheterotrophy, a form of mixotrophy, is often mediated by proteorhodopsin (PR), a seven helices transmembrane protein binding the retinal chromophore. Altogether, they allow bacteria to capture photic energy for sensory and proton gradient formation cell functions. The seasonal occurrence and diversity of the gene coding for PR in cold oligotrophic polar oceans is not known and PR expression has not yet been reported. Here we show that PR is widely distributed among bacterial taxa, and that PR expression decreased markedly during the winter months in the Arctic Ocean. Gammaproteobacteria-like PR sequences were always dominant. However, within the second most common affiliation, there was a transition from Flavobacteria-like PR in early winter to Alphaproteobacteria-like PR in late winter. The phylogenetic shifts followed carbon dynamics, where patterns in expression were consistent with community succession, as identified by DNA community fingerprinting. Although genes for PR were always present, the trend in decreasing transcripts from January to February suggested reduced functional utility of PR during winter. Under winter darkness, sustained expression suggests that PR may continue to be useful for non-ATP forming functions, such as environmental sensing or small solute transport. The persistence of PR expression in winter among some bacterial groups may offer a competitive advantage, where its multifunctionality enhances microbial survival under harsh polar conditions.

  3. Physiological ecology of overwintering in the hatchling painted turtle: multiple-scale variation in response to environmental stress.

    PubMed

    Costanzo, Jon P; Dinkelacker, Stephen A; Iverson, John B; Lee, Richard E

    2004-01-01

    We integrated field and laboratory studies in an investigation of water balance, energy use, and mechanisms of cold-hardiness in hatchling painted turtles (Chrysemys picta) indigenous to west-central Nebraska (Chrysemys picta bellii) and northern Indiana (Chrysemys picta marginata) during the winters of 1999-2000 and 2000-2001. We examined 184 nests, 80 of which provided the hatchlings (n=580) and/or samples of soil used in laboratory analyses. Whereas winter 1999-2000 was relatively dry and mild, the following winter was wet and cold; serendipitously, the contrast illuminated a marked plasticity in physiological response to environmental stress. Physiological and cold-hardiness responses of turtles also varied between study locales, largely owing to differences in precipitation and edaphics and the lower prevailing and minimum nest temperatures (to -13.2 degrees C) encountered by Nebraska turtles. In Nebraska, winter mortality occurred within 12.5% (1999-2000) and 42.3% (2000-2001) of the sampled nests; no turtles died in the Indiana nests. Laboratory studies of the mechanisms of cold-hardiness used by hatchling C. picta showed that resistance to inoculative freezing and capacity for freeze tolerance increased as winter approached. However, the level of inoculation resistance strongly depended on the physical characteristics of nest soil, as well as its moisture content, which varied seasonally. Risk of inoculative freezing (and mortality) was greatest in midwinter when nest temperatures were lowest and soil moisture and activity of constituent organic ice nuclei were highest. Water balance in overwintering hatchlings was closely linked to dynamics of precipitation and soil moisture, whereas energy use and the size of the energy reserve available to hatchlings in spring depended on the winter thermal regime. Acute chilling resulted in hyperglycemia and hyperlactemia, which persisted throughout winter; this response may be cryoprotective. Some physiological characteristics and cold-hardiness attributes varied between years, between study sites, among nests at the same site, and among siblings sharing nests. Such variation may reflect adaptive phenotypic plasticity, maternal or paternal influence on an individual's response to environmental challenge, or a combination of these factors. Some evidence suggests that life-history traits, such as clutch size and body size, have been shaped by constraints imposed by the harsh winter environment.

  4. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra.

    PubMed

    Kosová, Klára; Prášil, Ilja Tom; Vítámvás, Pavel; Dobrev, Petre; Motyka, Václav; Floková, Kristýna; Novák, Ondřej; Turečková, Veronika; Rolčik, Jakub; Pešek, Bedřich; Trávničková, Alena; Gaudinová, Alena; Galiba, Gabor; Janda, Tibor; Vlasáková, Eva; Prášilová, Pavla; Vanková, Radomíra

    2012-04-15

    Hormonal changes accompanying the cold stress (4°C) response that are related to the level of frost tolerance (FT; measured as LT50) and the content of the most abundant dehydrin, WCS120, were compared in the leaves and crowns of the winter wheat (Triticum aestivum L.) cv. Samanta and the spring wheat cv. Sandra. The characteristic feature of the alarm phase (1 day) response was a rapid elevation of abscisic acid (ABA) and an increase of protective proteins (dehydrin WCS120). This response was faster and stronger in winter wheat, where it coincided with the downregulation of bioactive cytokinins and auxin as well as enhanced deactivation of gibberellins, indicating rapid suppression of growth. Next, the ethylene precursor aminocyclopropane carboxylic acid was quickly upregulated. After 3-7 days of cold exposure, plant adaptation to the low temperature was correlated with a decrease in ABA and elevation of growth-promoting hormones (cytokinins, auxin and gibberellins). The content of other stress hormones, i.e., salicylic acid and jasmonic acid, also began to increase. After prolonged cold exposure (21 days), a resistance phase occurred. The winter cultivar exhibited substantially enhanced FT, which was associated with a decline in bioactive cytokinins and auxin. The inability of the spring cultivar to further increase its FT was correlated with maintenance of a relatively higher cytokinin and auxin content, which was achieved during the acclimation period. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes.

    PubMed

    Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F

    2015-07-01

    The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h(-1) to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as -6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as -14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Coping with the cold: an ecological context for the abundance and distribution of rock sandpipers during winter in upper Cook Inlet, Alaska

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Gill, Robert E.; Tibbitts, T. Lee

    2013-01-01

    Shorebirds are conspicuous and abundant at high northern latitudes during spring and summer, but as seasonal conditions deteriorate, few remain during winter. To the best of our knowledge, Cook Inlet, Alaska (60.6˚ N, 151.6˚ W), is the world’s coldest site that regularly supports wintering populations of shorebirds, and it is also the most northerly nonbreeding location for shorebirds in the Pacific Basin. During the winters of 1997–2012, we conducted aerial surveys of upper Cook Inlet to document the spatial and temporal distribution and number of Rock Sandpipers (Calidris ptilocnemis) using the inlet. The average survey total was 8191 ± 6143 SD birds, and the average of each winter season’s highest single-day count was 13 603 ± 4948 SD birds. We detected only Rock Sandpipers during our surveys, essentially all of which were individuals of the nominate subspecies (C. p. ptilocnemis). Survey totals in some winters closely matched the population estimate for this subspecies, demonstrating the region’s importance as a nonbreeding resource to the subspecies. Birds were most often found at only a handful of sites in upper Cook Inlet, but shifted their distribution to more southerly locations in the inlet during periods of extreme cold. Two environmental factors allow Rock Sandpipers to inhabit Cook Inlet during winter: 1) an abundant bivalve (Macoma balthica) food source and 2) current and tidal dynamics that keep foraging substrates accessible during all but extreme periods of cold and ice accretion. C. p. ptilocnemis is a subspecies of high conservation concern for which annual winter surveys may serve as a relatively inexpensive population-monitoring tool that will also provide insight into adaptations that allow these birds to exploit high-latitude environments in winter.

  7. Frequency of extreme daily temperatures (HadEX2) over Eurasia documented in a northern Red Sea coral oxygen isotope record during the last century

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Felis, Thomas; Rimbu, Norel; Lohmann, Gerrit

    2017-04-01

    The potential of a bimonthly-resolved northern Red Sea coral δ18O record as an archive for the occurrence of extreme daily temperature phenomena over Eurasia during Northern Hemisphere winter is investigated for the 1901-1995 period using extreme indices provided by the HadEX2 dataset (e.g., frost days, ice days, cold nights and cold days). The coral δ18O record reflects a combined signal of temperature and salinity variations in the surface waters of the northern Red Sea, and has been previously shown to provide a proxy for atmospheric circulation changes over the Northern Hemisphere mid-latitudes at interannual to decadal time scales. Here we show, by applying composite analysis, that cooler/more arid (warmer/less arid) winter conditions in the northern Red Sea region, indicated by positive (negative) coral δ18O anomalies (January-February), are related to a strong (weak) Northern Hemisphere polar vortex and, as a consequence, to a decreased (increased) number of days characterized by very cold temperatures and frost over Scandinavia and Central Europe. This situation is associated with an increased (decreased) number of days characterized by very cold temperatures and frost over the Balkan region. The occurrence of these daily temperature extremes is modulated by the frequency of atmospheric blocking over the British Isles and Central Europe, and a shift in the direction of the North Atlantic storm tracks. Importantly, coral records provide a bimonthly to monthly resolution, compared to other high-resolution proxy records which have either an annual resolution (e.g., ice cores, varved sediments) or an annual resolution with a signal that is biased towards a specific season that in most cases is not winter (e.g., tree rings). We argue that bimonthly-resolved northern Red Sea coral δ18O records provide an archive of interannual to decadal variations in the occurrence of extreme daily temperature events over wintertime Eurasia prior to the start of instrumental observations.

  8. Calcium addition at the Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity and cold tolerance in native red spruce (Picea rubens).

    PubMed

    Halman, Joshua M; Schaberg, Paul G; Hawley, Gary J; Eagar, Christopher

    2008-06-01

    In fall (November 2005) and winter (February 2006), we collected current-year foliage of native red spruce (Picea rubens Sarg.) growing in a reference watershed and in a watershed treated in 1999 with wollastonite (CaSiO(3), a slow-release calcium source) to simulate preindustrial soil calcium concentrations (Ca-addition watershed) at the Hubbard Brook Experimental Forest (Thornton, NH). We analyzed nutrition, soluble sugar concentrations, ascorbate peroxidase (APX) activity and cold tolerance, to evaluate the basis of recent (2003) differences between watersheds in red spruce foliar winter injury. Foliar Ca and total sugar concentrations were significantly higher in trees in the Ca-addition watershed than in trees in the reference watershed during both fall (P=0.037 and 0.035, respectively) and winter (P=0.055 and 0.036, respectively). The Ca-addition treatment significantly increased foliar fructose and glucose concentrations in November (P=0.013 and 0.007, respectively) and foliar sucrose concentrations in winter (P=0.040). Foliar APX activity was similar in trees in both watersheds during fall (P=0.28), but higher in trees in the Ca-addition watershed during winter (P=0.063). Cold tolerance of foliage was significantly greater in trees in the Ca-addition watershed than in trees in the reference watershed (P<0.001). Our results suggest that low foliar sugar concentrations and APX activity, and reduced cold tolerance in trees in the reference watershed contributed to their high vulnerability to winter injury in 2003. Because the reference watershed reflects forest conditions in the region, the consequences of impaired physiological function caused by soil Ca depletion may have widespread implications for forest health.

  9. Could behaviour and not physiological thermal tolerance determine winter survival of aphids in cereal fields?

    PubMed

    Alford, Lucy; Andrade, Thiago Oliveira; Georges, Romain; Burel, Françoise; van Baaren, Joan

    2014-01-01

    Traits of physiological thermotolerance are commonly measured in the laboratory as predictors of the field success of ectotherms at unfavourable temperatures (e.g. during harsh winters, heatwaves, or under conditions of predicted global warming). Due to being more complicated to measure, behavioural thermoregulation is less commonly studied, although both physiology and behaviour interact to explain the survival of ectotherms. The aphids Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae are commercially important pests of temperate cereal crops. Although coexisting, these species markedly differ in winter success, with R. padi being the most abundant species during cold winters, followed by S. avenae and lastly M. dirhodum. To better understand the thermal physiology and behavioural factors contributing to differential winter success, the lethal temperature (physiological thermotolerance) and the behaviour of aphids in a declining temperature regime (behavioural thermotolerance) of these three species were investigated. Physiological thermotolerance significantly differed between the three species, with R. padi consistently the least cold tolerant and S. avenae the most cold tolerant. However, although the least cold tolerant of the study species, significantly more R. padi remained attached to the host plant at extreme sub-zero temperatures than S. avenae and M. dirhodum. Given the success of anholocyclic R. padi in harsh winters compared to its anholocyclic counterparts, this study illustrates that behavioural differences could be more important than physiological thermotolerance in explaining resistance to extreme temperatures. Furthermore it highlights that there is a danger to studying physiological thermotolerance in isolation when ascertaining risks of ectotherm invasions, the establishment potential of exotic species in glasshouses, or predicting species impacts under climate change scenarios.

  10. Link between the Barents Oscillation and recent boreal winter cooling over the Asian midlatitudes

    NASA Astrophysics Data System (ADS)

    Shu, Qi; Qiao, Fangli; Song, Zhenya; Song, Yajuan

    2018-01-01

    The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation (BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scale boreal winter cooling during 1990-2015 over the Asian midlatitudes, and that it is a part of the decadal oscillations of long-term surface air temperature (SAT) anomalies. The SAT anomalies over the Asian midlatitudes are significantly correlated with the BO in boreal winter. When the BO is in its positive phase, anomalously high sea level pressure over the Barents region, with a clockwise wind anomaly, causes cold air from the high latitudes to move over the midlatitudes of Asia, resulting in anomalous cold conditions in that region. Therefore, the recent increasing trend of the BO has contributed to recent winter cooling over the Asian midlatitudes.

  11. Recent advances in sustainable winter road operations – a book proposal.

    DOT National Transportation Integrated Search

    2017-05-05

    Investing in winter transportation operations is essential and beneficial to the public and the economy. The U.S. economy cannot afford the cost of shutting down highways, airports, etc., during winter weather. In the northern U.S. and other cold-cli...

  12. Effects of weather on habitat selection and behavior of mallards wintering in Nebraska

    USGS Publications Warehouse

    Jorde, Dennis G.; Krapu, G.L.; Crawford, R.D.; Hay, M.A.

    1984-01-01

    Sex and age ratios, habitat selection, spatial characteristics, and time budgets of Mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska were studied from mid-December to early April 1978-1980. The proportion of females and subadults in the population increased substantially from a cold to a mild winter. Radio-tagged Mallards shifted from riverine to canal roost sites during the coldest periods of the winter, seemingly because of more favorable microclimatic conditions there. Subadults ranged over larger areas during winter than did adults. Activity patterns varied with weather conditions, time of day, and habitat type. During cold periods, energetically costly activities such as aggression and courtship decreased at roost sites and the intensity of foraging activities in fields increased. Mallards were more active at riverine than canal sites during both years. High energy requirements and intense competition for scarce food appear to be primary factors limiting the northernmost distribution of Mallards in winter and causing their skewed sex and age ratios.

  13. Seedling phenology and cold hardiness: Moving targets

    Treesearch

    Diane L. Haase

    2011-01-01

    Phenology is the annual cycle of plant development as influenced by seasonal variations. Dormancy and cold hardiness are two aspects of the annual cycle. In temperate plants, the development of cold hardiness results in the ability to withstand subfreezing winter temperatures. Cold hardiness is also a reflection of overall stress resistance. In addition to describing...

  14. Winter cold of eastern continental boundaries induced by warm ocean waters.

    PubMed

    Kaspi, Yohai; Schneider, Tapio

    2011-03-31

    In winter, northeastern North America and northeastern Asia are both colder than other regions at similar latitudes. This has been attributed to the effects of stationary weather systems set by elevated terrain (orography), and to a lack of maritime influences from the prevailing westerly winds. However, the differences in extent and orography between the two continents suggest that further mechanisms are involved. Here we show that this anomalous winter cold can result in part from westward radiation of large-scale atmospheric waves--nearly stationary Rossby waves--generated by heating of the atmosphere over warm ocean waters. We demonstrate this mechanism using simulations with an idealized general circulation model, with which we show that the extent of the cold region is controlled by properties of Rossby waves, such as their group velocity and its dependence on the planetary rotation rate. Our results show that warm ocean waters contribute to the contrast in mid-latitude winter temperatures between eastern and western continental boundaries not only by warming western boundaries, but also by cooling eastern boundaries.

  15. Distribution and diurnal behavior of Steller's Eiders wintering on the Alaska Peninsula

    USGS Publications Warehouse

    Laubhan, M.K.; Metzner, K.A.

    1999-01-01

    We studied the distribution and activities of adult Steller's Eiders (Polysticta stelleri) during winter and spring on a deep-water embayment and a shallow lagoon along the Alaska Peninsula from September 1980 to May 1981. During the remigial molt, eiders were observed on Izembek Lagoon but not on Cold Bay. Following the flightless period, Izembek Lagoon continued to support 63-100% of eiders encountered during surveys. As ice cover on Izembek Lagoon increased, the number of birds decreased on Izembek Lagoon but increased on Cold Bay, suggesting that some eiders disperse to nearshore, deep-water habitats in close proximity to Izembek Lagoon during severe weather. Diurnal activity budgets indicated that the amount of time resting or engaged in aggression and alert activities was similar among locations, seasons, tidal stages, and sexes. In contrast, time spent foraging differed among seasons and locations but did not differ among tidal stages or sexes. Although time spent foraging was similar during winter and spring on Izembek Lagoon, eiders on Cold Bay foraged more during winter compared to spring. Synchronous diving was the dominant foraging strategy.

  16. COLD HARDINESS AND RANGE OF THE MYRIAPOD Angarozonium amurense (POLYZONIIDAE, DIPLOPODA, ARTHROPODA) IN PERMAFROST ENVIRONMENTS.

    PubMed

    Berman, D I; Meshcheryakova, E N; Mikhaljova, E V

    2015-01-01

    Angarozonium amurense (Gerstfeldt, 1859) is the only one out of more than a hundred diplopod species described in Siberia and the Far East that inhabits regions with solid permafrost. To evaluate the cold hardiness of A. amurense that allows this species to inhabit permafrost regions. The survival temperature thresholds and supercooling points (SCP) were measured. The temperature thresholds for adult animal survival are -8.5 C in summer and -27 C in winter. Average SCP decreases from -7.7 in summer to -16.9 in winter. Water content decreases from 55.7% in summer to 49.4% in winter. The cold hardiness of A. amurense sets the record in this class of animals. It allows it to overwinter in the upper 15 centimeters layer of soil in most biotopes of the coldest permafrost regions in North Asia.

  17. Long-range forecasts for the energy market - a case study

    NASA Astrophysics Data System (ADS)

    Hyvärinen, Otto; Mäkelä, Antti; Kämäräinen, Matti; Gregow, Hilppa

    2017-04-01

    We examined the feasibility of long-range forecasts of temperature for needs of the energy sector in Helsinki, Finland. The work was done jointly by Finnish Meteorological Institute (FMI) and Helen Ltd, the main Helsinki metropolitan area energy provider, and especially provider of district heating and cooling. Because temperatures govern the need of heating and cooling and, therefore, the energy demand, better long-range forecasts of temperature would be highly useful for Helen Ltd. Heating degree day (HDD) is a parameter that indicates the demand of energy to heat a building. We examined the forecasted monthly HDD values for Helsinki using UK Met Office seasonal forecasts with the lead time up to two months. The long-range forecasts of monthly HDD showed some skill in Helsinki in winter 2015-2016, especially if the very cold January is excluded.

  18. Factors affecting outdoor exposure in winter: population-based study

    NASA Astrophysics Data System (ADS)

    Mäkinen, Tiina M.; Raatikka, Veli-Pekka; Rytkönen, Mika; Jokelainen, Jari; Rintamäki, Hannu; Ruuhela, Reija; Näyhä, Simo; Hassi, Juhani

    2006-09-01

    The extent of outdoor exposure during winter and factors affecting it were examined in a cross-sectional population study in Finland. Men and women aged 25-74 years from the National FINRISK 2002 sub-study ( n=6,591) were queried about their average weekly occupational, leisure-time and total cold exposure during the past winter. The effects of gender, age, area of residence, occupation, ambient temperature, self-rated health, physical activity and education on cold exposure were analysed. The self-reported median total cold exposure time was 7 h/week (8 h men, 6 h women),<1 h/week (2 h men, 0 h women) at work, 4 h/week (5 h men, 4 h women) during leisure time and 1 h/week (1 h men, 1.5 h women) while commuting to work. Factors associated with increased occupational cold exposure among men were: being employed in agriculture, forestry and industry/mining/construction or related occupations, being less educated and being aged 55-64 years. Factors associated with increased leisure-time cold exposure among men were: employment in industry/mining/construction or related occupations, being a pensioner or unemployed, reporting at least average health, being physically active and having college or vocational education. Among women, being a housewife, pensioner or unemployed and engaged in physical activity increased leisure-time cold exposure, and young women were more exposed than older ones. Self-rated health was positively associated with leisure time cold exposure in men and only to a minor extent in women. In conclusion, the subjects reported spending 4% of their total time under cold exposure, most of it (71%) during leisure time. Both occupational and leisure-time cold exposure is greater among men than women.

  19. The overwintering physiology of the emerald ash borer, Agrilus planipennis fairmaire (coleoptera: buprestidae).

    PubMed

    Crosthwaite, Jill C; Sobek, Stephanie; Lyons, D Barry; Bernards, Mark A; Sinclair, Brent J

    2011-01-01

    Ability to survive cold is an important factor in determining northern range limits of insects. The emerald ash borer (Agrilus planipennis) is an invasive beetle introduced from Asia that is causing extensive damage to ash trees in North America, but little is known about its cold tolerance. Herein, the cold tolerance strategy and mechanisms involved in the cold tolerance of the emerald ash borer were investigated, and seasonal changes in these mechanisms monitored. The majority of emerald ash borers survive winter as freeze-intolerant prepupae. In winter, A. planipennis prepupae have low supercooling points (approximately -30°C), which they achieve by accumulating high concentrations of glycerol (approximately 4M) in their body fluids and by the synthesis of antifreeze agents. Cuticular waxes reduce inoculation from external ice. This is the first comprehensive study of seasonal changes in cold tolerance in a buprestid beetle. 2010 Elsevier Ltd. All rights reserved.

  20. Temperature Studies with the Asian Citrus Psyllid, Diaphorina citri: Cold Hardiness and Temperature Thresholds for Oviposition

    PubMed Central

    Hall, David G.; Wenninger, Erik J.; Hentz, Matthew G.

    2011-01-01

    This study was conducted to obtain information on the cold hardiness of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in Florida and to assess upper and lower temperature thresholds for oviposition. The psyllid is an important pest in citrus because it transmits the bacterial pathogens responsible for citrus greening disease, Huanglongbing, considered the most serious citrus disease worldwide. D. citri was first found in Florida during 1998, and the disease was discovered during 2005. Little was known regarding cold hardiness of D. citri, but Florida citrus is occasionally subjected to notable freeze events. Temperature and duration were each significant sources of variation in percent mortality of D. citri subjected to freeze events. Relatively large percentages of adults and nymphs survived after being exposed for several hours to temperatures as low as -5 to -6° C. Relatively large percentages of eggs hatched after being exposed for several hours to temperatures as low as -8° C. Research results indicated that adult D. citri become cold acclimated during the winter through exposure to cooler winter temperatures. There was no evidence that eggs became cold acclimated during winter. Cold acclimation in nymphs was not investigated. Research with adult D. citri from laboratory and greenhouse colonies revealed that mild to moderate freeze events were usually nonlethal to the D. citri irrespective of whether they were cold acclimated or not. Upper and lower temperature thresholds for oviposition were investigated because such information may be valuable in explaining the geographic distribution and potential spread of the pest from Florida as well as how cooler winter temperatures might limit population growth. The estimated lower and upper thresholds for oviposition were 16.0 and 41.6° C, respectively; the estimated temperature of peak oviposition over a 48 h period was 29.6° C. PMID:21870969

  1. Temperature studies with the Asian citrus psyllid, Diaphorina citri: cold hardiness and temperature thresholds for oviposition.

    PubMed

    Hall, David G; Wenninger, Erik J; Hentz, Matthew G

    2011-01-01

    This study was conducted to obtain information on the cold hardiness of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in Florida and to assess upper and lower temperature thresholds for oviposition. The psyllid is an important pest in citrus because it transmits the bacterial pathogens responsible for citrus greening disease, Huanglongbing, considered the most serious citrus disease worldwide. D. citri was first found in Florida during 1998, and the disease was discovered during 2005. Little was known regarding cold hardiness of D. citri, but Florida citrus is occasionally subjected to notable freeze events. Temperature and duration were each significant sources of variation in percent mortality of D. citri subjected to freeze events. Relatively large percentages of adults and nymphs survived after being exposed for several hours to temperatures as low as -5 to -6 °C. Relatively large percentages of eggs hatched after being exposed for several hours to temperatures as low as -8 °C. Research results indicated that adult D. citri become cold acclimated during the winter through exposure to cooler winter temperatures. There was no evidence that eggs became cold acclimated during winter. Cold acclimation in nymphs was not investigated. Research with adult D. citri from laboratory and greenhouse colonies revealed that mild to moderate freeze events were usually nonlethal to the D. citri irrespective of whether they were cold acclimated or not. Upper and lower temperature thresholds for oviposition were investigated because such information may be valuable in explaining the geographic distribution and potential spread of the pest from Florida as well as how cooler winter temperatures might limit population growth. The estimated lower and upper thresholds for oviposition were 16.0 and 41.6 °C, respectively; the estimated temperature of peak oviposition over a 48 h period was 29.6 °C.

  2. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    NASA Astrophysics Data System (ADS)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  3. OeFAD8, OeLIP and OeOSM expression and activity in cold-acclimation of Olea europaea, a perennial dicot without winter-dormancy.

    PubMed

    D'Angeli, Simone; Matteucci, Maya; Fattorini, Laura; Gismondi, Angelo; Ludovici, Matteo; Canini, Antonella; Altamura, Maria Maddalena

    2016-05-01

    Cold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation. Positive relationships between OeFAD8, OeOSM , and OeLIP19 and olive-tree cold-acclimation exist, and couple with increased lipid unsaturation and cutinisation. Olive-tree is a woody species with no winter-dormancy and low frost-tolerance. However, cold-tolerant genotypes were empirically selected, highlighting that cold-acclimation might be acquired. Proteins needed for olive-tree cold-acclimation are unknown, even if roles for osmotin (OeOSM) as leaf cryoprotectant, and seed lipid-transfer protein for endosperm cutinisation under cold, were demonstrated. In other species, FAD8, coding a desaturase producing α-linolenic acid, is activated by temperature-lowering, concomitantly with bZIP-LIP19 genes. The research was focussed on finding OeLIP19 gene(s) in olive-tree genome, and analyze it/their expression, and that of OeFAD8 and OeOSM, in drupes and leaves under different cold-conditions/developmental stages/genotypes, in comparison with changes in unsaturated lipids and cell wall cutinisation. Cold-induced cytosolic calcium transients always occurred in leaves/drupes of some genotypes, e.g., Moraiolo, but ceased in others, e.g., Canino, at specific drupe stages/cold-treatments, suggesting cold-acclimation acquisition only in the latter genotypes. Canino and Moraiolo were selected for further analyses. Cold-acclimation in Canino was confirmed by an electrolyte leakage from leaf/drupe membranes highly reduced in comparison with Moraiolo. Strong increases in fruit-epicarp/leaf-epidermis cutinisation characterized cold-acclimated Canino, and positively coupled with OeOSM expression, and immunolocalization of the coded protein. OeFAD8 expression increased with cold-acclimation, as the production of α-linolenic acid, and related compounds. An OeLIP19 gene was isolated. Its levels changed with a trend similar to OeFAD8. All together, results sustain a positive relationship between OeFAD8, OeOSM and OeLIP19 expression in olive-tree cold-acclimation. The parallel changes in unsaturated lipids and cutinisation concur to suggest orchestrated roles of the coded proteins in the process.

  4. Final Scientific/Technical Report for Subseasonal to Seasonal Prediction of Extratropical Storm Track Activity over the U.S. using NMME data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Edmund Kar-Man

    The goals of the project are: 1) To develop and assess subseasonal to seasonal prediction products for storm track activity derived from NMME data; 2) Assess how much of the predictable signal can be associated with ENSO and other modes of large scale low frequency atmosphere-ocean variability; and 3) Further explore the link between storm track variations and extreme weather statistics. Significant findings of this project include the followings: 1) Our assessment of NMME reforecasts of storm track variability has demonstrated that NMME models have substantial skill in predicting storm track activity in the vicinity of North America - Subseasonalmore » skill is high only for leads of less than 1 month. However, seasonal (winter) prediction skill near North America is high even out to 4 to 5 months lead - Much of the skill for leads of 1 month or longer is related to the influence of ENSO - Nevertheless, lead 0 NMME predictions are significantly more skillful than those based on ENSO influence 2) Our results have demonstrated that storm track variations highly modulate the frequency of occurrence of weather extremes - Extreme cold, high wind, and extreme precipitation events in winter - Extreme heat events in summer - These results suggest that NMME storm track predictions can be developed to serve as a useful guidance to assist the formulation of monthly/seasonal outlooks« less

  5. Freeze-Testing in St. Augustinegrass II: Evaluation of acclimation effects

    USDA-ARS?s Scientific Manuscript database

    Winter survivability is a major-limiting factor for St. Augustinegrass (Stenotaphrum secundatum [Walt.] Kuntze) grown in the transition zone of the United States as cold winters can result in high levels of winterkill. In addition to field studies, lab-based freeze tests mimicking field winter survi...

  6. Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland

    NASA Astrophysics Data System (ADS)

    Vitasse, Yann; Klein, Geoffrey; Kirchner, James W.; Rebetez, Martine

    2017-11-01

    Some of the world's valleys are famous for having particularly cold microclimates. The La Brevine valley, in the Swiss Jura Mountains, holds the record for the lowest temperature ever measured in an inhabited location in Switzerland. We studied cold air pools (CAPs) in this valley during the winter of 2014-2015 using 44 temperature data loggers distributed between 1033 and 1293 m asl. Our goals were to (i) describe the climatic conditions under which CAPs form in the valley, (ii) examine the spatial configuration and the temperature structure of the CAPs and (iii) quantify how often temperature inversions occur in winter using long-term series of temperature from the valley floor. Our results show that CAPs occurred every second night, on average, during the winter of 2014-2015 and were typically formed under cloudless, windless and high-pressure conditions. Strong temperature inversions up to 28 °C were detected between the valley floor and the surrounding hills. The spatial temperature structure of the CAPs varies among the different inversion days, with the upper boundary of the cold pool generally situated at about 1150 m asl. Although mean temperatures have increased in this area over the period 1960-2015 in connection with climate change, the occurrences of extreme cold temperatures did not decrease in winter and are highly correlated with the North Atlantic Oscillation and the East Atlantic indices. This suggests that CAPs in sheltered valleys are largely decoupled from the free atmosphere temperature and will likely continue to occur in the next decades under warmer conditions.

  7. [Winter surveillance of cold exposure effects on health among the homeless population in the Paris area: data from the Coordinated Health Surveillance of Emergency Department network (Organisation de la surveillance coordonnée des urgences [Oscour(®)])].

    PubMed

    Rouquette, A; Mandereau-Bruno, L; Baffert, E; Laaidi, K; Josseran, L; Isnard, H

    2011-12-01

    A program for helping homeless individuals in winter is implemented from November 1(st) to March 31(st) each year in France. Its aim is to prevent morbidity and mortality in this population during cold spells and periods of severe cold. A health surveillance system of the homeless population in the Paris area has been proposed to evaluate the effectiveness of the program and to alert decision-makers if an unusual increase in cold-weather effects is observed. The goal of this study was the creation of an indicator for the proposed surveillance system based on emergency department activity in the Paris area (Oscour(®) Network - Organisation de la surveillance coordonnée des urgences). The winter 2007-2008 computer medical files of 11 emergency departments in the Paris area were examined to confirm diagnosis and ascertain patient-homelessness for each patient visit which was selected from the Oscour(®) database by the patient chief-complaint or diagnosis code referring to hypothermia or frostbites. The proposed indicator is based on the maximization of three criteria: the positive predictive value, the proportion of people identified as being homeless and the number of emergency department visits. A Shewhart control chart was applied to the indicator for the four winters between 2005 and 2009 in the Paris area. Values beyond the statistical threshold would indicate a need for an adjustment to the program strategy. Two hundred and sixteen medical files were analyzed. An indicator was created, "number of emergency department visits of 15 to 69-years-old persons with chief-complaint or diagnosis code referring to hypothermia". It had a positive predictive value estimated near 85 % and identified 61.7 % people as being homeless. In the winter of 2008-2009, the statistical threshold was reached in December during the first cold spell, and again at the beginning of January during a period of severe cold. Our results support the use of this health indicator, alongside social indicators, for optimizing the strategy for helping the homeless population during winter. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Effects of ice and floods on vegetation in streams in cold regions: implications for climate change

    PubMed Central

    Lind, Lovisa; Nilsson, Christer; Weber, Christine

    2014-01-01

    Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns. PMID:25505542

  9. Effects of ice and floods on vegetation in streams in cold regions: implications for climate change.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Weber, Christine

    2014-11-01

    Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns.

  10. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster

    PubMed Central

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions. PMID:26075607

  11. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.

    PubMed

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.

  12. In China, Students in Crowded Dormitories with a Low Ventilation Rate Have More Common Colds: Evidence for Airborne Transmission

    PubMed Central

    Sun, Yuexia; Wang, Zhigang; Zhang, Yufeng; Sundell, Jan

    2011-01-01

    Objective To test whether the incidence of common colds among college students in China is associated with ventilation rates and crowdedness in dormitories. Methods In Phase I of the study, a cross-sectional study, 3712 students living in 1569 dorm rooms in 13 buildings responded to a questionnaire about incidence and duration of common colds in the previous 12 months. In Phase II, air temperature, relative humidity and CO2 concentration were measured for 24 hours in 238 dorm rooms in 13 buildings, during both summer and winter. Out-to indoor air flow rates at night were calculated based on measured CO2 concentrations. Results In Phase I, 10% of college students reported an incidence of more than 6 common colds in the previous 12 months, and 15% reported that each infection usually lasted for more than 2 weeks. Students in 6-person dorm rooms were about 2 times as likely to have an incidence of common colds ≥6 times per year and a duration ≥2 weeks, compared to students in 3-person rooms. In Phase II, 90% of the measured dorm rooms had an out-to indoor air flow rate less than the Chinese standard of 8.3 L/s per person during the heating season. There was a dose-response relationship between out-to indoor air flow rate per person in dorm rooms and the proportion of occupants with annual common cold infections ≥6 times. A mean ventilation rate of 5 L/(s•person) in dorm buildings was associated with 5% of self reported common cold ≥6 times, compared to 35% at 1 L/(s•person). Conclusion Crowded dormitories with low out-to indoor airflow rates are associated with more respiratory infections among college students. PMID:22110607

  13. Sampling and analysis of aircraft engine cold start particles and demonstration of an electrostatic personal particle sampler.

    PubMed

    Armendariz, Alfredo; Leith, David; Boundy, Maryanne; Goodman, Randall; Smith, Les; Carlton, Gary

    2003-01-01

    Aircraft engines emit an aerosol plume during startup in extremely cold weather that can drift into areas occupied by flightline ground crews. This study tested a personal sampler used to assess exposure to particles in the plume under challenging field conditions. Area and personal samples were taken at two U.S. Air Force (USAF) flightlines during the winter months. Small tube-and-wire electrostatic precipitators (ESPs) were mounted on a stationary stand positioned behind the engines to sample the exhaust. Other ESPs were worn by ground crews to sample breathing zone concentrations. In addition, an aerodynamic particle sizer 3320 (APS) was used to determine the size distribution of the particles. Samples collected with the ESP were solvent extracted and analyzed with gas chromatography-mass spectrometry. Results indicated that the plume consisted of up to 75 mg/m(3) of unburned jet fuel particles. The APS showed that nearly the entire particle mass was respirable, because the plumes had mass median diameters less than 2 micro m. These tests demonstrated that the ESP could be used at cold USAF flightlines to perform exposure assessments to the cold start particles.

  14. Passive thermal refugia provided warm water for Florida manatees during the severe winter of 2009-2010

    USGS Publications Warehouse

    Stith, B.M.; Slone, D.H.; de Wit, M.; Edwards, H.H.; Langtimm, C.A.; Swain, E.D.; Soderqvist, L.E.; Reid, J.P.

    2012-01-01

    Haloclines induced by freshwater inflow over tidal water have been identified as an important mechanism for maintaining warm water in passive thermal refugia (PTR) used by Florida manatees Trichechus manatus latirostris during winter in extreme southwestern Florida. Record-setting cold during winter 2009–2010 resulted in an unprecedented number of manatee deaths, adding to concerns that PTR may provide inadequate thermal protection during severe cold periods. Hydrological data from 2009–2010 indicate that 2 canal systems in the Ten Thousand Islands (TTI) region acted as PTR and maintained warm bottom-water temperatures, even during severe and prolonged cold periods. Aerial survey counts of live and dead manatees in TTI during the winter of 2009–2010 suggest that these PTR were effective at preventing mass mortality from hypothermia, in contrast to the nearby Everglades region, which lacks similar artificial PTR and showed high manatee carcass counts. Hydrological data from winter 2008–2009 confirmed earlier findings that without haloclines these artificial PTR may become ineffective as warm-water sites. Tidal pumping of groundwater appears to provide additional heat to bottom water during low tide cycles, but the associated thermal inversion is not observed unless salinity stratification is present. The finding that halocline-driven PTR can maintain warm water even under extreme winter conditions suggests that they may have significant potential as warm-water sites. However, availability and conflicting uses of freshwater and other management issues may make halocline-driven PTR unreliable or difficult to manage during winter.

  15. Skill of real-time operational forecasts with the APCC multi-model ensemble prediction system during the period 2008-2015

    NASA Astrophysics Data System (ADS)

    Min, Young-Mi; Kryjov, Vladimir N.; Oh, Sang Myeong; Lee, Hyun-Ju

    2017-12-01

    This paper assesses the real-time 1-month lead forecasts of 3-month (seasonal) mean temperature and precipitation on a monthly basis issued by the Asia-Pacific Economic Cooperation Climate Center (APCC) for 2008-2015 (8 years, 96 forecasts). It shows the current level of the APCC operational multi-model prediction system performance. The skill of the APCC forecasts strongly depends on seasons and regions that it is higher for the tropics and boreal winter than for the extratropics and boreal summer due to direct effects and remote teleconnections from boundary forcings. There is a negative relationship between the forecast skill and its interseasonal variability for both variables and the forecast skill for precipitation is more seasonally and regionally dependent than that for temperature. The APCC operational probabilistic forecasts during this period show a cold bias (underforecasting of above-normal temperature and overforecasting of below-normal temperature) underestimating a long-term warming trend. A wet bias is evident for precipitation, particularly in the extratropical regions. The skill of both temperature and precipitation forecasts strongly depends upon the ENSO strength. Particularly, the highest forecast skill noted in 2015/2016 boreal winter is associated with the strong forcing of an extreme El Nino event. Meanwhile, the relatively low skill is associated with the transition and/or continuous ENSO-neutral phases of 2012-2014. As a result the skill of real-time forecast for boreal winter season is higher than that of hindcast. However, on average, the level of forecast skill during the period 2008-2015 is similar to that of hindcast.

  16. Seasonality of photosynthesis of a Rocky Mountain subalpine forest: implications for SIF as a metric for GPP

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Blanken, P.; Burns, S. P.; Frankenberg, C.; Grossman, K.; Lin, J. C.; Logan, B. A.; Magney, T. S.; Richardson, A. D.; Stutz, J.; Aubrecht, D.

    2017-12-01

    Temperate and boreal conifer forests are dormant for many months during the cold season, during which they continue to absorb solar radiation. Thus they exhibit a marked seasonal change in light-use efficiency, challenging our ability to monitor gross primary productivity (GPP) from remote sensing platforms. We are studying the factors limiting the seasonality of photosynthesis of a high-elevation subalpine forest in Colorado. Using in-situ thermal imagery, we find that foliage in winter is sometimes near the optimum temperature for photosynthesis, but photosynthesis is shut down for most of the cold season. Water transport is limited by blockage of sap transport by frozen boles, but not by frozen soils. Foliar carotenoid content exhibits strong upregulation during winter, driven largely by increase in the pool size of the photoprotective xanthophyll cycle, but with no seasonal change in chlorophyll content. The seasonality of GPP is strongly linked to xanthophyll cycle conversion state and thawing of boles. Ongoing research includes examination of leaf-level chlorophyll fluorescence emission and gas exchange, combined with measurement of canopy-level spectral reflectance and solar-induced fluorescence (SIF) at high spatio-temporal resolution using a custom tower-based PhotoSpec scanning spectrometer system. These results will be synthesized in the context of using SIF as a metric for GPP.

  17. Changes in timing, duration, and symmetry of molt of Hawaiian forest birds.

    PubMed

    Freed, Leonard A; Cann, Rebecca L

    2012-01-01

    Food limitation greatly affects bird breeding performance, but the effect of nutritive stress on molt has barely been investigated outside of laboratory settings. Here we show changes in molting patterns for an entire native Hawaiian bird community at 1650-1900 m elevation on the Island of Hawaii between 1989-1999 and 2000-2006, associated with severe food limitation throughout the year beginning in 2000. Young birds and adults of all species took longer to complete their molt, including months never or rarely used during the 1989-1999 decade. These included the cold winter months and even the early months of the following breeding season. In addition, more adults of most species initiated their molt one to two months earlier, during the breeding season. Suspended molt, indicated by birds temporarily not molting primary flight feathers during the months of peak primary molt, increased in prevalence. Food limitation reached the point where individuals of all species had asymmetric molt, with different primary flight feathers molted on each wing. These multiple changes in molt, unprecedented in birds, had survival consequences. Adult birds captured during January to March, 2000-2004, had lower survival in four of five species with little effect of extended molt. Extended molt may be adaptive for a nutrient stressed bird to survive warm temperatures but not cool winter temperatures that may obliterate the energy savings. The changing molt of Hawaiian birds has many implications for conservation and for understanding life history aspects of molt of tropical birds.

  18. Essential Outdoor Sun Safety Tips for Winter

    MedlinePlus

    ... the risk for damage. Both snow and strong wind can wear away sunscreen and reduce its effectiveness, ... protect your skin from the bitter cold, heavy winds and winter sun, follow these important sun protection ...

  19. Evidence of lumpy skin disease virus over-wintering by transstadial persistence in Amblyomma hebraeum and transovarial persistence in Rhipicephalus decoloratus ticks.

    PubMed

    Lubinga, J C; Tuppurainen, E S M; Coetzer, J A W; Stoltsz, W H; Venter, E H

    2014-01-01

    Lumpy skin disease is a debilitating cattle disease caused by the lumpy skin disease virus (LSDV), belonging to the genus Capripoxvirus. Epidemics of the disease usually occur in summer, when insect activity is high. Limited information is available on how LSDV persists during inter-epidemic periods. Transmission of LSDV by mosquitoes such as Aedes aegypti has been shown to be mechanical, there is no carrier state in cattle and the role of wildlife in the epidemiology of the disease seems to be of minor importance. Recent studies in ticks have shown transstadial persistence of LSDV in Rhipicephalus appendiculatus and Amblyomma hebraeum as well as transovarial persistence of the virus in Rhipicephalus decoloratus, R. appendiculatus and A. hebraeum. The over-wintering of ticks off the host as part of their life cycles is well known: A. hebraeum and R. appendiculatus over-winter, for example, on the ground as engorged nymphs/unfed (emergent) adults while R. decoloratus over-winters on the ground as engorged females. In this study, transstadial and transovarial persistence of LSDV from experimentally infected A. hebraeum nymphs and R. decoloratus females after exposure to cold temperatures of 5 °C at night and 20 °C during the day for 2 months was reported. This observation suggests possible over-wintering of the virus in these tick species.

  20. Arctic Ozone Depletion from UARS MLS Measurements

    NASA Technical Reports Server (NTRS)

    Manney, G. L.

    1995-01-01

    Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.

  1. An epidemiological assessment of the effect of ambient temperature on the incidence of preterm births: Identifying windows of susceptibility during pregnancy.

    PubMed

    Zheng, Xiangrong; Zhang, Weishe; Lu, Chan; Norbäck, Dan; Deng, Qihong

    2018-05-01

    It is well known that exposure to thermal stress during pregnancy can lead to an increased incidence of premature births. However, there is little known regarding window(s) of susceptibility during the course of a pregnancy. We attempted to identify possible windows of susceptibility in a cohort study of 3604 children in Changsha with a hot-summer and cold winter climatic characteristics. We examined the association between PTB and ambient temperature during different timing windows of pregnancy: conception month, three trimesters, birth month and entire pregnancy. We found a U-shaped relation between the prevalence of PTB and mean ambient temperature during pregnancy. Both high and low temperatures were associated with PTB risk, adjusted OR (95% CI) respectively 2.57 (1.98-3.33) and 2.39 (1.93-2.95) for 0.5 °C increase in high temperature range (>18.2°C) and 0.5°C decrease in low temperature range (< 18.2°C). Specifically, PTB was significantly associated with ambient temperature and extreme heat/cold days during conception month and the third trimester. Sensitivity analysis indicated that female fetus were more susceptible to the risk of ambient temperature. Our study indicates that the risk of preterm birth due to high or low temperature may exist early during the conception month. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Physiological processes during winter dormancy and their ecological significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havranek, W.M.; Tranquillini, W.

    1995-07-01

    Lengthy and severe winters require that trees in the forests of boreal and mountain zones undergo winter dormancy. Physiologically, a high resistance to subfreezing temperatures and concomitant dehydration are necessary. To accomplish this dormancy, both physiological and structural changes are needed at the cellular level that require induction by endogenous and photoperiodic control early in autumn. Endogenous rhythmicity promotes cold hardening in early autumn and the persistence of hardiness throughout the winter. Numerous physiological functions are maintained at a reduced level, or become completely inhibited during true winter dormancy. Winter hardiness also includes the capability to minimize water loss effectivelymore » when water uptake is severely impeded or impossible. Anatomical features such as tracheids act to minimize xylem embolism during frequent freeze-thaw cycles, and {open_quotes}crown{close_quotes} tissues enable buds to stay in a dehydrated and, thus, more resistant state during winter. Both these structural features are adaptations that contribute to the dominance of conifers in cold climates. Interestingly, deciduous tree species rather than evergreen conifers dominate in the most severe winter climates, although it is not clear whether limitations during winter, during the summer growth period, or during both are most limiting to conifer tree ecology. Additional work that evaluates the importance of winter and summer growth restriction, and their interaction, is needed before a comprehensive understanding of conifer tree ecophysiology will be possible.« less

  3. Characteristics of Winter Surface Air Temperature Anomalies in Moscow in 1970-2016 under Conditions of Reduced Sea Ice Area in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Semenov, V. A.

    2018-01-01

    On the basis of observational data on daily mean surface air temperature (SAT) and sea ice concentration (SIC) in the Barents Sea (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of air-particle motions has revealed the most probable paths of both cold and warm air invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm air invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.

  4. Winter Storms and Extreme Cold

    MedlinePlus

    ... your home to keep out the cold with insulation, caulking, and weather stripping. Learn how to keep ... and grills outdoors and away from windows. Never heat your home with a gas stovetop or oven. ...

  5. A computer model for predicting grapevine cold hardiness

    USDA-ARS?s Scientific Manuscript database

    We developed a robust computer model of grapevine bud cold hardiness that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model uses time steps of 1 day along with the measured daily mean air temperature to ca...

  6. A weather regime characterisation of Irish wind generation and electricity demand in winters 2009–11

    NASA Astrophysics Data System (ADS)

    Cradden, Lucy C.; McDermott, Frank

    2018-05-01

    Prolonged cold spells were experienced in Ireland in the winters of 2009–10 and 2010–11, and electricity demand was relatively high at these times, whilst wind generation capacity factors were low. Such situations can cause difficulties for an electricity system with a high dependence on wind energy. Studying the atmospheric conditions associated with these two winters offers insights into the large-scale drivers for cold, calm spells, and helps to evaluate if they are rare events over the long-term. The influence of particular atmospheric patterns on coincidental winter wind generation and weather-related electricity demand is investigated here, with a focus on blocking in the North Atlantic/European sector. The occurrences of such patterns in the 2009–10 and 2010–11 winters are examined, and 2010–11 in particular was found to be unusual in a long-term context. The results are discussed in terms of the relevance to long-term planning and investment in the electricity system.

  7. Cryoprotection in dampwood termites (Termopsidae, Isoptera).

    PubMed

    Lacey, Michael J; Lenz, Michael; Evans, Theodore A

    2010-01-01

    In contrast to the majority of the Order, the dampwood termites of the family Termopsidae found in colder regions can experience frost and snow, either in cool temperate areas at high latitudes (45 degrees ), or alpine areas at high elevations (>1000m). This suggests that dampwood termites are adapted to cold climates. We investigated this hypothesis in two dampwood termites, Porotermes adamsoni Froggatt and Stolotermes victoriensis Hill. We measured nest temperatures and atmospheric temperatures of their alpine habitat during winter, and measured survival and recovery at subzero temperatures. We also determined the minimum temperature at which these species remain active and the LT50 values. We used a novel gas chromatographic strategy to examine eight metabolites from individuals of both species collected in winter and summer to identify possible cryoprotectants. Both P. adamsoni and S. victoriensis had significantly higher levels of trehalose, a known cryoprotectant, in winter than in summer; in addition S. victoriensis also had higher levels of unsaturated fatty acid ligands in winter than in summer, consistent with patterns observed for cold adaptation in other organisms. These results are the first to reveal that dampwood termites are adapted to cold climates and use trehalose and unsaturated lipids as cryoprotectants.

  8. Halting Hypothermia: Cold Can Be Dangerous

    MedlinePlus

    ... who spends much time outdoors in very cold weather can get hypothermia. But hypothermia can happen anywhere— ... just outside and not just in bitter winter weather. It can strike when temperatures are cool—for ...

  9. Winter sports athletes: long-term effects of cold air exposure.

    PubMed

    Sue-Chu, Malcolm

    2012-05-01

    Athletes such as skaters and skiers inhale large volumes of cold air during exercise and shift from nasal to mouth breathing. Endurance athletes, like cross-country skiers, perform at 80% or more of their maximal oxygen consumption and have minute ventilations in excess of 100 l/min. Cold air is always dry, and endurance exercise results in loss of water and heat from the lower respiratory tract. In addition, athletes can be exposed to indoor and outdoor pollutants during the competitive season and during all-year training. Hyperpnoea with cold dry air represents a significant environmental stress to the airways. Winter athletes have a high prevalence of respiratory symptoms and airway hyper-responsiveness to methacholine and hyperpnoea. The acute effects of exercise in cold air are neutrophil influx as demonstrated in lavage fluid and airway epithelial damage as demonstrated by bronchoscopy. Upregulation of pro-inflammatory cytokines has been observed in horses. Chronic endurance training damages the epithelium of the small airways in mice. Airway inflammation has been observed on bronchoscopy of cross-country skiers and in dogs after a 1100-mile endurance race in Alaska. Neutrophilic and lymphocytic inflammation with remodelling is present in bronchial biopsies from skiers. Repeated peripheral airway hyperpnoea with dry air causes inflammation and remodelling in dogs. As it is currently unknown if these airway changes are reversible upon cessation of exposure, preventive measures to diminish exposure of the lower airways to cold air should be instituted by all winter sports athletes.

  10. [A survey of knowledge on common cold and its treatment situation among physicians from various levels of hospitals in mainland China].

    PubMed

    Su, Nan; Lin, Jiang-tao; Liu, Guan-jian; Lin, Yan-ping; Yin, Kai-sheng; Bai, Chun-xue; Ma, Li-jun; Qiu, Chen; Liu, Chun-tao; Chen, Ming-wei; Liu, Hua; Chen, Ping

    2012-04-01

    To investigate the cognition of the common cold and current situation of the treatment among physicians from various levels of hospitals in Chinese mainland, so as to provide evidence for future continuing medical education and rational medication. A questionnaire designed for this survey was used to learn about the general information, cognitive degree of the common cold and prescription habits of physician who prescribed for cold within last three months, from various levels hospitals. A total of 1001 physicians were interviewed. Among them, 749 physicians chose right options that the cold was the common cold and the influenza with 79.84% in resident physicians and 56.76% in chief physicians. A total of 745 physicians chose options that the course of common cold will be lasting 4 to 7 days; 895 physicians chose options that old people are the most susceptible for complication; 669 physicians thought the common cold was the most common infection in winter; 841 physicians used clinical methods to diagnose the common cold; 736 physicians thought although the cold was a kind of self-limited disease and symptomatic treatment could alleviate symptoms and improve life quality, patients should see doctor in time if it turns to severer; and 745 physicians held the opinion that treatment of the common cold should focus on relieving symptoms first. In addition, 61.60% physicians had made prescription based on clinical symptoms; 505 (54.24%) of them thought compound drugs were priority in treating the common cold. However, there were still 43 physicians prescribed antibiotics for common cold. There is misunderstanding and discrepancy in cognition towards common cold and treatment among physicians from various levels of hospitals in mainland China. Physicians should standardize diagnosis and treatment for the common cold according to the domestic and foreign guidelines.

  11. How predictable is the winter extremely cold days over temperate East Asia?

    NASA Astrophysics Data System (ADS)

    Luo, Xiao; Wang, Bin

    2017-04-01

    Skillful seasonal prediction of the number of extremely cold day (NECD) has considerable benefits for climate risk management and economic planning. Yet, predictability of NECD associated with East Asia winter monsoon remains largely unexplored. The present work estimates the NECD predictability in temperate East Asia (TEA, 30°-50°N, 110°-140°E) where the current dynamical models exhibit limited prediction skill. We show that about 50 % of the total variance of the NECD in TEA region is likely predictable, which is estimated by using a physics-based empirical (P-E) model with three consequential autumn predictors, i.e., developing El Niño/La Niña, Eurasian Arctic Ocean temperature anomalies, and geopotential height anomalies over northern and eastern Asia. We find that the barotropic geopotential height anomaly over Asia can persist from autumn to winter, thereby serving as a predictor for winter NECD. Further analysis reveals that the sources of the NECD predictability and the physical basis for prediction of NECD are essentially the same as those for prediction of winter mean temperature over the same region. This finding implies that forecasting seasonal mean temperature can provide useful information for prediction of extreme cold events. Interpretation of the lead-lag linkages between the three predictors and the predictand is provided for stimulating further studies.

  12. Vernalization Requirement and the Chromosomal VRN1-Region can Affect Freezing Tolerance and Expression of Cold-Regulated Genes in Festuca pratensis

    PubMed Central

    Ergon, Åshild; Melby, Tone I.; Höglind, Mats; Rognli, Odd A.

    2016-01-01

    Plants adapted to cold winters go through annual cycles of gain followed by loss of freezing tolerance (cold acclimation and deacclimation). Warm spells during winter and early spring can cause deacclimation, and if temperatures drop, freezing damage may occur. Many plants are vernalized during winter, a process making them competent to flower in the following summer. In winter cereals, a coincidence in the timing of vernalization saturation, deacclimation, downregulation of cold-induced genes, and reduced ability to reacclimate, occurs under long photoperiods and is under control of the main regulator of vernalization requirement in cereals, VRN1, and/or closely linked gene(s). Thus, the probability of freezing damage after a warm spell may depend on both vernalization saturation and photoperiod. We investigated the role of vernalization and the VRN1-region on freezing tolerance of meadow fescue (Festuca pratensis Huds.), a perennial grass species. Two F2 populations, divergently selected for high and low vernalization requirement, were studied. Each genotype was characterized for the copy number of one of the four parental haplotypes of the VRN1-region. Clonal plants were cold acclimated for 2 weeks or vernalized/cold acclimated for a total of 9 weeks, after which the F2 populations reached different levels of vernalization saturation. Vernalized and cold acclimated plants were deacclimated for 1 week and then reacclimated for 2 weeks. All treatments were given at 8 h photoperiod. Flowering response, freezing tolerance and expression of the cold-induced genes VRN1, MADS3, CBF6, COR14B, CR7 (BLT14), LOS2, and IRI1 was measured. We found that some genotypes can lose some freezing tolerance after vernalization and a deacclimation–reacclimation cycle. The relationship between vernalization and freezing tolerance was complex. We found effects of the VRN1-region on freezing tolerance in plants cold acclimated for 2 weeks, timing of heading after 9 weeks of vernalization, expression of COR14B, CBF6, and LOS2 in vernalized and/or deacclimated treatments, and restoration of freezing tolerance during reacclimation. While expression of VRN1, COR14B, CBF6, LOS2, and IRI1 was correlated, CR7 was associated with vernalization requirement by other mechanisms, and appeared to play a role in freezing tolerance in reacclimated plants. PMID:26941767

  13. Late Holocene Winter Temperatures in the Eastern Mediterranean and Their Relation to Cultural Changes: The Kocain Cave Record

    NASA Astrophysics Data System (ADS)

    Mert Gokturk, Ozan; Fleitmann, Dominik; Badertscher, Seraina; Cheng, Hai; Edwards, R. Lawrence; Tuysuz, Okan

    2015-04-01

    Based on the δ13C profile of a stalagmite from the Kocain Cave in southern Turkey, we present a new proxy record of winter temperatures for the Eastern Mediterranean covering the last ~5500 years. In this region precisely-dated and highly-resolved paleoclimate records for the cold season are almost non-existent. The comparison of the most recent part of the Kocain record with meteorological observations reveals that stalagmite δ13C values correlate on decadal scale with the amount of snowfall above the cave, which correlates well with average winter temperatures. More negative δ13C values indicate higher drip rates in the cave due to more efficient infiltration during snowmelt above Kocain Cave, during colder winters. Cold periods in the rest of the record coincide with widespread glacier advances, especially with the ones in the Alps during the Bronze Age - Iron Age transition (from ~1000 BC on) and the late Little Ice Age (~1600 to 1850 AD). This further supports the interpretation of δ13C as a temperature proxy. Although winters during the Medieval Climate Anomaly were not continuously warm in the Eastern Mediterranean, winter warmth in the modern era was matched or exceeded several times in the last ~5700 years, especially during the time of Minoan civilization in Crete (~2700 to 1200 BC). Moreover, we provide evidence for the important role of winter cold and drought in the events leading to the unrest in the 16th century Anatolia during the Ottoman rule. Kocain Cave record brings insights into several climatically-induced historical changes in the Eastern Mediterranean, and has the potential to be a key record in a region with a long and vibrant history.

  14. Temperature extremes in Alaska: temporal variability and circulation background

    NASA Astrophysics Data System (ADS)

    Sulikowska, Agnieszka; Walawender, Jakub P.; Walawender, Ewelina

    2018-06-01

    The aims of this study are to characterize the spatial and temporal variability of extremely warm days (WDs) and warm spells (WSs) in summer as well as extremely cold days (CDs) and cold spells (CSs) in winter in Alaska in the years 1951-2015 and to determine the role of atmospheric circulation in their occurrence. The analysis is performed using daily temperature maxima (T MAX) and minima (T MIN) measured at 10 weather stations in Alaska as well as mean daily values of sea level pressure and wind direction at the 850 hPa isobaric level. WD (CD) is defined as a day with T MAX above the 95th (T MIN below the 5th) percentile of a probability density function calculated from observations, and WS (CS) equals at least three consecutive WDs (CDs). Frequency of the occurrence and severity of warm and cold extremes as well as duration of WSs and CSs is analyzed. In order to characterize synoptic conditions during temperature extremes, the objective classification scheme of advection types considering jointly the direction of the air influx and type of pressure system is employed. The results show that the general trend is towards the warmer temperatures, and the warming is greater in the winter than summer and for T MAX as opposed to T MIN. This is reflected in changes in the frequency of occurrence and intensity of temperature extremes which are much more pronounced in the case of winter cold extremes (decreasing tendencies) than summer warm extremes (increasing tendencies). The occurrence of temperature extremes is generally favored by anticyclonic weather with advection direction indicating air mass flows from the interior of the North American continent as well as the south (warm extremes in summer) and north (cold extremes in winter).

  15. Research on best practices for winter weather operations.

    DOT National Transportation Integrated Search

    2012-10-01

    There is a growing need to identify actionable practices relative to winter weather operations. Because of the : potential and inherent hazards during cold weather, it has become increasingly important to ensure that these : practices can be effectiv...

  16. 7 CFR 760.702 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...

  17. 7 CFR 760.702 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...

  18. 7 CFR 760.702 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...

  19. 7 CFR 760.702 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...

  20. Raising of Operating a Motor Vehicle Effects on Environment in Winter

    NASA Astrophysics Data System (ADS)

    Ertman, S. A.; Ertman, J. A.; Zakharov, D. A.

    2016-08-01

    Severe low-temperature conditions, in which considerable part of Russian Motor Park is operated, affect vehicles negatively. Cold weather causes higher fuel consumption and C02 emissions always. It is because of temperature profile changing of automobile motors, other systems and materials. For enhancement of car operation efficiency in severe winter environment the dependency of engine warm-up and cooling time on ambient air temperature and wind speed described by multifactorial mathematical models is established. -On the basis of experimental research it was proved that the coolant temperature constitutes the engine representative temperature and may be used as representative temperature of engine at large. The model of generation of integrated index for vehicle adaptability to winter operating conditions by temperature profile of engines was developed. the method for evaluation of vehicle adaptability to winter operating conditions by temperature profile of engines allows to decrease higher fuel consumption in cold climate.

  1. Is the OJIP Test a Reliable Indicator of Winter Hardiness and Freezing Tolerance of Common Wheat and Triticale under Variable Winter Environments?

    PubMed Central

    Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M.; Kościelniak, Janusz

    2015-01-01

    OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold. PMID:26230839

  2. Is the OJIP Test a Reliable Indicator of Winter Hardiness and Freezing Tolerance of Common Wheat and Triticale under Variable Winter Environments?

    PubMed

    Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M; Kościelniak, Janusz

    2015-01-01

    OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold.

  3. Membrane stability of winter wheat plants exposed to subzero temperatures for variable lengths of time

    USDA-ARS?s Scientific Manuscript database

    The ability to survive episodes of subfreezing temperature is essential to winter wheat. Fully cold-acclimated plants of six lines of winter wheat were exposed to -12, -14, -16 or -18° C, four 1-5 hours. Electrolyte leakage and plant survival were used to assess damage to the plants. Plants exposed ...

  4. Developmental arrest during embryonic development of the common chameleon (Chamaeleo chamaeleon) in Spain.

    PubMed

    Andrews, Robin M; Díaz-Paniagua, Carmen; Marco, Adolfo; Portheault, Alexandre

    2008-01-01

    Embryonic development of the common chameleon, Chamaeleo chamaeleon, was monitored from oviposition to hatching at a field site in southwestern Spain and in the laboratory under five experimental temperature regimes. Embryos were diapausing gastrulae at the time of oviposition; developmental arrest in the field continued as cold torpor during winter. Postarrest development in the field commenced in April, and hatching occurred in August, for a total incubation period of 10.5 mo. In the laboratory, one group of eggs was incubated at a constant warm (26 degrees C) temperature. The remaining treatments simulated field conditions and consisted of initial periods of warm temperature of 0, 27, 46, and 71 d, a subsequent 4-mo period of cold winter (16 degrees C) temperature, and a final period of warm (26 degrees C) temperature. Embryos in the constant warm temperature treatment were in diapause an average of 3 mo, with clutch means ranging from 2 to 4 mo. Hatching among clutches occurred over 2 mo. In contrast, for field and experimental eggs that experienced cold winter conditions, hatching within treatments occurred over 2-14 d; "winter" conditions synchronized development. The length of time between the end of cold conditions and hatching did not differ among treatments; development thus resumed as soon as temperature was suitable regardless of the initial period of warm temperature. Diapause in nature thus insures that embryos remain gastrulae after oviposition despite nest temperatures that may be warm enough to support development.

  5. Attribution of UK Winter Floods to Anthropogenic Forcing

    NASA Astrophysics Data System (ADS)

    Schaller, N.; Alison, K.; Sparrow, S. N.; Otto, F. E. L.; Massey, N.; Vautard, R.; Yiou, P.; van Oldenborgh, G. J.; van Haren, R.; Lamb, R.; Huntingford, C.; Crooks, S.; Legg, T.; Weisheimer, A.; Bowery, A.; Miller, J.; Jones, R.; Stott, P.; Allen, M. R.

    2014-12-01

    Many regions of southern UK experienced severe flooding during the 2013/2014 winter. Simultaneously, large areas in the USA and Canada were struck by prolonged cold weather. At the time, the media and public asked whether the general rainy conditions over northern Europe and the cold weather over North America were caused by climate change. Providing an answer to this question is not trivial, but recent studies show that probabilistic event attribution is feasible. Using the citizen science project weather@home, we ran over 40'000 perturbed initial condition simulations of the 2013/2014 winter. These simulations fall into two categories: one set aims at simulating the world with climate change using observed sea surface temperatures while the second set is run with sea surface temperatures corresponding to a world that might have been without climate change. The relevant modelled variables are then downscaled by a hydrological model to obtain river flows. First results show that anthropogenic climate change led to a small but significant increase in the fractional attributable risk for 30-days peak flows for the river Thames. A single number can summarize the final result from probabilistic attribution studies indicating, for example, an increase, decrease or no change to the risk of the event occurring. However, communicating this to the public, media and other scientists remains challenging. The assumptions made in the chain of models used need to be explained. In addition, extreme events, like the UK floods of the 2013/2014 winter, are usually caused by a range of factors. While heavy precipitation events can be caused by dynamic and/or thermodynamic processes, floods occur only partly as a response to heavy precipitation. Depending on the catchment, they can be largely due to soil properties and conditions of the previous months. Probabilistic attribution studies are multidisciplinary and therefore all aspects need to be communicated properly.

  6. Cold-Specific Induction of a Dehydrin Gene Family Member in Barley.

    PubMed Central

    Van Zee, K.; Chen, F. Q.; Hayes, P. M.; Close, T. J.; Chen, THH.

    1995-01-01

    An interval on barley (Hordeum vulgare L.) chromosome 7 accounting for significant quantitative trait locus effects for winter hardiness were detected in a winter (Dicktoo) x spring (Morex) barley population (P.M. Hayes, T. Blake, T.H.H. Chen, S. Tragoonrung, F. Chen, A. Pan, and B. Liu [1993] Genome 36: 66-71). Two members of the barley dehydrin gene family, Dhn1 and Dhn2, were located within the region defining the winter hardiness quantitative trait locus effect (A. Pan, P.M. Hayes, F. Chen, T. Blake, T.H.H. Chen, T.T.S. Wright, I. Karsai, Z. Bedo [1994] Theor Appl Genet 89: 900-910). To investigate the possible role of Dhn1 and Dhn2 in winter hardiness, we examined the expression pattern of six barley dehydrin gene family members in shoot tissue in response to cold temperature. Incubation of 3-week-old barley plants at 2[deg]C resulted in a rapid induction of a single 86-kD polypeptide that was recognized by an antiserum against a peptide conserved in the dehydrin gene family. Northern blot analysis confirmed the induction of an mRNA corresponding to Dhn5. The expression patterns of cold-induced dehydrins in shoot tissue for Dicktoo and Morex were identical under the conditions studied, in spite of the known phenotypic differences in their winter hardiness. These results, together with the allelic structure of selected high- and low-survival lines, suggest that the Dicktoo alleles at the Dhn1 and Dhn2 may not be the primary determinants of winter hardiness in barley. PMID:12228540

  7. 2009/2010 Eurasian Cold Winter and Loss of Arctic Sea-ice over Barents/Kara Sea

    NASA Astrophysics Data System (ADS)

    Shim, T.; Kim, B.; Kim, S.

    2012-12-01

    In 2009/2010 winter, a few extreme cold events and heavy snowfall occurred over central North America, north western Europe, and East Asia exerting a severe social and economic impacts. In this study, we performed modeling experiments to examine the role of substantially reduced Arctic sea-ice over Barents/Kara Sea on the 2009/2010 cold winters. Although several previous studies investigated cause of the extreme events and emphasized the large snow-covered area over Siberia in autumn 2009, we note that the area extent of Arctic sea-ice over Barents/Kara sea in autumn 2009 was anomalously low and the possible impact from Arctic for the extreme cold events has not been presented. To investigate the influence from the Arctic, we designed three model runs using Community Atmosphere Model Version 3 (CAM3). Each simulation differs by the prescribed surface boundary conditions: (a) CTRL - climatological seasonal cycle of sea surface temperature (SST) and sea-ice concentration (SIC) are prescribed everywhere, (b) EXP_65N - SST and SIC inside the Arctic circle (north of 65°N) are replaced by 2009/2010 values. Elsewhere, the climatology is used, (c) EXP_BK - Same with (b) except that SIC and SST are fixed only over Barents/Kara Sea where the sea-ice area dropped significantly in 2009/2010 winter. Model results from EXP_65N and EXP_BK commonly showed a large increase of air temperature in the lower troposphere where Arctic sea-ice showed a large reduction. Also, compared with the observation, model successfully captured thickened geopotential height in the Arctic and showed downstream wave propagation toward midlatitude. From the analysis, we reveal that this large dipolar Arctic-midlatitude teleconnection pattern in the upper troposphere easily propagate upward and played a role in the weakening of polar vortex. This is also confirmed in the observation. However, the timing of excitation of upward propagating wave in EXP_65N and EXP_BK were different and thus the timing of weakening of polar vortex also differs in each experiment. Unlike with our expectation, both EXP_65N and EXP_BK did not capture the abrupt increase of snow-cover in the observation over Siberian region in autumn 2009. Therefore, given the successful reproduction of key observed features of cold winter 2009/2010 by EXP_65N and EXP_BK, we conclude that Arctic sea-ice in autumn 2009 played a key role for the subsequent development of cold winter 2009/2010 and the role was largely independent with the autumn snow-cover.

  8. On the occurrence of the coldest region in the stratosphere and tropical tropopause stability: A study using COSMIC/FORMOSAT-3 satellite measurements

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Dhaka, S. K.; Choudhary, R. K.; Ho, Shu-Peng; Yoden, S.; Reddy, K. K.

    2014-12-01

    The occurrence of coldest region in the lower and middle stratosphere has been investigated using COSMIC/FORMASAT-3 radio occultation measurements. Observations from January 2007 to December 2011, comprising of 2,871,811 numbers of occultations uniformly spread over land and sea, have been used in this study. Using vertical profiles of temperature upto 40 km altitude, zonally averaged at each 5° latitude band between 90°N and 90°S, it is shown that the coldest region in the upper atmosphere occurs during winter in high latitude stratosphere (latitudes >45°) in both the hemispheres with southern hemisphere (temperature less than <-85 °C) cooler than northern hemisphere (temperature ~-75 °C). The spatial extent of the region of low temperature region found between 10 km and 30 km altitude, indicating a 20 km vertical thick layer of cold temperature. In the southern hemisphere, such a region of coldest temperature remains for more than six months (April-October), in the Northern hemispheric polar region (~-75 °C) it is seen mostly during four winter months between October and January. Using NCEP-DOE reanalysis data, we show that cold temperature in the stratospheric region coexists with the jet streams prevalent in those regions. Strong wind jet is surmised to make stratosphere colder. The absence of sunlight in the coldest region is known to cause jet streams. Impact of stratospheric quasi-biennial oscillation (QBO) on the sharpness of tropical tropopause (stability) has also been investigated. Observations suggest that during westerly phase of QBO, the stability of the tropopause increases.

  9. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    PubMed Central

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-01-01

    Abstract The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring together with rain, can substantially remove snow cover and thereby expose plants to cold winter air. Depending on morphology, different parts of the plant can be directly exposed. On this picture, we see Dryas octopetala seed heads from the previous growing season protrude through the remaining ice layer after a warming event in early 2010. The rest of the plant, including meristems and flower primordia, are still somewhat protected by the ice. In the background we can see a patch of Cassiope tetragona protruding through the ice; in this case, the whole plant including flower primordia is exposed, which might be one reason why this species experienced a loss of flowers the following season. Photograph by Philipp Semenchuk. PMID:24567826

  10. Possible mechanisms for four regimes associated with cold events over East Asia

    NASA Astrophysics Data System (ADS)

    Yang, Zifan; Huang, Wenyu; Wang, Bin; Chen, Ruyan; Wright, Jonathon S.; Ma, Wenqian

    2017-09-01

    Circulation patterns associated with cold events over East Asia during the winter months of 1948-2014 are classified into four regimes by applying a k-means clustering method based on the area-weighted pattern correlation. The earliest precursor signals for two regimes are anticyclonic anomalies, which evolve into Ural and central Siberian blocking-like circulation patterns. The earliest precursor signals for the other two regimes are cyclonic anomalies, both of which evolve to amplify the East Asian trough (EAT). Both the blocking-like circulation patterns and amplified EAT favor the initialization of cold events. On average, the blocking-related regimes tend to last longer. The lead time of the earliest precursor signal for the central Siberian blocking-related regime is only 4 days, while those for the other regimes range from 16 to 18 days. The North Atlantic Oscillation plays essential roles both in triggering the precursor for the Ural blocking-related regime and in amplifying the precursors for all regimes. All regimes preferentially occur during the positive phase of the Eurasian teleconnection pattern and the negative phase of the El Niño-Southern Oscillation. For three regimes, surface cooling is primarily due to reduced downward infrared radiation and enhanced cold advection. For the remaining regime, which is associated with the southernmost cooling center, sensible and latent heat release and horizontal cold advection dominate the East Asian cooling.

  11. Seasonal and interannual variability of chlorophyll-a and associated physical synchronous variability in the western tropical Pacific

    NASA Astrophysics Data System (ADS)

    Hou, Xueyan; Dong, Qing; Xue, Cunjin; Wu, Shuchao

    2016-06-01

    Based on long-term satellite-derived ocean data sets and methods of empirical orthogonal function and singular value decomposition, we investigated the spatiotemporal variability of the chlorophyll-a concentration (CHL) on seasonal and interannual timescales in the western tropical Pacific associated with physical ocean variables of sea surface temperature (SST), sea level anomaly (SLA) and sea surface wind (SSW), and the El Niño Southern Oscillation (ENSO) index. The bio-physical synchronous variation on interannual timescale was also confirmed in terms of the scales of variability and oscillation periods in the time-frequency space using the methods of Fourier transform, Morlet wavelet transform, and wavelet coherence analysis. On a seasonal timescale, the first two modes of the monthly mean CHL fields described the consecutive spatiotemporal variation in CHL in the western tropical Pacific. CHL reached the maximum during late winter-early spring and minimum during summer-early autumn with the exception of the northeast of Papua New Guinea and the Solomon Islands. The CHL bloom in boreal winter-spring was closely associated with cold SST, high sea level along the North Equatorial Countercurrent meanders, and strong wind. On an interannual timescale, the variability of CHL exhibited a close correlation with SST, SLA, SSW, and ENSO. During El Niño, CHL increased in the oligotrophic western basin of the warm pool associated with cold SST, low SLA, and strong westerly winds but decreased in the mesotrophic eastern basin of the warm pool in association with warm SST, high SLA, and weak easterly trade winds. There may exist time-lag for the bio-physical covariation, i.e., CHL and SST varied simultaneously within 1 month, and CHL variations led SLA by approximately 0-3 months but lagged wind speed by about 1 month. In the time-frequency domain, the interannual variability in CHL and physical ocean variables had high common power, indicating that the variability scales and oscillation periods of CHL were significantly related to these of SST, SLA, and ENSO index. The significant anti-phase relationships were also shown between CHL and SST, CHL and SLA, and CHL and multivariate ENSO index through the wavelet coherence analysis.

  12. Constraining precipitation amount and distribution over cold regions using GRACE

    NASA Astrophysics Data System (ADS)

    Behrangi, A.; Reager, J. T., II; Gardner, A. S.; Fisher, J.

    2017-12-01

    Current quantitative knowledge on the amount and distribution of precipitation in high-elevation and high latitude regions is limited due to instrumental and retrieval shortcomings. Here we demonstrate how that satellite gravimetry (Gravity Recovery and Climate Experiment, GRACE) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger error. We also observed that as near surface temperature decreases products tend to underestimate accumulated precipitation retrieved from GRACE. The analysis performed using various products such as GPCP, GPCC, TRMM, and gridded station data over vast regions in high latitudes and two large endorheic basins in High Mountain Asia. Based on the analysis over High Mountain Asia it was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, GPCP showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basin.

  13. Changes in Timing, Duration, and Symmetry of Molt of Hawaiian Forest Birds

    PubMed Central

    Freed, Leonard A.; Cann, Rebecca L.

    2012-01-01

    Food limitation greatly affects bird breeding performance, but the effect of nutritive stress on molt has barely been investigated outside of laboratory settings. Here we show changes in molting patterns for an entire native Hawaiian bird community at 1650–1900 m elevation on the Island of Hawaii between 1989–1999 and 2000–2006, associated with severe food limitation throughout the year beginning in 2000. Young birds and adults of all species took longer to complete their molt, including months never or rarely used during the 1989–1999 decade. These included the cold winter months and even the early months of the following breeding season. In addition, more adults of most species initiated their molt one to two months earlier, during the breeding season. Suspended molt, indicated by birds temporarily not molting primary flight feathers during the months of peak primary molt, increased in prevalence. Food limitation reached the point where individuals of all species had asymmetric molt, with different primary flight feathers molted on each wing. These multiple changes in molt, unprecedented in birds, had survival consequences. Adult birds captured during January to March, 2000–2004, had lower survival in four of five species with little effect of extended molt. Extended molt may be adaptive for a nutrient stressed bird to survive warm temperatures but not cool winter temperatures that may obliterate the energy savings. The changing molt of Hawaiian birds has many implications for conservation and for understanding life history aspects of molt of tropical birds. PMID:22279547

  14. Quantitative Estimation of the Impact of European Teleconnections on Interannual Variation of East Asian Winter Temperature and Monsoon

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Kim, Hae-Dong

    2014-01-01

    The impact of European teleconnections including the East AtlanticWest Russia (EA-WR), the Scandinavia (SCA), and the East Atlantic (EA) on East Asian winter temperature variability was quantified and compared with the combined effect of the Arctic Oscillation (AO), the Western Pacific (WP), and the El-Nino Southern Oscillation (ENSO), which are originated in the Northern Hemispheric high-latitudes or the Pacific. Three European teleconnections explained 22-25 percent of the total monthly upper-tropospheric height variance over Eurasia. Regression analysis revealed warming by EA-WR and EA and cooling by SCA over mid-latitude East Asia during their positive phase and vice versa. Temperature anomalies were largely explained by the advective temperature change process at the lower troposphere. The average spatial correlation over East Asia (90-180E, 10-80N) for the last 34 winters between observed and reconstructed temperature comprised of AO, WP and ENSO effect (AWE) was approximately 0.55, and adding the European teleconnection components (ESE) to the reconstructed temperature improved the correlation up to approximately 0.64. Lower level atmospheric structure demonstrated that approximately five of the last 34 winters were significantly better explained by ESE than AWE to determine East Asian seasonal winter temperatures. We also compared the impact between EA-WR and AO on the 1) East Asian winter monsoon, 2) cold surge, and 3) the Siberian high. These three were strongly coupled, and their spatial features and interannual variation were somewhat better explained by EA-WR than AO. Results suggest that the EA-WR impact must be treated more importantly than previously thought for a better understanding of East Asian winter temperature and monsoon variability.

  15. Prediction of thermal behavior of pervious concrete pavements in winter.

    DOT National Transportation Integrated Search

    2017-05-15

    Because application of pervious concrete pavement (PCPs) has extended to cold-climate regions of the United States, the safety and : mobility of PCP installations during the winter season need to be maintained. Timely application of salt, anti-icing,...

  16. Is the wide distribution of aspen a result of its stress tolerance?

    Treesearch

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  17. Local atmospheric decoupling in complex topography alters climate change impacts

    Treesearch

    Christopher Daly; David R. Conklin; Michael H. Unsworth

    2009-01-01

    Cold air drainage and pooling occur in many mountain valleys, especially at night and during winter. Local climate regimes associated with frequent cold air pooling have substantial impacts on species phenology, distribution, and diversity. However, little is known about how the degree and frequency of cold air drainage and pooling will respond to a changing climate....

  18. Induction of DREB2A pathway with repression of E2F, Jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation specific freeze resistant wheat crown

    USDA-ARS?s Scientific Manuscript database

    Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold acclimation specific processes and pathways, we utilized co...

  19. Projections of Seasonal Patterns in Temperature- Related Deaths for Manhattan, New York

    NASA Technical Reports Server (NTRS)

    Li, Tiantian; Horton, Radley M.; Kinney, Patrick L.

    2013-01-01

    Global average temperatures have been rising for the past half-century, and the warming trend has accelerated in recent decades. Further warming is expected over the next few decades, with significant regional variations. These warming trends will probably result in more frequent, intense and persistent periods of hot temperatures in summer, and generally higher temperatures in winter. Daily death counts in cities increase markedly when temperatures reach levels that are very high relative to what is normal in a given location. Relatively cold temperatures also seem to carry risk. Rising temperatures may result in more heat-related mortality but may also reduce cold-related mortality, and the net impact on annual mortality remains uncertain. Here we use 16 downscaled global climate models and two emissions scenarios to estimate present and future seasonal patterns in temperature-related mortality in Manhattan, New York. All 32 projections yielded warm-season increases and cold-season decreases in temperature-related mortality, with positive net annual temperature-related deaths in all cases. Monthly analyses showed that the largest percentage increases may occur in May and September. These results suggest that, over a range of models and scenarios of future greenhouse gas emissions, increases in heat-related mortality could outweigh reductions in cold-related mortality, with shifting seasonal patterns.

  20. Achoo! Cold, Flu, or Something Else? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Flu, or Something Else? Follow us Achoo! Cold, Flu, or Something Else? Photo: iStock Winter and early ... over-the-counter medicines to ease symptoms. Seasonal Flu Symptoms usually last one to two weeks. Include ...

  1. Mangrove species' responses to winter air temperature extremes in China

    USGS Publications Warehouse

    Chen, Luzhen; Wang, Wenqing; Li, Qingshun Q.; Zhang, Yihui; Yang, Shengchang; Osland, Michael J.; Huang, Jinliang; Peng, Congjiao

    2017-01-01

    The global distribution and diversity of mangrove forests is greatly influenced by the frequency and intensity of winter air temperature extremes. However, our understanding of how different mangrove species respond to winter temperature extremes has been lacking because extreme freezing and chilling events are, by definition, relatively uncommon and also difficult to replicate experimentally. In this study, we investigated species-specific variation in mangrove responses to winter temperature extremes in China. In 10 sites that span a latitudinal gradient, we quantified species-specific damage and recovery following a chilling event, for mangrove species within and outside of their natural range (i.e., native and non-native species, respectively). To characterize plant stress, we measured tree defoliation and chlorophyll fluorescence approximately one month following the chilling event. To quantify recovery, we measured chlorophyll fluorescence approximately nine months after the chilling event. Our results show high variation in the geographic- and species-specific responses of mangroves to winter temperature extremes. While many species were sensitive to the chilling temperatures (e.g., Bruguiera sexangula and species in the Sonneratia and Rhizophora genera), the temperatures during this event were not cold enough to affect certain species (e.g., Kandelia obovata, Aegiceras corniculatum, Avicennia marina, and Bruguiera gymnorrhiza). As expected, non-native species were less tolerant of winter temperature extremes than native species. Interestingly, tidal inundation modulated the effects of chilling. In comparison with other temperature-controlled mangrove range limits across the world, the mangrove range limit in China is unique due to the combination of the following three factors: (1) Mangrove species diversity is comparatively high; (2) winter air temperature extremes, rather than means, are particularly intense and play an important ecological role; and (3) due to afforestation and restoration efforts, several species of non-native mangroves have been introduced beyond their natural range limits. Hence, from a global perspective, mangroves in China provide valuable opportunities to advance understanding of the effects of freezing and chilling temperatures on mangroves. Within the context of climate change, our findings provide a foundation for better understanding and preparing for mangrove species-specific responses to future changes in the duration and intensity of winter temperature extremes.

  2. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant.

    PubMed

    Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian

    2018-09-01

    In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Fauzi, R. R.; Hidayat, R.

    2018-05-01

    Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.

  4. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT.

    PubMed

    Wang, Yu; Bian, Jianmin; Zhao, Yongsheng; Tang, Jie; Jia, Zhuo

    2018-02-05

    The source area of Liao River is a typical cold region in northeastern China, which experiences serious problems with agricultural nonpoint source pollution (NPS), it is important to understand future climate change impacts on NPS in the watershed. This issue has been investigated by coupling semi distributed hydrological model (SWAT), statistical downscaling model (SDSM) and global circulation model (GCMs). The results show that annual average temperature would rise by 2.1 °C (1.3 °C) in the 2080 s under scenario RCP8.5 (RCP4.5), and annual precipitation would increase by 67 mm (33 mm). The change in winter temperature and precipitation is most significant with an increase by 0.23 °C/10a (0.17 °C/10a) and 1.94 mm/10a (2.78 mm/10a). The future streamflow, TN and TP loads would decrease by 19.05% (10.59%), 12.27% (8.81%) and 10.63% (6.11%), respectively. Monthly average streamflow, TN and TP loads would decrease from March to November, and increase from December to February. This is because the increased precipitation and temperature in winter, which made the spring snowpack melting earlier. These study indicate the trends of nonpoint source pollution during the snowmelt period under climate change conditions, accordingly adaptation measures will be necessary.

  5. Extremely cold events and sudden air temperature drops during winter season in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Crhová, Lenka; Valeriánová, Anna; Holtanová, Eva; Müller, Miloslav; Kašpar, Marek; Stříž, Martin

    2014-05-01

    Today a great attention is turned to analysis of extreme weather events and frequency of their occurrence under changing climate. In most cases, these studies are focused on extremely warm events in summer season. However, extremely low values of air temperature during winter can have serious impacts on many sectors as well (e.g. power engineering, transportation, industry, agriculture, human health). Therefore, in present contribution we focus on extremely and abnormally cold air temperature events in winter season in the Czech Republic. Besides the seasonal extremes of minimum air temperature determined from station data, the standardized data with removed annual cycle are used as well. Distribution of extremely cold events over the season and the temporal evolution of frequency of occurrence during the period 1961-2010 are analyzed. Furthermore, the connection of cold events with extreme sudden temperature drops is studied. The extreme air temperature events and events of extreme sudden temperature drop are assessed using the Weather Extremity Index, which evaluates the extremity (based on return periods) and spatial extent of the meteorological extreme event of interest. The generalized extreme value distribution parameters are used to estimate return periods of daily temperature values. The work has been supported by the grant P209/11/1990 funded by the Czech Science Foundation.

  6. Factors contributing to deep supercooling capability and cold survival in dwarf bamboo (Sasa senanensis) leaf blades.

    PubMed

    Ishikawa, Masaya; Oda, Asuka; Fukami, Reiko; Kuriyama, Akira

    2014-01-01

    Wintering Sasa senanensis, dwarf bamboo, is known to employ deep supercooling as the mechanism of cold hardiness in most of its tissues from leaves to rhizomes. The breakdown of supercooling in leaf blades has been shown to proceed in a random and scattered manner with a small piece of tissue surrounded by longitudinal and transverse veins serving as the unit of freezing. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels (LT20: the lethal temperature at which 20% of the leaf blades are injured) seasonally increased from August (-11°C) to December (-20°C). This coincided with the increases in supercooling capability of the leaf blades as expressed by the initiation temperature of low temperature exotherms (LTE) detected in differential thermal analyses (DTA). When leaf blades were stored at -5°C for 1-14 days, there was no nucleation of the supercooled tissue units either in summer or winter. However, only summer leaf blades suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20°C), a longer storage period (1-7 days) increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units. LTE were shifted to higher temperatures (2-5°C) after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as development of sclerenchyma and biochemical mechanisms to increase the stability of supercooling are considered important. These mechanisms are discussed in regard to ecological and physiological significance in winter survival.

  7. Accidental hypothermia and death from cold in urban areas

    NASA Astrophysics Data System (ADS)

    Tanaka, Masatoshi; Tokudome, Shogo

    1991-12-01

    Hypothermia is considered a sericus problem in big cities. In order to clarify factors contributing to urban hypothermia and death from cold which will continue to be an issue in cities in the future, we analyzed autopsy reports recorded in the Tokyo Medical Examiner's Office from 1974 to 1983. In a total of 18346 autopsy reports 157 deaths had been diagnosed as due to exposure to cold. Of these cases, the greatest number were males in their forties and fifties, and most of these were inebriated and/or homeless. Eighty-four perent of urban hypothermia cases occurred when the outdoor temperature was below 5°C, and 50% of deaths from cold occurred when the outdoor temperature was between 0° and 5°C. There were no incidences of death from cold when the minimum outdoor temperature had remained above 16°C. Seventy-four percent of deaths from cold occurred during the winter months of December, January and February, and most of the remaining deaths occurred in March and November. There were no deaths from cold from June to August. More than half of all deaths from cold occurred from 3.00 a.m. to 9.00 a.m., with the peak occurring at 5.00 a.m. A blood alcohol concentration of over 2.5 mg/ml had often been found in those in their forties and fifties who had died from hypothermia, and autopsy had often revealed disorders of the liver, digestive system, and circulatory system. Chronic lesions of the liver, probably due to alcoholism, were found in many cases; few cases showed no evidence of alcoholism and these were significantly different from the former group.

  8. Deficit irrigation strategies and wine grape cold hardiness

    USDA-ARS?s Scientific Manuscript database

    Winter survival of winegrapes grown at northern latitudes depends upon the ability of dormant tissue to withstand low temperature exposure and acclimate to winter temperature fluctuations. Deficit irrigation is used extensively in arid wine grape production regions to manage growth for improved grap...

  9. Assessment of long-term monthly and seasonal trends of warm (cold), wet (dry) spells in Kansas, USA

    NASA Astrophysics Data System (ADS)

    Dokoohaki, H.; Anandhi, A.

    2013-12-01

    A few recent studies have focused on trends in rainfall, temperature, and frost indicators at different temporal scales using centennial weather station data in Kansas; our study supplements this work by assessing the changes in spell indicators in Kansas. These indicators provide the duration between temperature-based (warm and cold) and precipitation-based (wet and dry) spells. For wet (dry) spell calculations, a wet day is defined as a day with precipitation ≥1 mm, and a dry day is defined as one with precipitation ≤1 mm. For warm (cold) spell calculations, a warm day is defined as a day with maximum temperature >90th percentile of daily maximum temperature, and a cold day is defined as a day with minimum temperature <10th percentile of daily minimum temperature. The percentiles are calculated for 1971-2000, and four spell indicators are calculated: Average Wet Spell Length (AWSL), Dry Spell Length (ADSL), Average Warm Spell Days (AWSD) and Average Cold Spell Days (ACSD) are calculated. Data were provided from 23 centennial weather stations across Kansas, and all calculations were done for four time periods (through 1919, 1920-1949, 1950-1979, and 1980-2009). The definitions and software provided by Expert Team on Climate Change Detection and Indices (ETCCDI) were adapted for application to Kansas. The long- and short-term trends in these indices were analyzed at monthly and seasonal timescales. Monthly results indicate that ADSL is decreasing and AWSL is increasing throughout the state. AWSD and ACSD both showed an overall decreasing trend, but AWSD trends were variable during the beginning of the Industrial Revolution. Results of seasonal analysis revealed that the fall season recorded the greatest increasing trend for ACSD and the greatest decreasing trend for AWSD across the whole state and during all time periods. Similarly, the greatest increasing and decreasing trends occurred in winter for AWSL and ADSL, respectively. These variations can be important indicators of climatic change that may not be represented in mean conditions. Detailed geographical and temporal variations of the spell indices also can be beneficial for updating management decisions and providing adaptation recommendations for local and regional agricultural production.

  10. High Time Resolution Measurements of VOCs from Vehicle Cold Starts: The Air Toxic Cold Start Pulse

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Huangfu, Y.; Vanderschelden, G. S.

    2017-12-01

    Pollutants emitted during motor vehicle cold starts, especially in winter in some climates, is a significant source of winter time air pollution. While data exist for CO, NO, and total hydrocarbon emissions from federal testing procedures for vehicle emission certification, little is known about the emission rates of individual volatile organic compounds, in particular the air toxics benzene, formaldehyde, and acetaldehyde. Little is known about the VOC speciation and temperature dependence for cold starts. The US EPA vehicle emission model MOVES assumes that cold start emissions have the same speciation profile as running emissions. We examined this assumption by measuring cold start exhaust composition for 4 vehicles fueled with E10 gasoline over a temperature range of -4°C to 10°C in winter of 2015. The extra cold start emissions were determined by comparison with emissions during engine idling. In addition to CO and NOx measurements a proton transfer reaction mass spectrometer was used to measure formaldehyde, acetaldehyde, benzene, toluene, and C2-alkylbenzenes at high time resolution to compare with the cold start emission speciation profiles used in the EPA MOVES2014 model. The results show that after the vehicle was started, CO mixing ratios can reach a few percent of the exhaust and then drop to several ppmv within 2 minutes of idling, while NOx showed different temporal behaviors among the four vehicles. VOCs displayed elevated levels during cold start and the peak mixing ratios can be two orders higher than idling phase levels. Molar emission ratios relative to toluene were used to compare with the emission ratio used in MOVES2014 and we found the formaldehyde-to-toluene emission ratio was about 0.19, which is 5 times higher than the emission ratio used in MOVES2014 and the acetaldehyde-to-toluene emission ratios were 0.86-0.89, which is 8 times higher than the ones in MOVES2014. The C2-alkylbenzene-to-toluene ratio agreed well with moves. Our results suggest that for the air toxics acetaldehyde and formaldehyde, wintertime cold temperature vehicle start emissions are likely significantly underestimated in the MOVES 2014 model.

  11. Cold Tolerance of Mountain Pine Beetle (Coleoptera: Curculionidae) Eggs From the Historic and Expanded Ranges.

    PubMed

    Bleiker, K P; Smith, G D; Humble, L M

    2017-10-01

    Winter mortality is expected to be a key factor determining the ability of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), to expand its range in Canada. We determined the mortality rate and supercooling points of eggs from the beetle's historic range in southern British Columbia as well as the recently expanded range in north-central Alberta and tested if eggs require an extended period of chilling to reach their maximum cold tolerance. We found no effect of population source or acclimation time on egg cold tolerance. Although 50% of eggs can survive brief exposure to -20.5 °C (LT50), storage at 0.3 °C and -7.5 °C for 59 d resulted in 50% and 100% mortality, respectively. Our results indicate that eggs suffer significant prefreeze mortality and are not well-adapted to overwintering: eggs are unlikely to survive winter throughout much of the beetle's range. Our results provide information that can be used to help model the climatic suitability of mountain pine beetle, including how changes in seasonality associated with new or changing climates may affect winter survival. In addition to lower lethal temperatures, it is critical that the duration of exposure to sublethal cold temperatures are considered in a comprehensive index of cold tolerance and incorporated into survival and population models. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Dense Winter Water Mass Formation In The Northwestern Pacific Marginal Seas:

    NASA Astrophysics Data System (ADS)

    Talley, L.; Lobanov, V.; Tishchenko, P.; Shcherbina, A.; Rudnick, D.; Salyuk, A.; Sagalaev, S.; Ponomarev, V.; Zhabin, I.

    Two separate winter water mass formation experiments were carried out in the north- western Pacific. The Japan/East Sea (JES) is well-ventilated to the bottom (3500 m depth), and is much better ventilated than the adjacent North Pacific at the same depth and density. Winter data from 1999 and 2000 show that the JES is one of the few sites in the world with deep winter convection, and that convection in the JES has many similarities to convection in the Mediterranean. It was shown previously that deep oxygen in the JES has been declining over many decades, suggesting that ventilation was more vigorous early in the 20th century than in recent decades. Nevertheless, the presence of significant oxygen and chlorofluorocarbons to the JES bottom suggests ongoing ventilation. In winter, 1999, a first late-winter survey of the northern JES included one hydrographic station with evidence of open-ocean convection to about 1100 meters in the cold air outbreak region south of Vladivostok, and weak evidence of brine rejection under ice formation in Peter the Great Bay (shelf near Vladivos- tok). Topography and the presence of a semi-permanent anticyclonic eddy and the subpolar front delineate the convection region, which is in the path of strong northerly winter winds. Persistently colder conditions in winter 2000, including Vladivostok air temperatures colder than any other year since 1976 and SST -2C below normal in the northern Japan Sea, showed widespread convection. Significant bottom water was created through brine rejection in Peter the Great Bay and was found the base of the continental slope south of Vladivostok. Ventilation of North Pacific Intermediate Water occurs in the Okhotsk Sea, through brine rejection during sea ice formation, in polynyas on the northwest shelf. Moored observations on the shelf during winter 1999-2000 showed the creation of dense shelf water at 26.95 sigma_theta and clear evidence of brine rejection through the winter. The 1999 deployment hydrographic survey shows cold, dense water from the shelf at 26.95 sigma_theta. The lower density shelf water in June 2000 compared with Septem- ber 1999 is consistent with the reduced severity of winter 2000. Outflow of the densest cold water of shelf origin in both the 1999 and 2000 CTD surveys was located slightly inshore of the axis of the deepest channel between Sakhalin and Kashevarov Bank.

  13. Calcium addition at the Hubbard Brook Experimental Forest reduced winter injury to red spruce in a high-injury year

    Treesearch

    Gary J. Hawley; Paul G. Schaberg; Christopher Eagar; Catherine H. Borer

    2006-01-01

    Laboratory experiments have verified that acid-deposition-induced calcium (Ca) leaching reduces the foliar cold tolerance of red spruce (Picea rubens Sarg.) current-year foliage, increasing the risk of winter injury and crown deterioration. However, to date no studies have shown that ambient losses in soil Ca have resulted in increased winter injury...

  14. Cold acclimation and overwintering of female Aedes albopictus in Roma.

    PubMed

    Romi, Roberto; Severini, Francesco; Toma, Luciano

    2006-03-01

    Eight years after the introduction and establishment of Aedes albopictus in Roma, females of the species extended their trophic activity to the coldest months of the year. Winter monitoring carried out from December 2003 to March 2004 in the urban area of the capital city of Italy recorded a weekly rate of positive ovitraps constantly around 30%, for the entire period of surveillance (14 wk). Eggs from ovitraps did not hatch when stimulated in laboratory with a wet and dry procedure. The hypothesis that long-lived female Ae. albopictus, belonging to the last seasonal generation, could have continued their trophic activity for 3 months, or that 1 or more cycles of reproduction have occurred in peculiar breeding sites, where a favorable microclimate may have allowed the development of at least 1 larval generation, are discussed and compared with the existing literature.

  15. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival.

    PubMed

    Shearer, Peter W; West, Jessica D; Walton, Vaughn M; Brown, Preston H; Svetec, Nicolas; Chiu, Joanna C

    2016-03-22

    As global climate change and exponential human population growth intensifies pressure on agricultural systems, the need to effectively manage invasive insect pests is becoming increasingly important to global food security. Drosophila suzukii is an invasive pest that drastically expanded its global range in a very short time since 2008, spreading to most areas in North America and many countries in Europe and South America. Preliminary ecological modeling predicted a more restricted distribution and, for this reason, the invasion of D. suzukii to northern temperate regions is especially unexpected. Investigating D. suzukii phenology and seasonal adaptations can lead to a better understanding of the mechanisms through which insects express phenotypic plasticity, which likely enables invasive species to successfully colonize a wide range of environments. We describe seasonal phenotypic plasticity in field populations of D. suzukii. Specifically, we observed a trend of higher proportions of flies with the winter morph phenotype, characterized by darker pigmentation and longer wing length, as summer progresses to winter. A laboratory-simulated winter photoperiod and temperature (12:12 L:D and 10 °C) were sufficient to induce the winter morph phenotype in D. suzukii. This winter morph is associated with increased survival at 1 °C when compared to the summer morph, thus explaining the ability of D. suzukii to survive cold winters. We then used RNA sequencing to identify gene expression differences underlying seasonal differences in D. suzukii physiology. Winter morph gene expression is consistent with known mechanisms of cold-hardening such as adjustments to ion transport and up-regulation of carbohydrate metabolism. In addition, transcripts involved in oogenesis and DNA replication were down-regulated in the winter morph, providing the first molecular evidence of a reproductive diapause in D. suzukii. To date, D. suzukii cold resistance studies suggest that this species cannot overwinter in northern locations, e.g. Canada, even though they are established pests in these regions. Combining physiological investigations with RNA sequencing, we present potential mechanisms by which D. suzukii can overwinter in these regions. This work may contribute to more accurate population models that incorporate seasonal variation in physiological parameters, leading to development of better management strategies.

  16. Phenology and drivers of the winter-spring phytoplankton bloom in the open Black Sea: The application of Sverdrup's hypothesis and its refinements

    NASA Astrophysics Data System (ADS)

    Mikaelyan, Alexander S.; Chasovnikov, Valeriy K.; Kubryakov, Arseny A.; Stanichny, Sergey V.

    2017-02-01

    The phenology of the winter-spring phytoplankton bloom in the Black Sea was investigated on the basis of the satellite-derived chlorophyll concentration (Chl) for the recent 18-year period. Data for the 8-day Chl were analysed, together with changes in the nutrient concentration, sea surface temperature (SST), photosynthetically available radiation, wind velocity and duration. Based on Sverdrup's Critical Depth hypothesis and its recent refinements, the Pulsing-Bloom hypothesis was proposed for the highly stratified waters of the Black Sea. This hypothesis relates the biological response to physical forcing and chemical fluxes to the photic zone and predicts the pulsing growth of phytoplankton and different patterns of phytoplankton changes in the upper layer in winter-spring during cold and regular years. The hypothesis was supported by Chl dynamics and several Chl peaks were observed during winter-spring. Normally, the highest Chl occurred in winter and a spring peak was absent, whereas in cold years, a relatively low Chl in winter was followed by a spring bloom. These events were observed only in 15% of cases and the magnitude of the bloom was associated with the intensity of winter convection that was revealed by the negative inter-annual correlation between the March Chl and the February SST. In contrast, the February Chl was positively correlated with the SST. The proposed hypothesis provides an explanation of this phenomenon on the basis of an alternation between the low-turbulence and deep-mixing regimes. This mechanism was confirmed by the positive relationships between Chl and the duration of light wind during the current period and strong wind in the previous period. Inorganic nitrogen was depleted disproportionately during the winter-spring, whereas the phosphate concentration remained relatively high. Following a cold winter, the highest phosphate concentration and extremely low nitrogen-to-phosphorus molar ratios (2) were observed in the upper 25-m layer in late spring. The regular absence of spring blooms might represent one of the consequences of the regional climate change.

  17. Cold Fronts in RegCM/HadGEM simulations over South America

    NASA Astrophysics Data System (ADS)

    Pampuch, Luana; Marcos de Jesus, Eduardo; Porfírio da Rocha, Rosmeri; Ambrizzi, Tércio

    2017-04-01

    Cold front is one of the most important systems that contribute for precipitation over South America. The representation of this system in climate models is important for a better representation of the precipitation. The Regional Climate Model RegCM is widely used for climate studies in South America, being important to understand how this model represents the cold fronts. A climatology (from 1979-2004) of the number of cold fronts in each season for RegCM4 simulations over South America CORDEX domain nested in HadGEM2-ES. The simulated climatology was compared with ERA-Interim reanalysis cold fronts climatology over the South America and adjacent South Atlantic Ocean. The cold fronts tracking for the model and the reanalysis were performed using an objective methodology based on decrease of air temperature in 925hPa, shift of meridional wind in 925hPa from northern to southern quadrant and increased in sea level pressure. The main differences were observed on summer and winter. On summer the model overestimate the number of cold fronts over southeastern South America and adjacent Atlantic Ocean; and underestimate it over central-south Argentina and Atlantic Ocean. On winter, the signs were opposite of that summer. On autumn and spring the differences were smaller and occurs mainly over all South Atlantic and north Argentina.

  18. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard.

    PubMed

    Campbell-Staton, Shane C; Cheviron, Zachary A; Rochette, Nicholas; Catchen, Julian; Losos, Jonathan B; Edwards, Scott V

    2017-08-04

    Extreme environmental perturbations offer opportunities to observe the effects of natural selection in wild populations. During the winter of 2013-2014, the southeastern United States endured an extreme cold event. We used thermal performance, transcriptomics, and genome scans to measure responses of lizard populations to storm-induced selection. We found significant increases in cold tolerance at the species' southern limit. Gene expression in southern survivors shifted toward patterns characteristic of northern populations. Comparing samples before and after the extreme winter, 14 genomic regions were differentiated in the surviving southern population; four also exhibited signatures of local adaptation across the latitudinal gradient and implicate genes involved in nervous system function. Together, our results suggest that extreme winter events can rapidly produce strong selection on natural populations at multiple biological levels that recapitulate geographic patterns of local adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    NASA Astrophysics Data System (ADS)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover, which prevents cooling. Reina Sofia shows a very different behavior from the other sites, with a frequent stabilization of ground temperatures during all the winters, and last until late-fall. This situation could be related to the structure, and physical and thermal properties of snow cover. The analysis of the Freezing Degree Days (FDDs) and freezing n-factor reveals significant interannual variations. Ohridski shows the highest FDDs values followed by Reina Sofia. Nuevo Incinerador showed the lowest FDDs values. The freezing n-factor shows highest values at Ohridski, followed by Collado Ramos and Reina Sofia with very similar values. Nuevo Incinerador shows the lowest n-factor values. Snow cover doesn't insulate the ground from freezing, but depending on its thickness, density and the amount of heat in the ground, it decreases ground temperatures amplitudes and increases delays relative to air temperature changes. Even where snow cover remains several centimeters thick for several months, slow decrease of bottom temperature is possible, reaching a minimum value at the end of the winter. The results demonstrate that Reina Sofia and Ohridski sites, because of the seasonal behavior, FDDs and freezing n-factor, demonstrate higher winter ground cooling. This research was funded by PERMANTAR-3 (PTDC/AAG-GLO/3908/2012) project (Fundação para a Ciência e a Tecnologia of Portugal)

  20. Mortality of shallow reef corals in the western Arabian Gulf following aerial exposure in winter

    NASA Astrophysics Data System (ADS)

    Fadlallah, Y. H.; Allen, K. W.; Estudillo, R. A.

    1995-05-01

    Aerial exposure of patch reef corals occurred in Tarut Bay, western Arabian Gulf, (Saudi Arabia) between December 1991 and May 1992, and coincided with extreme low spring tides (below the predicted lowest astronomical tide-LAT). Colonies of Acropora and Stylophora occurring at the highest levels on the tops of patch reef platforms were most affected by the low tides. Corals fully exposed to air suffered total mortality, whereas those not fully exposed suffered tissue damage to their upper parts. Exposure occurred during winter months when air and water temperatures are at their lowest in the gulf. Coupling of extremely low spring tides with wind-induced negative surges (below LAT) are not regular events but are not infrequent. Cold temperatures and exposure may act in concert to produce disproportionate mortalities of reef flat corals in the shallow coastal areas of eastern Saudi Arabia. It is highly unlikely that the Gulf War oil spill played any role in the observed damage to reef corals in the Gulf in 1992.

  1. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  2. Nuclear winter or nuclear fall?

    NASA Astrophysics Data System (ADS)

    Berger, André

    Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.

  3. Development of a model system to identify differences in spring and winter oat.

    PubMed

    Chawade, Aakash; Lindén, Pernilla; Bräutigam, Marcus; Jonsson, Rickard; Jonsson, Anders; Moritz, Thomas; Olsson, Olof

    2012-01-01

    Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding.

  4. Subcellular distribution of raffinose oligosaccharides and other metabolites in summer and winter leaves of Ajuga reptans (Lamiaceae).

    PubMed

    Findling, Sarah; Zanger, Klaus; Krueger, Stephan; Lohaus, Gertrud

    2015-01-01

    In Ajuga reptans, raffinose oligosaccharides accumulated during winter. Stachyose, verbascose, and higher RFO oligomers were exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. The evergreen labiate Ajuga reptans L. can grow at low temperature. The carbohydrate metabolism changes during the cold phase, e.g., raffinose family oligosaccharides (RFOs) accumulate. Additionally, A. reptans translocates RFOs in the phloem. In the present study, subcellular concentrations of metabolites were studied in summer and winter leaves of A. reptans to gain further insight into regulatory instances involved in the cold acclimation process and into the function of RFOs. Subcellular metabolite concentrations were determined by non-aqueous fractionation. Volumes of the subcellular compartments of summer and winter leaves were analyzed by morphometric measurements. The metabolite content varied strongly between summer and winter leaves. Soluble metabolites increased up to tenfold during winter whereas the starch content was decreased. In winter leaves, the subcellular distribution showed a shift of carbohydrates from cytoplasm to vacuole and chloroplast. Despite this, the metabolite concentration was higher in all compartments in winter leaves compared to summer leaves because of the much higher total metabolite content in winter leaves. The different oligosaccharides did show different compartmentations. Stachyose, verbascose, and higher RFO oligomers were almost exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. Apparently, the subcellular distribution of the RFOs differs because they fulfill different functions in plant metabolism during winter. Raffinose might function in protecting chloroplast membranes during freezing, whereas higher RFO oligomers may exert protective effects on vacuolar membranes. In addition, the high content of RFOs in winter leaves may also result from reduced consumption of assimilates.

  5. Operational forecasting of daily temperatures in the Valencia Region. Part II: minimum temperatures in winter.

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  6. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat.

    PubMed

    Zhu, Jie; Pearce, Stephen; Burke, Adrienne; See, Deven Robert; Skinner, Daniel Z; Dubcovsky, Jorge; Garland-Campbell, Kimberly

    2014-05-01

    The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.

  7. Event attribution: Human influence on the record-breaking cold event in January of 2016 in Eastern China

    NASA Astrophysics Data System (ADS)

    Qian, C.; Wang, J.; Dong, S.; Yin, H.; Burke, C.; Ciavarella, A.; Dong, B.; Freychet, N.; Lott, F. C.; Tett, S. F.

    2017-12-01

    It is controversial whether Asian mid-latitude cold surges are becoming more likely as a consequence of Arctic warming. Here, we present an event attribution study in mid-latitude Eastern China. A strong cold surge occurred during 21st-25th January 2016 affecting most areas of China, especially Eastern China. Daily minimum temperature (Tmin) records were broken at many stations. The area averaged anomaly of Tmin over the region (20-44N, 100-124E) for this pentad was the lowest temperature recorded since modern meteorological observations started in 1960. This cold event occurred in a background of the warmest winter Tmin since 1960. Given the vast damages caused by this extreme cold event in Eastern China and the previous mentioned controversy, it is compelling to investigate how much anthropogenic forcing agents have affected the probability of cold events with an intensity equal to or larger than the January 2016 extreme event. We use the Met Office Hadley Centre system for Attribution of extreme weather and Climate Events and station observations to investigate the effect of anthropogenic forcings on the likelihood of such a cold event. Anthropogenic influences are estimated to have reduced the likelihood of an extreme cold event in mid-winter with the intensity equal to or stronger than the record of 2016 in Eastern China by about 2/3.

  8. Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation

    PubMed Central

    Kurepin, Leonid V.; Dahal, Keshav P.; Savitch, Leonid V.; Singh, Jas; Bode, Rainer; Ivanov, Alexander G.; Hurry, Vaughan; Hüner, Norman P. A.

    2013-01-01

    Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways. PMID:23778089

  9. Relative roles of temperature and photoperiod as drivers of metabolic flexibility in dark-eyed juncos.

    PubMed

    Swanson, David; Zhang, Yufeng; Liu, Jin-Song; Merkord, Christopher L; King, Marisa O

    2014-03-15

    Seasonal phenotypic flexibility in small birds produces a winter phenotype with elevated maximum cold-induced metabolic rates (=summit metabolism, Msum). Temperature and photoperiod are candidates for drivers of seasonal phenotypes, but their relative impacts on metabolic variation are unknown. We examined photoperiod and temperature effects on Msum, muscle masses and activities of key catabolic enzymes in winter dark-eyed juncos (Junco hyemalis). We randomly assigned birds to four treatment groups varying in temperature (cold=3°C; warm=24°C) and photoperiod [short day (SD)=8 h:16 h light:dark; long day (LD)=16 h:8 h light:dark] in a two-by-two design. We measured body mass (Mb), flight muscle width and Msum before and after 3 and 6 weeks of acclimation, and flight muscle and heart masses after 6 weeks. Msum increased for cold-exposed, but not for warm-exposed, birds. LD birds gained more Mb than SD birds, irrespective of temperature. Flight muscle size and mass did not differ significantly among groups, but heart mass was larger in cold-exposed birds. Citrate synthase, carnitine palmitoyl transferase and β-hydroxyacyl Co-A dehydrogenase activities in the pectoralis were generally higher for LD and cold groups. The cold-induced changes in Msum and heart mass parallel winter changes for small birds, but the larger Mb and higher catabolic enzyme activities in LD birds suggest photoperiod-induced changes associated with migratory disposition. Temperature appears to be a primary driver of flexibility in Msum in juncos, but photoperiod-induced changes in Mb and catabolic enzyme activities, likely associated with migratory disposition, interact with temperature to contribute to seasonal phenotypes.

  10. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests

    DOE PAGES

    Chan, Allison M.; Bowling, David R.

    2017-05-26

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less

  11. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Allison M.; Bowling, David R.

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less

  12. Nitrogen reserves, spring regrowth and winter survival of field-grown alfalfa (Medicago sativa) defoliated in the autumn.

    PubMed

    Dhont, Catherine; Castonguay, Yves; Nadeau, Paul; Bélanger, Gilles; Drapeau, Raynald; Laberge, Serge; Avice, Jean-Christophe; Chalifour, François-P

    2006-01-01

    The objective of the study was to characterize variations in proline, arginine, histidine, vegetative storage proteins, and cold-inducible gene expression in overwintering roots of field-grown alfalfa, in response to autumn defoliation, and in relation to spring regrowth and winter survival. Field trials, established in 1996 in eastern Canada, consisted of two alfalfa cultivars ('AC Caribou' and 'WL 225') defoliated in 1997 and 1998 either only twice during the summer or three times with the third defoliation taken 400, 500 or 600 growing degree days (basis 5 degrees C) after the second summer defoliation. The root accumulation of proline, arginine, histidine and soluble proteins of 32, 19 and 15 kDa, characterized as alfalfa vegetative storage proteins, was reduced the following spring by an early autumn defoliation at 400 or 500 growing degree days in both cultivars; the 600-growing-degree-days defoliation treatment had less or no effect. Transcript levels of the cold-inducible gene msaCIA, encoding a glycine-rich protein, were markedly reduced by autumn defoliation in 'WL 225', but remained unaffected in the more winter-hardy cultivar 'AC Caribou'. The expression of another cold-inducible gene, the dehydrin homologue msaCIG, was not consistently affected by autumn defoliation. Principal component analyses, including components of root organic reserves at the onset of winter, along with yield and plant density in the following spring, revealed that (a) amino acids and soluble proteins are positively related to the vigour of spring regrowth but poorly related to winter survival and (b) winter survival, as indicated by plant density in the spring, is associated with higher concentrations of cryoprotective sugars in alfalfa roots the previous autumn. An untimely autumn defoliation of alfalfa reduces root accumulation of specific N reserves such as proline, arginine, histidine and vegetative storage proteins that are positively related to the vigour of spring regrowth but poorly related to winter survival.

  13. Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening: phenology, cold tolerance, photosynthesis and growth.

    PubMed

    Bigras, F J; Bertrand, A

    2006-07-01

    Seedlings from a northern and a southern provenance of black spruce (Picea mariana Mill. BSP) from eastern Canada were exposed to 37 or 71 Pa of carbon dioxide (CO2) during growth, cold hardening and dehardening in a greenhouse. Bud phenology, cold tolerance and photosynthetic efficiency were assessed during the growing and over-wintering periods. Bud set occurred earlier in elevated [CO2] than in ambient [CO2], but it was later in the southern provenance than in the northern provenance. An increase in seedling cold tolerance in early fall was related to early bud set in elevated [CO2]. Maximal photosystem II (PSII) photochemical efficiency (F(v)/F(m)), effective quantum yield (phi(PSII)), photochemical quenching (q(P)), light-saturated photosynthesis (Amax), apparent quantum efficiency (alpha'), light-saturated rate of carboxylation (Vcmax) and electron transport (Jmax) decreased during hardening and recovered during dehardening. Although Amax and alpha' were higher in elevated [CO2] when measured at the growth [CO2], down-regulation of photosynthesis occurred in elevated [CO2] as shown by lower F(v)/F(m), phi(PSII), Vcmax and Jmax. Elevated [CO2] reduced gene expression of the small subunit of Rubisco and also decreased chlorophyll a/chlorophyll b ratio and nitrogen concentration in needles, confirming our observation of down-regulation of photosynthesis. Elevated [CO2] increased the CO2 diffusion gradient and decreased photorespiration, which may have contributed to enhance Amax despite down-regulation of photosynthesis. Total seedling dry mass was higher in elevated [CO2] than in ambient [CO2] at the end of the growing season. However, because of earlier bud formation and cold hardening, and down-regulation of photosynthesis during fall and winter in elevated [CO2], the treatment difference in dry mass increment was less by the end of the winter than during the growing season. Differences in photosynthetic rate observed during fall, winter and spring account for the inter-annual variations in carbon assimilation of black spruce seedlings: our results demonstrate that these variations need to be considered in carbon budget studies.

  14. A NEW MODEL TO ESTIMATE DAILY ENERGY EXPENDITURE FOR WINTERING WATERFOWL

    EPA Science Inventory

    Activity budgets of wintering waterfowl have been widely used to assess habitat quality. However, when factors such as prey abundance or protection from exposure to cold or wind determine quality, measures of daily energy expenditure (DEE) may be more appropriate for this purpos...

  15. Winter photosynthesis in red spruce (Picea rubens Sarg.): limitations, potential benefits, and risks

    Treesearch

    P.G. Schaberg

    2000-01-01

    Numerous cold-induced changes in physiology limit the capacity of northern conifers to photosynthesize during winter. Studies of red spruce (Picea rubens Sarg.) have shown that rates of field photosynthesis (Pfield) and laboratory measurements of photosynthetic capacity (Pmax) generally parallel seasonal...

  16. COLD TEMPERATURE MOTOR VEHICLE EMISSIONS TESTING IN ALASKA

    EPA Science Inventory

    A motor vehicle emissions testing study was conducted in Anchorage and Fairbanks during the winter of 1998-99 to collect actual measurements of initial idle emission rates. The study was performed for a sample of 111 automobiles and light-duty trucks under cold wintertime ambient...

  17. Comparing Enchytraeus albidus populations from contrasting climatic environments suggest a link between cold tolerance and metabolic activity.

    PubMed

    Žagar, Anamarija; Holmstrup, Martin; Simčič, Tatjana; Debeljak, Barabara; Slotsbo, Stine

    2018-06-06

    Basal metabolic activity and freezing of body fluids create reactive oxygen species (ROS) in freeze-tolerant organisms. These sources of ROS can have an additive negative effect via oxidative stress. In cells, antioxidant systems are responsible for removing ROS in order to avoid damage due to oxidative stress. Relatively little is known about the importance of metabolic rate for the survival of freezing, despite a good understanding of several cold tolerance related physiological mechanisms. We hypothesized that low basal metabolism would be selected for in freeze-tolerant organisms where winter survival is important for fitness for two reasons. First, avoidance of the additive effect of ROS production from metabolism and freezing, and second, as an energy-saving mechanism under extended periods of freezing where the animal is metabolically active, but unable to feed. We used the terrestrial oligochaete, Enchytraeus albidus, which is widely distributed from Spain to the high Arctic and compared eight populations originating across a broad geographical and climatic gradient after they had been cold acclimated at 5 °C in a common garden experiment. Cold tolerance (lower lethal temperature: LT50) and the potential metabolic activity (PMA, an estimator of the maximal enzymatic potential of the mitochondrial respiration chain) of eight populations were positively correlated amongst each other and correlated negatively with latitude and positively with average yearly temperature and the average temperature of the coldest month. These results indicate that low PMA in cold tolerant populations is important for survival in extremely cold environments. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Response of aboveground carbon balance to long-term, experimental enhancements in precipitation seasonality is contingent on plant community type in cold-desert rangelands

    USGS Publications Warehouse

    McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew; Bosworth, Andrew

    2017-01-01

    Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.

  19. Response of aboveground carbon balance to long-term, experimental enhancements in precipitation seasonality is contingent on plant community type in cold-desert rangelands.

    PubMed

    McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew J; Bosworth, Andrew

    2017-03-01

    Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.

  20. Seasonality recorded in Modern and Viking Limpet Shells ( Patella vulgata), Quoygrew, Orkney, UK

    NASA Astrophysics Data System (ADS)

    Surge, D.; Barrett, J. H.; Milner, N.

    2007-12-01

    Climate archives contained in shells of the European limpet, Patella vulgata, from Viking shell middens can potentially provide much needed information about seasonality in mid-latitude coastal areas prior to the complicating effects of industrialization. P. vulgata shells are common in the stratified middens accumulated by the Viking inhabitants of Quoygrew, Orkney, and were likely used for baiting fish. Radiocarbon dates and artifacts place these middens between the 9th/10th and 13th centuries. This interval coincides with the Medieval Warm Period. Little is known about the seasonal temperature variation during this time of pre-industrial warming. Before reconstructing climate information from Viking shells, we determined whether P. vulgata preserves environmental and ecological information. Previous work on live-collected specimens from Whitley Bay near Newcastle-upon-Tyne, England, confirmed that: (1) oxygen isotope ratios served as a proxy for sea surface temperature after accounting for a uniform +1.01 +/-0.21 ‰ offset; and (2) annual growth lines occurred during the winter given this location is within the cold-temperature biogeographic province. Winter growth lines and increments are common growth patterns found in marine bivalves from the cold-temperate province along the western North Atlantic. Preliminary isotope data from the 9th/10th century reveals similar winter and summer temperature relative to today and annual growth lines formed during winter, typical of a cold-temperate habitat.

  1. Dehydration in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Jensen, Eric; Podolske, James; Selkirk, Henry; Anderson, Bruce; Avery, Melody; Diskin. Glenn

    2004-01-01

    Recent work has shown that limited amounts of tropospheric air can penetrate as much as 1 km into the middleworld stratosphere during the arctic winter. This, coupled with temperatures that are cold enough to produce saturation mixing ratios of less than 5 ppmv at the tropopause, results in stratospheric cloud formation and upper tropospheric dehydration. Even though these "cold outbreaks" occupy only a small portion of the area in the arctic (1-2%), their importance is magnified by an order of magnitude because of the air flow through them. This is reinforced by evidence of progressive drying through the winter measured during SOLVE-1. The significance of this process lies in its effect on the upper tropospheric water content of the middle and high latitude tropopause region, which plays an important role in regulating the earth's radiative balance. There appears to be significant year-to-year variability in the incidence of the cold outbreaks. This work has two parts. First, we describe case studies of dehydration taken from the SOLVE and SOLVE2 aircraft sampling missions during the Arctic winters of 2000 and 2003 respectively. Trajectory based microphysical modeling is employed to examine the sensitivity of the dehydration to microphysical parameters and the nature of sub-grid scale temperature fluctuations. We then examine the year-to-year variations in potential dehydration using a trajectory climatology.

  2. The Remarkable 2003-2004 Winter and Other Recent Warm Winters in the Arctic Stratosphere Since the Late 1990s

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Krueger, Kirstin; Sabutis, Joseph L.; Sena, Sara Amina; Pawson, Steven

    2004-01-01

    The 2003-2004 Arctic winter was remarkable in the 40-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly two months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with two previous years, 1984-1985 and 1986-1987, with prolonged mid-winter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over two standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (seven in the past six years) is unprecedented. Lower stratospheric temperatures were unusually high during six of the past seven years, with five having much lower than usual potential for PSC formation and ozone loss (nearly none in 1998-1999, 2001-2002 and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of five of the last seven years with very low PSC potential would be expected to occur randomly once every approximately 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.

  3. Field Investigation of an Air-Source Cold Climate Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith

    In the U.S., there are approximately 2.6 million dwellings that use electricity for heating in cold and very cold regions with an annual energy consumption of 0.16 quads (0.17 EJ). A high performance cold climate heat pump (CCHP) would result in significant savings over current technologies (greater than 60% compared to electric resistance heating). We developed an air-source cold climate heat pump, which uses tandem compressors, with a single compressor rated for the building design cooling load, and running two compressors to provide, at -13 F (-25 C), 75% of rated heating capacity. The tandem compressors were optimized for heatingmore » operation and are able to tolerate discharge temperatures up to 280 F (138 C). A field investigation was conducted in the winter of 2015, in an occupied home in Ohio, USA. During the heating season, the seasonal COP was measured at 3.16, and the heat pump was able to operate down to -13 F (-25 C) and eliminate resistance heat use. The heat pump maintained an acceptable comfort level throughout the heating season. In comparison to a previous single-speed heat pump in the home, the CCHP demonstrated more than 40% energy savings in the peak heating load month. This paper illustrates the measured field performance, including compressor run time, frost/defrosting operations, distributions of building heating load and capacity delivery, comfort level, field measured COPs, etc.« less

  4. Respiratory hospital admissions and weather changes: a retrospective study in Charlottesville, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Davis, Robert E.; Enfield, Kyle B.

    2018-02-01

    In most midlatitude locations, human morbidity and mortality are highly seasonal, with winter peaks driven by respiratory disease and associated comorbidities. But the transition between high and low mortality/morbidity months varies spatially. We use a measure of the thermal biophysical strain imposed on the respiratory system—the Acclimatization Thermal Strain Index (ATSI)—to examine respiratory hospital admissions in Charlottesville, VA. Daily respiratory admissions to the University of Virginia over a 19-year period are compared to ATSI values derived from hourly surface weather data acquired from the Charlottesville airport. Negative ATSI values (associated with transitions from warm (and humid) to cold (and dry) conditions) are related to admission peaks at seasonal and weekly timescales, whereas positive ATSI values (cold to warm) exhibit weaker relationships. This research marks the first application of the ATSI to human morbidity, and results suggest that respiratory strain may account for how people who are acclimated to different climates respond to short-term weather changes.

  5. Respiratory hospital admissions and weather changes: a retrospective study in Charlottesville, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Davis, Robert E.; Enfield, Kyle B.

    2018-06-01

    In most midlatitude locations, human morbidity and mortality are highly seasonal, with winter peaks driven by respiratory disease and associated comorbidities. But the transition between high and low mortality/morbidity months varies spatially. We use a measure of the thermal biophysical strain imposed on the respiratory system—the Acclimatization Thermal Strain Index (ATSI)—to examine respiratory hospital admissions in Charlottesville, VA. Daily respiratory admissions to the University of Virginia over a 19-year period are compared to ATSI values derived from hourly surface weather data acquired from the Charlottesville airport. Negative ATSI values (associated with transitions from warm (and humid) to cold (and dry) conditions) are related to admission peaks at seasonal and weekly timescales, whereas positive ATSI values (cold to warm) exhibit weaker relationships. This research marks the first application of the ATSI to human morbidity, and results suggest that respiratory strain may account for how people who are acclimated to different climates respond to short-term weather changes.

  6. Antarctica: Cooling or Warming?

    NASA Astrophysics Data System (ADS)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  7. Record-breaking Ozone Loss during Arctic Winter 2010/2011: Comparison with Arctic Winter 1996/1997

    NASA Astrophysics Data System (ADS)

    Godin Beekmann, S.; Kuttipurath, J.; Lefèvre, F.; Santee, M. L.; Froidevaux, L.

    2011-12-01

    Polar processing and chemical ozone loss is analysed during the Arctic winter/spring 2010/2011. The analyses with temperatures and potential vorticity (PV) data show a prolonged vortex from early December through mid-April. The PV maps illustrate strong vortex persistence in the lower stratosphere between 450 and 675 K, showing similar evolution with time. The minimum temperatures extracted from ECMWF data at 40-90°N show values below 195 K for a record period of first week of December through second week of April, indicating the longest period of colder temperatures for 17 years. At 10 hPa, there was a warming of about 10 K at 60°N and 40 K at 90°N around mid-January. The heat flux also showed high values in line with the increase in temperatures, of about 425 m K/s at 60°N at the same pressure level. However, the westerlies were strong (e.g. 35-45 m/s at 60°N) enough to keep the vortex intact until mid-April. Because of the cold temperatures in late winter and early spring, large areas of Polar Stratospheric Clouds (PSC) were found in the 400-600 K isentropic level range. Though the maximum values of PSCs area are smaller compared to other cold winters such as 2005, the extended period of presence of PSCs during this winter was exceptional, especially in late February-mid-March, in agreement with the cold temperatures during the period. Ozone loss analyses with high resolution Mimosa-Chim chemical transport model simulations show that the loss started by early January, and was about 0.5 ppmv in late January. The loss progressed slowly to 1 ppmv by the end of February, and then intensified by early March. The ozone depletion estimated by the passive method finds a maximum value of about 2-2.3 ppmv by the end of March-early April in the 450-550K range inside the vortex, which coincides with the areas of PSCs and high chlorine activation. This is the largest loss ever estimated with this model for any Arctic winter. It is consistent with the unprecedented chlorine activation that occurred in the winter, as the modeled ClO values show about 1.7 ppbv in early January and about 1 ppbv in March at 450-550K. This is longest period of chlorine activation noted among the Arctic winters. The ozone partial column loss reaches about 115-150 DU in the range 350 - 550 K. These model results for ozone, ozone loss and ClO are in good agreement with those found from Aura Microwave Limb Sounder observations. Since the winter 1996/1997 was also very cold in March - April, a comparison between both winters 2011 and 1997 will be presented, based on temperature, PV, Heat flux data and ozone loss estimations. Similarities and differences in the polar processing and ozone loss during both winters will be discussed using various measurements and model simulations. Copyright 2011. All rights reserved.

  8. Stephen Jay Gould and the Value of Neutrality of Science During the Cold War.

    PubMed

    Sheldon, Myrna

    2016-12-01

    Stephen Jay Gould was a paleontologist and scientific celebrity at the close of the twentieth century, most famous for his popular writings on evolution and his role in the American creationist controversies of that era. In the early 1980s, Gould was drawn into the "nuclear winter" episode through his friendship with Carl Sagan, an astronomer and popular science celebrity. Sagan helped develop the theory of nuclear winter and subsequently used the theory as evidence to petition the United States government to scale back its nuclear armament. The theory of nuclear winter claimed that even a small nuclear exchange could result in a atmospheric blackening akin to the extinction event of the late Cretaceous. Gould was not a climate scientist but he testified before the U.S. House of Representatives as an expert on historical extinction events. Gould's insistence on the value-neutrality of nuclear winter reveals much about the moral politics of science in late Cold War America. Coming at the heels of leftist scientific activism of the 1980s, the nuclear winter episode demonstrates how value-neutrality emerged the salient feature of scientific involvement in American politics in this period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Bridging among disciplines by synthesizing soil and plant processes (advances in agricultural systems)

    USDA-ARS?s Scientific Manuscript database

    Location specific consequences of GCM projected climate change on over-wintering crops like winter wheat can vary geographically (latitude and longitude) depending on the severity and duration of the cold period and other factors like the altitude, precipitation distribution, and photoperiod. The US...

  10. Grapevine winter survival and prospects in an age of changing climate

    USDA-ARS?s Scientific Manuscript database

    Vines transition from active growth to dormancy by processes controlled by genes, but are greatly influenced by variation in weather conditions - even in the coldest part of the winter. My research program, known as the USDA Cold Hardiness Genetics Research Program, seeks to understand how a vine's...

  11. Diapause and overwintering of two spruce bark beetle species

    Treesearch

    Martin Schebeck; E. Matthew Hansen; Axel Schopf; Gregory J. Ragland; Christian Stauffer; Barbara J. Bentz

    2017-01-01

    Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction ofmetabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology,...

  12. Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula.

    PubMed

    Corcuera, L; Morales, F; Abadía, A; Gil-Pelegrín, E

    2005-05-01

    Quercus ilex L. subsp. ballota (Desf.) Samp., a Mediterranean evergreen species growing in a continental Mediterranean climate, did not experience water stress and showed greater sensitivity to winter stress than to summer stress over a 12-month period. Net CO2 assimilation rates and photosystem II (PSII) efficiency decreased markedly during the cold months and recovered completely in spring. Lutein, neoxanthin and beta-carotene to chlorophyll (Chl) molar ratios all showed the same trend throughout the year, increasing from September to March. This increase was a result of increases in carotenoid concentrations, because Chl concentration per unit leaf area remained stable, and was higher at the end than at the beginning of the first growing season. Lutein-epoxide was a minor component of the total lutein pool. Thermal energy dissipation and non-photochemical quenching (NPQ) were associated with the de-epoxidated forms of the xanthophyll cycle pigments in the warm months. Photosynthetic rates decreased slightly at midday in summer. These changes were accompanied by decreases in maximum potential PSII efficiency (which recovered during the night), actual and intrinsic PSII efficiencies, photochemical quenching and increases in NPQ. Overall, our data indicate down-regulation of photosynthesis during the summer. The diurnal de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin occurred throughout the year, except in January. Antioxidant enzymatic activity increased in the winter months, especially during the coldest months, highlighting its key role in photoprotection against photo-oxidation. Structural and functional modifications protected PSII from permanent damage and allowed 1-year-old leaves to photosynthesize at high rates when temperatures increased in spring.

  13. Deadly Cold: Health Hazards Due to Cold Weather. An Information Paper by the Subcommittee on Health and Long-Term Care of the Select Committee on Aging. House of Representatives, Ninety-Eighth Congress, Second Session (February 1984).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Aging.

    This paper, on the health hazards of cold weather for elderly persons, presents information from various sources on the death rates in winter throughout the United States. After reviewing the scope of the problem, specific health hazards associated with cold weather are discussed, i.e., hypothermia, fires, carbon monoxide poisoning, and influenza…

  14. The Arctic Vortex in March 2011: A Dynamical Perspective

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.

    2011-01-01

    Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.

  15. Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions

    PubMed Central

    Colton-Gagnon, Katia; Ali-Benali, Mohamed Ali; Mayer, Boris F.; Dionne, Rachel; Bertrand, Annick; Do Carmo, Sonia; Charron, Jean-Benoit

    2014-01-01

    Background and Aims Cold is a major constraint for cereal cultivation under temperate climates. Winter-hardy plants interpret seasonal changes and can acquire the ability to resist sub-zero temperatures. This cold acclimation process is associated with physiological, biochemical and molecular alterations in cereals. Brachypodium distachyon is considered a powerful model system to study the response of temperate cereals to adverse environmental conditions. To date, little is known about the cold acclimation and freezing tolerance capacities of Brachypodium. The main objective of this study was to evaluate the cold hardiness of seven diploid Brachypodium accessions. Methods An integrated approach, involving monitoring of phenological indicators along with expression profiling of the major vernalization regulator VRN1 orthologue, was followed. In parallel, soluble sugars and proline contents were determined along with expression profiles of two COR genes in plants exposed to low temperatures. Finally, whole-plant freezing tests were performed to evaluate the freezing tolerance capacity of Brachypodium. Key Results Cold treatment accelerated the transition from the vegetative to the reproductive phase in all diploid Brachypodium accessions tested. In addition, low temperature exposure triggered the gradual accumulation of BradiVRN1 transcripts in all accessions tested. These accessions exhibited a clear cold acclimation response by progressively accumulating proline, sugars and COR gene transcripts. However, whole-plant freezing tests revealed that these seven diploid accessions only have a limited capacity to develop freezing tolerance when compared with winter varieties of temperate cereals such as wheat and barley. Furthermore, little difference in terms of survival was observed among the accessions tested despite their previous classification as either spring or winter genotypes. Conclusions This study is the first to characterize the freezing tolerance capacities of B. distachyon and provides strong evidence that some diploid accessions such as Bd21 have a facultative growth habit. PMID:24323247

  16. Novel N4 Bacteriophages Prevail in the Cold Biosphere.

    PubMed

    Zhan, Yuanchao; Buchan, Alison; Chen, Feng

    2015-08-01

    Coliphage N4 is a lytic bacteriophage discovered nearly half a century ago, and it was considered to be a "genetic orphan" until very recently, when several additional N4-like phages were discovered to infect nonenteric bacterial hosts. Interest in this genus of phages is stimulated by their unique genetic features and propagation strategies. To better understand the ecology of N4-like phages, we investigated the diversity and geographic patterns of N4-like phages by examining 56 Chesapeake Bay viral communities, using a PCR-clone library approach targeting a diagnostic N4-like DNA polymerase gene. Many new lineages of N4-like phages were found in the bay, and their genotypes shift from the lower to the upper bay. Interestingly, signature sequences of N4-like phages were recovered only from winter month samples, when water temperatures were below 4°C. An analysis of existing metagenomic libraries from various aquatic environments supports the hypothesis that N4-like phages are most prolific in colder waters. In particular, a high number of N4-like phages were detected in Organic Lake, Antarctica, a cold and hypersaline system. The prevalence of N4-like phages in the cold biosphere suggests these viruses possess yet-to-be-determined mechanisms that facilitate lytic infections under cold conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Determine precipitation rates from visible and infrared satellite images of clouds by pattern recognition technique. Progress Report, 1 Jul. 1985 - 31 Mar. 1987 Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Weinman, James A.; Garan, Louis

    1987-01-01

    A more advanced cloud pattern analysis algorithm was subsequently developed to take the shape and brightness of the various clouds into account in a manner that is more consistent with the human analyst's perception of GOES cloud imagery. The results of that classification scheme were compared with precipitation probabilities observed from ships of opportunity off the U.S. east coast to derive empirical regressions between cloud types and precipitation probability. The cloud morphology was then quantitatively and objectively used to map precipitation probabilities during two winter months during which severe cold air outbreaks were observed over the northwest Atlantic. Precipitation probabilities associated with various cloud types are summarized. Maps of precipitation probability derived from the cloud morphology analysis program for two months and the precipitation probability derived from thirty years of ship observation were observed.

  18. Cold Tolerance of Pityophthorus juglandis (Coleoptera: Scolytidae) From Northern California

    Treesearch

    Andrea R. Hefty; Steven J. Seybold; Brian H. Aukema; Robert C. Venette

    2017-01-01

    Winter survivorship of insects is determined by a combination of physiological, behavioral, and microhabitat characteristics. We characterized the cold tolerance of the walnut twig beetle, Pityophthorus juglandis Blackman, a domestic alien invasive bark beetle that vectors a phytopathogenic fungus. The beetle and fungus cause thousand cankers...

  19. Temperature dependent RNA metabolism in Xylella fastidiosa during cold stress and grapevine infection

    USDA-ARS?s Scientific Manuscript database

    Re-occurrence of Pierce’s disease of grapes, caused by Xylella fastidiosa, is known to be influenced by environmental factors, particularly cold temperatures during overwintering. Grapevines in colder regions are often cured of X. fastidiosa infection over the winter season, depending on cultivar, t...

  20. In Vitro Evaluation Mimics Influences of Winter Cold Water Ingestion on Ruminal Function

    USDA-ARS?s Scientific Manuscript database

    Ingestion of cold feed and water may suddenly reduce ruminal temperature, which could result in decreased microbial activity and diet digestibility. The objective of this study was to investigate the association between critical rumen in vitro incubation temperature and activity of ruminal microorga...

  1. In vitro evaluation mimics influences of winter cold water ingestion on ruminal function

    USDA-ARS?s Scientific Manuscript database

    Ingestion of cold feed and water may suddenly reduce ruminal temperature, which could result in decreased microbial activity and diet digestibility. The objective of this study was to investigate the association between critical rumen in vitro incubation temperature and activity of ruminal microorga...

  2. Determining the spatial variability of crop yields of two different climatic regions in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Eshonkulov, Ravshan; Poyda, Arne; Ingwersen, Joachim; Streck, Thilo

    2017-04-01

    Assessing the spatial variability of soil physical properties is crucial for agricultural land management. We determined the spatial variability within two agricultural fields in the regions of Kraichgau and Swabian Jura in Southwest Germany. We determined soil physical properties and recorded the temporal development of soil mineral nitrogen (N) and water content as well as that of plant variables (phenology, biomass, leaf area index (LAI), N content, green vegetation fraction (GVF). The work was conducted during the vegetation periods of 2015 and 2016 in winter wheat, and winter rapeseed in Kraichgau and winter barley and silage maize on Swabian Jura. Measurements were taken in three-weekly intervals. On each field, we identified three plots with reduced plant development using high-resolution (RapidEye) satellite images ("cold spots"). Measurements taken on these cold spots were compared to those from five established (long-term) reference plots representing the average field variability. The software EXPERT-N was used to simulate the soil crop system at both cold spots and reference plots. Sensitivity analyses were conducted to identify the most important parameters for the determination of spatial variability in crop growth dynamics.

  3. Climate Degradation and Extreme Icing Events Constrain Life in Cold-Adapted Mammals.

    PubMed

    Berger, J; Hartway, C; Gruzdev, A; Johnson, M

    2018-01-18

    Despite the growth in knowledge about the effects of a warming Arctic on its cold-adapted species, the mechanisms by which these changes affect animal populations remain poorly understood. Increasing temperatures, declining sea ice and altered wind and precipitation patterns all may affect the fitness and abundance of species through multiple direct and indirect pathways. Here we demonstrate previously unknown effects of rain-on-snow (ROS) events, winter precipitation, and ice tidal surges on the Arctic's largest land mammal. Using novel field data across seven years and three Alaskan and Russian sites, we show arrested skeletal growth in juvenile muskoxen resulting from unusually dry winter conditions and gestational ROS events, with the inhibitory effects on growth from ROS events lasting up to three years post-partum. Further, we describe the simultaneous entombment of 52 muskoxen in ice during a Chukchi Sea winter tsunami (ivuniq in Iñupiat), and link rapid freezing to entrapment of Arctic whales and otters. Our results illustrate how once unusual, but increasingly frequent Arctic weather events affect some cold-adapted mammals, and suggest that an understanding of species responses to a changing Arctic can be enhanced by coalescing groundwork, rare events, and insights from local people.

  4. Variability in the combustion-derived fraction of urban humidity in Salt Lake City winter estimated from stable water vapor isotopes and its relationship to atmospheric stability and inversion structure

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Bares, R.; Lin, J. C.; Strong, C.; Bowen, G. J.

    2017-12-01

    Water released from the combustion of fossil fuels, while a negligible part of the global hydrological cycle, may be a significant contributor to urban humidity as fossil fuel emissions are strongly concentrated in space and time. The fraction of urban humidity comprised of combustion-derived vapor (CDV) cannot be observed through humidity measurements alone. However, the distinct stable isotopic composition of CDV, which arises from the reaction of 18O-enriched atmospheric O2 with 2H-depleted organic molecules, represents a promising method to apportion observed humidity between CDV and advected vapor. We apply stable water vapor isotopes to investigate variability in CDV amount and its relationship to atmospheric conditions in Salt Lake City, Utah. The Salt Lake Valley experiences several periods of atmospheric stratification during winter known as cold air pools, during which concentrations of CDV and pollutants can be markedly elevated due to reduced atmospheric mixing. Therefore, the SLV during winter is an ideal place to investigate variability in CDV fraction across a spectrum of boundary layer conditions, ranging from well-mixed to very stable. We present water vapor isotope data from four winters (2013-2017) from the top of a 30 m building on the University of Utah (U of U) Campus. Additionally, we present water vapor isotope data from the summit of Hidden Peak from the 2016-2017 winter, 25 km SE and 2000 m above the U of U site. The Hidden Peak site is consistently above the cold air pool emplaced in the SLV during stable events. We find the expression of the CDV signal in the valley is related to the atmospheric structure of the cold air pools in the SLV, and that the fraction of CDV inferred in the valley is likely related to the mixing height within the cold air pool. Furthermore, we find that patterns between the Hidden Peak and U of U sites during inversion events may record the large-scale atmospheric dynamics promoting emplacement of the cold air pool in the SLV. Further refinements of CDV estimation through stable isotope methods will bring improved mechanistic understanding of the role of CDV in the urban hydrological cycle and improve model simulations of urban environments.

  5. Change of Martian surface height associated with polar cold spots

    NASA Astrophysics Data System (ADS)

    Ford, P. G.; Pettengill, G. H.

    2003-12-01

    For the past 30 years, orbiting microwave radiometers have observed anomalously low emission temperatures during Martian polar winters. While the physical surface temperature cannot drop significantly below 148K---the point at which CO2 starts to condense---radiometric temperatures of 110K or lower at 25μ wavelength are commonly found in isolated ``cold spots'' throughout both northern and southern polar winters. These form roughly circular patches, tens to hundreds of km in diameter, and persist for no more than a few days. Three models have been proposed to account for them: (a) an atmospheric effect that accompanies CO2 snowfall; (b) fresh surface deposits of CO2 snow; or (c) a change in the properties of CO2 slab ice. Following the success of Smith et al.1 in using the MOLA laser altimeter aboard Mars Global Surveyor to directly measure the growth of the winter polar caps, we have applied the same technique to ask whether cold spots are accompanied by a sudden change in surface height. To identify the cold spots, we first examined all polar observations made by the TES radiometer that was co-boresited with MOLA, and made gridded images of ∂ T / ∂ λ , the derivative of the brightness temperature wrt wavelength, 20μ <= λ <= 25μ , over 5o ranges in Ls. A total of 169 cold spots were readily located in the 3 winters (one northern, two southern) during which MOLA operated, and their times of first appearance were noted. We then examined the individual MOLA tracks that crossed these regions from 30 days before, to 30 days after, the cold spot appearances. Three sets of crossing points were assembled: (a) both pairs of tracks were made before the cold spot appearance, (b) both after the appearance, and (c) one before and the other after. For each crossing point, the surface height was interpolated from the 3 nearest altimeter footprints in each of the two tracks. The difference between the resulting pair of heights was averaged over all crossing points, and the RMS variance of the height differences was used as a measure of the statistical error in the measurement. Preliminary results show small height differences before the appearance of a cold spot, as expected, but no abrupt jump in surface height immediately after one appears. This suggests that the cold spots are not formed by deep (>50cm) CO2 snow deposits, but it cannot help us decide between the alternatives of CO2 snowfall or a change in slab ice properties. 1 Smith, Zuber, and Neumann, Science, {294}, 2141-2146, 2001.

  6. The Body Mass Index of San Francisco Cold-water Swimmers: Comparisons to U.S. National and Local Populations, and Pool Swimmers

    PubMed Central

    CROW, BRENDAN T.; MATTHAY, ELLICOTT C.; SCHATZ, STEPHEN P.; DEBELISO, MARK D.; NUCKTON, THOMAS J.

    2017-01-01

    To determine if cold-water swimmers have substantial differences in BMI, which might have a protective effect against heat loss during swims in cold water without wetsuits, and to determine if obesity is more or less prevalent in cold-water swimmers, we compared the body mass index (BMI) values of 103 recreational open-water swimmers (mean age 54.3 ±10.8 years) to data from various population groups. Swimmers swam consistently throughout the winter months, in the San Francisco Bay (water temperature range: 9.6° C [49.3 ° F] to 12.6° C [54.7 ° F]), without wetsuits. After matching for age and sex, the average BMI of cold-water swimmers (25.9 kg/m2) was lower than the corresponding predicted U.S. average BMI (29.2 kg/m2; p<.001), the predicted California state average BMI (28.0 kg/m2; p<.001), and the predicted San Francisco city average BMI (26.6 kg/m2; p=.047). The average BMI value for cold-water swimmers (25.9 kg/m2) was not significantly different from values of North American masters pool swimmers (25.1 kg/m2; p=.15) or international masters pool swimmers (25.3 kg/m2; p=.16). 10.7% of cold-water swimmers were classified as obese (BMI > 30 kg/m2) vs. 35.7%, 25.8%, and 11.8% of the U.S., California, and San Francisco populations, respectively. The lower or similar BMI values of our swimmers suggest that successful recreational swimming in cold water is influenced by factors other than body habitus, such as acclimatization, heat production while swimming, and most importantly, limiting immersion time. The relatively low prevalence of obesity in our swimmers suggests that cold-water swimming could contribute to a healthy lifestyle. PMID:29399251

  7. Physiological disturbances and overwinter mortality of largemouth bass from different latitudes.

    PubMed

    VanLandeghem, Matthew M; Wagner, Curtis P; Wahl, David H; Suski, Cory D

    2013-01-01

    Thermal conditions associated with winter can influence the distribution of a species. Because winter severity varies along latitudes, populations of temperate fish located along a latitudinal gradient may display variation in both sublethal and lethal responses to cold stressors. Sublethal physiological disturbances were quantified in age 1 largemouth bass (Micropterus salmoides) from populations originating from Alabama and Illinois but raised in a common environment. Fish were exposed to 6 h of rapid cold shock from 20° to 8°C (controls were held at 20°C) and then sampled for white muscle, whole blood, and plasma. After cold shock, glucose concentrations were elevated in Alabama but not Illinois fish. Sodium was lower and chloride was higher in Alabama largemouth bass, but fish from Illinois had a greater propensity for potassium loss during cold shock. In Illinois ponds, Alabama largemouth bass exhibited lower overwinter survival (adult: 10%; age 0: 22%) than did those from Illinois (adult: 80%; age 0: 82%). Latitudinal variation in physiological responses to cold stressors may therefore influence overwinter survival of largemouth bass and the ability of a fish species to exist over large geographic areas.

  8. Winter movement dynamics of Black Brant

    USGS Publications Warehouse

    Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John

    2007-01-01

    Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998-Mar 2000) using capture-recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.

  9. Winter movement dynamics of black brant

    USGS Publications Warehouse

    Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John

    2007-01-01

    Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998–Mar 2000) using capture–recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.

  10. Temperature characteristics of winter roost-sites for birds and mammals: tree cavities and anthropogenic alternatives

    NASA Astrophysics Data System (ADS)

    Grüebler, Martin U.; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat

    2014-07-01

    The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.

  11. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii.

    PubMed

    Toxopeus, Jantina; Jakobs, Ruth; Ferguson, Laura V; Gariepy, Tara D; Sinclair, Brent J

    2016-06-01

    Overwintering insects must survive the multiple-stress environment of winter, which includes low temperatures, reduced food and water availability, and cold-active pathogens. Many insects overwinter in diapause, a developmental arrest associated with high stress tolerance. Drosophila suzukii (Diptera: Drosophilidae), spotted wing drosophila, is an invasive agricultural pest worldwide. Its ability to overwinter and therefore establish in temperate regions could have severe implications for fruit crop industries. We demonstrate here that laboratory populations of Canadian D. suzukii larvae reared under short-day, low temperature, conditions develop into dark 'winter morph' adults similar to those reported globally from field captures, and observed by us in southern Ontario, Canada. These winter-acclimated adults have delayed reproductive maturity, enhanced cold tolerance, and can remain active at low temperatures, although they do not have the increased desiccation tolerance or survival of fungal pathogen challenges that might be expected from a more heavily melanised cuticle. Winter-acclimated female D. suzukii have underdeveloped ovaries and altered transcript levels of several genes associated with reproduction and stress. While superficially indicative of reproductive diapause, the delayed reproductive maturity of winter-acclimated D. suzukii appears to be temperature-dependent, not regulated by photoperiod, and is thus unlikely to be 'true' diapause. The traits of this 'winter morph', however, likely facilitate overwintering in southern Canada, and have probably contributed to the global success of this fly as an invasive species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Photoperiod and fur lengths in the arctic fox ( Alopex lagopus L.)

    NASA Astrophysics Data System (ADS)

    Underwood, L. S.; Reynolds, Patricia

    1980-03-01

    Pelage is seasonally dimorphic in the Arctic fox. During the winter, fur lengths for this species are nearly double similar values taken during the summer season. Considerable site-specific differences in fur length are noted. In general, body sites which are exposed to the environment when an Arctic fox lies in a curled position show greater fur lengths in all seasons and greater seasonal variations than body sites that are more protected during rest. Well-furred sites may tend to conserve heat during periods of inactivity, and scantily furred sites may tend to dissipate heat during periods of exercise. The growth of winter fur may compensate for the severe cold of the arctic winter. Changes in fur lengths indicate a definite pattern in spite of individual variations. During the fall months, fur lengths seem to lag behind an increasing body-to-ambient temperature gradient. Both body-to-ambient temperature gradients and fur lengths peak during December through February. From March through June, gradual environmental warming is accompanied by a decrease in average fur lengths. Thus, there appears to be a remarkable parallel between the body-to-ambient temperature gradient and the fur lengths. The growth of fur in the Arctic fox parallels annual changes in ambient temperature and photoperiod.

  13. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change.

    PubMed

    Vetter, Sebastian G; Ruf, Thomas; Bieber, Claudia; Arnold, Walter

    2015-01-01

    Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.

  14. Observed Decrease of North American Winter Temperature Variability

    NASA Astrophysics Data System (ADS)

    Rhines, A. N.; Tingley, M.; McKinnon, K. A.; Huybers, P. J.

    2015-12-01

    There is considerable interest in determining whether temperature variability has changed in recent decades. Model ensembles project that extratropical land temperature variance will detectably decrease by 2070. We use quantile regression of station observations to show that decreasing variability is already robustly detectable for North American winter during 1979--2014. Pointwise trends from GHCND stations are mapped into a continuous spatial field using thin-plate spline regression, resolving small-scales while providing uncertainties accounting for spatial covariance and varying station density. We find that variability of daily temperatures, as measured by the difference between the 95th and 5th percentiles, has decreased markedly in winter for both daily minima and maxima. Composites indicate that the reduced spread of winter temperatures primarily results from Arctic amplification decreasing the meridional temperature gradient. Greater observed warming in the 5th relative to the 95th percentile stems from asymmetric effects of advection during cold versus warm days; cold air advection is generally from northerly regions that have experienced greater warming than western or southwestern regions that are generally sourced during warm days.

  15. Measuring facial cooling in outdoor windy winter conditions: an exploratory study.

    PubMed

    Briggs, Andrew G S; Gillespie, Terry J; Brown, Robert D

    2017-10-01

    Winter clothing provides insulation for almost all of a person's body, but in most situations, a person's face remains uncovered even in cold windy weather. This exploratory study used thermal imagery to record the rate of cooling of the faces of volunteers in a range of winter air temperatures and wind speeds. Different areas of the faces cooled at different rates with the areas around the eyes and neck cooling at the slowest rate, and the nose and cheeks cooling at the fastest rate. In all cases, the faces cooled at an approximately logarithmic decay for the first few minutes. This was followed by a small rise in the temperature of the face for a few minutes, which was then followed by an uninterrupted logarithmic decay. Volunteers were told to indicate when their face was so cold that they wanted to end the test. The total amount of time and the facial temperature at the end of each trial were recorded. The results provide insight into the way faces cool in uncontrolled, outdoor winter conditions.

  16. Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations

    NASA Astrophysics Data System (ADS)

    Ren, Rongcai; Rao, Jian; Wu, Guoxiong; Cai, Ming

    2017-05-01

    The concurrent effects of the El Niño-Southern Oscillation (ENSO) on the northern winter stratosphere have been widely recognized; however, the delayed effects of ENSO in the next winter after mature ENSO have yet to be confirmed in multi reanalyses and model simulations. This study uses three reanalysis datasets, a long-term fully coupled model simulation, and a high-top general circulation model to examine ENSO's delayed effects in the stratosphere. The warm-minus-cold composite analyses consistently showed that, except those quick-decaying quasi-biennial ENSO events that reverse signs during July-August-September (JAS) in their decay years, ENSO events particularly those quasi-quadrennial (QQ) that persist through JAS, always have a significant effect on the extratropical stratosphere in both the concurrent winter and the next winter following mature ENSO. During the concurrent winter, the QQ ENSO-induced Pacific-North American (PNA) pattern corresponds to an anomalous wavenumber-1 from the upper troposphere to the stratosphere, which acts to intensify/weaken the climatological wave pattern during warm/cold ENSO. Associated with the zonally quasi-homogeneous tropical forcing in spring of the QQ ENSO decay years, there appear persistent and zonally quasi-homogeneous temperature anomalies in the midlatitudes from the upper troposphere to the lower stratosphere until summer. With the reduction in ENSO forcing and the PNA responses in the following winter, an anomalous wavenumber-2 prevails in the extratropics. Although the anomalous wave flux divergence in the upper stratospheric layer is still dominated by wavenumber-1, it is mainly caused by wavenumber-2 in the lower stratosphere. However, the wavenumber-2 activity in the next winter is always underestimated in the model simulations, and wavenumber-1 activity dominates in both winters.

  17. Causes and Consequences of Exceptional North Atlantic Heat Loss in Recent Winters

    NASA Astrophysics Data System (ADS)

    Josey, Simon; Grist, Jeremy; Duchez, Aurelie; Frajka-Williams, Eleanor; Hirschi, Joel; Marsh, Robert; Sinha, Bablu

    2016-04-01

    The mid-high latitude North Atlantic loses large amounts of heat to the atmosphere in winter leading to dense water formation. An examination of reanalysis datasets (ERA-Interim, NCEP/NCAR) reveals that heat loss in the recent winters 2013-14 and 2014-15 was exceptionally strong. The causes and consequences of this extraordinary ocean heat loss will be discussed. In 2013-2014, the net air-sea heat flux anomaly averaged over the whole winter exceeded 100 Wm-2 in the eastern subpolar gyre (the most extreme in the period since 1979 spanned by ERA-Interim). The causes of this extreme heat loss will be shown to be severe latent and sensible heat fluxes driven primarily by anomalously strong westerly airflows from North America and northerly airflows originating in the Nordic Seas. The associated sea level pressure anomaly field reflects the dominance of the second mode of atmospheric variability, the East Atlantic Pattern (EAP) over the North Atlantic Oscillation (NAO) in this winter. The extreme winter heat loss had a significant impact on the ocean extending from the sea surface into the deeper layers and a re-emergent cold Sea Surface Temperature (SST) anomaly is evident in November 2014. The following winter 2014-15 experienced further extreme heat loss that served to amplify the strength of the re-emergent SST anomaly. By summer 2015, an unprecedented cold mid-latitude North Atlantic Ocean surface temperature anomaly is evident in observations and has been widely referred to as the 'big blue blob'. The role played by the extreme surface heat loss in the preceding winters in generating this feature and it subsequent evolution through winter 2015-16 will be explored.

  18. Potential vorticity regimes over East Asia during winter

    NASA Astrophysics Data System (ADS)

    Huang, Wenyu; Chen, Ruyan; Wang, Bin; Wright, Jonathon S.; Yang, Zifan; Ma, Wenqian

    2017-02-01

    Nine potential vorticity (PV) regimes over East Asia are identified by applying a Self-Organizing Map and Hierarchical Ascendant Classification regime analysis to the daily PV reanalysis fields on the 300 K isentropic surface for December-March 1948-2014. According to the surface temperature anomalies over East Asia, these nine regimes are further classified into three classes, i.e., cold class (three regimes), warm class (four regimes), and neutral class (two regimes). The PV-based East Asian winter monsoon index (EAWMI) is used to study the relationship between PV distributions and the temperature anomalies. The magnitude of cold (warm) anomalies over the land areas of East Asia increases (decreases) quasi-linearly with the EAWMI. Regression analysis reveals that cold temperature anomalies preferentially occur when the EAWMI exceeds a threshold at ˜0.2 PVU (where 1 PVU ≡ 10-6 m2 K kg-1 s-1). PV inversion uncovers the mechanisms behind the relationships between the PV regimes and surface temperature anomalies and reveals that cold (warm) PV regimes are associated with significant warming (cooling) in the upper troposphere and lower stratosphere. On average, cold regimes have longer durations than warm regimes. Interclass transition probabilities are much higher for paths from warm/neutral regimes to cold regimes than for paths from cold regimes to warm/neutral regimes. Besides, intraclass transitions are rare within the warm or neutral regimes. The PV regime analysis provides insight into the causes of severe cold spells over East Asia, with blocking circulation patterns identified as the primary factor in initiating and maintaining these cold spells.

  19. Antifreeze Proteins Modify the Freezing Process In Planta12

    PubMed Central

    Griffith, Marilyn; Lumb, Chelsey; Wiseman, Steven B.; Wisniewski, Michael; Johnson, Robert W.; Marangoni, Alejandro G.

    2005-01-01

    During cold acclimation, winter rye (Secale cereale L. cv Musketeer) plants accumulate antifreeze proteins (AFPs) in the apoplast of leaves and crowns. The goal of this study was to determine whether these AFPs influence survival at subzero temperatures by modifying the freezing process or by acting as cryoprotectants. In order to inhibit the growth of ice, AFPs must be mobile so that they can bind to specific sites on the ice crystal lattice. Guttate obtained from cold-acclimated winter rye leaves exhibited antifreeze activity, indicating that the AFPs are free in solution. Infrared video thermography was used to observe freezing in winter rye leaves. In the absence of an ice nucleator, AFPs had no effect on the supercooling temperature of the leaves. However, in the presence of an ice nucleator, AFPs lowered the temperature at which the leaves froze by 0.3°C to 1.2°C. In vitro studies showed that apoplastic proteins extracted from cold-acclimated winter rye leaves inhibited the recrystallization of ice and also slowed the rate of migration of ice through solution-saturated filter paper. When we examined the possible role of winter rye AFPs in cryoprotection, we found that lactate dehydrogenase activity was higher after freezing in the presence of AFPs compared with buffer, but the same effect was obtained by adding bovine serum albumin. AFPs had no effect on unstacked thylakoid volume after freezing, but did inhibit stacking of the thylakoids, thus indicating a loss of thylakoid function. We conclude that rye AFPs have no specific cryoprotective activity; rather, they interact directly with ice in planta and reduce freezing injury by slowing the growth and recrystallization of ice. PMID:15805474

  20. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation.

    PubMed

    Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu

    2018-04-01

    Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum , thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.

  1. [Feeding of two amphibian species (Anura: Hylidae) during the low temperatures season and its relationship with energy storage in Santa Fe, Argentina].

    PubMed

    Antoniazzi, Carolina Elizabet; López, Javier Alejandro; Duré, Marta; Falico, Diego Alejandro

    2013-06-01

    Feeding of two amphibian species (Anura: Hylidae) during the low temperatures season and its relationship with energy storage in Santa Fe, Argentina. In environments with thermal and pluvial seasonality such as those of the Middle Paraná River floodplain (Province of Santa Fe, Argentina), most amphibian species reproduce during the warm season and drastically diminish their activity during winter. Even though, a few species remain active during the cold season, such as Hypsiboas pulchellus that has its reproductive peak during the autumn-winter period (and the consequent energy demand). The objective of this study was to analyze and compare the feeding and development of fat bodies during the low temperature season for H. pulchellus and Dendropsophus nanus. We analyzed entire gastrointestinal tract contents of both species (H. pulchellus = 110 specimens; D. nanus = 114 specimens) and applied an index (IRI%) that combines prey abundance, volume and frequency to describe frogs diets; we used fat bodies weights as indicators of stored energy reserves. We compared diet between species with a niche overlap index (Ojk: 0-1) and used null models to ascribe statistical significance to evaluate overlap; and we analyzed variation in empty guts proportions through months and between species. Also, using ANCOVAs we explored differences in fat bodies, number and volume of prey consumed along months, between species and sexes. The most important preys in H. pulchellus diet during the cold season were Araneae (IRI% = 34.96), Chironomidae (IRI% = 33.08), Tipulidae (IRI% = 11.44) and Gryllidae (IR1% = 7.31); while for D. nanus, Chironomidae (IR1% = 48.14), Tipulidae (IRI% = 18.41), Psychodidae (IRI% = 7.44) and Araneae (IRI% = 7.34). Diet overlap between species was elevated (Ojk=0.78) and higher than expected by chance (mean simulated indices: Ojk = 0.04; p[observed > or = expected]<0.01; p[observed < or = expected] = 1). In H. pulchellus there was a monthly variation in number of prey per gut, while in D. nanus there was a difference in fat bodies development between sexes. Fat bodies development, number of prey per gut and preys volume also varied between species. Despite diet similarity between H. pulchellus and D. nanus, each species showed a different strategy to accumulate energy and support their activity during the cold season. The low rate of gastrointestinal emptiness in H. pulchellus (< 10% in any analyzed month) together with the poor development of their fat bodies, allows us to point out that, to sustain the breeding elevated energy demands, this species continues with a high feeding rate even at the low temperatures of cold season. On the other hand, the rate of gastrointestinal emptiness of D. nanus was higher than that of H. pulchellus (May = 17.24%, July = 22.22% and August = 35.71%), while their fat bodies were well developed. Thus, D. nanus would depend more on their stored reserves to sustain the energy demands of being active during the low temperatures season and hence would reach the reproductive season in spring-summer in good body condition.

  2. Calcium addition at the Hubbard Brook Experimental Forest increases the capacity for stress tolerance and carbon capture in red spruce (Picea rubens) trees during the cold season

    Treesearch

    Paul G. Schaberg; Rakesh Minocha; Stephanie Long; Joshua M. Halman; Gary J. Hawley; Christopher Eagar

    2011-01-01

    Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar...

  3. Review of the circulation in the Beibu Gulf, South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Jingsong; Wu, Guidan; Ya, Hanzheng

    2017-04-01

    Although Beibu Gulf holds a significant geographical location and is rich in fishery resources, it has attracted only limited attention from researchers in recent decades. This study summarizes the conclusions based on the observations and model results regarding the circulation and cold water mass in the Beibu Gulf to provide a reference for further research. Affected by wind and density gradient, the spring circulation may be gulf-scale cyclonic and nested with an enclosed cyclonic gyre in the northern gulf and unclosed cyclonic gyre in the southern gulf. Meanwhile, the mechanisms of summer circulation remain controversial. Along with the results of a new numerical model, historical observations suggest that summer circulation is cyclonic and anticyclonic in the northern and southern gulfs, respectively. The northern and southern gulfs are mainly influenced by wind stress curl and South China Sea current, respectively. Similarly, although different views regarding the structure of winter circulation have been presented, a large amount of evidence supports the existence of two cyclonic gyres in the northern and southern gulfs. In addition, a southwestward current off the northwestern coast of Hainan Island is present. The circulation structure in the fall is similar to that in winter. However, the cyclonic gyre in the southern Gulf has a greater tendency to intrude northwards into the Beibu Gulf in fall than in winter, and the currents off the coast of Vietnam and the northwestern coast of Hainan Island are weaker in fall than those in winter. Most studies indicate that winter boreal circulation is driven by the monsoon wind. The most recent observations and model results suggest that the current in the Qiongzhou Strait (QS) is eastward on certain days in the boreal summer and is affected by the difference between the sea levels of the two ends of the QS and tidal rectification. Correspondingly, the volume transport is approximately -0.1 Sv (minus sign represents westward) in spring and from -0.1 to -0.4 Sv in boreal winter. By contrast, the volume transport in summer remains controversial. The cold water mass in the Beibu Gulf is generated locally in spring, matures in summer, and disappears in fall. Heat flux and wind dominate the formation of the cold water mass, and tidal mixing and topographic effects influence the variations in the cold water mass.

  4. Inability of Ceratitis capitata (Diptera: Tephritidae) to overwinter in the Judean hills.

    PubMed

    Israely, Nimrod; Ritte, Uzi; Oman, Samuel D

    2004-02-01

    The overwintering potential of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in cold winter areas within its northern distribution is a key element in understanding its ecology. Recent studies have suggested that although originating in tropical Africa, the fly has become adapted to the cold weather that prevails within its northernmost areas of distribution. We address the question of whether the Mediterranean fruit fly has expanded its overwintering range to include the mountains of central Israel. Doing so would imply that the fly has developed either a behavioral or a physiological mechanism to cope with low temperature and/or damp conditions in combination with cold. We monitored adult populations year round, sampling fruit, calculating expected emergence days for overwintering flies, and studying adults captured within dense and sparse apple orchards. We also performed several manipulative experiments to study preimago ability to survive the winter under natural or seminatural conditions. The study was conducted in the central mountains of Israel at 700-m altitude from 1994 to 2003. Comparison experiments also were conducted at 400 m and at sea level. Our results show 1) no adults captured during the winter and spring, 2) an absence of new infestations during the winter and spring, and 3) inability of preimago stages to overwinter in the central mountains of Israel. Thus, we conclude that the fly does not overwinter in the central mountains of Israel. We discuss the ecological and applied significance of our findings.

  5. The structure and energetics of midlatitude disturbances accompanying cold-air outbreaks over East Asia

    NASA Technical Reports Server (NTRS)

    Lau, N.-C.; Lau, K.-M.

    1984-01-01

    The evolution of extratropical transient waves as they propagate eastward from the Eurasian land mass toward the Pacific during selected cold surge events in the winter Monsoon Experiment (MONEX) is studied. The outstanding cold surge episodes during MONEX are first identified, and the salient synoptic features related to these events are described using composite streamline charts. The structure of rapidly varying disturbances accompanying the cold surges and the associated energetics are examined, and the behavior of those fluctuations over relatively longer time scales is addressed.

  6. Foliar applied abscisic acid increases 'Chardonnay' grapevines (Vitis vinifera) bud freezing tolerance during Autumn cold acclimation

    USDA-ARS?s Scientific Manuscript database

    Economic loss due to cold weather events is a major constraint to winegrape-related industries where extreme and/or fluctuating winter temperatures induce injury and required remedial retraining and replanting increases production costs and lowers yield and fruit quality. The purpose of this study ...

  7. Innovative cold tolerance test for conifer seedlings

    Treesearch

    Peter A. Balk; Peter Bronnum; Mike Perks; Eva Stattin; Lonneke H. M. van der Geest; Monique F. van Wordragen

    2007-01-01

    Forest tree nurseries rely on tight scheduling of operations to deliver vital seedlings to the planting site. Cold storage is required to: (1) prevent winter damage, especially in container seedlings; (2) to maintain planting stock in an inactive condition; and (3) to ensure plant supply for geographically distinct planting sites, a definite requirement for large-scale...

  8. Risk of hospitalization for fire-related burns during extreme cold weather.

    PubMed

    Ayoub, Aimina; Kosatsky, Tom; Smargiassi, Audrey; Bilodeau-Bertrand, Marianne; Auger, Nathalie

    2017-10-01

    Environmental factors are important predictors of fires, but no study has examined the association between outdoor temperature and fire-related burn injuries. We sought to investigate the relationship between extremely cold outdoor temperatures and the risk of hospitalization for fire-related burns. We carried out a time-stratified case-crossover study of 2470 patients hospitalized for fire-related burn injuries during cold months between 1989 and 2014 in Quebec, Canada. The main exposure was the minimum outdoor temperature on the day of and the day before the burn. We computed odds ratios (OR) and 95% confidence intervals (CI) to evaluate the relationship between minimum temperature and fire-related burns, and assessed how associations varied across sex and age. Exposure to extreme cold temperature was associated with a significantly higher risk of hospitalization for fire-related burns. Compared with 0°C, exposure to a minimum temperature of -30°C was associated with an OR of 1.51 (95% CI 1.22-1.87) for hospitalization for fire-related burns. The associations were somewhat stronger for women, youth, and the elderly. Compared with 0°C, a minimum temperature of -30°C was associated with an OR for fire-related burn hospitalization of 1.65 for women (95% CI 1.13-2.40), 1.60 for age < 25 years (95% CI 1.02-2.52), and 1.73 for age ≥ 65 years (95% CI 1.08-2.77). Extremely cold outdoor temperature is a risk factor for fire-related burns. Measures to prevent fires should be implemented prior to the winter season, and enhanced during extreme cold. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Soil Variable Permeability and Water Phase Change Dynamics in a Wastewater Spray Irrigation Agricultural System Located in a Seasonably Cold Climate

    NASA Astrophysics Data System (ADS)

    Darnault, C. J. G.; Daniel, T. J.; Billy, G.; Hopkins, I.; Guo, L.; Jin, Z.; Gall, H. E.; Lin, H.

    2017-12-01

    The permeability of the upper meter of soils in frozen conditions, commonly referred to as the active layer, can vary exponentially given the time of year. Variable moisture contents along with temperature, radiation, and slope angle of the soil surface can result in variable depths of frozen soils, which can cause the formation of low permeability ice lenses well into the spring thaw period. The wastewater irrigation site known as the "Living Filter" located in State College, PA has been in continuous operation since 1962. On average 5500 m3/day of wastewater is applied to the site annually, even in the winter months when average temperatures can dip as low as -7 °C during the month of January. The Living Filter is not permitted to discharge to surface water and is intended to recharge the Spring Creek basin that directly underlies the site, therefore runoff from the site is not permitted. We hypothesize that water infiltrates the upper meter of the subsurface during the winter in several different ways such as preferential pathways in the ice layer created by plant stems and weak patches of ice thawed by the warm wastewater. 2D conceptual models of the phase change between ice and water in the soil were created in order to predict soil permeability and its change in temperature. The 2D conceptual models can be correlated between observed soil moisture content and soil temperature data in order to validate the model given spray irrigation and weather patterns. By determining the permeability of the frozen soils, irrigation practices can be adjusted for the winter months so as to reduce the risk of any accidental wastewater runoff. The impact of this study will result in a better understanding of the multiphase dynamics of the active layer and their implication on soil hydrology at the Living Filter and other seasonally frozen sites.

  10. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm

    USGS Publications Warehouse

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.

    2004-01-01

    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  11. Seasonality and Coronary Heart Disease Deaths in United States Firefighters

    PubMed Central

    Mbanu, Ibeawuchi; Wellenius, Gregory A.; Mittleman, Murray A.; Peeples, Lynne; Stallings, Leonard A.; Kales, Stefanos N.

    2013-01-01

    United States firefighters have a high on-duty fatality rate and coronary heart disease is the leading cause. Seasonality affects the incidence of cardiovascular events in the general population, but its effects on firefighters are unknown. We statistically examined the seasonal and annual variation of all on-duty coronary heart disease deaths among US firefighters between 1994 and 2004 using the chi-square distribution and Poisson regression model of the monthly fatality counts. We also examined the effect of ambient temperature (apparent as well as wind chill temperature) on coronary heart disease fatalities during the study span using a time-stratified, case-crossover study design. When grouped by season, we observed the distribution of the 449 coronary heart disease fatalities to show a relative peak in winter (32%) and relative nadir in spring (21%). This pattern was significantly different (p=0.005) from the expected distribution under the null hypothesis where season has no effect. The pattern persisted in additional analyses, stratifying the deaths by the type of duty in which the firefighters were engaged at the time of their deaths. In the Poisson regression model of the monthly fatality counts, the overall goodness-of-fit between the actual and predicted case counts was excellent ( χ42 = 16.63; p = 0.002). Two distinct peaks were detected, one in January-February and the other in August-September. Overall, temperature was not associated with increased risk of on-duty death. After allowing for different effects of temperature in mild/hot versus cold periods, a 1°C increase was not protective in cold weather, nor did it increase the risk of death in warmer weather. The findings of this study reveal statistical evidence for excess coronary heart disease deaths among firefighters during winter; however, the temporal pattern coronary heart disease deaths was not linked to temperature variation. We also found the seasonal pattern to be independent of duty-related risks. PMID:17701682

  12. Diagnostic studies of ensemble forecast "jumps"

    NASA Astrophysics Data System (ADS)

    Magnusson, Linus; Hewson, Tim; Ferranti, Laura; Rodwell, Mark

    2016-04-01

    During 2015 we saw exceptional consistency in successive seasonal forecasts produced at ECMWF, for the winter period 2015/16, right across the globe. This winter was characterised by a well-predicted and unusually strong El Nino, and some have ascribed the consistency to that. For most of December this consistency was mirrored in the (separate) ECMWF monthly forecast system, which correctly predicted anomalously strong (mild) zonal flow, over the North Atlantic and western Eurasia, even in forecasts for weeks 3 and 4. In monthly forecasts in general these weeks are often devoid of strong signals. However in late December and early January strong signals, even in week 2, proved to be incorrect, most notably over the North Atlantic and Eurasian sectors. Indeed on at least two occasions the outcome was beyond the ensemble forecast range over Scandinavia. In one of these conditions flipped from extreme mild to extreme cold as a high latitude block developed. Temperature prediction is very important to many customers, notably those dealing with renewable energy, because cold weather causes increased demand but also tends to coincide with reduced wind power production. So understandably jumps can cause consternation amongst some customer groups, and are very difficult to handle operationally. This presentation will discuss the results of initial diagnostic investigations into what caused the "ensemble jumps", particularly at the week two lead, though reference will also be made to a related shorter range (day 3) jump that was important for flooding over the UK. Initial results suggest that an inability of the ECMWF model to correctly represent convective outbreaks over North America (that for winter-time were quite extreme) played an important role. Significantly, during this period, an unusually large amount of upper air data over North America was rejected or ascribed low weight. These results bear similarities to previous diagnostic studies at ECMWF, wherein major convective outbreaks in spring and early summer over North America were shown to have a detrimental impact on forecast quality. The possible contributions of other factors will also be discussed; for example we know that the ECMWF model exhibits different skill levels for different regime transitions. It will also be shown that the new higher resolution ECMWF forecast system, then running in trial mode, performed somewhat better, at least for some of these cases.

  13. Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, and RADARSAT data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.

    2002-01-01

    The Special Sensor Microwave Imager (SSM/I) microwave satellite radiometer and its predecessor SMMR are primary sources of information for global sea ice and climate studies. However, comparisons of SSM/I, Landsat, AVHRR, and ERS-1 synthetic aperture radar (SAR) have shown substantial seasonal and regional differences in their estimates of sea ice concentration. To evaluate these differences, we compared SSM/I estimates of sea ice coverage derived with the NASA Team and Bootstrap algorithms to estimates made using RADARSAT, and OKEAN-01 satellite sensor data. The study area included the Barents Sea, Kara Sea, Laptev Sea, and adjacent parts of the Arctic Ocean, during October 1995 through October 1999. Ice concentration estimates from spatially and temporally near-coincident imagery were calculated using independent algorithms for each sensor type. The OKEAN algorithm implemented the satellite's two-channel active (radar) and passive microwave data in a linear mixture model based on the measured values of brightness temperature and radar backscatter. The RADARSAT algorithm utilized a segmentation approach of the measured radar backscatter, and the SSM/I ice concentrations were derived at National Snow and Ice Data Center (NSIDC) using the NASA Team and Bootstrap algorithms. Seasonal and monthly differences between SSM/I, OKEAN, and RADARSAT ice concentrations were calculated and compared. Overall, total sea ice concentration estimates derived independently from near-coincident RADARSAT, OKEAN-01, and SSM/I satellite imagery demonstrated mean differences of less than 5.5% (S.D.<9.5%) during the winter period. Differences between the SSM/I NASA Team and the SSM/I Bootstrap concentrations were no more than 3.1% (S.D.<5.4%) during this period. RADARSAT and OKEAN-01 data both yielded higher total ice concentrations than the NASA Team and the Bootstrap algorithms. The Bootstrap algorithm yielded higher total ice concentrations than the NASA Team algorithm. Total ice concentrations derived from OKEAN-01 and SSM/I satellite imagery were highly correlated during winter, spring, and fall, with mean differences of less than 8.1% (S.D.<15%) for the NASA Team algorithm, and less than 2.8% (S.D.<13.8%) for the Bootstrap algorithm. Respective differences between SSM/I NASA Team and SSM/I Bootstrap total concentrations were less than 5.3% (S.D.<6.9%). Monthly mean differences between SSM/I and OKEAN differed annually by less than 6%, with smaller differences primarily in winter. The NASA Team and Bootstrap algorithms underestimated the total sea ice concentrations relative to the RADARSAT ScanSAR no more than 3.0% (S.D.<9%) and 1.2% (S.D.<7.5%) during cold months, and no more than 12% and 7% during summer, respectively. ScanSAR tended to estimate higher ice concentrations for ice concentrations greater than 50%, when compared to SSM/I during all months. ScanSAR underestimated total sea ice concentration by 2% compared to the OKEAN-01 algorithm during cold months, and gave an overestimation by 2% during spring and summer months. Total NASA Team and Bootstrap sea ice concentration estimates derived from coincident SSM/I and OKEAN-01 data demonstrated mean differences of no more than 5.3% (S.D.<7%), 3.1% (S.D.<5.5%), 2.0% (S.D.<5.5%), and 7.3% (S.D.<10%) for fall, winter, spring, and summer periods, respectively. Large disagreements were observed between the OKEAN and NASA Team results in spring and summer for estimates of the first-year (FY) and multiyear (MY) age classes. The OKEAN-01 algorithm and data tended to estimate, on average, lower concentrations of young or FY ice and higher concentrations of total and MY ice for all months and seasons. Our results contribute to the growing body of documentation about the levels of disparity obtained when seasonal sea ice concentrations are estimated using various types of satellite data and algorithms.

  14. Backscatter for Ice Sheet 2 Growth Phase in the Winter 1994 Winter Sea Ice Experiment

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.

    1996-01-01

    None. This is raw data from a data set taken during the CRRELEX94 experiment. The data are polarimetric C-band radar measurements of a saline ice sheet grown in the outdoor Geophysical Research Facility at the Cold Regions Research and Engineering Lab. See references for other descriptions of data.

  15. Physiological changes in red spruce seedlings during a simulated winter thaw

    Treesearch

    P.G. Schaberg; J.B. Shane; G.J. Hawley; G.R. Strimbeck; D.H. DeHayes; P.F. Cali; J.R. Donnelly

    1996-01-01

    We evaluated net photosynthesis, respiration, leaf conductance, xylem pressure potential (XPP) and cold hardiness in red spruce (Picea rubens Sarg.) seedlings exposed to either a continuous thaw (CT) or a daytime thaw with freezing nights (FN) for 8 days during mid-winter. Physiological differences between CT and FN seedlings were evident for all...

  16. Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate

    PubMed Central

    de Freitas, Christopher R.; Grigorieva, Elena A.

    2015-01-01

    Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This could be handy in planning and managing health services to the public and measures that might be used to help mitigate impacts. PMID:26703633

  17. Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate.

    PubMed

    de Freitas, Christopher R; Grigorieva, Elena A

    2015-11-26

    Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This could be handy in planning and managing health services to the public and measures that might be used to help mitigate impacts.

  18. A 500 year seasonally resolved δ18O and δ13C, layer thickness and calcite fabric record from a speleothem deposited in equilibrium of the Han-sur-Lesse cave, Belgium

    NASA Astrophysics Data System (ADS)

    Van Rampelbergh, M.; Verheyden, S.; Allan, M.; Quinif, Y.; Cheng, H.; Edwards, L.; Keppens, E.; Claeys, P.

    2014-10-01

    Speleothem δ18O and δ13C signals have already proven to enable climate reconstructions at high resolution. However, seasonally resolved speleothem records are still scarce and often difficult to interpret in terms of climate due to the multitude of factors that can affect the proxy signals. In this paper, a fast growing (up to 2 mm yr-1) seasonally laminated speleothem from the Han-sur-Lesse cave (Belgium) is analyzed for its δ18O and δ13C values, layer thickness and changes in calcite fabric. The studied part of the speleothem covers the most recent 500 years as indicated by layer counting and confirmed by 20 U/Th-ages. Epikarst recharge occurs mainly in winter and lesser during spring and fall. a good correlation can be established between lower winter temperatures and lower winter precipitation (DJF) based on the measured data by the Belgian meteorological institute since 1833 indicating that a dry winter is also a cold winter. Colder and dryer winters cause lower winter recharge and generally drier conditions in the cave. Lower winter recharge decreases the amount of isotopically light (δ18O) winter precipitation added to the epikarst in comparison to the heavier spring and fall waters, which leads to a net increase in δ18O value of the water in the epikarst. Increased δ18O values in the Proserpine are consequently interpreted to reflect colder and dryer winters. Higher δ13C signals are interpreted to reflect increased prior calcite precipitation (PCP) due to colder and dryer winters, when recharge is lower. Thinner layers and darker calcite relate to slower growth and occur when drip rates are low and when the drip water calcium ion concentration is low due to increased PCP, both caused by lower recharge during periods with colder and dryer winters. Exceptionally cold and dry winters cause the drip discharge to decrease under a certain threshold value inducing anomalies in the measured proxy records. Such anomalies occur from 1565 to 1610, from 1770 to 1800, from 1810 to 1860 and from 1880 to 1895 and correspond with exceptionally cold periods in proxy-based, historical and instrumental records and may relate to different factors such as negative winter NAO phases, lower solar irradiance and/or volcanic eruptions. When the discharge threshold is not reached, lower amplitude variations are observed such as between 1479 and 1565 and between 1730 and 1770 with two periods of relatively warmer and wetter winters. Between 1610 and 1730 a period of relatively cooler and dryer winters occurs and may relate to a decrease in solar irradiance during the Maunder Minimum (1640-1714). Seasonal δ18O variations indicate a 2.5 °C seasonality in cave air temperature during the two periods with warmer and wetter winters (1479-1565 and 1730-1770), and correspond to the cave air temperature seasonality observed today. a smaller 1.5 °C seasonality in cave air temperature occurs during the interval with colder and wetter winters between 1610 and 1730 and suggests colder summers. The δ13C seasonal changes suggest that the seasonality in discharge was lower than the one observed today with a short interval of increased seasonality between 1600 and 1660 reflecting stronger summer PCP-effects due to decreased winter recharge.

  19. Nonshivering thermogenesis and adaptation to fasting in king penguin chicks.

    PubMed

    Duchamp, C; Barre, H; Delage, D; Rouanet, J L; Cohen-Adad, F; Minaire, Y

    1989-10-01

    The ability to develop nonshivering thermogenesis (NST) and the effect of fasting on thermogenic response to cold were studied in winter-acclimatized king penguin chicks. Metabolic rate (MR) and integrated electrical muscle activity were measured at different ambient temperatures. In cold-acclimatized (5 degrees C) fed chicks, shivering threshold temperature (STT) was 9.4 degrees C lower than lower critical temperature (LCT), indicating that NST (0.7 W/kg) occurs at moderate cold, whereas in control chicks fed and reared at 25 degrees C for 3 wk, LCT and STT were similar. Chicks reared in the cold and fasting for 3 wk or 4-5 mo (natural winter fast) developed an NST of 0.8 and 2.4 W/kg, respectively, despite the fast. In fasting chicks, the intercept of the metabolic curve with the abscissa at zero MR was far below body temperature, contrasting with the classic model for heat loss. Their low LCT indicates the capacity of a large reduction in convective conductance characteristic of diving animals and allows energy sparing in moderate cold. Below LCT, conductance reincreases progressively, leading to a steeper than expected slope of the metabolic curve and allowing preservation of a threshold temperature in the shell. These results show for the first time in a wild young bird the development of NST after cold acclimatization. Further, at the temperature of cold acclimatization, an energy-sparing mechanism is shown in response to long-term fast adaptation.

  20. Strategic Studies Quarterly (SSQ). Volume 11, Number 1. Spring 2017

    DTIC Science & Technology

    2017-04-01

    tour of the strategic horizon, noting the characteristics, proponents, and critics of each approach. The debate over grand strategy is a post –Cold...Winter 1996 issue of International Security.5 There, the authors sug- gested four rival grand strategies that might guide American post –Cold War...primacy the adopted grand strategy of the US government during the post –Cold War period? To some degree it was, although not to the extent that its

  1. Thermodynamic and dynamic structure of atmosphere over the east coast of Peninsular Malaysia during the passage of a cold surge

    NASA Astrophysics Data System (ADS)

    Samah, Azizan Abu; Babu, C. A.; Varikoden, Hamza; Jayakrishnan, P. R.; Hai, Ooi See

    2016-08-01

    An intense field observation was carried out for a better understanding of cold surge features over Peninsular Malaysia during the winter monsoon season. The study utilizes vertical profiles of temperature, humidity and wind at high vertical and temporal resolution over Kota Bharu, situated in the east coast of Peninsular Malaysia. LCL were elevated during the passage of the cold surge as the relative humidity values decreased during the passage of cold surge. Level of Free Convection were below 800 hPa and equilibrium levels were close to the LFC in most of the cases. Convective available potential energy and convection inhibition energy values were small during most of the observations. Absence of local heating and instability mechanism are responsible for the peculiar thermodynamic structure during the passage of the cold surge. The wind in the lower atmosphere became northeasterly and was strong during the entire cold surge period. A slight increase in temperature near the surface and a drop in temperature just above the surface were marked by the passage of the cold surge. A remarkable increase in specific humidity was observed between 970 and 900 hPa during the cold surge period. Further, synoptic scale features were analyzed to identify the mechanism responsible for heavy rainfall. Low level convergence, upper level divergence and cyclonic vorticity prevailed over the region during the heavy rainfall event. Dynamic structure of the atmosphere as part of the organized convection associated with the winter monsoon was responsible for the vertical lifting and subsequent rainfall.

  2. Northern range expansion of the Asian tiger mosquito (Aedes albopictus): Analysis of mosquito data from Connecticut, USA.

    PubMed

    Armstrong, Philip M; Andreadis, Theodore G; Shepard, John J; Thomas, Michael C

    2017-05-01

    The Asian tiger mosquito (Aedes albopictus) is an invasive species and important arbovirus vector that was introduced into the U.S. in the 1980's where it continues to expand its range. Winter temperature is an important constraint to its northward expansion, with potential range limits located between the 0° and -5°C mean cold month isotherm. Connecticut is located within this climatic zone and therefore, Ae. albopictus was monitored statewide to assess its northern range expansion and to delineate where populations can stably persist. Ae. albopictus females were monitored at fixed trapping sites throughout Connecticut from June-October over a 20-year period, 1997-2016. In addition, Ae. albopictus larvae and pupae were collected from tire habitats and tires were retrieved from the field in the spring and flooded to evaluate overwintering success of hatching larvae. Ae. albopictus was first detected during statewide surveillance when a single adult female was collected in 2006. This species was not collected again until 2010 and was subsequently detected each successive year with increasing abundance and distribution except following the unusually cold winters of 2014 and 2015. Ae. albopictus mosquitoes were most abundant in urban and suburban locations along the southwestern shoreline of Connecticut; however, single specimens were occasionally detected in central parts of the state. Field-collected females were also screened for arbovirus infection yielding two isolations of Cache Valley virus and one isolation of West Nile virus, highlighting the threat posed by this mosquito. Ae. albopictus overwintered in Connecticut under mild winter conditions as shown by recovery of hatched larvae from field collected tires in spring and by early season detection of larvae and pupae. This study documents the establishment and expansion of Ae. albopictus at the northern boundary of its range in the northeastern U.S. and provides a baseline for monitoring the future spread of this species anticipated under climate change.

  3. A time series study on the effects of cold temperature on road traffic injuries in Seoul, Korea.

    PubMed

    Lee, Won-Kyung; Lee, Hye-Ah; Hwang, Seung-sik; Kim, Ho; Lim, Youn-Hee; Hong, Yun-Chul; Ha, Eun-Hee; Park, Hyesook

    2014-07-01

    Although traffic accidents are associated with weather, the influence of temperature on injuries from traffic accidents has not been evaluated sufficiently. The objective of this study was to evaluate the effect of temperature, especially cold temperatures, on injuries from traffic accidents in Seoul, Korea. We also explored the relationship of temperature with different types of traffic accident. The daily frequencies of injuries from traffic accidents in Seoul were summarized from the integrated database established by the Korea Road Traffic Authority. Weather data included temperature, barometric pressure, rainfall, snow, and fog from May 2007 to December 2011. The qualitative relationship between daily mean temperature and injuries from traffic accidents was evaluated using a generalized additive model with Poisson distribution. Further analysis was performed using piecewise linear regression if graph the showed non-linearity with threshold. The incidence of injuries was 216 per 100,000 person-months in Seoul. The effect of temperature on injuries from traffic accidents was minimal during spring and summer. However, injuries showed a more striking relationship with temperature in winter than in other seasons. In winter, the number of injuries increased as the temperature decreased to <0°C. The injuries increased by 2.1% per 1°C decrease under the threshold of the daily average temperature -5.7°C, which is 10-fold greater than the effect of temperature above the threshold. Some groups were more susceptible to injuries, such as young and male drivers, according to the types of traffic accident when the temperature decreased to below the freezing temperature. The incidence of injuries increased sharply when the temperature decreased below freezing temperature in winter. Temperature can be effectively used to inform high risk of road traffic injuries, thus helping to prevent road traffic injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Northern range expansion of the Asian tiger mosquito (Aedes albopictus): Analysis of mosquito data from Connecticut, USA

    PubMed Central

    Andreadis, Theodore G.; Shepard, John J.; Thomas, Michael C.

    2017-01-01

    Background The Asian tiger mosquito (Aedes albopictus) is an invasive species and important arbovirus vector that was introduced into the U.S. in the 1980's where it continues to expand its range. Winter temperature is an important constraint to its northward expansion, with potential range limits located between the 0° and -5°C mean cold month isotherm. Connecticut is located within this climatic zone and therefore, Ae. albopictus was monitored statewide to assess its northern range expansion and to delineate where populations can stably persist. Methodology/Principal findings Ae. albopictus females were monitored at fixed trapping sites throughout Connecticut from June-October over a 20-year period, 1997–2016. In addition, Ae. albopictus larvae and pupae were collected from tire habitats and tires were retrieved from the field in the spring and flooded to evaluate overwintering success of hatching larvae. Ae. albopictus was first detected during statewide surveillance when a single adult female was collected in 2006. This species was not collected again until 2010 and was subsequently detected each successive year with increasing abundance and distribution except following the unusually cold winters of 2014 and 2015. Ae. albopictus mosquitoes were most abundant in urban and suburban locations along the southwestern shoreline of Connecticut; however, single specimens were occasionally detected in central parts of the state. Field-collected females were also screened for arbovirus infection yielding two isolations of Cache Valley virus and one isolation of West Nile virus, highlighting the threat posed by this mosquito. Ae. albopictus overwintered in Connecticut under mild winter conditions as shown by recovery of hatched larvae from field collected tires in spring and by early season detection of larvae and pupae. Conclusions/Significance This study documents the establishment and expansion of Ae. albopictus at the northern boundary of its range in the northeastern U.S. and provides a baseline for monitoring the future spread of this species anticipated under climate change. PMID:28545111

  5. Sources of glacial moisture in Mesoamerica

    USGS Publications Warehouse

    Bradbury, J.P.

    1997-01-01

    Paleoclimatic records from Mesoamerica document the interplay between Atlantic and Pacific sources of precipitation during the last glacial stage and Holocene. Today, and throughout much of the Holocene, the entire region receives its principal moisture in the summer from an interaction of easterly trade winds with the equatorial calms. Glacial records from sites east of 95?? W in Guatemala, Florida, northern Venezuela and Colombia record dry conditions before 12 ka, however. West of 95?? W, glacial conditions were moister than in the Holocene. For example, pollen and diatom data show that Lake Pa??tzcuaro in the central Mexican highlands was cool, deep and fresh during this time and fossil pinyon needles in packrat middens in Chihuahua, Sonora, Arizona, and Texas indicate cooler glacial climates with increased winter precipitation. Cold Gulf of Mexico sea-surface temperatures and reduced strength of the equatorial calms can explain arid full and late glacial environments east of 95?? W whereas an intensified pattern of winter, westerly air flow dominated hydrologic balances as far south as 20?? N. Overall cooler temperatures may have increased effective moisture levels during dry summer months in both areas. ?? 1997 INQUA/ Elsevier Science Ltd.

  6. Seasonal Climate Profiles of an Ice-free Arctic Based on Intra-ring Analyses of δ18O Value in Fossil Wood

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, A. H.

    2017-12-01

    Arctic sea ice thickness and extent are projected to continue their substantial decline during this century, with an 80% reduction in sea-ice extent by 2050. While there is a clear relationship between mean annual temperature (MAT) and the concentration of atmospheric carbon dioxide (pCO2) across both glacial and interglacial periods, data on seasonal fluctuations is limited. Here we report seasonal temperature estimates for the Arctic during the ice-free conditions of the late early to middle Eocene based upon exquisitely preserved, mummified wood collected from Banks Island, Northwest Territories, Canada ( 74 oN). Annual growth rings identified in the wood specimens were subdivided by hand at sub-millimeter resolution and cellulose was extracted from each sub-sample for determination of stable oxygen isotope (δ18O) value (n = 81). The data reveal a consistent, cyclic pattern of decreasing and increasing δ18O value up to 3‰ across growth rings that was consistent with patterns observed in other modern and fossil wood, including from other high latitude sites. From these data we quantified cold month and warm month seasonal temperatures using a previously published model (Schubert and Jahren, 2015, QSR, 125: 1-14). Our calculations revealed low overall seasonality in the Arctic during the Eocene with above-freezing winters and mild summers, consistent with the presence of high biomass temperate rainforests. These results highlight the importance of warm winters in maintaining ice-free conditions in the Arctic and suggest that increased winter temperatures in today's Arctic in response to rising pCO2 will be of particular importance for Arctic ice-loss.

  7. The Remarkable 2003--2004 Winter and Other Recent Warm Winters in the Arctic Stratosphere Since the Late 1990s

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Kruger, Kirstin; Sabutis, Joseph L.; Sena, Sara Amina; Pawson, Steven

    2005-01-01

    The 2003-2004 Arctic winter was remarkable in the approximately 50-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly 2 months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with 2 previous years, 1984-1985 and 1986-1987, with prolonged midwinter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over 2 standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (7 in the past 6 years) is unprecedented. Lower stratospheric temperatures were unusually high during 6 of the past 7 years, with 5 having much lower than usual potential for polar stratospheric cloud (PSC) formation and ozone loss (nearly none in 1998-1999, 2001-2002, and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of 5 of the last 7 years with very low PSC potential would be expected to occur randomly once every 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.

  8. Wetter and cooler: pronounced temperate climate conditions in western Anatolia during the Middle Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Güner, Tuncay H.; Bouchal, Johannes M.; Köse, Nesibe; Denk, Thomas

    2017-04-01

    During the course of an ongoing palaeobotanical investigation of the lignite mines of the Yataǧan Basin, Muǧla province, Turkey, the fossil leaves of the Eskihisar lignite mine were analysed using the Climate Leaf Analysis Multivariate Program (CLAMP). The investigated fossil leaves derive from the marls and clayey limestones (Sekköy Member) overlying the exploited lignite seam (uppermost Turgut Member). The age of the studied sedimentary rocks is well constrained by vertebrate fossils occuring in the main lignite seam (MN6 → Gomphoterium angustidens Cuvier, 1817; Percrocuta miocenica Pavlov & Thenius, 1965) and at the Yenieskihisar Mammal locality (MN7/8, uppermost Sekköy Member). 719 specimens were measured and assigned to 65 leaf morphotypes. Using this data, CLAMP reconstructed the following climate parameters: mean annual temperature (MAT) 12.58 (+/-1.5)°C, warm month mean temperature (WMMT) 23.72 (+/-2.5)°C, cold month mean temperature (WMMT) 2.29 (+/-2)°C, length of growing season (LGS) 7.52 (+/-0.75) month, mean growing season precipitation (GSP) 130.1 (+/-40) cm, precipitation during the three wettest months (3-WET) 67 (+/-25) cm, precipitation during the three driest months (3-DRY) 20.4 (+/-7.5) cm. The reconstructed parameters are too cool for tropical climates (the 18˚ C winter isotherm being a threshold for tropical climates) and indicate temperate conditions; climates fitting these parameters (Cfb according to the Köppen-Geiger climate classification) can be found today in regions known as "Tertiary relict areas" (e.g. Black sea coast of Northeast Turkey, eastern China, Japan). Based on a substantial amount of rainfall during the three driest months, it is further possible to exclude markedly seasonal climates such as a summer-dry and winter-wet Mediterranean climate and a summer-wet and winter-dry monsoon climate as commonly found along the southern foothills of the Himalayas and in southwestern China. Instead, a fully humid Cf climate is proposed that has only a weak seasonality in precipitation (lower precipitation in winter). The findings of our study provide valuable information for inferring palaeoenvironments of middle Miocene rich ungulate faunas in western Turkey (e.g. Paşalar), for which seasonal tropical and subtropical forest communities have been proposed (Andrews, 1990). The fossil floras of the Tınaz and Salihpaşalar lignite mines, representing the Tınaz sub-basin and the main basin of the wider Yataǧan Basin, are investigated at the moment, and a synthesis paper combining and comparing evidence from the macro floral and palynological data is soon to be submitted. Andrews. (1990) Palaeoecology of the Miocene fauna from Paşalar, Turkey. Journal of Human evolution 19:569-582.

  9. Seasonal variation in body mass, body temperature and thermogenesis in the Hwamei, Garrulax canorus.

    PubMed

    Wu, Mei-Xiu; Zhou, Li-Meng; Zhao, Li-Dan; Zhao, Zhi-Jun; Zheng, Wei-Hong; Liu, Jin-Song

    2015-01-01

    The basal thermogenesis of birds is beginning to be viewed as a highly flexible physiological trait influenced by environmental fluctuations, particularly changes in ambient temperature (Ta). Many birds living in regions with seasonal fluctuations in Ta typically respond to cold by increasing their insulation and adjusting their metabolic rate. To understand these metabolic adaptations, body temperature (Tb), metabolic rate (MR), thermal neutral zone (TNZ) and thermal conductance were measured within a range of temperatures from 5 to 40°C in free-living Hwamei, Garrulax canorus, in both winter and summer. Body mass was 61.2±0.3g in winter and 55.5±1.0g in summer, and mean Tb was 41.6±0.1°C in winter and 42.3±0.1°C in summer. TNZ was between 28.3 and 35.1°C in winter and between 28.7 and 33.2°C in summer. The mean basal metabolic rate (BMR) within TNZ was 203.32±11.81ml O2 h(-1) in winter and 168.99±6.45ml O2 h(-1) in summer. Minimum thermal conductance was 3.73±0.09joulesg(-1)h(-1)°C(-1) in winter and 3.26±0.06joulesg(-1)h(-1)°C(-1) in summer. Birds caught in winter had higher body mass, MR, and more variable TNZ than those in summer. The increased winter BMR indicates improved ability to cope with cold and maintenance of a high Tb. These results show that the Hwamei's metabolism is not constant, but exhibits pronounced seasonal phenotypic flexibility associated with maintenance of a high Tb. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Subseasonal Reversal of East Asian Surface Temperature Variability in Winter 2014/15

    NASA Astrophysics Data System (ADS)

    Xu, Xinping; Li, Fei; He, Shengping; Wang, Huijun

    2018-06-01

    Although there has been a considerable amount of research conducted on the East Asian winter-mean climate, subseasonal surface air temperature (SAT) variability reversals in the early and late winter remain poorly understood. In this study, we focused on the recent winter of 2014/15, in which warmer anomalies dominated in January and February but colder conditions prevailed in December. Moreover, Arctic sea-ice cover (ASIC) in September-October 2014 was lower than normal, and warmer sea surface temperature (SST) anomalies occurred in the Niño4 region in winter, together with a positive Pacific Decadal Oscillation (PDO|+) phase. Using observational data and CMIP5 historical simulations, we investigated the PDO|+ phase modulation upon the winter warm Niño4 phase (autumn ASIC reduction) influence on the subseasonal SAT variability of East Asian winter. The results show that, under a PDO|+ phase modulation, warm Niño4 SST anomalies are associated with a subseasonal delay of tropical surface heating and subsequent Hadley cell and Ferrel cell intensification in January-February, linking the tropical and midlatitude regions. Consistently, the East Asian jet stream (EAJS) is significantly decelerated in January-February and hence promotes the warm anomalies over East Asia. Under the PDO|+ phase, the decrease in ASIC is related to cold SST anomalies in the western North Pacific, which increase the meridional temperature gradient and generate an accelerated and westward-shifted EAJS in December. The westward extension of the EAJS is responsible for the eastward-propagating Rossby waves triggered by declining ASIC and thereby favors the connection between ASIC and cold conditions over East Asia.

  11. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    PubMed

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more frequent in some regions of the Arctic and that may ultimately drive plant community shifts. Copyright © Physiologia Plantarum 2010.

  12. Effects of chronic N fertilization on foliar membranes, cold tolerance, and carbon storage in montane red spruce

    Treesearch

    Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Paula F. Murakami; G. Richard Strimbeck; Steven G. McNulty

    2002-01-01

    We evaluated the influence of protracted low-level nitrogen (N) fertilization on foliar membrane-associated calcium (mCa), sugar and starch concentrations, membrane stability, winter cold tolerance, and freezing injury of red spruce (Picea rubens Sarg.) trees growing in six experimental plots on Mount Ascutney, Vermont. For 12 consecutive years...

  13. Nordic Winter and Cold: Their Correspondence with Tomas Tranströmer's Poetry

    ERIC Educational Resources Information Center

    Hosian, Mohammad Akbar

    2015-01-01

    The Nobel Prize winning poet Tomas Tranströmer was born and bred in Sweden, a remarkably Scandinavian country. Topographically, Scandinavian countries are locations of extreme cold and snowing. This distinguishing climatic condition has had a dominant influence and impact on almost all Scandinavian art and literature, including Tomas Tranströmer's…

  14. 78 FR 17178 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Shrimp Fishery Off the Southern...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... waters close as a result of severe winter weather. Amendment 9 would also revise the overfished and... has been severely depleted by cold weather. Based on information from standardized assessments, if a... changes to the current regulatory text within Sec. 622.35(d), ``South Atlantic shrimp cold weather closure...

  15. Situation Climatic Briefs

    DTIC Science & Technology

    1982-09-01

    F-7 CHILE -ARGENTINA SOUTH OF 40 DEGREES SOUTH .... ............. .. F-13 CHILE -PERU BORDER ................. ......................... F...34SITUATION CLIMATIC BRIEF CHILE -ARGENTINA SOUTH OF 40 DEGREES SOUTH ANNUAL 1. GENERAL. The weather is generally cloudy, windy, and cold year-round...conditions can occur for 3 or 4 hours following cold frontal passage during the winter. 4. TERMINAL WEATHER. Puerto Montt, Chile . Fair. Conditions are

  16. A lunar polar expedition

    NASA Technical Reports Server (NTRS)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-01-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  17. Covariability of seasonal temperature and precipitation over the Iberian Peninsula in high-resolution regional climate simulations (1001-2099)

    NASA Astrophysics Data System (ADS)

    Fernández-Montes, S.; Gómez-Navarro, J. J.; Rodrigo, F. S.; García-Valero, J. A.; Montávez, J. P.

    2017-04-01

    Precipitation and surface temperature are interdependent variables, both as a response to atmospheric dynamics and due to intrinsic thermodynamic relationships and feedbacks between them. This study analyzes the covariability of seasonal temperature (T) and precipitation (P) across the Iberian Peninsula (IP) using regional climate paleosimulations for the period 1001-1990, driven by reconstructions of external forcings. Future climate (1990-2099) was simulated according to SRES scenarios A2 and B2. These simulations enable exploring, at high spatial resolution, robust and physically consistent relationships. In winter, positive P-T correlations dominate west-central IP (Pearson correlation coefficient ρ = + 0.43, for 1001-1990), due to prevalent cold-dry and warm-wet conditions, while this relationship weakens and become negative towards mountainous, northern and eastern regions. In autumn, negative correlations appear in similar regions as in winter, whereas for summer they extend also to the N/NW of the IP. In spring, the whole IP depicts significant negative correlations, strongest for eastern regions (ρ = - 0.51). This is due to prevalent frequency of warm-dry and cold-wet modes in these regions and seasons. At the temporal scale, regional correlation series between seasonal anomalies of temperature and precipitation (assessed in 31 years running windows in 1001-1990) show very large multidecadal variability. For winter and spring, periodicities of about 50-60 years arise. The frequency of warm-dry and cold-wet modes appears correlated with the North Atlantic Oscillation (NAO), explaining mainly co-variability changes in spring. For winter and some regions in autumn, maximum and minimum P-T correlations appear in periods with enhanced meridional or easterly circulation (low or high pressure anomalies in the Mediterranean and Europe). In spring and summer, the Atlantic Multidecadal Oscillation shows some fingerprint on the frequency of warm/cold modes. For future scenarios, an intensification of the negative P-T relationship is generally found, as a result of an increased frequency of the warm-dry mode.

  18. Wildfires, mountain pine beetle and large-scale climate in Northern North America.

    NASA Astrophysics Data System (ADS)

    Macias Fauria, M.; Johnson, E. A.

    2009-05-01

    Research on the interactions between biosphere and atmosphere and ocean/atmosphere dynamics, concretely on the coupling between ecological processes and large-scale climate, is presented in two studies in Northern North America: the occurrence of large lightning wildfires and the forest area affected by mountain pine beetle (Dendroctonus ponderosae, MPB). In both cases, large-scale climatic patterns such as the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO) operate as low and low and high frequency frameworks, respectively, that control the occurrence, duration and spatial correlation over large areas of key local weather variables which affect specific ecological processes. Warm PDO phases tend to produce persistent (more than 10 days long) positive mid-troposphere anomalies (blocking highs) over western Canada and Alaska. Likewise, positive (negative) AO configurations increase the frequency of blocking highs at mid (high) latitudes of the Northern Hemisphere. Under these conditions, lack of precipitation and prevailing warm air meridional flow rapidly dry fuel over large areas and increase fire hazard. The spatiotemporal patterns of occurrence of large lightning wildfire in Canada and Alaska for 1959-1999 were largely explained by the action and possible interaction of AO and PDO, the AO being more influential over Eastern Canada, the PDO over Western Canada and Alaska. Changes in the dynamics of the PDO are linked to the occurrence of cold winter temperatures in British Columbia (BC), Western Canada. Reduced frequency of cold events during warm PDO winters is consistent with a northward-displaced polar jet stream inhibiting the outflow of cold Arctic air over BC. Likewise, the AO influences the occurrence of winter cold spells in the area. PDO, and to a lesser degree AO, were strongly related to MPB synchrony in BC during 1959-2002, operating through the control of the frequency of extreme cold winter temperatures that affect MPB larvae survival. The onset of a warm PDO phase in 1976 1) increased (decreased) the area burnt by wildfire in the Canadian Boreal Forest (BC) by increasing (decreasing) the frequency of blocking highs in the area, and 2) favored MPB outbreaks in BC by reducing the occurrence of extremely low winter temperatures. Likewise, the exceptionally high and persistent AO values of the late 1980s and 1990s increased area burned in Eastern Canada and MPB activity in the southern and northern parts of BC. A possible recent PDO phase shift may largely reverse these trends.

  19. Metabolic adaptations of overwintering European common lizards (Lacerta vivipara).

    PubMed

    Voituron, Y; Hérold, J P; Grenot, C

    2000-01-01

    The European common lizard Lacerta vivipara, a reptile of cold-temperate climates, provides us an interesting model of low-temperature adaptation. Indeed its unique cold-hardiness strategy, which employs both freeze tolerance and freeze avoidance, may be seen as the primary reason for its large distribution, which extends from Spain to beyond the Arctic circle. To study the metabolism supporting this capacity, we used three techniques: two techniques of calorimetry (oxygen consumption and thermogenesis) and nuclear magnetic resonance spectroscopy. These techniques were used to examine the metabolic balance and the different molecular pathways used between three different periods through the year (September, January, and May). The results show a significant 20% augmentation of winter anaerobic metabolism compared to other periods of the year. This is mainly because of an activation of the lactic fermentation pathway leading to an increase of lactate concentration (>34% in winter). Furthermore, glucose, which increases some 245% in winter, is used as antifreeze and metabolic substrate. Furthermore, this study provides evidence that the physiological adaptations of the common lizard differ from those of other ectotherms such as Rana sylvatica. Concentrations of alanine and glycerol, commonly used as antifreeze by many overwintering ectotherms, do not increase during winter.

  20. Impact of cold on the immune system of burying beetle, Nicrophorus vespilloides (Coleoptera: Silphidae).

    PubMed

    Urbański, Arkadiusz; Czarniewska, Elżbieta; Baraniak, Edward; Rosiński, Grzegorz

    2017-06-01

    Insect overwintering is one of the most astonishing phases of the insect life cycle. Despite vast amounts of knowledge available about the physiological mechanisms of this phenomenon, the impact of stress factors on insect immune system functioning during the winter is still unknown. The aim of this study is to analyze how low temperatures influence the immune system of the beetle Nicrophorus vespilloides. The results show that the beetle's immune system is differently modulated by cold induced in laboratory settings than that which occurs in natural conditions. Among beetles cultured in conditions similar to summer, low temperatures, did not influence the number of circulating haemocytes, phenoloxidase activity, haemocytes morphology, and percentage ratio of haemocyte types. In these beetles, differences were noted only in the ability of haemocytes to perform phagocytosis. Individuals acclimated in natural conditions in autumn had a higher level of humoral response and a different percentage ratio of haemocyte types. During the winter period, the number of haemocytes in the beetles decreased, but the percentage ratio of phagocytic haemocytes increased. Furthermore, we noted an increase of phenoloxidase activity. Our study also showed mitotic divisions of haemocytes in haemolymph collected from burying beetles after cold exposure and from burying beetles collected from natural conditions during autumn and winter. Differences in response to low temperatures in laboratory conditions and the natural environment suggest that the simultaneous presence of other stress factors during winter such as desiccation and starvation have a significant influence on the activity of burying beetle's immune system. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  1. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka

    2010-11-01

    To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92°N, 106.90°E, ˜1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and α-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 ± 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 ± 28 ng m-3, 15%), succinic (63 ± 20 ng m-3, 9%), glyoxylic (55 ± 18 ng m-3, 8%), and phthalic (54 ± 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (<700 m above ground level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.

  2. Experimental study on the monomer structure of solar semiconductor cold wall

    NASA Astrophysics Data System (ADS)

    Fu, Yuanyuan; Liu, Qiuxin; Chen, Tianshou

    2018-06-01

    In this paper, solar semiconductor cold wall structure was adopted in the net-zero energy buildings, NZEB for short. The heat transfer and refrigeration effect of the monomer structure of semiconductor cold wall were tested, we get that the monomer structure of semiconductor cold wall has certain cooling effect. However, the heat exchange effect is not good of the cold and hot aluminum plate only through natural convection and radiation heat transfer. It is necessary to further study the process of semiconductor refrigeration and heat transfer and the factors that affect the cooling effect. At the same time, it put forward a series of suggestions and improvement opinion for NZEB in hot summer and cold winter areas.

  3. Cold-season temperature in the Swiss Alps from AD 1100-1500; trends, intra-annual variability and forcing factors

    NASA Astrophysics Data System (ADS)

    de Jong, Rixt; Kamenik, Christian; Grosjean, Martin

    2010-05-01

    To fully understand past climatic changes and their forcing factors, detailed reconstructions of past summer and winter temperatures are required. Winter temperature reconstructions are scarce, however, because most biological proxies are biased towards the growing season. This study presents a detailed reconstruction of winter temperatures based on Chrysophyte stomatocysts, silicious scales formed by so-called 'golden algae'. Previous studies (Kamenik and Schmidt, 2005; Pla and Catalan, 2005) have demonstrated the sensitivity of these algae to cold-season temperatures. Chrysophyte stomatocyst analysis was carried out on varved sediments from Lake Silvaplana (1791 m a.s.l.) at annual to near-annual resolution for two periods; AD 1100-1500 and AD 1870-2004. For both periods the reference date 'date of spring mixing' (Smix) was reconstructed using a transfer function developed for the Austrian Alps (Kamenik and Schmidt, 2005). In the Austrian Alps, Smix was primarily driven by air temperature in the cold season. The strength of stomatocysts as a proxy for winter temperature was tested by directly comparing reconstructed Smix with measured temperatures from nearby meteostation Sils Maria for the period AD 1870 - 2004. Correlation was highest (R = -0.6; p < 0.001) with mean October-April temperatures. The good agreement between reconstructed Smix and mean winter temperatures was interrupted only from AD 1925 - AD 1951, which was related to exceptionally high winter precipitation (thick snowpack) extending the ice-covered period. Strong lake eutrophication after AD 1950 only weakly affected the reconstruction of winter temperature. The winter temperature reconstruction (AD 1100-1500) shows strong interdecadal variability, superimposed on a cooling trend from around AD 1400 onwards. A direct comparison to summer temperature reconstructions based on biogenic silica and chironomid analysis from the same cores (Trachsel et al., in review; Larocque-Tobler et al., accepted manuscript) indicated strong fluctuations in intra-annual variability. A comparison to forcing factors shows that throughout the studied period, large tropical volcanic eruptions (Crowley, 2000) coincided with relatively warm winters in the study area. This is consistent with results from GCM experiments and observations of the limited number of eruptions during the much shorter instrumental period (Fischer et al., 2007). References: T. Crowley. Science 289, 270-277 (2000) E. Fischer et al. Geophys. Res. Lett. 34, L05707 (2007) C. Kamenik and R. Schmidt. Boreas 34, 477-489 (2005) I. Larocque-Tobler et al. Quat. Sci. Rev., accepted. S. Pla and J. Catalan. Clim. Dyn. 24, 263-278 (2005) M. Trachsel et al. Manuscript in review

  4. Performance and microbial community structure of a polar Arctic Circle aerobic granular sludge system operating at low temperature.

    PubMed

    Gonzalez-Martinez, Alejandro; Muñoz-Palazon, Barbara; Maza-Márquez, Paula; Rodriguez-Sanchez, Alejandro; Gonzalez-Lopez, Jesus; Vahala, Riku

    2018-05-01

    The aim of this work was to study the performance and microbial community structure of a polar Arctic Circle aerobic granular sludge (AGS) system operating at low temperature. Thus, an AGS bioreactor was operated at 7, 5 and 3 °C of temperature using a cold-adapted sludge from Lapland. At 5 °C, it yielded acceptable conversion rates, in terms of nitrogen, phosphorous, and organic matter. However, under 3 °C a negligible nitrogen and phosphorous removal performance was observed. Below 5 °C, scanning electron microscopy studies showed a wispy, non-dense and irregular granular structure with a strong outgrowth of filamentous. Moreover, Illumina next-generation sequencing showed a heterogeneous microbial population where SM1K20 (Archaea), Trichosporon domesticum (Fungus), and Zooglea, Arcobacter and Acinetobacter (Bacteria) were the dominant phylotypes. Our study suggests that AGS technologies inoculated with North Pole sludge could be operated, in cold regions for a period longer than 3 months (winter season) under 5 °C of water temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Lactation curves of dairy camels in an intensive system.

    PubMed

    Musaad, Abdelgadir; Faye, Bernard; Nikhela, Abdelmoneim Abu

    2013-04-01

    Weekly milk records of 47 she-camels in a multibreed dairy camel herd were collected for over a period of 5 years. A total of 72 lactation curves were defined, and relationships with parity, calving season, lactation length, milk production level, following lactations, and dam weight were analyzed. Overall mean values were milk yield up to 12 months, 1,970 ± 790 l; lactation length, 12.5 months; persistency, 94.7 %; weekly peak yield, 50.7 l; monthly peak yield, 220 ± 90 l; and the number of weeks to reach peak yield, 28. The highest productivity was recorded in summer with a weekly mean of 48.2 ± 19.4 l, compared with 34.1 ± 16.3 l in winter. The highest average yield recorded was for camels at sixth parity, whereas the highest weekly peak was at eighth parity, and highest persistency at fifth parity. Camels that calved during the cold months (November to February) were most productives, with the highest persistency, peak yield, and longest lactation length. Four types of curves were identified corresponding to different parities and milk yield levels. Based on these data, specific models for camels are proposed.

  6. Thermal niche for in situ seed germination by Mediterranean mountain streams: model prediction and validation for Rhamnus persicifolia seeds

    PubMed Central

    Porceddu, Marco; Mattana, Efisio; Pritchard, Hugh W.; Bacchetta, Gianluigi

    2013-01-01

    Background and Aims Mediterranean mountain species face exacting ecological conditions of rainy, cold winters and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams of central eastern Sardinia. Methods Seeds were incubated in the light at a range of temperatures (10–25 and 25/10 °C) after different periods (up to 3 months) of cold stratification at 5 °C. Base temperatures (Tb), and thermal times for 50 % germination (θ50) were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data loggers and soil heat sum (°Cd) was calculated on the basis of the estimated Tb and soil temperatures. Key Results Cold stratification released physiological dormancy (PD), increasing final germination and widening the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10·5 °C for non-stratified seeds to 2·7 °C for seeds cold stratified for 3 months. The best thermal time model was obtained by fitting probit germination against log °Cd. θ50 was 2·6 log °Cd for untreated seeds and 2·17–2·19 log °Cd for stratified seeds. When θ50 values were integrated with soil heat sum estimates, field emergence was predicted from March to April and confirmed through field observations. Conclusions Tb and θ50 values facilitated model development of the thermal niche for in situ germination of R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering cold stratification requirement and spring germination. PMID:24201139

  7. Cold Weather Entomology.

    ERIC Educational Resources Information Center

    McLure, John W.

    1983-01-01

    Suggests instructional strategies and student activities related to the study of insects during the winter. Includes possible collecting sites and classroom activities once the insects have been collected. (JN)

  8. Study on indoor thermal environment in winter for rural residences in Yulin region

    NASA Astrophysics Data System (ADS)

    Yanjun, Li; Weixiao, Han

    2018-02-01

    Yulin region is located in the northern part of Shaanxi Province, China. The winter here is very cold and it has a long duration. In this paper, a rural residence which was located in Yulin region was taken as a study object. Indoor thermal environment of the rural residence were tested, including indoor air temperature and air relative humidity. Then, test data were analyzed. It was summarized that indoor thermal environment of test room can not fully meet human thermal comfort needs, and some tactics of regulation building thermal environment were proposed. This research contributes to improvement of indoor thermal environment for local rural residences and it provides reference for rural residences in other cold regions.

  9. A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction.

    PubMed

    Haberman, Amnon; Bakhshian, Ortal; Cerezo-Medina, Sergio; Paltiel, Judith; Adler, Chen; Ben-Ari, Giora; Mercado, Jose Angel; Pliego-Alfaro, Fernando; Lavee, Shimon; Samach, Alon

    2017-08-01

    Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors. © 2017 John Wiley & Sons Ltd.

  10. Should anthropogenic warming lead to more frequent cold air outbreaks over the northeastern U.S.?

    NASA Astrophysics Data System (ADS)

    Nicholas, R.

    2014-12-01

    For the northeastern United States, Winter 2013-14 was the coldest winter since the late 1970s and perhaps the coldest on record relative to prevailing climatic conditions. Frequent snowstorms and cold air outbreaks led to considerable press coverage and heated scholarly debate over the possible role of anthropogenic climate change in modulating wintertime variability in the northern hemisphere polar jet. While mechanisms have been proposed, to date, the observational record offers no definitive evidence for such a relationship, nor does it conclusively exclude one. To further explore this question, we employ a large, initial conditions ensemble of the Community Earth System Model forced with historical and RCP8.5 emissions. The ensemble effectively samples internal variability in the climate system and is used to assess the potential for forced changes in polar jet variability and the frequency of cold air outbreaks over the northeastern U.S. with projected increases in global mean temperature during the 21st century.

  11. Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives.

    PubMed

    Castaings, Loren; Bergonzi, Sara; Albani, Maria C; Kemi, Ulla; Savolainen, Outi; Coupland, George

    2014-07-17

    Antisense RNA (asRNA) COOLAIR is expressed at A. thaliana FLOWERING LOCUS C (FLC) in response to winter temperatures. Its contribution to cold-induced silencing of FLC was proposed but its functional and evolutionary significance remain unclear. Here we identify a highly conserved block containing the COOLAIR first exon and core promoter at the 3' end of several FLC orthologues. Furthermore, asRNAs related to COOLAIR are expressed at FLC loci in the perennials A. alpina and A. lyrata, although some splicing variants differ from A. thaliana. Study of the A. alpina orthologue, PERPETUAL FLOWERING 1 (PEP1), demonstrates that AaCOOLAIR is induced each winter of the perennial life cycle. Introduction of PEP1 into A. thaliana reveals that AaCOOLAIR cis-elements confer cold-inducibility in this heterologous species while the difference between PEP1 and FLC mRNA patterns depends on both cis-elements and species-specific trans-acting factors. Thus, expression of COOLAIR is highly conserved, supporting its importance in FLC regulation.

  12. Seasonal variation in carcass characteristics of korean cattle steers.

    PubMed

    Piao, M Y; Baik, M

    2015-03-01

    Climate temperature affects animal production. This study was conducted to evaluate whether climatic conditions affect beef carcass characteristics of Korean cattle steers. The monthly carcass characteristics of Korean cattle steers (n = 2,182,415) for 8 yr (2006 through 2013) were collected from the Korean Institute for Animal Products Quality Evaluation. Daily climate temperature (CT) and relative humidity (RH) data were collected from the Korean Meteorological Administration. Weather conditions in South Korea during summer were hot and humid, with a maximum temperature of 28.4°C and a maximum RH of 91.4%. The temperature-humidity index (THI), calculated based on CT and RH, ranges from 73 to 80 during summer. Winter in South Korea was cold, with a minimum temperature of -4.0°C and a wind-chill temperature of -6.2°C. Both marbling score (MS) and quality grade (QG) of Korean cattle steer carcasses were generally best (p<0.05) in autumn and worst in spring. A correlation analysis showed that MS and QG frequencies were not associated (p>0.05) with CT. Yield grade (YG) of Korean cattle steer carcasses was lowest (p<0.05) in winter (November to January) and highest in spring and summer (May to September). A correlation analysis revealed that YG frequency was strongly correlated (r≥0.71; p<0.01) with CT and THI values. The rib eye area, a positive YG parameter, was not associated with CT. Backfat thickness (BT), a negative YG factor, was highest in winter (November and December). The BT was strongly negatively correlated (r≤-0.74; p<0.01) with CTs. Therefore, the poor YG during winter is likely due in part to the high BT. In conclusion, YG in Korean cattle steer carcasses was worst in winter. QGs were not associated with winter or summer climatic conditions.

  13. Seasonal Variation in Carcass Characteristics of Korean Cattle Steers

    PubMed Central

    Piao, M. Y.; Baik, M.

    2015-01-01

    Climate temperature affects animal production. This study was conducted to evaluate whether climatic conditions affect beef carcass characteristics of Korean cattle steers. The monthly carcass characteristics of Korean cattle steers (n = 2,182,415) for 8 yr (2006 through 2013) were collected from the Korean Institute for Animal Products Quality Evaluation. Daily climate temperature (CT) and relative humidity (RH) data were collected from the Korean Meteorological Administration. Weather conditions in South Korea during summer were hot and humid, with a maximum temperature of 28.4°C and a maximum RH of 91.4%. The temperature-humidity index (THI), calculated based on CT and RH, ranges from 73 to 80 during summer. Winter in South Korea was cold, with a minimum temperature of −4.0°C and a wind-chill temperature of −6.2°C. Both marbling score (MS) and quality grade (QG) of Korean cattle steer carcasses were generally best (p<0.05) in autumn and worst in spring. A correlation analysis showed that MS and QG frequencies were not associated (p>0.05) with CT. Yield grade (YG) of Korean cattle steer carcasses was lowest (p<0.05) in winter (November to January) and highest in spring and summer (May to September). A correlation analysis revealed that YG frequency was strongly correlated (r≥0.71; p<0.01) with CT and THI values. The rib eye area, a positive YG parameter, was not associated with CT. Backfat thickness (BT), a negative YG factor, was highest in winter (November and December). The BT was strongly negatively correlated (r≤−0.74; p<0.01) with CTs. Therefore, the poor YG during winter is likely due in part to the high BT. In conclusion, YG in Korean cattle steer carcasses was worst in winter. QGs were not associated with winter or summer climatic conditions. PMID:25656196

  14. Direct observations of seasonal exchange through the Bab el Mandab Strait

    NASA Astrophysics Data System (ADS)

    Murray, Stephen P.; Johns, William

    The exchange flow between the Red Sea and the Gulf of Aden-Indian Ocean through the Bab el Mandab Strait was measured continuously for 10 months, June 1995-March 1996. ADCP and temperature-salinity chain moorings allow an unprecedented look at the magnitude and seasonal evolution of the inflow layer from the Gulf of Aden, and the high salinity outflow layer from the Red Sea. The timing, structure, and evolution of the summer season mid-depth intrusion of cold, low salinity water into the Red Sea from the Gulf of Aden is measured for the complete intrusion cycle of 1995. We unexpectedly find the deep outflow still strong in June 1995, with speeds of 0.6 m/sec and transport of 0.4 Sv (1 Sv = 106 m³/sec). From July to mid-September, the deep outflow persists but is attenuated to speeds of 0.2 m/sec and transport of 0.05 Sv. The dominant summer feature, the cold low salinity intermediate layer intrusion, persists for 3 months, occupies 70% of the water column in the Strait and carries approximately 1.7 × 1012 m³ of cold nutrient-rich water into the Red Sea. The winter regime begins in mid-September, is fully developed by early November, and continues to the end of our first observation interval in March 1996. Speeds in the lower layer are 0.8-1.0 m/sec and 0.4-0.6 m/sec in the upper layer. At maximum exchange in mid-February, outflow transport reaches 0.7 Sv. Ubiquitous oscillations in current and salinity at synoptic and intraseasonal periods appear closely related to fluctuations in the along-channel wind forcing and perhaps to coastally-trapped waves.

  15. Atmospheric circulation and sounding-derived parameters associated with thunderstorm occurrence in Central Europe

    NASA Astrophysics Data System (ADS)

    Kolendowicz, Leszek; Taszarek, Mateusz; Czernecki, Bartosz

    2017-07-01

    The main objective of this study is to examine the influence of atmospheric circulation patterns and sounding-derived parameters on thunderstorm occurrence in Central Europe. Thunderstorm activity tends to increase as one moves from the north to the south of the research area. Maximal thunderstorm occurrence is observed in the summer months, while between October and March such activity is much lower. Thunderstorms are also more frequent in spring than in autumn. In the warm season, the occurrence of thunderstorm is associated with the presence of a trough associated with a low located over the North Sea and Scandinavia. In the cold season, the synoptic pattern indicates a strong zonal flow from the west with significantly higher horizontal pressure gradient compared to the warm season. Thunderstorms are more likely to form when the boundary layer's mixing ratios are higher than 8 g kg- 1. Deep convection is also more likely to occur when the vertical temperature lapse rates (between 800 and 500 hPa pressure layers) exceed 6 °C km- 1. During the cold season, considerably higher lapse rates are needed to produce thunderstorms. The values obtained for the convective available potential energy indicate that at least 50 J kg- 1 is needed to produce a thunderstorm during wintertime and 125 J kg- 1 during summertime. Cold season thunderstorms are formed with a lower instability but with a more dynamic wind field having an average value of deep layer shear that exceeds 20 ms- 1. The best parameter to distinguish thunderstorm from non-thunderstorm days for both winter and summer months is a combination of the square root of the convective available potential energy multiplied by the deep layer shear.

  16. [Low-temperature response and cold tolerance at spike differentiation stage of winter wheat varieties sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-fiang; An, Wei; Yuan, Ya-qi; Li, Yan-liang

    2015-06-01

    A total of 10 winter wheat varieties were imported from the middle and lower reaches of the Yangtze River region in China. Those varieties were sowed in spring in Xinding basin area of Shanxi Province, and the field trials were performed for two years (2013-2014). The traits and physiological characteristics under low temperature stress including grain yield, total content of chlorophyll, osmotic adjustment, membrane system, ion leakage rate, contents of soluble sugar and soluble protein were investigated, and the cold tolerance levels of the wheat varieties were assessed. The results showed that low temperature stress led to increases in wheat leaf ion leakage rate, soluble sugar and protein contents, but obvious reduction of chlorophyll content. According to principal component analysis and cold tolerance (D value) , Yumai 10, Yangmai 20, and Yunmai 42 were classed as cold sensitive wheat varieties. Yangmai 13, Yumai 12, and Ningmai 13 were classed as stronger cold-resistant wheat genotypes, and showed stability through two-year field trials, with the D values being 0.665-0.659, 0.493-0.495, and 0.471-0.583, respectively, while the D values for the controls Ning 2038 and Xinchun 30 were 0.368-0.397, and 0.328-0.330, respectively. The grain yields of the cold resistant wheat varieties were significantly higher than that of the other varieties tested. Therefore, Yangmai 13, Yumai 12 and Ningmai 13 could be imported and used as the cold tolerant wheat varieties for North Plain of China.

  17. Seasonal- and temperature-dependent variation in CNS ascorbate and glutathione levels in anoxia-tolerant turtles.

    PubMed

    Pérez-Pinzón, M A; Rice, M E

    1995-12-24

    We determined the ascorbic acid (ascorbate) and glutathione (GSH) contents of eight regions of the CNS from anoxia-tolerant turtles collected in summer and in winter. Ascorbate was of special interest because it is found in exceptionally high levels in the turtle CNS. The temperature-dependence of CNS ascorbate content was established by comparing levels in animals collected from two geographic zones with different average winter temperatures and in animals re-acclimated to different temperatures in the laboratory. The analytical method was liquid chromatography with electrochemical detection. Turtle ascorbate levels were 30-40% lower in animals acclimatized to winter (2 degrees C) than to summer (23 degrees C) in all regions of the CNS. Similarly, GSH levels were 20-30% lower in winter than in summer. Winter ascorbate levels were higher in turtles from Louisiana (19 degrees C) than in turtles acclimatized to winter in Wisconsin (2 degrees C). Summer and winter levels of ascorbate could be reversed by re-acclimating animals to cold (1 degree C) or warm (23 degrees C) temperatures for at least one week. CNS water content did not differ between cold- and warm-acclimated turtles. Taken together, the data indicated that ascorbate and GSH undergo significant seasonal variation and that the catalyst for change is environmental temperature. Steady-state ascorbate content showed a linear dependence on temperature, with a slope of 1.5% per degree C that was independent of CNS region. Lower levels of cerebral antioxidants in turtles exposed to colder temperatures were consistent with the decreased rate of cerebral metabolism that accompanies winter hibernation. Cerebral ascorbate and GSH levels in the turtle remained similar to or higher than those in mammals, even during winter, however. These findings support the notion that unique mechanisms of antioxidant regulation in the turtle contribute to their tolerance of the hypoxia-reoxygenation that characterizes diving behavior.

  18. Cold tolerance and photosystem function in a montane red spruce population: physiological relationships with foliar carbohydrates

    Treesearch

    P.G. Schaberg; G.R. Strimbeck; G.J. Hawley; D.H. DeHayes; J.B. Shane; P.F. Murakami; T.D. Perkins; J.R. Donnelly; B.L. Wong

    2000-01-01

    Red spruce (Picea rubens Sarg.) growing in northern montane forests of eastern North America appears to be distinctive with respect to at least two aspects of winter physiology. First, red spruce attains only a modest level of midwinter cold tolerance compared to other north temperate conifers and appears barely capable of avoiding freezing injury at...

  19. Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures

    Treesearch

    Fabian G. Scholz; Sandra J. Bucci; Nadia Arias; Frederick C. Meinzer; Guillermo Goldstein

    2012-01-01

    Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential, osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance across species throughout the year, and assessed tissue damage by subzero...

  20. Impact of the pathogen Pyrenophora semeniperda on Bromus tectorum seedbank dynamics in North American cold deserts

    Treesearch

    S. E. Meyer; D. Quinney; D. L. Nelson; J. Weaver

    2007-01-01

    Bromus tectorum is a dominant winter annual weed in cold deserts of western North America. We followed patterns of seed carry-over and abundance of the pathogen Pyrenophora semeniperda over 5 years at B. tectorum-dominated shadscale (Atriplex confertifolia) and sagebrush (Artemisia tridentata) sites in southern Idaho. We hypothesised that more seeds could potentially...

  1. Variation in waterlogging-triggered stomatal behavior contributes to changes in the cold acclimation process in prehardened Lolium perenne and Festuca pratensis.

    PubMed

    Jurczyk, Barbara; Pociecha, Ewa; Janowiak, Franciszek; Kabała, Dawid; Rapacz, Marcin

    2016-12-01

    According to predicted changes in climate, waterlogging events may occur more frequently in the future during autumn and winter at high latitudes of the Northern Hemisphere. If excess soil water coincides with the process of cold acclimation for plants, winter survival may potentially be affected. The effects of waterlogging during cold acclimation on stomatal aperture, relative water content, photochemical activity of photosystem II, freezing tolerance and plant regrowth after freezing were compared for two prehardened overwintering forage grasses, Lolium perenne and Festuca pratensis. The experiment was performed to test the hypothesis that changes in photochemical activity initiated by waterlogging-triggered modifications in the stomatal aperture contribute to changes in freezing tolerance. Principal component analysis showed that waterlogging activated different adaptive strategies in the two species studied. The increased freezing tolerance of F. pratensis was associated with increased photochemical activity connected with stomatal opening, whereas freezing tolerance of L. perenne was associated with a decrease in stomatal aperture. In conclusion, waterlogging-triggered stomatal behavior contributed to the efficiency of the cold acclimation process in L. perenne and F. pratensis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Evaluation of rubblization project in Ohio : executive summary report.

    DOT National Transportation Integrated Search

    2011-03-01

    Concrete pavements are highly susceptible to variations in temperature. During summer months, the concrete pavements expand and, contract during winter months. Such movements, particularly at the joints in concrete pavements during winter months, exe...

  3. Winter in Antarctica: dark, cold, windy, and .... wet?? Measurements and modeling of extensive wintertime surface melt

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; Luckman, A. J.; Bevan, S. L.; Gilbert, E.; Smeets, P.; van den Broeke, M. R.; Wang, W.; Zender, C. S.; Ashmore, D. W.; Hubbard, B. P.; Orr, A.; King, J.

    2017-12-01

    We know that increased surface melt, driven by atmospheric warming, contributed to the collapse of ice shelves as observed in the Antarctic Peninsula. This has induced grounded-ice acceleration and increased ice discharge. You may associate this surface melt with the austral summer season, with plenty of solar radiation driving the melt. In contrast, winter in Antarctica evokes images of darkness, snow, and cold. However, we will make you rethink this picture by presenting observations of frequent snow surface melt in winter, from a weather station located in a previously unsurveyed area of the Larsen C Ice Shelf. Peak intensities of this wintertime melt even exceed summertime values, and thermal satellite images show that large ponds of meltwater are formed at the surface in the pitch-dark Antarctic winter. Obviously, we wanted to find out what could drive these strong melt events if it's not the sun. It turns out that these multi-day melt events occur when warm and dry föhn winds descend from the Antarctic Peninsula mountains. Simulations with a high-resolution weather model confirm that these winds generate turbulent fluxes of sensible heat, leading to melt fluxes in excess of 200 W m-2. In 2015 and 2016, about 23% of the annual melt was produced in winter. We use satellite radar to show that winter melt occurs on many more places in the Antarctic Peninsula. It happens every year, although in some years the melting is much more widespread than in others. We think that wintertime melt matters as its refreezing warms the snow and increases snow density. In this way, winter melt preconditions the ice shelf for more extensive surface drainage, potentially leading to meltwater-driven instability.

  4. Does the recent warming hiatus exist over northern Asia for winter wind chill temperature?

    NASA Astrophysics Data System (ADS)

    Ma, Ying

    2017-04-01

    Wind chill temperature (WCT) describes the joint effect of wind velocity and air temperature on exposed body skin and could support policy makers in designing plans to reduce the risks of notably cold and windy weather. This study examined winter WCT over northern Asia during 1973-2013 by analyzing in situ station data. The winter WCT warming rate over the Tibetan Plateau slowed during 1999-2013 (-0.04 °C/decade) compared with that during 1973-1998 (0.67 °C/decade). The winter WCT warming hiatus has also been observed in the remainder of Northern Asia with trends of 1.11 °C/decade during 1973-1998 but -1.02 °C/decade during 1999-2013, except for the Far East of Russia (FE), where the winter WCT has continued to heat up during both the earlier period of 1973-1998 (0.54 °C/decade) and the recent period of 1999-2013 (0.75 °C/decade). The results indicate that the influence of temperature on winter WCT is greater than that of wind speed over northern Asia. Atmospheric circulation changes associated with air temperature and wind speed were analyzed to identify the causes for the warming hiatus of winter WCT over northern Asia. The distributions of sea level pressure and 500 hPa height anomalies during 1999-2013 transported cold air from the high latitudes to middle latitudes, resulting in low air temperature over Northern Asia except for the Far East of Russia. Over the Tibetan Plateau, the increase in wind speed offset the increase in air temperature during 1999-2013. For the Far East, the southerly wind from the Western Pacific drove the temperature up during the 1999-2013 period via warm advection.

  5. The big chill: quantifying the effect of the 2014 North American cold wave on hemlock woolly adelgid populations in the central Appalachian Mountains

    Treesearch

    Patrick C. Tobin; Richard M. Turcotte; Laura M. Blackburn; John A. Juracko; Brian T. Simpson

    2017-01-01

    The ability to survive winter temperatures is a key determinant of insect distributional ranges and population dynamics in temperate ecosystems. Although many insects overwinter in a state of diapause, the hemlock woolly adelgid [Adelges tsugae (Annand)] is an exception and instead develops during winter. We studied a low density population of

  6. Ice fishing by wintering Bald Eagles in Arizona

    Treesearch

    Teryl G. Grubb; Roy G. Lopez

    1997-01-01

    Northern Arizona winters vary within and between years with occasional heavy snows (up to 0.6 m) and extreme cold (overnight lows -18 to -29°C) interspersed with dry periods, mild temperatures (daytime highs reaching 10°C), and general loss of snow cover at all but highest elevations. Lakes in the area may freeze and thaw partially or totally several times during a...

  7. Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages

    USDA-ARS?s Scientific Manuscript database

    Winter dormancy is an important biological feature for tea plant to survive cold winters, and it also affects the economic output of tea plant, one of the few woody plants in the world whose leaves are harvested and one of the few non-conifer evergreen species with characterized dormancies. To disco...

  8. Increasing species richness of the macrozoobenthic fauna on tidal flats of the Wadden Sea by local range expansion and invasion of exotic species

    NASA Astrophysics Data System (ADS)

    Beukema, J. J.; Dekker, R.

    2011-06-01

    A 40-y series of consistently collected samples (15 fixed sampling sites, constant sampled area of 15 × 0.95 m2, annual sampling only in late-winter/early-spring seasons, and consistent sieving and sorting procedures; restriction to 50 easily recognizable species) of macrozoobenthos on Balgzand, a tidal flat area in the westernmost part of the Wadden Sea (The Netherlands), revealed significantly increasing trends of species richness. Total numbers of species annually encountered increased from ~28 to ~38. Mean species density (number of species found per sampling site) increased from ~13 to ~18 per 0.95 m2. During the 40 years of the 1970-2009 period of observation, 4 exotic species invaded the area: (in order of first appearance) Ensis directus, Marenzelleria viridis, Crassostrea gigas, and Hemigrapsus takanoi. Another 5 species recently moved to Balgzand from nearby (subtidal) locations. Together, these 9 new species on the tidal flats explained by far most of the increase in total species numbers, but accounted for only one-third of the observed increase in species density (as a consequence of the restricted distribution of most of them). Species density increased particularly by a substantial number of species that showed increasing trends in the numbers of tidal flat sites they occupied. Most of these wider-spreading species were found to suffer from cold winters. During the 40-y period of observation, winter temperatures rose by about 2°C and cold winters became less frequent. The mean number of cold-sensitive species found per site significantly increased by almost 2 per 0.95 m2. Among the other species (not sensitive to low winter temperatures), 6 showed a rising and 2 a declining trend in number of occupied sites, resulting in a net long-term increase in species density amounting to another gain of 1.6 per 0.95 m2. Half of the 50 studied species did not show such long-term trend, nor were invaders. Thus, each of 3 groups (local or alien invaders/winter-sensitive species/other increasing species) contributed to a roughly similar extent to the overall increase in species density.

  9. Long-term projections and acclimatization scenarios of temperature-related mortality in Europe.

    PubMed

    Ballester, Joan; Robine, Jean-Marie; Herrmann, François Richard; Rodó, Xavier

    2011-06-21

    The steady increase in greenhouse gas concentrations is inducing a detectable rise in global temperatures. The sensitivity of human societies to warming temperatures is, however, a transcendental question not comprehensively addressed to date. Here we show the link between temperature, humidity and daily numbers of deaths in nearly 200 European regions, which are subsequently used to infer transient projections of mortality under state-of-the-art high-resolution greenhouse gas scenario simulations. Our analyses point to a change in the seasonality of mortality, with maximum monthly incidence progressively shifting from winter to summer. The results also show that the rise in heat-related mortality will start to completely compensate the reduction of deaths from cold during the second half of the century, amounting to an average drop in human lifespan of up 3-4 months in 2070-2100. Nevertheless, projections suggest that human lifespan might indeed increase if a substantial degree of adaptation to warm temperatures takes place.

  10. Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization.

    PubMed

    Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Diapause plays a central role in insect life cycles by allowing survival during adverse seasonal conditions as well as synchronizing life cycles with the period of mate and food availability. Seasonal timing is expected to be particularly important for species that are dependent on resources available during a short time window-so-called phenological specialists-and latitudinal clines in seasonality are expected to favor local adaptation in phenological timing. However, to what degree latitudinal variation in diapause dynamics and post-winter development due to such local adaptation is influenced by the degree of phenological specialization is not well known. We experimentally studied two pierid butterfly species and found that the phenological specialist Anthocharis cardamines had shorter diapause duration than the phenological generalist Pieris napi along a latitudinal gradient in Sweden. Moreover, diapause duration increased with latitude in P. napi but not in A. cardamines. Sensitivity of the two species to winter thermal conditions also differed; additional cold temperature during the winter period shortened diapause duration for P. napi pupae but not for A. cardamines pupae. In both species, post-winter pupal development was faster after longer periods of cold conditions, and more southern populations developed faster than northern populations. Post-winter development was also invariably faster at higher temperatures in both species. We argue that the observed differences in diapause dynamics between the two species might be explained by the difference in phenological specialization that influences the costs of breaking diapause too early in the season.

  11. Thermal conditions in the bathroom in winter and summer, and physiological responses of the elderly during bathing.

    PubMed

    Kanda, K; Tsuchiya, J; Seto, M; Ohnaka, T; Tochihara, Y

    1995-06-01

    Thermal conditions in the bathroom and physiological responses were examined during winter and summer. The subjects were 22 male and 20 female elderly people, between 65 and 88 years old living in 25 houses in Gunma Prefecture, Japan. Heart rate, blood pressure, skin temperature and thermal sensation were measured during bathing. Changes in thermal sensation due to bathing were assessed in the living room and dressing room on a 9-point scale. Then they were asked about the purposes of bathing and the facilities of bathroom and dressing room. The results are summarized as follows: 1. The purpose of bathing in winter was to warm up for more than 80% of the subjects. In summer, all subjects felt refreshed by bathing. Eighty-five percent of the subjects took a bath every other day in both seasons. 2. Fifty-two percent of the bathrooms had no ventilating fans and 32% had no exclusive dressing rooms. 3. The average room temperature in the dressing rooms was 13-14 degrees C in winter. Thermal sensation was 'cool', 'slightly cold' or 'cold' for more than two-thirds of the subjects when they were partially nude, and there were no heaters in most dressing rooms. 4. The heart rate increased steadily, and reached a maximum value in a partially dressed condition in both seasons. 5. In winter, a marked increase of systolic blood pressure was observed in the partially nude condition. There was a significant difference between the before bathing condition and partially nude condition in winter.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Ixodes ricinus parasitism of birds increases at higher winter temperatures.

    PubMed

    Furness, Robert W; Furness, Euan N

    2018-06-01

    Increasing winter temperatures are expected to cause seasonal activity of Ixodes ricinus ticks to extend further into the winter. We caught birds during winter months (November to February) at a site in the west of Scotland over a period of 24 years (1993-1994 to 2016-2017) to quantify numbers of attached I. ricinus and to relate these to monthly mean temperature. No adult ticks were found on any of the 21,731 bird captures, but 946 larvae and nymphs were found, with ticks present in all winter months, on 16 different species of bird hosts. All ticks identified to species were I. ricinus. I. ricinus are now active throughout the year in this area providing temperature permits. No I. ricinus were present in seven out of eight months when the mean temperature was below 3.5º C. Numbers of I. ricinus attached to birds increased rapidly with mean monthly temperatures above 7º C. Winter temperatures in Scotland have been above the long-term average in most years in the last two decades, and this is likely to increase risk of tick-borne disease. © 2018 The Society for Vector Ecology.

  13. Habitat quality affects stress responses and survival in a bird wintering under extremely low ambient temperatures

    NASA Astrophysics Data System (ADS)

    Cīrule, Dina; Krama, Tatjana; Krams, Ronalds; Elferts, Didzis; Kaasik, Ants; Rantala, Markus J.; Mierauskas, Pranas; Luoto, Severi; Krams, Indrikis A.

    2017-12-01

    Animals normally respond to stressful environmental stimuli by releasing glucocorticoid hormones. We investigated whether baseline corticosterone (CORT), handling-induced corticosterone concentration(s), and body condition indices of members of willow tit ( Poecile montanus) groups differed while wintering in old growth forests and managed young forests in mild weather conditions and during cold spells. Willow tits spend the winter season in non-kin groups in which dominant individuals typically claim their priority to access resources, while subordinate individuals may experience greater levels of stress and higher mortality, especially during cold spells. We captured birds to measure baseline CORT and levels of handling-induced CORT secretion after 20 min of capture. Willow tits in the young forests had higher baseline CORT and a smaller increase in CORT in response to capture than individuals in the old forests. Baseline CORT was higher in females and juvenile birds compared to adult males, whereas handling-induced CORT secretion did not differ between birds of different ages. During cold spells, baseline CORT of willow tits increased and handling-induced CORT secretion decreased, especially in birds in young forests. Willow tits' survival was higher in the old forests, with dominant individuals surviving better than subordinates. Our results show that changes in CORT secretion reflect responses to habitat quality and climate harshness, indicating young managed coniferous forests as a suboptimal habitat for the willow tit.

  14. Linked Extreme Weather Events during Winter 2009-2010 and 2010-2011 in the Context of Northern Hemisphere Circulation Anomalies

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Archambault, H. M.; Cordeira, J. M.

    2011-12-01

    Lance F. Bosart, Heather M. Archambault, and Jason M. Cordeira Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York The Northern Hemisphere (NH) planetary-scale circulation during winter 2009-2010 was characterized by an unusual combination of persistent high-latitude blocking and southward-displaced storm tracks, manifest by a strongly negative Arctic Oscillation (AO), in conjunction with a moderate El Nino event. The high-latitude blocking activity and southward-displaced storm tracks supported episodic cold-air outbreaks and enhanced storminess over parts of midlatitude eastern Asia, eastern North America, and western Europe as well as anomalous warmth over northeastern Canada and Greenland that delayed sea ice formation and ice thickening in these areas during winter 2009-2010. Although somewhat less extreme than winter 2009-2010, the first half of winter 2010-2011 was also characterized by high-latitude blocking and southward-displaced storm tracks (manifest by negative values of the AO) while the Pacific-North American (PNA), initially negative, became neutral in late December and most of January. Winter 2010-2011 was characterized by moderate La Nina conditions in contrast to moderate El Nino conditions that prevailed during winter 2009-2010. Despite the reversal of the ENSO phase from winter 2009-2010 to winter 2010-2011, high-latitude blocking activity and the associated southward-displaced storm tracks again allowed for episodic cold-air outbreaks and enhanced storminess over parts of midlatitude eastern Asia, central and eastern North America, and western Europe with delayed sea ice formation and thickening over the Davis Strait and adjacent regions during the first half of winter 2010-2011. Beginning in late January and continuing through early February 2011 the phase of the AO and the PNA reversed with the AO and PNA becoming positive and negative, respectively. This linked AO/PNA phase transition was associated with an extreme weather event that brought severe and record-setting cold to parts of the U.S. and Mexico, a powerful snow and ice storm in the Central U.S., and a subsequent and spectacular warm-up east of the Rockies. The purpose of this presentation will be to present an overview of the structure and evolution of the large-scale NH circulation anomalies during the 2009-2010 and 2010-2011 winters. Emphasis will be placed on showing how individual synoptic-scale weather events (e.g., recurving and transitioning western Pacific tropical cyclones, diabatically driven upper-level outflow from organized deep convection associated with the Madden-Julian Oscillation, and western North Atlantic storminess) contributed to the formation of significant and persistent large-scale circulation anomalies and how these large-scale circulation anomalies in turn impacted the storm tracks, regional temperature and precipitation anomalies, and the associated extreme weather.

  15. Xerosis

    MedlinePlus

    ... Causes Dry skin can be caused by: The climate, such as cold, dry winter air or hot, ... Medical Dermatology, Associate Professor of Dermatology, Mayo Medical School, Scottsdale, AZ. Also reviewed by David Zieve, MD, ...

  16. Sniff Sniff...: Your Easy Tear-Out Guide for Stopping Classroom Bugs

    ERIC Educational Resources Information Center

    Gelbwasser, Margaret

    2007-01-01

    The author's first two years of teaching were filled with read alouds, eager faces, a-ha moments, and weekends stuck at home with cold after cold. No matter how quickly she bolted from students' incoming coughs and sneezes, come winter, she always seemed to get sick again and again. Thus, in this article, the author offers ways on how to spot,…

  17. Cold Injuries in Korea During Winter of 1950-1951

    DTIC Science & Technology

    1951-11-01

    to be wet with perspiration (Table 7). Shoe! wAce were worn by 87.8 per cent nf patients with this condition. Am previouly irdic~tad, thii o’"ition 1...51. No informtion was available an the number of -nrr•t’ostbitten men in Korea who had a past history of cold injury. " • * k. Smoking. - Since the...inability to keep the feet warm. Cool or cold ambient t~eperatu.o% cavm.od stinging pain of the affected part. g,- B. A., a 24 year old • C, was frostbitten

  18. Lower Stratospheric Temperature Differences Between Meteorological Analyses in two cold Arctic Winters and their Impact on Polar Processing Studies

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley; Atlas, Robert (Technical Monitor)

    2001-01-01

    A quantitative intercomparison of six meteorological analyses is presented for the cold 1999-2000 and 1995-1996 Arctic winters. The impacts of using different analyzed temperatures in calculations of polar stratospheric cloud (PSC) formation potential, and of different winds in idealized trajectory-based temperature histories, are substantial. The area with temperatures below a PSC formation threshold commonly varies by approximately 25% among the analyses, with differences of over 50% at some times/locations. Freie University at Berlin analyses are often colder than others at T is less than or approximately 205 K. Biases between analyses vary from year to year; in January 2000. U.K. Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses warmest. while NCEP analyses were usually coldest in 1995-1996 and Met Office or NCEP[National Center for Atmospheric Research Reanalysis (REAN) warmest. European Centre for Medium Range Weather Forecasting (ECMWF) temperatures agreed better with other analyses in 1999-2000, after improvements in the assimilation model. than in 1995-1996. Case-studies of temperature histories show substantial differences using Met Office, NCEP, REAN and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), qualitatively similar results were obtained for all analyses. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with large cold regions near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly among the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days. while in the 1996 periods, they were at 1-3 days. Thus different meteorological conditions in comparably cold winters had a large impact on expectations for PSC formation and on the discrepancies between different meteorological analyses. Met Office. NCEP, REAN, ECMWF and DAO analyses are commonly used for trajectory calculations and in chemical transport models; the choice of which analysis to use can strongly influence the results of such studies.

  19. A primer on clothing systems for cold-weather field work

    USGS Publications Warehouse

    Denner, Jon

    1990-01-01

    Conducting field work in cold weather is a demanding task. The most important safety consideration for field personnel is to maintain normal body temperature and avoid hypothermia.The human body adjusts to cold temperatures through different physiological processes. Heat production is enhanced by increases in the rates of basal metabolism, specific dynamic action, and physical exercise, and heat loss is reduced by vasoconstriction.Physiological adaptations alone are inadequate to stop rapid heat loss in cold temperatures. Additional insulation in the form of cold-weather clothing is necessary to retain heat.The most practical method of dressing for winter conditions is the layering system. Wearing multiple thin layers allows one to fine tune the insulation needed for different temperatures and activity levels.

  20. Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers.

    PubMed

    Axelsen, Jacob Bock; Yaari, Rami; Grenfell, Bryan T; Stone, Lewi

    2014-07-01

    Human influenza occurs annually in most temperate climatic zones of the world, with epidemics peaking in the cold winter months. Considerable debate surrounds the relative role of epidemic dynamics, viral evolution, and climatic drivers in driving year-to-year variability of outbreaks. The ultimate test of understanding is prediction; however, existing influenza models rarely forecast beyond a single year at best. Here, we use a simple epidemiological model to reveal multiannual predictability based on high-quality influenza surveillance data for Israel; the model fit is corroborated by simple metapopulation comparisons within Israel. Successful forecasts are driven by temperature, humidity, antigenic drift, and immunity loss. Essentially, influenza dynamics are a balance between large perturbations following significant antigenic jumps, interspersed with nonlinear epidemic dynamics tuned by climatic forcing.

  1. Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance.

    PubMed

    Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N

    2011-03-01

    Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.

  2. The Characteristics of Cold Air Outbreaks in the Eastern United States and the Influence of Atmospheric Circulation Patterns

    NASA Astrophysics Data System (ADS)

    Smith, E. T.

    2017-12-01

    Periods of extreme cold impact the mid-latitudes every winter. Depending on the magnitude and duration of the occurrence, extremely cold periods may be deemed cold air outbreaks (CAOs). Atmospheric teleconnections impact the displacement of polar air, but the relationship between the primary teleconnections and the manifestation of CAOs is not fully understood. A systematic CAO index was developed from 20 surface weather stations based on a set of criteria concerning magnitude, duration, and spatial extent. Statistical analyses of the data were used to determine the overall trends in CAOs. Clusters of sea level pressure (SLP), 100mb, and 10mb geopotential height anomalies were mapped utilizing self-organizing maps (SOMs) to understand the surface, upper-tropospheric Polar Vortex (PV), and stratospheric PV patterns preceding CAOs. The Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and Pacific-North American (PNA) teleconnections were used as variables to explain the magnitude and location of mid-latitude Arctic air displacement. Persistently negative SLP anomalies across the Arctic and North Atlantic were evident 1 - 2 weeks prior to the CAOs throughout the winter. The upper-tropospheric and stratospheric PV were found to be persistently weak/weakening prior to mid-winter CAOs and predominantly strong and off-centered prior to early and late season CAOs. Negative phases of the AO and NAO were favored prior to CAOs, while the PNA favored a near-neutral phase. This method of CAO and synoptic pattern characterization benefits from a continuous pattern representation and provides insight as to how specific teleconnections impact the atmospheric flow in a way that leads to CAOs in the eastern U.S.

  3. Energy allocation in juvenile roach and burbot under different temperature and feeding regimes.

    PubMed

    Binner, Maaike; Kloas, Werner; Hardewig, Iris

    2008-06-01

    Cold-active burbot (Lota lota (L.)) display reduced food intake during the summer. The impact of temperature on their energy budget was investigated in starved fish in a laboratory setting, simulating summer (20 degrees C) and winter (4 degrees C) conditions, to elucidate the impact of high temperature on burbot metabolism. Metabolic effects in burbot were compared to roach (Rutilus rutilus (L.)), which typically fast in winter. During warm acclimation, starvation (four weeks) resulted in a metabolic depression of oxygen consumption in both species. In roach, metabolic rate decreased by 55% after two weeks of starvation. Burbot, in contrast, displayed an immediate depression of metabolic rate by 50%. In both species, no reductions were observed in the cold. The temperature-induced differences between the metabolic rates at 20 degrees C and 4 degrees C showed a lower thermal sensitivity in burbot (Q (10) = 1.9) compared to roach (Q (10) = 2.7). Notably, for each species, energy consumption during starvation was highest under experimental conditions simulating their natural active periods, respectively. Warm acclimated roach relied mainly on muscle reserves, whereas in cold acclimated burbot, liver metabolic stores made a major contribution to the energy turnover. In cold acclimated roach and warm acclimated burbot, however, starvation apparently reduced swimming activity, resulting in considerable savings of energy reserves. These lower energy expenditures in roach and burbot corresponded to their natural inactive periods. Thus, starvation in burbot caused a lower energy turnover when exposed to high temperatures. These season-dependent adaptations of metabolism represent an advantageous strategy in burbot to manage winter temperature and withstand metabolism-activating summer temperatures, whereas roach metabolism correlates with the seasonal temperature cycle.

  4. Major cluster of chilblain cases in a cold dry Western Australian winter.

    PubMed

    Larkins, Nicholas; Murray, Kevin J

    2013-02-01

    Primary chilblains are an idiopathic cold-induced vasculopathy affecting the soft tissues of the hands and feet. Secondary chilblains occur in different forms of vasculitis and chronic autoimmune connective tissue disorders. Idiopathic chilblains are rarely reported in children and may generate significant anxiety to doctors and patients. We describe a cluster of idiopathic chilblains encountered over the winter of 2010 in Perth, Western Australia. This is a retrospective review of patients identified from a prospectively compiled database of all new cases seen in our department. Data on history, examination, investigations, prescribed treatments and outcomes were collected. Thirty-two patients with isolated idiopathic chilblains were included, including 20 females and 12 males with a median age at onset of 13.5 years. Lesions were papular with signs of peripheral vasoconstriction causing acrocyanosis, and uncomfortable due to pain and/or pruritis in most. Thickening of the small joints was common where lesions involved these areas. Ulceration of lesions also occurred in some. One patient required hospitalisation for secondary bacterial infection. Most received some form of treatment including non-steroidal anti-inflammatory drugs, prednisolone or nifedipine. Most patients improved spontaneously with warmer weather or responded to cold protection advice. All had resolved completely by late spring (November). Our cluster of chilblains was associated with an unusually cold winter in Perth 2010. It is the largest series reported in the literature, suggesting that chilblains may be more common than previously thought. Chilblains are almost always benign in nature and patients are systemically well and usually need no further investigation and only symptomatic treatment. Prompt recognition can avoid excessive investigation and anxiety, allowing appropriate simple advice and treatment. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  5. Impacts of hot and cold temperature extremes on hospital admissions for cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Davídkovová, H.; Kyselý, J.; Kříž, B.

    2010-09-01

    Elevated mortality associated with high ambient temperatures in summer represents one of the main impacts of weather extremes on human society. Increases in mortality during heat waves were examined in many European countries; much less is known about the effects of heat waves on morbidity, measured for example by the number of hospital admissions. Relatively less understood is also cold-related mortality and morbidity in winter, when the relationships between weather and human health are more complex, less direct, and confounded by other factors such as epidemics of influenza/acute respiratory infections. The present study examines links between hot and cold temperature extremes and daily hospital admissions for cardiovascular diseases in the population of the Czech Republic over 1994-2007. We make use of a recently completed database of all admissions for cardiovascular diseases to hospitals in the area of the Czech Republic since 1994, with a detailed classification of diseases and detailed information concerning each patient (in total 1,467,675 hospital admissions over 1994-2007). The main goals of the study are (i) to identify excess/deficit morbidity during and after periods of heat waves in summer and cold spells in winter, (ii) to compare the links for individual diseases (e.g. acute myocardial infarction, I21; angina pectoris, I20; cerebral infarction, I63; brain ischemia, I64) and to identify those diagnoses that are most closely linked to weather, (iii) to identify population groups most vulnerable to temperature extremes, and (iv) to compare the links to temperature extremes for morbidity and mortality. Periods when morbidity data were affected by epidemics of influenza and acute respiratory infections in winter were excluded from the analysis.

  6. Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.

    PubMed

    Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G

    2016-02-01

    Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.

  7. Changes in apoplastic peroxidase activity and cell wall composition are associated with cold-induced morpho-anatomical plasticity of wheat leaves.

    PubMed

    Lorenzo, M; Pinedo, M L; Equiza, M A; Fernández, P V; Ciancia, M; Ganem, D G; Tognetti, J A

    2018-02-14

    Temperate grasses, such as wheat, become compact plants with small thick leaves after exposure to low temperature. These responses are associated with cold hardiness, but their underlying mechanisms remain largely unknown. Here we analyse the effects of low temperature on leaf morpho-anatomical structure, cell wall composition and activity of extracellular peroxidases, which play key roles in cell elongation and cell wall thickening, in two wheat cultivars with contrasting cold-hardening ability. A combined microscopy and biochemical approach was applied to study actively growing leaves of winter (ProINTA-Pincén) and spring (Buck-Patacón) wheat developed under constant warm (25 °C) or cool (5 °C) temperature. Cold-grown plants had shorter leaves but longer inter-stomatal epidermal cells than warm-grown plants. They had thicker walls in metaxylem vessels and mestome sheath cells, paralleled with accumulation of wall components, predominantly hemicellulose. These effects were more pronounced in the winter cultivar (Pincén). Cold also induced a sharp decrease in apoplastic peroxidase activity within the leaf elongating zone of Pincén, and a three-fold increase in the distal mature zone of the leaf. This was consistent with the enhanced cell length and thicker cell walls in this cultivar at 5 °C. The different response to low temperature of apoplastic peroxidase activity and hemicellulose between leaf zones and cultivar types suggests they might play a central role in the development of cold-induced compact morphology and cold hardening. New insights are presented on the potential temperature-driven role of peroxidases and hemicellulose in cell wall dynamics of grasses. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  8. Hypertension Does Not Alter the Increase in Cardiac Baroreflex Sensitivity Caused by Moderate Cold Exposure

    PubMed Central

    Hintsala, Heidi E.; Kiviniemi, Antti M.; Tulppo, Mikko P.; Helakari, Heta; Rintamäki, Hannu; Mäntysaari, Matti; Herzig, Karl-Heinz; Keinänen-Kiukaanniemi, Sirkka; Jaakkola, Jouni J. K.; Ikäheimo, Tiina M.

    2016-01-01

    Exposure to cold increases blood pressure and may contribute to higher wintertime cardiovascular morbidity and mortality in hypertensive people, but the mechanisms are not well-established. While hypertension does not alter responses of vagally-mediated heart rate variability to cold, it is not known how hypertension modifies baroreflex sensitivity (BRS) and blood pressure variability during cold exposure. Our study assessed this among untreated hypertensive men during short-term exposure comparable to habitual winter time circumstances in subarctic areas. We conducted a population-based recruitment of 24 untreated hypertensive and 17 men without hypertension (age 55–65 years) who underwent a whole-body cold exposure (−10°C, wind 3 m/s, winter clothes, 15 min, standing). Electrocardiogram and continuous blood pressure were measured to compute spectral powers of systolic blood pressure and heart rate variability at low (0.04–0.15 Hz) and high frequency (0.15–0.4 Hz) and spontaneous BRS at low frequency (LF). Comparable increases in BRS were detected in hypertensive men, from 2.6 (2.0, 4.2) to 3.8 (2.5, 5.1) ms/mmHg [median (interquartile range)], and in control group, from 4.3 (2.7, 5.0) to 4.4 (3.1, 7.1) ms/mmHg. Instead, larger increase (p < 0.05) in LF blood pressure variability was observed in control group; response as median (interquartile range): 8 (2, 14) mmHg2, compared with hypertensive group [0 (−13, 20) mmHg2]. Untreated hypertension does not disturb cardiovascular protective mechanisms during moderate cold exposure commonly occurring in everyday life. Blunted response of the estimate of peripheral sympathetic modulation may indicate higher tonic sympathetic activity and decreased sympathetic responsiveness to cold in hypertension. PMID:27313543

  9. Socioenvironmental factors associated with heat and cold-related mortality in Vadu HDSS, western India: a population-based case-crossover study

    NASA Astrophysics Data System (ADS)

    Ingole, Vijendra; Kovats, Sari; Schumann, Barbara; Hajat, Shakoor; Rocklöv, Joacim; Juvekar, Sanjay; Armstrong, Ben

    2017-10-01

    Ambient temperatures (heat and cold) are associated with mortality, but limited research is available about groups most vulnerable to these effects in rural populations. We estimated the effects of heat and cold on daily mortality among different sociodemographic groups in the Vadu HDSS area, western India. We studied all deaths in the Vadu HDSS area during 2004-2013. A conditional logistic regression model in a case-crossover design was used. Separate analyses were carried out for summer and winter season. Odds ratios (OR) and 95% confidence intervals (CI) were estimated for total mortality and population subgroups. Temperature above a threshold of 31 °C was associated with total mortality (OR 1.48, CI = 1.05-2.09) per 1 °C increase in daily mean temperature. Odds ratios were higher among females (OR 1.93; CI = 1.07-3.47), those with low education (OR 1.65; CI = 1.00-2.75), those owing larger agricultural land (OR 2.18; CI = 0.99-4.79), and farmers (OR 1.70; CI = 1.02-2.81). In winter, per 1 °C decrease in mean temperature, OR for total mortality was 1.06 (CI = 1.00-1.12) in lag 0-13 days. High risk of cold-related mortality was observed among people occupied in housework (OR = 1.09; CI = 1.00-1.19). Our study suggests that both heat and cold have an impact on mortality particularly heat, but also, to a smaller degree, cold have an impact. The effects may differ partly by sex, education, and occupation. These findings might have important policy implications in preventing heat and cold effects on particularly vulnerable groups of the rural populations in low and middle-income countries with hot semi-arid climate.

  10. Characterizing soil moisture and snow cover effects on boreal-arctic soil freeze/thaw dynamics and cold-season carbon emissions

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Moghaddam, M.; Chen, R. H.; Reichle, R. H.; Oechel, W. C.; Zona, D.

    2017-12-01

    The contribution of cold season respiration to boreal-arctic carbon cycle and its potential feedbacks to climate change remain poorly quantified. Here, we developed an integrated modeling framework combining airborne low frequency (L+P-band) airborne radar retrievals and landscape level (≥1km) environmental observations from satellite optical and microwave sensors with a detailed permafrost carbon model to investigate underlying processes controlling soil freeze/thaw (FT) dynamics and cold season carbon emissions. The permafrost carbon model simulates the snow and soil thermal dynamics with soil water phase change included and accounts for soil carbon decomposition up to 3m below surface. Local-scale ( 50m) radar retrievals of active layer thickness (ALT), soil moisture and freeze/thaw (FT) status from NASA airborne UAVSAR and AirMOSS sensors are used to inform the model parameterizations of soil moisture effects on soil FT dynamics, and scaling properties of active layer processes. Both tower observed land-atmosphere fluxes and atmospheric CO2 measurements are used to evaluate the model processes controlling cold season carbon respiration, particularly the effects of snow cover and soil moisture on deep soil carbon emissions during the early cold season. Initial comparisons showed that the model can well capture the seasonality of cold season respiration in both tundra and boreal forest areas, with large emissions in late fall and early winter and gradually diminishing throughout the winter. Model sensitivity analyses are used to clarify how changes in soil thermodynamics at depth control the magnitude and seasonality of cold season respiration, and how a deeper unfrozen active layer with warming may contribute to changes in cold season respiration. Model outputs include ALT and regional carbon fluxes at 1-km resolution spanning recent satellite era (2001-present) across Alaska. These results will be used to quantify cold season respiration contributions to the annual carbon cycle and help close the boreal-arctic annual carbon budget.

  11. Environmental influences on the abundance and sexual composition of white sharks Carcharodon carcharias in Gansbaai, South Africa.

    PubMed

    Towner, Alison V; Underhill, Les G; Jewell, Oliver J D; Smale, Malcolm J

    2013-01-01

    The seasonal occurrence of white sharks visiting Gansbaai, South Africa was investigated from 2007 to 2011 using sightings from white shark cage diving boats. Generalized linear models were used to investigate the number of great white sharks sighted per trip in relation to sex, month, sea surface temperature and Multivariate El Niño/Southern Oscillation (ENSO) Indices (MEI). Water conditions are more variable in summer than winter due to wind-driven cold water upwelling and thermocline displacement, culminating in colder water temperatures, and shark sightings of both sexes were higher during the autumn and winter months (March-August). MEI, an index to quantify the strength of Southern Oscillation, differed in its effect on the recorded numbers of male and female white sharks, with highly significant interannual trends. This data suggests that water temperature and climatic phenomena influence the abundance of white sharks at this coastal site. In this study, more females were seen in Gansbaai overall in warmer water/positive MEI years. Conversely, the opposite trend was observed for males. In cool water years (2010 to 2011) sightings of male sharks were significantly higher than in previous years. The influence of environmental factors on the physiology of sharks in terms of their size and sex is discussed. The findings of this study could contribute to bather safety programmes because the incorporation of environmental parameters into predictive models may help identify times and localities of higher risk to bathers and help mitigate human-white shark interactions.

  12. Hypothermia and local cold injuries in combat and non-combat situations--the Israeli experience.

    PubMed

    Moran, Daniel S; Heled, Yuval; Shani, Yoav; Epstein, Yoram

    2003-03-01

    Cold weather has been recognized in the Israel Defense Forces (IDF) as a potential medical and operational threat to the soldier. Although regulations have been issued to cope with this situation, every year about 20 cases of hypothermia (T(core) < 35 degrees C) and peripheral cold injuries are reported. This study was aimed at following cold weather injuries (CI) in the IDF in the period 1994-2001. 136 cases were reported to our institute during this period. All patients were from the general population of young (20 +/- 2 yr), male soldiers in the IDF. All were classified a priori as healthy, active subjects. Of these patients, 51% were diagnosed with mild hypothermia and 49% with peripheral CI. Among those soldiers who suffered from peripheral CI, less than 5% were diagnosed with frostbite. Most of the cases (76%) occurred in the winter months; however, 10% occurred in the spring, 13% in autumn, and 2 cases (1%) were reported in the summer. The majority of all CI cases occurred during routine scheduled training (51%), and 15% occurred during routine duties. Of the cases, 34% occurred during combat operations (mainly ambushing and surveillance). The present study provides data on CI cases in an army where the awareness of the hazards involved in hostile environments is extensive, and in which detailed regulations aimed to prevent these injuries are common practice. The Israeli experience indicates that CI is preventable in most instances by following a few simple regulations and providing proper education to the soldiers and their commanding officers.

  13. National Weather Service

    MedlinePlus

    ... Data SAFETY Floods Tsunami Beach Hazards Wildfire Cold Tornadoes Fog Air Quality Heat Hurricanes Lightning Safe Boating ... Winter Weather Forecasts River Flooding Latest Warnings Thunderstorm/Tornado Outlook Hurricanes Fire Weather Outlooks UV Alerts Drought ...

  14. Cold Fusion.

    ERIC Educational Resources Information Center

    Dutton, Eileen; Salazar, Chris

    1998-01-01

    Discusses ways of preparing school-building roofs for the winter season by paying attention to common problem areas. Also highlights the use of white elastomeric roof coatings, their benefits, and considerations when applying them. (GR)

  15. Nutrition for winter sports.

    PubMed

    Meyer, Nanna L; Manore, Melinda M; Helle, Christine

    2011-01-01

    Winter sports are played in cold conditions on ice or snow and often at moderate to high altitude. The most important nutritional challenges for winter sport athletes exposed to environmental extremes include increased energy expenditure, accelerated muscle and liver glycogen utilization, exacerbated fluid loss, and increased iron turnover. Winter sports, however, vary greatly regarding their nutritional requirements due to variable physiological and physique characteristics, energy and substrate demands, and environmental training and competition conditions. What most winter sport athletes have in common is a relatively lean physique and high-intensity training periods, thus they require greater energy and nutrient intakes, along with adequate food and fluid before, during, and after training. Event fuelling is most challenging for cross-country skiers competing in long events, ski jumpers aiming to reduce their body weight, and those winter sport athletes incurring repeated qualification rounds and heats. These athletes need to ensure carbohydrate availability throughout competition. Finally, winter sport athletes may benefit from dietary and sport supplements; however, attention should be paid to safety and efficacy if supplementation is considered.

  16. A study on the seasonal variability of upwelling and its effects on physical parameters in Arabian Sea

    NASA Astrophysics Data System (ADS)

    Shukla, Rohit Kumar; Shaji, Chithra; Ojha, Satya P.; Kumar, Pankaj

    2017-04-01

    The upwelling in Arabian Sea is an important phenomenon, mainly occurring along the southwest coast of India during summer monsoon, which increases the biological productivity in the region. The south west coast of Arabian sea region accounts for about 53% of fish yield of the total fish production in Arabian Sea, thus it is imperative to study and understand the process of upwelling in this region. To study the upwelling features in southwest coast of India, monthly Ekman mass transport is estimated using analyzed wind and derived products from Oceansat-II scatterometer data. Seasonal variability of Ekman mass transport has been analyzed to study the occurrences of coastal upwelling in this region. Results show prominent region of upwelling along southwest coast of India is between 7° and 15° N. Transport estimate demonstrate that the strong offshore Ekman mass transport, as high as -2000 kg/m/s, was observed during summer monsoon months due to favorable wind conditions. Very weak offshore transport, as low as -200 kg/m/s, was observed during pre-monsoon months as winds were weak and spatially variable. Moderate offshore transport, up to -750 kg/m/s, was observed during winter monsoon months. The upwelling associated ocean surface features such as Sea-surface temperature (SST, from AVHRR), chlorophyll concentration (AQUA-MODIS), wind stress curl derived from Oceansat-II and sea surface salinity (SSS, from Aquarius) were examined to demonstrate the spatial and temporal evolution of upwelling in this region. With the advancement of the summer monsoon and upwelling, the monthly mean SST range reaches up to 26-27°C (August - September) from about 29-30°C (April - May). The monthly mean Chlorophyll concentration reaches up to 25-30 mg/m3 (August-September) from 0.1-0.2 mg/m3 (January-February). The monthly SSS which was observed to be about 34 psu (December 2102- January 2013) reaches to 36.5 psu (August-September). Analysis of SST from different sources suggests that the occurrence of a mini-cold pool (MCP) off the southern tip of India (STI) is a persistent phenomenon which occurs during both the summer and the winter monsoon seasons. The dynamics which governs the occurrence of MCP during the summer monsoon season is mainly due to upwelling, advection of the cold upwelled water from the western Arabian Sea and the southwest coast of India. Since, Somalia upwelling is an established fact, hence, we estimate upwelling only on southwest coast of India to understand the genesis of MCP. Results show that the genesis of MCP off STI starts by June and peaks in August and the SST attains a value as low as 26.0 °C, essentially due to upwelling and advection of upwelled water from the Somalia region along with upwelled water from southwest coast of India.

  17. Features of Creation and Operation of Electric and Hybrid Vehicles in Countries with Difficult Climatic Conditions, for Example, in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Karpukhin, K.; Terenchenko, A.

    2016-11-01

    The trend of increasing fleet of electric or hybrid vehicles and determines the extension of the geographical areas of operation, including the Northern areas with cold winter weather. Practically in all territory of Russia the average winter temperature is negative. With the winter temperatures can be below in Moscow -30°C, in Krasnoyarsk -50°C. Battery system can operate in a wide temperature range, but there are extremes that should be remembered all the time, especially in cold climates like Russia. In the operating instructions of the electric car Tesla Model S indicate that to save the battery don't use at temperatures below -15°C. The paper presents the dependence of the cooling time and heating of the battery cell at different ambient temperatures and provides guidance on allowable cooling time while using and not thermally insulated thermally containers Suggests using the temperature control on the basis of thermoelectric converters Peltier connection from the onboard electrical network of the electric vehicle.

  18. The tolerance of the field slug Deroceras reticulatum to freezing temperatures.

    PubMed

    Cook, R T

    2004-01-01

    Cold hardiness of ectotherms has been widely studied in arthropods, but there is a more limited literature on the survival of molluscs at low temperatures. A number of intertidal species have been examined in detail, but terrestrial molluscs have largely been overlooked until recently. This paper reports results of laboratory experiments to evaluate the cold hardiness of the terrestrial slug, Deroceras reticulatum. The mean supercooling point (SCP) rose from -4.2 degree C in summer to -3.6 degree C in winter. The SCP that caused 50 percent mortality (LSCP50) remained constant at -4.7 to -4.8 degree C in both seasons, but slugs were able to survive the frozen state for longer in winter (LD50 of 31.8 minutes compared with 17.0 minutes in summer). Slug survival at freezing temperatures was prolonged to at least five hours when placed on a moist, absorbent substrate. D. reticulatum exhibits partial freeze tolerance, with an increased survival in winter. The results are discussed in relation to the natural environment of slugs.

  19. Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Wu, Yutian; Smith, Karen L.

    2018-01-01

    To better understand the dynamical mechanism that accounts for the observed lead-lag correlation between the early winter Barents-Kara Sea (BKS) sea ice variability and the later winter midlatitude circulation response, a series of experiments are conducted using a simplified atmospheric general circulation model with a prescribed idealized near-surface heating over the BKS. A prolonged effect is found in the idealized experiments following the near-surface heating and can be explicitly attributed to the stratospheric pathway and the long time scale in the stratosphere. The analysis of the Eliassen-Palm flux shows that, as a result of the imposed heating and linear constructive interference, anomalous upward propagating planetary-scale waves are excited and weaken the stratospheric polar vortex. This stratospheric response persists for approximately 1-2 months accompanied by downward migration to the troposphere and the surface. This downward migration largely amplifies and extends the low-level jet deceleration in the midlatitudes and cold air advection over central Asia. The idealized model experiments also suggest that the BKS region is the most effective in affecting the midlatitude circulation than other regions over the Arctic.

  20. Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West coast of North America based on eight years of SSM/I satellite observations

    USGS Publications Warehouse

    Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Lundquist, J.D.; Dettinger, M.D.

    2008-01-01

    The pre-cold-frontal low-level jet within oceanic extratropical cyclones represents the lower-tropospheric component of a deeper corridor of concentrated water vapor transport in the cyclone warm sector. These corridors are referred to as atmospheric rivers (ARs) because they are narrow relative to their length scale and are responsible for most of the poleward water vapor transport at midlatitudes. This paper investigates landfalling ARs along adjacent north- and south-coast regions of western North America. Special Sensor Microwave Imager (SSM/ I) satellite observations of long, narrow plumes of enhanced integrated water vapor (IWV) were used to detect ARs just offshore over the eastern Pacific from 1997 to 2005. The north coast experienced 301 AR days, while the south coast had only 115. Most ARs occurred during the warm season in the north and cool season in the south, despite the fact that the cool season is climatologically wettest for both regions. Composite SSM/I IWV analyses showed landfalling wintertime ARs extending northeastward from the tropical eastern Pacific, whereas the summertime composites were zonally oriented and, thus, did not originate from this region of the tropics. Companion SSM/I composites of daily rainfall showed significant orographic enhancement during the landfall of winter (but not summer) ARs. The NCEP-NCAR global reanalysis dataset and regional precipitation networks were used to assess composite synoptic characteristics and overland impacts of landfalling ARs. The ARs possess strong vertically integrated horizontal water vapor fluxes that, on average, impinge on the West Coast in the pre-cold-frontal environment in winter and post-cold-frontal environment in summer. Even though the IWV in the ARs is greater in summer, the vapor flux is stronger in winter due to much stronger flows associated with more intense storms. The landfall of ARs in winter and north-coast summer coincides with anomalous warmth, a trough offshore, and ridging over the Intermountain West, whereas the south-coast summer ARs coincide with relatively cold conditions and a near-coast trough. ARs have a much more profound impact on near-coast precipitation in winter than summer, because the terrain-normal vapor flux is stronger and the air more nearly saturated in winter. During winter, ARs produce roughly twice as much precipitation as all storms. In addition, wintertime ARs with the largest SSM/I IWV are tied to more intense storms with stronger flows and vapor fluxes, and more precipitation. ARs generally increase snow water equivalent (SWE) in autumn/winter and decrease SWE in spring. On average, wintertime SWE exhibits normal gains during north-coast AR storms and above-normal gains during the south-coast AR storms. The north-coast sites are mostly lower in altitude, where warmer-than-normal conditions more frequently yield rain. During those events when heavy rain from a warm AR storm falls on a preexisting snowpack, flooding is more likely to occur. ?? 2008 American Meteorological Society.

  1. Update: cold weather injuries, active and reserve components, U.S. Armed Forces, July 2009-June 2014.

    PubMed

    Connor, Ricardford R

    2014-10-01

    From July 2013 through June 2014, the number of active and reserve component service members treated for cold injuries (n=719) was the highest of the past five cold seasons (2009-2014). The rate of cold injury among active component personnel was also the highest of the 5-year period. Army personnel accounted for the majority (62%) of cold injuries. Frostbite was the most common type of cold injury in each of the services. Consistent with trends from previous cold seasons, service members who were female, younger than 20 years old, or of black, non-Hispanic race/ethnicity tended to have higher cold injury rates than their respective counterparts. Numbers of cases in the combat zone have decreased in the past 2 years, presumably as a result of declining numbers of personnel exposed and the changing nature of operations. The increase in numbers and the geographic distribution of cold injuries in the previous cold season are compatible with the unusual pattern of cold weather that marked Winter 2013-2014.

  2. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance

    PubMed Central

    Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua

    2016-01-01

    The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892

  3. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana.

    PubMed

    Cheng, Weining; Li, Dan; Wang, Yue; Liu, Yang; Zhu-Salzman, Keyan

    2016-12-01

    Sitodiplosis mosellana Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of hsp70, hsc70 and hsp90 from S. mosellana larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsps included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of hsp90 was consistent with the known classification of insects. Expression of hsp70 and hsp90 were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, hsp70 was more strongly expressed in summer than in winter whereas hsp90 displayed the opposite pattern. Abundance of hsc70 mRNA was comparable prior to and during diapauses and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae (⩾30°C) or cold-stressed over-wintering larvae (⩽0°C) could further elevate expression of these three genes, but temperature extremes i.e. as high as 45°C or as low as -15°C failed to trigger such expression patterns. Notably, hsp70 was most sensitive to heat stress and hsp90 was most sensitive to cold stress. These results suggested that hsp70 and hsp90 play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, hsc70 most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Assessing the Climate Sensitivity of Cold Content and Snowmelt in Seasonal Alpine and Subalpine Snowpacks

    NASA Astrophysics Data System (ADS)

    Jennings, K. S.; Molotch, N. P.

    2016-12-01

    In cold, high-elevation sites, snowpack cold content acts as a buffer against climate warming by resisting snowmelt during periods of positive energy fluxes. To test the climate sensitivity of cold content and snowmelt, we employed the physical SNOWPACK snow model, forced with a 23-year, hourly, quality-controlled, gap-filled meteorological dataset from the Niwot Ridge Long Term Ecological Research (LTER) site in the Front Range mountains of Colorado. SNOWPACK was run at two points with seasonal snowpacks within the LTER, one in the alpine (3528 m) and one in the subalpine (3022 m). Model output was validated using snow water equivalent (SWE), snowpack temperature, and cold content data from snow pits dug near the met stations and automated SWE data from nearby SNOTEL snow pillows. Cold content accumulates primarily through additions of new snow, while negative energy fluxes—cooling through longwave emission and sublimation—play a lesser role, particularly in the deeper snowpack of the alpine. On average, the snowpack energy balance becomes positive on April 1 in the alpine and March 8 in the subalpine. Peak SWE occurs after these dates and its timing is primarily determined by the amount of precipitation received after peak cold content, with persistent snowfall delaying the main snowmelt pulse. Years with lower cold content, due to reduced precipitation and/or increased air temperature, experience an earlier positive energy balance with more melt events occurring before the date of peak SWE, which has implications for soil moisture, streamflow volume and timing, water uptake by vegetation, and microbial respiration. Synthetic warming experiments show significant cold content reductions and increased late-winter/early-spring melt as positive energy balances occur earlier in the snow season (a forward shift between 5.1 and 21.0 days per °C of warming). These results indicate cold, high-elevation sites, which are critical for water resources in the western United States, may lose their cold content buffering capacity and begin to experience stronger negative trends in SWE with increased climate warming, even as the majority of winter precipitation continues to fall as snow.

  5. Induction of cold hardiness in an invasive herbivore: The case of hemlock woolly adelgid (Hemiptera: Adelgidae)

    Treesearch

    Joseph S. Elkinton; Jeffrey A. Lombardo; Artemis D. Roehrig; Thomas J. McAvoy; Albert Mayfield; Mark Whitmore

    2017-01-01

    As a measure of cold hardiness, we tested the supercooling points or freezing temperatures of individual hemlock woolly adelgids (Adelges tsugae Annand) collected from 15 locations across the north to south range of the adelgid in eastern North America at different times during two winters. Adelgids from the northern interior locations with USDA hardiness zones of 5B–...

  6. Effects of calcium fertilization and acid mist on calcium concentration and cold tolerance of red spruce needles

    Treesearch

    G. R. Strimbeck; David R. Vann; Arthur H. Johnson

    1996-01-01

    Several studies have shown that exposure to acid mist impairs cold tolerance of red spruce foliage, predisposing it to winter injury, which appears to be a major factor in the decline of montane populations of the species. Other studies have shown increases in calcium (Ca) concentration in canopy throughfall in montane spruce-fir forests, and decreases in foliar Ca...

  7. Winter frost at Viking Lander 2 site

    NASA Technical Reports Server (NTRS)

    Svitek, Thomas; Murray, Bruce

    1990-01-01

    This paper presents quantitative evidence for cold trapping (frost redeposition) at the Viking Lander 2 site. This evidence consists of the frost surface coverage and color transition, the timing of this transition, and the limited vertical mixing and horizontal water transport. It is argued that cold trapping must be a general property of seasonal frost and, therefore, must be considered in order to understand the evolution of the surface environment of Mars.

  8. ENSO's far reaching connection to Indian cold waves.

    PubMed

    Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio

    2016-11-23

    During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.

  9. Spatial distribution of cold-season lightning frequency in the coastal areas of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Tsurushima, Daiki; Sakaida, Kiyotaka; Honma, Noriyasu

    2017-12-01

    The coastal areas of the Sea of Japan are a well-known hotspot of winter lightning activity. This study distinguishes between three common types of winter lightning in that region (types A-C), based on their frequency distributions and the meteorological conditions under which they occur. Type A lightning occurs with high frequency in the Tohoku district. It is mainly caused by cold fronts that accompany cyclones passing north of the Japanese islands. Type B, which occurs most frequently in the coastal areas of the Hokuriku district, is mainly caused by topographically induced wind convergence and convective instability, both of which are associated with cyclones having multiple centers. Type C's lightning frequency distribution pattern is similar to that of type B, but its principal cause is a topographically induced wind convergence generated by cold air advection from the Siberian continent. Type A is most frequently observed from October to November, while types B and C tend to appear from November to January, consistent with seasonal changes in lightning frequency distribution in Japan's Tohoku and Hokuriku districts.

  10. Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Zolina, Olga

    2018-02-01

    The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.

  11. Evidence for Arctic Ozone Depletion in Late February and early March 1994

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Zurek, R. W.; Froidevaux, L.; Waters, J. W.

    1995-01-01

    Significant chemical ozone (O3 ) loss in the 1993-94 Arctic winter occurred mainly during an unusually late cold spell of approximately 10 days in late Feb/early Mar. Over the 30 d period studied (including the cold spell), observed vortex-averaged O3 at 465 K (approximately 40 hPa) decreased by approximately 10%. New three-dimensional, diabatic trajectory calculations show that this observed decrease represents only about half of the net chemical loss (approximately 20%) during the 30 day period. The resupply of lower stratospheric O3 by transport in Feb 1994 was considerably greater than in 1993, when transport masked only about a quarter of the chemical loss in Feb/Mar. The net estimated chemical loss over 30 days in 1994 was comparable to that over the same 30 days in 1993, but mainly occurred at a faster rate during the brief cold spell. These results highlight the impact of Arctic interannual variability on the relative roles of chemistry and dynamics in O3 evolution during recent Arctic winters.

  12. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator)

    1983-01-01

    Pairs of HCMM day-night thermal infrared (IR) data were selected during the 1978-79 winter to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. The GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely corresponded to the general soil map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils, whereas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also corresponded well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model showed both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.

  13. Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought.

    PubMed

    Gimeno, Teresa E; Camarero, J Julio; Granda, Elena; Pías, Beatriz; Valladares, Fernando

    2012-03-01

    Juniperus thurifera L. is an endemic conifer of the western Mediterranean Basin where it is subjected to a severe climatic stress characterized by low winter temperatures and summer drought. Given the trend of increased warming-induced drought stress in this area and the climatic sensitivity of this species, we expect a negative impact of climate change on growth and ecophysiological performance of J. thurifera in the harsh environments where it dominates. To evaluate this, we measured long- and short-term radial growth using dendrochronology, photosynthesis and water-use efficiency in males, females and juveniles in three sites in Central Spain. Climate was monitored and completed with historical records. Mean annual temperature has increased +0.2 °C per decade in the study area, and the main warming trends corresponded to spring (+0.2 °C per decade) and summer (+0.3 °C per decade). Radial growth and maximum photosynthesis peaked in spring and autumn. Positive photosynthetic rates were maintained all year long, albeit at reduced rates in winter and summer. Radial growth was enhanced by wet conditions in the previous autumn and by warm springs and high precipitation in summer of the year of tree-ring formation. Cloud cover during the summer increased growth, while cloudy winters led to impaired carbon gain and reduced growth in the long term. We argue that maintenance of carbon gain under harsh conditions (low winter temperatures and dry summer months) and plastic xylogenesis underlie J. thurifera's ability to profit from changing climatic conditions such as earlier spring onset and erratic summer rainfall. Our results highlight that not only the magnitude but also the sign of the impact of climate change on growth and persistence of Mediterranean trees is species specific.

  14. Outdoor temperature, blood pressure, and cardiovascular disease mortality among 23 000 individuals with diagnosed cardiovascular diseases from China.

    PubMed

    Yang, Ling; Li, Liming; Lewington, Sarah; Guo, Yu; Sherliker, Paul; Bian, Zheng; Collins, Rory; Peto, Richard; Liu, Yun; Yang, Rong; Zhang, Yongrui; Li, Guangchun; Liu, Shumei; Chen, Zhengming

    2015-05-14

    Blood pressure is a major cause of cardiovascular disease (CVD) and both may increase as outdoor temperatures fall. However, there are still limited data about seasonal variation in blood pressure and CVD mortality among patients with prior-CVD. We analysed data on 23 000 individuals with prior-CVD who were recruited from 10 diverse regions into the China Kadoorie Biobank during 2004-8. After 7 years of follow-up, 1484 CVD deaths were recorded. Baseline survey data were used to assess seasonal variation in systolic blood pressure (SBP) and its association with outdoor temperature. Cox regression was used to examine the association of usual SBP with subsequent CVD mortality, and seasonal variation in CVD mortality was assessed by Poisson regression. All analyses were adjusted for age, sex, and region. Mean SBP was significantly higher in winter than in summer (145 vs. 136 mmHg, P < 0.001), especially among those without central heating. Above 5°C, each 10°C lower outdoor temperature was associated with 6.2 mmHg higher SBP. Systolic blood pressure predicted subsequent CVD mortality, with each 10 mmHg higher usual SBP associated with 21% (95% confidence interval: 16-27%) increased risk. Cardiovascular disease mortality varied by season, with 41% (21-63%) higher risk in winter compared with summer. Among adult Chinese with prior-CVD, there is both increased blood pressure and CVD mortality in winter. Careful monitoring and more aggressive blood pressure lowering treatment in the cold months are needed to help reduce the winter excess CVD mortality in high-risk individuals. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  15. A Longitudinal Study of Disease Incidence among Antarctic Winter-Over Personnel.

    DTIC Science & Technology

    1986-02-01

    follow-up study of enlisted Navy personnel found no long-term risk for first hospital admissions. " Objective The objective of this study was to test ...the Antarctic winter and demographic. personality, and socioenvironmental factors which mediate the physical and psychological stress associated with...over personnel are at risk for disease and psychological stress upon their return to the outside world. Outbreaks of common colds have been noted among

  16. The Case for CASES

    ERIC Educational Resources Information Center

    Powell, W. R.

    1978-01-01

    In this article the Community Annual Energy Storage System ( CASES), a "thermal utility" plan for heating and cooling communities by storing summer heat and winter cold for use in the opposite season, is described. (MDR)

  17. Potassium and Your CKD Diet

    MedlinePlus

    ... ¼ whole) Artichoke Chocolate (1.5-2 ounces) Banana (½ whole) Bamboo Shoots Granola Cantaloupe Baked Beans ... Sweet Potatoes, Carrots, Beets, Winter Squash, and Rutabagas: Peel and place the vegetable in cold water so ...

  18. The Relation of El Nino Southern Oscillation to Winter Tornado Outbreaks

    NASA Astrophysics Data System (ADS)

    Robinson Cook, A. D.; Schaefer, J. T.

    2007-12-01

    Winter tornado activity (January, February, and March) between 1950 and 2003 was analyzed to determine the possible effect of seasonally averaged sea surface temperatures in the equatorial Pacific Ocean, the ENSO phase, on the location and strength of tornado outbreaks in the United States. Tornado activity was gauged through analyses of tornadoes occurring on tornado days (a calendar day featuring 6 or more tornadoes within the contiguous United States) and strong and violent tornado days (a calendar day featuring 5 or more tornadoes rated F-2 and greater within the contiguous United States). The tornado days were then stratified according to warm (37 tornado days, 14 violent days), cold (51 tornado days, 28 violent days), and neutral (74 tornado days, 44 violent days) winter ENSO phase. It is seen that during winter periods of neutral tropical Pacific sea surface temperatures, there is a tendency for United States tornado outbreaks to be stronger and more frequent than they are during winter periods of anomalously warm tropical Pacific sea surface temperatures (El Nino). During winter periods with anomalously cool Pacific sea surface temperatures (La Nina), the frequency and strength of United States tornado activity lies between that of the neutral and El Nino phase. ENSO related shifts in the preferred location of tornado activity are also observed. Historically, during the neutral phase, tornado outbreaks typically occurred from central Oklahoma and Kansas eastward through the Carolinas. During cold phases, tornado outbreaks have typically occurred in a zone stretching from southeastern Texas northeastward into Illinois, Indiana, and Michigan. During anomalously warm phases activity was mainly limited to the Gulf Coast States including central Florida. The data are statistically and synoptically analyzed to show that they are not only statistically significant, but also meteorologically reasonable.

  19. Large Scale Drivers for the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2016-04-01

    The British Isles experienced exceptional stormy and rainy weather conditions in winter 2013-2014 while large parts of central North America recorded near record minimum surface temperatures values. Potential drivers for these cold conditions include increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the Europe, particularly the UK. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We will firstly analyse anomaly patterns along such a potential link in winter 2013-14. Secondly, we will investigate whether these identified anomaly patterns show a strong interannual relationship in the recent past. Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.

  20. Distribution of Different Biogeographical Tintinnids in Yellow Sea and Bohai Sea

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Li, Haibo; Zhao, Yuan; Zhao, Li; Dong, Yi; Zhang, Wuchang; Xiao, Tian

    2018-04-01

    There were different biogeographical tintinnids in the oceans. Knowledge of their distribution pattern and mixing was important to the understanding of ecosystem functions. Yellow Sea (YS) and Bohai Sea (BS) were semi-enclosed seas influenced by warm water intrusion and YS cold bottom water. The occurrence of tintinnids in YS and BS during two cruises (summer and winter) were investigated to find out: i) whether warm-water tintinnids appeared in YS and BS; ii) whether boreal tintinnids appeared in high summer; iii) the core area of neritic tintinnids and iv) how these different biogeographical tintinnids mixed. Our results showed that tintinnid community was dominated by neritic tintinnid. We confirmed the occurrence of warm-water tintinnids in summer and winter. In summer, they intruded into BS and mainly distributed in the upper 20 m where Yellow Sea Surface Warm Water (YSSWW) developed. In winter, they were limited in the surface water of central deep region (bottom depth >50 m) of YS where were affected by Yellow Sea Warm Water (YSWW). Boreal tintinnids occurred in YS in high summer (August) and in winter, while they were not observed in BS. In summer, the highest abundance of boreal tintinnids occurred in Yellow Sea Bottom Cold Water, indicating the presence of an oversummering stock. In winter, they were concentrated in the north of YSWW. Vertically, neritic tintinnids abundance was high in the bottom layers. Horizontally, high neritic tintinnids abundance in bottom layers occurred along the 50 m isobath coinciding with the position of front systems. Front systems were the core distribution area of neritic tintinnids. High abundance areas of warm-water and boreal tintinnids were clearly separated vertically in summer, and horizontally in winter. High abundance of neritic tintinnids rarely overlapped with that of warm-water or boreal tintinnids.

  1. Atmospheric precursors of and response to anomalous Arctic sea ice in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Kelleher, Michael; Screen, James

    2018-01-01

    This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere, and between Arctic sea ice and cold winter temperatures over Eurasia. We present normalized regressions of Arctic sea-ice area against several atmospheric variables at extended lead and lag times. Statistically significant regressions are found at leads and lags, suggesting both atmospheric precursors of, and responses to, low sea ice; but generally, the regressions are stronger when the atmosphere leads sea ice, including a weaker polar stratospheric vortex indicated by positive polar cap height anomalies. Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea ice. We argue that low sea ice and raised polar cap height are both a response to this enhanced midlatitude eddy heat flux. The so-called "warm Arctic, cold continents" anomaly pattern is present one to two months before low sea ice, but is absent in the months following low sea ice, suggesting that the Eurasian cooling and low sea ice are driven by similar processes. Lastly, our results suggest a dependence on the geographic region of low sea ice, with low Barents-Kara Sea ice correlated with a weakened polar stratospheric vortex, whilst low Sea of Okhotsk ice is correlated with a strengthened polar vortex. Overall, the results support a notion that the sea ice, polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.

  2. Role of cold water and beta-effect in the formation of the East Korean Warm Current in the East/Japan Sea: a numerical experiment

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Yub; Cho, Yang-Ki; Kim, Young Ho

    2018-06-01

    The contributions of bottom cold water and planetary β-effect to the formation of the East Korean Warm Current (EKWC), the western boundary current in the East/Japan Sea (EJS), were evaluated using an idealized three-dimensional numerical model. The model results suggest that the bottom cold water and, to a lesser extent, the planetary β-effect both contribute to the formation of the EKWC. The cold water functions as the bottom of the upper layer, to control the EKWC via conservation of potential vorticity. It is known that cold waters, such as the North Korean Cold Water and Korea Strait Bottom Cold Water often observed during summer along the southwestern coast of the EJS, originate from the winter convection in the northern area. Observational studies consistently show that the EKWC strengthens in summer when the cold water extends further south along the western boundary.

  3. Thermoregulatory effects of swaddling in Mongolia: a randomised controlled study.

    PubMed

    Tsogt, Bazarragchaa; Manaseki-Holland, Semira; Pollock, Jon; Blair, Peter S; Fleming, Peter

    2016-02-01

    To investigate thermal balance of infants in a Mongolian winter, and compare the effects of traditional swaddling with an infant sleeping-bag in apartments or traditional tents (Gers). A substudy within a randomised controlled trial. Community in Ulaanbaatar, Mongolia. A stratified randomly selected sample of 40 swaddled and 40 non-swaddled infants recruited within 48 h of birth. Sleeping-bags and baby outfits of total thermal resistance equivalent to that of swaddled babies. Digital recordings of infants' core, peripheral, environmental and microenvironmental temperatures at 30-s intervals over 24 h at ages 1 month and 3 months. In Gers, indoor temperatures varied greatly (<0->25°C), but remained between 20°C and 22°C, in apartments. Despite this, heavy wrapping, bed sharing and partial head covering, infant core and peripheral temperatures were similar and no infants showed evidence of significant heat or cold stress whether they were swaddled or in sleeping-bags. At 3 months, infants in sleeping-bags showed the 'mature' diurnal pattern of a fall in core temperature after sleep onset, accompanied by a rise in peripheral temperature, with a reverse pattern later in the night, just before awakening. This pattern was not related to room temperature, and was absent in the swaddled infants, suggesting that the mature diurnal pattern may develop later in them. No evidence of cold stress was found. Swaddling had no identifiable thermal advantages over sleeping-bags during the coldest times, and in centrally heated apartments could contribute to the risk of overheating during the daytime. ISRTN01992617. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Climate change impacts on potential recruitment in an ecosystem engineer

    PubMed Central

    Morgan, Emer; O' Riordan, Ruth M; Culloty, Sarah C

    2013-01-01

    Climate variability and the rapid warming of seas undoubtedly have huge ramifications for biological processes such as reproduction. As such, gametogenesis and spawning were investigated at two sites over 200 km apart on the south coast of Ireland in an ecosystem engineer, the common cockle, Cerastoderma edule. Both sites are classed as Special Areas of Conservation (SACs), but are of different water quality. Cerastoderma edule plays a significant biological role by recycling nutrients and affecting sediment structure, with impacts upon assemblage biomass and functional diversity. It plays a key role in food webs, being a common foodstuff for a number of marine birds including the oystercatcher. Both before and during the study (early 2010–mid 2011), Ireland experienced its two coldest winters for 50 years. As the research demonstrated only slight variation in the spawning period between sites, despite site differences in water and environmental quality, temperature and variable climatic conditions were the dominant factor controlling gametogenesis. The most significant finding was that the spawning period in the cockle extended over a greater number of months compared with previous studies and that gametogenesis commenced over winter rather than in spring. Extremely cold winters may impact on the cockle by accelerating and extending the onset and development of gametogenesis. Whether this impact is positive or negative would depend on the associated events occurring on which the cockle depends, that is, presence of primary producers and spring blooms, which would facilitate conversion of this extended gametogenesis into successful recruitment. PMID:23532482

  5. Recent recovery of surface wind speed after decadal decrease: a focus on South Korea

    NASA Astrophysics Data System (ADS)

    Kim, JongChun; Paik, Kyungrock

    2015-09-01

    We investigate the multi-decadal variability of observed surface wind speed around South Korea. It is found that surface wind speed exhibits decreasing trend from mid-1950s until 2003, which is similar with the trends reported for other parts of the world. However, the decreasing trend ceases and becomes unclear since then. It is revealed that decreasing wind speed until 2003 is strongly associated with the decreasing trend of the spatial variance in both atmospheric pressure and air temperature across the East Asia for the same period. On the contrary, break of decreasing trend in surface wind speed since 2003 is associated with increasing spatial variance in surface temperature over the East Asia. Ground observation shows that surface wind speed and air temperature exhibit highly negative correlations for both summer and winter prior to 2003. However, since 2003, the correlations differ between seasons. We suggest that mechanisms behind the recent wind speed trend are different between summer and winter. This is on the basis of an interesting finding that air temperature has decreased while surface temperature has increased during winter months since 2003. We hypothesize that such contrasting temperature trends indicate more frequent movement of external cold air mass into the region since 2003. We also hypothesize that increasing summer wind speed is driven by intrusion of warm air mass into the region which is witnessed via increasing spatial variance in surface temperature across East Asia and the fact that both air and surface temperature rise together.

  6. Seasonal variation of temporal niche in wild owl monkeys (Aotus azarai azarai) of the Argentinean Chaco: a matter of masking?

    PubMed

    Erkert, Hans G; Fernandez-Duque, Eduardo; Rotundo, Marcelo; Scheideler, Angelika

    2012-07-01

    Among the more than 40 genera of anthropoid primates (monkeys, apes, and humans), only the South American owl monkeys, genus Aotus, are nocturnal. However, the southernmostly distributed species, Aotus azarai azarai, of the Gran Chaco may show considerable amounts of its 24-h activity during bright daylight. Due to seasonal changes in the duration of photophase and climatic parameters in their subtropical habitat, the timing and pattern of their daily activity are expected to show significant seasonal variation. By quantitative long-term activity recordings with Actiwatch AW4 accelerometer data logger devices of 10 wild owl monkeys inhabiting a gallery forest in Formosa, Argentina, the authors analyzed the seasonal variation in the temporal niche and activity pattern resulting from entrainment and masking of the circadian activity rhythm by seasonally and diurnally varying environmental factors. The owl monkeys always displayed a distinct bimodal activity pattern, with prominent activity bouts and peaks during dusk and dawn. Their activity rhythm showed distinct lunar and seasonal variations in the timing and daily pattern. During the summer, the monkeys showed predominantly crepuscular/nocturnal behavior, and a crepuscular/cathemeral activity pattern with similar diurnal and nocturnal activity levels during the cold winter months. The peak times of the evening and morning activity bouts were more closely related to the times of sunset and sunrise, respectively, than activity-onset and -offset. Obviously, they were better circadian markers for the phase position of the entrained activity rhythm than activity-onset and -offset, which were subject to more masking effects of environmental and/or internal factors. Total daily activity was lowest during the two coldest lunar months, and almost twice as high during the warmest months. Nighttime (21:00-06:00 h) and daytime (09:00-18:00 h) activity varied significantly across the year, but in an opposite manner. Highest nighttime activity occurred in summer and maximal daytime activity during the cold winter months. Dusk and dawn activity, which together accounted for 43% of the total daily activity, barely changed. The monkeys tended to terminate their nightly activity period earlier on warm and rainy days, whereas the daily amount of activity showed no significant correlation either with temperature or precipitation. These data are consistent with the dual-oscillator hypothesis of circadian regulation. They suggest the seasonal variations of the timing and pattern of daily activity in wild owl monkeys of the Argentinean Chaco result from a specific interplay of light entrainment of circadian rhythmicity and strong masking effects of various endogenous and environmental factors. Since the phase position of the monkeys' evening and morning activity peaks did not vary considerably over the year, the seasonal change from a crepuscular/nocturnal activity pattern in summer to a more crepuscular/cathemeral one in winter does not depend on a corresponding phase shift of the entrained circadian rhythm, but mainly on masking effects. Thermoregulatory and energetic demands and constraints seem to play a crucial role.

  7. Analysis of the synoptic winter mortality climatology in five regions of England: Searching for evidence of weather signals.

    PubMed

    Paschalidou, A K; Kassomenos, P A; McGregor, G R

    2017-11-15

    Although heat-related mortality has received considerable research attention, the impact of cold weather on public health is less well-developed, probably due to the fact that physiological responses to cold weather can vary substantially among individuals, age groups, diseases etc., depending on a number of behavioral and physiological factors. In the current work we use the classification techniques provided by the COST-733 software to link synoptic circulation patterns with excess cold-related mortality in 5 regions of England. We conclude that, regardless of the classification scheme used, the most hazardous conditions for public health in England are associated with the prevalence of the Easterly type of weather, favoring advection of cold air from continental Europe. It is noteworthy that there has been observed little-to-no regional variation with regards to the classification results among the 5 regions, suggestive of a spatially homogenous response of mortality to the atmospheric patterns identified. In general, the 10 different groupings of days used reveal that excess winter mortality is linked with the lowest daily minimum/maximum temperatures in the area. However it is not uncommon to observe high mortality rates during days with higher, in relative terms, temperatures, when rapidly changing weather results in an increase of mortality. Such a finding confirms the complexity of cold-related mortality and highlights the importance of synoptic climatology in understanding of the phenomenon. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Transcriptional profiles of the annual growth cycle in Populus deltoides.

    PubMed

    Park, Sunchung; Keathley, Daniel E; Han, Kyung-Hwan

    2008-03-01

    Cycling between vegetative growth and dormancy is an important adaptive mechanism in temperate woody plants. To gain insights into the underlying molecular mechanisms, we carried out global transcription analyses on stem samples from poplar (Populus deltoides Bartr. ex Marsh.) trees grown in the field and in controlled environments. Among seasonal changes in the transcriptome, up-regulation of defense-related genes predominated in early winter, whereas signaling-related genes were up-regulated during late winter. Cluster analysis of the differentially expressed genes showed that plants regulated seasonal growth by integrating environmental factors with development. Short day lengths induced some cold-associated genes without concomitant low temperature exposure, and enhanced the expression of some genes when combined with low temperature exposure. These mechanisms appear to maintain closer synchrony between cold hardiness and climate than would be achieved through responses to temperature alone.

  9. Seasonal movements, migratory behavior, and site fidelity of West Indian manatees along the Atlantic coast of the United States

    USGS Publications Warehouse

    Deutsch, C.J.; Reid, J.P.; Bonde, R.K.; Easton, Dean E.; Kochman, H.I.; O'Shea, T.J.

    2003-01-01

    The West Indian manatee (Trichechus manatus) is endangered by human activities throughout its range, including the U.S. Atlantic coast where habitat degradation from coastal development and manatee deaths from watercraft collisions have been particularly severe. We radio-tagged and tracked 78 manatees along the east coast of Florida and Georgia over a 12-year period (1986-1998). Our goals were to characterize the seasonal movements, migratory behavior, and site fidelity of manatees in this region in order to provide information for the development of effective conservation strategies. Most study animals were tracked remotely with the Argos satellite system, which yielded a mean (SD) of 3.7 (1.6) locations per day; all were regularly tracked in the field using conventional radiotelemetry methods. The combined data collection effort yielded >93,000 locations over nearly 32,000 tag-days. The median duration of tracking was 8.3 months per individual, but numerous manatees were tracked over multiple years (max = 6.8 years). Most manatees migrated seasonally over large distances between a northerly warm-season range and a southerly winter range (median one-way distance = 280 km, max = 830 km), but 12% of individuals were resident in a relatively small area (2,300 km of coastline between southeastern Florida and Rhode Island. No study animals journeyed to the Gulf coast of Florida. Regions heavily utilized by tagged manatees included: Fernandina Beach, FL to Brunswick, GA in the warm season; northern Biscayne Bay to Port Everglades, FL in the winter; and central coastal Florida, especially the Banana River and northern Indian River lagoons, in all seasons. Daily travel rate, defined as the distance between successive mean daily locations, averaged 2.5 km (SD = 1.7), but this varied with season, migratory pattern, and sex. Adult males traveled a significantly greater distance per day than did adult females for most of the warm season, which corresponded closely with the principal period of breeding activity, but there was no difference between the sexes in daily travel rate during the winter. The timing of seasonal migrations differed markedly between geographic regions. Most long-distance movements in the southern half of the study area occurred between November and March in response to changing temperatures, whereas most migrations in the northern region took place during the warmer, non-winter months. Manatees left their warm-season range in central Florida in response to cold fronts that dropped water temperatures by an average of 2.0??C over the 24-hr period preceding departure. Water temperature at departure from the warm-season range averaged 19??C, but varied among individuals (16-22??C) and was not related to body size or female reproductive status. The presence of industrial warm-water effluents permitted many manatees to overwinter north of their historic winter range, and for some migrants this delayed autumn migrations and facilitated earlier spring migrations. Southward autumn and northward spring migrations lasted an average of 10 and 15 days at mean rates of 33.5 (SD = 7.6) and 27.3 (SD = 10.5) km/day, respectively. The highest rate of travel during migration was 87 km/day (3.6 km/hr) during winter. Manatees overwintering in southeastern Florida often traveled north during mild weather - sometimes reaching their warm-season range - only to return south again with the next major cold front. Manatees were consistent in their seasonal movement patterns across years and showed strong fidelity, to warm-season and winter ranges. Within a season, individuals usually occupied only 1 or 2 core use areas that encompassed about 90% of daily locations. Most manatees returned faithfully to the same seasonal ranges year after year (median distance between range centers was <5 km between years). Seasonal movements of 4 immature manatees tracked as calves with their mothers

  10. Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect.

    PubMed

    Arambourou, Hélène; Stoks, Robby

    2015-10-01

    Despite the increased attention for the effects of pesticides under global warming no studies tested how winter warming affects subsequent sensitivity to pesticides. Winter warming is expected to cause delayed negative effects when it increases metabolic rates and thereby depletes energy reserves. Using a common-garden experiment, we investigated the combined effect of a 4 °C increase in winter temperature and subsequent exposure to chlorpyrifos in the aquatic larvae of replicated low- and high-latitude European populations of the damselfly Ischnura elegans. The warmer winter (8 °C) resulted in a higher winter survival and higher growth rates compared to the cold winter (4 °C) commonly experienced by European high-latitude populations. Low-latitude populations were better at coping with the warmer winter, indicating thermal adaptation to the local winter temperatures. Subsequent chlorpyrifos exposure at 20 °C induced strong negative effects on survival, growth rate, lipid content and acetylcholinesterase activity while phenoloxidase activity increased. These pesticide effects were not affected by winter warming. Our results suggest that for species where winter warming has positive effects on life history, no delayed effects on the sensitivity to subsequent pesticide exposure should be expected. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Shoot winter injury and nut cold tolerance: Possible limitations for American chestnut restoration in cold environments? In: Sniezko, Richard A.; Yanchuk, Alvin D.; Kliejunas, John T.; Palmieri, Katharine M.; Alexander, Janice M.; Frankel, Susan J., tech

    Treesearch

    Thomas M. Saielli; Paul G. Schaberg; Gary J. Hawley; Joshua M. Halman; Kendra M. Gurney

    2012-01-01

    Approximately 100 years ago, American chestnut (Castanea dentata (Marsh.) Borkh.) was rapidly removed as an overstory tree by the fungal pathogen Cryphonectria parasitica (the causal agent of chestnut blight). Currently, the most effective method of restoration involves the hybridization of American chestnut with the...

  12. Mass Mortality of Cassin's Auklets, Assessing the Impact of a Warming Ocean

    NASA Astrophysics Data System (ADS)

    Parrish, J.

    2016-02-01

    In Fall/Winter 2014-15, more than 100,000 Cassin's Auklets, Ptychoramphus aleuticus, washed ashore on U.S. West Coast beaches. A small-bodied, zooplanktivorous bird, Cassin's nest in colonies scattered along the Northeast Pacific coastline, with a particular concentration in the Scott Islands, northwest of Vancouver Island, BC where 80% of the world's population ( 3.5M) breeds. Standardized, effort-controlled beach surveys conducted by >500 volunteers for three citizen science organizations (BeachCOMBERS, Beach Watch, COASST) at >225 sites from Cape Flattery, WA to Monterey Bay, CA were used to document the event and contrast it to regionally specific long-term average carcass-fall. Data are abundance of independently verified carcass identifications collected (bi)monthly at known locations and dates, providing an instantaneous index of "new" carcass encounter rate. Two pulses were evident: A small but significant anomaly (+2-3 carcasses/km) in November primarily in California and a much larger (+20-25 carcasses/km) more sustained anomaly in December-January along the Washington and northern Oregon coastline. Four non-exclusive hypotheses were examined: surplus production of young-of-the year (i.e. elevated post-breeding mortality), severity of fall/winter storms (i.e. elevated winterkill), shifts in food diversity (proxied as copepod regional diversity along the Newport Line), and habitat compression calculated as location and relative area of wintering habitat (assessed by GLS-tagged birds) with a monthly SST anomaly <1.0oC. Multivariate models suggest production, food diversity and habitat compression are all valid predictors. Drifter simulations suggest that a large portion of the event can be explained by the extreme compression of cold water habitat in July-September 2014, trapping dispersing Scott Islands birds as the warm water anomaly expanded eastward, leaving open the question of whether this event was anomalous mortality and/or anomalously high beaching rates.

  13. Real-Time Teleguidance of a Non-Surgeon Crew Medical Officer Performing Orthopedic Surgery at the Amundsen-Scott South Pole Station During Winter-Over

    NASA Technical Reports Server (NTRS)

    Otto, Christian

    2010-01-01

    The Amundsen-Scott South Pole Research station located at the geographic South Pole, is the most isolated, permanently inhabited human outpost on Earth. Medical care is provided to station personnel by a non-surgeon crew medical officer (CMO). During the winter-over period from February to October, the station is isolated, with no incoming or outgoing flights due to severe weather conditions. In late June, four months after the station had closed for the austral winter, a 31 year old meteorologist suffered a complete rupture of his patellar tendon while sliding done an embankment. An evacuation was deemed to be too risky to aircrews due to the extreme cold and darkness. A panel of physicians from Massachusetts General Hospital, Johns Hopkins University and the University of Texas Medical Branch were able to assess the patient remotely via telemedicine and agreed that surgery was the only means to restore mobility and prevent long term disability. The lack of a surgical facility and a trained surgical team were overcome by conversion of the clinic treatment area, and intensive preparation of medical laypersons as surgical assistants. The non-surgeon CMO and CMO assistant at South Pole, were guided through the administration of spinal anesthetic, and the two-hour operative repair by medical consultants at Massachusetts General Hospital. Real-time video of the operative field, directions from the remote consultants and audio communication were provided by videoconferencing equipment, operative cameras, and high bandwidth satellite communications. In real-time, opening incision/exposure, tendon relocation, hemostatsis, and operative closure by the CMO was closely monitored and guided and by the remote consultants. The patient s subsequent physical rehabilitation over the ensuing months of isolation was also monitored remotely via telemedicine. This was the first time in South Pole s history that remote teleguidance had been used for surgery and represents a model for real-time guidance of CMO s working at remote duty stations.

  14. Trends in mercury concentrations in the hair of women of Nome, Alaska - Evidence of seafood consumption or abiotic absorption?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasorsa, B.

    1992-06-01

    Eighty samples of hair from women of child-bearing age from Nome, Alaska, and seven control samples from women living in Sequim, Washington, were analyzed for mercury concentration by segmental analysis in an effort to determine whether seasonal fluctuations in mercury concentration in the hair samples can be correlated to seasonal seafood consumption. Full-length hair strands were analyzed in 1.1-cm segments representing 1 month`s growth using a strong acid digestion and cold vapor atomic fluorescence analysis. It was assumed that the concentration of mercury in each segment is an indicator of the mercury body burden during the month in which themore » segment emerged from the scalp. Eighteen of the samples show seasonal variability, with five of the controls and one Nome resident showing winter highs while all Nome residents show summer highs. Twenty-six of the samples show an increase in mercury concentration toward the distal end of the strand regardless of month of growth. The trend of increasing mercury concentrations toward the distal end of the hair strand regardless of month of emergence, and the documented presence of elevated levels of elemental mercury in the Nome area suggest that these elevated levels may actually be due to external contamination of the hair strands by adsorption and not due to ingestion of contaminated foodstuffs such as seafood.« less

  15. Wintertime ozone and nitrogen oxide photochemistry and nighttime chemistry in a Western oil and gas basin

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Edwards, P. M.; Patel, S.; Dube, W. P.; Williams, E. J.; Roberts, J. M.; McLaren, R.; Kercher, J. P.; Gilman, J. B.; Lerner, B. M.; Warneke, C.; Geiger, F.; De Gouw, J. A.; Tsai, C.; Stutz, J.; Young, C. J.; Washenfelder, R. A.; Parrish, D. D.

    2012-12-01

    Oil and gas development in mountain basins of the Western United States has led to frequent exceedences of National Ambient Air Quality Standards for ozone during the winter season. The Uintah Basin Winter Ozone Study took place during February and March 2012 in northeast Utah with the goal of providing detailed chemical and meteorological data to understand this phenomenon. Although snow and cold pool stagnation conditions that lead to winter ozone buildup were not encountered during the study period, the detailed measurements did provide a unique data set to understand the chemistry of key air pollutants in a desert environment during winter. This presentation will examine both the photochemistry and the nighttime chemistry of nitrogen oxides, ozone and VOCs, with the goal of understanding the observed photochemistry and its relationship to nighttime chemistry through a set of box models. The photochemical box model is based on the master chemical mechanism (MCM), a detailed model for VOC degradation and ozone production. The presentation will examine the sensitivity of ozone photochemistry to different parameters, including pollutant concentrations likely to be characteristic of cold pool conditions, and the strength of radical sources derived from heterogeneous chemical reactions. The goal of the analysis will be to identify the factors most likely to be responsible for the higher ozone events that have been observed during colder years with less detailed chemical measurements.

  16. A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in northern hemispheric winter

    NASA Astrophysics Data System (ADS)

    Yu, Yueyue; Cai, Ming; Ren, Rongcai; Rao, Jian

    2018-01-01

    The relationship between continental-scale cold air outbreaks (CAOs) in the mid-latitudes and pulse signals in the stratospheric mass circulation in Northern Hemisphere winter (December-February) is investigated using ERA-Interim data for the 32 winters from 1979 to 2011. Pulse signals in the stratospheric mass circulation include "PULSE_TOT", "PULSE_W1", and "PULSE_W2" events, defined as a period of stronger meridional mass transport into the polar stratosphere by total flow, wavenumber-1, and wavenumber-2, respectively. Each type of PULSE event occurs on average 4-6 times per winter. A robust relationship is found between two dominant patterns of winter CAOs and PULSE_W1 and PULSE_W2 events. Cold temperature anomalies tend to occur over Eurasia with the other continent anomalously warm during the 2 weeks before the peak dates of PULSE_W1 events, while the opposite temperature anomaly pattern can be found after the peak dates; and during the 1-2 weeks centered on the peak dates of PULSE_W2 events, a higher probability of occurrence of CAOs is found over both continents. These relationships become more robust for PULSE_W1 and PULSE_W2 events of larger peak intensity. PULSE_TOT events are classified into five types, which have a distinct coupling relationship with PULSE_W1 and PULSE_W2 events. The specific pattern of CAOs associated with each type of PULSE_TOT event is found to be a combination of the CAO patterns associated with PULSE_W1 and PULSE_W2 events. The percentage of PULSE_TOT events belonging to the types that are dominated by PULSE_W2 events increases with the peak intensity of PULSE_TOT events. Accordingly, the related CAO pattern is close to that associated with PULSE_W1 for PULSE_TOT events with small-to-medium intensity, but tends to resemble that associated with PULSE_W2 events as the peak intensity of PULSE_TOT events increases.

  17. Snow in Time for the Solstice

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In mid-December, the weather in eastern North America cooperated with the calendar, and a wintry blast from the Arctic delivered freezing cold air, blustery winds, and snow just in time for the Winter Solstice on December 21' the Northern Hemisphere's longest night of the year and the official start of winter. This image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on December 20, 2004, the day after an Arctic storm dove down into the United States, bringing snow to New England (upper right of top image); the coastal mid-Atlantic, including Washington, D.C.; and the southern Appalachian Mountains in Tennessee and North Carolina. Over the Atlantic Ocean (image right), the fierce Arctic winds were raking the clouds into rows, like a gardener getting ready to plant the seeds of winter. The detailed close-up at the bottom of this image pair shows the cloud and snow patterns around Lake Ontario, illustrating the occurrence of 'lake-effect snow.' Areas in western upstate New York often get as much as fifteen feet or more of snow each year as cold air from Canada and the Arctic sweeps down over the relatively warm waters of Lakes Ontario and Erie. Cold air plus moisture from the lakes equals heavy snow. Since the wind generally blows from west to east, it is the 'downwind' cities like Buffalo and Rochester that receive the heaping helpings of snowfall, while cities on the upwind side of the lake, such as Toronto, receive much less. Unlike storms that begin with specific low-pressure systems in the Pacific Ocean and march eastward across the Pacific Northwest, the Rockies, the Great Plains, and sometimes the East, the lake-effect snows aren't tied to a specific atmospheric disturbance. They are more a function of geography, which means that the lakes can keep fueling snow storms for as long as they remain ice-free in early winter, as well as when they begin to thaw in late winter and early spring. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE.

  18. Improved antioxidative protection in winter swimmers.

    PubMed

    Siems, W G; Brenke, R; Sommerburg, O; Grune, T

    1999-04-01

    Adaptation to oxidative stress is an improved ability to resist the damaging effects of reactive oxygen species, resulting from pre-exposure to a lower dose. Changes in uric acid and glutathione levels during ice-bathing suggest that the intensive voluntary short-term cold exposure of winter swimming produces oxidative stress. We investigated whether the repeated oxidative stress in winter swimmers results in improved antioxidative adaptation. We obtained venous blood samples from winter swimmers and determined important components of the antioxidative defense system in the erythrocytes or blood plasma: reduced and oxidized glutathione (GSH and GSSG), and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (Cat). The control group consisted of healthy people who had never participated in winter swimming. The baseline concentration of GSH and the activities of erythrocytic SOD and Cat, were higher in winter swimmers. We interpret this as an adaptative response to repeated oxidative stress, and postulate it as a new basic molecular mechanism of increased tolerance to environmental stress.

  19. Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters

    NASA Technical Reports Server (NTRS)

    Drdla, K.

    2003-01-01

    Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.

  20. Monitoring responses to variation in food supply for a migratory waterfowl: American Black Duck (Anas rubripes) in winter.

    PubMed

    Barboza, Perry S; Jorde, Dennis G

    2018-05-26

    Wintering Black Ducks (Anas rubripes) concentrate in wetlands along the Atlantic coast where natural and anthropogenic disturbances have increased over the last 50 years, a period in which the population of Black Ducks has declined. We studied the sensitivity of Black Ducks to perturbations in food supply that often result from disturbances by storms, predators, and people. In the paper, we characterize the responses of captive Black Ducks to shifts in food quality and availability during winter and apply those measures to a comparison of wild birds. Captive ducks that were fed intermittently (3 consecutive days/week) compensated for fasted days to achieve similar body mass and body fat to control birds that were fed every day on both animal- and plant-based diets. However, birds that were fed intermittently expended 15% more energy each day than controls when both groups were fed (536 vs. 464 kJ/kg 0.75 ), which indicates that variable food supply increases the costs of maintenance and thus reduces the number of birds that can be supported on the same resource of food without interruptions to foraging. Egg production was not affected by diet quality provided in spring or by the frequency of feeding during the preceding winter months. Black Ducks lost body fat through winter in captivity and in the wild. Fat stores of birds in New Jersey were greater than those of birds in Maine (13.3 vs. 8.3% of body mass) in January, which reflected the high energy demands of cold temperatures in Maine. Values for ∂ 15 N were greater in Maine than in New Jersey for both red blood cells and plasma, which indicated a consistent diet of marine invertebrates in Maine. Greater isotopic variation in red blood cells indicated that diets were more diverse in New Jersey than in Maine for both ∂ 15 N (9.7 ± 1.1 vs. 11.2 ± 0.4‰) and for ∂ 13 C (- 15.1 ± 2.2 vs. - 13.8 ± 1.4‰). Plasma ∂ 13 C was enriched over red blood cells in wild birds especially those with low fat stores, which suggested birds with low energy stores were shifting diets. Black Ducks can compensate for disturbances in feeding by increasing intakes if they have access to high quality wetlands where they are able to find abundant food. High energy demands at cold temperatures may constrain fat stores and thus the tolerance of feeding disturbances especially at the northern limits of the winter range. We hypothesize that decreasing variation in diet may indicate an increase in vulnerability to disturbance in winter when body fat is low. Recent efforts to assess and improve habitat quality of Black Ducks could be enhanced by monitoring the body composition and diet of birds to assess their vulnerability to disturbances in food supply and energy demands.

  1. The winter-red-leaf syndrome in Pistacia lentiscus: evidence that the anthocyanic phenotype suffers from nitrogen deficiency, low carboxylation efficiency and high risk of photoinhibition.

    PubMed

    Nikiforou, Constantinos; Nikolopoulos, Dimosthenis; Manetas, Yiannis

    2011-12-15

    Recent evidence indicates that winter-red leaf phenotypes in the mastic tree (Pistacia lentiscus) are more vulnerable to chronic photoinhibition during the cold season relative to winter-green phenotypes occurring in the same high light environment. This was judged by limitations in the maximum quantum yield of photosystem II (PSII), found in previous studies. In this investigation, we asked whether corresponding limitations in leaf gas exchange and carboxylation reactions could also be manifested. During the cold ("red") season, net CO₂ assimilation rates (A) and stomatal conductances (g(s)) in the red phenotype were considerably lower than in the green phenotype, while leaf internal CO₂ concentration (Ci) was higher. The differences were abolished in the "green" period of the year, the dry summer included. Analysis of A versus Ci curves indicated that CO₂ assimilation during winter in the red phenotype was limited by Rubisco content and/or activity rather than stomatal conductance. Leaf nitrogen levels in the red phenotype were considerably lower during the red-leaf period. Consequently, we suggest that the inherently low leaf nitrogen levels are linked to the low net photosynthetic rates of the red plants through a decrease in Rubisco content. Accordingly, the reduced capacity of the carboxylation reactions to act as photosynthetic electron sinks may explain the corresponding loss of PSII photon trapping efficiency, which cannot be fully alleviated by the screening effect of the accumulated anthocyanins. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. The role of the winter residual circulation in the summer mesopause regions in WACCM

    NASA Astrophysics Data System (ADS)

    Sanne Kuilman, Maartje; Karlsson, Bodil

    2018-03-01

    High winter planetary wave activity warms the summer polar mesopause via a link between the two hemispheres. Complex wave-mean-flow interactions take place on a global scale, involving sharpening and weakening of the summer zonal flow. Changes in the wind shear occasionally generate flow instabilities. Additionally, an altering zonal wind modifies the breaking of vertically propagating gravity waves. A crucial component for changes in the summer zonal flow is the equatorial temperature, as it modifies latitudinal gradients. Since several mechanisms drive variability in the summer zonal flow, it can be hard to distinguish which one is dominant. In the mechanism coined interhemispheric coupling, the mesospheric zonal flow is suggested to be a key player for how the summer polar mesosphere responds to planetary wave activity in the winter hemisphere. We here use the Whole Atmosphere Community Climate Model (WACCM) to investigate the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. Using composite analyses, we show that in the absence of an anomalous summer mesospheric temperature gradient between the equator and the polar region, weak planetary wave forcing in the winter would lead to a warming of the summer mesosphere region instead of a cooling, and vice versa. This is opposing the temperature signal of the interhemispheric coupling that takes place in the mesosphere, in which a cold and calm winter stratosphere goes together with a cold summer mesopause. We hereby strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.

  3. Changes in chemical components in the freshwater apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae), in relation to the development of its cold hardiness.

    PubMed

    Matsukura, Keiichiro; Tsumuki, Hisaaki; Izumi, Yohei; Wada, Takashi

    2008-04-01

    The apple snail, Pomacea canaliculata, is an invasive freshwater snail. It increases its cold hardiness before winter. However, the physiological mechanism of cold hardiness in molluscs is poorly understood, especially in freshwater molluscs. In this study, we examined the changes in low molecular weight compounds, glycogen and lipids, in the body of P. canaliculata in association with the development of cold hardiness. When snails without cold hardiness were experimentally cold-acclimated, the amount of glycerol, glutamine, and carnosine increased, while glycogen and phenylalanine decreased. Overwintering cold-tolerant snails collected from a drained paddy field in November also showed increased glycerol in their bodies with decreasing glycogen concentration, compared to summer snails collected from a submerged field. Water content also decreased during the cold acclimation, although the water loss was minimal. These results indicate that the freshwater snail, P. canaliculata enhances cold hardiness by accumulation of some kinds of low molecular weight compounds in its body as some insects do. However, the actual function of each low molecular compound is still unknown.

  4. Changes in ABA and gene expression in cold-acclimated sugar maple.

    PubMed

    Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R

    1997-01-01

    To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.

  5. Public health vulnerability to wintertime weather: time-series regression and episode analyses of national mortality and morbidity databases to inform the Cold Weather Plan for England.

    PubMed

    Hajat, S; Chalabi, Z; Wilkinson, P; Erens, B; Jones, L; Mays, N

    2016-08-01

    To inform development of Public Health England's Cold Weather Plan (CWP) by characterizing pre-existing relationships between wintertime weather and mortality and morbidity outcomes, and identification of groups most at risk. Time-series regression analysis and episode analysis of daily mortality, emergency hospital admissions, and accident and emergency visits for each region of England. Seasonally-adjusted Poisson regression models estimating the percent change in daily health events per 1 °C fall in temperature or during individual episodes of extreme weather. Adverse cold effects were observed in all regions, with the North East, North West and London having the greatest risk of cold-related mortality. Nationally, there was a 3.44% (95% CI: 3.01, 3.87) increase in all-cause deaths and 0.78% (95% CI: 0.53, 1.04) increase in all-cause emergency admissions for every 1 °C drop in temperature below identified thresholds. The very elderly and people with COPD were most at risk from low temperatures. A&E visits for fractures were elevated during heavy snowfall periods, with adults (16-64 years) being the most sensitive age-group. Since even moderately cold days are associated with adverse health effects, by far the greatest health burdens of cold weather fell outside of the alert periods currently used in the CWP. Our findings indicate that levels 0 ('year round planning') and 1 ('winter preparedness and action') are crucial components of the CWP in comparison to the alerts. Those most vulnerable during winter may vary depending on the type of weather conditions being experienced. Recommendations are made for the CWP. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  6. Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris.

    PubMed

    Spindelböck, Joachim P; Cook, Zoë; Daws, Matthew I; Heegaard, Einar; Måren, Inger E; Vandvik, Vigdis

    2013-09-01

    Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season.

  7. Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris

    PubMed Central

    Spindelböck, Joachim P.; Cook, Zoë; Daws, Matthew I.; Heegaard, Einar; Måren, Inger E.; Vandvik, Vigdis

    2013-01-01

    Background and Aims Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Methods Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Key Results Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Conclusions Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season. PMID:23884396

  8. Large-Scale Antecedent Conditions Associated with 2014-2015 Winter Onset over North America and mid-Winter Storminess Along the North Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Papin, P. P.; Bentley, A. M.; Benjamin, M.; Winters, A. C.

    2015-12-01

    Winter 2014-2015 was marked by the coldest November weather in 35 years east of the Rockies and record-breaking snowstorms and cold from the eastern Great Lakes to Atlantic Canada in January and February 2015. Record-breaking warmth prevailed across the Intermountain West and Rockies beneath a persistent upper-level ridge. Winter began with a series of arctic air mass surges that culminated in an epic lake-effect snowstorm occurred over western New York before Thanksgiving and was followed by a series of snow and ice storms that disrupted Thanksgiving holiday travel widely. Winter briefly abated in part of December, but returned with a vengeance between mid-January and mid-February 2015 when multiple extreme weather events that featured record-breaking monthly and seasonal snowfalls and record-breaking daily minimum temperatures were observed. This presentation will show how: (1) the recurvature and extratropical transition (ET) of Supertyphoon (STY) Nuri in the western Pacific in early November 2014, and its subsequent explosive reintensification as an extratropical cyclone (EC), disrupted the North Pacific jet stream and downstream Northern Hemisphere (NH) circulation, produced high-latitude ridging and the formation of an omega block over western North America, triggered downstream baroclinic development and the formation of a deep trough over eastern North America, and ushered in winter 2014-2015, (2) the ET/EC of STY Nuri increased subsequent week two predictability over the North Pacific and North America in association with diabatically influenced high-latitude ridge building, and (3) the amplification of the large-scale NH flow pattern beginning in January 2015 resulted in the formation of persistent high-amplitude ridges over northeastern Russia, Alaska, western North America, and the North Atlantic while deep troughs formed over the eastern North Pacific and eastern North America. This persistent amplified flow pattern supported the occurrence of frequent heavy snowstorms, including blizzards, over parts of the northeastern United States and adjacent Atlantic Canada during the latter part of January and much of February 2015.

  9. Endogenous and exogenous ice-nucleating agents constrain supercooling in the hatchling painted turtle.

    PubMed

    Costanzo, Jon P; Baker, Patrick J; Dinkelacker, Stephen A; Lee, Richard E

    2003-02-01

    Hatchlings of the painted turtle (Chrysemys picta) commonly hibernate in their shallow, natal nests. Survival at temperatures below the limit of freeze tolerance (approximately -4 degrees C) apparently depends on their ability to remain supercooled, and, whereas previous studies have reported that supercooling capacity improves markedly with cold acclimation, the mechanistic basis for this change is incompletely understood. We report that the crystallization temperature (T(c)) of recently hatched (summer) turtles acclimated to 22 degrees C and reared on a substratum of vermiculite or nesting soil was approximately 5 degrees C higher than the T(c) determined for turtles acclimated to 4 degrees C and tested in winter. This increase in supercooling capacity coincided with elimination of substratum (and, in fewer cases, eggshell) that the hatchlings had ingested; however, this association was not necessarily causal because turtles reared on a paper-covered substratum did not ingest exogenous matter but nevertheless showed a similar increase in supercooling capacity. Our results for turtles reared on paper revealed that seasonal development of supercooling capacity fundamentally requires elimination of ice-nucleating agents (INA) of endogenous origin: summer turtles, but not winter turtles, produced feces (perhaps derived from residual yolk) that expressed ice-nucleating activity. Ingestion of vermiculite or eggshell, which had modest ice-nucleating activity, had no effect on the T(c), whereas ingestion of nesting soil, which contained two classes of potent INA, markedly reduced the supercooling capacity of summer turtles. This effect persisted long after the turtles had purged their guts of soil particles, because the T(c) of winter turtles reared on nesting soil (mean +/- S.E.M.=-11.6+/-1.4 degrees C) was approximately 6 degrees C higher than the T(c) of winter turtles reared on vermiculite or paper. Experiments in which winter turtles were fed INA commonly found in nesting soil showed that water-soluble, organic agents can remain fully active for at least one month. Such INA may account for the limited supercooling capacity (T(c) approximately -7.5 degrees C) we found in turtles overwintering in natural nests and may therefore pose a formidable challenge to the winter survival of hatchling C. picta.

  10. Seasonal influence on stimulated BAT activity in prospective trials: a retrospective analysis of BAT visualized on 18F-FDG PET-CTs and 123I-mIBG SPECT-CTs.

    PubMed

    Bahler, Lonneke; Deelen, Jan W; Hoekstra, Joost B; Holleman, Frits; Verberne, Hein J

    2016-06-15

    Retrospective studies have shown that outdoor temperature influences the prevalence of detectable brown adipose tissue (BAT). Prospective studies use acute cold exposure to activate BAT. In prospective studies, BAT might be preconditioned in winter months leading to an increased BAT response to various stimuli. Therefore the aim of this study was to assess whether outdoor temperatures and other weather characteristics modulate the response of BAT to acute cold. To assess metabolic BAT activity and sympathetic outflow to BAT, 64 (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography (PET-CT) and 56 additional (123)I-meta-iodobenzylguanidine ((123)I-mIBG) single-photon emission computed tomography-CT (SPECT-CT) scans, respectively, of subjects participating in previously executed trials were retrospectively included. BAT activity was measured in subjects after an overnight fast, following 2 h of cold exposure (∼17°C). The average daytime outdoor temperatures and other weather characteristics were obtained from the Dutch Royal Weather Institute. Forty-nine subjects were BAT positive. One week prior to the scan, outdoor temperature was significantly lower in the BAT-positive group compared with the BAT-negative group. Higher outdoor temperatures on preceding days resulted in lower stimulated metabolic BAT activity and volume (all P < 0.01). Outdoor temperatures did not correlate with sympathetic outflow to BAT. In conclusion, outdoor temperatures influence metabolic BAT activity and volume, but not sympathetic outflow to BAT, in subjects exposed to acute cold. To improve the consistency of the findings of future BAT studies in humans and to exclude bias introduced by outdoor temperatures, these studies should be planned in periods of similar outdoor temperatures. Copyright © 2016 the American Physiological Society.

  11. Arrested development of abomasal trichostrongylid nematodes in lambs in a steppe environment (North-Eastern Algeria)

    PubMed Central

    Meradi, Salah; Cabaret, Jacques; Bentounsi, Bourhane

    2016-01-01

    Arrested development of abomasal trichostrongylid nematodes was studied in 30 permanent grazing lambs on a large farm in the North-East of Algeria. The steppe climate has cold winters and hot and dry summers. The lambs were monitored monthly for gastrointestinal nematodes using nematode faecal egg counts, from February 2008 to February 2009. Every 2 months, two of the original 30 permanent lambs were necropsied after being held in pens for three weeks so that recently ingested infective larvae could develop into adults. The highest percentage of fourth stage larvae (L4), reaching 48% of the total worm burden, was recorded in abomasal contents in June. Teladorsagia and other Ostertagiinae constituted the highest percentage of L4 larvae (71%), whereas the percentage of Trichostrongylus (17.4%) or Haemonchus (11.6%) remained low. The dynamics of infection observed here (highest faecal egg count in August) and the stage composition of worm burden (highest percentage of L4 in June) provide strong evidence that arrested development had occurred. PMID:27608531

  12. Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor.

    PubMed

    Pedersen, Sindre A; Kristiansen, Erlend; Hansen, Bjørn H; Andersen, Rolf A; Zachariassen, Karl E

    2006-08-01

    The antifreeze proteins (AFPs) are a family of proteins characterised by their ability to inhibit the growth of ice. These proteins have evolved as a protection against lethal freezing in freeze avoiding species. Metal stress has been shown to reduce the cold hardening in invertebrates, but no study has investigated how this type of stress affects the production of AFPs. This study demonstrates that exposure to cadmium (Cd), copper (Cu) and zinc (Zn) reduces the normal developmental increase in AFP levels in Tenebrio molitor larvae reared under summer conditions. Exposure to winter conditions, however stimulated the production of AFPs in the metal exposed larvae, and raised the concentrations of AFPs to normal winter levels. The reduced level of AFPs in metal-stressed animals acclimated to summer conditions seems to arise from alterations in the normal gene expression of AFPs. The results indicate that metal exposure may cause freeze avoiding insects to become more susceptible to lethal freezing, as they enter the winter with lowered levels of AFPs. Such an effect cannot be revealed by ordinary toxicological tests, but may nevertheless be of considerable ecological importance.

  13. Local health and social care responses to implementing the national cold weather plan.

    PubMed

    Heffernan, C; Jones, L; Ritchie, B; Erens, B; Chalabi, Zaid; Mays, N

    2017-09-18

    The Cold Weather Plan (CWP) for England was launched by the Department of Health in 2011 to prevent avoidable harm to health by cold weather by enabling individuals to prepare and respond appropriately. This study sought the views of local decision makers involved in the implementation of the CWP in the winter of 2012/13 to establish the effects of the CWP on local planning. It was part of a multi-component independent evaluation of the CWP. Ten LA areas were purposively sampled which varied in level of deprivation and urbanism. Fifty-two semi-structured interviews were held with health and social care managers involved in local planning between November 2012 and May 2013. Thematic analysis revealed that the CWP was considered a useful framework to formalize working arrangements between agencies though local leadership varied across localities. There were difficulties in engaging general practitioners, differences in defining vulnerable individuals and a lack of performance monitoring mechanisms. The CWP was welcomed by local health and social care managers, and improved proactive winter preparedness. Areas for improvement include better integration with general practice, and targeting resources at socially isolated individuals in cold homes with specific interventions aimed at reducing social isolation and building community resilience. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. Green Supercomputing at Argonne

    ScienceCinema

    Pete Beckman

    2017-12-09

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

  15. Synoptic aspects of Antarctic mesocyclones

    NASA Astrophysics Data System (ADS)

    Carleton, Andrew M.; Fitch, Mark

    1993-07-01

    The characteristic regimes (formation and dissipation areas, tracks) and synoptic environments of cold air mesocyclones over Antarctic and Subantarctic latitudes are determined for the contrasting winters (June, July, and August) of 1988 and 1989. Defense Meteorological Satellite Program (DMSP) thermal infrared (IR) imagery is used in conjunction with southern hemisphere pressure/height analyses. Outbreaks of mesocyclones ("active periods") are frequent in the Ross Sea sector in 1988. They are associated most often with areas of maximum horizontal gradient of the 1000- to 500-mbar thickness. Over higher latitudes of the Southeast Pacific in 1989, mesocyclones develop in association with a "cold pool" that migrates equatorward. The between-winter differences in mesocyclone frequencies are examined for associations with sea ice conditions and the continental katabatic winds using correlation and "superposed epoch" analysis of temperature data from selected automatic weather stations (AWSs). The results support a katabatic wind-sea ice extent-mesocyclone link for key sectors of the Antarctic.

  16. The Cold Hardiness of Phrynocephalus erythrurus, the Lizard Living at Highest Altitude in the World.

    PubMed

    Li, X T; Wang, Y; Lu, S S; Li, M; Men, S K; Bai, Y C; Tang, X L; Chen, Q

    Phrynocephalus erythrurus living at Qinghai-Tibet Plateau, is believed to be the highest lizard in the world, but we know little about how these lizards cope with very low temperatures in winter. The aim of this study was to find the difference of the lizards before and after cold acclimatization. In this study the limit of supercooling and inoculative freezing, the concentration of four organic osmolytes, and the activity of lactate dehydrogenase in the plasma were measured in samples shortly after capture and in other samples after 7~8 weeks of acclimatization at 2~4 degree C. Animals acquired an ability to undergo deeper supercooling and inoculative freezing through the course of acclimatization. We find no regular changes of the four organic osmolytes after the acclimatization. We think that this species of lizard is partly freeze-tolerant and conclude that it uses supercooling to survive in winter.

  17. Seasonal reversal at Miryang Eoreumgol (Ice Valley), Korea: observation and monitoring

    NASA Astrophysics Data System (ADS)

    Byun, Hi-Ryong; Tanaka, Hiroshi L.; Choi, Pom-Yong; Kim, Do-Woo

    2011-12-01

    We investigate an anomalous phenomenon evident in the Miryang Eoreumgol (Ice Valley), Korea: The wind and water are cold during summer and warm during winter, and ice formation does not occur in winter but in summer. We have initiated observations and investigations into the origin of heat sources particularly with regard to the mechanism of ice formation in summer. Previous theories, e.g., concerning underground gravity currents, water evaporation, diurnal and seasonal respirations of the talus, effects of ground heat, radiation and topography, etc., are considered. After a calculation of heat sources, we propose two new concepts—a repetitious heat separation mechanism and a positive feedback mechanism of cold air generation—to demonstrate that the heat mechanism of the seasonal reversal of the ice valley may be controlled by the use of the phase change between ice and water vapor with only a small amount of additional unknown energy.

  18. Age and seasonal-dependent variations in the biochemical composition of boar semen.

    PubMed

    Fraser, L; Strzeżek, J; Filipowicz, K; Mogielnicka-Brzozowska, M; Zasiadczyk, L

    2016-08-01

    This study investigated the effect of age- and seasonal-related variations in the composition of boar semen over a 3-year period. At the onset of 8 months of age, ejaculates were collected from four boars and allocated into three groups: 8 to 18, 19 to 30, and 31 to 42 months and were divided into two seasonal periods: autumn-winter and spring-summer. Boar variability had a significant effect on most of the analyzed semen parameters. Significantly, higher ejaculate volumes were observed in the boars older than 18 months of age during the autumn-winter period. Sperm concentration was higher in boars less than the age of 18 months of age, whereas the total sperm numbers were significantly higher during the autumn-winter period, regardless of the age group. Seasonal effects in sperm motility were more marked in boars at the age of 19 to 30 months, being significantly higher during the autumn-winter period. The proportions of spermatozoa with intact, normal apical ridge acrosome, and osmotically tolerant acrosomal membranes were markedly higher in boars at the age of 19 to 30 months during the autumn-winter period. Spermatozoa harvested during the spring-summer period were more susceptible to lipid peroxidation, irrespective of the age group. Significantly, higher levels of protein content and concentrations of nonthiol-containing antioxidant components of the seminal plasma (SP) were detected in boars less than 18 months of age during the autumn-winter period. Seasonal effects on the pH and proteinase inhibitory activity in the SP were more marked in boars less than 18 months of age, whereas alkaline phosphatase activity was greater in boars at the age of 19 to 30 months during the autumn-winter period. Substantial amounts of the thiol-containing antioxidants of the SP were detected in boars older than 18 months of age during the spring-summer period. Neither osmolality nor total antioxidant status was affected by differences in the seasonal periods or age groups. The findings of this study indicate that age- and seasonal-related variations affect the reproductive tract functions in the boar, resulting in marked changes in the biochemical composition of the semen. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Seasonal acclimatization of metabolism in Eurasian tree sparrows (Passer montanus).

    PubMed

    Zheng, Wei-Hong; Li, Ming; Liu, Jin-Song; Shao, Shu-Li

    2008-12-01

    Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. Changes in photoperiod, ambient temperature and food availability trigger seasonal acclimatization in physiology and behavior of many birds. In the present study, seasonal adjustments in several physiological, hormonal, and biochemical markers were examined in wild-captured Eurasian tree sparrows (Passer montanus) from the Heilongjiang Province in China. In winter sparrows had higher body mass and basal metabolic rate (BMR). Consistently, the dry mass of liver, heart, gizzard, small intestine, large intestine and total digestive tract were higher in winter than in that in summer. The contents of mitochondrial protein in liver, and state-4 respiration and cytochrome c oxidase (COX) activity in liver and muscle increased significantly in winter. Circulating level of serum triiodothyronine (T3) was significantly higher in winter than in summer. Together, these data suggest that tree sparrows mainly coped with cold by enhancing thermogenic capacities through increased organ masses and heightened activity of respiratory enzymes activities. The results support the view that prominent winter increases in BMR are manifestations of winter acclimatization in tree sparrows and that seasonal variation in metabolism in sparrows is similar to that in other small temperate-wintering birds.

  20. Glacioclimatological study of Perennial Ice in the Fuji Ice Cave, Japan. Part I. Seasonal variation and mechanism of maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohata, Tetsuo; Furukawa, Teruo; Higuchi, Keiji

    1994-08-01

    Perennial cave ice in a cave located at Mt. Fuji in central Japan was studied to investigate the basic characteristics and the cause for existence of such ice under warm ground-level climate considering the ice cave as a thermal and hydrological system. Fuji Ice Cave is a lava tube cave 150 m in length with a collapsed part at the entrance. Measurements from 1984 to 1986 showed that the surface-level change of floor ice occurred due to freezing and melting at the surface and that melting at the bottom of the ice was negligible. The annual amplitude of change inmore » surface level was larger near the entrance. Meterological data showed that the cold air inflow to the cave was strong in winter, but in summer the cave was maintained near 0[degrees]C with only weak inflow of warm air. The predominant wind system was from the entrance to the interior in both winter and summer, but the spatial scale of the wind system was different. Heat budget consideration of the cave showed that the largest component was the strong inflow of subzero dry air mass in winter. Cooling in winter was compensated for by summer inflow of warm air, heat transport from the surrounding ground layer, and loss of sensible heat due to cooling of the cave for the observed year. Strong inflow of cold air and weak inflow of warm air, which is extremely low compared to the ground level air, seemed to be the most important condition. Thus the thermal condition of the cave is quasi-balanced at the presence condition below 0[degrees]C with ice. It can be said that the interrelated result of the climatological and special structural conditions makes this cave very cold, and allows perennial ice to exist in the cave. Other climatological factors such as precipitation seem to be minor factors. 17 refs., 3 figs., 3 tabs.« less

  1. Beneficial effect of hot spring bathing on stress levels in Japanese macaques.

    PubMed

    Takeshita, Rafaela S C; Bercovitch, Fred B; Kinoshita, Kodzue; Huffman, Michael A

    2018-05-01

    The ability of animals to survive dramatic climates depends on their physiology, morphology and behaviour, but is often influenced by the configuration of their habitat. Along with autonomic responses, thermoregulatory behaviours, including postural adjustments, social aggregation, and use of trees for shelter, help individuals maintain homeostasis across climate variations. Japanese macaques (Macaca fuscata) are the world's most northerly species of nonhuman primates and have adapted to extremely cold environments. Given that thermoregulatory stress can increase glucocorticoid concentrations in primates, we hypothesized that by using an available hot spring, Japanese macaques could gain protection against weather-induced cold stress during winter. We studied 12 adult female Japanese macaques living in Jigokudani Monkey Park, Japan, during the spring birth season (April to June) and winter mating season (October to December). We collected faecal samples for determination of faecal glucocorticoid (fGC) metabolite concentrations by enzyme immunoassay, as well as behavioural data to determine time spent in the hot springs, dominance rank, aggression rates, and affiliative behaviours. We used nonparametric statistics to examine seasonal changes in hot spring bathing, and the relationship between rank and air temperature on hot spring bathing. We used general linear mixed-effect models to examine factors impacting hormone concentrations. We found that Japanese macaques use hot spring bathing for thermoregulation during the winter. In the studied troop, the single hot spring is a restricted resource favoured by dominant females. High social rank had both costs and benefits: dominant females sustained high fGC levels, which were associated with high aggression rates in winter, but benefited by priority of access to the hot spring, which was associated with low fGC concentrations and therefore might help reduce energy expenditure and subsequent body heat loss. This unique habit of hot spring bathing by Japanese macaques illustrates how behavioural flexibility can help counter cold climate stress, with likely implications for reproduction and survival.

  2. Environmental Influences on the Abundance and Sexual Composition of White Sharks Carcharodon carcharias in Gansbaai, South Africa

    PubMed Central

    Towner, Alison V.; Underhill, Les G.; Jewell, Oliver J. D.; Smale, Malcolm J.

    2013-01-01

    The seasonal occurrence of white sharks visiting Gansbaai, South Africa was investigated from 2007 to 2011 using sightings from white shark cage diving boats. Generalized linear models were used to investigate the number of great white sharks sighted per trip in relation to sex, month, sea surface temperature and Multivariate El Niño/Southern Oscillation (ENSO) Indices (MEI). Water conditions are more variable in summer than winter due to wind-driven cold water upwelling and thermocline displacement, culminating in colder water temperatures, and shark sightings of both sexes were higher during the autumn and winter months (March–August). MEI, an index to quantify the strength of Southern Oscillation, differed in its effect on the recorded numbers of male and female white sharks, with highly significant interannual trends. This data suggests that water temperature and climatic phenomena influence the abundance of white sharks at this coastal site. In this study, more females were seen in Gansbaai overall in warmer water/positive MEI years. Conversely, the opposite trend was observed for males. In cool water years (2010 to 2011) sightings of male sharks were significantly higher than in previous years. The influence of environmental factors on the physiology of sharks in terms of their size and sex is discussed. The findings of this study could contribute to bather safety programmes because the incorporation of environmental parameters into predictive models may help identify times and localities of higher risk to bathers and help mitigate human-white shark interactions. PMID:23951111

  3. Different growth sensitivity to climate of the conifer Juniperus thurifera on both sides of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    DeSoto, Lucía; Varino, Filipa; Andrade, José P.; Gouveia, Celia M.; Campelo, Filipe; Trigo, Ricardo M.; Nabais, Cristina

    2014-12-01

    Mediterranean plants cope with cold wet winters and dry hot summers, with a drought gradient from northwest to southeast. Limiting climatic conditions have become more pronounced in the last decades due to the warming trend and rainfall decrease. Juniperus thurifera L., a long-lived conifer tree endemic to the western Mediterranean region, has a disjunct distribution in Europe and Africa, making it a suitable species to study sensitivity to climate in both sides of the Mediterranean Basin. Tree-ring width chronologies were built for three J. thurifera stands at Spain (Europe) and three in Morocco (Africa) and correlated with monthly temperature and precipitation. The temporal stability of climate-growth relationships was assessed using moving correlations; the drought effect on growth was calculated using the monthly standardized precipitation-evapotranspiration index (SPEI) at different temporal scales. In the wettest stands, increasing spring temperature and summer precipitation enhanced growth, while in the driest stands, growth was enhanced by higher spring precipitation and lower summer temperature. The climate-growth correlations shifted during the twentieth century, especially since the 1970s. Particularly noticeable is the recent negative correlation with previous autumn and winter precipitation in the wettest stands of J. thurifera, probably related with an effect of cloud cover or flooding on carbon storage depletion for next year growth. The driest stands were affected by drought at long time scales, while the wettest stands respond to drought at short time scales. This reveals a different strategy to cope with drought conditions, with populations from drier sites able to cope with short periods of water deficit.

  4. Analytical methods to predict liquid congealing in ram air heat exchangers during cold operation

    NASA Astrophysics Data System (ADS)

    Coleman, Kenneth; Kosson, Robert

    1989-07-01

    Ram air heat exchangers used to cool liquids such as lube oils or Ethylene-Glycol/water solutions can be subject to congealing in very cold ambients, resulting in a loss of cooling capability. Two-dimensional, transient analytical models have been developed to explore this phenomenon with both continuous and staggered fin cores. Staggered fin predictions are compared to flight test data from the E-2C Allison T56 engine lube oil system during winter conditions. For simpler calculations, a viscosity ratio correction was introduced and found to provide reasonable cold ambient performance predictions for the staggered fin core, using a one-dimensional approach.

  5. Double diffusion in the frontal zones of the Yellow and East China Seas in winter

    NASA Astrophysics Data System (ADS)

    Oh, K.; Lee, S.

    2017-12-01

    Where the cold, fresh water of the Yellow Sea (YS) and the warm, salty water of the East China Sea (ECS) meet, northern and southern fronts are formed in the southeastern YS and the northwestern ECS, respectively. Strong thermohaline fronts are formed on the northern front, and a strong thermocline and a temperature reversal phenomenon are represented in this front. To understand the water structure of this thermohaline zone, we examined double diffusion in the frontal zones in February 2003 using hydrographic data. In the northern front, the warm, salty Cheju Warm Current Water (CWCW) moved northwards along the bottom layer and the cold, fresh Yellow Sea Cold Water (YSCW) flowed southward in the upper layer. As a result, strong thermohaline fronts forms in the area where the two water masses met, and the slope was developed downward across the front. In this area, a strong thermocline and temperature reversal structures were present. The cold, fresh Korean Coastal Water (KCW) was also found in the upper layer near the thermocline, and has a low-temperature, low-salinity more than surrounding water. When cold, fresh water is located over warm, salty water, heat diffuses through the interface between the two water masses, and then the diffusive-convection can be expected to occur. On the other hand, when warm, salty water overlays cold, fresh water, heat in the upper layer is preferentially transferred downward, and the salt-fingering occurs. The diffusive-convection occurs predominantly in the northern thermohaline front, where the cold, fresh YSCW is situated above the warm, salty CWCW and has the effect of strengthening stratification, so that the water column maintains a physically stable structure. In addition, this phenomenon seems to play a role in maintaining the reversal structure. The salt-fingering occurs in upper layers of the northern front where the cold, fresh YSCW is located over the most cold, fresh KCW. Near the northern thermo-halocline zone, the salt-fingering occurs simultaneously with the diffusive-convection, because three water masses, YSCW, KCW and CWCW, interact in that area. Therefore, it can be seen that the water structure of the northern frontal zone in winter is influenced mainly by the cold, fresh YSCW, the most cold, fresh KCW, and the warm, salty CWCW.

  6. Endless cold: a seasonal reconstruction of temperature and precipitation in the Burgundian Low Countries during the 15th century based on documentary evidence

    NASA Astrophysics Data System (ADS)

    Camenisch, C.

    2015-08-01

    This paper applies the methods of historical climatology to present a climate reconstruction for the area of the Burgundian Low Countries during the 15th century. The results are based on documentary evidence that has been handled very carefully, especially with regard to the distinction between contemporary and non-contemporary sources. Approximately 3000 written records derived from about 100 different sources were examined and converted into seasonal seven-degree indices for temperature and precipitation. For the Late Middle Ages only a few climate reconstructions exist. There are even fewer reconstructions which include spring and autumn temperature or any precipitation information at all. This paper therefore constitutes a useful contribution to the understanding of climate and weather conditions in the less well researched but highly interesting 15th century. The extremely cold winter temperatures during the 1430s and an extremely cold winter in 1407/1408 are striking. Moreover, no other year in this century was as hot and dry as 1473. At the beginning and the end of the 1480s and at the beginning of the 1490s summers were considerably wetter than average.

  7. Differential expression and emerging functions of non-coding RNAs in cold adaptation.

    PubMed

    Frigault, Jacques J; Morin, Mathieu D; Morin, Pier Jr

    2017-01-01

    Several species undergo substantial physiological and biochemical changes to confront the harsh conditions associated with winter. Small mammalian hibernators and cold-hardy insects are examples of natural models of cold adaptation that have been amply explored. While the molecular picture associated with cold adaptation has started to become clearer in recent years, notably through the use of high-throughput experimental approaches, the underlying cold-associated functions attributed to several non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), remain to be better characterized. Nevertheless, key pioneering work has provided clues on the likely relevance of these molecules in cold adaptation. With an emphasis on mammalian hibernation and insect cold hardiness, this work first reviews various molecular changes documented so far in these processes. The cascades leading to miRNA and lncRNA production as well as the mechanisms of action of these non-coding RNAs are subsequently described. Finally, we present examples of differentially expressed non-coding RNAs in models of cold adaptation and elaborate on the potential significance of this modulation with respect to low-temperature adaptation.

  8. Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Miao, Shiguang; Shen, Shuanghe; Li, Ju; Zhang, Benzhi; Zhang, Ziyue; Chen, Xiujie

    2015-03-01

    Sky view factor (SVF), which is an indicator of urban canyon geometry, affects the surface energy balance, local air circulation, and outdoor thermal comfort. This study focused on a continuous and long-term meteorological observation system to investigate the effects of SVF on outdoor thermal conditions and physiological equivalent temperature (PET) in the central business district (CBD) of Beijing (which is located within Chaoyang District), specifically addressed current knowledge gaps for SVF-PET relationships in cities with typical continental/microthermal climates. An urban sub-domain scale model and the RayMan model were used to diagnose wind fields and to calculate SVF and long-term PET, respectively. Analytical results show that the extent of shading contributes to variations in thermal perception distribution. Highly shaded areas (SVF <0.3) typically exhibit less frequent hot conditions during summer, while enduring longer periods of cold discomfort in winter than moderately shaded areas (0.3< SVF <0.5) and slightly shaded areas (SVF >0.5), and vice versa. Because Beijing has a monsoon-influenced humid continental climate with hot summers and long, cold, windy, and dry winters, a design project that ideally provides moderate shading should be planned to balance hot discomfort in summer and cold discomfort in winter, which effectively prolongs the comfort periods in outdoor spaces throughout the entire year. This research indicate that climate zone characteristics, urban environmental conditions, and thermal comfort requirements of residents must be accounted for in local-scale scientific planning and design, i.e., for urban canyon streets and residential estates.

  9. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings.

    PubMed

    Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K

    2014-06-01

    Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.

  10. Winter severity and phenology of spring emergence from the nest in freshwater turtles.

    PubMed

    Baker, Patrick Joseph; Iverson, John B; Lee, Richard E; Costanzo, Jon P

    2010-07-01

    Although many species of freshwater turtles emigrate to water soon after hatching, the offspring of some species overwinter on land and move to aquatic habitats in the following spring. Timing of emigration can affect the hatchlings' fitness, but the factors underlying phenology of nest emergence are incompletely understood. We tested the supposition that cold stress imposed during hibernation can influence the timing of nest emergence in three species of turtles in the central USA. In each year of the 6-year study, Chrysemys picta emerged in late March and early April and, on average, these hatchlings left their nests 2 weeks earlier than those of Graptemys geographica and 4 weeks earlier than those of Trachemys scripta. Emergence of conspecific hatchlings from different nests usually occurred over 3-7 weeks, but in some years lasted several additional weeks. Relatively few nests had siblings that emerged on the same day (i.e., synchronously); complete emergence of the typical sibling group required 1 to 2 weeks. In winter, subzero cold occurred with regularity in the nests of all species, though C. picta experienced the lowest temperatures owing to their shallower nests. However, for no species did emergence date or length of the emergence period correlate with winter minimum temperature and, at the level of the individual nest, neither did emergence synchrony or duration. Despite encountering lower temperatures, hatchlings of C. picta emigrated from their nests before those of sympatric species, suggesting that the fitness benefits of early emergence may lead to the improvement of cold-hardiness adaptations in northern populations of turtles.

  11. Winter severity and phenology of spring emergence from the nest in freshwater turtles

    NASA Astrophysics Data System (ADS)

    Baker, Patrick Joseph; Iverson, John B.; Lee, Richard E.; Costanzo, Jon P.

    2010-07-01

    Although many species of freshwater turtles emigrate to water soon after hatching, the offspring of some species overwinter on land and move to aquatic habitats in the following spring. Timing of emigration can affect the hatchlings’ fitness, but the factors underlying phenology of nest emergence are incompletely understood. We tested the supposition that cold stress imposed during hibernation can influence the timing of nest emergence in three species of turtles in the central USA. In each year of the 6-year study, Chrysemys picta emerged in late March and early April and, on average, these hatchlings left their nests 2 weeks earlier than those of Graptemys geographica and 4 weeks earlier than those of Trachemys scripta. Emergence of conspecific hatchlings from different nests usually occurred over 3-7 weeks, but in some years lasted several additional weeks. Relatively few nests had siblings that emerged on the same day (i.e., synchronously); complete emergence of the typical sibling group required 1 to 2 weeks. In winter, subzero cold occurred with regularity in the nests of all species, though C. picta experienced the lowest temperatures owing to their shallower nests. However, for no species did emergence date or length of the emergence period correlate with winter minimum temperature and, at the level of the individual nest, neither did emergence synchrony or duration. Despite encountering lower temperatures, hatchlings of C. picta emigrated from their nests before those of sympatric species, suggesting that the fitness benefits of early emergence may lead to the improvement of cold-hardiness adaptations in northern populations of turtles.

  12. Altered snowfall and soil disturbance influence the early life stage transitions and recruitment of a native and invasive grass in a cold desert.

    PubMed

    Gornish, Elise S; Aanderud, Zachary T; Sheley, Roger L; Rinella, Mathew J; Svejcar, Tony; Englund, Suzanne D; James, Jeremy J

    2015-02-01

    Climate change effects on plants are expected to be primarily mediated through early life stage transitions. Snowfall variability, in particular, may have profound impacts on seedling recruitment, structuring plant populations and communities, especially in mid-latitude systems. These water-limited and frequently invaded environments experience tremendous variation in snowfall, and species in these systems must contend with harsh winter conditions and frequent disturbance. In this study, we examined the mechanisms driving the effects of snowpack depth and soil disturbance on the germination, emergence, and establishment of the native Pseudoroegnaria spicata and the invasive Bromus tectorum, two grass species that are widely distributed across the cold deserts of North America. The absence of snow in winter exposed seeds to an increased frequency and intensity of freeze-thaw cycles and greater fungal pathogen infection. A shallower snowpack promoted the formation of a frozen surface crust, reducing the emergence of both species (more so for P. spicata). Conversely, a deeper snowpack recharged the soil and improved seedling establishment of both species by creating higher and more stable levels of soil moisture availability following spring thaw. Across several snow treatments, experimental disturbance served to decrease the cumulative survival of both species. Furthermore, we observed that, regardless of snowpack treatment, most seed mortality (70-80%) occurred between seed germination and seedling emergence (November-March), suggesting that other wintertime factors or just winter conditions in general limited survival. Our results suggest that snowpack variation and legacy effects of the snowpack influence emergence and establishment but might not facilitate invasion of cold deserts.

  13. Effect of season on peripheral resistance to localised cold stress

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Harimura, Y.; Tochihara, Y.; Yamazaki, S.; Ohnaka, T.; Matsui, J.; Yoshida, K.

    1984-03-01

    This study was carried out to determine the effect that seasonal changes have on the effect of localised cold stress on peripheral temperatures using the foot immersion method with a cold water bath. The subjects were six males and four females. The data were obtained in April, July, October and January. Skin temperature of the right index finger, the forehead, the arm, the cheek, the second toe and the instep were measured before, during and after the immersion of the feet in water at 15°C for 10 mins, as well as oxygen consumption before immersion of the feet. The average finger temperature was highest during foot immersion in the summer, next highest in the winter, then spring, and the lowest during foot immersion in the autumn. The finger temperatures during the pre-immersion period in the autumn tended to be lower than in other seasons. The finger temperatures during the pre-immersion period affected the temperature change of the finger during the immersion period. The rate of increase of the toe temperature and the foot temperature during post-immersion in the summer and the spring were greater than those in the autumn and winter. Oxygen consumption during the pre-immersion period in the autumn was significantly lower than in the other seasons (p<0.001 or 0.010). Cooling the feet caused no significant changes in the temperatures the cheek, forehead or forearm. The cheek temperature in the summer and autumn was cooler than corresponding temperatures taken in the winter and spring.

  14. Winter Habitat Preferences for Florida Manatees and Vulnerability to Cold

    PubMed Central

    Laist, David W.; Taylor, Cynthia; Reynolds, John E.

    2013-01-01

    To survive cold winter periods most, if not all, Florida manatees rely on warm-water refuges in the southern two-thirds of the Florida peninsula. Most refuges are either warm-water discharges from power plant and natural springs, or passive thermal basins that temporarily trap relatively warm water for a week or more. Strong fidelity to one or more refuges has created four relatively discrete Florida manatee subpopulations. Using statewide winter counts of manatees from 1999 to 2011, we provide the first attempt to quantify the proportion of animals using the three principal refuge types (power plants, springs, and passive thermal basins) statewide and for each subpopulation. Statewide across all years, 48.5% of all manatees were counted at power plant outfalls, 17.5% at natural springs, and 34.9 % at passive thermal basins or sites with no known warm-water features. Atlantic Coast and Southwest Florida subpopulations comprised 82.2% of all manatees counted (45.6% and 36.6%, respectively) with each subpopulation relying principally on power plants (66.6% and 47.4%, respectively). The upper St. Johns River and Northwest Florida subpopulations comprised 17.8% of all manatees counted with almost all animals relying entirely on springs (99.2% and 88.6% of those subpopulations, respectively). A record high count of 5,076 manatees in January 2010 revealed minimum sizes for the four subpopulations of: 230 manatees in the upper St. Johns River; 2,548 on the Atlantic Coast; 645 in Northwest Florida; and 1,774 in Southwest Florida. Based on a comparison of carcass recovery locations for 713 manatees killed by cold stress between 1999 and 2011 and the distribution of known refuges, it appears that springs offer manatees the best protection against cold stress. Long-term survival of Florida manatees will require improved efforts to enhance and protect manatee access to and use of warm-water springs as power plant outfalls are shut down. PMID:23527063

  15. Stratospheric minor species vertical distributions during polar winter by balloon borne UV-Vis spectrometry

    NASA Technical Reports Server (NTRS)

    Pommereau, J. P.; Piquard, J.

    1994-01-01

    A light, relatively cheap and easy to operate balloonborne UV-visible spectrometer was designed for investigating ozone photochemistry in the Arctic winter. The instrument was flown 11 times during the European Arctic Stratospheric Ozone Experiment (EASOE) in winter 1991-92 in Northern Scandinavia. The first simultaneous measurements of vertical distributions of aerosols, PSC's, O3, NO2 and OClO inside the vortex during flight no. 6 on 16 January, in cold conditions are reported, which show that nitrogen oxides were almost absent (lower than 100 ppt) in the stratosphere below 22 km, while a layer of relatively large OClO concentration (15 ppt) was present at the altitude of the minimum temperature.

  16. Climagramms as a Possibility of Evaluation of Hazards from Agrometeorological Point of View

    NASA Astrophysics Data System (ADS)

    Potop, V.; Kožnarová, V.; Klabzuba, J.; Turkott, L.

    2009-04-01

    This paper focuses particularly on the graphical method representation of the drought spells, which serves modeling of the time and spatial aspects of these events. In particular, we have applied Walter-Lieth's climograms and thermopluviograms in order to monitor and analyse droughts in an agrometeorological year (i.e. including the winter season). The latter provide a new design of evaluation of longer sequences from many years of observations. In other words, long time series can be evaluated by the thermopluviogram method exactly. We are proposing thermopluviogramm, which allows a combination of both the deviation of temperature from the long-term data and the percentage of long-term amounts of precipitation to be shown in the same graph. Modeling of thermopluviogramm has not been difficult. In the centre of this diagram we have placed the long term mean (or the standard period, e.g. 1961-1990) with the following coordinates: monthly average air temperature (x-axis) and monthly amount of precipitation (y-axis). Thus, the scale on the periphery shows the air temperature deviation from the long term mean and the percentage of the long term mean precipitation sum which makes the termopluviogramm applicable to any location worldwide. The basic diagram has been arranged as follows: The x-axis shows the average air temperature, with a 0.0o C deviation from the standard period (∆ t) marked in the centre of the graph. Depending on the size of deviation for a given period extreme conditions are indicated on the x-axis as follows: cold, very cold, extraordinary cold, normal, warm, very warm and extraordinary warm. The y-axis shows the amount of precipitation in a similar manner: the standard period value is 100%, which is also located in the centre of the graph. Below or upward this value, extreme conditions are shown: extraordinary dry, very dry, dry, normal, wet, very wet and extraordinary wet. Since the Zatec weather station is situated in the rain shadow of the "Krusne hory" (Ore Mountains) chain and is therefore in the driest region of the country, it was adopted as a reference station for the evaluations of the drought years. The assessment has been conducted on 47 years (1961-2007) of meteorological information recorded at the Czech Hydrometeorological Institute. According to Walter-Lieth's climagramms in a given part of the country, the drought spells have occurred during 59 months (which constituted 41 drought spells). Using the estimation of the statistical data on the basis of the climogramms we may distinguish 2 more cases with a total of 4-months of drought spells each, which can be divided into 1-2 periods respectively. One such case was noticed in 2003. This year the drought had begun in the month of June and had ended in October. Thus, the 2003 drought year was divided into 2 drought spells with a short interval between them. Conforming to thermopluviogramms, extraordinary drought years were recorded in the winter season for December: 2007, 1975, 1983, 1963, 1964; January: 2002, 1989, 1991 and 1971; and for February it was recorded in 1982. For the spring season extraordinary drought years were recorded in 1984 (March), 2007 and 1993 (April), 1998 (May). For the summer season extraordinary drought months were recorded only in July (1990 and 1964) and August (1973 and 2003). In the months of autumn they were recorded in October (1985) and November (2007). Keywords: thermopluviogramms, Walter-Lieth's climagramms, drought. Acknowledgements: This research was supported by Research Projects MSM No. 6046070901 and QH72257. Evaluation of agricultural soil fund with respect to environment protection".

  17. Know your limits? Climate extremes impact the range of Scots pine in unexpected places

    PubMed Central

    Julio Camarero, J.; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel

    2015-01-01

    Background and Aims Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin (‘rear edge’) of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species’ European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). Methods A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. Key Results The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. Conclusions The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern ‘rear edge’, in order to avoid biased predictions based solely on warmer climatic scenarios. PMID:26292992

  18. COLD WEATHER PLUME STUDY

    EPA Science Inventory

    While many studies of power plant plume transport and transformation have been performed during the summer, few studies of these processes during the winter have been carried out. Accordingly, the U.S. Environmental Protection Agency and the Electric Power Research Institute join...

  19. Trends in Cold Extremes and Winter Weather for the SPTC Region

    DOT National Transportation Integrated Search

    2017-05-31

    Extreme weather poses multifaceted hazards to transportation. There is now increased awareness of the threats of climate variability and change on transportation safety and state of good repair. In particular, a non-stationary climate will potentiall...

  20. [Comparison of air/soil mercury exchange between warm and cold season in Hongfeng Reservoir region].

    PubMed

    Wang, Shao-feng; Feng, Xin-bin; Qiu, Guang-le; Fu, Xue-wu

    2004-01-01

    In July 2002 and March 2003, the mercury exchange flux between soil and air was measured using dynamic flux chamber method in Hongfeng Reservoir region. Mercury exchange flux is (27.4 +/- 40.1) ng x (m2 x h)(-1) (n = 255) and (5.6 +/- 19.4) ng x (m2 x h)(-1) (n = 192) in summer and winter respectively. The correlation coefficient between mercury flux and solar radiation, air temperature, soil temperature is 0.74, 0.83 and 0.80 in summer, and 0.88, 0.56 and 0.59 in winter. From the data, it was found that the mercury emission is stronger in summer than that in winter, and compared to winter, mercury exchange between soil and air depends more on meteorological conditions in summer.

  1. Investigation of wintertime cold-air pools and aerosol layers in the Salt Lake Valley using a lidar ceilometer

    NASA Astrophysics Data System (ADS)

    Young, Joseph Swyler

    This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this subjectively during periods with low clouds or precipitation, a time series of aerosol depths was obtained. The mean depth of the surface-based aerosol layer during PCAP events was 1861 m MSL with a standard deviation of 135 m. The aerosol layer depth, given the approximate 1300 m altitude of the valley floor, is thus about 550 m, about 46% of the basin depth. The aerosol layer is present during much of the winter and is removed only during strong or prolonged precipitation periods or when surface winds are strong. Nocturnal fogs that formed near the end of high-stability PCAP episodes had a limited effect on aerosol layer depth. Aerosol layer depth was relatively invariant during the winter and during the persistent cold-air pools, while PM10 concentrations at the valley floor varied with bulk atmospheric stability associated primarily with passage of large-scale high- and low-pressure weather systems. PM10 concentrations also increased with cold-air pool duration. Mean aerosol loading in the surface-based aerosol layer, as determined from ceilometer backscatter coefficients, showed weaker variations than those of surface PM10 concentrations, suggesting that ineffective vertical mixing and aerosol layering are present in the cold-air pools. This is supported by higher time-resolution backscatter data, and it distinguishes the persistent cold-air pools from well-mixed convective boundary layers where ground-based air pollution concentrations are closely related to time-dependent convective boundary layer/aerosol depths. These results are discussed along with recommendations for future explorations of the ceilometer and cold-air pool topics.

  2. Hawaiian Winter Workshop Proceedings of Parameterization of Small-Scale Processes Held in Manoa, Hawaii on 17-20 January 1989

    DTIC Science & Technology

    1989-01-01

    England while waiting for an outbreak of cold air (Larson, 1988). Even before the arrival of the storm trailing the cold air behind it, both shear and...and simulation of storm -induced mixed-layer deepening. J. Phys. Oceanogr., 8. 582-599. 217 Riley, J.J., and R.W. Metcalf: 1987. Direct numerical...the severe downslope wind storm which occurs in the lee of major mountain barriers (Lilly and Kennedy, 1973: Lilly. 1978) under suitable atmospheric

  3. Bibliography on Cold Regions Science and Technology, Volume 46, Part 2, 1992

    DTIC Science & Technology

    1992-01-01

    Modelling of heat capacity-temperature data for sucrose- conditions: trial study . Peck, L.. 1)992. 15p.. eng) Comparison of four cold hardiness tests on...authors are listed along with the title, date, pagination, and language of the document and the accession number. The subject index is composed of four ...eng1 46-1074 Radar backscatter measurements during the Winter Weddell Abramov Glacier and the runoff in its basin (1989. p.85- Aakjaer. P.D. Gyre Study

  4. Chemistry and dynamics of the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Kirner, Ole; Sinnhuber, Bjoern-Martin; Ruhnke, Roland; Hoepfner, Michael; Woiwode, Wolfgang; Oelhaf, Hermann; Santee, Michelle L.; Manney, Gloria L.; Froidevaux, Lucien; Murtagh, Donal; Braesicke, Peter

    2016-04-01

    Model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) project. The POLSTRACC project is a HALO mission (High Altitude and LOng Range Research Aircraft) that aims to investigate the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS) in a changing climate. Especially, the chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds are investigated. The model simulations were performed with a resolution of T42L90, corresponding to a quadratic Gaussian grid of approximately 2.8°× 2.8° degrees in latitude and longitude, and 90 vertical layers from the surface up to 0.01 hPa (approx. 80 km). A Newtonian relaxation technique of the prognostic variables temperature, vorticity, divergence and surface pressure towards ECMWF data was applied above the boundary layer and below 10 hPa, in order to nudge the model dynamics towards the observed meteorology. During the Arctic winter 2015/2016 a stable vortex formed in early December, with a cold pool where temperatures reached below the Nitric Acid Trihydrate (NAT) existence temperature of 195 K, thus allowing Polar Stratospheric Clouds (PSCs) to form. The early winter has been exceptionally cold and satellite observations indicate that sedimenting PSC particles have lead to denitrification as well as dehydration of stratospheric layers. In this presentation an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given and comparisons to satellite observations such as e.g. Aura/MLS and Odin/SMR will be shown.

  5. Past and future hydro-climatic change and the 2015 drought in the interior of western Canada

    NASA Astrophysics Data System (ADS)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Szeto, K.; Brimelow, J.; Chun, K. P.; Masud, M. B.; Bonsal, B. R.

    2015-12-01

    The interior of western Canada has experienced rapid and severe hydro-climatic change in recent decades. This is projected to continue in future. Since 1950, mean annual air temperature has increased by 2 °C (4 °C increase in winter daily means) with associated changes in cryospheric regime. Changes in precipitation have varied regionally; in the Prairies there has been a decrease in winter precipitation, shift from snowfall to rainfall, and increased clustering of summer rainfall events into multiple day storms. Regionally, river discharge indicates an earlier spring freshet and increased incidence of rain-on-snow peak flow events, but otherwise mixed responses due to multiple process interactions. In winter/spring 2015, persistent anomalous ridging conditions developed over western North America causing widespread drought. This produced abnormally warm and dry conditions over the Rocky Mountain headwaters of the Mackenzie and Saskatchewan Rivers, resulting in low spring snowpacks that melted earlier than normal and were followed by an atypical lack of spring rainfall. By summer 2015, most of western Canada was subject to extreme drought conditions leading to record dry soil moisture conditions in parts of the Prairies during a key crop growth time, streamflows that were greatly diminished, and extensive wildfires across the Boreal Forest. The importance of the warmer winter to this drought and the contextual trend for increasing winter warmth provide new insight into the impact of climate warming on droughts in cold regions. This talk will discuss efforts by the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) to understand and diagnose the 2015 drought, its potential linkages with the concurrent California drought and other continental events, and its relevance in the context of historical and predicted future climate change.

  6. A longer vernal window: the role of winter coldness and snowpack in driving spring transitions and lags.

    PubMed

    Contosta, Alexandra R; Adolph, Alden; Burchsted, Denise; Burakowski, Elizabeth; Green, Mark; Guerra, David; Albert, Mary; Dibb, Jack; Martin, Mary; McDowell, William H; Routhier, Michael; Wake, Cameron; Whitaker, Rachel; Wollheim, Wilfred

    2017-04-01

    Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  7. Effect of temperature on the occurrence and distribution of colorado potato beetle (Coleoptera: Chrysomelidae) in China.

    PubMed

    Li, Chao; Liu, Huai; Huang, Fangneng; Cheng, Deng-Fa; Wang, Jin-Jun; Zhang, Yun-Hui; Sun, Jin-Rui; Guo, Wen-Chao

    2014-04-01

    Colorado potato beetle, Leptinotarsa decemlineata (Say), is the most destructive pest of potato in many countries of the world. It first invaded China from Kazakhstan in 1990s and now is a major pest of potato in many areas of Xinjiang Uygur Autonomous Region (Xinjiang). The objective of this study was to determine the effect of temperature on the spread of Colorado potato beetle in China after its invasion. Cold temperature in winter (December) and high temperature in summer (July) were analyzed in accordance with the absence and presence of Colorado potato beetle in Xinjiang. The boundary between the absence and presence of Colorado potato beetle in Xinjiang nearly coincided with the -8°C isotherm of monthly mean minimum temperature in winter. The stress of the low temperature in winter for Colorado potato beetle basically disappeared in the southeastern Hexi Corridor in Gansu Province of China, suggesting that the Hexi Corridor is the best channel to prevent any long-distance invasions of Colorado potato beetle into the Central Plains region. However, in Turpan City in northeastern Xinjiang, the extremely hot weather in the summer prevents the local colonization of Colorado potato beetle. Furthermore, according to our monitoring, high temperature in summer also limited Colorado potato beetle to diffuse eastward through Turpan. Results of this study suggest that it is essential to strengthen inspection and quarantine measures to prevent any artificial transmissions of Colorado potato beetle spreading eastward and thus to ensure the sustainable production of potato and other Solanaceae crops in northwest regions of China.

  8. Statistical Relationships between the El Niño Southern Oscillation, the North Atlantic Oscillation, and Winter Tornado Outbreaks in the U.S

    NASA Astrophysics Data System (ADS)

    Robinson Cook, A. D.; Schaefer, J. T.

    2009-12-01

    Winter tornado activity (January-March) between 1950 and 2003 was analyzed to determine the possible effects of the El Niño Southern Oscillation and the North Atlantic Oscillation on the frequency, location, and strength of tornado outbreaks in the United States. Outbreaks were gauged through analyses of tornadoes occurring on tornado days (a calendar day featuring six or more tornadoes within the contiguous United States) and then stratified according to warm (37 tornado days), cold (51 tornado days), and neutral (74 tornado days) winter ENSO phase. Tornado days were also stratified according to NAO phase (positive, negative, and neutral) as well. Although significant changes in the frequency of tornado outbreaks were not observed, spatial shifts in tornado activity are observed, primarily as a function of ENSO phase. Historically, the neutral ENSO phase features tornado outbreaks from central Oklahoma and Kansas eastward through the Carolinas. During cold ENSO phases (La Niña), tornado outbreaks typically occur in a zone stretching from southeastern Texas northeastward into Illinois, Indiana, and Michigan. Winter tornado activity was mainly limited to areas near the Gulf Coast, including central Florida, during anomalously warm phases (El Niño). Shifts in the intensity of tornado activity were also found as a function of ENSO and particularly NAO phase. Stronger tornadoes with longer path lengths were observed during La Niña and Neutral ENSO events, as well as Positive and Neutral NAO events.

  9. Modeling temperature inversion in southeastern Yellow Sea during winter 2016

    NASA Astrophysics Data System (ADS)

    Pang, Ig-Chan; Moon, Jae-Hong; Lee, Joon-Ho; Hong, Ji-Seok; Pang, Sung-Jun

    2017-05-01

    A significant temperature inversion with temperature differences larger than 3°C was observed in the southeastern Yellow Sea (YS) during February 2016. By analyzing in situ hydrographic profiles and results from a regional ocean model for the YS, this study examines the spatiotemporal evolution of the temperature inversion and its connection with wind-induced currents in winter. Observations reveal that in winter, when the northwesterly wind prevails over the YS, the temperature inversion occurs largely at the frontal zone southwest of Korea where warm/saline water of a Kuroshio origin meets cold/fresh coastal water. Our model successfully captures the temperature inversion observed in the winter of 2016 and suggests a close relation between northwesterly wind bursts and the occurrence of the large inversion. In this respect, the strong northwesterly wind drove cold coastal water southward in the upper layer via Ekman transport, which pushed the water mass southward and increased the sea level slope in the frontal zone in southeastern YS. The intensified sea level slope propagated northward away from the frontal zone as a shelf wave, causing a northward upwind flow response along the YS trough in the lower layer, thereby resulting in the large temperature inversion. Diagnostic analysis of the momentum balance shows that the westward pressure gradient, which developed with shelf wave propagation along the YS trough, was balanced with the Coriolis force in accordance with the northward upwind current in and around the inversion area.

  10. Trends in mercury concentrations in the hair of women of Nome, Alaska - Evidence of seafood consumption or abiotic absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasorsa, B.

    1992-06-01

    Eighty samples of hair from women of child-bearing age from Nome, Alaska, and seven control samples from women living in Sequim, Washington, were analyzed for mercury concentration by segmental analysis in an effort to determine whether seasonal fluctuations in mercury concentration in the hair samples can be correlated to seasonal seafood consumption. Full-length hair strands were analyzed in 1.1-cm segments representing 1 month's growth using a strong acid digestion and cold vapor atomic fluorescence analysis. It was assumed that the concentration of mercury in each segment is an indicator of the mercury body burden during the month in which themore » segment emerged from the scalp. Eighteen of the samples show seasonal variability, with five of the controls and one Nome resident showing winter highs while all Nome residents show summer highs. Twenty-six of the samples show an increase in mercury concentration toward the distal end of the strand regardless of month of growth. The trend of increasing mercury concentrations toward the distal end of the hair strand regardless of month of emergence, and the documented presence of elevated levels of elemental mercury in the Nome area suggest that these elevated levels may actually be due to external contamination of the hair strands by adsorption and not due to ingestion of contaminated foodstuffs such as seafood.« less

  11. What caused the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14?

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Wild, S.; Befort, D. J.

    2015-12-01

    In winter 2013-2014, the UK experienced exceptional stormy and rainy weather conditions. Concurrently, surface temperatures over large parts of central North America fell to near record minimum values. One potential driver for these cold conditions is discussed to be the increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the British Isles. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We focus on two research questions. Firstly: Was a chain of anomaly patterns with origin in the west Pacific present in the winter 2013-14? And secondly: Can centres of action along such a chain be identified with a strong interannual relationship in the recent past? Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.

  12. Holocene Asian monsoon evolution revealed by a pollen record from an alpine lake on the southeastern margin of the Qinghai-Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Enlou; Wang, Yongbo; Sun, Weiwei; Shen, Ji

    2016-02-01

    We present the results of pollen analyses from a 1105 cm long sediment core from Wuxu Lake in southwestern China, which depict the variations of the East Asian winter monsoon (EAWM) and the Indian summer monsoon (ISM) during the last 12.3 ka. During the period of 12.3 to 11.3 cal ka BP, the dominance of Betula forest and open alpine shrub and meadow around Wuxu Lake indicates a climate with relatively cold winters and dry summers, corresponding to the Younger Dryas event. Between 11.3 and 10.4 cal ka BP, further expansion of Betula forest and the retreat of alpine shrubs and meadows reflect a greater seasonality with cold winters and gradually increasing summer precipitation. From 10.4 to 4.9 cal ka BP, the dense forest understory, together with the gradual decrease in Betula forest and increase in Tsuga forest, suggest that the winters became warmer and summer precipitation was at a maximum, corresponding to the Holocene climatic optimum. Between 4.9 and 2.6 cal ka BP, Tsuga forest and alpine shrubs and meadows expanded significantly, reflecting relatively warm winters and decreased summer precipitation. Since 2.6 cal ka BP, reforestation around Wuxu Lake indicates a renewed humid period in the late Holocene; however, the vegetation in the catchment may also have been affected by grazing activity during this period. The results of our study are generally consistent with previous findings; however, the timing and duration of the Holocene climatic optimum from different records are inconsistent, reflecting real contrast in local rainfall response to the ISM. Overall, the EAWM is broadly in-phase with the ISM on the orbital timescale, and both monsoons exhibit a trend of decreasing strength from the early to late Holocene, reflecting the interplay of solar insolation receipt between the winter and summer seasons and El Niño-Southern Oscillation strength in the tropical Pacific.

  13. Holocene Asian monsoon evolution revealed by a pollen record from an alpine lake on the southeastern margin of the Qinghai-Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, E.; Wang, Y.; Sun, W.; Shen, J.

    2015-10-01

    We present the results of pollen analyses from a 1105-cm-long sediment core from Wuxu Lake in southwestern China, which depict the variations of the East Asian winter monsoon (EAWM) and the Indian summer monsoon (ISM) during the last 12.3 ka. During the period of 12.3 to 11.3 cal ka BP, the dominance of Betula forest and open alpine shrub and meadow around Wuxu Lake indicates a climate with relatively cold winters and dry summers, corresponding to the Younger Dryas event. Between 11.3 and 10.4 cal ka BP, further expansion of Betula forest and the retreat of alpine shrubs and meadows reflect a greater seasonality with cold winters and gradually increasing summer precipitation. From 10.4 to 4.9 cal ka BP, the dense forest understory, together with the gradual decrease in Betula forest and increase in Tsuga forest, suggest that the winters became warmer and summer precipitation was at a maximum, corresponding to the Holocene climatic optimum. Between 4.9 and 2.6 cal ka BP, Tsuga forest and alpine shrubs and meadows expanded significantly, reflecting relatively warm winters and decreased summer precipitation. Since 2.6 cal ka BP, reforestation around Wuxu Lake indicates a renewed strengthening of the ISM in the late Holocene; however, the vegetation in the catchment may also have been affected by grazing activity during this period. The results of our study are generally consistent with previous findings; however, the timing and duration of the Holocene climatic optimum from different records are inconsistent, reflecting real contrast in local rainfall response to the ISM. Overall, the EAWM is broadly in-phase with the ISM on the orbital timescale, and both monsoons exhibit a trend of decreasing strength from the early to late Holocene, reflecting the interplay of solar insolation receipt between the winter and summer seasons and El Niño Southern Oscillation strength in the tropical Pacific.

  14. Don’t Let the HumBUG Get Achoo - Tips for a healthy winter at work and home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlender, Michael H.

    2006-12-15

    Safety-related article for recurrinig column in the Tri-City Area Journal of Business. Focuses on seasonal wellness tips for employers and employees - namely, cold and flu prevention through personal hygiene.

  15. Experimental study on an electrical deicing technology utilizing carbon fiber tape.

    DOT National Transportation Integrated Search

    2012-11-01

    In cold regions, snow and ice cause serious safety problems to transportation systems. South central Alaska, particularly Anchorage, is susceptible to a number of icing : events due to frequent freeze/thaw cycles in the winter season. Traditionally, ...

  16. Evaluating roadway subsurface drainage practices.

    DOT National Transportation Integrated Search

    2013-05-01

    The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is pre...

  17. Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary

    PubMed Central

    Vellekoop, Johan; Sluijs, Appy; Smit, Jan; Schouten, Stefan; Weijers, Johan W. H.; Sinninghe Damsté, Jaap S.; Brinkhuis, Henk

    2014-01-01

    The mass extinction at the Cretaceous–Paleogene boundary, ∼66 Ma, is thought to be caused by the impact of an asteroid at Chicxulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling, a so-called “impact winter” phase. Here we document a major decline in sea surface temperature during the first months to decades following the impact event, using TEX86 paleothermometry of sediments from the Brazos River section, Texas. We interpret this cold spell to reflect, to our knowledge, the first direct evidence for the effects of the formation of dust and aerosols by the impact and their injection in the stratosphere, blocking incoming solar radiation. This impact winter was likely a major driver of mass extinction because of the resulting global decimation of marine and continental photosynthesis. PMID:24821785

  18. High-latitude stratospheric aerosols measured by the SAM II satellite system in 1978 and 1979

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Hamill, P.; Steele, H. M.; Swissler, T. J.; Herman, B. M.; Pepin, T. J.; Russell, P. B.

    1981-01-01

    Results of the first year of data collection by the SAM (Stratospheric Aerosol Measurement) II satellite system are presented. Almost 10,000 profiles of stratospheric aerosol extinction in the Arctic and Antarctic regions are used to construct plots of weekly averaged aerosol extinction versus altitude and time and stratospheric optical depth versus time. Corresponding temperature fields are presented. These data show striking similarities in the aerosol behavior for corresponding seasons. Wintertime polar stratospheric clouds that are strongly correlated with temperature are documented. They are much more prevalent in the Antarctic stratosphere during the cold austral winter and increase the stratospheric optical depths by as much as an order of magnitude for a period of about 2 months. These clouds might represent a sink for stratospheric water vapor and must be considered in the radiative budget for this region and time.

  19. Factors affecting breeding soundness classification of beef bulls examined at the Western College of Veterinary Medicine.

    PubMed

    Barth, Albert D; Waldner, Cheryl L

    2002-04-01

    Breeding soundness evaluation records from 2110 beef bulls, for the period of 1986 to 1999, were analyzed to determine the prevalence and importance of factors affecting breeding soundness classification. The percentage of all bulls classified as satisfactory ranged from 49.0% in January to 73.3% in May. The percentage of physically normal bulls with satisfactory semen quality ranged from 65.7% in January to 87.5% in June. Poor body condition or excessive body condition, below average or below the recommended minimum scrotal circumference, lameness, and severe scrotal frostbite significantly reduced the probability of a satisfactory breeding soundness classification. The percentage of sperm with midpiece defects declined significantly and the percentage of sperm with head defects increased significantly with the approach of summer. Photoperiod, cold stress, poor or excessive body condition, and reduced feed quality may interact to reduce semen quality in the winter months.

  20. Climate controls on forest productivity along the climate gradient of the western Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Kelly, A. E.; Goulden, M. L.

    2010-12-01

    The broad climate gradient of the slopes of the western Sierra Nevada mountains supports ecosystems spanning extremes of productivity, biomass, and function. We are using this natural environmental gradient to understand how climate controls NPP, aboveground biomass, species' range limits, and phenology. Our experimental approach combines eddy covariance, sap flow, dendrometer, and litterfall measurements in combination with soil and hydrological data from the Southern Sierra Critical Zone Observatory (SSCZO). We have found that above about 2500 m, forest productivity is limited by winter cold, while below 1200 m, productivity is likely limited by summer drought. The sweet spot between these elevations has a nearly year-long growing season despite a snowpack that persists for as long as six months. Our results show that small differences in temperature can markedly alter the water balance and productivity of mixed conifer forests.

  1. Heterothermy in growing king penguins.

    PubMed

    Eichhorn, Götz; Groscolas, René; Le Glaunec, Gaële; Parisel, Camille; Arnold, Laurent; Medina, Patrice; Handrich, Yves

    2011-08-16

    A drop in body temperature allows significant energy savings in endotherms, but facultative heterothermy is usually restricted to small animals. Here we report that king penguin chicks (Aptenodytes patagonicus), which are able to fast for up to 5 months in winter, undergo marked seasonal heterothermy during this period of general food scarcity and slow-down of growth. They also experience short-term heterothermy below 20 °C in the lower abdomen during the intense (re)feeding period in spring, induced by cold meals and adverse weather. The heterothermic response involves reductions in peripheral temperature, reductions in thermal core volume and temporal abandonment of high core temperature. Among climate variables, air temperature and wind speed show the strongest effect on body temperature, but their effect size depends on physiological state. The observed heterothermy is remarkable for such a large bird (10 kg before fasting), which may account for its unrivalled fasting capacity among birds.

  2. Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016

    NASA Astrophysics Data System (ADS)

    Marsing, Andreas; Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Engel, Andreas; Hoor, Peter; Krause, Jens

    2017-04-01

    Reactive chlorine compounds in the polar winter stratosphere are central to the formation of the Arctic ozone hole. To study the distribution and partitioning of active chlorine and reservoir species in the lower stratosphere, we performed in-situ measurements of HCl and ClONO2 with the mass spectrometer AIMS during the POLSTRACC aircraft campaign in the Arctic winter 2015/2016 between 320 K and 410 K. In addition to chlorine reservoir gases, in-situ measurements of chemically stable tracers provide means to identify vortex air masses and to infer total inorganic chlorine (Cly). The distribution of chlorine and the degree of activation during the winter, as well as the reformation of the reservoir species at the end of the polar winter vary with altitude and potential temperature. Using trajectory calculations, we demonstrate transport pathways that distribute high amounts of previously activated chlorine into the lowermost stratosphere. Here, active chlorine may have a large oxidation capacity with respect to climate relevant trace gases.

  3. Record low total ozone during northern winters of 1992 and 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojkov, R.D.

    1993-07-09

    The authors look at recorded ozone data over the northern hemisphere during the winters of 1992 and 1993. They use data from the World Meteorological Organization data base. During both of these winter, there have been marked decreases in the column ozone levels over North America, Europe, and Siberia, in the latitude belt from 45[degrees]N to 65[degrees]N. During these winters there have been ten times as many days with ozone levels deviated more than 2[sigma] below the 35 year average. They seek explanations for these observations by looking at meterological information. Evidences indicate that there was transport of ozone deficientmore » air masses during these winters. In addition cold air masses with excess ClO show evidence of having transported into the more southern latitudes. The authors conclude there is evidence for both displacement of large air masses, and increased chemical destruction potential, to have contributed to these observed decreases.« less

  4. An analysis, sensitivity and prediction of winter fog events using FASP model over Indo-Gangetic plains, India

    NASA Astrophysics Data System (ADS)

    Srivastava, S. K., Sr.; Sharma, D. A.; Sachdeva, K.

    2017-12-01

    Indo-Gangetic plains of India experience severe fog conditions during the peak winter months of December and January every year. In this paper an attempt has been to analyze the spatial and temporal variability of winter fog over Indo-Gangetic plains. Further, an attempt has also been made to configure an efficient meso-scale numerical weather prediction model using different parameterization schemes and develop a forecasting tool for prediction of fog during winter months over Indo-Gangetic plains. The study revealed that an alarming increasing positive trend of fog frequency prevails over many locations of IGP. Hot spot and cluster analysis were conducted to identify the high fog prone zones using GIS and inferential statistical tools respectively. Hot spots on an average experiences fog on 68.27% days, it is followed by moderate and cold spots with 48.03% and 21.79% respectively. The study proposes a new FASP (Fog Analysis, sensitivity and prediction) Model for overall analysis and prediction of fog at a particular location and period over IGP. In the first phase of this model long term climatological fog data of a location is analyzed to determine its characteristics and prevailing trend using various advanced statistical techniques. During a second phase a sensitivity test is conducted with different combination of parameterization schemes to determine the most suitable combination for fog simulation over a particular location and period and in the third and final phase, first ARIMA model is used to predict the number of fog days in future . Thereafter, Numerical model is used to predict the various meteorological parameters favourable for fog forecast. Finally, Hybrid model is used for fog forecast over the study location. The results of the FASP model are validated with actual ground based fog data using statistical tools. Forecast Fog-gram generated using hybrid model during Jan 2017 shows highly encouraging results for fog occurrence/Non occurrence between 25 hrs to 72 hours forecast. The model predicted the fog occurrences/Non occurrence with more than 85 % accuracy over most of the locations across the study area. The minimum visibility departure is within 500 m on 90% occasions over the central IGP and within 1000m on more than 80 % occasions over most of the locations across Indo-Gangetic plains.

  5. Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi

    PubMed Central

    Cook, Nicola; Tournière, Océane; Sneddon, Tanya; Ritchie, Michael G.

    2016-01-01

    Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos), in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters as an adult in northern latitudes with extreme cold. We assessed cold tolerance of dsRNA knock-down flies using two metrics: chill-coma recovery time (CCRT) and mortality rate after cold acclimation. Injection of dsRNAInos did not alter CCRT, either overall or in interaction with the cold treatment, however it did induced cold-specific mortality, with high levels of mortality observed in injected flies acclimated at 5°C but not at 19°C. Overall, injection with dsRNAInos induced a temperature-sensitive mortality rate of over 60% in this normally cold-tolerant species. qPCR analysis confirmed that dsRNA injection successfully reduced gene expression of Inos. Thus, our results demonstrate the involvement of Inos in increasing cold tolerance in D. montana. The potential mechanisms involved by which Inos increases cold tolerance are also discussed. PMID:27832122

  6. Defining winter trophic habitat of juvenile Gulf Sturgeon in the Suwannee and Apalachicola rivermouth estuaries, acoustic telemetry investigations

    USGS Publications Warehouse

    Sulak, K.J.; Randall, M.T.; Edwards, R.E.; Summers, T.M.; Luke, K.E.; Smith, W.T.; Norem, A.D.; Harden, William M.; Lukens, R.H.; Parauka, F.; Bolden, S.; Lehnert, R.

    2009-01-01

    Three automated listening post-telemetry studies were undertaken in the Suwannee and Apalachicola estuaries to gain knowledge of habitats use by juvenile Gulf Sturgeons (Acipenser oxyrinchus desotoi) on winter feeding grounds. A simple and reliable method for external attachment of small acoustic tags to the dorsal fin base was developed using shrink-tubing. Suspending receivers on masts below anchored buoys improved reception and facilitated downloading; a detection range of 500–2500 m was realized. In the Apalachicola estuary, juvenile GS stayed in shallow water (< 2 m) within the estuarine transition zone all winter in the vicinity of the Apalachicola River mouth. Juvenile GS high-use areas did not coincide with high density benthic macrofauna areas from the most recent (1999) benthos survey. In the Suwannee estuary, juveniles ranged widely and individually throughout oligohaline to mesohaline subareas of the estuary, preferentially using mesohaline subareas seaward of Suwannee Reef (52% of acoustic detections). The river mouth subarea was important only in early and late winter, during the times of adult Gulf Sturgeon migrations (41% of detections). Preferred winter feeding subareas coincided spatially with known areas of dense macrofaunal benthos concentrations. Following a dramatic drop in air and water temperatures, juvenile GS left the river mouth and estuary, subsequently being detected 8 km offshore in polyhaline open Gulf of Mexico waters, before returning to the estuary. Cold-event offshore excursions demonstrate that they can tolerate full-salinity polyhaline waters in the open Gulf of Mexico, for at least several days at a time. For juvenile sturgeons, the stress and metabolic cost of enduring high salinity (Jarvis et al., 2001; McKenzie et al., 2001; Singer and Ballantyne, 2002) for short periods in deep offshore waters seems adaptively advantageous relative to the risk of cold-event mortality in shallow inshore waters of lower salinity. Thus, while juveniles can tolerate high salinities for days to weeks to escape cold events, they appear to make only infrequent use of open polyhaline waters. Throughout the winter foraging period, juvenile GS stayed primarily within the core area of Suwannee River mouth influence, extending about 12 km north and south of the river mouth, and somewhat seaward of Suwannee Reef (< 5 km offshore). None were detected departing the core area past either of the northern or southern acoustic gates, located 66 and 52 km distant from the river mouth, respectively.

  7. Lidar Observations of the Vertical Structure of Ozone and Aerosol during Wintertime High-Ozone Episodes Associated with Oil and Gas Exploration in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.

    2013-12-01

    The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus supporting the notion that ozone is locally produced in the Uintah Basin. In both winters, TOPAZ occasionally observed ozone titration as the NOx-rich plume from the nearby Bonanza power plant was advected over the Horse Pool site. In 2012, low ozone values due to titration were observed at the surface and throughout the well-mixed BL, while in 2013 low ozone values were confined to the upper part of the cold-pool layer above the BL. This suggests that power plant NOx was very likely not part of the precursor mix that led to the high surface ozone values observed in 2013.

  8. Researching of the possibility of using absorption heat exchangers for creating the low return temperature heat supply systems based on CHP generation

    NASA Astrophysics Data System (ADS)

    Yavorovsky, Y. V.; Malenkov, A. S.; Zhigulina, Y. V.; Romanov, D. O.; Kurzanov, S. Y.

    2017-11-01

    This paper deals with the variant of modernization of the heat point within urban heat supply network in order to create the system of heat and cold supply on its basis, providing the suppliers with heat in cold months and with heat and cold in warm months. However, in cold months in the course of heating system operation, the reverse delivery water temperature is maintained below 40 °C. The analysis of heat and power indicators of the heat and cold supply system under different operating conditions throughout the year was conducted. The possibility to use the existing heat networks for the cold supply needs was estimated. The advantages of the system over the traditional heat supply systems that use Combined Heat and Power (CHP) plant as a heat source as exemplified by heat supply system from CHP with ST-80 turbine were demonstrated.

  9. Cloud-to-ground lightning in Portugal: patterns and dynamical forcing

    NASA Astrophysics Data System (ADS)

    Santos, J. A.; Reis, M. A.; Sousa, J.; Leite, S. M.; Correia, S.; Janeira, M.; Fragoso, M.

    2012-03-01

    An analysis of the cloud-to-ground discharges (CGD) over Portugal is carried out using data collected by a network of sensors maintained by the Portuguese Meteorological Institute for 2003-2009 (7 yr). Only cloud-to-ground flashes are considered and negative polarity CGD are largely dominant. The total number of discharges reveals a considerable interannual variability and a large irregularity in their distribution throughout the year. However, it is shown that a large number of discharges occur in the May-September period (71%), with a bimodal distribution that peaks in May and September, with most of the lightning activity recorded in the afternoon (from 16:00 to 18:00 UTC). In spring and autumn the lightning activity tends to be scattered throughout the country, whereas in summer it tends to be more concentrated over northeastern Portugal. Winter generally presents low lightning activity. Furthermore, two significant couplings between the monthly number of days with discharges and the large-scale atmospheric circulation are isolated: a regional forcing, predominantly in summer, and a remote forcing. In fact, the identification of daily lightning regimes revealed three important atmospheric conditions for triggering lightning activity: regional cut-off lows, cold troughs induced by remote low pressure systems and summertime regional low pressures at low-tropospheric levels combined with a mid-tropospheric cold trough.

  10. Climatic and Demographic Consequences of the Massive Volcanic Eruption of 1258

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1999-01-01

    Somewhere in the tropics, a volcano exploded violently during the year 1258, producing a massive stratospheric aerosol veil that eventually blanketed the globe. Arctic and Antarctic ice cores suggest that this was the world's largest volcanic eruption of the past millennium. According to contemporary chronicles, the stratospheric dry fog possibly manifested itself in Europe as a persistently cloudy aspect of the sky and also through an apparently total darkening of the eclipsed Moon. Based on a sudden temperature drop for several months in England, the eruption's initiation date can be inferred to have been probably January 1258. The frequent cold and rain that year led to severe crop damage and famine throughout much of Europe. Pestilence repeatedly broke out in 1258 and 1259; it occurred also in the Middle East, reportedly there as plague. Another very cold winter followed in 1260-1261. The troubled period's wars, famines, pestilences, and earthquakes appear to have contributed in part to the rise of the European flagellant movement of 1260, one of the most bizarre social phenomena of the Middle Ages. Analogies can be drawn with the climatic aftereffects and European social unrest following another great tropical eruption, Tambora in 1815. Some generalizations about the climatic impacts of tropical eruptions are made from these and other data.

  11. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panwar, Chhagan, E-mail: chhaganpanwar@gmail.com; Vyas, B. M.

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (R{sub eff}), integrated content of total aerosols (N{sub t}), columnar content of accumulation and coarse size aerosols particles concentration (N{sub a}) (size < 0.5 µm) and (N{sub c}) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period)more » at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 10{sup 13} m{sup 2} μm{sup −1} at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 10{sup 10} to 10{sup 11} m{sup 2}/μm{sup −1} occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 10{sup 12} m{sup 2}μm{sup −3} is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0.4 to 0.6 µm) in cold months. Several other interesting features of changing nature of monthly spectral AOT, R{sub eff}, N{sub t}, N{sub a} and N{sub C} (particles/m{sup 2}) have been discussed in detail in this paper.« less

  12. The new Met Office strategy for seasonal forecasts

    NASA Astrophysics Data System (ADS)

    Hewson, T. D.

    2012-04-01

    In October 2011 the Met Office began issuing a new-format UK seasonal forecast, called "The 3-month Outlook". Government interest in a UK-relevant product had been heightened by infrastructure issues arising during the severe cold of previous winters. At the same time there was evidence that the Met Office's "GLOSEA4" long range forecasting system exhibited some hindcast skill for the UK, that was comparable to its hindcast skill for the larger (and therefore less useful) 'northern Europe' region. Also, the NAO- and AO- signals prevailing in the previous two winters had been highlighted by the GLOSEA4 model well in advance. This presentation will initially give a brief overview of GLOSEA4, describing key features such as evolving sea-ice, a well-resolved stratosphere, and the perturbation strategy. Skill measures will be shown, along with forecasts for the last 3 winters. The new structure 3-month outlook will then be described and presented. Previously, our seasonal forecasts had been based on a tercile approach. The new format outlook aims to substantially improve upon this by illustrating graphically, and with text, the full range of possible outcomes, and by placing those outcomes in the context of climatology. In one key component the forecast pdfs (probability density functions) are displayed alongside climatological pdfs. To generate the forecast pdf we take the bias-corrected GLOSEA4 output (42 members), and then incorporate, via expert team, all other relevant information. Firstly model forecasts from other centres are examined. Then external 'forcing factors', such as solar, and the state of the land-ocean-ice system, are referenced, assessing how well the models represent their influence, and bringing in statistical relationships where appropriate. The expert team thereby decides upon any changes to the GLOSEA4 data, employing an interactive tool to shift, expand or contract the forecast pdfs accordingly. The full modification process will be illustrated during the presentation. Another key component of the 3-month outlook is the focus it places on potential hazards and impacts. To date specific references have been made to snow and ice disruption, to replenishment expectation for regions suffering water supply shortages, and to windstorm frequency. This aspect will be discussed, showing also some subjective verification. In future we hope to extend the 3-month outlook framework to other parts of the world, notably Africa, a region where the Met Office, with DfID support, is working collaboratively to improve real-time long range forecasts. Brief reference will also be made to such activities.

  13. New results on equatorial thermospheric winds and temperatures from Ethiopia, Africa

    NASA Astrophysics Data System (ADS)

    Tesema, Fasil; Mesquita, Rafael; Meriwether, John; Damtie, Baylie; Nigussie, Melessew; Makela, Jonathan; Fisher, Daniel; Harding, Brian; Yizengaw, Endawoke; Sanders, Samuel

    2017-03-01

    Measurements of equatorial thermospheric winds, temperatures, and 630 nm relative intensities were obtained using an imaging Fabry-Perot interferometer (FPI), which was recently deployed at Bahir Dar University in Ethiopia (11.6° N, 37.4° E, 3.7° N magnetic). The results obtained in this study cover 6 months (53 nights of useable data) between November 2015 and April 2016. The monthly-averaged values, which include local winter and equinox seasons, show the magnitude of the maximum monthly-averaged zonal wind is typically within the range of 70 to 90 ms-1 and is eastward between 19:00 and 21:00 LT. Compared to prior studies of the equatorial thermospheric wind for this local time period, the magnitude is considerably weaker as compared to the maximum zonal wind speed observed in the Peruvian sector but comparable to Brazilian FPI results. During the early evening, the meridional wind speeds are 30 to 50 ms-1 poleward during the winter months and 10 to 25 ms-1 equatorward in the equinox months. The direction of the poleward wind during the winter months is believed to be mainly caused by the existence of the interhemispheric wind flow from the summer to winter hemispheres. An equatorial wind surge is observed later in the evening and is shifted to later local times during the winter months and to earlier local times during the equinox months. Significant night-to-night variations are also observed in the maximum speed of both zonal and meridional winds. The temperature observations show the midnight temperature maximum (MTM) to be generally present between 00:30 and 02:00 LT. The amplitude of the MTM was ˜ 110 K in January 2016 with values smaller than this in the other months. The local time difference between the appearance of the MTM and a pre-midnight equatorial wind was generally 60 to 180 min. A meridional wind reversal was also observed after the appearance of the MTM (after 02:00 LT). Climatological models, HWM14 and MSIS-00, were compared to the observations and the HWM14 model generally predicted the zonal wind observations well with the exception of higher model values by 25 ms-1 in the winter months. The HWM14 model meridional wind showed generally good agreement with the observations. Finally, the MSIS-00 model overestimated the temperature by 50 to 75 K during the early evening hours of local winter months. Otherwise, the agreement was generally good, although, in line with prior studies, the model failed to reproduce the MTM peak for any of the 6 months compared with the FPI data.

  14. Cold comfort in NHS winter.

    PubMed

    1987-11-21

    No matter how smoothly Goverment may insist that all that can be I done is being done in funding I health care and supporting the NHS, no matter what percentages are circulated to prove that financial allocation and commitment is rising - services continue to be curtailed.

  15. Influence of outdoor winter environment on the course of infectious bovine keratoconjunctivitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopecky, K.E.; Pugh, G.W. Jr.; McDonald, T.J.

    1981-11-01

    The effect of environmental conditions on the onset, severity, and duration of Moraxella bovis infection and subsequent clinical disease was studied. Twelve calves were used; 6 were maintained under usual isolated experimental conditions (inside), and 6 were kept under normal feedlot conditions (outside) during the winter (-20 to +15 C). The cattle housed inside had a higher infection rate, a milder disease, and longer duration of infection than did the cattle kept out side. Seemingly, the stress of the cold weather caused a more severe disease of shorter duration.

  16. Proceedings of the Annual Meeting of the Eastern Snow Conference (47th) Held in Bangor, Maine on 7-8 June 1990

    DTIC Science & Technology

    1990-06-01

    western U.S. Ten additional windows contain basin boundary data sets to map snow cover for the Upper Midwest , the Great Lakes, New England, and... Midwest and in the East. The User’s Guide gives the data format. 4.3.2 Satellite Areal Extent of Snow Cover by Basin/Zone (MCI/AFOS-ASCII) Alphanumeric...acres) of lake shore land in the snowbelt and this perennial vine is susceptible to winter cold damage. County extension agents indicated that winter

  17. KSC-2011-1010

    NASA Image and Video Library

    2011-01-05

    CAPE CANAVERAL, Fla. -- Several endangered green sea turtles that were "stunned" during two cold snaps in December 2010 are ready for release into the Mosquito Lagoon, which is part of Florida's Indian River. Workers with NASA's Kennedy Space Center, Innovative Health Applications and the Fish and Wildlife Conservation Commission rescued more than 300 turtles during this winter's frigid temperatures. Turtles that were stunned multiple times will be released in the Sebastian area of the Indian River, which often offers warmer water and could help prevent future stuns as winter progresses. NASA/Kim Shiflett

  18. Dark Spots and Fans

    NASA Technical Reports Server (NTRS)

    2006-01-01

    As winter turns to spring at the south polar ice cap of Mars, the rising sun reveals dark spots and fans emerging from the cold polar night. Using visual images (left) and temperature data (right) from the Thermal Emission Imaging system on NASA's Mars Odyssey orbiter, scientists have built a new model for the origin of the dark markings. Scientists propose the markings come from dark sand and dust strewn by high-speed jets of carbon-dioxide gas. These erupt from under a layer of carbon-dioxide ice that forms each Martian winter.

  19. Visiting a sauna: does inhaling hot dry air reduce common cold symptoms? A randomised controlled trial.

    PubMed

    Pach, Daniel; Knöchel, Bettina; Lüdtke, Rainer; Wruck, Katja; Willich, Stefan N; Witt, Claudia M

    To compare the efficacy of applying hot dry air versus dry air at room temperature to the throat of patients with a newly acquired common cold using a symptom severity score. A randomised single-blind controlled trial with a treatment duration of 3 days and a follow-up period of 4 days was conducted at a sauna in Berlin, Germany. Between November 2007 and March 2008 and between September 2008 and April 2009, 157 patients with symptoms of the common cold were randomly assigned to an intervention group (n=80) and a control group (n=77). Participants in the intervention group inhaled hot dry air within a hot sauna, dressed in a winter coat, whereas participants in the control group inhaled dry air at room temperature within a hot sauna, also dressed in a winter coat. Area under the curve (AUC) summarising symptom severity over time (Days 2, 3, 5 and 7), symptom severity scores for individual days, intake of medication for the common cold and general ill feeling. No significant difference between groups was observed for AUC representing symptom severity over time (intervention group mean, 31.2 [SEM, 1.8]; control group mean, 35.1 [SEM, 2.3]; group difference, -3.9 [95% CI, -9.7 to 1.9]; P=0.19). However, significant differences between groups were found for medication use on Day 1 (P=0.01), symptom severity score on Day 2 (P=0.04), and participants' ratings of the effectiveness of the therapy on Day 7 (P=0.03). Inhaling hot air while in a sauna has no significant impact on overall symptom severity of the common cold. ClinicalTrials.gov identifier NCT00552981.

  20. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.

    PubMed

    Janda, Tibor; Szalai, Gabriella; Leskó, Kornélia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova

    2007-06-01

    The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light.

Top