Analysis on energy-saving path of rural buildings in hot summer and cold winter zone
NASA Astrophysics Data System (ADS)
Huang, Mingqiang; Li, Jinheng
2018-02-01
Since the reform and opening policy, the construction of rural area in China has become more and more important. The idea of establishing green villages needs to be accepted and recognized by the public. The hot summer and cold winter zone combines two contradictory weather conditions that is cold winter and hot summer. So the living conditions are limited. In response to this climate, residents extensively use electric heaters or air conditioning to adjust the indoor temperature, resulting in energy waste and environmental pollution. In order to improve the living conditions of residents, rural area energy conservation has been put on the agenda. Based on the present situation and energy consumption analysis of the rural buildings in the hot summer and cold winter zone, this article puts forward several energy saving paths from government, construction technology and so on
Development of a new USDA plant hardiness zone map for the United States
C. Daly; M.P. Widrlechner; M.D. Halbleib; J.I. Smith; W.P. Gibson
2012-01-01
In many regions of the world, the extremes of winter cold are a major determinant of the geographic distribution of perennial plant species and of their successful cultivation. In the United States, the U.S. Department of Agriculture (USDA) Plant Hardiness Zone Map (PHZM) is the primary reference for defining geospatial patterns of extreme winter cold for the...
NASA Astrophysics Data System (ADS)
Fellows, A.; Flerchinger, G. N.; Lohse, K. A.; Seyfried, M. S.
2017-12-01
Predicting winter CO2 efflux across the rain-to-snow transition zone is challenging in the cold semiarid northern Great Basin, USA, complicated by steep environmental gradients and marked heterogeneity in ecosystem properties. We therefore examined winter CO2 efflux over 9 site-years using 4 eddy covariance towers located in the Reynolds Creek Critical Zone Observatory. The sites were sagebrush shrublands located at 1425, 1680, 2098, and 2111 m, and spanned a large part of the rain-to-snow transition zone. We focused on two objectives. First, we quantified winter CO2 efflux at the sites, and considered how these varied with elevation. Second, we used a within-site and cross-site analysis to examine the biological and physical factors that impact winter CO2 efflux. Winter conditions were identified using temperature, snow depth, and CO2 exchange measurements and included 12,922 observations. The duration of winter conditions increased from 90 to 180 days with elevation. Peak snow depth increased from < 30 to > 100 cm with elevation. Cumulative winter CO2 efflux accounted for > 10% of the total annual CO2 efflux, increased with elevation, and was a key component of net ecosystem production at some sites in some years. The importance of winter CO2 efflux was accentuated by the region's long winters and also dry summers that decreased water availability and decomposition during non-winter periods. Preliminary regressions examining air temperature, soil temperature, wind speed, snow depth, and gross carbon uptake indicated some of these factors control the rate of winter CO2 efflux and require consideration, but that additional work is needed to disentangle co-linearity and assess the importance of these factors within and between sites. These findings suggest a consideration of winter CO2 efflux is warranted in cold winter-wet semiarid ecosystems, particularly where winters are long and non-winter CO2 efflux is strongly limited by water availability.
Freeze-Testing in St. Augustinegrass II: Evaluation of acclimation effects
USDA-ARS?s Scientific Manuscript database
Winter survivability is a major-limiting factor for St. Augustinegrass (Stenotaphrum secundatum [Walt.] Kuntze) grown in the transition zone of the United States as cold winters can result in high levels of winterkill. In addition to field studies, lab-based freeze tests mimicking field winter survi...
NASA Astrophysics Data System (ADS)
Meng, Fanchao; Li, Mingcai; Cao, Jingfu; Li, Ji; Xiong, Mingming; Feng, Xiaomei; Ren, Guoyu
2017-06-01
Climate plays an important role in heating energy consumption owing to the direct relationship between space heating and changes in meteorological conditions. To quantify the impact, the Transient System Simulation Program software was used to simulate the heating loads of office buildings in Harbin, Tianjin, and Shanghai, representing three major climate zones (i.e., severe cold, cold, and hot summer and cold winter climate zones) in China during 1961-2010. Stepwise multiple linear regression was performed to determine the key climatic parameters influencing heating energy consumption. The results showed that dry bulb temperature (DBT) is the dominant climatic parameter affecting building heating loads in all three climate zones across China during the heating period at daily, monthly, and yearly scales (R 2 ≥ 0.86). With the continuous warming climate in winter over the past 50 years, heating loads decreased by 14.2, 7.2, and 7.1 W/m2 in Harbin, Tianjin, and Shanghai, respectively, indicating that the decreasing rate is more apparent in severe cold climate zone. When the DBT increases by 1 °C, the heating loads decrease by 253.1 W/m2 in Harbin, 177.2 W/m2 in Tianjin, and 126.4 W/m2 in Shanghai. These results suggest that the heating energy consumption can be well predicted by the regression models at different temporal scales in different climate conditions owing to the high determination coefficients. In addition, a greater decrease in heating energy consumption in northern severe cold and cold climate zones may efficiently promote the energy saving in these areas with high energy consumption for heating. Particularly, the likely future increase in temperatures should be considered in improving building energy efficiency.
Effects of ice and floods on vegetation in streams in cold regions: implications for climate change
Lind, Lovisa; Nilsson, Christer; Weber, Christine
2014-01-01
Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns. PMID:25505542
Effects of ice and floods on vegetation in streams in cold regions: implications for climate change.
Lind, Lovisa; Nilsson, Christer; Weber, Christine
2014-11-01
Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns.
Double diffusion in the frontal zones of the Yellow and East China Seas in winter
NASA Astrophysics Data System (ADS)
Oh, K.; Lee, S.
2017-12-01
Where the cold, fresh water of the Yellow Sea (YS) and the warm, salty water of the East China Sea (ECS) meet, northern and southern fronts are formed in the southeastern YS and the northwestern ECS, respectively. Strong thermohaline fronts are formed on the northern front, and a strong thermocline and a temperature reversal phenomenon are represented in this front. To understand the water structure of this thermohaline zone, we examined double diffusion in the frontal zones in February 2003 using hydrographic data. In the northern front, the warm, salty Cheju Warm Current Water (CWCW) moved northwards along the bottom layer and the cold, fresh Yellow Sea Cold Water (YSCW) flowed southward in the upper layer. As a result, strong thermohaline fronts forms in the area where the two water masses met, and the slope was developed downward across the front. In this area, a strong thermocline and temperature reversal structures were present. The cold, fresh Korean Coastal Water (KCW) was also found in the upper layer near the thermocline, and has a low-temperature, low-salinity more than surrounding water. When cold, fresh water is located over warm, salty water, heat diffuses through the interface between the two water masses, and then the diffusive-convection can be expected to occur. On the other hand, when warm, salty water overlays cold, fresh water, heat in the upper layer is preferentially transferred downward, and the salt-fingering occurs. The diffusive-convection occurs predominantly in the northern thermohaline front, where the cold, fresh YSCW is situated above the warm, salty CWCW and has the effect of strengthening stratification, so that the water column maintains a physically stable structure. In addition, this phenomenon seems to play a role in maintaining the reversal structure. The salt-fingering occurs in upper layers of the northern front where the cold, fresh YSCW is located over the most cold, fresh KCW. Near the northern thermo-halocline zone, the salt-fingering occurs simultaneously with the diffusive-convection, because three water masses, YSCW, KCW and CWCW, interact in that area. Therefore, it can be seen that the water structure of the northern frontal zone in winter is influenced mainly by the cold, fresh YSCW, the most cold, fresh KCW, and the warm, salty CWCW.
Lorenzo, M; Pinedo, M L; Equiza, M A; Fernández, P V; Ciancia, M; Ganem, D G; Tognetti, J A
2018-02-14
Temperate grasses, such as wheat, become compact plants with small thick leaves after exposure to low temperature. These responses are associated with cold hardiness, but their underlying mechanisms remain largely unknown. Here we analyse the effects of low temperature on leaf morpho-anatomical structure, cell wall composition and activity of extracellular peroxidases, which play key roles in cell elongation and cell wall thickening, in two wheat cultivars with contrasting cold-hardening ability. A combined microscopy and biochemical approach was applied to study actively growing leaves of winter (ProINTA-Pincén) and spring (Buck-Patacón) wheat developed under constant warm (25 °C) or cool (5 °C) temperature. Cold-grown plants had shorter leaves but longer inter-stomatal epidermal cells than warm-grown plants. They had thicker walls in metaxylem vessels and mestome sheath cells, paralleled with accumulation of wall components, predominantly hemicellulose. These effects were more pronounced in the winter cultivar (Pincén). Cold also induced a sharp decrease in apoplastic peroxidase activity within the leaf elongating zone of Pincén, and a three-fold increase in the distal mature zone of the leaf. This was consistent with the enhanced cell length and thicker cell walls in this cultivar at 5 °C. The different response to low temperature of apoplastic peroxidase activity and hemicellulose between leaf zones and cultivar types suggests they might play a central role in the development of cold-induced compact morphology and cold hardening. New insights are presented on the potential temperature-driven role of peroxidases and hemicellulose in cell wall dynamics of grasses. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Energy consumption quota management of Wanda commercial buildings in China
NASA Astrophysics Data System (ADS)
Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.
2016-08-01
There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.
Modeling temperature inversion in southeastern Yellow Sea during winter 2016
NASA Astrophysics Data System (ADS)
Pang, Ig-Chan; Moon, Jae-Hong; Lee, Joon-Ho; Hong, Ji-Seok; Pang, Sung-Jun
2017-05-01
A significant temperature inversion with temperature differences larger than 3°C was observed in the southeastern Yellow Sea (YS) during February 2016. By analyzing in situ hydrographic profiles and results from a regional ocean model for the YS, this study examines the spatiotemporal evolution of the temperature inversion and its connection with wind-induced currents in winter. Observations reveal that in winter, when the northwesterly wind prevails over the YS, the temperature inversion occurs largely at the frontal zone southwest of Korea where warm/saline water of a Kuroshio origin meets cold/fresh coastal water. Our model successfully captures the temperature inversion observed in the winter of 2016 and suggests a close relation between northwesterly wind bursts and the occurrence of the large inversion. In this respect, the strong northwesterly wind drove cold coastal water southward in the upper layer via Ekman transport, which pushed the water mass southward and increased the sea level slope in the frontal zone in southeastern YS. The intensified sea level slope propagated northward away from the frontal zone as a shelf wave, causing a northward upwind flow response along the YS trough in the lower layer, thereby resulting in the large temperature inversion. Diagnostic analysis of the momentum balance shows that the westward pressure gradient, which developed with shelf wave propagation along the YS trough, was balanced with the Coriolis force in accordance with the northward upwind current in and around the inversion area.
Joseph S. Elkinton; Jeffrey A. Lombardo; Artemis D. Roehrig; Thomas J. McAvoy; Albert Mayfield; Mark Whitmore
2017-01-01
As a measure of cold hardiness, we tested the supercooling points or freezing temperatures of individual hemlock woolly adelgids (Adelges tsugae Annand) collected from 15 locations across the north to south range of the adelgid in eastern North America at different times during two winters. Adelgids from the northern interior locations with USDA hardiness zones of 5Bâ...
Physiological processes during winter dormancy and their ecological significance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havranek, W.M.; Tranquillini, W.
1995-07-01
Lengthy and severe winters require that trees in the forests of boreal and mountain zones undergo winter dormancy. Physiologically, a high resistance to subfreezing temperatures and concomitant dehydration are necessary. To accomplish this dormancy, both physiological and structural changes are needed at the cellular level that require induction by endogenous and photoperiodic control early in autumn. Endogenous rhythmicity promotes cold hardening in early autumn and the persistence of hardiness throughout the winter. Numerous physiological functions are maintained at a reduced level, or become completely inhibited during true winter dormancy. Winter hardiness also includes the capability to minimize water loss effectivelymore » when water uptake is severely impeded or impossible. Anatomical features such as tracheids act to minimize xylem embolism during frequent freeze-thaw cycles, and {open_quotes}crown{close_quotes} tissues enable buds to stay in a dehydrated and, thus, more resistant state during winter. Both these structural features are adaptations that contribute to the dominance of conifers in cold climates. Interestingly, deciduous tree species rather than evergreen conifers dominate in the most severe winter climates, although it is not clear whether limitations during winter, during the summer growth period, or during both are most limiting to conifer tree ecology. Additional work that evaluates the importance of winter and summer growth restriction, and their interaction, is needed before a comprehensive understanding of conifer tree ecophysiology will be possible.« less
Freeze Tolerance of Nine Zoysiagrass Cultivars Using Natural Cold Acclimation and Freeze Chambers
USDA-ARS?s Scientific Manuscript database
Winter hardiness of zoysiagrass (Zoysia spp.) cultivars is an important attribute throughout the biogeographical transition zone, thus the inability to withstand freezing temperatures may limit the use of these cultivars. The objective of this research was to determine the freeze tolerance (LT50) of...
NASA Astrophysics Data System (ADS)
Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.
2016-11-01
Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF), and the consumption of irrigation water (blue WF) over the crop growing period varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961-2008, for rain-fed vs. irrigated croplands, for wet vs. dry years, for warm vs. cold years, for four different soil classes, and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arcmin resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961-2008, (ii) the WF benchmarks for irrigated winter wheat are 8-10 % larger than those for rain-fed winter wheat, (iii) WF benchmarks for wet years are 1-3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7-8 % smaller than for cold years, (v) WF benchmarks differ by about 10-12 % across different soil texture classes, and (vi) WF benchmarks for the humid zone are 26-31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If actual consumptive WFs of winter wheat throughout China were reduced to the benchmark levels set by the best 25 % of Chinese winter wheat production (1224 m3 t-1 for arid areas and 841 m3 t-1 for humid areas), the water saving in an average year would be 53 % of the current water consumption at winter wheat fields in China. The majority of the yield increase and associated improvement in water productivity can be achieved in southern China.
1990-06-01
western U.S. Ten additional windows contain basin boundary data sets to map snow cover for the Upper Midwest , the Great Lakes, New England, and... Midwest and in the East. The User’s Guide gives the data format. 4.3.2 Satellite Areal Extent of Snow Cover by Basin/Zone (MCI/AFOS-ASCII) Alphanumeric...acres) of lake shore land in the snowbelt and this perennial vine is susceptible to winter cold damage. County extension agents indicated that winter
NASA Astrophysics Data System (ADS)
Grüebler, Martin U.; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat
2014-07-01
The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.
Connor, Ricardford R
2014-10-01
From July 2013 through June 2014, the number of active and reserve component service members treated for cold injuries (n=719) was the highest of the past five cold seasons (2009-2014). The rate of cold injury among active component personnel was also the highest of the 5-year period. Army personnel accounted for the majority (62%) of cold injuries. Frostbite was the most common type of cold injury in each of the services. Consistent with trends from previous cold seasons, service members who were female, younger than 20 years old, or of black, non-Hispanic race/ethnicity tended to have higher cold injury rates than their respective counterparts. Numbers of cases in the combat zone have decreased in the past 2 years, presumably as a result of declining numbers of personnel exposed and the changing nature of operations. The increase in numbers and the geographic distribution of cold injuries in the previous cold season are compatible with the unusual pattern of cold weather that marked Winter 2013-2014.
Deacclimation may be crucial for winter survival of cereals under warming climate.
Rapacz, Marcin; Jurczyk, Barbara; Sasal, Monika
2017-03-01
Climate warming can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted warm gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate warming may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled cold acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. Cold deacclimation resistance was shown to be independent from cold acclimation ability. Further, cold deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted cold acclimation may increase cold deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that cold deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Moeller, Christopher C.; Gunshor, M. M.; Menzel, W. P.; Huh, O. K.; Walker, N. D.; Rouse, L. J.
2001-01-01
The University nf Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to model coastal circulation and resuspend sediments along the micro tidal Louisiana coast (Roberts et at. 1987, Moeller et al. 1993). Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Suspended sediment is a building material for coastal progradation and wetlands renewal, but also restricts access to marine nursery environments and impacts oyster bed health. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODerate resolution Imaging Spectroradiometer (MODIS; Barnes et al. 1998) observations may enable estimates of SSC globally.
NASA Astrophysics Data System (ADS)
Mikaelyan, Alexander S.; Chasovnikov, Valeriy K.; Kubryakov, Arseny A.; Stanichny, Sergey V.
2017-02-01
The phenology of the winter-spring phytoplankton bloom in the Black Sea was investigated on the basis of the satellite-derived chlorophyll concentration (Chl) for the recent 18-year period. Data for the 8-day Chl were analysed, together with changes in the nutrient concentration, sea surface temperature (SST), photosynthetically available radiation, wind velocity and duration. Based on Sverdrup's Critical Depth hypothesis and its recent refinements, the Pulsing-Bloom hypothesis was proposed for the highly stratified waters of the Black Sea. This hypothesis relates the biological response to physical forcing and chemical fluxes to the photic zone and predicts the pulsing growth of phytoplankton and different patterns of phytoplankton changes in the upper layer in winter-spring during cold and regular years. The hypothesis was supported by Chl dynamics and several Chl peaks were observed during winter-spring. Normally, the highest Chl occurred in winter and a spring peak was absent, whereas in cold years, a relatively low Chl in winter was followed by a spring bloom. These events were observed only in 15% of cases and the magnitude of the bloom was associated with the intensity of winter convection that was revealed by the negative inter-annual correlation between the March Chl and the February SST. In contrast, the February Chl was positively correlated with the SST. The proposed hypothesis provides an explanation of this phenomenon on the basis of an alternation between the low-turbulence and deep-mixing regimes. This mechanism was confirmed by the positive relationships between Chl and the duration of light wind during the current period and strong wind in the previous period. Inorganic nitrogen was depleted disproportionately during the winter-spring, whereas the phosphate concentration remained relatively high. Following a cold winter, the highest phosphate concentration and extremely low nitrogen-to-phosphorus molar ratios (2) were observed in the upper 25-m layer in late spring. The regular absence of spring blooms might represent one of the consequences of the regional climate change.
Experimental evidence for beneficial effects of projected climate change on hibernating amphibians.
Üveges, Bálint; Mahr, Katharina; Szederkényi, Márk; Bókony, Veronika; Hoi, Herbert; Hettyey, Attila
2016-05-27
Amphibians are the most threatened vertebrates today, experiencing worldwide declines. In recent years considerable effort was invested in exposing the causes of these declines. Climate change has been identified as such a cause; however, the expectable effects of predicted milder, shorter winters on hibernation success of temperate-zone Amphibians have remained controversial, mainly due to a lack of controlled experimental studies. Here we present a laboratory experiment, testing the effects of simulated climate change on hibernating juvenile common toads (Bufo bufo). We simulated hibernation conditions by exposing toadlets to current (1.5 °C) or elevated (4.5 °C) hibernation temperatures in combination with current (91 days) or shortened (61 days) hibernation length. We found that a shorter winter and milder hibernation temperature increased survival of toads during hibernation. Furthermore, the increase in temperature and shortening of the cold period had a synergistic positive effect on body mass change during hibernation. Consequently, while climate change may pose severe challenges for amphibians of the temperate zone during their activity period, the negative effects may be dampened by shorter and milder winters experienced during hibernation.
Seasonal variation in body mass, body temperature and thermogenesis in the Hwamei, Garrulax canorus.
Wu, Mei-Xiu; Zhou, Li-Meng; Zhao, Li-Dan; Zhao, Zhi-Jun; Zheng, Wei-Hong; Liu, Jin-Song
2015-01-01
The basal thermogenesis of birds is beginning to be viewed as a highly flexible physiological trait influenced by environmental fluctuations, particularly changes in ambient temperature (Ta). Many birds living in regions with seasonal fluctuations in Ta typically respond to cold by increasing their insulation and adjusting their metabolic rate. To understand these metabolic adaptations, body temperature (Tb), metabolic rate (MR), thermal neutral zone (TNZ) and thermal conductance were measured within a range of temperatures from 5 to 40°C in free-living Hwamei, Garrulax canorus, in both winter and summer. Body mass was 61.2±0.3g in winter and 55.5±1.0g in summer, and mean Tb was 41.6±0.1°C in winter and 42.3±0.1°C in summer. TNZ was between 28.3 and 35.1°C in winter and between 28.7 and 33.2°C in summer. The mean basal metabolic rate (BMR) within TNZ was 203.32±11.81ml O2 h(-1) in winter and 168.99±6.45ml O2 h(-1) in summer. Minimum thermal conductance was 3.73±0.09joulesg(-1)h(-1)°C(-1) in winter and 3.26±0.06joulesg(-1)h(-1)°C(-1) in summer. Birds caught in winter had higher body mass, MR, and more variable TNZ than those in summer. The increased winter BMR indicates improved ability to cope with cold and maintenance of a high Tb. These results show that the Hwamei's metabolism is not constant, but exhibits pronounced seasonal phenotypic flexibility associated with maintenance of a high Tb. Copyright © 2014 Elsevier Inc. All rights reserved.
Seasonal acclimatization of metabolism in Eurasian tree sparrows (Passer montanus).
Zheng, Wei-Hong; Li, Ming; Liu, Jin-Song; Shao, Shu-Li
2008-12-01
Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. Changes in photoperiod, ambient temperature and food availability trigger seasonal acclimatization in physiology and behavior of many birds. In the present study, seasonal adjustments in several physiological, hormonal, and biochemical markers were examined in wild-captured Eurasian tree sparrows (Passer montanus) from the Heilongjiang Province in China. In winter sparrows had higher body mass and basal metabolic rate (BMR). Consistently, the dry mass of liver, heart, gizzard, small intestine, large intestine and total digestive tract were higher in winter than in that in summer. The contents of mitochondrial protein in liver, and state-4 respiration and cytochrome c oxidase (COX) activity in liver and muscle increased significantly in winter. Circulating level of serum triiodothyronine (T3) was significantly higher in winter than in summer. Together, these data suggest that tree sparrows mainly coped with cold by enhancing thermogenic capacities through increased organ masses and heightened activity of respiratory enzymes activities. The results support the view that prominent winter increases in BMR are manifestations of winter acclimatization in tree sparrows and that seasonal variation in metabolism in sparrows is similar to that in other small temperate-wintering birds.
Ager, T.A.; Phillips, R.L.
2008-01-01
After more than half a century of paleoenvironmental investigations, disagreements persist as to the nature of vegetation type and climate of the Bering land bridge (BLB) during the late Wisconsin (Sartan) glacial interval. Few data exist from sites on the former land bridge, now submerged under the Bering and Chukchi Seas. Two hypotheses have emerged during the past decade. The first, based on pollen data from Bering Sea islands and adjacent mainlands of western Alaska and Northeast Siberia, represents the likely predominant vegetation on the Bering land bridge during full-glacial conditions: graminoid-herb-willow tundra vegetation associated with cold, dry winters and cool, dry summer climate. The second hypothesis suggests that dwarf birch-shrub-herb tundra formed a broad belt across the BLB, and that mesic vegetation was associated with cold, snowier winters and moist, cool summers. As a step towards resolving this controversy, a sediment core from Norton Sound, northeastern Bering Sea was radiocarbon dated and analyzed for pollen content. Two pollen zones were identified. The older, bracketed by radiocarbon ages of 29,500 and 11,515 14C yr BP, contains pollen assemblages composed of grass, sedge, wormwood, willow, and a variety of herb (forb) taxa. These assemblages are interpreted to represent graminoid-herb-willow tundra vegetation that developed under an arid, cool climate regime. The younger pollen zone sediments were deposited about 11,515 14C yr BP, when rising sea level had begun to flood the BLB. This younger pollen zone contains pollen of birch, willow, heaths, aquatic plants, and spores of sphagnum moss. This is interpreted to represent a Lateglacial dwarf birch-heath-willow-herb tundra vegetation, likely associated with a wetter climate with deeper winter snows, and moist, cool summers. This record supports the first hypothesis, that graminoid-herb-willow tundra vegetation extended into the lowlands of the BLB during full glacial conditions of the late Wisconsin. ?? 2008 Regents of the University of Colorado.
NASA Astrophysics Data System (ADS)
Wilber, Dara H.; Clarke, Douglas G.; Alcoba, Catherine M.; Gallo, Jenine
2016-01-01
The effect of climate variability on flatfish includes not only the effects of warming on sensitive life history stages, but also impacts from more frequent or unseasonal extreme cold temperatures. Cold weather events can affect the overwintering capabilities of flatfish near their low temperature range limits. We examined the responses of two flatfish species, the thin-bodied windowpane (Scophthalmus aquosus) and cold-tolerant winter flounder (Pseudopleuronectes americanus), to variable winter temperatures in a Northwest Atlantic estuary using abundance and size data collected during a monitoring study, the Aquatic Biological Survey, conducted from 2002 to 2010. Winter and spring abundances of small (50 to 120 mm total length) juvenile windowpane were positively correlated with adult densities (spawning stock) and fall temperatures (thermal conditions experienced during post-settlement development for the fall-spawned cohort) of the previous year. Windowpane abundances in the estuary were significantly reduced and the smallest size class was nearly absent after several consecutive years with cold (minimum temperatures < 1 °C) winters. Interannual variation in winter flounder abundances was unrelated to the severity of winter temperatures. A Paulik diagram illustrates strong positive correlations between annual abundances of sequential winter flounder life history stages (egg, larval, Age-1 juvenile, and adult male) within the estuary, reflecting residency within the estuary through their first year of life. Temperature variables representing conditions during winter flounder larval and post-settlement development were not significant factors in multiple regression models exploring factors that affect juvenile abundances. Likewise, densities of predators known to consume winter flounder eggs and/or post-settlement juveniles were not significantly related to interannual variation in winter flounder juvenile abundances. Colder estuarine temperatures through the first year of life were associated with smaller Age-1 winter flounder body size. For example, Age-1 winter flounder developing under conditions that differed by 1.9 °C in mean daily water temperature, averaged 98.7 mm total length (TL) and 123.1 mm TL, for the relatively cold vs. moderate years, respectively. More frequent cold temperature extremes associated with climate variability may negatively impact the overwintering capabilities of some flatfish near their cold temperature range limits, whereas cold-tolerant species may experience reduced growth, which imparts the ecological challenges associated with smaller body size.
Pérez-Pinzón, M A; Rice, M E
1995-12-24
We determined the ascorbic acid (ascorbate) and glutathione (GSH) contents of eight regions of the CNS from anoxia-tolerant turtles collected in summer and in winter. Ascorbate was of special interest because it is found in exceptionally high levels in the turtle CNS. The temperature-dependence of CNS ascorbate content was established by comparing levels in animals collected from two geographic zones with different average winter temperatures and in animals re-acclimated to different temperatures in the laboratory. The analytical method was liquid chromatography with electrochemical detection. Turtle ascorbate levels were 30-40% lower in animals acclimatized to winter (2 degrees C) than to summer (23 degrees C) in all regions of the CNS. Similarly, GSH levels were 20-30% lower in winter than in summer. Winter ascorbate levels were higher in turtles from Louisiana (19 degrees C) than in turtles acclimatized to winter in Wisconsin (2 degrees C). Summer and winter levels of ascorbate could be reversed by re-acclimating animals to cold (1 degree C) or warm (23 degrees C) temperatures for at least one week. CNS water content did not differ between cold- and warm-acclimated turtles. Taken together, the data indicated that ascorbate and GSH undergo significant seasonal variation and that the catalyst for change is environmental temperature. Steady-state ascorbate content showed a linear dependence on temperature, with a slope of 1.5% per degree C that was independent of CNS region. Lower levels of cerebral antioxidants in turtles exposed to colder temperatures were consistent with the decreased rate of cerebral metabolism that accompanies winter hibernation. Cerebral ascorbate and GSH levels in the turtle remained similar to or higher than those in mammals, even during winter, however. These findings support the notion that unique mechanisms of antioxidant regulation in the turtle contribute to their tolerance of the hypoxia-reoxygenation that characterizes diving behavior.
Patients' experiences of cold exposure during ambulance care.
Aléx, Jonas; Karlsson, Stig; Saveman, Britt-Inger
2013-06-06
Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients' experiences of cold exposure and to identify related factors. During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients' finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from -22.3°C to 8.4°C. Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons.
Winter Season Mortality: Will Climate Warming Bring Benefits?
Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert
2015-06-01
Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.
Winter season mortality: will climate warming bring benefits?
NASA Astrophysics Data System (ADS)
Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert
2015-06-01
Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.
NASA Astrophysics Data System (ADS)
Kawabata, Shinichiro; Hayashi, Keiji; Kameyama, Shuichi
This paper investigates a method for ob taining the probable freezing index for n -years from past frostaction damage and meteorological data. From investigati on of Japanese cold winter data from the areas of Hokkaido, Tohoku and south of Tohoku, it was found that the extent of cold winter had regularity by location south or north. Also, after obtaining return periods of cold winters by area, obvious regional characteristics were found. Mild winters are rare in Hokkaido. However, it was clarified that when Hokkaido had cold winters, its size increased. It wa s effective to determine the probable freezing indices as 20-, 15- and 10-year return periods for Hokkaido, Tohoku and south of Tohoku, respectively.
Stålhandske, Sandra; Lehmann, Philipp; Pruisscher, Peter; Leimar, Olof
2015-12-01
The effect of spring temperature on spring phenology is well understood in a wide range of taxa. However, studies on how winter conditions may affect spring phenology are underrepresented. Previous work on Anthocharis cardamines (orange tip butterfly) has shown population-specific reaction norms of spring development in relation to spring temperature and a speeding up of post-winter development with longer winter durations. In this experiment, we examined the effects of a greater and ecologically relevant range of winter durations on post-winter pupal development of A. cardamines of two populations from the United Kingdom and two from Sweden. By analyzing pupal weight loss and metabolic rate, we were able to separate the overall post-winter pupal development into diapause duration and post-diapause development. We found differences in the duration of cold needed to break diapause among populations, with the southern UK population requiring a shorter duration than the other populations. We also found that the overall post-winter pupal development time, following removal from winter cold, was negatively related to cold duration, through a combined effect of cold duration on diapause duration and on post-diapause development time. Longer cold durations also lead to higher population synchrony in hatching. For current winter durations in the field, the A. cardamines population of southern UK could have a reduced development rate and lower synchrony in emergence because of short winters. With future climate change, this might become an issue also for other populations. Differences in winter conditions in the field among these four populations are large enough to have driven local adaptation of characteristics controlling spring phenology in response to winter duration. The observed phenology of these populations depends on a combination of winter and spring temperatures; thus, both must be taken into account for accurate predictions of phenology.
The Relation of El Nino Southern Oscillation to Winter Tornado Outbreaks
NASA Astrophysics Data System (ADS)
Robinson Cook, A. D.; Schaefer, J. T.
2007-12-01
Winter tornado activity (January, February, and March) between 1950 and 2003 was analyzed to determine the possible effect of seasonally averaged sea surface temperatures in the equatorial Pacific Ocean, the ENSO phase, on the location and strength of tornado outbreaks in the United States. Tornado activity was gauged through analyses of tornadoes occurring on tornado days (a calendar day featuring 6 or more tornadoes within the contiguous United States) and strong and violent tornado days (a calendar day featuring 5 or more tornadoes rated F-2 and greater within the contiguous United States). The tornado days were then stratified according to warm (37 tornado days, 14 violent days), cold (51 tornado days, 28 violent days), and neutral (74 tornado days, 44 violent days) winter ENSO phase. It is seen that during winter periods of neutral tropical Pacific sea surface temperatures, there is a tendency for United States tornado outbreaks to be stronger and more frequent than they are during winter periods of anomalously warm tropical Pacific sea surface temperatures (El Nino). During winter periods with anomalously cool Pacific sea surface temperatures (La Nina), the frequency and strength of United States tornado activity lies between that of the neutral and El Nino phase. ENSO related shifts in the preferred location of tornado activity are also observed. Historically, during the neutral phase, tornado outbreaks typically occurred from central Oklahoma and Kansas eastward through the Carolinas. During cold phases, tornado outbreaks have typically occurred in a zone stretching from southeastern Texas northeastward into Illinois, Indiana, and Michigan. During anomalously warm phases activity was mainly limited to the Gulf Coast States including central Florida. The data are statistically and synoptically analyzed to show that they are not only statistically significant, but also meteorologically reasonable.
Livable Winter Cities--Leisure Attitudes and Activities.
ERIC Educational Resources Information Center
Neal, Larry; Coles, Roger, Ed.
1989-01-01
The nine articles included in this feature emphasize how leisure, recreation, health and physical activities make winter cities more livable. Specific topics include techniques for teaching about cold weather safety and cold related injuries, Arctic Winter Games, and results of a study on winter recreation in large North American communities. (IAH)
Ronges, Daria; Walsh, Jillian P; Sinclair, Brent J; Stillman, Jonathon H
2012-06-01
Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 h at 8°C enhanced cold tolerance during a 1 h exposure to -2°C relative to crabs acclimated to 18°C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm- and cold-acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12 h of thermal acclimation. Genes strongly upregulated in warm-acclimated crabs represented immune response and extracellular/intercellular processes, suggesting that warm-acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold-acclimated crabs included many that are involved in glucose production, suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold-acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene-expression-related changes in homeostasis begin within 12 h, the length of a tidal cycle.
Zou, Xiangxu; Zhang, Hui; Zuo, Jie; Wang, Penghe; Zhao, Dehua; An, Shuqing
2016-06-01
To identify the facilitation effect of a cool-season aquatic macrophyte (FEam) for use in effluent purification via constructed floating wetlands (CFWs) and to determine the possible pathways used during a winter period with an average temperature of less than 5 °C, pilot-scale CFWs were planted with the cold-season macrophyte Oenanthe clecumbens and were operated as batch systems. Although some leaves withered, the roots retained relatively high levels of activity during the winter, which had average air and water temperatures of 3.63 and 5.04 °C, respectively. The N and P removal efficiencies in CFWs decreased significantly in winter relative to those in late autumn. The presence of cool-season plants resulted in significant improvements in N and P removal, with a FEam of 15.23-25.86% in winter. Microbial N removal accounted for 71.57% of the total N removed in winter, and the decrease in plant uptake was the dominant factor in the wintertime decrease in N removal relative to that in late autumn. These results demonstrate the importance of cold-season plants in CFWs for the treatment of secondary effluent during cold winters.
Measurement of inequality using household energy consumption data in rural China
NASA Astrophysics Data System (ADS)
Wu, Shimei; Zheng, Xinye; Wei, Chu
2017-10-01
Measuring inequality can be challenging due to the limitations of using household income or expenditure data. Because actual energy consumption can be measured more easily and accurately and is relatively more stable, it may be a better measure of inequality. Here we use data on energy consumption for specific devices from a large nation-wide household survey (n = 3,404 rural households from 12 provinces) to assess inequality in rural China. We find that the overall inequality of energy consumption and expenditure varies greatly in terms of energy type, end-use demand, regions and climatic zones. Biomass, space heating and cooking, intraregional differences, and climatic zones characterized as cold or hot summer/cold winter contribute the most to total inequality for each indicator, respectively. The results suggest that the expansion of infrastructure does not accompany alleviation of energy inequality, and that energy affordability should be improved through income growth and targeted safety-net programmes instead of energy subsidies.
NASA Astrophysics Data System (ADS)
Robinson Cook, A. D.; Schaefer, J. T.
2009-12-01
Winter tornado activity (January-March) between 1950 and 2003 was analyzed to determine the possible effects of the El Niño Southern Oscillation and the North Atlantic Oscillation on the frequency, location, and strength of tornado outbreaks in the United States. Outbreaks were gauged through analyses of tornadoes occurring on tornado days (a calendar day featuring six or more tornadoes within the contiguous United States) and then stratified according to warm (37 tornado days), cold (51 tornado days), and neutral (74 tornado days) winter ENSO phase. Tornado days were also stratified according to NAO phase (positive, negative, and neutral) as well. Although significant changes in the frequency of tornado outbreaks were not observed, spatial shifts in tornado activity are observed, primarily as a function of ENSO phase. Historically, the neutral ENSO phase features tornado outbreaks from central Oklahoma and Kansas eastward through the Carolinas. During cold ENSO phases (La Niña), tornado outbreaks typically occur in a zone stretching from southeastern Texas northeastward into Illinois, Indiana, and Michigan. Winter tornado activity was mainly limited to areas near the Gulf Coast, including central Florida, during anomalously warm phases (El Niño). Shifts in the intensity of tornado activity were also found as a function of ENSO and particularly NAO phase. Stronger tornadoes with longer path lengths were observed during La Niña and Neutral ENSO events, as well as Positive and Neutral NAO events.
Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature
NASA Astrophysics Data System (ADS)
He, Xiaodong; Miao, Shiguang; Shen, Shuanghe; Li, Ju; Zhang, Benzhi; Zhang, Ziyue; Chen, Xiujie
2015-03-01
Sky view factor (SVF), which is an indicator of urban canyon geometry, affects the surface energy balance, local air circulation, and outdoor thermal comfort. This study focused on a continuous and long-term meteorological observation system to investigate the effects of SVF on outdoor thermal conditions and physiological equivalent temperature (PET) in the central business district (CBD) of Beijing (which is located within Chaoyang District), specifically addressed current knowledge gaps for SVF-PET relationships in cities with typical continental/microthermal climates. An urban sub-domain scale model and the RayMan model were used to diagnose wind fields and to calculate SVF and long-term PET, respectively. Analytical results show that the extent of shading contributes to variations in thermal perception distribution. Highly shaded areas (SVF <0.3) typically exhibit less frequent hot conditions during summer, while enduring longer periods of cold discomfort in winter than moderately shaded areas (0.3< SVF <0.5) and slightly shaded areas (SVF >0.5), and vice versa. Because Beijing has a monsoon-influenced humid continental climate with hot summers and long, cold, windy, and dry winters, a design project that ideally provides moderate shading should be planned to balance hot discomfort in summer and cold discomfort in winter, which effectively prolongs the comfort periods in outdoor spaces throughout the entire year. This research indicate that climate zone characteristics, urban environmental conditions, and thermal comfort requirements of residents must be accounted for in local-scale scientific planning and design, i.e., for urban canyon streets and residential estates.
Long Term Decline in Eastern US Winter Temperature Extremes.
NASA Astrophysics Data System (ADS)
Trenary, L. L.; DelSole, T. M.; Tippett, M. K.; Doty, B.
2016-12-01
States along the US eastern seaboard have experienced successively harsh winter conditions in recent years. This has prompted speculation that climate change is leading to more extreme winter conditions. In this study we quantify changes in the observed winter extremes over the period 1950-2015, by examining year-to-year differences in intensity, frequency and likelihood of daily cold temperature extremes in the north, mid, and south Atlantic states along the US east coast. Analyzing station data for these three regions, we find that while the north and mid-Atlantic regions experienced record-breaking cold temperatures in 2015, there is no long-term increase in the intensity of cold extremes anywhere along the eastern seaboard. Likewise, despite the record number of cold days in these two regions during 2014 and 2015, there is no systematic increase in the frequency of cold extremes. To determine whether the observed changes are natural or human-forced, we repeat our analysis using a suite of climate simulations, with and without external forcing. Generally, model simulations suggest that human-induced forcing does not significantly influence the range of daily winter temperature. Combining this result with the fact that the observed winter temperatures are becoming warmer and less variable, we conclude that the recent intensification of eastern US cold extremes is only temporary.
Damage to southern Michigan conifers during the winter of 1976-77
Jonathan W. Wright; Donald DeHayes; Walter A. Lemmien
1977-01-01
In southern Michigan, the winter of 1976-1977 was marked by unseasonably cold weather in early December, prolonged cold weather in December and January, severe drought at the onset of cold weather, and by higher than average absolute minimum temperatures. Damage, presumably from the early December cold weather, was severe to southern seedlots of ponderosa pine,...
Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki
2014-09-02
Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over themore » Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.« less
NASA Astrophysics Data System (ADS)
Hori, M. E.; Inoue, J.
2011-12-01
Frequent occurrence of cold air outbreak is a dominant feature of the East Asian winter monsoon. A contributing factor for the this cold air outbreak is the role of stationary Rossby waves over the Eurasian continent which intensifies the surface Siberian High and the accompanying cold air outflow. Reduced sea ice and increase in turbulence heat flux is hypothesized as a source of such stationary waves (Honda et al. 2009). In particular, the winter of 2009/2010 saw a strong correlation of high pressure anomaly over the Barents/Kara sea and the following cold air buildup over the Eurasian continent and its advection towards East Asia (Hori et al. 2011). The lag correlation of surface temperature over Japan and the 850hPa geopotential height shows a cyclonic anomaly appearing over the Barents/Kara sea which creates a cold air advection over the Eurasian continent. The pressure anomaly subsequently shifted westward to mature into a blocking high which created a wave- train pattern downstream advecting the cold air buildup eastward toward East Asia and Japan (Fig1). We further examine this mechanism for other years including the 2005/2006, 2010/2011 winter and other winters with extreme cold air outbreaks. Overall, the existence of an anticyclonic anomaly over the Barents/Kara sea correlated well with the seasonal dominance of cold air over the Eurasian continent thereby creating a contrast of a warm Arctic and cold Eurasian continent.In the intraseasonal timescale, the existence of this anticyclone corresponds to a persisting atmospheric blocking in the high latitudes. In the presentation, we address the underlying chain of events leading up to a strong cold air outbreak over East Asia from an atmosphere - sea ice - land surafce interaction point of view for paritular cold winter years.
Manatee use of power plant effluents in Brevard County, Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shane, S.H.
The relationship between manatees and power plants was investigated at 2 power plants on the Indian River in Brevard County, Florida from January 1978-February 1980. Manatee presence in the power plant effluent zones was correlated with cold air and water temperatures. When air temperatures were below 16 C most manatees in the country were found in the effluent zones. Manatees in the effluent zones move with the wind-blown warm water plume, demonstrating a sensitivity to small changes in water temperature. Some individuals were frequently resighted at 1 plant, while others moved between the 2 plants. Because industrial warm water sourcesmore » are less reliable than natural warm water refuges, it is recommended that no new artificial warm water effluents be constructed north of the species' traditional winter range. 16 references, 3 figures, 1 table.« less
Genes critical for the induction of cold acclimation in wheat (Triticum aestivum L.)
USDA-ARS?s Scientific Manuscript database
Phenotypic studies have shown that cold acclimation in wheat and its relatives start at different temperatures. To gain insight into the underlying mechanisms that regulate the induction of cold-acclimation process in cereals we compared the expression of genes in winter-habit (winter Norstar and w...
Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?
NASA Astrophysics Data System (ADS)
Hoerling, M. P.; Sun, L.; Perlwitz, J.
2015-12-01
Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.
NASA Astrophysics Data System (ADS)
Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.
2017-08-01
Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.
Patients’ experiences of cold exposure during ambulance care
2013-01-01
Background Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients’ experiences of cold exposure and to identify related factors. Method During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients’ finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. Results In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from −22.3°C to 8.4°C. Conclusion Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons. PMID:23742143
Halbritter, Dale A; Teets, Nicholas M; Williams, Caroline M; Daniels, Jaret C
Predicting how rapid climate change will affect terrestrial biota depends on a thorough understanding of an organism's biology and evolutionary history. Organisms at their range boundaries are particularly sensitive to climate change. As predominantly terrestrial poikilotherms, insects are often geographically limited by extremes in ambient temperatures. We compared the cold hardiness strategies of two geographically widespread butterflies, the pine white, Neophasia menapia, and the Mexican pine white, N. terlooii (Lepidoptera: Pieridae), at the near-contact zone of their range boundaries. Eggs are laid on pine needles and are exposed to harsh winter conditions. Eggs were collected from wild-caught butterflies, and we determined the supercooling point (SCP) and lower lethal temperature (LLT 50 ) of overwintering eggs. The SCP of Neophasia menapia eggs (-29.0 ± 0.6 °C) was significantly lower than that of N. terlooii eggs (-21.8 ± 0.7 °C). Both species were freeze-intolerant and capable of surviving down to their respective SCPs (LLT 50 of N. menapia between -30 and -31 °C, N. terlooii between -20 and -21 °C). Cold exposure time did not affect the survival of N. menapia, but N. terlooii experienced somewhat greater mortality at sub-freezing temperatures during longer exposures. Our results, coupled with an analysis of microclimate data, indicate that colder winters in northern Arizona may contribute to the northern range limit for N. terlooii. Furthermore, careful analysis of historical weather data indicates that mortality from freezing is unlikely in southern Arizona but possible in northern Arizona. Movements of Neophasia range boundaries could be monitored as potential biological responses to climate change. Published by Elsevier Ltd.
French, Helen K; van der Zee, Sjoerd E A T M
2014-01-01
This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated.
Large-scale energy transformations in the high latitudes of the Northern Hemisphere
NASA Technical Reports Server (NTRS)
Kung, E. C.; Masters, S. E.; Corte-Real, J. A. M.
1983-01-01
The kinetic energy balance and kinetic energy sources are studied for high latitudes north of 55 deg N with twice daily upper air observations during a seven-year period from 1973 to 1979. Energy variables are presented for 5 deg latitudinal zones from 55 to 75 deg N and for the polar cap north of 75 deg N. Spatial distributions of important energy variables are also presented. The upper level maximum of the cross-isobaric generation in high latitudes is observed in th lower stratosphere above the tropopause level in the winter and becomes insignificant during the summer. The flux convergence of potential energy from the source in lower latitudes is identified as the single major source for kinetic energy in higher latitudes. The contribution of the baroclinic conversion is minor. Examination during the First GARP Global Experiment winter indicates that the cold air outbreaks of the Asian winter monsoon are associated with noticeable changes in the hemispherical distributions of the fields of vertical motion and energetics in the high latitudes.
The role of Xylella fastidiosa cold shock proteins in Pierce’s disease of grapes
USDA-ARS?s Scientific Manuscript database
Pierce’s disease of grapevine, caused by the bacterial pathogen Xylella fastidiosa (Xf) is limited to warmer climates, and plant infection can be eliminated by cold winter conditions. Milder winters can increase the likelihood of pathogen persistence from one growing season to the next. Cold adaptat...
Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.
2013-01-01
There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036
NASA Astrophysics Data System (ADS)
Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.
2017-12-01
Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results demonstrate that Northeast winters have air mass conditions that have become warmer and drier in recent decades. Additionally, Northern Plains winters have air mass setups that have become warmer and more moist since the mid 1970s.
NASA Astrophysics Data System (ADS)
Kawase, H.; Sasaki, H.; Murata, A.; Nosaka, M.; Ito, R.; Dairaku, K.; Sasai, T.; Yamazaki, T.; Sugimoto, S.; Watanabe, S.; Fujita, M.; Kawazoe, S.; Okada, Y.; Ishii, M.; Mizuta, R.; Takayabu, I.
2017-12-01
We performed large ensemble climate experiments to investigate future changes in extreme weather events using Meteorological Research Institute-Atmospheric General Circulation Model (MRI-AGCM) with about 60 km grid spacing and Non-Hydrostatic Regional Climate Model with 20 km grid spacing (NHRCM20). The global climate simulations are prescribed by the past and future sea surface temperature (SST). Two future climate simulations are conducted so that the global-mean surface air temperature rise 2 K and 4 K from the pre-industrial period. The non-warming simulations are also conducted by MRI-AGCM and NHRCM20. We focus on the future changes in snowfall in Japan. In winter, the Sea of Japan coast experiences heavy snowfall due to East Asian winter monsoon. The cold and dry air from the continent obtains abundant moisture from the warm Sea of Japan, causing enormous amount of snowfall especially in the mountainous area. The NHRCM20 showed winter total snowfall decreases in the most parts of Japan. In contrast, extremely heavy daily snowfall could increase at mountainous areas in the Central Japan and Northern parts of Japan when strong cold air outbreak occurs and the convergence zone appears over the Sea of Japan. The warmer Sea of Japan in the future climate could supply more moisture than that in the present climate, indicating that the cumulus convections could be enhanced around the convergence zone in the Sea of Japan. However, the horizontal resolution of 20 km is not enough to resolve Japan`s complex topography. Therefore, dynamical downscaling with 5 km grid spacing (NHRCM05) is also conducted using NHRCM20. The NHRCM05 does a better job simulating the regional boundary of snowfall and shows more detailed changes in future snowfall characteristics. The future changes in total and extremely heavy snowfall depend on the regions, elevations, and synoptic conditions around Japan.
NASA Astrophysics Data System (ADS)
Cione, Joseph; Pietrafes, Leonard J.
The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24-48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982-April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by the NWS at the Raleigh-Durham (RAH) forecast office for 10 winter storms. Analysis of these ASCII forecasts will be presented.
Seasonal Variation of Carbon Metabolism in the Cambial Zone of Eucalyptus grandis
Budzinski, Ilara G. F.; Moon, David H.; Lindén, Pernilla; Moritz, Thomas; Labate, Carlos A.
2016-01-01
Eucalyptus species are the most widely hardwood planted in the world. It is one of the successful examples of commercial forestry plantation in Brazil and other tropical and subtropical countries. The tree is valued for its rapid growth, adaptability and wood quality. Wood formation is the result of cumulative annual activity of the vascular cambium. This cambial activity is generally related to the alternation of cold and warm, and/or dry and rainy seasons. Efforts have focused on analysis of cambial zone in response to seasonal variations in trees from temperate zones. However, little is known about the molecular changes triggered by seasonal variations in trees from tropical countries. In this work we attempted to establish a global view of seasonal alterations in the cambial zone of Eucalyptus grandis Hill ex Maiden, emphasizing changes occurring in the carbon metabolism. Using transcripts, proteomics and metabolomics we analyzed the tissues harvested in summer-wet and winter-dry seasons. Based on proteomics analysis, 70 proteins that changed in abundance were successfully identified. Transcripts for some of these proteins were analyzed and similar expression patterns were observed. We identified 19 metabolites differentially abundant. Our results suggest a differential reconfiguration of carbon partioning in E. grandis cambial zone. During summer, pyruvate is primarily metabolized via ethanolic fermentation, possibly to regenerate NAD+ for glycolytic ATP production and cellular maintenance. However, in winter there seems to be a metabolic change and we found that some sugars were highly abundant. Our results revealed a dynamic change in E. grandis cambial zone due to seasonality and highlight the importance of glycolysis and ethanolic fermentation for energy generation and maintenance in Eucalyptus, a fast growing tree. PMID:27446160
Linking the pacific decadal oscillation to seasonal stream discharge patterns in Southeast Alaska
Neal, E.G.; Todd, Walter M.; Coffeen, C.
2002-01-01
This study identified and examined differences in Southeast Alaskan streamflow patterns between the two most recent modes of the Pacific decadal oscillation (PDO). Identifying relationships between the PDO and specific regional phenomena is important for understanding climate variability, interpreting historical hydrological variability, and improving water-resources forecasting. Stream discharge data from six watersheds in Southeast Alaska were divided into cold-PDO (1947-1976) and warm-PDO (1977-1998) subsets. For all watersheds, the average annual streamflows during cold-PDO years were not significantly different from warm-PDO years. Monthly and seasonal discharges, however, did differ significantly between the two subsets, with the warm-PDO winter flows being typically higher than the cold-PDO winter flows and the warm-PDO summer flows being typically lower than the cold-PDO flows. These results were consistent with and driven by observed temperature and snowfall patterns for the region. During warm-PDO winters, precipitation fell as rain and ran-off immediately, causing higher than normal winter streamflow. During cold-PDO winters, precipitation was stored as snow and ran off during the summer snowmelt, creating greater summer streamflows. The Mendenhall River was unique in that it experienced higher flows for all seasons during the warm-PDO relative to the cold-PDO. The large amount of Mendenhall River discharge caused by glacial melt during warm-PDO summers offset any flow reduction caused by lack of snow accumulation during warm-PDO winters. The effect of the PDO on Southeast Alaskan watersheds differs from other regions of the Pacific Coast of North America in that monthly/seasonal discharge patterns changed dramatically with the switch in PDO modes but annual discharge did not. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Y.
2017-12-01
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.
46 CFR 42.30-10 - Southern Winter Seasonal Zone.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Island; thence the rhumb line to Black Rock Point on Stewart Island; thence the rhumb line to the point... BY SEA Zones, Areas, and Seasonal Periods § 42.30-10 Southern Winter Seasonal Zone. (a) The northern boundary of the Southern Winter Seasonal Zone is the rhumb line from the east coast of the American...
Intra-seasonal Characteristics of Wintertime Extreme Cold Events over South Korea
NASA Astrophysics Data System (ADS)
Park, Taewon; Jeong, Jeehoon; Choi, Jahyun
2017-04-01
The present study reveals the changes in the characteristics of extreme cold events over South Korea for boreal winter (November to March) in terms of the intra-seasonal variability of frequency, duration, and atmospheric circulation pattern. Influences of large-scale variabilities such as the Siberian High activity, the Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO) on extreme cold events are also investigated. In the early and the late of the winter during November and March, the upper-tropospheric wave-train for a life-cycle of the extreme cold events tends to pass quickly over East Asia. In addition, compared with the other months, the intensity of the Siberian High is weaker and the occurrences of strong negative AO are less frequent. It lead to events with weak amplitude and short duration. On the other hand, the amplified Siberian High and the strong negative AO occur more frequently in the mid of the winter from December to February. The extreme cold events are mainly characterized by a well-organized anticyclonic blocking around the Ural Mountain and the Subarctic. These large-scale circulation makes the extreme cold events for the midwinter last long with strong amplitude. The MJO phases 2-3 which provide a suitable condition for the amplification of extreme cold events occur frequently for November to January when the frequencies are more than twice those for February and March. While the extreme cold events during March have the least frequency, the weakest amplitude, and the shortest duration due to weak impacts of the abovementioned factors, the strong activities of the factors for January force the extreme cold events to be the most frequent, the strongest, and the longest among the boreal winter. Keywords extreme cold event, wave-train, blocking, Siberian High, AO, MJO
Preventing cold-related morbidity and mortality in a changing climate
Conlon, Kathryn C; Rajkovich, Nicholas B; White-Newsome, Jalonne L; Larsen, Larissa; Neill, Marie S O
2011-01-01
Winter weather patterns are anticipated to become more variable with increasing average global temperatures. Research shows that excess morbidity and mortality occurs during cold weather periods. We critically reviewed evidence relating temperature variability, health outcomes, and adaptation strategies to cold weather. Health outcomes included cardiovascular-, respiratory-, cerebrovascular-, and all-cause morbidity and mortality. Individual and contextual risk factors were assessed to highlight associations between individual- and neighborhood- level characteristics that contribute to a person’s vulnerability to variability in cold weather events. Epidemiologic studies indicate that the populations most vulnerable to variations in cold winter weather are the elderly, rural and, generally, populations living in moderate winter climates. Fortunately, cold-related morbidity and mortality are preventable and strategies exist for protecting populations from these adverse health outcomes. We present a range of adaptation strategies that can be implemented at the individual, building, and neighborhood level to protect vulnerable populations from cold-related morbidity and mortality. The existing research justifies the need for increased outreach to individuals and communities for education on protective adaptations in cold weather. We propose that future climate change adaptation research couple building energy and thermal comfort models with epidemiological data to evaluate and quantify the impacts of adaptation strategies. PMID:21592693
Comoglio, L; Amin, O; Botté, S; Marcovecchio, J
2011-03-01
Antioxidant status of Nacella (P) magellanica and Mytilus edulis related with heavy metal in sediment and tissues were analysed in five stations close to Ushuaia city in winter and spring. The principal component analysis produced a two-dimensional pattern of the degree of similarity between sites. The Industrial-Urban Contamination Index (IUCI) showed that the Industrial Zone (IZ) and Oil Marine Station (OMS) represent areas with anthropic inputs. Heavy metals have differential association with biomarkers depending on the species. In limpets, digestive gland presented major activities of enzyme defence in winter and gonads have shown higher values of Catalase (CAT) during spring while lipid peroxidation (LPO) presented higher values in IZ. For mussels CAT and LPO increased in spring time. For superoxide dismutase (SOD) peaks have been detected in IZ and NW stations for winter. Differences in biomarker responses due to seasons did not influence the grouping of the sites into references and contaminated groups. Copyright © 2010 Elsevier Inc. All rights reserved.
Armendariz, Alfredo; Leith, David; Boundy, Maryanne; Goodman, Randall; Smith, Les; Carlton, Gary
2003-01-01
Aircraft engines emit an aerosol plume during startup in extremely cold weather that can drift into areas occupied by flightline ground crews. This study tested a personal sampler used to assess exposure to particles in the plume under challenging field conditions. Area and personal samples were taken at two U.S. Air Force (USAF) flightlines during the winter months. Small tube-and-wire electrostatic precipitators (ESPs) were mounted on a stationary stand positioned behind the engines to sample the exhaust. Other ESPs were worn by ground crews to sample breathing zone concentrations. In addition, an aerodynamic particle sizer 3320 (APS) was used to determine the size distribution of the particles. Samples collected with the ESP were solvent extracted and analyzed with gas chromatography-mass spectrometry. Results indicated that the plume consisted of up to 75 mg/m(3) of unburned jet fuel particles. The APS showed that nearly the entire particle mass was respirable, because the plumes had mass median diameters less than 2 micro m. These tests demonstrated that the ESP could be used at cold USAF flightlines to perform exposure assessments to the cold start particles.
Sulak, K.J.; Randall, M.T.; Edwards, R.E.; Summers, T.M.; Luke, K.E.; Smith, W.T.; Norem, A.D.; Harden, William M.; Lukens, R.H.; Parauka, F.; Bolden, S.; Lehnert, R.
2009-01-01
Three automated listening post-telemetry studies were undertaken in the Suwannee and Apalachicola estuaries to gain knowledge of habitats use by juvenile Gulf Sturgeons (Acipenser oxyrinchus desotoi) on winter feeding grounds. A simple and reliable method for external attachment of small acoustic tags to the dorsal fin base was developed using shrink-tubing. Suspending receivers on masts below anchored buoys improved reception and facilitated downloading; a detection range of 500–2500 m was realized. In the Apalachicola estuary, juvenile GS stayed in shallow water (< 2 m) within the estuarine transition zone all winter in the vicinity of the Apalachicola River mouth. Juvenile GS high-use areas did not coincide with high density benthic macrofauna areas from the most recent (1999) benthos survey. In the Suwannee estuary, juveniles ranged widely and individually throughout oligohaline to mesohaline subareas of the estuary, preferentially using mesohaline subareas seaward of Suwannee Reef (52% of acoustic detections). The river mouth subarea was important only in early and late winter, during the times of adult Gulf Sturgeon migrations (41% of detections). Preferred winter feeding subareas coincided spatially with known areas of dense macrofaunal benthos concentrations. Following a dramatic drop in air and water temperatures, juvenile GS left the river mouth and estuary, subsequently being detected 8 km offshore in polyhaline open Gulf of Mexico waters, before returning to the estuary. Cold-event offshore excursions demonstrate that they can tolerate full-salinity polyhaline waters in the open Gulf of Mexico, for at least several days at a time. For juvenile sturgeons, the stress and metabolic cost of enduring high salinity (Jarvis et al., 2001; McKenzie et al., 2001; Singer and Ballantyne, 2002) for short periods in deep offshore waters seems adaptively advantageous relative to the risk of cold-event mortality in shallow inshore waters of lower salinity. Thus, while juveniles can tolerate high salinities for days to weeks to escape cold events, they appear to make only infrequent use of open polyhaline waters. Throughout the winter foraging period, juvenile GS stayed primarily within the core area of Suwannee River mouth influence, extending about 12 km north and south of the river mouth, and somewhat seaward of Suwannee Reef (< 5 km offshore). None were detected departing the core area past either of the northern or southern acoustic gates, located 66 and 52 km distant from the river mouth, respectively.
Arctic sea ice loss and recent extreme cold winter in Eurasia
NASA Astrophysics Data System (ADS)
Mori, Masato; Watanabe, Masahiro; Ishii, Masayoshi; Kimoto, Masahide
2014-05-01
Extreme cold winter over the Eurasia has occurred more frequently in recent years. Observational evidence in recent studies shows that the wintertime cold anomalies over the Eurasia are associated with decline of Arctic sea ice in preceding autumn to winter season. However, the tropical and/or mid-latitude sea surface temperature (SST) anomalies have great influence on the mid- and high-latitude atmospheric variability, it is difficult to isolate completely the impacts of sea ice change from observational data. In this study, we examine possible linkage between the Arctic sea ice loss and the extreme cold winter over the Eurasia using a state-of-the-art MIROC4 (T106L56) atmospheric general circulation model (AGCM) to assess the pure atmospheric responses to sea ice reduction. We perform two sets of experiments with different realistic sea ice boundary conditions calculated by composite of observed sea ice concentration; one is reduced sea ice extent case (referred to as LICE run) and another is enhanced case (HICE run). In both experiments, the model is integrated 6-month from September to February with 100-member ensemble under the climatological SST boundary condition. The difference in ensemble mean of each experiment (LICE minus HICE) shows cold anomalies over the Eurasia in winter and its spatial pattern is very similar to corresponding observation, though the magnitude is smaller than observation. This result indicates that a part of observed cold anomaly can be attributed to the Arctic sea ice loss. We would like to introduce more important results and mechanisms in detail in my presentation.
Swanson, David L; Garland, Theodore
2009-01-01
Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.
Lin, Shao; Lawrence, Wayne R; Lin, Ziqiang; DiRienzo, Stephen; Lipton, Kevin; Dong, Guang-Hui; Leung, Ricky; Lauper, Ursula; Nasca, Philip; Stuart, Neil
2018-10-15
More extreme cold weather and larger weather variations have raised concerns regarding their effects on public health. Although prior studies assessed the effects of cold air temperature on health, especially mortality, limited studies evaluated wind chill temperatures on morbidity, and health effects under the current cold warning threshold. This study identified the thresholds, lag periods, and best indicators of extreme cold on cardiovascular disease (CVD) by comparing effects of wind chill temperatures and cold air temperatures on CVD emergency department (ED) visits in winter and winter transition months. Information was collected on 662,625 CVD ED visits from statewide hospital discharge dataset in New York State. Meteorological factors, including air temperature, wind speed, and barometric pressure were collected from National Oceanic and Atmospheric Administration. A case-crossover approach was used to assess the extreme cold-CVD relationship in winter (December-February) and transition months (November and March) after controlling for PM 2.5 . Conditional logistic regression models were employed to analyze the association between cold weather factors and CVD ED visits. We observed CVD effects occurred when wind chill temperatures were as high as -3.8 °C (25 °F), warmer than current wind chill warning standard (≤-28.8 °C or ≤-20 °F). Wind chill temperature was a more sensitive indicator of CVD ED visits during winter with temperatures ≤ -3.8 °C (25 °F) with delay effect (lag 6); however, air temperature was better during transition months for temperatures ≤ 7.2 °C (45 °F) at earlier lag days (1-3). Among all CVD subtypes, hypertension ED visit had the strongest negative association with both wind chill temperature and air temperature. This study recommends modifying the current cold warning temperature threshold given larger proportions of CVD cases are occurring at considerably higher temperatures than the current criteria. We also recommend issuing cold warnings in winter transitional months. Copyright © 2018 Elsevier B.V. All rights reserved.
Relationship between seasonal cold acclimatization and mtDNA haplogroup in Japanese
2012-01-01
Background The purpose of this study was to elucidate the interaction between mtDNA haplogroup and seasonal variation that contributes to cold adaptation. Methods There were 15 subjects (seven haplotype D subjects and eight haplotype non-D subjects). In summer and winter, the subjects were placed in an environment where the ambient temperature dropped from 27 °C to 10 °C in 30 minutes. After that, they were exposed to cold for 60 minutes. Results In summer, the decrease in rectal temperature and increase in oxygen consumption was smaller and cold tolerance was higher in the haplotype non-D group than in the haplotype D group. In winter, no significant differences were seen in rectal temperature or oxygen consumption, but the respiratory exchange ratio decreased in the haplotype D group. Conclusions The results of the present study suggest that haplogroup D subjects are a group that changes energy metabolism more, and there appears to be a relationship between differences in cold adaptability and mtDNA polymorphism within the population. Moreover, group differences in cold adaptability seen in summer may decrease in winter due to supplementation by seasonal cold acclimatization. PMID:22929588
Adaptation to seasonality and the winter freeze
Preston, Jill C.; Sandve, Simen R.
2013-01-01
Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve. PMID:23761798
Noakes, Matthew J; Wolf, Blair O; McKechnie, Andrew E
Avian metabolic responses demonstrate considerable diversity under fluctuating environmental conditions, a well-studied example being the seasonal upregulation of basal metabolic rate (BMR) and summit metabolism (M sum ) in temperate species experiencing harsh winters. Fewer studies have examined seasonal metabolic acclimatization in subtropical or tropical species. We investigated seasonal metabolic variation in an Afrotropical ploceid passerine, the white-browed sparrow-weaver (Plocepasser mahali; ∼47 g), at three sites along a climatic gradient of approximately 7°C in winter minimum air temperature (T a ). We measured M sum (n ≥ 10 per site per season) in a helox atmosphere, BMR of the same birds at thermoneutrality (T a ≈ 30°C), and resting metabolic rates at 5°C ≤ T a ≤ 20°C. Patterns of seasonal adjustments in BMR varied among populations in a manner not solely related to variation in seasonal T a extremes, ranging from BMR ∼52% higher in winter than in summer to no seasonal difference. Greater cold tolerance was found in a population at a colder desert site, manifested as higher M sum (∼25% higher) and lower helox temperature at cold limit values compared with a milder, mesic site. Our results lend support to the idea that greater variance in the pattern of seasonal metabolic responses occurs in subtropical and tropical species compared with their temperate-zone counterparts and that factors other than T a extremes (e.g., food availability) may be important in determining the magnitude and direction of seasonal metabolic adjustments in subtropical birds.
USDA-ARS?s Scientific Manuscript database
Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...
High cold tolerance through four seasons and all free-living stages in an ectoparasite.
Härkönen, Laura; Kaitala, Arja; Kaunisto, Sirpa; Repo, Tapani
2012-06-01
Off-host stages of temperate parasites must cope with low temperatures. Cold tolerance is often highest in winter, as a result of diapause and cold acclimation, and low during the active summer stages. In some blood-feeding ectoparasites, offspring provisioning determines cold tolerance through all the non-feeding, off-host stages. Large size increases survival in the cold, but so far seasonal variation in within-female offspring size has not been associated with offspring cold tolerance. The deer ked (Lipoptena cervi) reproduces on cervids from autumn to spring. Newborn pupae drop off the host, facing frosts without any acclimation. We examined cold tolerance through 4 seasons and from birth to adulthood by means of short- and long-term frost exposure. We expected females to produce more tolerant offspring in winter than in spring. Large spring pupae survived prolonged frosts better than did small winter pupae. Thus more tolerant offspring were not produced when the temperature outside the host is at its lowest. Unexpectedly, the freezing points were -20 °C or below all year round. We showed that high cold tolerance is possible without acclimation regardless of life stage, which presumably correlates with other survival characteristics, such as the starvation resistance of free-living ectoparasites.
Overwintering of herbaceous plants in a changing climate. Still more questions than answers.
Rapacz, Marcin; Ergon, Ashild; Höglind, Mats; Jørgensen, Marit; Jurczyk, Barbara; Ostrem, Liv; Rognli, Odd Arne; Tronsmo, Anne Marte
2014-08-01
The increase in surface temperature of the Earth indicates a lower risk of exposure for temperate grassland and crop to extremely low temperatures. However, the risk of low winter survival rate, especially in higher latitudes may not be smaller, due to complex interactions among different environmental factors. For example, the frequency, degree and length of extreme winter warming events, leading to snowmelt during winter increased, affecting the risks of anoxia, ice encasement and freezing of plants not covered with snow. Future climate projections suggest that cold acclimation will occur later in autumn, under shorter photoperiod and lower light intensity, which may affect the energy partitioning between the elongation growth, accumulation of organic reserves and cold acclimation. Rising CO2 levels may also disturb the cold acclimation process. Predicting problems with winter pathogens is also very complex, because climate change may greatly influence the pathogen population and because the plant resistance to these pathogens is increased by cold acclimation. All these factors, often with contradictory effects on winter survival, make plant overwintering viability under future climates an open question. Close cooperation between climatologists, ecologists, plant physiologists, geneticists and plant breeders is strongly required to predict and prevent possible problems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dual effects of the winter monsoon on haze-fog variations in eastern China
NASA Astrophysics Data System (ADS)
Liu, Qian; Sheng, Lifang; Cao, Ziqi; Diao, Yina; Wang, Wencai; Zhou, Yang
2017-06-01
Previous studies have revealed a negative correlation between the East Asian winter monsoon and wintertime haze-fog events in China. The winter monsoon reduces haze-fog by advecting away aerosol particles and supplying clean air through cold waves. However, it is found that the frequency of haze-fog events on subseasonal time scales displays no correlation with typical winter monsoon indices. The results show that the accumulating and maintaining effects of calm weather related to the Siberian High, which is also a part of the monsoon circulation system, are equally important for the development of haze-fog events during winter. Correlation analysis indicates that subseasonal variations in haze-fog are closely related to the intensity of the Siberian High (r = 0.49). The Siberian High may increase the occurrence of haze-fog events by reducing the near surface wind speed and enhancing the stratification stability. To quantify the contribution of these diverse effects of the winter monsoon on the variations in haze-fog events, we analyzed haze-fog events during periods of cold wave activity and calm weather separately and contrasted the relative contributions of these two effects on different time scales. On the subseasonal scale, the effect of the Siberian High was 2.0 times that of cold waves; on the interannual scale, the effect of cold waves was 2.4 times that of the Siberian High. This study reveals the dual effects of the East Asian winter monsoon on wintertime haze-fog variations in eastern China and provides a more comprehensive understanding of the relationship between the monsoon and haze-fog events.
NASA Astrophysics Data System (ADS)
Ando, Y.; Ogi, M.; Tachibana, Y.
2013-12-01
On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For reference, the conventional AO index is shown by the gray line. (b) a 5-day running mean WP index, (c) area-averaged Surface Air Temperature anomalies in Japan, (d) Air Temperature anomalies, (e) heat flux anomalies, and (f) Sea Surface Temperature anomalies. The boxed area on the Sea of Japan indicates the area in which the (d)-(f) indexes were calculated.
Preparing for Hiking and Rock-Climbing At Altitude
NASA Technical Reports Server (NTRS)
Greenleaf, John E.
2002-01-01
Exposure to altitude with or without exercise usually results in body dehydration. Psychological and physiological preparation for exercise at altitude involves consideration of maintaining body warmth in a cool to cold environment with progressively lower oxygen content (partial pressure) as altitude increases. However, this discussion will focus on altitudes below 14,000 it where supplemental breathing oxygen is not required for sojourns of healthy people. Background information and helpful advice for those who exercise in the cold can be found in selected articles in the 2001 Winter Issue of this Newsletter: M.B. Ducharme, Get ready for outdoor winter play: prepare yourself for the cold; C. O'Brien, Think layers when dressing for exercise in the cold; B.G. Rice and R. Ellis, Let it snow, let it snow, let it snow - but be aware of winter hazards; and L.B. Mayers, Exercise - induced asthma.
21st Century Trends in the Potential for Ozone Depletion
NASA Astrophysics Data System (ADS)
Hurwitz, M. M.; Newman, P. A.
2009-05-01
We find robust trends in the area where Antarctic stratospheric temperatures are below the threshold for polar stratospheric cloud (PSC) formation in Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. In late winter (September-October-November), cold area trends are consistent with the respective trends in equivalent effective stratospheric chlorine (EESC), i.e. negative cold area trends in 'realistic future' simulations where EESC decreases and the ozone layer recovers. In the early winter (April through June), regardless of EESC scenario, we find an increasing cold area trend in all simulations; multiple linear regression analysis shows that this early winter cooling trend is associated with the predicted increase in greenhouse gas concentrations in the future. We compare the seasonality of the potential for Antarctic ozone depletion in two versions of the GEOS CCM and assess the impact of the above-mentioned cold area trends on polar stratospheric chemistry.
Variability in winter climate and winter extremes reduces population growth of an alpine butterfly.
Roland, Jens; Matter, Stephen F
2013-01-01
We examined the long-term, 15-year pattern of population change in a network of 21 Rocky Mountain populations of Parnassius smintheus butterflies in response to climatic variation. We found that winter values of the broadscale climate variable, the Pacific Decadal Oscillation (PDO) index, were a strong predictor of annual population growth, much more so than were endogenous biotic factors related to population density. The relationship between PDO and population growth was nonlinear. Populations declined in years with extreme winter PDO values, when there were either extremely warm or extremely cold sea surface temperatures in the eastern Pacific relative to that in the western Pacific. Results suggest that more variable winters, and more frequent extremely cold or warm winters, will result in more frequent decline of these populations, a pattern exacerbated by the trend for increasingly variable winters seen over the past century.
Relating Regional Arctic Sea Ice and climate extremes over Europe
NASA Astrophysics Data System (ADS)
Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick
2016-04-01
The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number of cold nights, cold days, ice days and consecutive frost days over the western part of Europe. In the opposite case of low sea ice concentration over the Barents/Kara Seas an increase of up to 8 days/winter of cold nights and days is observed over the whole Europe and an increase of up to 4 days/winter in the number of ID and CFD is observed over the same regions. The cold winters over Europe (low sea ice years) are associated with anomalous anticyclone and the downstream development of a mid-latitude trough, which in turn favours the advection of cold air from the north, providing favourable conditions for severe winters over Europe. We suggest that these results can help to improve the seasonal predictions of winter extreme events over Europe. Due to the non-linear response to high vs. low sea ice years, the skill of the predictions might depend on the sign and amplitude of the anomalies.
Assessment extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea
NASA Astrophysics Data System (ADS)
Dvornikov, Anton; Martyanov, Stanislav; Ryabchenko, Vladimir; Eremina, Tatjana; Isaev, Alexey; Sein, Dmitry
2017-04-01
Extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea, are estimated paying a special attention to the area of the future construction of nuclear power plant (NPP) "Hanhikivi-1" (24° 16' E, 64° 32' N). To produce these estimates, long-term observations and results from numerical models of water and ice circulation and wind waves are used. It is estimated that the average annual air temperature in the vicinity of the station is +3° C, summer and winter extreme temperature is equal to 33.3° C and -41.5° C, respectively. Model calculations of wind waves have shown that the most dangerous (in terms of the generation of wind waves in the NPP area) is a north-west wind with the direction of 310°. The maximum height of the waves in the Gulf of Bothnia near the NPP for this wind direction with wind velocity of 10 m/s is 1.2-1.4 m. According to the model estimates, the highest possible level of the sea near the NPP is 248 cm, the minimum level, -151 cm, respectively for the western and eastern winds. These estimates are in good agreement with observations on the sea level for the period 1922-2015 at the nearest hydrometeorological station Raahe (Finland). In order to assess the likely impact of the NPP on the marine environment numerical experiments for the cold (2010) and warm year (2014) have been carried out. These calculations have shown that permanent release of heat into the marine environment from the operating NPP for the cold year (2010) will increase the temperature in the upper layer of 0-250m zone by 10°C in winter - spring and by 8°C in summer - early autumn, and in the bottom layer of 0-250m zone by 5°C in winter - spring and 3°C in summer - early autumn. For the warm year (2014), these temperature changes are smaller. Ice cover in both cases will disappear in two - kilometer vicinity of the NPP. These effects should be taken into account when assessing local climate changes in the future
Li, Qiang; Byrns, Brook; Badawi, Mohamed A.; Diallo, Abdoulaye Banire; Danyluk, Jean; Sarhan, Fathey; Zou, Jitao
2018-01-01
Cold acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex cold responses are mostly conducted in controlled environments that only consider the responses to single environmental variables. In this study, we have comprehensively profiled global transcriptional responses in crowns of field-grown spring and winter wheat (Triticum aestivum) genotypes and their near-isogenic lines with the VRN-A1 alleles swapped. This in-depth analysis revealed multiple signaling, interactive pathways that influence cold tolerance and phenological development to optimize plant growth and development in preparation for a wide range of over-winter stresses. Investigation of genetic differences at the VRN-A1 locus revealed that a vernalization requirement maintained a higher level of cold response pathways while VRN-A1 genetically promoted floral development. Our results also demonstrated the influence of genetic background on the expression of cold and flowering pathways. The link between delayed shoot apex development and the induction of cold tolerance was reflected by the gradual up-regulation of abscisic acid-dependent and C-REPEAT-BINDING FACTOR pathways. This was accompanied by the down-regulation of key genes involved in meristem development as the autumn progressed. The chromosome location of differentially expressed genes between the winter and spring wheat genetic backgrounds showed a striking pattern of biased gene expression on chromosomes 6A and 6D, indicating a transcriptional regulation at the genome level. This finding adds to the complexity of the genetic cascades and gene interactions that determine the evolutionary patterns of both phenological development and cold tolerance traits in wheat. PMID:29259104
Rasi, Hanna; Kuivila, Heli; Pölkki, Tarja; Bloigu, Risto; Rintamäki, Hannu; Tourula, Marjo
2017-01-01
ABSTRACT Background: In Finland, children spend a lot of time outdoors in winter. Outdoor recreation in winter has a wide variety of effects on children’s well-being. Although children are a subgroup that is vulnerable to cold exposure, remarkably little research has been done on the subject. Objective: The aim of this study was to describe children’s outdoor recreation, cold exposure and symptoms in winter in Northern Finland. Design: This was a descriptive quantitative study. The participants consisted of 30 children aged 7–8 years who were living in the provinces of Lapland and Northern Ostrobothnia in Finland. Data were collected by using electronic data-logging thermometers fixed on children’s outerwear for a month. The thermometers recorded the environmental temperature every five minutes and from that temperature data, we were able to discern the exact amount and duration of children’s outdoor recreation. In addition, information on the children’s cold symptoms was collected with structured daily entries. Results: Cold weather was not an obstacle to children’s outdoor activities in Finland. However, the duration of outdoor recreation shortened when the outdoor air temperature decreased. There were no significant differences between boys and girls in terms of time spent outdoors. Remarkably, every child reported symptoms associated with cold. Almost half of the children reported experiencing respiratory symptoms and some children also experienced cold pain and numbness. Conclusions: The results of this study illustrate the many and varied effects that cold exposure can have on children’s health and well-being. In order to prevent negative health effects of cold exposure on children, structured prevention strategies are needed: therefore, children’s exposure to cold should be studied more. Future research should also bring out more the positive health effects of outdoor recreation on children’s growth and development. PMID:28346080
USDA-ARS?s Scientific Manuscript database
Kudzu (Pueraria montana var. lobata) is an important invasive species that was planted throughout southeastern North America until the mid-20th century. Winter survival is commonly assumed to control its distribution; however, its cold tolerance thresholds have not been determined. Here, we used bio...
Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...
NASA Astrophysics Data System (ADS)
Barabanov, A. T.; Dolgov, S. V.; Koronkevich, N. I.; Panov, V. I.; Petel'ko, A. I.
2018-01-01
Long-term series of observations over the spring water balance elements on fields with hydrologically contrasting agricultural backgrounds―a loose soil after fall moldboard plowing and a plowland compacted by 12-16% compared to the former soil (perennial grasses, winter crops, stubble)―have been analyzed. The values of surface runoff and water infiltration into the soil in the steppe and forest-steppe zones of European Russia have been calculated for the spring (flooding) period and the entire cold season. The hydrological role of fall plowing has been shown, and water balance elements for the current (1981-2016) and preceding (1957-1980) periods have been compared. A significant decrease in runoff and an increase of water reserve in the soil have been revealed on all plowland types. Consequences of changes in the spring water balance on plowland have been analyzed.
NASA Astrophysics Data System (ADS)
Monteiro, Ana; Carvalho, Vânia; Góis, Joaquim; Sousa, Carlos
2013-11-01
The aim of this study was to examine the relationship between the occurrence of cold episodes and excess hospital admissions for chronic obstructive pulmonary disease (COPD) in Porto, Portugal, in order to further understand the effects of cold weather on health in milder climates. Excess COPD winter morbidity was calculated from admissions for November to March (2000-2007) in the Greater Porto Metropolitan Area (GPMA). Cold spells were identified using several indices (Díaz, World Meteorological Organization, Cold Spell Duration Index, Australian Index and Ondas’ Project Index) for the same period. Excess admissions in the periods before and after the occurrence of cold spells were calculated and related to the cold spells identified. The COPD seasonal variation admission coefficient (CVSA) showed excess winter admissions of 59 %, relative to other months. The effect of cold spell on the aggravation of COPD occurs with a lag of at least 2 weeks and differs according to the index used. This study indicates the important role of the persistence of cold periods of at least 2 weeks duration in the increase in COPD admissions. The persistence of moderate temperatures (Tmin ≤5 °C) for a week can be more significant for increasing COPD admissions than very low temperatures (Tmin ≤ 1.6 °C) for just a few days. The Ondas projects’ index provides the most accurate detection of the negative impacts of cold persistency on health, while the Diaz index is better at evaluating the consequences of short extreme cold events.
Gene expression analysis to understand cold tolerance in citrus
USDA-ARS?s Scientific Manuscript database
Citrus cultivars show a wide range of tolerance to cold temperatures. Lemons and limes are known to be sensitive to cold while certain mandarins and trifoliate oranges can endure severe winters. To understand the mechanism of cold tolerance in citrus, we selected three known cold-sensitive and three...
Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.
Vu, Henry M; Duman, John G
2017-08-01
Upper lethal temperatures (ULTs) of cold-adapted insect species in winter have not been previously examined. We anticipated that as the lower lethal temperatures (LLTs) decreased (by 20-30°C) with the onset of winter, the ULTs would also decrease accordingly. Consequently, given the recent increases in winter freeze-thaw cycles and warmer winters due to climate change, it became of interest to determine whether ambient temperatures during thaws were approaching ULTs during the cold seasons. However, beetle Dendroides canadensis (Coleoptera: Pyrochroidae) larvae had higher 24 and 48 h ULT 50 (the temperature at which 50% mortality occurred) in winter than in summer. The 24 and 48 h ULT 50 for D. canadensis in winter were 40.9 and 38.7°C, respectively. For D. canadensis in summer, the 24 and 48 h ULT 50 were 36.7 and 36.4°C. During the transition periods of spring and autumn, the 24 h ULT 50 was 37.3 and 38.5°C, respectively. While D. canadensis in winter had a 24 h LT 50 range between LLT and ULT of 64°C, the summer range was only 41°C. Additionally, larvae of the beetle Cucujus clavipes clavipes (Coleoptera: Cucujidae) and the cranefly Tipula trivittata (Diptera: Tipulidae) also had higher ULTs in winter than in summer. This unexpected phenomenon of increased temperature survivorship at both lower and higher temperatures in the winter compared with that in the summer has not been previously documented. With the decreased high temperature tolerance as the season progresses from winter to summer, it was observed that environmental temperatures are closest to upper lethal temperatures in spring. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Chi, Xiaoli; Li, Rui; Cubasch, Ulrich; Cao, Wenting
2018-04-01
The thermal comfort and its changes in the 31 provincial capital cities of mainland China in the past 30 years were comprehensively evaluated using the Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) indicators. The PET and UTCI values were highly correlated with each other and presented similar thermal comfort pattern, although their sensitivities might differ slightly. The results showed that these cities covered, respectively, 4-8 and 6-8 thermal comfort classes of the PET and UTCI scale. On the whole, the annual cumulative number of pleasant days was more than 160 days/year. In terms of seasonal variations in thermal comfort conditions, the 31 provincial capital cities in mainland China can be classified into 5 types, which are, respectively, characterized by pleasant summer and severe cold winter (type-I); pleasant spring, autumn, winter, and severe hot summer (type-II); pleasant spring and autumn, slightly pleasant summer, and cold winter (type-III); pleasant spring and autumn, hot stress summer, and slightly cold winter (type-IV); and pleasant spring, summer, autumn, and cool winter (type-V). Type-II cities are rare winter resorts, while type-I cities are natural summer resorts. Type-V cities are the year round pleasant resorts. In the past three decades, the cities in mainland China had experienced increasing pleasant duration in late winter and early spring and intensifying heat stress in summer. The reduction in annual cumulative number of cold stress days in higher latitude/altitude cities outweighed the increase in duration of heat stress in subtropical cities. These may provide some references for urban planning and administration in mainland China.
Cold truths: how winter drives responses of terrestrial organisms to climate change.
Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J
2015-02-01
Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
USDA-ARS?s Scientific Manuscript database
As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...
Impact of cold climates on vehicle emissions: the cold start air toxics pulse : final report.
DOT National Transportation Integrated Search
2016-09-21
This project measured cold start emissions from four vehicles in winter using fast response instrumentation to accurately measure the : time variation of the cold start emission pulse. Seventeen successful tests were conducted over a temperature rang...
NASA Technical Reports Server (NTRS)
Moeller, Christopher C.; Gunshor, Mathew M.; Menzel, W. Paul; Huh, Oscar K.; Walker, Nan D.; Rouse, Lawrence J.; Frey, Herbert V. (Technical Monitor)
2001-01-01
The University of Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to modify coastal circulation and resuspend sediments along the microtidal Louisiana coast. The assessment includes quantifying the influence of cumulative winter season atmospheric forcing (through surface wind observations) from year to year in response to short term climate variability, such as El Nino events. A correlation between winter cyclone frequency and the strength of El Nino events has been suggested. The atmospheric forcing data are being correlated to geomorphic measurements along western Louisiana's prograding muddy coast. Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODIS observations will enable estimates of SSC in case 2 waters over the global domain. Progress in Year 1 of this study has included data collection and analysis of wind observations for atmospheric forcing characterization, a field activity (TX-2001) to collect in situ water samples with co-incident remote sensing measurements from the NASA ER-2 based MODIS Airborne Simulator (MAS) and the EOS Terra based MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aerial photography and of sediment burial pipe field measurements along the prograding muddy Chenier Plain coast of western Louisiana for documenting coastal change in that dynamic region, and routine collection of MODIS 250 in resolution data for monitoring coastal sediment patterns. The data sets are being used in a process to transfer an SSC estimation algorithm to the MODIS platform. Work is underway on assessing coastal transport for the winter 2000-01 season. Water level data for use in a Geomorphic Impact Index, which relates wind energy, water level conditions, and geomorphic change along the microtidal western Louisiana coastline is being assembled.
Monsoon control on faunal composition of planktic foraminifera in the Arabian Sea
NASA Astrophysics Data System (ADS)
Munz, P.; Siccha, M.; Kucera, M.; Schulz, H.
2013-12-01
Being among the most productive open ocean basins, sea surface properties in the Arabian Sea are highly influenced by the seasonal reversal of the monsoonal wind system. During boreal summer wind direction from the southwest induces strong upwelling along the coast off Somalia and Oman. Vertical transport of cold and nutrient-rich deep-water masses by Ekman pumping reduces sea surface temperature and triggers primary productivity. Reversed cold and dry winds during boreal winter lead to cooling of the surface- and subsurface-waters and hereby to deep convective mixing, bringing nutrients into the photic zone and enhancing primary productivity especially in the northern part of the Arabian Sea. Here, we study the influence of the different seasonal monsoon systems on the faunal composition of planktic foraminifera, in order to improve our understanding how the faunal community record is influenced by the respective monsoon systems and to provide baseline information for the reconstruction of ancient monsoon conditions. We used published core-top foraminiferal databases, significantly increased in spatial coverage by new contributions. The resulting combined database consists of 413 core-top samples spanning the Arabian Sea and the Northern Indian Ocean to 10° S. The seasonal sea surface properties at these stations could be binned into categories of different monsoon influence, based on satellite-derived chlorophyll-a concentrations. Interpretation of species response to environmental control is based on multivariate statistical analyses of each of the categorical bins. First results show that samples influenced only by winter- and summer monsoon conditions, respectively, feature specifiable faunal composition. Globigerina bulloides is mostly associated with summer upwelling conditions, whereas Globigerina falconensis and Pulleniatina obliquiloculata are typical species of winter conditions. Redundancy analysis reveals preferences of species populations with respect to particular environmental gradients and may help to disentangle winter- from summer monsoon impact on modern and fossil faunas.
Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes
Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F.
2015-01-01
The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h–1 to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as –6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as –14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. PMID:25788733
Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones
NASA Technical Reports Server (NTRS)
Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.
2013-01-01
Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.
Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng
Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.
Wu, Yue-Kun; Zou, Chao; Fu, Dao-Meng; Zhang, Wan-Na; Xiao, Hai-Jun
2018-04-01
Heat shock proteins (Hsps) have been linked to stresses and winter diapause in insects, but whether they are components of summer diapause is still unknown. In this study, complementary DNAs of Hsp90 from Pieris melete, Pieris rapae and Pieris canidia named PmHsp90, PrHsp90 and PcHsp90, respectively, were cloned and sequenced. The deduced amino acid sequence consisted of 718 amino acid residues with a putative molecular mass of 82.6, 82.6 and 82.7 kDa, respectively. The amino acid sequences contained all of the five conserved signature motifs in the Hsp90 family and a bHLH protein folding activity region. The differential expression pattern of PmHsp90 in response to summer diapause and winter diapause, which are related to heat/cold stress, was investigated. Cold stress induced Hsp90 up-regulation in summer and winter diapause pupae, but not in non-diapause individuals. Heat shock up-regulated PmHsp90 gradually with an increase in temperature in summer diapause, and PmHsp90 was rapidly up-regulated in winter diapause. After 30 min heat shock at 39°C, substantial up-regulation of PmHsp90 transcript levels were observed both in summer and winter diapause. However, in non-diapause a relatively stable expression was found under different durations of 39°C heat shock. Compared to the optimal treatment of 18°C for diapause development, a high temperature acclimation of 31°C induced PmHsp90 up-regulation in summer diapause, whereas a low temperature acclimation of 4°C induced up-regulation in winter diapause. The current results indicate that Hsp90 may play an important role in response to heat/cold stress both in summer and winter diapause. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Evaluation of cold mixes for winter pothole repair.
DOT National Transportation Integrated Search
1995-01-01
This study was conducted to evaluate the performance of 13 proprietary cold-mix patching materials, 4 of which are currently approved under a Virginia Department of Transportation (VDOT) Special Provision for High Quality Cold Patching Materials. Col...
Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness
Bansal, Sheel; Harrington, Constance A; St. Clair, John Bradley
2016-01-01
Summary: 1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range. 3. Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms. 4. Our findings highlight the necessity to look beyond bivariate trait–climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species.
ERIC Educational Resources Information Center
Bjork, Janna
2005-01-01
Warm days, cold nights, melting snow-signs winter is waning and spring is nearing. Though winter may just be getting started in some areas, it's always fun to appreciate the good things about winter, including the special time at the end of winter in New England known as "sugaring time." The sap starts flowing in the sugar maples, and…
Peixoto, Murilo de Melo; Lee, D. K.; Sage, Rowan F.
2015-01-01
Miscanthus × giganteus grown in cool temperate regions of North America and Europe can exhibit severe mortality in the year after planting, and poor frost tolerance of leaves. Spartina pectinata (prairie cordgrass), a productive C4 perennial grass native to North America, has been suggested as an alternative biofuel feedstock for colder regions; however, its cold tolerance relative to M. × giganteus is uncertain. Here, we compare the cold tolerance thresholds for winter-dormant rhizomes and spring/summer leaves of M. × giganteus and three accessions of S. pectinata. All genotypes were planted at a field site in Ontario, Canada. In November and February, the temperatures corresponding to 50% rhizome mortality (LT50) were near −24°C for S. pectinata and −4°C for M. × giganteus. In late April, the LT50 of rhizomes rose to −10°C for S. pectinata but remained near −4°C for M. × giganteus. Twenty percent of the M. × giganteus rhizomes collected in late April were dead while S. pectinata rhizomes showed no signs of winter injury. Photosynthesis and electrolyte leakage measurements in spring and summer demonstrate that S. pectinata leaves have greater frost tolerance in the field. For example, S. pectinata leaves remained viable above −9°C while the mortality threshold was near −5°C for M. × giganteus. These results indicate M. × giganteus will be unsuitable for production in continental interiors of cool-temperate climate zones unless freezing and frost tolerance are improved. By contrast, S. pectinata has the freezing and frost tolerance required for a higher-latitude bioenergy crop. PMID:25873680
Burnable absorber arrangement for fuel bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Townsend, D.B.
1986-12-16
This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less
NASA Technical Reports Server (NTRS)
Foster, J. L.
1980-01-01
The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
40 CFR 86.213-11 - Fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-11 Fuel specifications. (a) Gasoline... the text in this section follows: Table—Cold CO Fuel Specifications Item ASTM test Cold CO low octane.... Diesel test fuel used for cold temperature FTP testing under part 600 of this chapter must be a winter...
From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees
Glenn T. Howe; Sally N. Aitken; David B. Neale; Kathleen D. Jermstad; Nicholas C. Wheeler; Tony H.H Chen
2003-01-01
Adaptation to winter cold in temperate and boreal trees involves complex genetic, physiological, and developmental processes. Genecological studies demonstrate the existence of steep genetic clines for cold adaptation traits in relation to environmental (mostly temperature related) gradients. Population differentiation is generally stronger for cold adaptation traits...
... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...
More Frequent Weak Stratospheric Polar Vortex States Linked to Cold Extremes
NASA Astrophysics Data System (ADS)
Kretschmer, M.; Coumou, D.; Agel, L. A.; Barlow, M. A.; Tziperman, E.; Cohen, J. L.
2016-12-01
The extra-tropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, referred to as the stratospheric polar vortex (SPV) which confines cold temperatures at high latitudes. Previous studies showed that a weak SPV can lead to cold-air outbreaks in the mid-latitudes but the exact relationships and mechanisms are still unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in Central and eastern Asia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid to late winter (January and February) has increased significantly accompanied by subsequent cold surface temperatures in the mid-latitudes. Furthermore, we show that stratospheric and El Niño/Southern Oscillation (ENSO) variability can explain most of the observed spatially heterogenic winter temperature trends in the era of Arctic amplification but the contribution of ENSO is less important. We show that the weakening of the SPV was related to a strengthening Siberian high and poleward heat flux. These findings support the hypothesis that a warming Arctic has weakened the SPV and thereby increased the frequency of cold-air outbreaks.
Cold-induced bradycardia in man during sleep in Arctic winter nights
NASA Astrophysics Data System (ADS)
Buguet, A. G. C.
1987-03-01
Two young male Caucasians volunteered for a study on the effects of cold exposure during night sleep in winter in the Arctic. The 14-day experiment was divided in three consecutive periods, baseline (2 nights), cold exposure (10 night) and recovery (2 nights). Both baseline and recovery data were obtained in neutral thermal conditions in a laboratory. The subjects slept in a sleeping bag under an unheated tent during the cold exposure. Apart from polysomnographic and body temperature recordings, electrocardiograms were taken through a telemetric system for safety purposes. Heart rates were noted at 5-min intervals and averaged hourly. In both environmental conditions, heart rate decreased within the first two hours of sleep. Comparison of the data obtained during cold exposure vs. thermal neutrality revealed lower values of heart rate in the cold, while body temperatures remained within normal range. This cold-induced bradycardia supervening during night sleep is discussed in terms of the occurrence of a vagal reflex preventing central blood pressure to rise.
Costanzo, Jon P; Dinkelacker, Stephen A; Iverson, John B; Lee, Richard E
2004-01-01
We integrated field and laboratory studies in an investigation of water balance, energy use, and mechanisms of cold-hardiness in hatchling painted turtles (Chrysemys picta) indigenous to west-central Nebraska (Chrysemys picta bellii) and northern Indiana (Chrysemys picta marginata) during the winters of 1999-2000 and 2000-2001. We examined 184 nests, 80 of which provided the hatchlings (n=580) and/or samples of soil used in laboratory analyses. Whereas winter 1999-2000 was relatively dry and mild, the following winter was wet and cold; serendipitously, the contrast illuminated a marked plasticity in physiological response to environmental stress. Physiological and cold-hardiness responses of turtles also varied between study locales, largely owing to differences in precipitation and edaphics and the lower prevailing and minimum nest temperatures (to -13.2 degrees C) encountered by Nebraska turtles. In Nebraska, winter mortality occurred within 12.5% (1999-2000) and 42.3% (2000-2001) of the sampled nests; no turtles died in the Indiana nests. Laboratory studies of the mechanisms of cold-hardiness used by hatchling C. picta showed that resistance to inoculative freezing and capacity for freeze tolerance increased as winter approached. However, the level of inoculation resistance strongly depended on the physical characteristics of nest soil, as well as its moisture content, which varied seasonally. Risk of inoculative freezing (and mortality) was greatest in midwinter when nest temperatures were lowest and soil moisture and activity of constituent organic ice nuclei were highest. Water balance in overwintering hatchlings was closely linked to dynamics of precipitation and soil moisture, whereas energy use and the size of the energy reserve available to hatchlings in spring depended on the winter thermal regime. Acute chilling resulted in hyperglycemia and hyperlactemia, which persisted throughout winter; this response may be cryoprotective. Some physiological characteristics and cold-hardiness attributes varied between years, between study sites, among nests at the same site, and among siblings sharing nests. Such variation may reflect adaptive phenotypic plasticity, maternal or paternal influence on an individual's response to environmental challenge, or a combination of these factors. Some evidence suggests that life-history traits, such as clutch size and body size, have been shaped by constraints imposed by the harsh winter environment.
Kosová, Klára; Prášil, Ilja Tom; Vítámvás, Pavel; Dobrev, Petre; Motyka, Václav; Floková, Kristýna; Novák, Ondřej; Turečková, Veronika; Rolčik, Jakub; Pešek, Bedřich; Trávničková, Alena; Gaudinová, Alena; Galiba, Gabor; Janda, Tibor; Vlasáková, Eva; Prášilová, Pavla; Vanková, Radomíra
2012-04-15
Hormonal changes accompanying the cold stress (4°C) response that are related to the level of frost tolerance (FT; measured as LT50) and the content of the most abundant dehydrin, WCS120, were compared in the leaves and crowns of the winter wheat (Triticum aestivum L.) cv. Samanta and the spring wheat cv. Sandra. The characteristic feature of the alarm phase (1 day) response was a rapid elevation of abscisic acid (ABA) and an increase of protective proteins (dehydrin WCS120). This response was faster and stronger in winter wheat, where it coincided with the downregulation of bioactive cytokinins and auxin as well as enhanced deactivation of gibberellins, indicating rapid suppression of growth. Next, the ethylene precursor aminocyclopropane carboxylic acid was quickly upregulated. After 3-7 days of cold exposure, plant adaptation to the low temperature was correlated with a decrease in ABA and elevation of growth-promoting hormones (cytokinins, auxin and gibberellins). The content of other stress hormones, i.e., salicylic acid and jasmonic acid, also began to increase. After prolonged cold exposure (21 days), a resistance phase occurred. The winter cultivar exhibited substantially enhanced FT, which was associated with a decline in bioactive cytokinins and auxin. The inability of the spring cultivar to further increase its FT was correlated with maintenance of a relatively higher cytokinin and auxin content, which was achieved during the acclimation period. Copyright © 2012 Elsevier GmbH. All rights reserved.
Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes.
Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F
2015-07-01
The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h(-1) to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as -6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as -14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Ruthrauff, Daniel R.; Gill, Robert E.; Tibbitts, T. Lee
2013-01-01
Shorebirds are conspicuous and abundant at high northern latitudes during spring and summer, but as seasonal conditions deteriorate, few remain during winter. To the best of our knowledge, Cook Inlet, Alaska (60.6˚ N, 151.6˚ W), is the world’s coldest site that regularly supports wintering populations of shorebirds, and it is also the most northerly nonbreeding location for shorebirds in the Pacific Basin. During the winters of 1997–2012, we conducted aerial surveys of upper Cook Inlet to document the spatial and temporal distribution and number of Rock Sandpipers (Calidris ptilocnemis) using the inlet. The average survey total was 8191 ± 6143 SD birds, and the average of each winter season’s highest single-day count was 13 603 ± 4948 SD birds. We detected only Rock Sandpipers during our surveys, essentially all of which were individuals of the nominate subspecies (C. p. ptilocnemis). Survey totals in some winters closely matched the population estimate for this subspecies, demonstrating the region’s importance as a nonbreeding resource to the subspecies. Birds were most often found at only a handful of sites in upper Cook Inlet, but shifted their distribution to more southerly locations in the inlet during periods of extreme cold. Two environmental factors allow Rock Sandpipers to inhabit Cook Inlet during winter: 1) an abundant bivalve (Macoma balthica) food source and 2) current and tidal dynamics that keep foraging substrates accessible during all but extreme periods of cold and ice accretion. C. p. ptilocnemis is a subspecies of high conservation concern for which annual winter surveys may serve as a relatively inexpensive population-monitoring tool that will also provide insight into adaptations that allow these birds to exploit high-latitude environments in winter.
Halman, Joshua M; Schaberg, Paul G; Hawley, Gary J; Eagar, Christopher
2008-06-01
In fall (November 2005) and winter (February 2006), we collected current-year foliage of native red spruce (Picea rubens Sarg.) growing in a reference watershed and in a watershed treated in 1999 with wollastonite (CaSiO(3), a slow-release calcium source) to simulate preindustrial soil calcium concentrations (Ca-addition watershed) at the Hubbard Brook Experimental Forest (Thornton, NH). We analyzed nutrition, soluble sugar concentrations, ascorbate peroxidase (APX) activity and cold tolerance, to evaluate the basis of recent (2003) differences between watersheds in red spruce foliar winter injury. Foliar Ca and total sugar concentrations were significantly higher in trees in the Ca-addition watershed than in trees in the reference watershed during both fall (P=0.037 and 0.035, respectively) and winter (P=0.055 and 0.036, respectively). The Ca-addition treatment significantly increased foliar fructose and glucose concentrations in November (P=0.013 and 0.007, respectively) and foliar sucrose concentrations in winter (P=0.040). Foliar APX activity was similar in trees in both watersheds during fall (P=0.28), but higher in trees in the Ca-addition watershed during winter (P=0.063). Cold tolerance of foliage was significantly greater in trees in the Ca-addition watershed than in trees in the reference watershed (P<0.001). Our results suggest that low foliar sugar concentrations and APX activity, and reduced cold tolerance in trees in the reference watershed contributed to their high vulnerability to winter injury in 2003. Because the reference watershed reflects forest conditions in the region, the consequences of impaired physiological function caused by soil Ca depletion may have widespread implications for forest health.
Alford, Lucy; Andrade, Thiago Oliveira; Georges, Romain; Burel, Françoise; van Baaren, Joan
2014-01-01
Traits of physiological thermotolerance are commonly measured in the laboratory as predictors of the field success of ectotherms at unfavourable temperatures (e.g. during harsh winters, heatwaves, or under conditions of predicted global warming). Due to being more complicated to measure, behavioural thermoregulation is less commonly studied, although both physiology and behaviour interact to explain the survival of ectotherms. The aphids Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae are commercially important pests of temperate cereal crops. Although coexisting, these species markedly differ in winter success, with R. padi being the most abundant species during cold winters, followed by S. avenae and lastly M. dirhodum. To better understand the thermal physiology and behavioural factors contributing to differential winter success, the lethal temperature (physiological thermotolerance) and the behaviour of aphids in a declining temperature regime (behavioural thermotolerance) of these three species were investigated. Physiological thermotolerance significantly differed between the three species, with R. padi consistently the least cold tolerant and S. avenae the most cold tolerant. However, although the least cold tolerant of the study species, significantly more R. padi remained attached to the host plant at extreme sub-zero temperatures than S. avenae and M. dirhodum. Given the success of anholocyclic R. padi in harsh winters compared to its anholocyclic counterparts, this study illustrates that behavioural differences could be more important than physiological thermotolerance in explaining resistance to extreme temperatures. Furthermore it highlights that there is a danger to studying physiological thermotolerance in isolation when ascertaining risks of ectotherm invasions, the establishment potential of exotic species in glasshouses, or predicting species impacts under climate change scenarios.
Ecological impacts of winter water level drawdowns on lake littoral zones: A review
Roy, Allison
2017-01-01
Freshwater littoral zones harbor diverse ecological communities and serve numerous ecosystem functions that are controlled, in part, by natural water level fluctuations. However, human alteration of lake hydrologic regimes beyond natural fluctuations threaten littoral zone ecological integrity. One type of hydrologic alteration in lakes is winter water level drawdowns, which are frequently employed for hydropower, flood control, and macrophyte control, among other purposes. Here, we synthesize the abiotic and biotic responses to annual and novel winter water level drawdowns in littoral zones of lakes and reservoirs. The dewatering, freezing, and increased erosion of exposed lakebeds drive changes in the littoral zone. Shoreline-specific physicochemical conditions such as littoral slope and shoreline exposure further induce modifications. Loss of fine sediment decreases nutrient availability over time, but desiccation may promote a temporary nutrient pulse upon re-inundation. Annual winter drawdowns can decrease taxonomic richness of macrophytes and benthic invertebrates and shift assemblage composition to favor taxa with r-selected life history strategies and with functional traits resistant to direct and indirect drawdown effects. Fish assemblages, though less directly affected by winter drawdowns (except where there is critically low dissolved oxygen), experience negative effects via indirect pathways like decreased food resources and spawning habitat. We identify eight general research gaps to guide future research that could improve our understanding about the complex effects of winter drawdowns on littoral zone ecology.
Link between the Barents Oscillation and recent boreal winter cooling over the Asian midlatitudes
NASA Astrophysics Data System (ADS)
Shu, Qi; Qiao, Fangli; Song, Zhenya; Song, Yajuan
2018-01-01
The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation (BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scale boreal winter cooling during 1990-2015 over the Asian midlatitudes, and that it is a part of the decadal oscillations of long-term surface air temperature (SAT) anomalies. The SAT anomalies over the Asian midlatitudes are significantly correlated with the BO in boreal winter. When the BO is in its positive phase, anomalously high sea level pressure over the Barents region, with a clockwise wind anomaly, causes cold air from the high latitudes to move over the midlatitudes of Asia, resulting in anomalous cold conditions in that region. Therefore, the recent increasing trend of the BO has contributed to recent winter cooling over the Asian midlatitudes.
Recent advances in sustainable winter road operations – a book proposal.
DOT National Transportation Integrated Search
2017-05-05
Investing in winter transportation operations is essential and beneficial to the public and the economy. The U.S. economy cannot afford the cost of shutting down highways, airports, etc., during winter weather. In the northern U.S. and other cold-cli...
Effects of weather on habitat selection and behavior of mallards wintering in Nebraska
Jorde, Dennis G.; Krapu, G.L.; Crawford, R.D.; Hay, M.A.
1984-01-01
Sex and age ratios, habitat selection, spatial characteristics, and time budgets of Mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska were studied from mid-December to early April 1978-1980. The proportion of females and subadults in the population increased substantially from a cold to a mild winter. Radio-tagged Mallards shifted from riverine to canal roost sites during the coldest periods of the winter, seemingly because of more favorable microclimatic conditions there. Subadults ranged over larger areas during winter than did adults. Activity patterns varied with weather conditions, time of day, and habitat type. During cold periods, energetically costly activities such as aggression and courtship decreased at roost sites and the intensity of foraging activities in fields increased. Mallards were more active at riverine than canal sites during both years. High energy requirements and intense competition for scarce food appear to be primary factors limiting the northernmost distribution of Mallards in winter and causing their skewed sex and age ratios.
Seedling phenology and cold hardiness: Moving targets
Diane L. Haase
2011-01-01
Phenology is the annual cycle of plant development as influenced by seasonal variations. Dormancy and cold hardiness are two aspects of the annual cycle. In temperate plants, the development of cold hardiness results in the ability to withstand subfreezing winter temperatures. Cold hardiness is also a reflection of overall stress resistance. In addition to describing...
Winter cold of eastern continental boundaries induced by warm ocean waters.
Kaspi, Yohai; Schneider, Tapio
2011-03-31
In winter, northeastern North America and northeastern Asia are both colder than other regions at similar latitudes. This has been attributed to the effects of stationary weather systems set by elevated terrain (orography), and to a lack of maritime influences from the prevailing westerly winds. However, the differences in extent and orography between the two continents suggest that further mechanisms are involved. Here we show that this anomalous winter cold can result in part from westward radiation of large-scale atmospheric waves--nearly stationary Rossby waves--generated by heating of the atmosphere over warm ocean waters. We demonstrate this mechanism using simulations with an idealized general circulation model, with which we show that the extent of the cold region is controlled by properties of Rossby waves, such as their group velocity and its dependence on the planetary rotation rate. Our results show that warm ocean waters contribute to the contrast in mid-latitude winter temperatures between eastern and western continental boundaries not only by warming western boundaries, but also by cooling eastern boundaries.
Distribution and diurnal behavior of Steller's Eiders wintering on the Alaska Peninsula
Laubhan, M.K.; Metzner, K.A.
1999-01-01
We studied the distribution and activities of adult Steller's Eiders (Polysticta stelleri) during winter and spring on a deep-water embayment and a shallow lagoon along the Alaska Peninsula from September 1980 to May 1981. During the remigial molt, eiders were observed on Izembek Lagoon but not on Cold Bay. Following the flightless period, Izembek Lagoon continued to support 63-100% of eiders encountered during surveys. As ice cover on Izembek Lagoon increased, the number of birds decreased on Izembek Lagoon but increased on Cold Bay, suggesting that some eiders disperse to nearshore, deep-water habitats in close proximity to Izembek Lagoon during severe weather. Diurnal activity budgets indicated that the amount of time resting or engaged in aggression and alert activities was similar among locations, seasons, tidal stages, and sexes. In contrast, time spent foraging differed among seasons and locations but did not differ among tidal stages or sexes. Although time spent foraging was similar during winter and spring on Izembek Lagoon, eiders on Cold Bay foraged more during winter compared to spring. Synchronous diving was the dominant foraging strategy.
Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean
Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard
2013-01-01
[1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales. PMID:26074634
Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean.
Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard
2013-12-16
[1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales.
Berman, D I; Meshcheryakova, E N; Mikhaljova, E V
2015-01-01
Angarozonium amurense (Gerstfeldt, 1859) is the only one out of more than a hundred diplopod species described in Siberia and the Far East that inhabits regions with solid permafrost. To evaluate the cold hardiness of A. amurense that allows this species to inhabit permafrost regions. The survival temperature thresholds and supercooling points (SCP) were measured. The temperature thresholds for adult animal survival are -8.5 C in summer and -27 C in winter. Average SCP decreases from -7.7 in summer to -16.9 in winter. Water content decreases from 55.7% in summer to 49.4% in winter. The cold hardiness of A. amurense sets the record in this class of animals. It allows it to overwinter in the upper 15 centimeters layer of soil in most biotopes of the coldest permafrost regions in North Asia.
NASA Astrophysics Data System (ADS)
Van Pelt, Ward; Pohjola, Veijo; Reijmer, Carleen
2016-11-01
Glacier surface melt and runoff depend strongly on seasonal and perennial snow (firn) conditions. Not only does the presence of snow and firn directly affect melt rates by reflecting solar radiation, it may also act as a buffer against mass loss by storing melt water in refrozen or liquid form. In Svalbard, ongoing and projected amplified climate change with respect to the global mean change has severe implications for the state of snow and firn and its impact on glacier mass loss. Model experiments with a coupled surface energy balance - firn model were done to investigate the surface mass balance and the changing role of snow and firn conditions for an idealized Svalbard glacier. A climate forcing for the past, present and future (1984-2104) is constructed, based on observational data from Svalbard Airport and a seasonally dependent projection scenario. Results illustrate ongoing and future firn degradation in response to an elevational retreat of the equilibrium line altitude (ELA) of 31 m decade-1. The temperate firn zone is found to retreat and expand, while cold ice in the ablation zone warms considerably. In response to pronounced winter warming and an associated increase in winter rainfall, the current prevalence of refreezing during the melt season gradually shifts to the winter season in a future climate. Sensitivity tests reveal that in a present and future climate the density and thermodynamic structure of Svalbard glaciers are heavily influenced by refreezing. Refreezing acts as a net buffer against mass loss. However, the net mass balance change after refreezing is substantially smaller than the amount of refreezing itself, which can be ascribed to melt-enhancing effects after refreezing, which partly offset the primary mass-retaining effect of refreezing.
Factors affecting outdoor exposure in winter: population-based study
NASA Astrophysics Data System (ADS)
Mäkinen, Tiina M.; Raatikka, Veli-Pekka; Rytkönen, Mika; Jokelainen, Jari; Rintamäki, Hannu; Ruuhela, Reija; Näyhä, Simo; Hassi, Juhani
2006-09-01
The extent of outdoor exposure during winter and factors affecting it were examined in a cross-sectional population study in Finland. Men and women aged 25-74 years from the National FINRISK 2002 sub-study ( n=6,591) were queried about their average weekly occupational, leisure-time and total cold exposure during the past winter. The effects of gender, age, area of residence, occupation, ambient temperature, self-rated health, physical activity and education on cold exposure were analysed. The self-reported median total cold exposure time was 7 h/week (8 h men, 6 h women),<1 h/week (2 h men, 0 h women) at work, 4 h/week (5 h men, 4 h women) during leisure time and 1 h/week (1 h men, 1.5 h women) while commuting to work. Factors associated with increased occupational cold exposure among men were: being employed in agriculture, forestry and industry/mining/construction or related occupations, being less educated and being aged 55-64 years. Factors associated with increased leisure-time cold exposure among men were: employment in industry/mining/construction or related occupations, being a pensioner or unemployed, reporting at least average health, being physically active and having college or vocational education. Among women, being a housewife, pensioner or unemployed and engaged in physical activity increased leisure-time cold exposure, and young women were more exposed than older ones. Self-rated health was positively associated with leisure time cold exposure in men and only to a minor extent in women. In conclusion, the subjects reported spending 4% of their total time under cold exposure, most of it (71%) during leisure time. Both occupational and leisure-time cold exposure is greater among men than women.
Crosthwaite, Jill C; Sobek, Stephanie; Lyons, D Barry; Bernards, Mark A; Sinclair, Brent J
2011-01-01
Ability to survive cold is an important factor in determining northern range limits of insects. The emerald ash borer (Agrilus planipennis) is an invasive beetle introduced from Asia that is causing extensive damage to ash trees in North America, but little is known about its cold tolerance. Herein, the cold tolerance strategy and mechanisms involved in the cold tolerance of the emerald ash borer were investigated, and seasonal changes in these mechanisms monitored. The majority of emerald ash borers survive winter as freeze-intolerant prepupae. In winter, A. planipennis prepupae have low supercooling points (approximately -30°C), which they achieve by accumulating high concentrations of glycerol (approximately 4M) in their body fluids and by the synthesis of antifreeze agents. Cuticular waxes reduce inoculation from external ice. This is the first comprehensive study of seasonal changes in cold tolerance in a buprestid beetle. 2010 Elsevier Ltd. All rights reserved.
Hall, David G.; Wenninger, Erik J.; Hentz, Matthew G.
2011-01-01
This study was conducted to obtain information on the cold hardiness of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in Florida and to assess upper and lower temperature thresholds for oviposition. The psyllid is an important pest in citrus because it transmits the bacterial pathogens responsible for citrus greening disease, Huanglongbing, considered the most serious citrus disease worldwide. D. citri was first found in Florida during 1998, and the disease was discovered during 2005. Little was known regarding cold hardiness of D. citri, but Florida citrus is occasionally subjected to notable freeze events. Temperature and duration were each significant sources of variation in percent mortality of D. citri subjected to freeze events. Relatively large percentages of adults and nymphs survived after being exposed for several hours to temperatures as low as -5 to -6° C. Relatively large percentages of eggs hatched after being exposed for several hours to temperatures as low as -8° C. Research results indicated that adult D. citri become cold acclimated during the winter through exposure to cooler winter temperatures. There was no evidence that eggs became cold acclimated during winter. Cold acclimation in nymphs was not investigated. Research with adult D. citri from laboratory and greenhouse colonies revealed that mild to moderate freeze events were usually nonlethal to the D. citri irrespective of whether they were cold acclimated or not. Upper and lower temperature thresholds for oviposition were investigated because such information may be valuable in explaining the geographic distribution and potential spread of the pest from Florida as well as how cooler winter temperatures might limit population growth. The estimated lower and upper thresholds for oviposition were 16.0 and 41.6° C, respectively; the estimated temperature of peak oviposition over a 48 h period was 29.6° C. PMID:21870969
Hall, David G; Wenninger, Erik J; Hentz, Matthew G
2011-01-01
This study was conducted to obtain information on the cold hardiness of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in Florida and to assess upper and lower temperature thresholds for oviposition. The psyllid is an important pest in citrus because it transmits the bacterial pathogens responsible for citrus greening disease, Huanglongbing, considered the most serious citrus disease worldwide. D. citri was first found in Florida during 1998, and the disease was discovered during 2005. Little was known regarding cold hardiness of D. citri, but Florida citrus is occasionally subjected to notable freeze events. Temperature and duration were each significant sources of variation in percent mortality of D. citri subjected to freeze events. Relatively large percentages of adults and nymphs survived after being exposed for several hours to temperatures as low as -5 to -6 °C. Relatively large percentages of eggs hatched after being exposed for several hours to temperatures as low as -8 °C. Research results indicated that adult D. citri become cold acclimated during the winter through exposure to cooler winter temperatures. There was no evidence that eggs became cold acclimated during winter. Cold acclimation in nymphs was not investigated. Research with adult D. citri from laboratory and greenhouse colonies revealed that mild to moderate freeze events were usually nonlethal to the D. citri irrespective of whether they were cold acclimated or not. Upper and lower temperature thresholds for oviposition were investigated because such information may be valuable in explaining the geographic distribution and potential spread of the pest from Florida as well as how cooler winter temperatures might limit population growth. The estimated lower and upper thresholds for oviposition were 16.0 and 41.6 °C, respectively; the estimated temperature of peak oviposition over a 48 h period was 29.6 °C.
D'Angeli, Simone; Matteucci, Maya; Fattorini, Laura; Gismondi, Angelo; Ludovici, Matteo; Canini, Antonella; Altamura, Maria Maddalena
2016-05-01
Cold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation. Positive relationships between OeFAD8, OeOSM , and OeLIP19 and olive-tree cold-acclimation exist, and couple with increased lipid unsaturation and cutinisation. Olive-tree is a woody species with no winter-dormancy and low frost-tolerance. However, cold-tolerant genotypes were empirically selected, highlighting that cold-acclimation might be acquired. Proteins needed for olive-tree cold-acclimation are unknown, even if roles for osmotin (OeOSM) as leaf cryoprotectant, and seed lipid-transfer protein for endosperm cutinisation under cold, were demonstrated. In other species, FAD8, coding a desaturase producing α-linolenic acid, is activated by temperature-lowering, concomitantly with bZIP-LIP19 genes. The research was focussed on finding OeLIP19 gene(s) in olive-tree genome, and analyze it/their expression, and that of OeFAD8 and OeOSM, in drupes and leaves under different cold-conditions/developmental stages/genotypes, in comparison with changes in unsaturated lipids and cell wall cutinisation. Cold-induced cytosolic calcium transients always occurred in leaves/drupes of some genotypes, e.g., Moraiolo, but ceased in others, e.g., Canino, at specific drupe stages/cold-treatments, suggesting cold-acclimation acquisition only in the latter genotypes. Canino and Moraiolo were selected for further analyses. Cold-acclimation in Canino was confirmed by an electrolyte leakage from leaf/drupe membranes highly reduced in comparison with Moraiolo. Strong increases in fruit-epicarp/leaf-epidermis cutinisation characterized cold-acclimated Canino, and positively coupled with OeOSM expression, and immunolocalization of the coded protein. OeFAD8 expression increased with cold-acclimation, as the production of α-linolenic acid, and related compounds. An OeLIP19 gene was isolated. Its levels changed with a trend similar to OeFAD8. All together, results sustain a positive relationship between OeFAD8, OeOSM and OeLIP19 expression in olive-tree cold-acclimation. The parallel changes in unsaturated lipids and cutinisation concur to suggest orchestrated roles of the coded proteins in the process.
NASA Astrophysics Data System (ADS)
Vitasse, Yann; Klein, Geoffrey; Kirchner, James W.; Rebetez, Martine
2017-11-01
Some of the world's valleys are famous for having particularly cold microclimates. The La Brevine valley, in the Swiss Jura Mountains, holds the record for the lowest temperature ever measured in an inhabited location in Switzerland. We studied cold air pools (CAPs) in this valley during the winter of 2014-2015 using 44 temperature data loggers distributed between 1033 and 1293 m asl. Our goals were to (i) describe the climatic conditions under which CAPs form in the valley, (ii) examine the spatial configuration and the temperature structure of the CAPs and (iii) quantify how often temperature inversions occur in winter using long-term series of temperature from the valley floor. Our results show that CAPs occurred every second night, on average, during the winter of 2014-2015 and were typically formed under cloudless, windless and high-pressure conditions. Strong temperature inversions up to 28 °C were detected between the valley floor and the surrounding hills. The spatial temperature structure of the CAPs varies among the different inversion days, with the upper boundary of the cold pool generally situated at about 1150 m asl. Although mean temperatures have increased in this area over the period 1960-2015 in connection with climate change, the occurrences of extreme cold temperatures did not decrease in winter and are highly correlated with the North Atlantic Oscillation and the East Atlantic indices. This suggests that CAPs in sheltered valleys are largely decoupled from the free atmosphere temperature and will likely continue to occur in the next decades under warmer conditions.
Rouquette, A; Mandereau-Bruno, L; Baffert, E; Laaidi, K; Josseran, L; Isnard, H
2011-12-01
A program for helping homeless individuals in winter is implemented from November 1(st) to March 31(st) each year in France. Its aim is to prevent morbidity and mortality in this population during cold spells and periods of severe cold. A health surveillance system of the homeless population in the Paris area has been proposed to evaluate the effectiveness of the program and to alert decision-makers if an unusual increase in cold-weather effects is observed. The goal of this study was the creation of an indicator for the proposed surveillance system based on emergency department activity in the Paris area (Oscour(®) Network - Organisation de la surveillance coordonnée des urgences). The winter 2007-2008 computer medical files of 11 emergency departments in the Paris area were examined to confirm diagnosis and ascertain patient-homelessness for each patient visit which was selected from the Oscour(®) database by the patient chief-complaint or diagnosis code referring to hypothermia or frostbites. The proposed indicator is based on the maximization of three criteria: the positive predictive value, the proportion of people identified as being homeless and the number of emergency department visits. A Shewhart control chart was applied to the indicator for the four winters between 2005 and 2009 in the Paris area. Values beyond the statistical threshold would indicate a need for an adjustment to the program strategy. Two hundred and sixteen medical files were analyzed. An indicator was created, "number of emergency department visits of 15 to 69-years-old persons with chief-complaint or diagnosis code referring to hypothermia". It had a positive predictive value estimated near 85 % and identified 61.7 % people as being homeless. In the winter of 2008-2009, the statistical threshold was reached in December during the first cold spell, and again at the beginning of January during a period of severe cold. Our results support the use of this health indicator, alongside social indicators, for optimizing the strategy for helping the homeless population during winter. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster
Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard
2015-01-01
Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions. PMID:26075607
Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard
2015-01-01
Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.
Stith, B.M.; Slone, D.H.; de Wit, M.; Edwards, H.H.; Langtimm, C.A.; Swain, E.D.; Soderqvist, L.E.; Reid, J.P.
2012-01-01
Haloclines induced by freshwater inflow over tidal water have been identified as an important mechanism for maintaining warm water in passive thermal refugia (PTR) used by Florida manatees Trichechus manatus latirostris during winter in extreme southwestern Florida. Record-setting cold during winter 2009–2010 resulted in an unprecedented number of manatee deaths, adding to concerns that PTR may provide inadequate thermal protection during severe cold periods. Hydrological data from 2009–2010 indicate that 2 canal systems in the Ten Thousand Islands (TTI) region acted as PTR and maintained warm bottom-water temperatures, even during severe and prolonged cold periods. Aerial survey counts of live and dead manatees in TTI during the winter of 2009–2010 suggest that these PTR were effective at preventing mass mortality from hypothermia, in contrast to the nearby Everglades region, which lacks similar artificial PTR and showed high manatee carcass counts. Hydrological data from winter 2008–2009 confirmed earlier findings that without haloclines these artificial PTR may become ineffective as warm-water sites. Tidal pumping of groundwater appears to provide additional heat to bottom water during low tide cycles, but the associated thermal inversion is not observed unless salinity stratification is present. The finding that halocline-driven PTR can maintain warm water even under extreme winter conditions suggests that they may have significant potential as warm-water sites. However, availability and conflicting uses of freshwater and other management issues may make halocline-driven PTR unreliable or difficult to manage during winter.
Essential Outdoor Sun Safety Tips for Winter
... the risk for damage. Both snow and strong wind can wear away sunscreen and reduce its effectiveness, ... protect your skin from the bitter cold, heavy winds and winter sun, follow these important sun protection ...
Arctic Ozone Depletion from UARS MLS Measurements
NASA Technical Reports Server (NTRS)
Manney, G. L.
1995-01-01
Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.
Körtner, Gerhard; Rojas, A Daniella; Geiser, Fritz
2010-08-01
Many small desert dasyurids employ torpor almost daily during winter, because cold nights and low food availability impose high energetic costs. However, in Western Australia the arid zone extends into tropical, coastal regions, where winter temperature conditions are far less severe. We studied the thermal biology and activity patterns of free-ranging kaluta (approximately 27 g), a dasyurid restricted to these tropical spinifex deserts, during the Austral winter (June-July) and in addition quantified activity patterns in captivity. Unlike most dasyurids, wild and captive kalutas were almost exclusively diurnal and retreated into underground burrows during the night. Despite being active during the warmer part of the day, kalutas entered torpor daily. However, torpor patterns differed remarkably between males and females. While females spent most of the night torpid at body temperatures (T (b)) as low as 21 degrees C, close to soil temperature, males entered multiple short and shallow bouts (T (b) > 25 degrees C) during the night. Males also maintained higher T (b)s during the early morning when active, occupied larger home ranges and covered greater distances while foraging than females. Hence, males appear to expend more energy than the similar-sized females both while foraging and during the rest phase. We propose that physiological as well as behavioural preparations for the September mating season that culminate in a complete male die-off might already impose energetic costs on males during winter.
NASA Astrophysics Data System (ADS)
Shukurov, K. A.; Semenov, V. A.
2018-01-01
On the basis of observational data on daily mean surface air temperature (SAT) and sea ice concentration (SIC) in the Barents Sea (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of air-particle motions has revealed the most probable paths of both cold and warm air invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm air invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.
Winter Storms and Extreme Cold
... your home to keep out the cold with insulation, caulking, and weather stripping. Learn how to keep ... and grills outdoors and away from windows. Never heat your home with a gas stovetop or oven. ...
A computer model for predicting grapevine cold hardiness
USDA-ARS?s Scientific Manuscript database
We developed a robust computer model of grapevine bud cold hardiness that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model uses time steps of 1 day along with the measured daily mean air temperature to ca...
A weather regime characterisation of Irish wind generation and electricity demand in winters 2009–11
NASA Astrophysics Data System (ADS)
Cradden, Lucy C.; McDermott, Frank
2018-05-01
Prolonged cold spells were experienced in Ireland in the winters of 2009–10 and 2010–11, and electricity demand was relatively high at these times, whilst wind generation capacity factors were low. Such situations can cause difficulties for an electricity system with a high dependence on wind energy. Studying the atmospheric conditions associated with these two winters offers insights into the large-scale drivers for cold, calm spells, and helps to evaluate if they are rare events over the long-term. The influence of particular atmospheric patterns on coincidental winter wind generation and weather-related electricity demand is investigated here, with a focus on blocking in the North Atlantic/European sector. The occurrences of such patterns in the 2009–10 and 2010–11 winters are examined, and 2010–11 in particular was found to be unusual in a long-term context. The results are discussed in terms of the relevance to long-term planning and investment in the electricity system.
Cryoprotection in dampwood termites (Termopsidae, Isoptera).
Lacey, Michael J; Lenz, Michael; Evans, Theodore A
2010-01-01
In contrast to the majority of the Order, the dampwood termites of the family Termopsidae found in colder regions can experience frost and snow, either in cool temperate areas at high latitudes (45 degrees ), or alpine areas at high elevations (>1000m). This suggests that dampwood termites are adapted to cold climates. We investigated this hypothesis in two dampwood termites, Porotermes adamsoni Froggatt and Stolotermes victoriensis Hill. We measured nest temperatures and atmospheric temperatures of their alpine habitat during winter, and measured survival and recovery at subzero temperatures. We also determined the minimum temperature at which these species remain active and the LT50 values. We used a novel gas chromatographic strategy to examine eight metabolites from individuals of both species collected in winter and summer to identify possible cryoprotectants. Both P. adamsoni and S. victoriensis had significantly higher levels of trehalose, a known cryoprotectant, in winter than in summer; in addition S. victoriensis also had higher levels of unsaturated fatty acid ligands in winter than in summer, consistent with patterns observed for cold adaptation in other organisms. These results are the first to reveal that dampwood termites are adapted to cold climates and use trehalose and unsaturated lipids as cryoprotectants.
Early Cretaceous ice rafting and climate zonation in Australia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frakes, L.A.; Alley, N.F.; Deynoux, M.
1995-07-01
Lower Cretaceous (Valanginian to Albian) strata of the southwestern Eromanga and Carpentaria basins of central and northern Australia, respectively, provide evidence of strongly seasonal climates at high paleolatitudes. These include dispersed clasts (lonestones) in fine sediments and pseudomorphs of calcite after ikaite (glendonites), the latter being known to form only at temperatures below about 7{degrees}C. Rafting is regarded as the transport mechanism for clasts up to boulder size (lonestones) enclosed within dark mudrocks; this interpretation rests on rare occurrences of penetration by clasts into substrate layers. Driftwood and large floating algae are eliminated as possible rafts because fossil wood ismore » found mainly concentrated in nearshore areas of the basins and large algal masses have not been observed. Rafting by icebergs is considered unlikely in view of the global lack of tillites and related glacial deposits of this age. Our interpretation is that seasonal ice, formed in winter along stream courses and strandlines, incorporated clasts which, during the melt season, were dropped into muddy sediments in both basins. Eromanga fine-sediment and concentrations of large clasts and associated sand lenses, both lying above local erosion surfaces. In the Carpentaria Basin, local dumping of sediment from raft surfaces resulted in accumulation of pods of small clasts. Three zones can be identified for the Early Cretaceous climate of eastern Australia: (1) a very cold southern region, at latitudes above about 72{degrees} S, characterized by meteoric waters possibly originating as Antarctic glacial meltwaters; (2) a zone of strongly seasonal climates, with freezing winters and warm summers, between about 72{degrees} and 53{degrees} S.Lat.; and (3) a mid-latitude zone (below about 50{degrees} S. Lat.), where freezing temperatures were not common. 60 refs., 7 figs.« less
Halting Hypothermia: Cold Can Be Dangerous
... who spends much time outdoors in very cold weather can get hypothermia. But hypothermia can happen anywhere— ... just outside and not just in bitter winter weather. It can strike when temperatures are cool—for ...
Winter sports athletes: long-term effects of cold air exposure.
Sue-Chu, Malcolm
2012-05-01
Athletes such as skaters and skiers inhale large volumes of cold air during exercise and shift from nasal to mouth breathing. Endurance athletes, like cross-country skiers, perform at 80% or more of their maximal oxygen consumption and have minute ventilations in excess of 100 l/min. Cold air is always dry, and endurance exercise results in loss of water and heat from the lower respiratory tract. In addition, athletes can be exposed to indoor and outdoor pollutants during the competitive season and during all-year training. Hyperpnoea with cold dry air represents a significant environmental stress to the airways. Winter athletes have a high prevalence of respiratory symptoms and airway hyper-responsiveness to methacholine and hyperpnoea. The acute effects of exercise in cold air are neutrophil influx as demonstrated in lavage fluid and airway epithelial damage as demonstrated by bronchoscopy. Upregulation of pro-inflammatory cytokines has been observed in horses. Chronic endurance training damages the epithelium of the small airways in mice. Airway inflammation has been observed on bronchoscopy of cross-country skiers and in dogs after a 1100-mile endurance race in Alaska. Neutrophilic and lymphocytic inflammation with remodelling is present in bronchial biopsies from skiers. Repeated peripheral airway hyperpnoea with dry air causes inflammation and remodelling in dogs. As it is currently unknown if these airway changes are reversible upon cessation of exposure, preventive measures to diminish exposure of the lower airways to cold air should be instituted by all winter sports athletes.
NASA Astrophysics Data System (ADS)
Andretta, Thomas A.
The Snake River Plain Convergence Zone (SPCZ) is a convergent shear zone generated by synoptic-scale post cold-frontal winds in the planetary boundary layer (PBL) interacting with the complex topography of eastern Idaho. The SPCZ produces clouds and occasional precipitation over time scales of 6--12 hours in a significant area of mesoscale dimensions (10--50 x 10 3 km2). This meso-beta-scale feature also contributes to the precipitation climatology in a semi-arid plain. The SPCZ is climatologically linked to the passage of synoptic-scale cold fronts and typically occurs in the fall and winter months with the highest frequencies in October, November, and January. The Snake River Plain of eastern Idaho is covered by a dense surface mesonetwork of towers with sensible weather measurements, single Doppler weather radar, regional soundings, and operational model sources. The ability of numerical weather prediction models to simulate the SPCZ depends on several factors: the accuracy of the large scale flow upstream of the zone, terrain resolution, grid scale, boundary layer parameterizations of stability, cumulus parameterizations, and microphysics schemes. This dissertation explores several of these issues with the aforementioned observations and with the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model simulations of selected SPCZ events. This dissertation first explains the conceptual models of the flow patterns related to the genesis of the SPCZ in light of other well-documented topographically-generated zones. The study then explores the links between the theoretical models and observations of the SPCZ in several episodes. With this foundation, the dissertation then tests several hypotheses relating to the horizontal and vertical zone structure, topographic sensitivity on the zone structure, and boundary layer evolution of the zone through the use of high resolution nested grid numerical simulations. The SPCZ consists of windward and leeward flow regimes in Idaho which form under low Froude number (stable blocked flow) in a post cold-frontal environment. The SPCZ is a weak baroclinic feature. The formation of the zone is independent of the vertical wind shear in the middle to upper troposphere. With a grid scale of 4 km, the WRF-ARW model adequately reproduces the post cold-frontal environment, windward and leeward convergence zones, relative vertical vorticity belts, and precipitation bands in several SPCZ cases. The vertical structure of the SPCZ reveals upright reflectivity towers with circulations that tilt slightly with height into the colder air aloft. Topographic sensitivity analyses of the SPCZ indicate that the terrain-driven circulations and resulting snow bands are more defined at the finer terrain scales. The ambient horizontal wind shear in the tributary valleys of the Central Mountains creates potential vorticity (PV) banners. The PV banner maintenance and strength are directly tied to the terrain resolution. An environment of convective instability sometimes occurs as a layer of air is lifted along the gentle elevation rise of the eastern Magic Valley and lower plain. An environment of inertial instability forms within the anticyclonic (negative) vorticity belts in the upper plain. Potential symmetric instability (PSI) may be released in a moist environment near the vorticity banners. The planetary boundary layer perturbed by the SPCZ inside the Snake River Plain is characterized by a deeper mixed layer with stronger vertical motions relative to a PBL in a sheltered valley outside the plain. Finally, a 10-year antecedent synoptic climatology of 78 SPCZ events reveals two pattern types: Type N (wet and warm) and Type S (dry and cold). The 40° N parallel divides these two synoptic patterns.
How predictable is the winter extremely cold days over temperate East Asia?
NASA Astrophysics Data System (ADS)
Luo, Xiao; Wang, Bin
2017-04-01
Skillful seasonal prediction of the number of extremely cold day (NECD) has considerable benefits for climate risk management and economic planning. Yet, predictability of NECD associated with East Asia winter monsoon remains largely unexplored. The present work estimates the NECD predictability in temperate East Asia (TEA, 30°-50°N, 110°-140°E) where the current dynamical models exhibit limited prediction skill. We show that about 50 % of the total variance of the NECD in TEA region is likely predictable, which is estimated by using a physics-based empirical (P-E) model with three consequential autumn predictors, i.e., developing El Niño/La Niña, Eurasian Arctic Ocean temperature anomalies, and geopotential height anomalies over northern and eastern Asia. We find that the barotropic geopotential height anomaly over Asia can persist from autumn to winter, thereby serving as a predictor for winter NECD. Further analysis reveals that the sources of the NECD predictability and the physical basis for prediction of NECD are essentially the same as those for prediction of winter mean temperature over the same region. This finding implies that forecasting seasonal mean temperature can provide useful information for prediction of extreme cold events. Interpretation of the lead-lag linkages between the three predictors and the predictand is provided for stimulating further studies.
World's highest tides: Hypertidal coastal systems in North America, South America and Europe
NASA Astrophysics Data System (ADS)
Archer, Allen W.
2013-02-01
Hypertidal systems can be defined as areas where spring tides have ranges greater than 6 m. These very high tidal ranges results in unique patterns of sedimentation within hypertidal estuaries. Such systems are not common but they do occur on a number of continents. This report will discuss six areas that have the highest tides in the world. North America hypertidal systems occur within Cook Inlet in Alaska, USA, Leaf Basin in Ungava Bay, Quebec Province, Canada, and the Bay of Fundy, Nova Scotia and New Brunswick, Canada. In South America, the Straits of Magellan and associated Atlantic coastal settings exhibit hypertidal conditions. European hypertidal systems include Bristol Channel and Severn estuary in southwest England and the Gulf of St. Malo in Normandy, France. These six areas have the highest tides in the world and spring tidal ranges that regularly exceed 10 m. All the six areas can be divided into intertidal sedimentological zones. Zone 1 is the outermost zone and contains longitudinal bars. Zone 2 exhibits laterally extensive sand flats. Zone 3 includes the innermost extent of tides and estuarine point bars. Annual and neap-spring cycles have been documented in Zone 3 and are probably the most indicative features of hypertidal systems. The North American systems occur in high-latitude cold climates where winter ice can have a minor or major impact on the development of sedimentary facies. Conversely, the European and Patagonia systems have climates minimal ice formation.
Ergon, Åshild; Melby, Tone I.; Höglind, Mats; Rognli, Odd A.
2016-01-01
Plants adapted to cold winters go through annual cycles of gain followed by loss of freezing tolerance (cold acclimation and deacclimation). Warm spells during winter and early spring can cause deacclimation, and if temperatures drop, freezing damage may occur. Many plants are vernalized during winter, a process making them competent to flower in the following summer. In winter cereals, a coincidence in the timing of vernalization saturation, deacclimation, downregulation of cold-induced genes, and reduced ability to reacclimate, occurs under long photoperiods and is under control of the main regulator of vernalization requirement in cereals, VRN1, and/or closely linked gene(s). Thus, the probability of freezing damage after a warm spell may depend on both vernalization saturation and photoperiod. We investigated the role of vernalization and the VRN1-region on freezing tolerance of meadow fescue (Festuca pratensis Huds.), a perennial grass species. Two F2 populations, divergently selected for high and low vernalization requirement, were studied. Each genotype was characterized for the copy number of one of the four parental haplotypes of the VRN1-region. Clonal plants were cold acclimated for 2 weeks or vernalized/cold acclimated for a total of 9 weeks, after which the F2 populations reached different levels of vernalization saturation. Vernalized and cold acclimated plants were deacclimated for 1 week and then reacclimated for 2 weeks. All treatments were given at 8 h photoperiod. Flowering response, freezing tolerance and expression of the cold-induced genes VRN1, MADS3, CBF6, COR14B, CR7 (BLT14), LOS2, and IRI1 was measured. We found that some genotypes can lose some freezing tolerance after vernalization and a deacclimation–reacclimation cycle. The relationship between vernalization and freezing tolerance was complex. We found effects of the VRN1-region on freezing tolerance in plants cold acclimated for 2 weeks, timing of heading after 9 weeks of vernalization, expression of COR14B, CBF6, and LOS2 in vernalized and/or deacclimated treatments, and restoration of freezing tolerance during reacclimation. While expression of VRN1, COR14B, CBF6, LOS2, and IRI1 was correlated, CR7 was associated with vernalization requirement by other mechanisms, and appeared to play a role in freezing tolerance in reacclimated plants. PMID:26941767
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, S.; Mysak, L.A.
The spatial distributions of northern North Atlantic sea surface temperature and the high-latitude Northern Hemisphere sea level pressure anomalies averaged over six consecutive warm SST winters (1951-1956) and six consecutive cold SST winters (1971-1976) are examined. Three SLP anomaly difference (i.e., warm - cold winters) centers, significant at the 5% level, are observed over the northern North Atlantic, Europe, and western Siberia. This anomaly pattern is consistent in principle with what was identified in a related analyses by Palmer and Sun, who used composite data from selected winter months. The SLP difference centers over the northern North Atlantic and westernmore » Siberia are in phase. The impact of the latter center upon the runoff from the underlying Ob and Yenisey rivers and especially the teleconnection between SST anomalies in the northern North Atlantic and runoff of those two rivers via the atmosphere are investigated. The temporal cross-correlation analyses of 50 years (1930-1979) of records of SST, precipitation, and runoff anomalies indicate that the winter SST anomalies in the northern North Atlantic are significantly correlated with the winter and following summer runoff fluctuations of the Ob and Yenisey rivers. Positive (negative) northern North Atlantic SST anomalies are related to less (more) precipitation, and hence, less (more) runoff, over western Siberia. Discussions of possible physical mechanisms and processes that lead to the above relationships are attempted. The analyses of spatial distributions of precipitation in the warm and cold SST winters suggest that precipitation fluctuations over Europe and western Siberia may be affected by shifts of cyclone tracks associated with the SST variations in the northern North Atlantic. 27 refs., 9 figs.« less
NASA Astrophysics Data System (ADS)
Mert Gokturk, Ozan; Fleitmann, Dominik; Badertscher, Seraina; Cheng, Hai; Edwards, R. Lawrence; Tuysuz, Okan
2015-04-01
Based on the δ13C profile of a stalagmite from the Kocain Cave in southern Turkey, we present a new proxy record of winter temperatures for the Eastern Mediterranean covering the last ~5500 years. In this region precisely-dated and highly-resolved paleoclimate records for the cold season are almost non-existent. The comparison of the most recent part of the Kocain record with meteorological observations reveals that stalagmite δ13C values correlate on decadal scale with the amount of snowfall above the cave, which correlates well with average winter temperatures. More negative δ13C values indicate higher drip rates in the cave due to more efficient infiltration during snowmelt above Kocain Cave, during colder winters. Cold periods in the rest of the record coincide with widespread glacier advances, especially with the ones in the Alps during the Bronze Age - Iron Age transition (from ~1000 BC on) and the late Little Ice Age (~1600 to 1850 AD). This further supports the interpretation of δ13C as a temperature proxy. Although winters during the Medieval Climate Anomaly were not continuously warm in the Eastern Mediterranean, winter warmth in the modern era was matched or exceeded several times in the last ~5700 years, especially during the time of Minoan civilization in Crete (~2700 to 1200 BC). Moreover, we provide evidence for the important role of winter cold and drought in the events leading to the unrest in the 16th century Anatolia during the Ottoman rule. Kocain Cave record brings insights into several climatically-induced historical changes in the Eastern Mediterranean, and has the potential to be a key record in a region with a long and vibrant history.
Temperature extremes in Alaska: temporal variability and circulation background
NASA Astrophysics Data System (ADS)
Sulikowska, Agnieszka; Walawender, Jakub P.; Walawender, Ewelina
2018-06-01
The aims of this study are to characterize the spatial and temporal variability of extremely warm days (WDs) and warm spells (WSs) in summer as well as extremely cold days (CDs) and cold spells (CSs) in winter in Alaska in the years 1951-2015 and to determine the role of atmospheric circulation in their occurrence. The analysis is performed using daily temperature maxima (T MAX) and minima (T MIN) measured at 10 weather stations in Alaska as well as mean daily values of sea level pressure and wind direction at the 850 hPa isobaric level. WD (CD) is defined as a day with T MAX above the 95th (T MIN below the 5th) percentile of a probability density function calculated from observations, and WS (CS) equals at least three consecutive WDs (CDs). Frequency of the occurrence and severity of warm and cold extremes as well as duration of WSs and CSs is analyzed. In order to characterize synoptic conditions during temperature extremes, the objective classification scheme of advection types considering jointly the direction of the air influx and type of pressure system is employed. The results show that the general trend is towards the warmer temperatures, and the warming is greater in the winter than summer and for T MAX as opposed to T MIN. This is reflected in changes in the frequency of occurrence and intensity of temperature extremes which are much more pronounced in the case of winter cold extremes (decreasing tendencies) than summer warm extremes (increasing tendencies). The occurrence of temperature extremes is generally favored by anticyclonic weather with advection direction indicating air mass flows from the interior of the North American continent as well as the south (warm extremes in summer) and north (cold extremes in winter).
Research on best practices for winter weather operations.
DOT National Transportation Integrated Search
2012-10-01
There is a growing need to identify actionable practices relative to winter weather operations. Because of the : potential and inherent hazards during cold weather, it has become increasingly important to ensure that these : practices can be effectiv...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...
Raising of Operating a Motor Vehicle Effects on Environment in Winter
NASA Astrophysics Data System (ADS)
Ertman, S. A.; Ertman, J. A.; Zakharov, D. A.
2016-08-01
Severe low-temperature conditions, in which considerable part of Russian Motor Park is operated, affect vehicles negatively. Cold weather causes higher fuel consumption and C02 emissions always. It is because of temperature profile changing of automobile motors, other systems and materials. For enhancement of car operation efficiency in severe winter environment the dependency of engine warm-up and cooling time on ambient air temperature and wind speed described by multifactorial mathematical models is established. -On the basis of experimental research it was proved that the coolant temperature constitutes the engine representative temperature and may be used as representative temperature of engine at large. The model of generation of integrated index for vehicle adaptability to winter operating conditions by temperature profile of engines was developed. the method for evaluation of vehicle adaptability to winter operating conditions by temperature profile of engines allows to decrease higher fuel consumption in cold climate.
Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M.; Kościelniak, Janusz
2015-01-01
OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold. PMID:26230839
Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M; Kościelniak, Janusz
2015-01-01
OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold.
USDA-ARS?s Scientific Manuscript database
The ability to survive episodes of subfreezing temperature is essential to winter wheat. Fully cold-acclimated plants of six lines of winter wheat were exposed to -12, -14, -16 or -18° C, four 1-5 hours. Electrolyte leakage and plant survival were used to assess damage to the plants. Plants exposed ...
Andrews, Robin M; Díaz-Paniagua, Carmen; Marco, Adolfo; Portheault, Alexandre
2008-01-01
Embryonic development of the common chameleon, Chamaeleo chamaeleon, was monitored from oviposition to hatching at a field site in southwestern Spain and in the laboratory under five experimental temperature regimes. Embryos were diapausing gastrulae at the time of oviposition; developmental arrest in the field continued as cold torpor during winter. Postarrest development in the field commenced in April, and hatching occurred in August, for a total incubation period of 10.5 mo. In the laboratory, one group of eggs was incubated at a constant warm (26 degrees C) temperature. The remaining treatments simulated field conditions and consisted of initial periods of warm temperature of 0, 27, 46, and 71 d, a subsequent 4-mo period of cold winter (16 degrees C) temperature, and a final period of warm (26 degrees C) temperature. Embryos in the constant warm temperature treatment were in diapause an average of 3 mo, with clutch means ranging from 2 to 4 mo. Hatching among clutches occurred over 2 mo. In contrast, for field and experimental eggs that experienced cold winter conditions, hatching within treatments occurred over 2-14 d; "winter" conditions synchronized development. The length of time between the end of cold conditions and hatching did not differ among treatments; development thus resumed as soon as temperature was suitable regardless of the initial period of warm temperature. Diapause in nature thus insures that embryos remain gastrulae after oviposition despite nest temperatures that may be warm enough to support development.
NASA Astrophysics Data System (ADS)
Barcikowska, Monika J.; Kapnick, Sarah B.; Feser, Frauke
2018-03-01
The Mediterranean region, located in the transition zone between the dry subtropical and wet European mid-latitude climate, is very sensitive to changes in the global mean climate state. Projecting future changes of the Mediterranean hydroclimate under global warming therefore requires dynamic climate models to reproduce the main mechanisms controlling regional hydroclimate with sufficiently high resolution to realistically simulate climate extremes. To assess future winter precipitation changes in the Mediterranean region we use the Geophysical Fluid Dynamics Laboratory high-resolution general circulation model for control simulations with pre-industrial greenhouse gas and aerosol concentrations which are compared to future scenario simulations. Here we show that the coupled model is able to reliably simulate the large-scale winter circulation, including the North Atlantic Oscillation and Eastern Atlantic patterns of variability, and its associated impacts on the mean Mediterranean hydroclimate. The model also realistically reproduces the regional features of daily heavy rainfall, which are absent in lower-resolution simulations. A five-member future projection ensemble, which assumes comparatively high greenhouse gas emissions (RCP8.5) until 2100, indicates a strong winter decline in Mediterranean precipitation for the coming decades. Consistent with dynamical and thermodynamical consequences of a warming atmosphere, derived changes feature a distinct bipolar behavior, i.e. wetting in the north—and drying in the south. Changes are most pronounced over the northwest African coast, where the projected winter precipitation decline reaches 40% of present values. Despite a decrease in mean precipitation, heavy rainfall indices show drastic increases across most of the Mediterranean, except the North African coast, which is under the strong influence of the cold Canary Current.
Translating Research from Animal Models: Does It Matter that Our Rodents are So Cold?
Does it matter that preclinical rodent models are routinely housed below their thermoneutral zone and are thereby cold-stressed? We compile evidence showing that rodents housed below their thermoneutral zone are cold-stressed, hypermetalbolic, hypertensive, sleep-deprived, obesi...
Cold-Specific Induction of a Dehydrin Gene Family Member in Barley.
Van Zee, K.; Chen, F. Q.; Hayes, P. M.; Close, T. J.; Chen, THH.
1995-01-01
An interval on barley (Hordeum vulgare L.) chromosome 7 accounting for significant quantitative trait locus effects for winter hardiness were detected in a winter (Dicktoo) x spring (Morex) barley population (P.M. Hayes, T. Blake, T.H.H. Chen, S. Tragoonrung, F. Chen, A. Pan, and B. Liu [1993] Genome 36: 66-71). Two members of the barley dehydrin gene family, Dhn1 and Dhn2, were located within the region defining the winter hardiness quantitative trait locus effect (A. Pan, P.M. Hayes, F. Chen, T. Blake, T.H.H. Chen, T.T.S. Wright, I. Karsai, Z. Bedo [1994] Theor Appl Genet 89: 900-910). To investigate the possible role of Dhn1 and Dhn2 in winter hardiness, we examined the expression pattern of six barley dehydrin gene family members in shoot tissue in response to cold temperature. Incubation of 3-week-old barley plants at 2[deg]C resulted in a rapid induction of a single 86-kD polypeptide that was recognized by an antiserum against a peptide conserved in the dehydrin gene family. Northern blot analysis confirmed the induction of an mRNA corresponding to Dhn5. The expression patterns of cold-induced dehydrins in shoot tissue for Dicktoo and Morex were identical under the conditions studied, in spite of the known phenotypic differences in their winter hardiness. These results, together with the allelic structure of selected high- and low-survival lines, suggest that the Dicktoo alleles at the Dhn1 and Dhn2 may not be the primary determinants of winter hardiness in barley. PMID:12228540
2009/2010 Eurasian Cold Winter and Loss of Arctic Sea-ice over Barents/Kara Sea
NASA Astrophysics Data System (ADS)
Shim, T.; Kim, B.; Kim, S.
2012-12-01
In 2009/2010 winter, a few extreme cold events and heavy snowfall occurred over central North America, north western Europe, and East Asia exerting a severe social and economic impacts. In this study, we performed modeling experiments to examine the role of substantially reduced Arctic sea-ice over Barents/Kara Sea on the 2009/2010 cold winters. Although several previous studies investigated cause of the extreme events and emphasized the large snow-covered area over Siberia in autumn 2009, we note that the area extent of Arctic sea-ice over Barents/Kara sea in autumn 2009 was anomalously low and the possible impact from Arctic for the extreme cold events has not been presented. To investigate the influence from the Arctic, we designed three model runs using Community Atmosphere Model Version 3 (CAM3). Each simulation differs by the prescribed surface boundary conditions: (a) CTRL - climatological seasonal cycle of sea surface temperature (SST) and sea-ice concentration (SIC) are prescribed everywhere, (b) EXP_65N - SST and SIC inside the Arctic circle (north of 65°N) are replaced by 2009/2010 values. Elsewhere, the climatology is used, (c) EXP_BK - Same with (b) except that SIC and SST are fixed only over Barents/Kara Sea where the sea-ice area dropped significantly in 2009/2010 winter. Model results from EXP_65N and EXP_BK commonly showed a large increase of air temperature in the lower troposphere where Arctic sea-ice showed a large reduction. Also, compared with the observation, model successfully captured thickened geopotential height in the Arctic and showed downstream wave propagation toward midlatitude. From the analysis, we reveal that this large dipolar Arctic-midlatitude teleconnection pattern in the upper troposphere easily propagate upward and played a role in the weakening of polar vortex. This is also confirmed in the observation. However, the timing of excitation of upward propagating wave in EXP_65N and EXP_BK were different and thus the timing of weakening of polar vortex also differs in each experiment. Unlike with our expectation, both EXP_65N and EXP_BK did not capture the abrupt increase of snow-cover in the observation over Siberian region in autumn 2009. Therefore, given the successful reproduction of key observed features of cold winter 2009/2010 by EXP_65N and EXP_BK, we conclude that Arctic sea-ice in autumn 2009 played a key role for the subsequent development of cold winter 2009/2010 and the role was largely independent with the autumn snow-cover.
Armstrong, Philip M; Andreadis, Theodore G; Shepard, John J; Thomas, Michael C
2017-05-01
The Asian tiger mosquito (Aedes albopictus) is an invasive species and important arbovirus vector that was introduced into the U.S. in the 1980's where it continues to expand its range. Winter temperature is an important constraint to its northward expansion, with potential range limits located between the 0° and -5°C mean cold month isotherm. Connecticut is located within this climatic zone and therefore, Ae. albopictus was monitored statewide to assess its northern range expansion and to delineate where populations can stably persist. Ae. albopictus females were monitored at fixed trapping sites throughout Connecticut from June-October over a 20-year period, 1997-2016. In addition, Ae. albopictus larvae and pupae were collected from tire habitats and tires were retrieved from the field in the spring and flooded to evaluate overwintering success of hatching larvae. Ae. albopictus was first detected during statewide surveillance when a single adult female was collected in 2006. This species was not collected again until 2010 and was subsequently detected each successive year with increasing abundance and distribution except following the unusually cold winters of 2014 and 2015. Ae. albopictus mosquitoes were most abundant in urban and suburban locations along the southwestern shoreline of Connecticut; however, single specimens were occasionally detected in central parts of the state. Field-collected females were also screened for arbovirus infection yielding two isolations of Cache Valley virus and one isolation of West Nile virus, highlighting the threat posed by this mosquito. Ae. albopictus overwintered in Connecticut under mild winter conditions as shown by recovery of hatched larvae from field collected tires in spring and by early season detection of larvae and pupae. This study documents the establishment and expansion of Ae. albopictus at the northern boundary of its range in the northeastern U.S. and provides a baseline for monitoring the future spread of this species anticipated under climate change.
Andreadis, Theodore G.; Shepard, John J.; Thomas, Michael C.
2017-01-01
Background The Asian tiger mosquito (Aedes albopictus) is an invasive species and important arbovirus vector that was introduced into the U.S. in the 1980's where it continues to expand its range. Winter temperature is an important constraint to its northward expansion, with potential range limits located between the 0° and -5°C mean cold month isotherm. Connecticut is located within this climatic zone and therefore, Ae. albopictus was monitored statewide to assess its northern range expansion and to delineate where populations can stably persist. Methodology/Principal findings Ae. albopictus females were monitored at fixed trapping sites throughout Connecticut from June-October over a 20-year period, 1997–2016. In addition, Ae. albopictus larvae and pupae were collected from tire habitats and tires were retrieved from the field in the spring and flooded to evaluate overwintering success of hatching larvae. Ae. albopictus was first detected during statewide surveillance when a single adult female was collected in 2006. This species was not collected again until 2010 and was subsequently detected each successive year with increasing abundance and distribution except following the unusually cold winters of 2014 and 2015. Ae. albopictus mosquitoes were most abundant in urban and suburban locations along the southwestern shoreline of Connecticut; however, single specimens were occasionally detected in central parts of the state. Field-collected females were also screened for arbovirus infection yielding two isolations of Cache Valley virus and one isolation of West Nile virus, highlighting the threat posed by this mosquito. Ae. albopictus overwintered in Connecticut under mild winter conditions as shown by recovery of hatched larvae from field collected tires in spring and by early season detection of larvae and pupae. Conclusions/Significance This study documents the establishment and expansion of Ae. albopictus at the northern boundary of its range in the northeastern U.S. and provides a baseline for monitoring the future spread of this species anticipated under climate change. PMID:28545111
Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J
2013-01-01
Abstract The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring together with rain, can substantially remove snow cover and thereby expose plants to cold winter air. Depending on morphology, different parts of the plant can be directly exposed. On this picture, we see Dryas octopetala seed heads from the previous growing season protrude through the remaining ice layer after a warming event in early 2010. The rest of the plant, including meristems and flower primordia, are still somewhat protected by the ice. In the background we can see a patch of Cassiope tetragona protruding through the ice; in this case, the whole plant including flower primordia is exposed, which might be one reason why this species experienced a loss of flowers the following season. Photograph by Philipp Semenchuk. PMID:24567826
Thermal Modeling of Bridgman Crystal Growth
NASA Technical Reports Server (NTRS)
Cothran, E.
1983-01-01
Heat Flow modeled for moving or stationary rod shaped sample inside directional-solidification furnace. Program effectively models one-dimensional heat flow in translating or motionless rod-shaped sample inside of directionalsolidification furnace in which adiabatic zone separates hot zone and cold zone. Applicable to systems for which Biot numbers in hot and cold zones are less than unity.
Cold temperature increases winter fruit removal rate of a bird-dispersed shrub
Charles Kwit; Douglas J. Levey; Cathryn H. Greenberg; Scott F. Pearson; John P. McCarty; Sarah Sargent
2004-01-01
We tested the hypothesis that winter removal rates of fruits of wax myrtle, Myrica cerifera, are higher in colder winters. Over a 9-year period, we monitored M. cerifera fruit crops in 13 0.1-ha study plots in South Carolina, U.S.A. Peak ripeness occurred in November, whereas peak removal occurred in the coldest months, December...
Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers.
Axelsen, Jacob Bock; Yaari, Rami; Grenfell, Bryan T; Stone, Lewi
2014-07-01
Human influenza occurs annually in most temperate climatic zones of the world, with epidemics peaking in the cold winter months. Considerable debate surrounds the relative role of epidemic dynamics, viral evolution, and climatic drivers in driving year-to-year variability of outbreaks. The ultimate test of understanding is prediction; however, existing influenza models rarely forecast beyond a single year at best. Here, we use a simple epidemiological model to reveal multiannual predictability based on high-quality influenza surveillance data for Israel; the model fit is corroborated by simple metapopulation comparisons within Israel. Successful forecasts are driven by temperature, humidity, antigenic drift, and immunity loss. Essentially, influenza dynamics are a balance between large perturbations following significant antigenic jumps, interspersed with nonlinear epidemic dynamics tuned by climatic forcing.
Prediction of thermal behavior of pervious concrete pavements in winter.
DOT National Transportation Integrated Search
2017-05-15
Because application of pervious concrete pavement (PCPs) has extended to cold-climate regions of the United States, the safety and : mobility of PCP installations during the winter season need to be maintained. Timely application of salt, anti-icing,...
Is the wide distribution of aspen a result of its stress tolerance?
V. J. Lieffers; S. M. Landhausser; E. H. Hogg
2001-01-01
Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...
Local atmospheric decoupling in complex topography alters climate change impacts
Christopher Daly; David R. Conklin; Michael H. Unsworth
2009-01-01
Cold air drainage and pooling occur in many mountain valleys, especially at night and during winter. Local climate regimes associated with frequent cold air pooling have substantial impacts on species phenology, distribution, and diversity. However, little is known about how the degree and frequency of cold air drainage and pooling will respond to a changing climate....
USDA-ARS?s Scientific Manuscript database
Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold acclimation specific processes and pathways, we utilized co...
Severe European winters in a secular perspective
NASA Astrophysics Data System (ADS)
Hoy, Andreas; Hänsel, Stephanie
2017-04-01
Temperature conditions during the winter time are substantially shaped by a strong year-to-year variability. European winters since the late 1980s - compared to previous decades and centuries - were mainly characterised by a high temperature level, including recent record-warm winters. Yet, comparably cold winters and severe cold spells still occur nowadays, like recently observed from 2009 to 2013 and in early 2017. Central England experienced its second coldest December since start of observations more than 350 years ago in 2010, and some of the lowest temperatures ever measured in northern Europe (below -50 °C in Lapland) were recorded in January 1999. Analysing thermal characteristics and spatial distribution of severe (historical) winters - using early instrumental data - helps expanding and consolidating our knowledge of past weather extremes. This contribution presents efforts towards this direction. We focus on a) compiling and assessing a very long-term instrumental, spatially widespread and well-distributed, high-quality meteorological data set to b) investigate very cold winter temperatures in Europe from early measurements until today. In a first step, we analyse the longest available time series of monthly temperature averages within Europe. Our dataset extends from the Nordic countries up to the Mediterranean and from the British Isles up to Russia. We utilise as much as possible homogenised times series in order to ensure reliable results. Homogenised data derive from the NORDHOM (Scandinavia) and HISTALP (greater alpine region) datasets or were obtained from national weather services and universities. Other (not specifically homogenised) data were derived from the ECA&D dataset or national institutions. The employed time series often start already during the 18th century, with Paris & Central England being the longest datasets (from 1659). In a second step, daily temperature averages are involved. Only some of those series are homogenised, but those available are sufficiently distributed throughout Europe to ensure reliable results. Furthermore, the comparably dense network of long-term observations allows an appropriate quality checking within the network. Additionally, the large collective of homogenised monthly data enables assessing the quality of many daily series. Daily data are used to sum up negative values for the respective winter periods to create times series of "cold summations", which are a good indicator for the severeness of winters in most parts of Europe. Additionally, days below certain thresholds may be counted or summed up. Future work will include daily minimum and maximum temperatures, allowing calculating and applying an extensive set of climate indices, refining the work presented here.
Achoo! Cold, Flu, or Something Else? | NIH MedlinePlus the Magazine
... Flu, or Something Else? Follow us Achoo! Cold, Flu, or Something Else? Photo: iStock Winter and early ... over-the-counter medicines to ease symptoms. Seasonal Flu Symptoms usually last one to two weeks. Include ...
Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian
2018-09-01
In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon
NASA Astrophysics Data System (ADS)
Fauzi, R. R.; Hidayat, R.
2018-05-01
Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1996-01-01
A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).
Extremely cold events and sudden air temperature drops during winter season in the Czech Republic
NASA Astrophysics Data System (ADS)
Crhová, Lenka; Valeriánová, Anna; Holtanová, Eva; Müller, Miloslav; Kašpar, Marek; Stříž, Martin
2014-05-01
Today a great attention is turned to analysis of extreme weather events and frequency of their occurrence under changing climate. In most cases, these studies are focused on extremely warm events in summer season. However, extremely low values of air temperature during winter can have serious impacts on many sectors as well (e.g. power engineering, transportation, industry, agriculture, human health). Therefore, in present contribution we focus on extremely and abnormally cold air temperature events in winter season in the Czech Republic. Besides the seasonal extremes of minimum air temperature determined from station data, the standardized data with removed annual cycle are used as well. Distribution of extremely cold events over the season and the temporal evolution of frequency of occurrence during the period 1961-2010 are analyzed. Furthermore, the connection of cold events with extreme sudden temperature drops is studied. The extreme air temperature events and events of extreme sudden temperature drop are assessed using the Weather Extremity Index, which evaluates the extremity (based on return periods) and spatial extent of the meteorological extreme event of interest. The generalized extreme value distribution parameters are used to estimate return periods of daily temperature values. The work has been supported by the grant P209/11/1990 funded by the Czech Science Foundation.
Ishikawa, Masaya; Oda, Asuka; Fukami, Reiko; Kuriyama, Akira
2014-01-01
Wintering Sasa senanensis, dwarf bamboo, is known to employ deep supercooling as the mechanism of cold hardiness in most of its tissues from leaves to rhizomes. The breakdown of supercooling in leaf blades has been shown to proceed in a random and scattered manner with a small piece of tissue surrounded by longitudinal and transverse veins serving as the unit of freezing. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels (LT20: the lethal temperature at which 20% of the leaf blades are injured) seasonally increased from August (-11°C) to December (-20°C). This coincided with the increases in supercooling capability of the leaf blades as expressed by the initiation temperature of low temperature exotherms (LTE) detected in differential thermal analyses (DTA). When leaf blades were stored at -5°C for 1-14 days, there was no nucleation of the supercooled tissue units either in summer or winter. However, only summer leaf blades suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20°C), a longer storage period (1-7 days) increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units. LTE were shifted to higher temperatures (2-5°C) after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as development of sclerenchyma and biochemical mechanisms to increase the stability of supercooling are considered important. These mechanisms are discussed in regard to ecological and physiological significance in winter survival.
Deficit irrigation strategies and wine grape cold hardiness
USDA-ARS?s Scientific Manuscript database
Winter survival of winegrapes grown at northern latitudes depends upon the ability of dormant tissue to withstand low temperature exposure and acclimate to winter temperature fluctuations. Deficit irrigation is used extensively in arid wine grape production regions to manage growth for improved grap...
High Time Resolution Measurements of VOCs from Vehicle Cold Starts: The Air Toxic Cold Start Pulse
NASA Astrophysics Data System (ADS)
Jobson, B. T.; Huangfu, Y.; Vanderschelden, G. S.
2017-12-01
Pollutants emitted during motor vehicle cold starts, especially in winter in some climates, is a significant source of winter time air pollution. While data exist for CO, NO, and total hydrocarbon emissions from federal testing procedures for vehicle emission certification, little is known about the emission rates of individual volatile organic compounds, in particular the air toxics benzene, formaldehyde, and acetaldehyde. Little is known about the VOC speciation and temperature dependence for cold starts. The US EPA vehicle emission model MOVES assumes that cold start emissions have the same speciation profile as running emissions. We examined this assumption by measuring cold start exhaust composition for 4 vehicles fueled with E10 gasoline over a temperature range of -4°C to 10°C in winter of 2015. The extra cold start emissions were determined by comparison with emissions during engine idling. In addition to CO and NOx measurements a proton transfer reaction mass spectrometer was used to measure formaldehyde, acetaldehyde, benzene, toluene, and C2-alkylbenzenes at high time resolution to compare with the cold start emission speciation profiles used in the EPA MOVES2014 model. The results show that after the vehicle was started, CO mixing ratios can reach a few percent of the exhaust and then drop to several ppmv within 2 minutes of idling, while NOx showed different temporal behaviors among the four vehicles. VOCs displayed elevated levels during cold start and the peak mixing ratios can be two orders higher than idling phase levels. Molar emission ratios relative to toluene were used to compare with the emission ratio used in MOVES2014 and we found the formaldehyde-to-toluene emission ratio was about 0.19, which is 5 times higher than the emission ratio used in MOVES2014 and the acetaldehyde-to-toluene emission ratios were 0.86-0.89, which is 8 times higher than the ones in MOVES2014. The C2-alkylbenzene-to-toluene ratio agreed well with moves. Our results suggest that for the air toxics acetaldehyde and formaldehyde, wintertime cold temperature vehicle start emissions are likely significantly underestimated in the MOVES 2014 model.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Kim, Hae-Dong
2014-01-01
The large-scale impacts of the Arctic Oscillation (AO) and the East Atlantic/West Russia (EA/WR) teleconnection on the East Asian winter climate anomalies are compared for the past 34 winters focusing on 1) interannual monthly to seasonal temperature variability, 2) East Asian winter monsoon (EAWM), and 3) the Siberian high (SH) and cold surge. Regression analysis reveals warming by AO and EA/WR over mid-latitude East Asia during their positive phase and vice versa. The EA/WR impact is found to be comparable to the AO impact in affecting the East Asian temperature and monsoon. For example, warm (cold) months over mid-latitude East Asia during the positive (negative) AO are clearly seen when the AO and EA/WR are in the same phase. Near zero correlation is found between temperature and the AO phase when both teleconnections are in an opposite phase. The well-known negative relationship between SH and the AO phase is observed significantly more often when the AO is in the same phase with the EA/WR. Also, the indices of EAWM, cold surge, and SH are found to be more highly negative-correlated with the EA/WR rather than with the AO. The advective temperature change and associated circulation demonstrate that the anomalous large-scale field including the SH over the mid-latitude Asian inland is better represented by the EA/WR, influencing the East Asian winter climates. These results suggest that the impact of EA/WR should be considered more important than previously thought for a better understanding of East Asian winter temperature and monsoon variability.
Bleiker, K P; Smith, G D; Humble, L M
2017-10-01
Winter mortality is expected to be a key factor determining the ability of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), to expand its range in Canada. We determined the mortality rate and supercooling points of eggs from the beetle's historic range in southern British Columbia as well as the recently expanded range in north-central Alberta and tested if eggs require an extended period of chilling to reach their maximum cold tolerance. We found no effect of population source or acclimation time on egg cold tolerance. Although 50% of eggs can survive brief exposure to -20.5 °C (LT50), storage at 0.3 °C and -7.5 °C for 59 d resulted in 50% and 100% mortality, respectively. Our results indicate that eggs suffer significant prefreeze mortality and are not well-adapted to overwintering: eggs are unlikely to survive winter throughout much of the beetle's range. Our results provide information that can be used to help model the climatic suitability of mountain pine beetle, including how changes in seasonality associated with new or changing climates may affect winter survival. In addition to lower lethal temperatures, it is critical that the duration of exposure to sublethal cold temperatures are considered in a comprehensive index of cold tolerance and incorporated into survival and population models. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dense Winter Water Mass Formation In The Northwestern Pacific Marginal Seas:
NASA Astrophysics Data System (ADS)
Talley, L.; Lobanov, V.; Tishchenko, P.; Shcherbina, A.; Rudnick, D.; Salyuk, A.; Sagalaev, S.; Ponomarev, V.; Zhabin, I.
Two separate winter water mass formation experiments were carried out in the north- western Pacific. The Japan/East Sea (JES) is well-ventilated to the bottom (3500 m depth), and is much better ventilated than the adjacent North Pacific at the same depth and density. Winter data from 1999 and 2000 show that the JES is one of the few sites in the world with deep winter convection, and that convection in the JES has many similarities to convection in the Mediterranean. It was shown previously that deep oxygen in the JES has been declining over many decades, suggesting that ventilation was more vigorous early in the 20th century than in recent decades. Nevertheless, the presence of significant oxygen and chlorofluorocarbons to the JES bottom suggests ongoing ventilation. In winter, 1999, a first late-winter survey of the northern JES included one hydrographic station with evidence of open-ocean convection to about 1100 meters in the cold air outbreak region south of Vladivostok, and weak evidence of brine rejection under ice formation in Peter the Great Bay (shelf near Vladivos- tok). Topography and the presence of a semi-permanent anticyclonic eddy and the subpolar front delineate the convection region, which is in the path of strong northerly winter winds. Persistently colder conditions in winter 2000, including Vladivostok air temperatures colder than any other year since 1976 and SST -2C below normal in the northern Japan Sea, showed widespread convection. Significant bottom water was created through brine rejection in Peter the Great Bay and was found the base of the continental slope south of Vladivostok. Ventilation of North Pacific Intermediate Water occurs in the Okhotsk Sea, through brine rejection during sea ice formation, in polynyas on the northwest shelf. Moored observations on the shelf during winter 1999-2000 showed the creation of dense shelf water at 26.95 sigma_theta and clear evidence of brine rejection through the winter. The 1999 deployment hydrographic survey shows cold, dense water from the shelf at 26.95 sigma_theta. The lower density shelf water in June 2000 compared with Septem- ber 1999 is consistent with the reduced severity of winter 2000. Outflow of the densest cold water of shelf origin in both the 1999 and 2000 CTD surveys was located slightly inshore of the axis of the deepest channel between Sakhalin and Kashevarov Bank.
Gary J. Hawley; Paul G. Schaberg; Christopher Eagar; Catherine H. Borer
2006-01-01
Laboratory experiments have verified that acid-deposition-induced calcium (Ca) leaching reduces the foliar cold tolerance of red spruce (Picea rubens Sarg.) current-year foliage, increasing the risk of winter injury and crown deterioration. However, to date no studies have shown that ambient losses in soil Ca have resulted in increased winter injury...
Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival.
Shearer, Peter W; West, Jessica D; Walton, Vaughn M; Brown, Preston H; Svetec, Nicolas; Chiu, Joanna C
2016-03-22
As global climate change and exponential human population growth intensifies pressure on agricultural systems, the need to effectively manage invasive insect pests is becoming increasingly important to global food security. Drosophila suzukii is an invasive pest that drastically expanded its global range in a very short time since 2008, spreading to most areas in North America and many countries in Europe and South America. Preliminary ecological modeling predicted a more restricted distribution and, for this reason, the invasion of D. suzukii to northern temperate regions is especially unexpected. Investigating D. suzukii phenology and seasonal adaptations can lead to a better understanding of the mechanisms through which insects express phenotypic plasticity, which likely enables invasive species to successfully colonize a wide range of environments. We describe seasonal phenotypic plasticity in field populations of D. suzukii. Specifically, we observed a trend of higher proportions of flies with the winter morph phenotype, characterized by darker pigmentation and longer wing length, as summer progresses to winter. A laboratory-simulated winter photoperiod and temperature (12:12 L:D and 10 °C) were sufficient to induce the winter morph phenotype in D. suzukii. This winter morph is associated with increased survival at 1 °C when compared to the summer morph, thus explaining the ability of D. suzukii to survive cold winters. We then used RNA sequencing to identify gene expression differences underlying seasonal differences in D. suzukii physiology. Winter morph gene expression is consistent with known mechanisms of cold-hardening such as adjustments to ion transport and up-regulation of carbohydrate metabolism. In addition, transcripts involved in oogenesis and DNA replication were down-regulated in the winter morph, providing the first molecular evidence of a reproductive diapause in D. suzukii. To date, D. suzukii cold resistance studies suggest that this species cannot overwinter in northern locations, e.g. Canada, even though they are established pests in these regions. Combining physiological investigations with RNA sequencing, we present potential mechanisms by which D. suzukii can overwinter in these regions. This work may contribute to more accurate population models that incorporate seasonal variation in physiological parameters, leading to development of better management strategies.
Human Cases of Tularemia in Armenia, 1996-2012.
Melikjanyan, Syuzanna; Palayan, Karo; Vanyan, Artavazd; Avetisyan, Lilit; Bakunts, Nune; Kotanyan, Marine; Guerra, Marta
2017-09-01
A retrospective analysis was conducted of human cases and outbreaks of tularemia in the Republic of Armenia from 1996 to 2012 utilizing geographic information system software. A total of 266 human cases of tularemia were recorded in Armenia from 1996 to 2012, with yearly incidence ranging from 0 to 5.5 cases per 100,000 people. Cases predominantly affected the male population (62.8%), 11-20 year age group (37.2%), agricultural workers (49.6%), and persons residing in rural areas (93.6%). In 2003, a waterborne outbreak involving 158 cases occurred in Kotayk Marz, and in 2007, a foodborne outbreak with 17 cases occurred in Gegharkunik Marz, attributed to exposure of food products to contaminated hay. Geospatial analysis of all cases showed that the majority were associated with the steppe vegetation zone, elevations between 1,400 and 2,300 m, and the climate zone associated with dry, warm summers, and cold winters. Characterization of these environmental factors were used to develop a predictive risk model to improve surveillance and outbreak response for tularemia in Armenia.
Cold Fronts in RegCM/HadGEM simulations over South America
NASA Astrophysics Data System (ADS)
Pampuch, Luana; Marcos de Jesus, Eduardo; Porfírio da Rocha, Rosmeri; Ambrizzi, Tércio
2017-04-01
Cold front is one of the most important systems that contribute for precipitation over South America. The representation of this system in climate models is important for a better representation of the precipitation. The Regional Climate Model RegCM is widely used for climate studies in South America, being important to understand how this model represents the cold fronts. A climatology (from 1979-2004) of the number of cold fronts in each season for RegCM4 simulations over South America CORDEX domain nested in HadGEM2-ES. The simulated climatology was compared with ERA-Interim reanalysis cold fronts climatology over the South America and adjacent South Atlantic Ocean. The cold fronts tracking for the model and the reanalysis were performed using an objective methodology based on decrease of air temperature in 925hPa, shift of meridional wind in 925hPa from northern to southern quadrant and increased in sea level pressure. The main differences were observed on summer and winter. On summer the model overestimate the number of cold fronts over southeastern South America and adjacent Atlantic Ocean; and underestimate it over central-south Argentina and Atlantic Ocean. On winter, the signs were opposite of that summer. On autumn and spring the differences were smaller and occurs mainly over all South Atlantic and north Argentina.
Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard.
Campbell-Staton, Shane C; Cheviron, Zachary A; Rochette, Nicholas; Catchen, Julian; Losos, Jonathan B; Edwards, Scott V
2017-08-04
Extreme environmental perturbations offer opportunities to observe the effects of natural selection in wild populations. During the winter of 2013-2014, the southeastern United States endured an extreme cold event. We used thermal performance, transcriptomics, and genome scans to measure responses of lizard populations to storm-induced selection. We found significant increases in cold tolerance at the species' southern limit. Gene expression in southern survivors shifted toward patterns characteristic of northern populations. Comparing samples before and after the extreme winter, 14 genomic regions were differentiated in the surviving southern population; four also exhibited signatures of local adaptation across the latitudinal gradient and implicate genes involved in nervous system function. Together, our results suggest that extreme winter events can rapidly produce strong selection on natural populations at multiple biological levels that recapitulate geographic patterns of local adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Development of a model system to identify differences in spring and winter oat.
Chawade, Aakash; Lindén, Pernilla; Bräutigam, Marcus; Jonsson, Rickard; Jonsson, Anders; Moritz, Thomas; Olsson, Olof
2012-01-01
Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding.
Findling, Sarah; Zanger, Klaus; Krueger, Stephan; Lohaus, Gertrud
2015-01-01
In Ajuga reptans, raffinose oligosaccharides accumulated during winter. Stachyose, verbascose, and higher RFO oligomers were exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. The evergreen labiate Ajuga reptans L. can grow at low temperature. The carbohydrate metabolism changes during the cold phase, e.g., raffinose family oligosaccharides (RFOs) accumulate. Additionally, A. reptans translocates RFOs in the phloem. In the present study, subcellular concentrations of metabolites were studied in summer and winter leaves of A. reptans to gain further insight into regulatory instances involved in the cold acclimation process and into the function of RFOs. Subcellular metabolite concentrations were determined by non-aqueous fractionation. Volumes of the subcellular compartments of summer and winter leaves were analyzed by morphometric measurements. The metabolite content varied strongly between summer and winter leaves. Soluble metabolites increased up to tenfold during winter whereas the starch content was decreased. In winter leaves, the subcellular distribution showed a shift of carbohydrates from cytoplasm to vacuole and chloroplast. Despite this, the metabolite concentration was higher in all compartments in winter leaves compared to summer leaves because of the much higher total metabolite content in winter leaves. The different oligosaccharides did show different compartmentations. Stachyose, verbascose, and higher RFO oligomers were almost exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. Apparently, the subcellular distribution of the RFOs differs because they fulfill different functions in plant metabolism during winter. Raffinose might function in protecting chloroplast membranes during freezing, whereas higher RFO oligomers may exert protective effects on vacuolar membranes. In addition, the high content of RFOs in winter leaves may also result from reduced consumption of assimilates.
The winter gap effect in methane leak detection and repair with optical gas imaging cameras
NASA Astrophysics Data System (ADS)
Fox, T. A.; Barchyn, T.; Hugenholtz, C.
2017-12-01
Implementing effective leak detection and repair (LDAR) programs is essential for mitigating fugitive methane emissions from oil and gas operations. In Canada, newly proposed regulations will require that high-risk facilities be surveyed 3 times/yr for fugitive leaks. Like the United States, Canada promotes the use of Optical Gas Imaging cameras (OGIs) for detecting natural gas leaks during LDAR surveys. However, recent research suggests OGIs may perform poorly under adverse environmental conditions, especially in low temperatures. For regions like Canada that experience cold winters, OGIs may not be reliably used for months at a time, meaning that leaks may accumulate and emit for longer periods before being repaired. While considerable oil and gas activity occurs in high-latitude regions with cold winters, no research has explored how extended cold periods impact OGI-focused LDAR programs. To improve this understanding, we present a simple model exploring relationships among winter gap length, fugitive methane emissions, and investment input for LDAR programs employing OGI instruments in gas producing regions of different latitudes. Preliminary results suggest that longer gaps between LDAR surveys caused by cold temperatures result in either 1) higher total emissions for the year, or 2) greater time and equipment investment in LDAR programs to achieve emissions mitigation equivalent to LDAR programs operating under ideal conditions. When weather constraints are removed and LDAR surveys are evenly spaced throughout the year, emissions mitigation is optimized. However, as the winter gap duration and the size of the implicated area increases, fugitive leaks last longer. Furthermore, a spillover effect is observed as LDAR crews become overwhelmed with the high volume of work required as temperatures increase in the spring. Our model adds weight to the argument that LDAR programs should be tailored to regional needs, and that regulators should be more cognisant of sensor-specific limitations as they develop LDAR protocols.
NASA Astrophysics Data System (ADS)
Gómez, I.; Estrela, M.
2009-09-01
Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).
Zhu, Jie; Pearce, Stephen; Burke, Adrienne; See, Deven Robert; Skinner, Daniel Z; Dubcovsky, Jorge; Garland-Campbell, Kimberly
2014-05-01
The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.
NASA Astrophysics Data System (ADS)
Qian, C.; Wang, J.; Dong, S.; Yin, H.; Burke, C.; Ciavarella, A.; Dong, B.; Freychet, N.; Lott, F. C.; Tett, S. F.
2017-12-01
It is controversial whether Asian mid-latitude cold surges are becoming more likely as a consequence of Arctic warming. Here, we present an event attribution study in mid-latitude Eastern China. A strong cold surge occurred during 21st-25th January 2016 affecting most areas of China, especially Eastern China. Daily minimum temperature (Tmin) records were broken at many stations. The area averaged anomaly of Tmin over the region (20-44N, 100-124E) for this pentad was the lowest temperature recorded since modern meteorological observations started in 1960. This cold event occurred in a background of the warmest winter Tmin since 1960. Given the vast damages caused by this extreme cold event in Eastern China and the previous mentioned controversy, it is compelling to investigate how much anthropogenic forcing agents have affected the probability of cold events with an intensity equal to or larger than the January 2016 extreme event. We use the Met Office Hadley Centre system for Attribution of extreme weather and Climate Events and station observations to investigate the effect of anthropogenic forcings on the likelihood of such a cold event. Anthropogenic influences are estimated to have reduced the likelihood of an extreme cold event in mid-winter with the intensity equal to or stronger than the record of 2016 in Eastern China by about 2/3.
Kurepin, Leonid V.; Dahal, Keshav P.; Savitch, Leonid V.; Singh, Jas; Bode, Rainer; Ivanov, Alexander G.; Hurry, Vaughan; Hüner, Norman P. A.
2013-01-01
Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways. PMID:23778089
Swanson, David; Zhang, Yufeng; Liu, Jin-Song; Merkord, Christopher L; King, Marisa O
2014-03-15
Seasonal phenotypic flexibility in small birds produces a winter phenotype with elevated maximum cold-induced metabolic rates (=summit metabolism, Msum). Temperature and photoperiod are candidates for drivers of seasonal phenotypes, but their relative impacts on metabolic variation are unknown. We examined photoperiod and temperature effects on Msum, muscle masses and activities of key catabolic enzymes in winter dark-eyed juncos (Junco hyemalis). We randomly assigned birds to four treatment groups varying in temperature (cold=3°C; warm=24°C) and photoperiod [short day (SD)=8 h:16 h light:dark; long day (LD)=16 h:8 h light:dark] in a two-by-two design. We measured body mass (Mb), flight muscle width and Msum before and after 3 and 6 weeks of acclimation, and flight muscle and heart masses after 6 weeks. Msum increased for cold-exposed, but not for warm-exposed, birds. LD birds gained more Mb than SD birds, irrespective of temperature. Flight muscle size and mass did not differ significantly among groups, but heart mass was larger in cold-exposed birds. Citrate synthase, carnitine palmitoyl transferase and β-hydroxyacyl Co-A dehydrogenase activities in the pectoralis were generally higher for LD and cold groups. The cold-induced changes in Msum and heart mass parallel winter changes for small birds, but the larger Mb and higher catabolic enzyme activities in LD birds suggest photoperiod-induced changes associated with migratory disposition. Temperature appears to be a primary driver of flexibility in Msum in juncos, but photoperiod-induced changes in Mb and catabolic enzyme activities, likely associated with migratory disposition, interact with temperature to contribute to seasonal phenotypes.
Chan, Allison M.; Bowling, David R.
2017-05-26
Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Allison M.; Bowling, David R.
Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter–spring and fall–winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density methodmore » to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze–thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions« less
Dhont, Catherine; Castonguay, Yves; Nadeau, Paul; Bélanger, Gilles; Drapeau, Raynald; Laberge, Serge; Avice, Jean-Christophe; Chalifour, François-P
2006-01-01
The objective of the study was to characterize variations in proline, arginine, histidine, vegetative storage proteins, and cold-inducible gene expression in overwintering roots of field-grown alfalfa, in response to autumn defoliation, and in relation to spring regrowth and winter survival. Field trials, established in 1996 in eastern Canada, consisted of two alfalfa cultivars ('AC Caribou' and 'WL 225') defoliated in 1997 and 1998 either only twice during the summer or three times with the third defoliation taken 400, 500 or 600 growing degree days (basis 5 degrees C) after the second summer defoliation. The root accumulation of proline, arginine, histidine and soluble proteins of 32, 19 and 15 kDa, characterized as alfalfa vegetative storage proteins, was reduced the following spring by an early autumn defoliation at 400 or 500 growing degree days in both cultivars; the 600-growing-degree-days defoliation treatment had less or no effect. Transcript levels of the cold-inducible gene msaCIA, encoding a glycine-rich protein, were markedly reduced by autumn defoliation in 'WL 225', but remained unaffected in the more winter-hardy cultivar 'AC Caribou'. The expression of another cold-inducible gene, the dehydrin homologue msaCIG, was not consistently affected by autumn defoliation. Principal component analyses, including components of root organic reserves at the onset of winter, along with yield and plant density in the following spring, revealed that (a) amino acids and soluble proteins are positively related to the vigour of spring regrowth but poorly related to winter survival and (b) winter survival, as indicated by plant density in the spring, is associated with higher concentrations of cryoprotective sugars in alfalfa roots the previous autumn. An untimely autumn defoliation of alfalfa reduces root accumulation of specific N reserves such as proline, arginine, histidine and vegetative storage proteins that are positively related to the vigour of spring regrowth but poorly related to winter survival.
Bigras, F J; Bertrand, A
2006-07-01
Seedlings from a northern and a southern provenance of black spruce (Picea mariana Mill. BSP) from eastern Canada were exposed to 37 or 71 Pa of carbon dioxide (CO2) during growth, cold hardening and dehardening in a greenhouse. Bud phenology, cold tolerance and photosynthetic efficiency were assessed during the growing and over-wintering periods. Bud set occurred earlier in elevated [CO2] than in ambient [CO2], but it was later in the southern provenance than in the northern provenance. An increase in seedling cold tolerance in early fall was related to early bud set in elevated [CO2]. Maximal photosystem II (PSII) photochemical efficiency (F(v)/F(m)), effective quantum yield (phi(PSII)), photochemical quenching (q(P)), light-saturated photosynthesis (Amax), apparent quantum efficiency (alpha'), light-saturated rate of carboxylation (Vcmax) and electron transport (Jmax) decreased during hardening and recovered during dehardening. Although Amax and alpha' were higher in elevated [CO2] when measured at the growth [CO2], down-regulation of photosynthesis occurred in elevated [CO2] as shown by lower F(v)/F(m), phi(PSII), Vcmax and Jmax. Elevated [CO2] reduced gene expression of the small subunit of Rubisco and also decreased chlorophyll a/chlorophyll b ratio and nitrogen concentration in needles, confirming our observation of down-regulation of photosynthesis. Elevated [CO2] increased the CO2 diffusion gradient and decreased photorespiration, which may have contributed to enhance Amax despite down-regulation of photosynthesis. Total seedling dry mass was higher in elevated [CO2] than in ambient [CO2] at the end of the growing season. However, because of earlier bud formation and cold hardening, and down-regulation of photosynthesis during fall and winter in elevated [CO2], the treatment difference in dry mass increment was less by the end of the winter than during the growing season. Differences in photosynthetic rate observed during fall, winter and spring account for the inter-annual variations in carbon assimilation of black spruce seedlings: our results demonstrate that these variations need to be considered in carbon budget studies.
A NEW MODEL TO ESTIMATE DAILY ENERGY EXPENDITURE FOR WINTERING WATERFOWL
Activity budgets of wintering waterfowl have been widely used to assess habitat quality. However, when factors such as prey abundance or protection from exposure to cold or wind determine quality, measures of daily energy expenditure (DEE) may be more appropriate for this purpos...
Winter photosynthesis in red spruce (Picea rubens Sarg.): limitations, potential benefits, and risks
P.G. Schaberg
2000-01-01
Numerous cold-induced changes in physiology limit the capacity of northern conifers to photosynthesize during winter. Studies of red spruce (Picea rubens Sarg.) have shown that rates of field photosynthesis (Pfield) and laboratory measurements of photosynthetic capacity (Pmax) generally parallel seasonal...
COLD TEMPERATURE MOTOR VEHICLE EMISSIONS TESTING IN ALASKA
A motor vehicle emissions testing study was conducted in Anchorage and Fairbanks during the winter of 1998-99 to collect actual measurements of initial idle emission rates. The study was performed for a sample of 111 automobiles and light-duty trucks under cold wintertime ambient...
McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew; Bosworth, Andrew
2017-01-01
Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.
McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew J; Bosworth, Andrew
2017-03-01
Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.
Seasonality recorded in Modern and Viking Limpet Shells ( Patella vulgata), Quoygrew, Orkney, UK
NASA Astrophysics Data System (ADS)
Surge, D.; Barrett, J. H.; Milner, N.
2007-12-01
Climate archives contained in shells of the European limpet, Patella vulgata, from Viking shell middens can potentially provide much needed information about seasonality in mid-latitude coastal areas prior to the complicating effects of industrialization. P. vulgata shells are common in the stratified middens accumulated by the Viking inhabitants of Quoygrew, Orkney, and were likely used for baiting fish. Radiocarbon dates and artifacts place these middens between the 9th/10th and 13th centuries. This interval coincides with the Medieval Warm Period. Little is known about the seasonal temperature variation during this time of pre-industrial warming. Before reconstructing climate information from Viking shells, we determined whether P. vulgata preserves environmental and ecological information. Previous work on live-collected specimens from Whitley Bay near Newcastle-upon-Tyne, England, confirmed that: (1) oxygen isotope ratios served as a proxy for sea surface temperature after accounting for a uniform +1.01 +/-0.21 ‰ offset; and (2) annual growth lines occurred during the winter given this location is within the cold-temperature biogeographic province. Winter growth lines and increments are common growth patterns found in marine bivalves from the cold-temperate province along the western North Atlantic. Preliminary isotope data from the 9th/10th century reveals similar winter and summer temperature relative to today and annual growth lines formed during winter, typical of a cold-temperate habitat.
Dehydration in the Winter Arctic Tropopause Region
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Jensen, Eric; Podolske, James; Selkirk, Henry; Anderson, Bruce; Avery, Melody; Diskin. Glenn
2004-01-01
Recent work has shown that limited amounts of tropospheric air can penetrate as much as 1 km into the middleworld stratosphere during the arctic winter. This, coupled with temperatures that are cold enough to produce saturation mixing ratios of less than 5 ppmv at the tropopause, results in stratospheric cloud formation and upper tropospheric dehydration. Even though these "cold outbreaks" occupy only a small portion of the area in the arctic (1-2%), their importance is magnified by an order of magnitude because of the air flow through them. This is reinforced by evidence of progressive drying through the winter measured during SOLVE-1. The significance of this process lies in its effect on the upper tropospheric water content of the middle and high latitude tropopause region, which plays an important role in regulating the earth's radiative balance. There appears to be significant year-to-year variability in the incidence of the cold outbreaks. This work has two parts. First, we describe case studies of dehydration taken from the SOLVE and SOLVE2 aircraft sampling missions during the Arctic winters of 2000 and 2003 respectively. Trajectory based microphysical modeling is employed to examine the sensitivity of the dehydration to microphysical parameters and the nature of sub-grid scale temperature fluctuations. We then examine the year-to-year variations in potential dehydration using a trajectory climatology.
Simulation of energy- efficient building prototype using different insulating materials
NASA Astrophysics Data System (ADS)
Ouhaibi, Salma; Belouaggadia, Naoual; Lbibb, Rachid; Ezzine, Mohammed
2018-05-01
The objective of this work is to analyze the energetic efficiency of an individual building including an area of 130 m2 multi-zone, located in the region of FEZ which is characterized by a very hot and dry climate in summer and a quite cold one in winter, by incorporating insulating materials. This study was performed using TRNSYS V16 simulation software during a typical year of the FEZ region. Our simulation consists in developing a comparative study of two types of polystyrene and silica-aerogel insulation materials, in order to determine the best thermal performance. The results show that the thermal insulation of the building envelope is among the most effective solutions that give a significant reduction in energy requirements. Similarly, the use of silica-aerogels gives a good thermal performance, and therefore a good energy gain.
Record-breaking Ozone Loss during Arctic Winter 2010/2011: Comparison with Arctic Winter 1996/1997
NASA Astrophysics Data System (ADS)
Godin Beekmann, S.; Kuttipurath, J.; Lefèvre, F.; Santee, M. L.; Froidevaux, L.
2011-12-01
Polar processing and chemical ozone loss is analysed during the Arctic winter/spring 2010/2011. The analyses with temperatures and potential vorticity (PV) data show a prolonged vortex from early December through mid-April. The PV maps illustrate strong vortex persistence in the lower stratosphere between 450 and 675 K, showing similar evolution with time. The minimum temperatures extracted from ECMWF data at 40-90°N show values below 195 K for a record period of first week of December through second week of April, indicating the longest period of colder temperatures for 17 years. At 10 hPa, there was a warming of about 10 K at 60°N and 40 K at 90°N around mid-January. The heat flux also showed high values in line with the increase in temperatures, of about 425 m K/s at 60°N at the same pressure level. However, the westerlies were strong (e.g. 35-45 m/s at 60°N) enough to keep the vortex intact until mid-April. Because of the cold temperatures in late winter and early spring, large areas of Polar Stratospheric Clouds (PSC) were found in the 400-600 K isentropic level range. Though the maximum values of PSCs area are smaller compared to other cold winters such as 2005, the extended period of presence of PSCs during this winter was exceptional, especially in late February-mid-March, in agreement with the cold temperatures during the period. Ozone loss analyses with high resolution Mimosa-Chim chemical transport model simulations show that the loss started by early January, and was about 0.5 ppmv in late January. The loss progressed slowly to 1 ppmv by the end of February, and then intensified by early March. The ozone depletion estimated by the passive method finds a maximum value of about 2-2.3 ppmv by the end of March-early April in the 450-550K range inside the vortex, which coincides with the areas of PSCs and high chlorine activation. This is the largest loss ever estimated with this model for any Arctic winter. It is consistent with the unprecedented chlorine activation that occurred in the winter, as the modeled ClO values show about 1.7 ppbv in early January and about 1 ppbv in March at 450-550K. This is longest period of chlorine activation noted among the Arctic winters. The ozone partial column loss reaches about 115-150 DU in the range 350 - 550 K. These model results for ozone, ozone loss and ClO are in good agreement with those found from Aura Microwave Limb Sounder observations. Since the winter 1996/1997 was also very cold in March - April, a comparison between both winters 2011 and 1997 will be presented, based on temperature, PV, Heat flux data and ozone loss estimations. Similarities and differences in the polar processing and ozone loss during both winters will be discussed using various measurements and model simulations. Copyright 2011. All rights reserved.
Stephen Jay Gould and the Value of Neutrality of Science During the Cold War.
Sheldon, Myrna
2016-12-01
Stephen Jay Gould was a paleontologist and scientific celebrity at the close of the twentieth century, most famous for his popular writings on evolution and his role in the American creationist controversies of that era. In the early 1980s, Gould was drawn into the "nuclear winter" episode through his friendship with Carl Sagan, an astronomer and popular science celebrity. Sagan helped develop the theory of nuclear winter and subsequently used the theory as evidence to petition the United States government to scale back its nuclear armament. The theory of nuclear winter claimed that even a small nuclear exchange could result in a atmospheric blackening akin to the extinction event of the late Cretaceous. Gould was not a climate scientist but he testified before the U.S. House of Representatives as an expert on historical extinction events. Gould's insistence on the value-neutrality of nuclear winter reveals much about the moral politics of science in late Cold War America. Coming at the heels of leftist scientific activism of the 1980s, the nuclear winter episode demonstrates how value-neutrality emerged the salient feature of scientific involvement in American politics in this period. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Location specific consequences of GCM projected climate change on over-wintering crops like winter wheat can vary geographically (latitude and longitude) depending on the severity and duration of the cold period and other factors like the altitude, precipitation distribution, and photoperiod. The US...
Grapevine winter survival and prospects in an age of changing climate
USDA-ARS?s Scientific Manuscript database
Vines transition from active growth to dormancy by processes controlled by genes, but are greatly influenced by variation in weather conditions - even in the coldest part of the winter. My research program, known as the USDA Cold Hardiness Genetics Research Program, seeks to understand how a vine's...
Diapause and overwintering of two spruce bark beetle species
Martin Schebeck; E. Matthew Hansen; Axel Schopf; Gregory J. Ragland; Christian Stauffer; Barbara J. Bentz
2017-01-01
Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction ofmetabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology,...
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Select Committee on Aging.
This paper, on the health hazards of cold weather for elderly persons, presents information from various sources on the death rates in winter throughout the United States. After reviewing the scope of the problem, specific health hazards associated with cold weather are discussed, i.e., hypothermia, fires, carbon monoxide poisoning, and influenza…
The Arctic Vortex in March 2011: A Dynamical Perspective
NASA Technical Reports Server (NTRS)
Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.
2011-01-01
Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.
Colton-Gagnon, Katia; Ali-Benali, Mohamed Ali; Mayer, Boris F.; Dionne, Rachel; Bertrand, Annick; Do Carmo, Sonia; Charron, Jean-Benoit
2014-01-01
Background and Aims Cold is a major constraint for cereal cultivation under temperate climates. Winter-hardy plants interpret seasonal changes and can acquire the ability to resist sub-zero temperatures. This cold acclimation process is associated with physiological, biochemical and molecular alterations in cereals. Brachypodium distachyon is considered a powerful model system to study the response of temperate cereals to adverse environmental conditions. To date, little is known about the cold acclimation and freezing tolerance capacities of Brachypodium. The main objective of this study was to evaluate the cold hardiness of seven diploid Brachypodium accessions. Methods An integrated approach, involving monitoring of phenological indicators along with expression profiling of the major vernalization regulator VRN1 orthologue, was followed. In parallel, soluble sugars and proline contents were determined along with expression profiles of two COR genes in plants exposed to low temperatures. Finally, whole-plant freezing tests were performed to evaluate the freezing tolerance capacity of Brachypodium. Key Results Cold treatment accelerated the transition from the vegetative to the reproductive phase in all diploid Brachypodium accessions tested. In addition, low temperature exposure triggered the gradual accumulation of BradiVRN1 transcripts in all accessions tested. These accessions exhibited a clear cold acclimation response by progressively accumulating proline, sugars and COR gene transcripts. However, whole-plant freezing tests revealed that these seven diploid accessions only have a limited capacity to develop freezing tolerance when compared with winter varieties of temperate cereals such as wheat and barley. Furthermore, little difference in terms of survival was observed among the accessions tested despite their previous classification as either spring or winter genotypes. Conclusions This study is the first to characterize the freezing tolerance capacities of B. distachyon and provides strong evidence that some diploid accessions such as Bd21 have a facultative growth habit. PMID:24323247
Cold Tolerance of Pityophthorus juglandis (Coleoptera: Scolytidae) From Northern California
Andrea R. Hefty; Steven J. Seybold; Brian H. Aukema; Robert C. Venette
2017-01-01
Winter survivorship of insects is determined by a combination of physiological, behavioral, and microhabitat characteristics. We characterized the cold tolerance of the walnut twig beetle, Pityophthorus juglandis Blackman, a domestic alien invasive bark beetle that vectors a phytopathogenic fungus. The beetle and fungus cause thousand cankers...
USDA-ARS?s Scientific Manuscript database
Re-occurrence of Pierce’s disease of grapes, caused by Xylella fastidiosa, is known to be influenced by environmental factors, particularly cold temperatures during overwintering. Grapevines in colder regions are often cured of X. fastidiosa infection over the winter season, depending on cultivar, t...
In Vitro Evaluation Mimics Influences of Winter Cold Water Ingestion on Ruminal Function
USDA-ARS?s Scientific Manuscript database
Ingestion of cold feed and water may suddenly reduce ruminal temperature, which could result in decreased microbial activity and diet digestibility. The objective of this study was to investigate the association between critical rumen in vitro incubation temperature and activity of ruminal microorga...
In vitro evaluation mimics influences of winter cold water ingestion on ruminal function
USDA-ARS?s Scientific Manuscript database
Ingestion of cold feed and water may suddenly reduce ruminal temperature, which could result in decreased microbial activity and diet digestibility. The objective of this study was to investigate the association between critical rumen in vitro incubation temperature and activity of ruminal microorga...
NASA Astrophysics Data System (ADS)
Eshonkulov, Ravshan; Poyda, Arne; Ingwersen, Joachim; Streck, Thilo
2017-04-01
Assessing the spatial variability of soil physical properties is crucial for agricultural land management. We determined the spatial variability within two agricultural fields in the regions of Kraichgau and Swabian Jura in Southwest Germany. We determined soil physical properties and recorded the temporal development of soil mineral nitrogen (N) and water content as well as that of plant variables (phenology, biomass, leaf area index (LAI), N content, green vegetation fraction (GVF). The work was conducted during the vegetation periods of 2015 and 2016 in winter wheat, and winter rapeseed in Kraichgau and winter barley and silage maize on Swabian Jura. Measurements were taken in three-weekly intervals. On each field, we identified three plots with reduced plant development using high-resolution (RapidEye) satellite images ("cold spots"). Measurements taken on these cold spots were compared to those from five established (long-term) reference plots representing the average field variability. The software EXPERT-N was used to simulate the soil crop system at both cold spots and reference plots. Sensitivity analyses were conducted to identify the most important parameters for the determination of spatial variability in crop growth dynamics.
Climate Degradation and Extreme Icing Events Constrain Life in Cold-Adapted Mammals.
Berger, J; Hartway, C; Gruzdev, A; Johnson, M
2018-01-18
Despite the growth in knowledge about the effects of a warming Arctic on its cold-adapted species, the mechanisms by which these changes affect animal populations remain poorly understood. Increasing temperatures, declining sea ice and altered wind and precipitation patterns all may affect the fitness and abundance of species through multiple direct and indirect pathways. Here we demonstrate previously unknown effects of rain-on-snow (ROS) events, winter precipitation, and ice tidal surges on the Arctic's largest land mammal. Using novel field data across seven years and three Alaskan and Russian sites, we show arrested skeletal growth in juvenile muskoxen resulting from unusually dry winter conditions and gestational ROS events, with the inhibitory effects on growth from ROS events lasting up to three years post-partum. Further, we describe the simultaneous entombment of 52 muskoxen in ice during a Chukchi Sea winter tsunami (ivuniq in Iñupiat), and link rapid freezing to entrapment of Arctic whales and otters. Our results illustrate how once unusual, but increasingly frequent Arctic weather events affect some cold-adapted mammals, and suggest that an understanding of species responses to a changing Arctic can be enhanced by coalescing groundwork, rare events, and insights from local people.
NASA Astrophysics Data System (ADS)
Fiorella, R.; Bares, R.; Lin, J. C.; Strong, C.; Bowen, G. J.
2017-12-01
Water released from the combustion of fossil fuels, while a negligible part of the global hydrological cycle, may be a significant contributor to urban humidity as fossil fuel emissions are strongly concentrated in space and time. The fraction of urban humidity comprised of combustion-derived vapor (CDV) cannot be observed through humidity measurements alone. However, the distinct stable isotopic composition of CDV, which arises from the reaction of 18O-enriched atmospheric O2 with 2H-depleted organic molecules, represents a promising method to apportion observed humidity between CDV and advected vapor. We apply stable water vapor isotopes to investigate variability in CDV amount and its relationship to atmospheric conditions in Salt Lake City, Utah. The Salt Lake Valley experiences several periods of atmospheric stratification during winter known as cold air pools, during which concentrations of CDV and pollutants can be markedly elevated due to reduced atmospheric mixing. Therefore, the SLV during winter is an ideal place to investigate variability in CDV fraction across a spectrum of boundary layer conditions, ranging from well-mixed to very stable. We present water vapor isotope data from four winters (2013-2017) from the top of a 30 m building on the University of Utah (U of U) Campus. Additionally, we present water vapor isotope data from the summit of Hidden Peak from the 2016-2017 winter, 25 km SE and 2000 m above the U of U site. The Hidden Peak site is consistently above the cold air pool emplaced in the SLV during stable events. We find the expression of the CDV signal in the valley is related to the atmospheric structure of the cold air pools in the SLV, and that the fraction of CDV inferred in the valley is likely related to the mixing height within the cold air pool. Furthermore, we find that patterns between the Hidden Peak and U of U sites during inversion events may record the large-scale atmospheric dynamics promoting emplacement of the cold air pool in the SLV. Further refinements of CDV estimation through stable isotope methods will bring improved mechanistic understanding of the role of CDV in the urban hydrological cycle and improve model simulations of urban environments.
Change of Martian surface height associated with polar cold spots
NASA Astrophysics Data System (ADS)
Ford, P. G.; Pettengill, G. H.
2003-12-01
For the past 30 years, orbiting microwave radiometers have observed anomalously low emission temperatures during Martian polar winters. While the physical surface temperature cannot drop significantly below 148K---the point at which CO2 starts to condense---radiometric temperatures of 110K or lower at 25μ wavelength are commonly found in isolated ``cold spots'' throughout both northern and southern polar winters. These form roughly circular patches, tens to hundreds of km in diameter, and persist for no more than a few days. Three models have been proposed to account for them: (a) an atmospheric effect that accompanies CO2 snowfall; (b) fresh surface deposits of CO2 snow; or (c) a change in the properties of CO2 slab ice. Following the success of Smith et al.1 in using the MOLA laser altimeter aboard Mars Global Surveyor to directly measure the growth of the winter polar caps, we have applied the same technique to ask whether cold spots are accompanied by a sudden change in surface height. To identify the cold spots, we first examined all polar observations made by the TES radiometer that was co-boresited with MOLA, and made gridded images of ∂ T / ∂ λ , the derivative of the brightness temperature wrt wavelength, 20μ <= λ <= 25μ , over 5o ranges in Ls. A total of 169 cold spots were readily located in the 3 winters (one northern, two southern) during which MOLA operated, and their times of first appearance were noted. We then examined the individual MOLA tracks that crossed these regions from 30 days before, to 30 days after, the cold spot appearances. Three sets of crossing points were assembled: (a) both pairs of tracks were made before the cold spot appearance, (b) both after the appearance, and (c) one before and the other after. For each crossing point, the surface height was interpolated from the 3 nearest altimeter footprints in each of the two tracks. The difference between the resulting pair of heights was averaged over all crossing points, and the RMS variance of the height differences was used as a measure of the statistical error in the measurement. Preliminary results show small height differences before the appearance of a cold spot, as expected, but no abrupt jump in surface height immediately after one appears. This suggests that the cold spots are not formed by deep (>50cm) CO2 snow deposits, but it cannot help us decide between the alternatives of CO2 snowfall or a change in slab ice properties. 1 Smith, Zuber, and Neumann, Science, {294}, 2141-2146, 2001.
Physiological disturbances and overwinter mortality of largemouth bass from different latitudes.
VanLandeghem, Matthew M; Wagner, Curtis P; Wahl, David H; Suski, Cory D
2013-01-01
Thermal conditions associated with winter can influence the distribution of a species. Because winter severity varies along latitudes, populations of temperate fish located along a latitudinal gradient may display variation in both sublethal and lethal responses to cold stressors. Sublethal physiological disturbances were quantified in age 1 largemouth bass (Micropterus salmoides) from populations originating from Alabama and Illinois but raised in a common environment. Fish were exposed to 6 h of rapid cold shock from 20° to 8°C (controls were held at 20°C) and then sampled for white muscle, whole blood, and plasma. After cold shock, glucose concentrations were elevated in Alabama but not Illinois fish. Sodium was lower and chloride was higher in Alabama largemouth bass, but fish from Illinois had a greater propensity for potassium loss during cold shock. In Illinois ponds, Alabama largemouth bass exhibited lower overwinter survival (adult: 10%; age 0: 22%) than did those from Illinois (adult: 80%; age 0: 82%). Latitudinal variation in physiological responses to cold stressors may therefore influence overwinter survival of largemouth bass and the ability of a fish species to exist over large geographic areas.
System and method for crystalline sheet growth using a cold block and gas jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellerman, Peter L.; Mackintosh, Brian; Carlson, Frederick M.
A crystallizer for growing a crystalline sheet from a melt may include a cold block having a cold block surface that faces an exposed surface of the melt, the cold block configured to generate a cold block temperature at the cold block surface that is lower than a melt temperature of the melt at the exposed surface. The system may also include a nozzle disposed within the cold block and configured to deliver a gas jet to the exposed surface, wherein the gas jet and the cold block are interoperative to generate a process zone that removes heat from themore » exposed surface at a first heat removal rate that is greater than a second heat removal rate from the exposed surface in outer regions outside of the process zone.« less
Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii.
Toxopeus, Jantina; Jakobs, Ruth; Ferguson, Laura V; Gariepy, Tara D; Sinclair, Brent J
2016-06-01
Overwintering insects must survive the multiple-stress environment of winter, which includes low temperatures, reduced food and water availability, and cold-active pathogens. Many insects overwinter in diapause, a developmental arrest associated with high stress tolerance. Drosophila suzukii (Diptera: Drosophilidae), spotted wing drosophila, is an invasive agricultural pest worldwide. Its ability to overwinter and therefore establish in temperate regions could have severe implications for fruit crop industries. We demonstrate here that laboratory populations of Canadian D. suzukii larvae reared under short-day, low temperature, conditions develop into dark 'winter morph' adults similar to those reported globally from field captures, and observed by us in southern Ontario, Canada. These winter-acclimated adults have delayed reproductive maturity, enhanced cold tolerance, and can remain active at low temperatures, although they do not have the increased desiccation tolerance or survival of fungal pathogen challenges that might be expected from a more heavily melanised cuticle. Winter-acclimated female D. suzukii have underdeveloped ovaries and altered transcript levels of several genes associated with reproduction and stress. While superficially indicative of reproductive diapause, the delayed reproductive maturity of winter-acclimated D. suzukii appears to be temperature-dependent, not regulated by photoperiod, and is thus unlikely to be 'true' diapause. The traits of this 'winter morph', however, likely facilitate overwintering in southern Canada, and have probably contributed to the global success of this fly as an invasive species. Copyright © 2016 Elsevier Ltd. All rights reserved.
What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change.
Vetter, Sebastian G; Ruf, Thomas; Bieber, Claudia; Arnold, Walter
2015-01-01
Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.
Observed Decrease of North American Winter Temperature Variability
NASA Astrophysics Data System (ADS)
Rhines, A. N.; Tingley, M.; McKinnon, K. A.; Huybers, P. J.
2015-12-01
There is considerable interest in determining whether temperature variability has changed in recent decades. Model ensembles project that extratropical land temperature variance will detectably decrease by 2070. We use quantile regression of station observations to show that decreasing variability is already robustly detectable for North American winter during 1979--2014. Pointwise trends from GHCND stations are mapped into a continuous spatial field using thin-plate spline regression, resolving small-scales while providing uncertainties accounting for spatial covariance and varying station density. We find that variability of daily temperatures, as measured by the difference between the 95th and 5th percentiles, has decreased markedly in winter for both daily minima and maxima. Composites indicate that the reduced spread of winter temperatures primarily results from Arctic amplification decreasing the meridional temperature gradient. Greater observed warming in the 5th relative to the 95th percentile stems from asymmetric effects of advection during cold versus warm days; cold air advection is generally from northerly regions that have experienced greater warming than western or southwestern regions that are generally sourced during warm days.
Measuring facial cooling in outdoor windy winter conditions: an exploratory study.
Briggs, Andrew G S; Gillespie, Terry J; Brown, Robert D
2017-10-01
Winter clothing provides insulation for almost all of a person's body, but in most situations, a person's face remains uncovered even in cold windy weather. This exploratory study used thermal imagery to record the rate of cooling of the faces of volunteers in a range of winter air temperatures and wind speeds. Different areas of the faces cooled at different rates with the areas around the eyes and neck cooling at the slowest rate, and the nose and cheeks cooling at the fastest rate. In all cases, the faces cooled at an approximately logarithmic decay for the first few minutes. This was followed by a small rise in the temperature of the face for a few minutes, which was then followed by an uninterrupted logarithmic decay. Volunteers were told to indicate when their face was so cold that they wanted to end the test. The total amount of time and the facial temperature at the end of each trial were recorded. The results provide insight into the way faces cool in uncontrolled, outdoor winter conditions.
Barriers to wheelchair use in the winter.
Ripat, Jacquie D; Brown, Cara L; Ethans, Karen D
2015-06-01
To test the hypothesis that challenges to community participation posed by winter weather are greater for individuals who use scooters, manual and power wheelchairs (wheeled mobility devices [WMDs]) than for the general ambulatory population, and to determine what WMD users identify as the most salient environmental barriers to community participation during the winter. Cross-sectional survey organized around 5 environmental domains: technological, natural, physical, social/attitudinal, and policy. Urban community in Canada. Convenience sample of WMD users or their proxy (N=99). Not applicable. Not applicable. Forty-two percent identified reduced outing frequency in winter months, associated with increased age (χ(3)=6.4, P=.04), lack of access to family/friends for transportation (χ(2)=8.1, P=.04), and primary type of WMD used in the winter (scooter χ(2)=8.8, P=.003). Most reported tires/casters becoming stuck in the snow (95%) or slipping on the ice (91%), difficulty ascending inclines/ramps (92%), and cold hands while using controls or pushing rims (85%); fewer identified frozen wheelchair/scooter batteries, seat cushions/backrests, or electronics. Sidewalks/roads were reported to be problematic by 99%. Eighty percent reported needing additional help in the winter. Limited community access in winter led to a sense of loneliness/isolation, and fear/anxiety related to safety. Respondents identified policies that limited participation during winter. People who use WMDs decrease their community participation in cold weather because of multiple environmental barriers. Clinicians, researchers, and policymakers can take a multidimensional approach to mitigate these barriers in order to enhance community participation by WMD users in winter. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Rongcai; Rao, Jian; Wu, Guoxiong; Cai, Ming
2017-05-01
The concurrent effects of the El Niño-Southern Oscillation (ENSO) on the northern winter stratosphere have been widely recognized; however, the delayed effects of ENSO in the next winter after mature ENSO have yet to be confirmed in multi reanalyses and model simulations. This study uses three reanalysis datasets, a long-term fully coupled model simulation, and a high-top general circulation model to examine ENSO's delayed effects in the stratosphere. The warm-minus-cold composite analyses consistently showed that, except those quick-decaying quasi-biennial ENSO events that reverse signs during July-August-September (JAS) in their decay years, ENSO events particularly those quasi-quadrennial (QQ) that persist through JAS, always have a significant effect on the extratropical stratosphere in both the concurrent winter and the next winter following mature ENSO. During the concurrent winter, the QQ ENSO-induced Pacific-North American (PNA) pattern corresponds to an anomalous wavenumber-1 from the upper troposphere to the stratosphere, which acts to intensify/weaken the climatological wave pattern during warm/cold ENSO. Associated with the zonally quasi-homogeneous tropical forcing in spring of the QQ ENSO decay years, there appear persistent and zonally quasi-homogeneous temperature anomalies in the midlatitudes from the upper troposphere to the lower stratosphere until summer. With the reduction in ENSO forcing and the PNA responses in the following winter, an anomalous wavenumber-2 prevails in the extratropics. Although the anomalous wave flux divergence in the upper stratospheric layer is still dominated by wavenumber-1, it is mainly caused by wavenumber-2 in the lower stratosphere. However, the wavenumber-2 activity in the next winter is always underestimated in the model simulations, and wavenumber-1 activity dominates in both winters.
Causes and Consequences of Exceptional North Atlantic Heat Loss in Recent Winters
NASA Astrophysics Data System (ADS)
Josey, Simon; Grist, Jeremy; Duchez, Aurelie; Frajka-Williams, Eleanor; Hirschi, Joel; Marsh, Robert; Sinha, Bablu
2016-04-01
The mid-high latitude North Atlantic loses large amounts of heat to the atmosphere in winter leading to dense water formation. An examination of reanalysis datasets (ERA-Interim, NCEP/NCAR) reveals that heat loss in the recent winters 2013-14 and 2014-15 was exceptionally strong. The causes and consequences of this extraordinary ocean heat loss will be discussed. In 2013-2014, the net air-sea heat flux anomaly averaged over the whole winter exceeded 100 Wm-2 in the eastern subpolar gyre (the most extreme in the period since 1979 spanned by ERA-Interim). The causes of this extreme heat loss will be shown to be severe latent and sensible heat fluxes driven primarily by anomalously strong westerly airflows from North America and northerly airflows originating in the Nordic Seas. The associated sea level pressure anomaly field reflects the dominance of the second mode of atmospheric variability, the East Atlantic Pattern (EAP) over the North Atlantic Oscillation (NAO) in this winter. The extreme winter heat loss had a significant impact on the ocean extending from the sea surface into the deeper layers and a re-emergent cold Sea Surface Temperature (SST) anomaly is evident in November 2014. The following winter 2014-15 experienced further extreme heat loss that served to amplify the strength of the re-emergent SST anomaly. By summer 2015, an unprecedented cold mid-latitude North Atlantic Ocean surface temperature anomaly is evident in observations and has been widely referred to as the 'big blue blob'. The role played by the extreme surface heat loss in the preceding winters in generating this feature and it subsequent evolution through winter 2015-16 will be explored.
Potential vorticity regimes over East Asia during winter
NASA Astrophysics Data System (ADS)
Huang, Wenyu; Chen, Ruyan; Wang, Bin; Wright, Jonathon S.; Yang, Zifan; Ma, Wenqian
2017-02-01
Nine potential vorticity (PV) regimes over East Asia are identified by applying a Self-Organizing Map and Hierarchical Ascendant Classification regime analysis to the daily PV reanalysis fields on the 300 K isentropic surface for December-March 1948-2014. According to the surface temperature anomalies over East Asia, these nine regimes are further classified into three classes, i.e., cold class (three regimes), warm class (four regimes), and neutral class (two regimes). The PV-based East Asian winter monsoon index (EAWMI) is used to study the relationship between PV distributions and the temperature anomalies. The magnitude of cold (warm) anomalies over the land areas of East Asia increases (decreases) quasi-linearly with the EAWMI. Regression analysis reveals that cold temperature anomalies preferentially occur when the EAWMI exceeds a threshold at ˜0.2 PVU (where 1 PVU ≡ 10-6 m2 K kg-1 s-1). PV inversion uncovers the mechanisms behind the relationships between the PV regimes and surface temperature anomalies and reveals that cold (warm) PV regimes are associated with significant warming (cooling) in the upper troposphere and lower stratosphere. On average, cold regimes have longer durations than warm regimes. Interclass transition probabilities are much higher for paths from warm/neutral regimes to cold regimes than for paths from cold regimes to warm/neutral regimes. Besides, intraclass transitions are rare within the warm or neutral regimes. The PV regime analysis provides insight into the causes of severe cold spells over East Asia, with blocking circulation patterns identified as the primary factor in initiating and maintaining these cold spells.
Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko
2015-12-18
The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones.
Antifreeze Proteins Modify the Freezing Process In Planta12
Griffith, Marilyn; Lumb, Chelsey; Wiseman, Steven B.; Wisniewski, Michael; Johnson, Robert W.; Marangoni, Alejandro G.
2005-01-01
During cold acclimation, winter rye (Secale cereale L. cv Musketeer) plants accumulate antifreeze proteins (AFPs) in the apoplast of leaves and crowns. The goal of this study was to determine whether these AFPs influence survival at subzero temperatures by modifying the freezing process or by acting as cryoprotectants. In order to inhibit the growth of ice, AFPs must be mobile so that they can bind to specific sites on the ice crystal lattice. Guttate obtained from cold-acclimated winter rye leaves exhibited antifreeze activity, indicating that the AFPs are free in solution. Infrared video thermography was used to observe freezing in winter rye leaves. In the absence of an ice nucleator, AFPs had no effect on the supercooling temperature of the leaves. However, in the presence of an ice nucleator, AFPs lowered the temperature at which the leaves froze by 0.3°C to 1.2°C. In vitro studies showed that apoplastic proteins extracted from cold-acclimated winter rye leaves inhibited the recrystallization of ice and also slowed the rate of migration of ice through solution-saturated filter paper. When we examined the possible role of winter rye AFPs in cryoprotection, we found that lactate dehydrogenase activity was higher after freezing in the presence of AFPs compared with buffer, but the same effect was obtained by adding bovine serum albumin. AFPs had no effect on unstacked thylakoid volume after freezing, but did inhibit stacking of the thylakoids, thus indicating a loss of thylakoid function. We conclude that rye AFPs have no specific cryoprotective activity; rather, they interact directly with ice in planta and reduce freezing injury by slowing the growth and recrystallization of ice. PMID:15805474
NASA Astrophysics Data System (ADS)
Saarni, Saija; Muschitiello, Francesco; Weege, Stefanie; Brauer, Achim; Saarinen, Timo
2016-12-01
This study presents a new varved lake sediment sequence from Lake Kuninkaisenlampi, Eastern Finland. The record is constituted by alternations of clastic and biogenic laminae and provides a precise chronology extending back to 3607 ± 94 varve yrs. BP. The seasonality of the boreal climatic zone, with cold winters and mild summers, is reflected in the varve structure as a succession of three laminae from bottom to top, (i) a coarse to fine-grained detrital lamina marked by detrital catchment material transported by spring floods; (ii) a biogenic lamina with diatoms, plant and insect remnants reflecting biological productivity during the season of lake productivity; and (iii) a very fine amorphous organic lamina deposited during the winter stratification. The thickness of the detrital lamina in the lake reflects changes in the rate of spring snow melt in the catchment and is, therefore, considered a proxy for winter conditions. Hence, the record allows reconstructing local climate and environmental conditions on inter-annual to the multi-centennial timescales. We find that minerogenic accumulation reflected in the detrital lamina exhibits a high multi-decadal to centennial-scale spectral coherency with proxies for solar activity, such as Δ14C, and Total Solar Irradiance, suggesting a strong link between solar variability and sediment transport to the lake basin. Increased catchment erosion is observed during periods of low solar activity, which we ascribe to the development of more frequent atmospheric winter blocking circulation induced by solar-forced changes in the stratosphere. We suggest that soil frost in the catchment of Lake Kuninkaisenlampi related to more frequent winter blocking led to increased surface run-off and ultimately to increased catchment erosion during spring. We conclude that, during the past ca 3600 years, solar forcing may have modulated multi-decadal to centennial variations in sedimentation regimes in lakes from Eastern Finland and potentially in other North European lakes.
Controlling the vapor pressure of a mercury lamp
Grossman, Mark W.; George, William A.
1988-01-01
The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.
[Defining of wheat growth management zones based on remote sensing and geostatistics].
Huang, Yan; Zhu, Yan; Ma, Meng-Li; Wang, Hang; Cao, Wei-Xing; Tian, Yong-Chao
2011-02-01
Taking the winter wheat planting areas in Rugao City and Haian County of Jiangsu Province as test objects, the clustering defining of wheat growth management zones was made, based on the spatial variability analysis and principal component extraction of the normalized difference vegetation index (NDVI) data calculated from the HJ-1A/B CCD images (30 m resolution) at different growth stages of winter wheat, and of the soil nutrient indices (total nitrogen, organic matter, available phosphorus, and available potassium). The results showed that the integration of the NDVI at heading stage with above-mentioned soil nutrient indices produced the best results of wheat growth management zone defining, with the variation coefficients of NDVI and soil nutrient indices in each defined zone ranged in 4.5% -6.1% and 3.3% -87.9%, respectively. However, the variation coefficients were much larger when the wheat growth management zones were defined individually by NDVI or by soil nutrient indices, suggesting that the newly developed defining method could reduce the variability within the defined management zones and improve the crop management precision, and thereby, contribute to the winter wheat growth management and process simulation at regional scale.
Brabets, T.P.; Walvoord, Michelle Ann
2009-01-01
Streamflow characteristics in the Yukon River Basin of Alaska and Canada have changed from 1944 to 2005, and some of the change can be attributed to the two most recent modes of the Pacific Decadal Oscillation (PDO). Seasonal, monthly, and annual stream discharge data from 21 stations in the Yukon River Basin were analyzed for trends over the entire period of record, generally spanning 4-6 decades, and examined for differences between the two most recent modes of the PDO: cold-PDO (1944-1975) and warm-PDO (1976-2005) subsets. Between 1944 and 2005, average winter and April flow increased at 15 sites. Observed winter flow increases during the cold-PDO phase were generally limited to sites in the Upper Yukon River Basin. Positive trends in winter flow during the warm-PDO phase broadened to include stations in the Middle and Lower Yukon River drainage basins. Increases in winter streamflow most likely result from groundwater input enhanced by permafrost thawing that promotes infiltration and deeper subsurface flow paths. Increased April flow may be attributed to a combination of greater baseflow (from groundwater increases), earlier spring snowmelt and runoff, and increased winter precipitation, depending on location. Calculated deviations from long-term mean monthly discharges indicate below-average flow in the winter months during the cold PDO and above-average flow in the winter months during the warm PDO. Although not as strong a signal, results also support the reverse response during the summer months: above-average flow during the cold PDO and below-average flow during the warm PDO. Changes in the summer flows are likely an indirect consequence of the PDO, resulting from earlier spring snowmelt runoff and also perhaps increased summer infiltration and storage in a deeper active layer. Annual discharge has remained relatively unchanged in the Yukon River Basin, but a few glacier-fed rivers demonstrate positive trends, which can be attributed to enhanced glacier melting. A positive trend in annual flow during the warm PDO near the mouth of the Yukon River suggests that small increases in flow throughout the Yukon River Basin have resulted in an additive effect manifested in the downstream-most streamflow station. Many of the identified changes in streamflow patterns in the Yukon River Basin show a correlation to the PDO regime shift. This work highlights the importance of considering proximate climate forcings as well as global climate change when assessing hydrologic changes in the Arctic.
Paul G. Schaberg; Rakesh Minocha; Stephanie Long; Joshua M. Halman; Gary J. Hawley; Christopher Eagar
2011-01-01
Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar...
Review of the circulation in the Beibu Gulf, South China Sea
NASA Astrophysics Data System (ADS)
Gao, Jingsong; Wu, Guidan; Ya, Hanzheng
2017-04-01
Although Beibu Gulf holds a significant geographical location and is rich in fishery resources, it has attracted only limited attention from researchers in recent decades. This study summarizes the conclusions based on the observations and model results regarding the circulation and cold water mass in the Beibu Gulf to provide a reference for further research. Affected by wind and density gradient, the spring circulation may be gulf-scale cyclonic and nested with an enclosed cyclonic gyre in the northern gulf and unclosed cyclonic gyre in the southern gulf. Meanwhile, the mechanisms of summer circulation remain controversial. Along with the results of a new numerical model, historical observations suggest that summer circulation is cyclonic and anticyclonic in the northern and southern gulfs, respectively. The northern and southern gulfs are mainly influenced by wind stress curl and South China Sea current, respectively. Similarly, although different views regarding the structure of winter circulation have been presented, a large amount of evidence supports the existence of two cyclonic gyres in the northern and southern gulfs. In addition, a southwestward current off the northwestern coast of Hainan Island is present. The circulation structure in the fall is similar to that in winter. However, the cyclonic gyre in the southern Gulf has a greater tendency to intrude northwards into the Beibu Gulf in fall than in winter, and the currents off the coast of Vietnam and the northwestern coast of Hainan Island are weaker in fall than those in winter. Most studies indicate that winter boreal circulation is driven by the monsoon wind. The most recent observations and model results suggest that the current in the Qiongzhou Strait (QS) is eastward on certain days in the boreal summer and is affected by the difference between the sea levels of the two ends of the QS and tidal rectification. Correspondingly, the volume transport is approximately -0.1 Sv (minus sign represents westward) in spring and from -0.1 to -0.4 Sv in boreal winter. By contrast, the volume transport in summer remains controversial. The cold water mass in the Beibu Gulf is generated locally in spring, matures in summer, and disappears in fall. Heat flux and wind dominate the formation of the cold water mass, and tidal mixing and topographic effects influence the variations in the cold water mass.
Inability of Ceratitis capitata (Diptera: Tephritidae) to overwinter in the Judean hills.
Israely, Nimrod; Ritte, Uzi; Oman, Samuel D
2004-02-01
The overwintering potential of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in cold winter areas within its northern distribution is a key element in understanding its ecology. Recent studies have suggested that although originating in tropical Africa, the fly has become adapted to the cold weather that prevails within its northernmost areas of distribution. We address the question of whether the Mediterranean fruit fly has expanded its overwintering range to include the mountains of central Israel. Doing so would imply that the fly has developed either a behavioral or a physiological mechanism to cope with low temperature and/or damp conditions in combination with cold. We monitored adult populations year round, sampling fruit, calculating expected emergence days for overwintering flies, and studying adults captured within dense and sparse apple orchards. We also performed several manipulative experiments to study preimago ability to survive the winter under natural or seminatural conditions. The study was conducted in the central mountains of Israel at 700-m altitude from 1994 to 2003. Comparison experiments also were conducted at 400 m and at sea level. Our results show 1) no adults captured during the winter and spring, 2) an absence of new infestations during the winter and spring, and 3) inability of preimago stages to overwinter in the central mountains of Israel. Thus, we conclude that the fly does not overwinter in the central mountains of Israel. We discuss the ecological and applied significance of our findings.
NASA Technical Reports Server (NTRS)
Lau, N.-C.; Lau, K.-M.
1984-01-01
The evolution of extratropical transient waves as they propagate eastward from the Eurasian land mass toward the Pacific during selected cold surge events in the winter Monsoon Experiment (MONEX) is studied. The outstanding cold surge episodes during MONEX are first identified, and the salient synoptic features related to these events are described using composite streamline charts. The structure of rapidly varying disturbances accompanying the cold surges and the associated energetics are examined, and the behavior of those fluctuations over relatively longer time scales is addressed.
NASA Astrophysics Data System (ADS)
Olsen, P. E.
2016-12-01
Eruptions of the giant Central Atlantic Magmatic Province (CAMP) are temporally linked to the end-Triassic extinction event (ETE). Continental tetrapod extinctions were highly selective affecting specific higher taxa and different latitudinal zones. The Late Triassic tropics were strongly dominated by diverse crocodile-line archosaurs while dinosaurs were rare, represented only by relatively small carnivores. Triassic high-latitudes had higher dinosaur diversity with abundant and often large dinosaurian herbivores. Only two small-bodied crocodile-line lineages survived the ETE, with a near-global homogenization of continental assemblages. Herbivorous dinosaurs spread globally while carnivorous dinosaurs became much larger. CAMP-sourced CO2 doublings (1,2) over 10s to 100s of thousands of years produced significant warming and some tropical lethality, but how this led to higher latitude extinctions is hard to see. In contrast, the taxonomic and geographic selectivity is consistent with many brief but severe sulfate "volcanic winters" (3) plausibly leading to freezing tropics. Crocodile-line archosaurs, dinosaurs, and pterosaurs and were relatively resistant to heat induced water stress, but the Crocodile-line archosaurs lacked insolation, while the latter had it. The lengthy super-greenhouse events allowed small crocodile-line archosaurs to escape to cooler climes or burrow, but during volcanic winters larger forms had nowhere to go. I hypothesize that crocodile-line and other herptile extinctions resulted from extreme cold events, for which they had no adaptations. In contrast, dinosaurs, other insulated forms, as well as burrowers survived the cold. This hypothesis is consistent with global post-ETE faunal homogenization, when the higher latitude dinosaurs spreading globally and becoming ecologically dominant. Tropical freezing predicts that ice crystal impressions should be found in facies that typically have reptile footprints in eastern North America deposited simultaneously with specific eruptions that occurred elsewhere in the CAMP area, and there are several such levels that can be searched. This is a contribution to IGCP 632. 1, McElwain et al (1999) Science 285:1386; 2, Schaller et al (2011) Science 331:1404; 3, Rampino et al (1988) Ann. Rev. Earth Planet. Sci. 16:73.
USDA-ARS?s Scientific Manuscript database
Economic loss due to cold weather events is a major constraint to winegrape-related industries where extreme and/or fluctuating winter temperatures induce injury and required remedial retraining and replanting increases production costs and lowers yield and fruit quality. The purpose of this study ...
Innovative cold tolerance test for conifer seedlings
Peter A. Balk; Peter Bronnum; Mike Perks; Eva Stattin; Lonneke H. M. van der Geest; Monique F. van Wordragen
2007-01-01
Forest tree nurseries rely on tight scheduling of operations to deliver vital seedlings to the planting site. Cold storage is required to: (1) prevent winter damage, especially in container seedlings; (2) to maintain planting stock in an inactive condition; and (3) to ensure plant supply for geographically distinct planting sites, a definite requirement for large-scale...
Particulate matter time-series and Köppen-Geiger climate classes in North America and Europe
NASA Astrophysics Data System (ADS)
Pražnikar, Jure
2017-02-01
Four years of time-series data on the particulate matter (PM) concentrations from 801 monitoring stations located in Europe and 234 stations in North America were analyzed. Using k-means clustering with distance correlation as a measure for similarity, 5 distinct PM clusters in Europe and 9 clusters across the United States of America (USA) were found. This study shows that meteorology has an important role in controlling PM concentrations, as comparison between Köppen-Geiger climate zones and identified PM clusters revealed very good spatial overlapping. Moreover, the Köppen-Geiger boundaries in Europe show a high similarity to the boundaries as defined by PM clusters. The western USA is much more diverse regarding climate zones; this characteristic was confirmed by cluster analysis, as 6 clusters were identified in the west, and only 3 were identified on the eastern side of the USA. The lowest similarity between PM time-series in Europe was observed between the Iberian Peninsula and the north Europe clusters. These two regions also show considerable differences, as the cold semi-arid climate has a long and hot summer period, while the cool continental climate has a short summertime and long and cold winters. Additionally, intra-continental examination of European clusters showed meteorologically driven phenomena in autumn 2011 encompassing a large European region from Bulgaria in the south, Germany in central Europe and Finland in the north with high PM concentrations in November and a decline in December 2011. Inter-continental comparison between Europe and the USA clusters revealed a remarkable difference between the PM time-series located in humid continental zone. It seems that because of higher shortwave downwelling radiation (≈210 W m-2) over the USA's continental zone, and consequently more intense production of secondary aerosols, a summer peak in PM concentration was observed. On the other hand, Europe's humid continental climate region experiences lower solar radiation (≈180 W m-2); consequently, the elevated summer-time PM concentrations were not detected.
Climate controls on forest productivity along the climate gradient of the western Sierra Nevada
NASA Astrophysics Data System (ADS)
Kelly, A. E.; Goulden, M. L.
2010-12-01
The broad climate gradient of the slopes of the western Sierra Nevada mountains supports ecosystems spanning extremes of productivity, biomass, and function. We are using this natural environmental gradient to understand how climate controls NPP, aboveground biomass, species' range limits, and phenology. Our experimental approach combines eddy covariance, sap flow, dendrometer, and litterfall measurements in combination with soil and hydrological data from the Southern Sierra Critical Zone Observatory (SSCZO). We have found that above about 2500 m, forest productivity is limited by winter cold, while below 1200 m, productivity is likely limited by summer drought. The sweet spot between these elevations has a nearly year-long growing season despite a snowpack that persists for as long as six months. Our results show that small differences in temperature can markedly alter the water balance and productivity of mixed conifer forests.
Evaluation of Camellias for zone 6b
USDA-ARS?s Scientific Manuscript database
Recent hybridization of camellias has yielded several selections recognized as cold hardy to USDA Hardiness Zone 6. Several of the cold hardy camellias, in an established camellia evaluation since 2004, were damaged with foliar bronzing and stem dieback after a severe freeze in November 2013 in McMi...
Inaba, Ryoichi; Kurokawa, Junichi; Mirbod, Seyed Mohammad
2009-07-01
To help making comfortable workplaces and to prevent health disorders induced by the exposure to moderate cold in two different groups of out-door workers, we conducted a survey to compare subjective symptoms and cold prevention measures in winter between traffic control workers and construction workers. The subjects of this study were 98 male traffic control workers and 149 male workers engaged in building construction. Work loads of traffic control workers and construction workers were estimated at RMR1-2 and RMR2-4, respectively. All subjects were asked to complete a self-administered questionnaire covering age, occupational career, working figure, present illness, past history of diseases, individual preventive measures to the cold, subjective symptoms in the winter (43 items) and subjective symptoms occurred during daytime working in the winter (6 items). In two parts of the construction workplaces (the place where a morning assembly was held and on the 7th floor of the construction site) dry bulb, wet bulb and globe temperatures were measured in January. Windchill Index (kcal/cm,(2) x h) was calculated by the measured dry bulb temperature and wind velocity. Mean values of dry bulb temperature between 9:00 and 16:30 in the place where a morning assembly was held for three days were between 4.8 +/- 1.2 degrees C at 9:00 am and 9.3 +/- 1.1 degrees C at noon. Mean values of Windchill Index in the place where a morning assembly was held were between 490.8+/-23.9 kcal/cm(2) x h at 9:30 am and 608.2+/-47.3 kcal/cm(2) x h at 2:30 pm. Occupational career, monthly working days, daily working hours, one way commuting hours, and daily smoking numbers of the traffic control workers were significantly shorter than the construction workers (p<0.01). There were no significant differences in the prevalence of chillness in the arms and legs between the traffic control workers (5.1%) and the construction workers (0.7%). Prevalence of wearing a warm underwear, body warmer, warm trousers, underpants, warm socks, shoe warmer and muffler in the traffic control workers were significantly higher than the construction workers. The subjective symptoms in winter complained most frequently were shoulder stiffness (51.0%), finger cold sensation (50.0%) and neck stiffness (48.0%) in the traffic control workers, and were easy to get fatigued (49.0%), lumbago (48.3%) and finger cold sensation (47.7%) in the construction workers. On the basis of the results obtained, it is clearly shown that the two groups are at the risk of disorders due to their working environment. Therefore, these workers are needed to undergo occupational health programs for prevention of cold exposure disorders. Applications of preventive countermeasures for both groups are discussed.
Backscatter for Ice Sheet 2 Growth Phase in the Winter 1994 Winter Sea Ice Experiment
NASA Technical Reports Server (NTRS)
Nghiem, S. V.
1996-01-01
None. This is raw data from a data set taken during the CRRELEX94 experiment. The data are polarimetric C-band radar measurements of a saline ice sheet grown in the outdoor Geophysical Research Facility at the Cold Regions Research and Engineering Lab. See references for other descriptions of data.
Physiological changes in red spruce seedlings during a simulated winter thaw
P.G. Schaberg; J.B. Shane; G.J. Hawley; G.R. Strimbeck; D.H. DeHayes; P.F. Cali; J.R. Donnelly
1996-01-01
We evaluated net photosynthesis, respiration, leaf conductance, xylem pressure potential (XPP) and cold hardiness in red spruce (Picea rubens Sarg.) seedlings exposed to either a continuous thaw (CT) or a daytime thaw with freezing nights (FN) for 8 days during mid-winter. Physiological differences between CT and FN seedlings were evident for all...
de Freitas, Christopher R.; Grigorieva, Elena A.
2015-01-01
Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This could be handy in planning and managing health services to the public and measures that might be used to help mitigate impacts. PMID:26703633
de Freitas, Christopher R; Grigorieva, Elena A
2015-11-26
Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This could be handy in planning and managing health services to the public and measures that might be used to help mitigate impacts.
NASA Astrophysics Data System (ADS)
Van Rampelbergh, M.; Verheyden, S.; Allan, M.; Quinif, Y.; Cheng, H.; Edwards, L.; Keppens, E.; Claeys, P.
2014-10-01
Speleothem δ18O and δ13C signals have already proven to enable climate reconstructions at high resolution. However, seasonally resolved speleothem records are still scarce and often difficult to interpret in terms of climate due to the multitude of factors that can affect the proxy signals. In this paper, a fast growing (up to 2 mm yr-1) seasonally laminated speleothem from the Han-sur-Lesse cave (Belgium) is analyzed for its δ18O and δ13C values, layer thickness and changes in calcite fabric. The studied part of the speleothem covers the most recent 500 years as indicated by layer counting and confirmed by 20 U/Th-ages. Epikarst recharge occurs mainly in winter and lesser during spring and fall. a good correlation can be established between lower winter temperatures and lower winter precipitation (DJF) based on the measured data by the Belgian meteorological institute since 1833 indicating that a dry winter is also a cold winter. Colder and dryer winters cause lower winter recharge and generally drier conditions in the cave. Lower winter recharge decreases the amount of isotopically light (δ18O) winter precipitation added to the epikarst in comparison to the heavier spring and fall waters, which leads to a net increase in δ18O value of the water in the epikarst. Increased δ18O values in the Proserpine are consequently interpreted to reflect colder and dryer winters. Higher δ13C signals are interpreted to reflect increased prior calcite precipitation (PCP) due to colder and dryer winters, when recharge is lower. Thinner layers and darker calcite relate to slower growth and occur when drip rates are low and when the drip water calcium ion concentration is low due to increased PCP, both caused by lower recharge during periods with colder and dryer winters. Exceptionally cold and dry winters cause the drip discharge to decrease under a certain threshold value inducing anomalies in the measured proxy records. Such anomalies occur from 1565 to 1610, from 1770 to 1800, from 1810 to 1860 and from 1880 to 1895 and correspond with exceptionally cold periods in proxy-based, historical and instrumental records and may relate to different factors such as negative winter NAO phases, lower solar irradiance and/or volcanic eruptions. When the discharge threshold is not reached, lower amplitude variations are observed such as between 1479 and 1565 and between 1730 and 1770 with two periods of relatively warmer and wetter winters. Between 1610 and 1730 a period of relatively cooler and dryer winters occurs and may relate to a decrease in solar irradiance during the Maunder Minimum (1640-1714). Seasonal δ18O variations indicate a 2.5 °C seasonality in cave air temperature during the two periods with warmer and wetter winters (1479-1565 and 1730-1770), and correspond to the cave air temperature seasonality observed today. a smaller 1.5 °C seasonality in cave air temperature occurs during the interval with colder and wetter winters between 1610 and 1730 and suggests colder summers. The δ13C seasonal changes suggest that the seasonality in discharge was lower than the one observed today with a short interval of increased seasonality between 1600 and 1660 reflecting stronger summer PCP-effects due to decreased winter recharge.
[Characteristics and the impact factors of acid rain in Fuzhou and Xiamen 1992-2012].
Zheng, Qiu-Ping; Wang, Hong; Chen, Bin-Bin; Sui, Ping; Lin, Wen
2014-10-01
Based on the observed acid rain data, synoptic situations and mass concentrations of atmospheric pollutants data from 1992 to 2012, the temporal variation characteristics and the impact factors of acid rain were analyzed in Fuzhou and Xiamen. The results showed that acid rain and non-acid rain accounted for 38.1% and 61.9% respectively in Fuzhou, 40.6% and 59.4% respectively in Xiamen. The annual average pH was 4.1-5.5 in Fuzhou. Acid rain pollution alleviated after 2007 in Fuzhou, and alleviated after 2006 in Xiamen. Acid rain was more serious in winter and spring than in summer and autumn. Precipitation intensity could affect the acidity of rain. Acid rain was observed more serious in southeast, southwest, west and northwest wind in Fuzhou, and more serious in northeast, southwest, west and northwest wind in Xiamen. Acid rain was most severe under the condition of transformed surface cold high, while most light under the conditions of typhoon (intertropical convergence zone) and outside of typhoon (intertropical convergence zone). There was a negative correlation between the mass concentrations of atmospheric pollutants, such as SO2, NO2, PM10, and the pH of rain in Fuzhou.
NASA Astrophysics Data System (ADS)
Misund, Ole Arve; Heggland, Kristin; Skogseth, Ragnheid; Falck, Eva; Gjøsæter, Harald; Sundet, Jan; Watne, Jens; Lønne, Ole Jørgen
2016-09-01
The Svalbard archipelago in the High Arctic is influenced by cold Arctic water masses from the north-east and the warm West Spitsbergen Current flowing northwards along its western coast. The eastern waters and the fjords are normally frozen during the winter months, while the coastal waters west of the archipelago remain open. Norwegian fishers have been harvesting from Svalbard waters for decades and detailed records of catches exists from 1980 onwards. We analyze the catch records from the Svalbard zone (approximately ICES area IIb). The large fishery for capelin in summer yielding annual catches up to 737 000 tons was closed by a Norwegian fishery regulation in the mid nineteen nineties. Demersal fisheries have been continuous, and the results clearly indicate a northward trend in landings of Northeast Arctic cod, haddock, ling and Atlantic halibut. Fisheries of Northern shrimp have been more variable and shown no clear geographic trends. A "gold rush" fishery for scallops north of Svalbard lasted for about 10 years (1986-1995) only, and ended due to low profitably. These results are discussed in relation to the possibility of further northward extension of fisheries subjected to climate change.
Nonshivering thermogenesis and adaptation to fasting in king penguin chicks.
Duchamp, C; Barre, H; Delage, D; Rouanet, J L; Cohen-Adad, F; Minaire, Y
1989-10-01
The ability to develop nonshivering thermogenesis (NST) and the effect of fasting on thermogenic response to cold were studied in winter-acclimatized king penguin chicks. Metabolic rate (MR) and integrated electrical muscle activity were measured at different ambient temperatures. In cold-acclimatized (5 degrees C) fed chicks, shivering threshold temperature (STT) was 9.4 degrees C lower than lower critical temperature (LCT), indicating that NST (0.7 W/kg) occurs at moderate cold, whereas in control chicks fed and reared at 25 degrees C for 3 wk, LCT and STT were similar. Chicks reared in the cold and fasting for 3 wk or 4-5 mo (natural winter fast) developed an NST of 0.8 and 2.4 W/kg, respectively, despite the fast. In fasting chicks, the intercept of the metabolic curve with the abscissa at zero MR was far below body temperature, contrasting with the classic model for heat loss. Their low LCT indicates the capacity of a large reduction in convective conductance characteristic of diving animals and allows energy sparing in moderate cold. Below LCT, conductance reincreases progressively, leading to a steeper than expected slope of the metabolic curve and allowing preservation of a threshold temperature in the shell. These results show for the first time in a wild young bird the development of NST after cold acclimatization. Further, at the temperature of cold acclimatization, an energy-sparing mechanism is shown in response to long-term fast adaptation.
NASA Astrophysics Data System (ADS)
Estournel, Claude; Testor, Pierre; Damien, Pierre; D'Ortenzio, Fabrizio; Marsaleix, Patrick; Conan, Pascal; Kessouri, Faycal; Durrieu de Madron, Xavier; Coppola, Laurent; Lellouche, Jean-Michel; Belamari, Sophie; Mortier, Laurent; Ulses, Caroline; Bouin, Marie-Noelle; Prieur, Louis
2016-07-01
The evolution of the stratification of the north-western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air - sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time-integrated buoyancy budget over the autumn - winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m-3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes.
Strategic Studies Quarterly (SSQ). Volume 11, Number 1. Spring 2017
2017-04-01
tour of the strategic horizon, noting the characteristics, proponents, and critics of each approach. The debate over grand strategy is a post –Cold...Winter 1996 issue of International Security.5 There, the authors sug- gested four rival grand strategies that might guide American post –Cold War...primacy the adopted grand strategy of the US government during the post –Cold War period? To some degree it was, although not to the extent that its
NASA Astrophysics Data System (ADS)
Samah, Azizan Abu; Babu, C. A.; Varikoden, Hamza; Jayakrishnan, P. R.; Hai, Ooi See
2016-08-01
An intense field observation was carried out for a better understanding of cold surge features over Peninsular Malaysia during the winter monsoon season. The study utilizes vertical profiles of temperature, humidity and wind at high vertical and temporal resolution over Kota Bharu, situated in the east coast of Peninsular Malaysia. LCL were elevated during the passage of the cold surge as the relative humidity values decreased during the passage of cold surge. Level of Free Convection were below 800 hPa and equilibrium levels were close to the LFC in most of the cases. Convective available potential energy and convection inhibition energy values were small during most of the observations. Absence of local heating and instability mechanism are responsible for the peculiar thermodynamic structure during the passage of the cold surge. The wind in the lower atmosphere became northeasterly and was strong during the entire cold surge period. A slight increase in temperature near the surface and a drop in temperature just above the surface were marked by the passage of the cold surge. A remarkable increase in specific humidity was observed between 970 and 900 hPa during the cold surge period. Further, synoptic scale features were analyzed to identify the mechanism responsible for heavy rainfall. Low level convergence, upper level divergence and cyclonic vorticity prevailed over the region during the heavy rainfall event. Dynamic structure of the atmosphere as part of the organized convection associated with the winter monsoon was responsible for the vertical lifting and subsequent rainfall.
Does Zoning Winter Recreationists Reduce Recreation Conflict?
Miller, Aubrey D; Vaske, Jerry J; Squires, John R; Olson, Lucretia E; Roberts, Elizabeth K
2017-01-01
Parks and protected area managers use zoning to decrease interpersonal conflict between recreationists. Zoning, or segregation, of recreation-often by non-motorized and motorized activity-is designed to limit physical interaction while providing recreation opportunities to both groups. This article investigated the effectiveness of zoning to reduce recreation conflict in the Vail Pass Winter Recreation Area in Colorado, USA. Despite a zoning management system, established groomed travel routes were used by both non-motorized recreationists (backcountry skiers, snowboarders, snowshoers) and motorized recreationists (snowmobilers). We hypothesized that persistent recreation conflict reported by non-motorized recreationists was the result of recreation occurring in areas of mixed non-motorized and motorized use, mostly along groomed routes. We performed a geospatial analysis of recreation [from Global Positioning System (GPS) points, n = 1,233,449] in the Vail Pass Winter Recreation Area to identify areas of mixed non-motorized and motorized use. We then surveyed non-motorized recreationists (n = 199) to test whether reported conflict is higher for respondents who traveled in areas of mixed-use, compared with respondents traveling outside areas of mixed-use. Results from the geospatial analysis showed that only 0.7 % of the Vail Pass Winter Recreation Area contained recreation from both groups, however that area contained 14.8 % of all non-motorized recreation and 49.1 % of all motorized recreation. Survey analysis results showed higher interpersonal conflict for all five standard conflict variables among non-motorized respondents who traveled in areas of mixed-use, compared with those traveling outside mixed-use areas. Management implications and recommendations for increasing the effectiveness of zoning are provided.
Does Zoning Winter Recreationists Reduce Recreation Conflict?
NASA Astrophysics Data System (ADS)
Miller, Aubrey D.; Vaske, Jerry J.; Squires, John R.; Olson, Lucretia E.; Roberts, Elizabeth K.
2017-01-01
Parks and protected area managers use zoning to decrease interpersonal conflict between recreationists. Zoning, or segregation, of recreation—often by non-motorized and motorized activity—is designed to limit physical interaction while providing recreation opportunities to both groups. This article investigated the effectiveness of zoning to reduce recreation conflict in the Vail Pass Winter Recreation Area in Colorado, USA. Despite a zoning management system, established groomed travel routes were used by both non-motorized recreationists (backcountry skiers, snowboarders, snowshoers) and motorized recreationists (snowmobilers). We hypothesized that persistent recreation conflict reported by non-motorized recreationists was the result of recreation occurring in areas of mixed non-motorized and motorized use, mostly along groomed routes. We performed a geospatial analysis of recreation [from Global Positioning System (GPS) points, n = 1,233,449] in the Vail Pass Winter Recreation Area to identify areas of mixed non-motorized and motorized use. We then surveyed non-motorized recreationists ( n = 199) to test whether reported conflict is higher for respondents who traveled in areas of mixed-use, compared with respondents traveling outside areas of mixed-use. Results from the geospatial analysis showed that only 0.7 % of the Vail Pass Winter Recreation Area contained recreation from both groups, however that area contained 14.8 % of all non-motorized recreation and 49.1 % of all motorized recreation. Survey analysis results showed higher interpersonal conflict for all five standard conflict variables among non-motorized respondents who traveled in areas of mixed-use, compared with those traveling outside mixed-use areas. Management implications and recommendations for increasing the effectiveness of zoning are provided.
Mogi, M; Armbruster, P A; Tuno, N; Aranda, C; Yong, H S
2017-11-07
We compared climatic distribution ranges between Aedes albopictus (Skuse) (Diptera: Culicidae) and the five wild (nondomesticated) species of Albopictus Subgroup of Scutellaris Group of Aedes (Stegomyia) in southern Asia. Distribution sites of the wild species concentrate in seasonal forest and savannah climate zones in India, Indochina, and southern China. The distribution of Ae. albopictus is broader than the wild species under 1) tropical rain-forest climate, 2) steppe and temperate savannah climate, and 3) continental climate with large seasonal temperature variation (hot summer and cold winter) at temperate lowlands (northernmost sites 40°N in Ae. albopictus vs 32°N in the wild species). However, the distribution of Ae. albopictus is more limited at tropical and subtropical highlands where the climate is cool but less continental (small seasonal variation, mild summer, and winter). We discuss a possibility that the broader climate ranges of Ae. albopictus are ecological or eco-evolutionary consequences of adaptation to human habitats. We also propose a general scenario for the origin, dispersal, and adaptation of Ae. albopictus in Asia as a hypothesis for future research. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Subseasonal Reversal of East Asian Surface Temperature Variability in Winter 2014/15
NASA Astrophysics Data System (ADS)
Xu, Xinping; Li, Fei; He, Shengping; Wang, Huijun
2018-06-01
Although there has been a considerable amount of research conducted on the East Asian winter-mean climate, subseasonal surface air temperature (SAT) variability reversals in the early and late winter remain poorly understood. In this study, we focused on the recent winter of 2014/15, in which warmer anomalies dominated in January and February but colder conditions prevailed in December. Moreover, Arctic sea-ice cover (ASIC) in September-October 2014 was lower than normal, and warmer sea surface temperature (SST) anomalies occurred in the Niño4 region in winter, together with a positive Pacific Decadal Oscillation (PDO|+) phase. Using observational data and CMIP5 historical simulations, we investigated the PDO|+ phase modulation upon the winter warm Niño4 phase (autumn ASIC reduction) influence on the subseasonal SAT variability of East Asian winter. The results show that, under a PDO|+ phase modulation, warm Niño4 SST anomalies are associated with a subseasonal delay of tropical surface heating and subsequent Hadley cell and Ferrel cell intensification in January-February, linking the tropical and midlatitude regions. Consistently, the East Asian jet stream (EAJS) is significantly decelerated in January-February and hence promotes the warm anomalies over East Asia. Under the PDO|+ phase, the decrease in ASIC is related to cold SST anomalies in the western North Pacific, which increase the meridional temperature gradient and generate an accelerated and westward-shifted EAJS in December. The westward extension of the EAJS is responsible for the eastward-propagating Rossby waves triggered by declining ASIC and thereby favors the connection between ASIC and cold conditions over East Asia.
Controlling the vapor pressure of a mercury lamp
Grossman, M.W.; George, W.A.
1988-05-24
The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.
Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.
Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K
2010-10-01
Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more frequent in some regions of the Arctic and that may ultimately drive plant community shifts. Copyright © Physiologia Plantarum 2010.
Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Paula F. Murakami; G. Richard Strimbeck; Steven G. McNulty
2002-01-01
We evaluated the influence of protracted low-level nitrogen (N) fertilization on foliar membrane-associated calcium (mCa), sugar and starch concentrations, membrane stability, winter cold tolerance, and freezing injury of red spruce (Picea rubens Sarg.) trees growing in six experimental plots on Mount Ascutney, Vermont. For 12 consecutive years...
Nordic Winter and Cold: Their Correspondence with Tomas Tranströmer's Poetry
ERIC Educational Resources Information Center
Hosian, Mohammad Akbar
2015-01-01
The Nobel Prize winning poet Tomas Tranströmer was born and bred in Sweden, a remarkably Scandinavian country. Topographically, Scandinavian countries are locations of extreme cold and snowing. This distinguishing climatic condition has had a dominant influence and impact on almost all Scandinavian art and literature, including Tomas Tranströmer's…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... waters close as a result of severe winter weather. Amendment 9 would also revise the overfished and... has been severely depleted by cold weather. Based on information from standardized assessments, if a... changes to the current regulatory text within Sec. 622.35(d), ``South Atlantic shrimp cold weather closure...
1982-09-01
F-7 CHILE -ARGENTINA SOUTH OF 40 DEGREES SOUTH .... ............. .. F-13 CHILE -PERU BORDER ................. ......................... F...34SITUATION CLIMATIC BRIEF CHILE -ARGENTINA SOUTH OF 40 DEGREES SOUTH ANNUAL 1. GENERAL. The weather is generally cloudy, windy, and cold year-round...conditions can occur for 3 or 4 hours following cold frontal passage during the winter. 4. TERMINAL WEATHER. Puerto Montt, Chile . Fair. Conditions are
NASA Astrophysics Data System (ADS)
Fernández-Montes, S.; Gómez-Navarro, J. J.; Rodrigo, F. S.; García-Valero, J. A.; Montávez, J. P.
2017-04-01
Precipitation and surface temperature are interdependent variables, both as a response to atmospheric dynamics and due to intrinsic thermodynamic relationships and feedbacks between them. This study analyzes the covariability of seasonal temperature (T) and precipitation (P) across the Iberian Peninsula (IP) using regional climate paleosimulations for the period 1001-1990, driven by reconstructions of external forcings. Future climate (1990-2099) was simulated according to SRES scenarios A2 and B2. These simulations enable exploring, at high spatial resolution, robust and physically consistent relationships. In winter, positive P-T correlations dominate west-central IP (Pearson correlation coefficient ρ = + 0.43, for 1001-1990), due to prevalent cold-dry and warm-wet conditions, while this relationship weakens and become negative towards mountainous, northern and eastern regions. In autumn, negative correlations appear in similar regions as in winter, whereas for summer they extend also to the N/NW of the IP. In spring, the whole IP depicts significant negative correlations, strongest for eastern regions (ρ = - 0.51). This is due to prevalent frequency of warm-dry and cold-wet modes in these regions and seasons. At the temporal scale, regional correlation series between seasonal anomalies of temperature and precipitation (assessed in 31 years running windows in 1001-1990) show very large multidecadal variability. For winter and spring, periodicities of about 50-60 years arise. The frequency of warm-dry and cold-wet modes appears correlated with the North Atlantic Oscillation (NAO), explaining mainly co-variability changes in spring. For winter and some regions in autumn, maximum and minimum P-T correlations appear in periods with enhanced meridional or easterly circulation (low or high pressure anomalies in the Mediterranean and Europe). In spring and summer, the Atlantic Multidecadal Oscillation shows some fingerprint on the frequency of warm/cold modes. For future scenarios, an intensification of the negative P-T relationship is generally found, as a result of an increased frequency of the warm-dry mode.
NASA Astrophysics Data System (ADS)
Meyer, Hanno; Schirrmeister, Lutz; Yoshikawa, Kenji; Opel, Thomas; Wetterich, Sebastian; Hubberten, Hans-W.; Brown, Jerry
2010-05-01
The Younger Dryas (YD) interval, from approximately 12.9 to 11.5 kyr cal BP, a rapid reversion to glacial climate conditions at the Pleistocene-Holocene transition, has generally been attributed to the release of meltwater from the Laurentide Ice Sheet to the North Atlantic or Arctic oceans. The reaction of the North Pacific region to this "shutdown" of the thermohaline circulation in the North Atlantic during Younger Dryas is, however, little understood. The YD cold interval is of great interest for understanding rapid natural climate change, especially with regard to recent global warming scenarios. Various archives such as glacier ice, tree rings, lacustrine and marine sediments provide evidence for strong climate variability during the Late Glacial-Holocene transition. In our study, we investigated a relict, buried ice-wedge system within the continuous permafrost zone near Barrow, northern Alaska (71°18'N, 156°40'W). The Barrow ice-wedge system is buried under about three meters of Late Glacial/early Holocene ice-rich sediments. The ice wedges are accessible through a shaft which extends into an underground excavation, where a detailed description and sampling with an electrical chain saw were carried out. Permafrost is not only susceptible to recent climate change, it also may store evidence of these changes in ground ice, especially in ice wedges. Ice wedges can be assessed by stable water isotope methods similar to glacier ice climate reconstructions. Ice wedges are assumed to be indicative of winter climate conditions, because the seasonality of thermal contraction cracking and of the infill of frost cracks are generally related to winter and spring, respectively. In this paper, we present a winter climate record from ice wedges in permafrost of northern Alaska, a region, where paleoclimate records extending beyond the Late Glacial-Holocene transition are generally rather sparse, often restricted to lake sediments and rely mostly on summer indicators such as pollen. This reconstruction is the first radiocarbon-dated centennial-scale stable water isotope record from permafrost at all. The Late Glacial winter climate reconstruction from Barrow ice wedges clearly demonstrates the existence of a Younger Dryas cold event, formerly believed to be reduced or absent in this area. Comparing the Barrow ice-wedge record to Greenland ice cores (such as N-GRIP), we observe similar and contemporaneous isotopic variations in the same order of magnitude, underpinning the climatic relevance of our ice wedge data. The Barrow ice-wedge stable isotope record additionally displays a gradual change of the atmospheric moisture source conditions during the Younger Dryas reflected in a shift of the d excess, potentially being associated with the successive opening of the Bering Strait.
Wildfires, mountain pine beetle and large-scale climate in Northern North America.
NASA Astrophysics Data System (ADS)
Macias Fauria, M.; Johnson, E. A.
2009-05-01
Research on the interactions between biosphere and atmosphere and ocean/atmosphere dynamics, concretely on the coupling between ecological processes and large-scale climate, is presented in two studies in Northern North America: the occurrence of large lightning wildfires and the forest area affected by mountain pine beetle (Dendroctonus ponderosae, MPB). In both cases, large-scale climatic patterns such as the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO) operate as low and low and high frequency frameworks, respectively, that control the occurrence, duration and spatial correlation over large areas of key local weather variables which affect specific ecological processes. Warm PDO phases tend to produce persistent (more than 10 days long) positive mid-troposphere anomalies (blocking highs) over western Canada and Alaska. Likewise, positive (negative) AO configurations increase the frequency of blocking highs at mid (high) latitudes of the Northern Hemisphere. Under these conditions, lack of precipitation and prevailing warm air meridional flow rapidly dry fuel over large areas and increase fire hazard. The spatiotemporal patterns of occurrence of large lightning wildfire in Canada and Alaska for 1959-1999 were largely explained by the action and possible interaction of AO and PDO, the AO being more influential over Eastern Canada, the PDO over Western Canada and Alaska. Changes in the dynamics of the PDO are linked to the occurrence of cold winter temperatures in British Columbia (BC), Western Canada. Reduced frequency of cold events during warm PDO winters is consistent with a northward-displaced polar jet stream inhibiting the outflow of cold Arctic air over BC. Likewise, the AO influences the occurrence of winter cold spells in the area. PDO, and to a lesser degree AO, were strongly related to MPB synchrony in BC during 1959-2002, operating through the control of the frequency of extreme cold winter temperatures that affect MPB larvae survival. The onset of a warm PDO phase in 1976 1) increased (decreased) the area burnt by wildfire in the Canadian Boreal Forest (BC) by increasing (decreasing) the frequency of blocking highs in the area, and 2) favored MPB outbreaks in BC by reducing the occurrence of extremely low winter temperatures. Likewise, the exceptionally high and persistent AO values of the late 1980s and 1990s increased area burned in Eastern Canada and MPB activity in the southern and northern parts of BC. A possible recent PDO phase shift may largely reverse these trends.
Metabolic adaptations of overwintering European common lizards (Lacerta vivipara).
Voituron, Y; Hérold, J P; Grenot, C
2000-01-01
The European common lizard Lacerta vivipara, a reptile of cold-temperate climates, provides us an interesting model of low-temperature adaptation. Indeed its unique cold-hardiness strategy, which employs both freeze tolerance and freeze avoidance, may be seen as the primary reason for its large distribution, which extends from Spain to beyond the Arctic circle. To study the metabolism supporting this capacity, we used three techniques: two techniques of calorimetry (oxygen consumption and thermogenesis) and nuclear magnetic resonance spectroscopy. These techniques were used to examine the metabolic balance and the different molecular pathways used between three different periods through the year (September, January, and May). The results show a significant 20% augmentation of winter anaerobic metabolism compared to other periods of the year. This is mainly because of an activation of the lactic fermentation pathway leading to an increase of lactate concentration (>34% in winter). Furthermore, glucose, which increases some 245% in winter, is used as antifreeze and metabolic substrate. Furthermore, this study provides evidence that the physiological adaptations of the common lizard differ from those of other ectotherms such as Rana sylvatica. Concentrations of alanine and glycerol, commonly used as antifreeze by many overwintering ectotherms, do not increase during winter.
These are established primarily to reduce the accidental spread of hazardous substances by workers or equipment from contaminated areas to clean areas. They include the exclusion (hot) zone, contamination reduction (warm) zone, and support (cold) zone.
Urbański, Arkadiusz; Czarniewska, Elżbieta; Baraniak, Edward; Rosiński, Grzegorz
2017-06-01
Insect overwintering is one of the most astonishing phases of the insect life cycle. Despite vast amounts of knowledge available about the physiological mechanisms of this phenomenon, the impact of stress factors on insect immune system functioning during the winter is still unknown. The aim of this study is to analyze how low temperatures influence the immune system of the beetle Nicrophorus vespilloides. The results show that the beetle's immune system is differently modulated by cold induced in laboratory settings than that which occurs in natural conditions. Among beetles cultured in conditions similar to summer, low temperatures, did not influence the number of circulating haemocytes, phenoloxidase activity, haemocytes morphology, and percentage ratio of haemocyte types. In these beetles, differences were noted only in the ability of haemocytes to perform phagocytosis. Individuals acclimated in natural conditions in autumn had a higher level of humoral response and a different percentage ratio of haemocyte types. During the winter period, the number of haemocytes in the beetles decreased, but the percentage ratio of phagocytic haemocytes increased. Furthermore, we noted an increase of phenoloxidase activity. Our study also showed mitotic divisions of haemocytes in haemolymph collected from burying beetles after cold exposure and from burying beetles collected from natural conditions during autumn and winter. Differences in response to low temperatures in laboratory conditions and the natural environment suggest that the simultaneous presence of other stress factors during winter such as desiccation and starvation have a significant influence on the activity of burying beetle's immune system. © 2016 Institute of Zoology, Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka
2010-11-01
To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92°N, 106.90°E, ˜1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and α-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 ± 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 ± 28 ng m-3, 15%), succinic (63 ± 20 ng m-3, 9%), glyoxylic (55 ± 18 ng m-3, 8%), and phthalic (54 ± 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (<700 m above ground level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.
Experimental study on the monomer structure of solar semiconductor cold wall
NASA Astrophysics Data System (ADS)
Fu, Yuanyuan; Liu, Qiuxin; Chen, Tianshou
2018-06-01
In this paper, solar semiconductor cold wall structure was adopted in the net-zero energy buildings, NZEB for short. The heat transfer and refrigeration effect of the monomer structure of semiconductor cold wall were tested, we get that the monomer structure of semiconductor cold wall has certain cooling effect. However, the heat exchange effect is not good of the cold and hot aluminum plate only through natural convection and radiation heat transfer. It is necessary to further study the process of semiconductor refrigeration and heat transfer and the factors that affect the cooling effect. At the same time, it put forward a series of suggestions and improvement opinion for NZEB in hot summer and cold winter areas.
NASA Astrophysics Data System (ADS)
de Jong, Rixt; Kamenik, Christian; Grosjean, Martin
2010-05-01
To fully understand past climatic changes and their forcing factors, detailed reconstructions of past summer and winter temperatures are required. Winter temperature reconstructions are scarce, however, because most biological proxies are biased towards the growing season. This study presents a detailed reconstruction of winter temperatures based on Chrysophyte stomatocysts, silicious scales formed by so-called 'golden algae'. Previous studies (Kamenik and Schmidt, 2005; Pla and Catalan, 2005) have demonstrated the sensitivity of these algae to cold-season temperatures. Chrysophyte stomatocyst analysis was carried out on varved sediments from Lake Silvaplana (1791 m a.s.l.) at annual to near-annual resolution for two periods; AD 1100-1500 and AD 1870-2004. For both periods the reference date 'date of spring mixing' (Smix) was reconstructed using a transfer function developed for the Austrian Alps (Kamenik and Schmidt, 2005). In the Austrian Alps, Smix was primarily driven by air temperature in the cold season. The strength of stomatocysts as a proxy for winter temperature was tested by directly comparing reconstructed Smix with measured temperatures from nearby meteostation Sils Maria for the period AD 1870 - 2004. Correlation was highest (R = -0.6; p < 0.001) with mean October-April temperatures. The good agreement between reconstructed Smix and mean winter temperatures was interrupted only from AD 1925 - AD 1951, which was related to exceptionally high winter precipitation (thick snowpack) extending the ice-covered period. Strong lake eutrophication after AD 1950 only weakly affected the reconstruction of winter temperature. The winter temperature reconstruction (AD 1100-1500) shows strong interdecadal variability, superimposed on a cooling trend from around AD 1400 onwards. A direct comparison to summer temperature reconstructions based on biogenic silica and chironomid analysis from the same cores (Trachsel et al., in review; Larocque-Tobler et al., accepted manuscript) indicated strong fluctuations in intra-annual variability. A comparison to forcing factors shows that throughout the studied period, large tropical volcanic eruptions (Crowley, 2000) coincided with relatively warm winters in the study area. This is consistent with results from GCM experiments and observations of the limited number of eruptions during the much shorter instrumental period (Fischer et al., 2007). References: T. Crowley. Science 289, 270-277 (2000) E. Fischer et al. Geophys. Res. Lett. 34, L05707 (2007) C. Kamenik and R. Schmidt. Boreas 34, 477-489 (2005) I. Larocque-Tobler et al. Quat. Sci. Rev., accepted. S. Pla and J. Catalan. Clim. Dyn. 24, 263-278 (2005) M. Trachsel et al. Manuscript in review
Garssen, Annemarie G; Baattrup-Pedersen, Annette; Riis, Tenna; Raven, Bart M; Hoffman, Carl Christian; Verhoeven, Jos T A; Soons, Merel B
2017-08-01
In many parts of the world, the magnitude and frequency of cold-season precipitation are expected to increase in the near future. This will result in an increased magnitude and duration of winter and spring flooding by rain-fed streams and rivers. Such climate-driven increases in flooding are likely to affect riparian plant communities, but future vegetation changes are hard to predict due to current lack of data. To fill this knowledge gap, we experimentally modified the hydrology of five streams across three countries in north-western Europe during late winter/early spring over a period of 3 years. We assessed the responses in riparian plant species richness, biomass, plant-available nitrogen and phosphorus and seed deposition to increased flooding depth (+18 cm on average at the lowest positions along the riparian gradient) and prolonged flooding duration (6 weeks on average). After 3 years of increased flooding, there was an overall decline in riparian species richness, while riparian plant biomass increased. Extractable soil nitrogen and phosphorus also increased and are likely to have contributed to the increased biomass. Increased flooding resulted in the arrival of more seeds of additional species to the riparian zone, thereby potentially facilitating the shifts in riparian plant species composition we observed. The results of our concerted experimental effort demonstrate that changes in stream riparian plant communities can occur rapidly following increased winter flooding, leading to strong reductions in plant species diversity. © 2017 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Härtel, Stephan; Steffan-Dewenter, Ingolf
2018-01-01
In order to save resources, honey bee (Apis mellifera) colonies in the temperate zones stop brood rearing during winter. Brood rearing is resumed in late winter to build up a sufficient worker force that allows to exploit floral resources in upcoming spring. The timing of brood onset in hibernating colonies is crucial and a premature brood onset could lead to an early depletion of energy reservoirs. However, the mechanisms underlying the timing of brood onset and potential risks of mistiming in the course of ongoing climate change are not well understood. To assess the relative importance of ambient temperature and photoperiod as potential regulating factors for brood rearing activity in hibernating colonies, we overwintered 24 honey bee colonies within environmental chambers. The colonies were assigned to two different temperature treatments and three different photoperiod treatments to disentangle the individual and interacting effects of temperature and photoperiod. Tracking in-hive temperature as indicator for brood rearing activity revealed that increasing ambient temperature triggered brood onset. Under cold conditions, photoperiod alone did not affect brood onset, but the light regime altered the impact of higher ambient temperature on brood rearing activity. Further the number of brood rearing colonies increased with elapsed time which suggests the involvement of an internal clock. We conclude that timing of brood onset in late winter is mainly driven by temperature but modulated by photoperiod. Climate warming might change the interplay of these factors and result in mismatches of brood phenology and environmental conditions. PMID:29844964
Evaluations on the potential productivity of winter wheat based on agro-ecological zone in the world
NASA Astrophysics Data System (ADS)
Wang, H.; Li, Q.; Du, X.; Zhao, L.; Lu, Y.; Li, D.; Liu, J.
2015-04-01
Wheat is the most widely grown crop globally and an essential source of calories in human diets. Maintaining and increasing global wheat production is therefore strongly linked to food security. In this paper, the evaluation model of winter wheat potential productivity was proposed based on agro-ecological zone and the historical winter wheat yield data in recent 30 years (1983-2011) obtained from FAO. And the potential productions of winter wheat in the world were investigated. The results showed that the realistic potential productivity of winter wheat in Western Europe was highest and it was more than 7500 kg/hm2. The realistic potential productivity of winter wheat in North China Plain were also higher, which was about 6000 kg/hm2. However, the realistic potential productivity of winter wheat in the United States which is the main winter wheat producing country were not high, only about 3000 kg/hm2. In addition to these regions which were the main winter wheat producing areas, the realistic potential productivity in other regions of the world were very low and mainly less than 1500 kg/hm2, like in southwest region of Russia. The gaps between potential productivity and realistic productivity of winter wheat in Kazakhstan and India were biggest, and the percentages of the gap in realistic productivity of winter wheat in Kazakhstan and India were more than 40%. In Russia, the gap between potential productivity and realistic productivity of winter wheat was lowest and the percentage of the gap in realistic productivity of winter wheat in Russia was only 10%.
He, Yufei; D'Odorico, Paolo; De Wekker, Stephan F J
2015-06-01
Many arid and semi-arid landscapes around the world are affected by a shift from grassland to shrubland vegetation, presumably induced by climate warming, increasing atmospheric CO2 concentrations, and/or changing land use. This major change in vegetation cover is likely sustained by positive feedbacks with the physical environment. Recent research has focused on a feedback with microclimate, whereby cold intolerant shrubs increase the minimum nocturnal temperatures in their surroundings. Despite the rich literature on the impact of land cover change on local climate conditions, changes in microclimate resulting from shrub expansion into desert grasslands have remained poorly investigated. It is unclear to what extent such a feedback can affect the maximum extent of shrub expansion and the configuration of a stable encroachment front. Here, we focus on the case of the northern Chihuahuan desert, where creosotebush (Larrea tridentata) has been replacing grasslands over the past 100-150 years. We use a process-based coupled atmosphere-vegetation model to investigate the role of this feedback in sustaining shrub encroachment in the region. Simulations indicate that the feedback allows juvenile shrubs to establish in the grassland during average years and, once established, reduce their vulnerability to freeze-induced mortality by creating a warmer microclimate. Such a feedback is crucial in extreme cold winters as it may reduce shrub mortality. We identify the existence of a critical zone in the surroundings of the encroachment front, in which vegetation dynamics are bistable: in this zone, vegetation can be stable both as grassland and as shrubland. The existence of these alternative stable states explains why in most cases the shift from grass to shrub cover is found to be abrupt and often difficult to revert. © 2015 John Wiley & Sons Ltd.
Does zoning winter recreationists reduce recreation conflict?
Aubrey Miller; Jerry J. Vaske; John R. Squires; Lucretia E. Olson
2016-01-01
Parks and protected area managers use zoning to decrease interpersonal conflict between recreationists. Zoning, or segregation, of recreation - often by nonmotorized and motorized activity - is designed to limit physical interaction while providing recreation opportunities to both groups. This article investigated the effectiveness of zoning to reduce recreation...
Does zoning winter recreationists reduce recreation conflict?
Aubrey D. Miller; Jerry J. Vaske; John R. Squires; Lucretia E. Olson; Elizabeth K. Roberts
2017-01-01
Parks and protected area managers use zoning to decrease interpersonal conflict between recreationists. Zoning, or segregation, of recreation - often by nonmotorized and motorized activity - is designed to limit physical interaction while providing recreation opportunities to both groups. This article investigated the effectiveness of zoning to reduce recreation...
Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change.
Mills, L Scott; Bragina, Eugenia V; Kumar, Alexander V; Zimova, Marketa; Lafferty, Diana J R; Feltner, Jennifer; Davis, Brandon M; Hackländer, Klaus; Alves, Paulo C; Good, Jeffrey M; Melo-Ferreira, José; Dietz, Andreas; Abramov, Alexei V; Lopatina, Natalia; Fay, Kairsten
2018-03-02
Maintenance of biodiversity in a rapidly changing climate will depend on the efficacy of evolutionary rescue, whereby population declines due to abrupt environmental change are reversed by shifts in genetically driven adaptive traits. However, a lack of traits known to be under direct selection by anthropogenic climate change has limited the incorporation of evolutionary processes into global conservation efforts. In 21 vertebrate species, some individuals undergo a seasonal color molt from summer brown to winter white as camouflage against snow, whereas other individuals remain brown. Seasonal snow duration is decreasing globally, and fitness is lower for winter white animals on snowless backgrounds. Based on 2713 georeferenced samples of known winter coat color-from eight species across trophic levels-we identify environmentally driven clinal gradients in winter coat color, including polymorphic zones where winter brown and white morphs co-occur. These polymorphic zones, underrepresented by existing global protected area networks, indicate hot spots for evolutionary rescue in a changing climate. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
ERIC Educational Resources Information Center
McLure, John W.
1983-01-01
Suggests instructional strategies and student activities related to the study of insects during the winter. Includes possible collecting sites and classroom activities once the insects have been collected. (JN)
Study on indoor thermal environment in winter for rural residences in Yulin region
NASA Astrophysics Data System (ADS)
Yanjun, Li; Weixiao, Han
2018-02-01
Yulin region is located in the northern part of Shaanxi Province, China. The winter here is very cold and it has a long duration. In this paper, a rural residence which was located in Yulin region was taken as a study object. Indoor thermal environment of the rural residence were tested, including indoor air temperature and air relative humidity. Then, test data were analyzed. It was summarized that indoor thermal environment of test room can not fully meet human thermal comfort needs, and some tactics of regulation building thermal environment were proposed. This research contributes to improvement of indoor thermal environment for local rural residences and it provides reference for rural residences in other cold regions.
Haberman, Amnon; Bakhshian, Ortal; Cerezo-Medina, Sergio; Paltiel, Judith; Adler, Chen; Ben-Ari, Giora; Mercado, Jose Angel; Pliego-Alfaro, Fernando; Lavee, Shimon; Samach, Alon
2017-08-01
Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors. © 2017 John Wiley & Sons Ltd.
Should anthropogenic warming lead to more frequent cold air outbreaks over the northeastern U.S.?
NASA Astrophysics Data System (ADS)
Nicholas, R.
2014-12-01
For the northeastern United States, Winter 2013-14 was the coldest winter since the late 1970s and perhaps the coldest on record relative to prevailing climatic conditions. Frequent snowstorms and cold air outbreaks led to considerable press coverage and heated scholarly debate over the possible role of anthropogenic climate change in modulating wintertime variability in the northern hemisphere polar jet. While mechanisms have been proposed, to date, the observational record offers no definitive evidence for such a relationship, nor does it conclusively exclude one. To further explore this question, we employ a large, initial conditions ensemble of the Community Earth System Model forced with historical and RCP8.5 emissions. The ensemble effectively samples internal variability in the climate system and is used to assess the potential for forced changes in polar jet variability and the frequency of cold air outbreaks over the northeastern U.S. with projected increases in global mean temperature during the 21st century.
Castaings, Loren; Bergonzi, Sara; Albani, Maria C; Kemi, Ulla; Savolainen, Outi; Coupland, George
2014-07-17
Antisense RNA (asRNA) COOLAIR is expressed at A. thaliana FLOWERING LOCUS C (FLC) in response to winter temperatures. Its contribution to cold-induced silencing of FLC was proposed but its functional and evolutionary significance remain unclear. Here we identify a highly conserved block containing the COOLAIR first exon and core promoter at the 3' end of several FLC orthologues. Furthermore, asRNAs related to COOLAIR are expressed at FLC loci in the perennials A. alpina and A. lyrata, although some splicing variants differ from A. thaliana. Study of the A. alpina orthologue, PERPETUAL FLOWERING 1 (PEP1), demonstrates that AaCOOLAIR is induced each winter of the perennial life cycle. Introduction of PEP1 into A. thaliana reveals that AaCOOLAIR cis-elements confer cold-inducibility in this heterologous species while the difference between PEP1 and FLC mRNA patterns depends on both cis-elements and species-specific trans-acting factors. Thus, expression of COOLAIR is highly conserved, supporting its importance in FLC regulation.
Xu, Lan; Gao, Zhi-fiang; An, Wei; Yuan, Ya-qi; Li, Yan-liang
2015-06-01
A total of 10 winter wheat varieties were imported from the middle and lower reaches of the Yangtze River region in China. Those varieties were sowed in spring in Xinding basin area of Shanxi Province, and the field trials were performed for two years (2013-2014). The traits and physiological characteristics under low temperature stress including grain yield, total content of chlorophyll, osmotic adjustment, membrane system, ion leakage rate, contents of soluble sugar and soluble protein were investigated, and the cold tolerance levels of the wheat varieties were assessed. The results showed that low temperature stress led to increases in wheat leaf ion leakage rate, soluble sugar and protein contents, but obvious reduction of chlorophyll content. According to principal component analysis and cold tolerance (D value) , Yumai 10, Yangmai 20, and Yunmai 42 were classed as cold sensitive wheat varieties. Yangmai 13, Yumai 12, and Ningmai 13 were classed as stronger cold-resistant wheat genotypes, and showed stability through two-year field trials, with the D values being 0.665-0.659, 0.493-0.495, and 0.471-0.583, respectively, while the D values for the controls Ning 2038 and Xinchun 30 were 0.368-0.397, and 0.328-0.330, respectively. The grain yields of the cold resistant wheat varieties were significantly higher than that of the other varieties tested. Therefore, Yangmai 13, Yumai 12 and Ningmai 13 could be imported and used as the cold tolerant wheat varieties for North Plain of China.
Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung
2017-01-01
This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095
Deville, Anne-Sophie; Labaude, Sophie; Robin, Jean-Patrice; Béchet, Arnaud; Gauthier-Clerc, Michel; Porter, Warren; Fitzpatrick, Megan; Mathewson, Paul; Grémillet, David
2014-10-15
Most studies analyzing the effects of global warming on wild populations focus on gradual temperature changes, yet it is also important to understand the impact of extreme climatic events. Here we studied the effect of two cold spells (January 1985 and February 2012) on the energetics of greater flamingos (Phoenicopterus roseus) in the Camargue (southern France). To understand the cause of observed flamingo mass mortalities, we first assessed the energy stores of flamingos found dead in February 2012, and compared them with those found in other bird species exposed to cold spells and/or fasting. Second, we evaluated the monthly energy requirements of flamingos across 1980-2012 using the mechanistic model Niche Mapper. Our results show that the body lipids of flamingos found dead in 2012 corresponded to 2.6±0.3% of total body mass, which is close to results found in woodcocks (Scolopax rusticola) that died from starvation during a cold spell (1.7±0.1%), and much lower than in woodcocks which were fed throughout this same cold spell (13.0±2%). Further, Niche Mapper predicted that flamingo energy requirements were highest (+6-7%) during the 1985 and 2012 cold spells compared with 'normal' winters. This increase was primarily driven by cold air temperatures. Overall, our findings strongly suggest that flamingos starved to death during both cold spells. This study demonstrates the relevance of using mechanistic energetics modelling and body condition analyses to understand and predict the impact of extreme climatic events on animal energy balance and winter survival probabilities. © 2014. Published by The Company of Biologists Ltd.
P.G. Schaberg; G.R. Strimbeck; G.J. Hawley; D.H. DeHayes; J.B. Shane; P.F. Murakami; T.D. Perkins; J.R. Donnelly; B.L. Wong
2000-01-01
Red spruce (Picea rubens Sarg.) growing in northern montane forests of eastern North America appears to be distinctive with respect to at least two aspects of winter physiology. First, red spruce attains only a modest level of midwinter cold tolerance compared to other north temperate conifers and appears barely capable of avoiding freezing injury at...
Fabian G. Scholz; Sandra J. Bucci; Nadia Arias; Frederick C. Meinzer; Guillermo Goldstein
2012-01-01
Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential, osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance across species throughout the year, and assessed tissue damage by subzero...
S. E. Meyer; D. Quinney; D. L. Nelson; J. Weaver
2007-01-01
Bromus tectorum is a dominant winter annual weed in cold deserts of western North America. We followed patterns of seed carry-over and abundance of the pathogen Pyrenophora semeniperda over 5 years at B. tectorum-dominated shadscale (Atriplex confertifolia) and sagebrush (Artemisia tridentata) sites in southern Idaho. We hypothesised that more seeds could potentially...
Jurczyk, Barbara; Pociecha, Ewa; Janowiak, Franciszek; Kabała, Dawid; Rapacz, Marcin
2016-12-01
According to predicted changes in climate, waterlogging events may occur more frequently in the future during autumn and winter at high latitudes of the Northern Hemisphere. If excess soil water coincides with the process of cold acclimation for plants, winter survival may potentially be affected. The effects of waterlogging during cold acclimation on stomatal aperture, relative water content, photochemical activity of photosystem II, freezing tolerance and plant regrowth after freezing were compared for two prehardened overwintering forage grasses, Lolium perenne and Festuca pratensis. The experiment was performed to test the hypothesis that changes in photochemical activity initiated by waterlogging-triggered modifications in the stomatal aperture contribute to changes in freezing tolerance. Principal component analysis showed that waterlogging activated different adaptive strategies in the two species studied. The increased freezing tolerance of F. pratensis was associated with increased photochemical activity connected with stomatal opening, whereas freezing tolerance of L. perenne was associated with a decrease in stomatal aperture. In conclusion, waterlogging-triggered stomatal behavior contributed to the efficiency of the cold acclimation process in L. perenne and F. pratensis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuipers Munneke, P.; Luckman, A. J.; Bevan, S. L.; Gilbert, E.; Smeets, P.; van den Broeke, M. R.; Wang, W.; Zender, C. S.; Ashmore, D. W.; Hubbard, B. P.; Orr, A.; King, J.
2017-12-01
We know that increased surface melt, driven by atmospheric warming, contributed to the collapse of ice shelves as observed in the Antarctic Peninsula. This has induced grounded-ice acceleration and increased ice discharge. You may associate this surface melt with the austral summer season, with plenty of solar radiation driving the melt. In contrast, winter in Antarctica evokes images of darkness, snow, and cold. However, we will make you rethink this picture by presenting observations of frequent snow surface melt in winter, from a weather station located in a previously unsurveyed area of the Larsen C Ice Shelf. Peak intensities of this wintertime melt even exceed summertime values, and thermal satellite images show that large ponds of meltwater are formed at the surface in the pitch-dark Antarctic winter. Obviously, we wanted to find out what could drive these strong melt events if it's not the sun. It turns out that these multi-day melt events occur when warm and dry föhn winds descend from the Antarctic Peninsula mountains. Simulations with a high-resolution weather model confirm that these winds generate turbulent fluxes of sensible heat, leading to melt fluxes in excess of 200 W m-2. In 2015 and 2016, about 23% of the annual melt was produced in winter. We use satellite radar to show that winter melt occurs on many more places in the Antarctic Peninsula. It happens every year, although in some years the melting is much more widespread than in others. We think that wintertime melt matters as its refreezing warms the snow and increases snow density. In this way, winter melt preconditions the ice shelf for more extensive surface drainage, potentially leading to meltwater-driven instability.
Does the recent warming hiatus exist over northern Asia for winter wind chill temperature?
NASA Astrophysics Data System (ADS)
Ma, Ying
2017-04-01
Wind chill temperature (WCT) describes the joint effect of wind velocity and air temperature on exposed body skin and could support policy makers in designing plans to reduce the risks of notably cold and windy weather. This study examined winter WCT over northern Asia during 1973-2013 by analyzing in situ station data. The winter WCT warming rate over the Tibetan Plateau slowed during 1999-2013 (-0.04 °C/decade) compared with that during 1973-1998 (0.67 °C/decade). The winter WCT warming hiatus has also been observed in the remainder of Northern Asia with trends of 1.11 °C/decade during 1973-1998 but -1.02 °C/decade during 1999-2013, except for the Far East of Russia (FE), where the winter WCT has continued to heat up during both the earlier period of 1973-1998 (0.54 °C/decade) and the recent period of 1999-2013 (0.75 °C/decade). The results indicate that the influence of temperature on winter WCT is greater than that of wind speed over northern Asia. Atmospheric circulation changes associated with air temperature and wind speed were analyzed to identify the causes for the warming hiatus of winter WCT over northern Asia. The distributions of sea level pressure and 500 hPa height anomalies during 1999-2013 transported cold air from the high latitudes to middle latitudes, resulting in low air temperature over Northern Asia except for the Far East of Russia. Over the Tibetan Plateau, the increase in wind speed offset the increase in air temperature during 1999-2013. For the Far East, the southerly wind from the Western Pacific drove the temperature up during the 1999-2013 period via warm advection.
Patrick C. Tobin; Richard M. Turcotte; Laura M. Blackburn; John A. Juracko; Brian T. Simpson
2017-01-01
The ability to survive winter temperatures is a key determinant of insect distributional ranges and population dynamics in temperate ecosystems. Although many insects overwinter in a state of diapause, the hemlock woolly adelgid [Adelges tsugae (Annand)] is an exception and instead develops during winter. We studied a low density population of
Ice fishing by wintering Bald Eagles in Arizona
Teryl G. Grubb; Roy G. Lopez
1997-01-01
Northern Arizona winters vary within and between years with occasional heavy snows (up to 0.6 m) and extreme cold (overnight lows -18 to -29°C) interspersed with dry periods, mild temperatures (daytime highs reaching 10°C), and general loss of snow cover at all but highest elevations. Lakes in the area may freeze and thaw partially or totally several times during a...
USDA-ARS?s Scientific Manuscript database
Winter dormancy is an important biological feature for tea plant to survive cold winters, and it also affects the economic output of tea plant, one of the few woody plants in the world whose leaves are harvested and one of the few non-conifer evergreen species with characterized dormancies. To disco...
NASA Astrophysics Data System (ADS)
Beukema, J. J.; Dekker, R.
2011-06-01
A 40-y series of consistently collected samples (15 fixed sampling sites, constant sampled area of 15 × 0.95 m2, annual sampling only in late-winter/early-spring seasons, and consistent sieving and sorting procedures; restriction to 50 easily recognizable species) of macrozoobenthos on Balgzand, a tidal flat area in the westernmost part of the Wadden Sea (The Netherlands), revealed significantly increasing trends of species richness. Total numbers of species annually encountered increased from ~28 to ~38. Mean species density (number of species found per sampling site) increased from ~13 to ~18 per 0.95 m2. During the 40 years of the 1970-2009 period of observation, 4 exotic species invaded the area: (in order of first appearance) Ensis directus, Marenzelleria viridis, Crassostrea gigas, and Hemigrapsus takanoi. Another 5 species recently moved to Balgzand from nearby (subtidal) locations. Together, these 9 new species on the tidal flats explained by far most of the increase in total species numbers, but accounted for only one-third of the observed increase in species density (as a consequence of the restricted distribution of most of them). Species density increased particularly by a substantial number of species that showed increasing trends in the numbers of tidal flat sites they occupied. Most of these wider-spreading species were found to suffer from cold winters. During the 40-y period of observation, winter temperatures rose by about 2°C and cold winters became less frequent. The mean number of cold-sensitive species found per site significantly increased by almost 2 per 0.95 m2. Among the other species (not sensitive to low winter temperatures), 6 showed a rising and 2 a declining trend in number of occupied sites, resulting in a net long-term increase in species density amounting to another gain of 1.6 per 0.95 m2. Half of the 50 studied species did not show such long-term trend, nor were invaders. Thus, each of 3 groups (local or alien invaders/winter-sensitive species/other increasing species) contributed to a roughly similar extent to the overall increase in species density.
NASA Astrophysics Data System (ADS)
Boodoo, Kyle; Battin, Tom; Schelker, Jakob
2017-04-01
Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. We extended our study to 13 other gravel bars of varying physical characteristics within the surrounding Ybbs and Erlauf catchments, conducting diurnal spot samplings in summer 2016. Temperatures within the observed permanently wetted hyporheic zone (-56 to -100cm depth below GB surface) of the OSB, were warmer than both end members, surface water and groundwater >18% of the year, particularly during summer. There was a general increase in exceedance within the periodically wetted gravel bar sediment toward the gravel bar surface, further evidencing downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB seasonal temperatures were associated with increased CO2 evasion fluxes within the OSB, particularly during summer. This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. Furthermore, catchment CO2 outgassing fluxes significantly exceeded that of the stream, with higher diurnal CO2 outgassing fluxes observed for all 13 GBs within the Ybbs and Erlauf catchments as compared to their respective streams. We found DOC concentration did not significantly correlate to CO2 outgassing. But, vertical temperature gradient as a measure of heat flux to the hyporheic zone explained 55% and 69% of the variability in observed CO2 efflux from the OSB gravel bar (seasonal samplings during summer 2015 - winter 2016) and 11 catchment gravel bars (2 GBs excluded due to equipment malfunction) respectively. These results highlight the effect of temperature on physical and biochemical stream processes, particularly in cold-water streams, due to the occurrence of more frequent and intense warm temperature events, as well as altered flow regimes, likely consequences of climatic change.
Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl
2015-01-01
Diapause plays a central role in insect life cycles by allowing survival during adverse seasonal conditions as well as synchronizing life cycles with the period of mate and food availability. Seasonal timing is expected to be particularly important for species that are dependent on resources available during a short time window-so-called phenological specialists-and latitudinal clines in seasonality are expected to favor local adaptation in phenological timing. However, to what degree latitudinal variation in diapause dynamics and post-winter development due to such local adaptation is influenced by the degree of phenological specialization is not well known. We experimentally studied two pierid butterfly species and found that the phenological specialist Anthocharis cardamines had shorter diapause duration than the phenological generalist Pieris napi along a latitudinal gradient in Sweden. Moreover, diapause duration increased with latitude in P. napi but not in A. cardamines. Sensitivity of the two species to winter thermal conditions also differed; additional cold temperature during the winter period shortened diapause duration for P. napi pupae but not for A. cardamines pupae. In both species, post-winter pupal development was faster after longer periods of cold conditions, and more southern populations developed faster than northern populations. Post-winter development was also invariably faster at higher temperatures in both species. We argue that the observed differences in diapause dynamics between the two species might be explained by the difference in phenological specialization that influences the costs of breaking diapause too early in the season.
Kanda, K; Tsuchiya, J; Seto, M; Ohnaka, T; Tochihara, Y
1995-06-01
Thermal conditions in the bathroom and physiological responses were examined during winter and summer. The subjects were 22 male and 20 female elderly people, between 65 and 88 years old living in 25 houses in Gunma Prefecture, Japan. Heart rate, blood pressure, skin temperature and thermal sensation were measured during bathing. Changes in thermal sensation due to bathing were assessed in the living room and dressing room on a 9-point scale. Then they were asked about the purposes of bathing and the facilities of bathroom and dressing room. The results are summarized as follows: 1. The purpose of bathing in winter was to warm up for more than 80% of the subjects. In summer, all subjects felt refreshed by bathing. Eighty-five percent of the subjects took a bath every other day in both seasons. 2. Fifty-two percent of the bathrooms had no ventilating fans and 32% had no exclusive dressing rooms. 3. The average room temperature in the dressing rooms was 13-14 degrees C in winter. Thermal sensation was 'cool', 'slightly cold' or 'cold' for more than two-thirds of the subjects when they were partially nude, and there were no heaters in most dressing rooms. 4. The heart rate increased steadily, and reached a maximum value in a partially dressed condition in both seasons. 5. In winter, a marked increase of systolic blood pressure was observed in the partially nude condition. There was a significant difference between the before bathing condition and partially nude condition in winter.(ABSTRACT TRUNCATED AT 250 WORDS)
Borneo vortex and mesoscale convective rainfall
NASA Astrophysics Data System (ADS)
Koseki, S.; Koh, T.-Y.; Teo, C.-K.
2014-05-01
We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite data sets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the Equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-α cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-β-scale rainfall cells. The intense rainfall in the comma head (comma tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-α cyclone system. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics.
Erdsack, Nicola; McCully Phillips, Sophy R; Rommel, Sentiel A; Pabst, D Ann; McLellan, William A; Reynolds, John E
2018-03-19
Florida manatees (Trichechus manatus latirostris) possess an unusual suite of adaptations to accommodate both a fully aquatic lifestyle and an herbivorous diet, including a low metabolic rate and a very limited thermoneutral zone. Their relatively high lower critical temperature of around 20 °C suggests strong sensitivity to cold, thereby limiting their distribution to tropical and subtropical waters. "Cold stress syndrome" affects and kills Florida manatees every year during intense or prolonged cold weather, posing one of the major threats to manatees. However, knowledge regarding manatee thermoregulation is sparse, but essential for effective conservation and management of this threatened species. We measured heat flux in two captive Florida manatees at multiple times of the year, at 41 sites distributed across the entire body surface of each manatee. Heat flux differed significantly between individuals, and among body sites and times of the year. The pectoral flippers and axillae were identified as areas with highest heat exchange. Despite exposure to constant water temperature throughout the year, the manatees in this study had significantly lower heat flux in winter than in summer. We used the measured heat flux values to calculate total heat dissipation in individual manatees. The values estimated this way correspond well with the low metabolic rates estimated in previous studies, confirming the reliability of our novel approach. Our method provides simple and useful options for enhancing manatee welfare by monitoring the animals' thermal state during potentially stressful activities such as during medical treatment, capture restraints and transportation.
NASA Astrophysics Data System (ADS)
Cīrule, Dina; Krama, Tatjana; Krams, Ronalds; Elferts, Didzis; Kaasik, Ants; Rantala, Markus J.; Mierauskas, Pranas; Luoto, Severi; Krams, Indrikis A.
2017-12-01
Animals normally respond to stressful environmental stimuli by releasing glucocorticoid hormones. We investigated whether baseline corticosterone (CORT), handling-induced corticosterone concentration(s), and body condition indices of members of willow tit ( Poecile montanus) groups differed while wintering in old growth forests and managed young forests in mild weather conditions and during cold spells. Willow tits spend the winter season in non-kin groups in which dominant individuals typically claim their priority to access resources, while subordinate individuals may experience greater levels of stress and higher mortality, especially during cold spells. We captured birds to measure baseline CORT and levels of handling-induced CORT secretion after 20 min of capture. Willow tits in the young forests had higher baseline CORT and a smaller increase in CORT in response to capture than individuals in the old forests. Baseline CORT was higher in females and juvenile birds compared to adult males, whereas handling-induced CORT secretion did not differ between birds of different ages. During cold spells, baseline CORT of willow tits increased and handling-induced CORT secretion decreased, especially in birds in young forests. Willow tits' survival was higher in the old forests, with dominant individuals surviving better than subordinates. Our results show that changes in CORT secretion reflect responses to habitat quality and climate harshness, indicating young managed coniferous forests as a suboptimal habitat for the willow tit.
NASA Astrophysics Data System (ADS)
Bosart, L. F.; Archambault, H. M.; Cordeira, J. M.
2011-12-01
Lance F. Bosart, Heather M. Archambault, and Jason M. Cordeira Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York The Northern Hemisphere (NH) planetary-scale circulation during winter 2009-2010 was characterized by an unusual combination of persistent high-latitude blocking and southward-displaced storm tracks, manifest by a strongly negative Arctic Oscillation (AO), in conjunction with a moderate El Nino event. The high-latitude blocking activity and southward-displaced storm tracks supported episodic cold-air outbreaks and enhanced storminess over parts of midlatitude eastern Asia, eastern North America, and western Europe as well as anomalous warmth over northeastern Canada and Greenland that delayed sea ice formation and ice thickening in these areas during winter 2009-2010. Although somewhat less extreme than winter 2009-2010, the first half of winter 2010-2011 was also characterized by high-latitude blocking and southward-displaced storm tracks (manifest by negative values of the AO) while the Pacific-North American (PNA), initially negative, became neutral in late December and most of January. Winter 2010-2011 was characterized by moderate La Nina conditions in contrast to moderate El Nino conditions that prevailed during winter 2009-2010. Despite the reversal of the ENSO phase from winter 2009-2010 to winter 2010-2011, high-latitude blocking activity and the associated southward-displaced storm tracks again allowed for episodic cold-air outbreaks and enhanced storminess over parts of midlatitude eastern Asia, central and eastern North America, and western Europe with delayed sea ice formation and thickening over the Davis Strait and adjacent regions during the first half of winter 2010-2011. Beginning in late January and continuing through early February 2011 the phase of the AO and the PNA reversed with the AO and PNA becoming positive and negative, respectively. This linked AO/PNA phase transition was associated with an extreme weather event that brought severe and record-setting cold to parts of the U.S. and Mexico, a powerful snow and ice storm in the Central U.S., and a subsequent and spectacular warm-up east of the Rockies. The purpose of this presentation will be to present an overview of the structure and evolution of the large-scale NH circulation anomalies during the 2009-2010 and 2010-2011 winters. Emphasis will be placed on showing how individual synoptic-scale weather events (e.g., recurving and transitioning western Pacific tropical cyclones, diabatically driven upper-level outflow from organized deep convection associated with the Madden-Julian Oscillation, and western North Atlantic storminess) contributed to the formation of significant and persistent large-scale circulation anomalies and how these large-scale circulation anomalies in turn impacted the storm tracks, regional temperature and precipitation anomalies, and the associated extreme weather.
... Causes Dry skin can be caused by: The climate, such as cold, dry winter air or hot, ... Medical Dermatology, Associate Professor of Dermatology, Mayo Medical School, Scottsdale, AZ. Also reviewed by David Zieve, MD, ...
Bachand, Philip A.M.; Bachand, Sandra M.; Fleck, Jacob A.; Alpers, Charles N.; Stephenson, Mark; Windham-Myers, Lisamarie
2014-01-01
Concentration and mass balance analyses were used to quantify methylmercury (MeHg) loads from conventional (white) rice, wild rice, and fallowed fields in northern California's Yolo Bypass. These analyses were standardized against chloride to distinguish transport pathways and net ecosystem production (NEP). During summer, chloride loads were both exported with surface water and moved into the root zone at a 2:1 ratio. MeHg and dissolved organic carbon (DOC) behaved similarly with surface water and root zone exports at ~ 3:1 ratio. These trends reversed in winter with DOC, MeHg, and chloride moving from the root zone to surface waters at rates opposite and exceeding summertime root zone fluxes. These trends suggest that summer transpiration advectively moves constituents from surface water into the root zone, and winter diffusion, driven by concentration gradients, subsequently releases those constituents into surface waters. The results challenge a number of paradigms regarding MeHg. Specifically, biogeochemical conditions favoring microbial MeHg production do not necessarily translate to synchronous surface water exports; MeHg may be preserved in the soils allowing for release at a later time; and plants play a role in both biogeochemistry and transport. Our calculations show that NEP of MeHg occurred during both summer irrigation and winter flooding. Wild rice wet harvesting and winter flooding of white rice fields were specific practices that increased MeHg export, both presumably related to increased labile organic carbon and disturbance. Outflow management during these times could reduce MeHg exports. Standardizing MeHg outflow:inflow concentration ratios against natural tracers (e.g. chloride, EC) provides a simple tool to identify NEP periods. Summer MeHg exports averaged 0.2 to 1 μg m− 2 for the different agricultural wetland fields, depending upon flood duration. Average winter MeHg exports were estimated at 0.3 μg m− 2. These exports are within the range reported for other shallow aquatic systems.
Bachand, P A M; Bachand, S M; Fleck, J A; Alpers, C N; Stephenson, M; Windham-Myers, L
2014-02-15
Concentration and mass balance analyses were used to quantify methylmercury (MeHg) loads from conventional (white) rice, wild rice, and fallowed fields in northern California's Yolo Bypass. These analyses were standardized against chloride to distinguish transport pathways and net ecosystem production (NEP). During summer, chloride loads were both exported with surface water and moved into the root zone at a 2:1 ratio. MeHg and dissolved organic carbon (DOC) behaved similarly with surface water and root zone exports at ~3:1 ratio. These trends reversed in winter with DOC, MeHg, and chloride moving from the root zone to surface waters at rates opposite and exceeding summertime root zone fluxes. These trends suggest that summer transpiration advectively moves constituents from surface water into the root zone, and winter diffusion, driven by concentration gradients, subsequently releases those constituents into surface waters. The results challenge a number of paradigms regarding MeHg. Specifically, biogeochemical conditions favoring microbial MeHg production do not necessarily translate to synchronous surface water exports; MeHg may be preserved in the soils allowing for release at a later time; and plants play a role in both biogeochemistry and transport. Our calculations show that NEP of MeHg occurred during both summer irrigation and winter flooding. Wild rice wet harvesting and winter flooding of white rice fields were specific practices that increased MeHg export, both presumably related to increased labile organic carbon and disturbance. Outflow management during these times could reduce MeHg exports. Standardizing MeHg outflow:inflow concentration ratios against natural tracers (e.g. chloride, EC) provides a simple tool to identify NEP periods. Summer MeHg exports averaged 0.2 to 1 μg m(-2) for the different agricultural wetland fields, depending upon flood duration. Average winter MeHg exports were estimated at 0.3 μg m(-2). These exports are within the range reported for other shallow aquatic systems. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leach, J.; Moore, D.
2015-12-01
Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.
The structure and toxicity of winter cyanobacterial bloom in a eutrophic lake of the temperate zone.
Wejnerowski, Łukasz; Rzymski, Piotr; Kokociński, Mikołaj; Meriluoto, Jussi
2018-06-22
Winter cyanobacterial blooms have become increasingly common in eutrophic lakes advocating a need for their monitoring and risk assessment. The present study evaluated the toxicity of a winter cyanobacterial bloom in a eutrophicated freshwater lake located in Western Poland. The bloom was dominated by potentially toxic species: Planktothrix agardhii, Limnothrix redekei, and Aphanizomenon gracile. The toxin analysis revealed the presence of demethylated forms of microcystin-RR and microcystin-LR in ranges of 24.6-28.7 and 6.6-7.6 µg/L, respectively. The toxicity of sampled water was further evaluated in platelet-rich plasma isolated from healthy human subjects using lipid peroxidation and lactate dehydrogenase assays. No significant adverse effects were observed. The present study demonstrates that toxicity of some winter cyanobacterial blooms in the temperate zone, like that in Lubosińskie Lake, may not exhibit significant health risks despite microcystin production.
NASA Astrophysics Data System (ADS)
Xu, Xinping; He, Shengping; Li, Fei; Wang, Huijun
2018-03-01
The connection between Eurasian snow cover (SC) in autumn and Eurasian winter mean surface air temperature (SAT) has been identified by many studies. However, some recent observations indicate that early and late winter climate sometimes shows an out-of-phase relationship, suggesting that the winter mean situation might obscure the important relationships that are relevant for scientific research and applications. This study investigates the relationship between October northern Eurasian SC (NESC; 58°-68°N, 30°-90°E) and Eurasian SAT during the winter months and finds a significant relationship only exists in January. Generally, following reduced October NESC, the East Asian trough and Ural high are intensified in January, and anomalous northeasterly winds prevail in mid-latitudes, causing cold anomalies over Eurasia. Meanwhile, anomalous southwesterly winds along the northern fringe of the Ural high favor warm anomalies in the Arctic. The dynamical mechanism for the connection between NESC in October and the warm Arctic-cold Eurasia (WACE) anomaly in January is further investigated from the perspective of quasi-stationary planetary wave activity. It is found that planetary waves with zonal wavenumber-1 (ZWN1) play a dominant role in this process. Specifically, the ZWN1 pattern of planetary-scale waves concurrent with October NESC anomaly extends from the surface to the upper-stratosphere. It persists in the stratosphere through November-December and propagates downward to the surface by the following January, making the connection between October NESC and January climate possible. Additionally, the influence of October NESC on the January WACE pattern has intensified since the early-2000s.
Sniff Sniff...: Your Easy Tear-Out Guide for Stopping Classroom Bugs
ERIC Educational Resources Information Center
Gelbwasser, Margaret
2007-01-01
The author's first two years of teaching were filled with read alouds, eager faces, a-ha moments, and weekends stuck at home with cold after cold. No matter how quickly she bolted from students' incoming coughs and sneezes, come winter, she always seemed to get sick again and again. Thus, in this article, the author offers ways on how to spot,…
Cold Injuries in Korea During Winter of 1950-1951
1951-11-01
to be wet with perspiration (Table 7). Shoe! wAce were worn by 87.8 per cent nf patients with this condition. Am previouly irdic~tad, thii o’"ition 1...51. No informtion was available an the number of -nrr•t’ostbitten men in Korea who had a past history of cold injury. " • * k. Smoking. - Since the...inability to keep the feet warm. Cool or cold ambient t~eperatu.o% cavm.od stinging pain of the affected part. g,- B. A., a 24 year old • C, was frostbitten
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley; Atlas, Robert (Technical Monitor)
2001-01-01
A quantitative intercomparison of six meteorological analyses is presented for the cold 1999-2000 and 1995-1996 Arctic winters. The impacts of using different analyzed temperatures in calculations of polar stratospheric cloud (PSC) formation potential, and of different winds in idealized trajectory-based temperature histories, are substantial. The area with temperatures below a PSC formation threshold commonly varies by approximately 25% among the analyses, with differences of over 50% at some times/locations. Freie University at Berlin analyses are often colder than others at T is less than or approximately 205 K. Biases between analyses vary from year to year; in January 2000. U.K. Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses warmest. while NCEP analyses were usually coldest in 1995-1996 and Met Office or NCEP[National Center for Atmospheric Research Reanalysis (REAN) warmest. European Centre for Medium Range Weather Forecasting (ECMWF) temperatures agreed better with other analyses in 1999-2000, after improvements in the assimilation model. than in 1995-1996. Case-studies of temperature histories show substantial differences using Met Office, NCEP, REAN and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), qualitatively similar results were obtained for all analyses. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with large cold regions near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly among the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days. while in the 1996 periods, they were at 1-3 days. Thus different meteorological conditions in comparably cold winters had a large impact on expectations for PSC formation and on the discrepancies between different meteorological analyses. Met Office. NCEP, REAN, ECMWF and DAO analyses are commonly used for trajectory calculations and in chemical transport models; the choice of which analysis to use can strongly influence the results of such studies.
A primer on clothing systems for cold-weather field work
Denner, Jon
1990-01-01
Conducting field work in cold weather is a demanding task. The most important safety consideration for field personnel is to maintain normal body temperature and avoid hypothermia.The human body adjusts to cold temperatures through different physiological processes. Heat production is enhanced by increases in the rates of basal metabolism, specific dynamic action, and physical exercise, and heat loss is reduced by vasoconstriction.Physiological adaptations alone are inadequate to stop rapid heat loss in cold temperatures. Additional insulation in the form of cold-weather clothing is necessary to retain heat.The most practical method of dressing for winter conditions is the layering system. Wearing multiple thin layers allows one to fine tune the insulation needed for different temperatures and activity levels.
Benetello, Francesca; Squizzato, Stefania; Hofer, Angelika; Masiol, Mauro; Khan, Md Badiuzzaman; Piazzalunga, Andrea; Fermo, Paola; Formenton, Gian Maria; Rampazzo, Giancarlo; Pavoni, Bruno
2017-01-01
A total of 85 PM 2.5 samples were collected at a site located in a large industrial zone (Porto Marghera, Venice, Italy) during a 1-year-long sampling campaign. Samples were analyzed to determine water-soluble inorganic ions, elemental and organic carbon, and levoglucosan, and results were processed to investigate the seasonal patterns, the relationship between the analyzed species, and the most probable sources by using a set of tools, including (i) conditional probability function (CPF), (ii) conditional bivariate probability function (CBPF), (iii) concentration weighted trajectory (CWT), and (iv) potential source contribution function (PSCF) analyses. Furthermore, the importance of biomass combustions to PM 2.5 was also estimated. Average PM 2.5 concentrations ranged between 54 and 16 μg m -3 in the cold and warm period, respectively. The mean value of total ions was 11 μg m -3 (range 1-46 μg m -3 ): The most abundant ion was nitrate with a share of 44 % followed by sulfate (29 %), ammonium (14 %), potassium (4 %), and chloride (4 %). Levoglucosan accounted for 1.2 % of the PM 2.5 mass, and its concentration ranged from few ng m -3 in warm periods to 2.66 μg m -3 during winter. Average concentrations of levoglucosan during the cold period were higher than those found in other European urban sites. This result may indicate a great influence of biomass combustions on particulate matter pollution. Elemental and organic carbon (EC, OC) showed similar behavior, with the highest contributions during cold periods and lower during summer. The ratios between biomass burning indicators (K + , Cl - , NO 3 - , SO 4 2- , levoglucosan, EC, and OC) were used as proxy for the biomass burning estimation, and the contribution to the OC and PM 2.5 was also calculated by using the levoglucosan (LG)/OC and LG/PM 2.5 ratios and was estimated to be 29 and 18 %, respectively.
Preliminary economic analysis of aquifer winter-chill storage at the John F. Kennedy airport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, E.C.; Thomas, J.F.
A conceptual design was formulated in conjuction with a cost analysis to determine the feasibility of retrofitting the present John F. Kennedy (JFK) airport air-conditioning system with an aquifer cold water storage system. It appears technically feasible to chill and store aquifer water at the airport site during the winter months for later air-conditioning use. However, the economic analysis shows that although a significant energy savings is realized, the money saved from reduced energy costs would not be enough to recover the necessary capital investment over a 20-year period. JFK airport may be a poor economic choice for an aquifermore » cold water storage demonstration site due to site specific problems, and other sites may provide economic incentive.« less
NASA Astrophysics Data System (ADS)
Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.
2013-12-01
The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus supporting the notion that ozone is locally produced in the Uintah Basin. In both winters, TOPAZ occasionally observed ozone titration as the NOx-rich plume from the nearby Bonanza power plant was advected over the Horse Pool site. In 2012, low ozone values due to titration were observed at the surface and throughout the well-mixed BL, while in 2013 low ozone values were confined to the upper part of the cold-pool layer above the BL. This suggests that power plant NOx was very likely not part of the precursor mix that led to the high surface ozone values observed in 2013.
Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N
2011-03-01
Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.
NASA Astrophysics Data System (ADS)
Smith, E. T.
2017-12-01
Periods of extreme cold impact the mid-latitudes every winter. Depending on the magnitude and duration of the occurrence, extremely cold periods may be deemed cold air outbreaks (CAOs). Atmospheric teleconnections impact the displacement of polar air, but the relationship between the primary teleconnections and the manifestation of CAOs is not fully understood. A systematic CAO index was developed from 20 surface weather stations based on a set of criteria concerning magnitude, duration, and spatial extent. Statistical analyses of the data were used to determine the overall trends in CAOs. Clusters of sea level pressure (SLP), 100mb, and 10mb geopotential height anomalies were mapped utilizing self-organizing maps (SOMs) to understand the surface, upper-tropospheric Polar Vortex (PV), and stratospheric PV patterns preceding CAOs. The Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and Pacific-North American (PNA) teleconnections were used as variables to explain the magnitude and location of mid-latitude Arctic air displacement. Persistently negative SLP anomalies across the Arctic and North Atlantic were evident 1 - 2 weeks prior to the CAOs throughout the winter. The upper-tropospheric and stratospheric PV were found to be persistently weak/weakening prior to mid-winter CAOs and predominantly strong and off-centered prior to early and late season CAOs. Negative phases of the AO and NAO were favored prior to CAOs, while the PNA favored a near-neutral phase. This method of CAO and synoptic pattern characterization benefits from a continuous pattern representation and provides insight as to how specific teleconnections impact the atmospheric flow in a way that leads to CAOs in the eastern U.S.
Energy allocation in juvenile roach and burbot under different temperature and feeding regimes.
Binner, Maaike; Kloas, Werner; Hardewig, Iris
2008-06-01
Cold-active burbot (Lota lota (L.)) display reduced food intake during the summer. The impact of temperature on their energy budget was investigated in starved fish in a laboratory setting, simulating summer (20 degrees C) and winter (4 degrees C) conditions, to elucidate the impact of high temperature on burbot metabolism. Metabolic effects in burbot were compared to roach (Rutilus rutilus (L.)), which typically fast in winter. During warm acclimation, starvation (four weeks) resulted in a metabolic depression of oxygen consumption in both species. In roach, metabolic rate decreased by 55% after two weeks of starvation. Burbot, in contrast, displayed an immediate depression of metabolic rate by 50%. In both species, no reductions were observed in the cold. The temperature-induced differences between the metabolic rates at 20 degrees C and 4 degrees C showed a lower thermal sensitivity in burbot (Q (10) = 1.9) compared to roach (Q (10) = 2.7). Notably, for each species, energy consumption during starvation was highest under experimental conditions simulating their natural active periods, respectively. Warm acclimated roach relied mainly on muscle reserves, whereas in cold acclimated burbot, liver metabolic stores made a major contribution to the energy turnover. In cold acclimated roach and warm acclimated burbot, however, starvation apparently reduced swimming activity, resulting in considerable savings of energy reserves. These lower energy expenditures in roach and burbot corresponded to their natural inactive periods. Thus, starvation in burbot caused a lower energy turnover when exposed to high temperatures. These season-dependent adaptations of metabolism represent an advantageous strategy in burbot to manage winter temperature and withstand metabolism-activating summer temperatures, whereas roach metabolism correlates with the seasonal temperature cycle.
Major cluster of chilblain cases in a cold dry Western Australian winter.
Larkins, Nicholas; Murray, Kevin J
2013-02-01
Primary chilblains are an idiopathic cold-induced vasculopathy affecting the soft tissues of the hands and feet. Secondary chilblains occur in different forms of vasculitis and chronic autoimmune connective tissue disorders. Idiopathic chilblains are rarely reported in children and may generate significant anxiety to doctors and patients. We describe a cluster of idiopathic chilblains encountered over the winter of 2010 in Perth, Western Australia. This is a retrospective review of patients identified from a prospectively compiled database of all new cases seen in our department. Data on history, examination, investigations, prescribed treatments and outcomes were collected. Thirty-two patients with isolated idiopathic chilblains were included, including 20 females and 12 males with a median age at onset of 13.5 years. Lesions were papular with signs of peripheral vasoconstriction causing acrocyanosis, and uncomfortable due to pain and/or pruritis in most. Thickening of the small joints was common where lesions involved these areas. Ulceration of lesions also occurred in some. One patient required hospitalisation for secondary bacterial infection. Most received some form of treatment including non-steroidal anti-inflammatory drugs, prednisolone or nifedipine. Most patients improved spontaneously with warmer weather or responded to cold protection advice. All had resolved completely by late spring (November). Our cluster of chilblains was associated with an unusually cold winter in Perth 2010. It is the largest series reported in the literature, suggesting that chilblains may be more common than previously thought. Chilblains are almost always benign in nature and patients are systemically well and usually need no further investigation and only symptomatic treatment. Prompt recognition can avoid excessive investigation and anxiety, allowing appropriate simple advice and treatment. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Impacts of hot and cold temperature extremes on hospital admissions for cardiovascular diseases
NASA Astrophysics Data System (ADS)
Davídkovová, H.; Kyselý, J.; Kříž, B.
2010-09-01
Elevated mortality associated with high ambient temperatures in summer represents one of the main impacts of weather extremes on human society. Increases in mortality during heat waves were examined in many European countries; much less is known about the effects of heat waves on morbidity, measured for example by the number of hospital admissions. Relatively less understood is also cold-related mortality and morbidity in winter, when the relationships between weather and human health are more complex, less direct, and confounded by other factors such as epidemics of influenza/acute respiratory infections. The present study examines links between hot and cold temperature extremes and daily hospital admissions for cardiovascular diseases in the population of the Czech Republic over 1994-2007. We make use of a recently completed database of all admissions for cardiovascular diseases to hospitals in the area of the Czech Republic since 1994, with a detailed classification of diseases and detailed information concerning each patient (in total 1,467,675 hospital admissions over 1994-2007). The main goals of the study are (i) to identify excess/deficit morbidity during and after periods of heat waves in summer and cold spells in winter, (ii) to compare the links for individual diseases (e.g. acute myocardial infarction, I21; angina pectoris, I20; cerebral infarction, I63; brain ischemia, I64) and to identify those diagnoses that are most closely linked to weather, (iii) to identify population groups most vulnerable to temperature extremes, and (iv) to compare the links to temperature extremes for morbidity and mortality. Periods when morbidity data were affected by epidemics of influenza and acute respiratory infections in winter were excluded from the analysis.
NASA Astrophysics Data System (ADS)
Mohammed, A.; LeBlanc, F.; Cey, E. E.; Hayashi, M.
2016-12-01
Snowmelt infiltration and vadose zone fluxes in seasonally frozen soils are strongly affected by meteorological and soil moisture dynamics occurring during the preceding fall and winter, and complex processes controlling soil hydraulic and thermal regimes. In order to predict their effects on hydrologic processes such as run-off generation, groundwater recharge and plant-water availability in cold regions, an improved understanding of the mechanisms governing coupled water and heat fluxes in the unsaturated zone is needed. Field and laboratory studies were conducted to investigate snowmelt infiltration and groundwater recharge through partially frozen ground over a range of climate and soil conditions in the Canadian Prairies. Meteorological and subsurface field measurements at three sites were combined with laboratory infiltration experiments on frozen undisturbed soil-columns to provide insights into the hydraulic and thermal processes governing water movement. Analysis reveals that antecedent moisture content and thermal profiles both strongly affect subsurface dynamics during infiltration of snowmelt. Preferential flow is also a critical parameter, as both thermal and hydraulic responses were observed at depth prior to complete ground thaw in the field; as well as drainage outflow from the frozen soil column experiments under certain conditions. Results indicate that both diffuse (matrix) and preferential (macropore) flow play significant roles in the infiltration and redistribution of snowmelt water under frozen soil conditions, and shallow groundwater recharge. This study highlights the critical subsurface factors and processes that control infiltration and groundwater recharge in these seasonally frozen landscapes.
Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.
Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G
2016-02-01
Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.
Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm
Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.
2004-01-01
One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.
Hintsala, Heidi E.; Kiviniemi, Antti M.; Tulppo, Mikko P.; Helakari, Heta; Rintamäki, Hannu; Mäntysaari, Matti; Herzig, Karl-Heinz; Keinänen-Kiukaanniemi, Sirkka; Jaakkola, Jouni J. K.; Ikäheimo, Tiina M.
2016-01-01
Exposure to cold increases blood pressure and may contribute to higher wintertime cardiovascular morbidity and mortality in hypertensive people, but the mechanisms are not well-established. While hypertension does not alter responses of vagally-mediated heart rate variability to cold, it is not known how hypertension modifies baroreflex sensitivity (BRS) and blood pressure variability during cold exposure. Our study assessed this among untreated hypertensive men during short-term exposure comparable to habitual winter time circumstances in subarctic areas. We conducted a population-based recruitment of 24 untreated hypertensive and 17 men without hypertension (age 55–65 years) who underwent a whole-body cold exposure (−10°C, wind 3 m/s, winter clothes, 15 min, standing). Electrocardiogram and continuous blood pressure were measured to compute spectral powers of systolic blood pressure and heart rate variability at low (0.04–0.15 Hz) and high frequency (0.15–0.4 Hz) and spontaneous BRS at low frequency (LF). Comparable increases in BRS were detected in hypertensive men, from 2.6 (2.0, 4.2) to 3.8 (2.5, 5.1) ms/mmHg [median (interquartile range)], and in control group, from 4.3 (2.7, 5.0) to 4.4 (3.1, 7.1) ms/mmHg. Instead, larger increase (p < 0.05) in LF blood pressure variability was observed in control group; response as median (interquartile range): 8 (2, 14) mmHg2, compared with hypertensive group [0 (−13, 20) mmHg2]. Untreated hypertension does not disturb cardiovascular protective mechanisms during moderate cold exposure commonly occurring in everyday life. Blunted response of the estimate of peripheral sympathetic modulation may indicate higher tonic sympathetic activity and decreased sympathetic responsiveness to cold in hypertension. PMID:27313543
NASA Astrophysics Data System (ADS)
Ingole, Vijendra; Kovats, Sari; Schumann, Barbara; Hajat, Shakoor; Rocklöv, Joacim; Juvekar, Sanjay; Armstrong, Ben
2017-10-01
Ambient temperatures (heat and cold) are associated with mortality, but limited research is available about groups most vulnerable to these effects in rural populations. We estimated the effects of heat and cold on daily mortality among different sociodemographic groups in the Vadu HDSS area, western India. We studied all deaths in the Vadu HDSS area during 2004-2013. A conditional logistic regression model in a case-crossover design was used. Separate analyses were carried out for summer and winter season. Odds ratios (OR) and 95% confidence intervals (CI) were estimated for total mortality and population subgroups. Temperature above a threshold of 31 °C was associated with total mortality (OR 1.48, CI = 1.05-2.09) per 1 °C increase in daily mean temperature. Odds ratios were higher among females (OR 1.93; CI = 1.07-3.47), those with low education (OR 1.65; CI = 1.00-2.75), those owing larger agricultural land (OR 2.18; CI = 0.99-4.79), and farmers (OR 1.70; CI = 1.02-2.81). In winter, per 1 °C decrease in mean temperature, OR for total mortality was 1.06 (CI = 1.00-1.12) in lag 0-13 days. High risk of cold-related mortality was observed among people occupied in housework (OR = 1.09; CI = 1.00-1.19). Our study suggests that both heat and cold have an impact on mortality particularly heat, but also, to a smaller degree, cold have an impact. The effects may differ partly by sex, education, and occupation. These findings might have important policy implications in preventing heat and cold effects on particularly vulnerable groups of the rural populations in low and middle-income countries with hot semi-arid climate.
NASA Astrophysics Data System (ADS)
Yi, Y.; Kimball, J. S.; Moghaddam, M.; Chen, R. H.; Reichle, R. H.; Oechel, W. C.; Zona, D.
2017-12-01
The contribution of cold season respiration to boreal-arctic carbon cycle and its potential feedbacks to climate change remain poorly quantified. Here, we developed an integrated modeling framework combining airborne low frequency (L+P-band) airborne radar retrievals and landscape level (≥1km) environmental observations from satellite optical and microwave sensors with a detailed permafrost carbon model to investigate underlying processes controlling soil freeze/thaw (FT) dynamics and cold season carbon emissions. The permafrost carbon model simulates the snow and soil thermal dynamics with soil water phase change included and accounts for soil carbon decomposition up to 3m below surface. Local-scale ( 50m) radar retrievals of active layer thickness (ALT), soil moisture and freeze/thaw (FT) status from NASA airborne UAVSAR and AirMOSS sensors are used to inform the model parameterizations of soil moisture effects on soil FT dynamics, and scaling properties of active layer processes. Both tower observed land-atmosphere fluxes and atmospheric CO2 measurements are used to evaluate the model processes controlling cold season carbon respiration, particularly the effects of snow cover and soil moisture on deep soil carbon emissions during the early cold season. Initial comparisons showed that the model can well capture the seasonality of cold season respiration in both tundra and boreal forest areas, with large emissions in late fall and early winter and gradually diminishing throughout the winter. Model sensitivity analyses are used to clarify how changes in soil thermodynamics at depth control the magnitude and seasonality of cold season respiration, and how a deeper unfrozen active layer with warming may contribute to changes in cold season respiration. Model outputs include ALT and regional carbon fluxes at 1-km resolution spanning recent satellite era (2001-present) across Alaska. These results will be used to quantify cold season respiration contributions to the annual carbon cycle and help close the boreal-arctic annual carbon budget.
... Data SAFETY Floods Tsunami Beach Hazards Wildfire Cold Tornadoes Fog Air Quality Heat Hurricanes Lightning Safe Boating ... Winter Weather Forecasts River Flooding Latest Warnings Thunderstorm/Tornado Outlook Hurricanes Fire Weather Outlooks UV Alerts Drought ...
ERIC Educational Resources Information Center
Dutton, Eileen; Salazar, Chris
1998-01-01
Discusses ways of preparing school-building roofs for the winter season by paying attention to common problem areas. Also highlights the use of white elastomeric roof coatings, their benefits, and considerations when applying them. (GR)
Occurrence of human respiratory syncytial virus in summer in Japan.
Shobugawa, Y; Takeuchi, T; Hibino, A; Hassan, M R; Yagami, R; Kondo, H; Odagiri, T; Saito, R
2017-01-01
In temperate zones, human respiratory syncytial virus (HRSV) outbreaks typically occur in cold weather, i.e. in late autumn and winter. However, recent outbreaks in Japan have tended to start during summer and autumn. This study examined associations of meteorological conditions with the numbers of HRSV cases reported in summer in Japan. Using data from the HRSV national surveillance system and national meteorological data for summer during the period 2007-2014, we utilized negative binomial logistic regression analysis to identify associations between meteorological conditions and reported cases of HRSV. HRSV cases increased when summer temperatures rose and when relative humidity increased. Consideration of the interaction term temperature × relative humidity enabled us to show synergistic effects of high temperature with HRSV occurrence. In particular, HRSV cases synergistically increased when relative humidity increased while the temperature was ⩾28·2 °C. Seasonal-trend decomposition analysis using the HRSV national surveillance data divided by 11 climate divisions showed that summer HRSV cases occurred in South Japan (Okinawa Island), Kyushu, and Nankai climate divisions, which are located in southwest Japan. Higher temperature and higher relative humidity were necessary conditions for HRSV occurrence in summer in Japan. Paediatricians in temperate zones should be mindful of possible HRSV cases in summer, when suitable conditions are present.
Meyer, Nanna L; Manore, Melinda M; Helle, Christine
2011-01-01
Winter sports are played in cold conditions on ice or snow and often at moderate to high altitude. The most important nutritional challenges for winter sport athletes exposed to environmental extremes include increased energy expenditure, accelerated muscle and liver glycogen utilization, exacerbated fluid loss, and increased iron turnover. Winter sports, however, vary greatly regarding their nutritional requirements due to variable physiological and physique characteristics, energy and substrate demands, and environmental training and competition conditions. What most winter sport athletes have in common is a relatively lean physique and high-intensity training periods, thus they require greater energy and nutrient intakes, along with adequate food and fluid before, during, and after training. Event fuelling is most challenging for cross-country skiers competing in long events, ski jumpers aiming to reduce their body weight, and those winter sport athletes incurring repeated qualification rounds and heats. These athletes need to ensure carbohydrate availability throughout competition. Finally, winter sport athletes may benefit from dietary and sport supplements; however, attention should be paid to safety and efficacy if supplementation is considered.
Haider, Khadija; Khokhar, Muhammad Fahim; Chishtie, Farrukh; RazzaqKhan, Waseem; Hakeem, Khalid Rehman
2017-03-01
Like other developing countries, Pakistan is also facing changes in temperature per decade and other climatic abnormalities like droughts and torrential rains. In order to assess and identify the extent of temperature change over Pakistan, the whole Pakistan was divided into five climatic zones ranging from very cold to hot and dry climates. Similarly, seasons in Pakistan are defined on the basis of monsoon variability as winter, pre-monsoon, monsoon, and post-monsoon. This study primarily focuses on the comparison of surface temperature observations from Pakistan Meteorological Department (PMD) network with PRECIS (Providing Regional Climates for Impacts Studies) model simulations. Results indicate that PRECIS underestimates the temperature in Northern Pakistan and during the winter season. However, there exists a fair agreement between PRECIS output and observed datasets in the lower plain and hot areas of the country. An absolute increase of 0.07 °C is observed in the mean temperature over Pakistan during the time period of 1951-2010. Especially, the increase is more significant (0.7 °C) during the last 14 years (1997-2010). Moreover, SCIAMACHY observations were used to explore the evolution of atmospheric CO 2 levels in comparison to temperature over Pakistan. CO 2 levels have shown an increasing trend during the first decade of the twenty-first century.
NASA Astrophysics Data System (ADS)
Karpukhin, K.; Terenchenko, A.
2016-11-01
The trend of increasing fleet of electric or hybrid vehicles and determines the extension of the geographical areas of operation, including the Northern areas with cold winter weather. Practically in all territory of Russia the average winter temperature is negative. With the winter temperatures can be below in Moscow -30°C, in Krasnoyarsk -50°C. Battery system can operate in a wide temperature range, but there are extremes that should be remembered all the time, especially in cold climates like Russia. In the operating instructions of the electric car Tesla Model S indicate that to save the battery don't use at temperatures below -15°C. The paper presents the dependence of the cooling time and heating of the battery cell at different ambient temperatures and provides guidance on allowable cooling time while using and not thermally insulated thermally containers Suggests using the temperature control on the basis of thermoelectric converters Peltier connection from the onboard electrical network of the electric vehicle.
The tolerance of the field slug Deroceras reticulatum to freezing temperatures.
Cook, R T
2004-01-01
Cold hardiness of ectotherms has been widely studied in arthropods, but there is a more limited literature on the survival of molluscs at low temperatures. A number of intertidal species have been examined in detail, but terrestrial molluscs have largely been overlooked until recently. This paper reports results of laboratory experiments to evaluate the cold hardiness of the terrestrial slug, Deroceras reticulatum. The mean supercooling point (SCP) rose from -4.2 degree C in summer to -3.6 degree C in winter. The SCP that caused 50 percent mortality (LSCP50) remained constant at -4.7 to -4.8 degree C in both seasons, but slugs were able to survive the frozen state for longer in winter (LD50 of 31.8 minutes compared with 17.0 minutes in summer). Slug survival at freezing temperatures was prolonged to at least five hours when placed on a moist, absorbent substrate. D. reticulatum exhibits partial freeze tolerance, with an increased survival in winter. The results are discussed in relation to the natural environment of slugs.
Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Lundquist, J.D.; Dettinger, M.D.
2008-01-01
The pre-cold-frontal low-level jet within oceanic extratropical cyclones represents the lower-tropospheric component of a deeper corridor of concentrated water vapor transport in the cyclone warm sector. These corridors are referred to as atmospheric rivers (ARs) because they are narrow relative to their length scale and are responsible for most of the poleward water vapor transport at midlatitudes. This paper investigates landfalling ARs along adjacent north- and south-coast regions of western North America. Special Sensor Microwave Imager (SSM/ I) satellite observations of long, narrow plumes of enhanced integrated water vapor (IWV) were used to detect ARs just offshore over the eastern Pacific from 1997 to 2005. The north coast experienced 301 AR days, while the south coast had only 115. Most ARs occurred during the warm season in the north and cool season in the south, despite the fact that the cool season is climatologically wettest for both regions. Composite SSM/I IWV analyses showed landfalling wintertime ARs extending northeastward from the tropical eastern Pacific, whereas the summertime composites were zonally oriented and, thus, did not originate from this region of the tropics. Companion SSM/I composites of daily rainfall showed significant orographic enhancement during the landfall of winter (but not summer) ARs. The NCEP-NCAR global reanalysis dataset and regional precipitation networks were used to assess composite synoptic characteristics and overland impacts of landfalling ARs. The ARs possess strong vertically integrated horizontal water vapor fluxes that, on average, impinge on the West Coast in the pre-cold-frontal environment in winter and post-cold-frontal environment in summer. Even though the IWV in the ARs is greater in summer, the vapor flux is stronger in winter due to much stronger flows associated with more intense storms. The landfall of ARs in winter and north-coast summer coincides with anomalous warmth, a trough offshore, and ridging over the Intermountain West, whereas the south-coast summer ARs coincide with relatively cold conditions and a near-coast trough. ARs have a much more profound impact on near-coast precipitation in winter than summer, because the terrain-normal vapor flux is stronger and the air more nearly saturated in winter. During winter, ARs produce roughly twice as much precipitation as all storms. In addition, wintertime ARs with the largest SSM/I IWV are tied to more intense storms with stronger flows and vapor fluxes, and more precipitation. ARs generally increase snow water equivalent (SWE) in autumn/winter and decrease SWE in spring. On average, wintertime SWE exhibits normal gains during north-coast AR storms and above-normal gains during the south-coast AR storms. The north-coast sites are mostly lower in altitude, where warmer-than-normal conditions more frequently yield rain. During those events when heavy rain from a warm AR storm falls on a preexisting snowpack, flooding is more likely to occur. ?? 2008 American Meteorological Society.
46 CFR 42.30-25 - Summer Zones.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Summer Zones. 42.30-25 Section 42.30-25 Shipping COAST..., Areas, and Seasonal Periods § 42.30-25 Summer Zones. (a) The remaining areas constitute the Summer Zones... periods: Winter: November 1 to March 31. Summer: April 1 to October 31. [CGFR 68-60, 33 FR 10069, July 12...
46 CFR 42.30-25 - Summer Zones.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Summer Zones. 42.30-25 Section 42.30-25 Shipping COAST..., Areas, and Seasonal Periods § 42.30-25 Summer Zones. (a) The remaining areas constitute the Summer Zones... periods: Winter: November 1 to March 31. Summer: April 1 to October 31. [CGFR 68-60, 33 FR 10069, July 12...
46 CFR 42.30-25 - Summer Zones.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Summer Zones. 42.30-25 Section 42.30-25 Shipping COAST..., Areas, and Seasonal Periods § 42.30-25 Summer Zones. (a) The remaining areas constitute the Summer Zones... periods: Winter: November 1 to March 31. Summer: April 1 to October 31. [CGFR 68-60, 33 FR 10069, July 12...
46 CFR 42.30-25 - Summer Zones.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Summer Zones. 42.30-25 Section 42.30-25 Shipping COAST..., Areas, and Seasonal Periods § 42.30-25 Summer Zones. (a) The remaining areas constitute the Summer Zones... periods: Winter: November 1 to March 31. Summer: April 1 to October 31. [CGFR 68-60, 33 FR 10069, July 12...
46 CFR 42.30-25 - Summer Zones.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Summer Zones. 42.30-25 Section 42.30-25 Shipping COAST..., Areas, and Seasonal Periods § 42.30-25 Summer Zones. (a) The remaining areas constitute the Summer Zones... periods: Winter: November 1 to March 31. Summer: April 1 to October 31. [CGFR 68-60, 33 FR 10069, July 12...
The Advancement of Cool Roof Standards in China from 2010 to 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Jing; Levinson, Ronnen M.
Since the initiation of the U.S.-China Clean Energy Research Center-Building Energy Efficiency (CERC-BEE) cool roof research collaboration between the Lawrence Berkeley National Laboratory Heat Island Group and Chinese institutions in 2010, new cool surface credits (insulation trade- offs) have been adopted in Chinese building energy efficiency standards, industry standards, and green building standards. JGJ 75-2012: Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone became the first national level standard to provide cool surface credits. GB/T 50378-2014: Assessment Standard for Green Building is the first national level green building standard that offers points formore » heat island mitigation. JGJ/T 359-2015: Technical Specification for Application of Architectural Reflective Thermal Insulation Coating is the first industry standard that offers cool coating credits for both public and residential buildings in all hot-summer climates (Hot Summer/Cold Winter, Hot Summer/Warm Winter). As of December 2015, eight provinces or municipalities in hot-summer regions have credited cool surfaces credits in their residential and/or public building design standards; five other provinces or municipalities in hot-summer regions recommend, but do not credit, the use of cool surfaces in their building design standards. Cool surfaces could be further advanced in China by including cool roof credits for residential and public building energy efficiency standards in all hot-summer regions; developing a standardized process for natural exposure and aged-property rating of cool roofing products; and adapting the U.S.-developed laboratory aging process for roofing materials to replicate solar reflectance changes induced by natural exposure in China.« less
Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua
2016-01-01
The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892
Cheng, Weining; Li, Dan; Wang, Yue; Liu, Yang; Zhu-Salzman, Keyan
2016-12-01
Sitodiplosis mosellana Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of hsp70, hsc70 and hsp90 from S. mosellana larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsps included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of hsp90 was consistent with the known classification of insects. Expression of hsp70 and hsp90 were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, hsp70 was more strongly expressed in summer than in winter whereas hsp90 displayed the opposite pattern. Abundance of hsc70 mRNA was comparable prior to and during diapauses and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae (⩾30°C) or cold-stressed over-wintering larvae (⩽0°C) could further elevate expression of these three genes, but temperature extremes i.e. as high as 45°C or as low as -15°C failed to trigger such expression patterns. Notably, hsp70 was most sensitive to heat stress and hsp90 was most sensitive to cold stress. These results suggested that hsp70 and hsp90 play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, hsc70 most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jennings, K. S.; Molotch, N. P.
2016-12-01
In cold, high-elevation sites, snowpack cold content acts as a buffer against climate warming by resisting snowmelt during periods of positive energy fluxes. To test the climate sensitivity of cold content and snowmelt, we employed the physical SNOWPACK snow model, forced with a 23-year, hourly, quality-controlled, gap-filled meteorological dataset from the Niwot Ridge Long Term Ecological Research (LTER) site in the Front Range mountains of Colorado. SNOWPACK was run at two points with seasonal snowpacks within the LTER, one in the alpine (3528 m) and one in the subalpine (3022 m). Model output was validated using snow water equivalent (SWE), snowpack temperature, and cold content data from snow pits dug near the met stations and automated SWE data from nearby SNOTEL snow pillows. Cold content accumulates primarily through additions of new snow, while negative energy fluxes—cooling through longwave emission and sublimation—play a lesser role, particularly in the deeper snowpack of the alpine. On average, the snowpack energy balance becomes positive on April 1 in the alpine and March 8 in the subalpine. Peak SWE occurs after these dates and its timing is primarily determined by the amount of precipitation received after peak cold content, with persistent snowfall delaying the main snowmelt pulse. Years with lower cold content, due to reduced precipitation and/or increased air temperature, experience an earlier positive energy balance with more melt events occurring before the date of peak SWE, which has implications for soil moisture, streamflow volume and timing, water uptake by vegetation, and microbial respiration. Synthetic warming experiments show significant cold content reductions and increased late-winter/early-spring melt as positive energy balances occur earlier in the snow season (a forward shift between 5.1 and 21.0 days per °C of warming). These results indicate cold, high-elevation sites, which are critical for water resources in the western United States, may lose their cold content buffering capacity and begin to experience stronger negative trends in SWE with increased climate warming, even as the majority of winter precipitation continues to fall as snow.
G. R. Strimbeck; David R. Vann; Arthur H. Johnson
1996-01-01
Several studies have shown that exposure to acid mist impairs cold tolerance of red spruce foliage, predisposing it to winter injury, which appears to be a major factor in the decline of montane populations of the species. Other studies have shown increases in calcium (Ca) concentration in canopy throughfall in montane spruce-fir forests, and decreases in foliar Ca...
Winter frost at Viking Lander 2 site
NASA Technical Reports Server (NTRS)
Svitek, Thomas; Murray, Bruce
1990-01-01
This paper presents quantitative evidence for cold trapping (frost redeposition) at the Viking Lander 2 site. This evidence consists of the frost surface coverage and color transition, the timing of this transition, and the limited vertical mixing and horizontal water transport. It is argued that cold trapping must be a general property of seasonal frost and, therefore, must be considered in order to understand the evolution of the surface environment of Mars.
Ilot de Chaleur a Quebec: Cas d'hiver
NASA Astrophysics Data System (ADS)
Leduc, Richard; Jacques, Ghislain; Ferland, Michel; Le Lièvre, Claude
1981-11-01
This paper describes the urban heat island in Quebec City on a typical clear winter night. This is a follow-up to a study made on a summer night in August 1980; the reader will find a detailed description of the region in Leduc et al. (1980). On February 25, 1980 at 21:30 EST, nearly 200 measurements of temperature were taken at preselected points by 17 mobile observers; a mini-sonde was launched near the Duberger meteorological tower while upper air data were obtained from a sonde launched at Valcartier CFB. Additional data were available from the five regular climatological stations in greater Quebec City and from 2 other thermographs in order to evaluate cooling rates. On the day of the 25th, a developing low pressure area over the eastern coast brought cold air from the northwest toward Quebec City. On that day, the maximum temperature was - 1 °C while the minimum on the following night dropped to - 19 °C. At the time of the experiment, the sky was clear and the winds were westerly at 1.5 m s-1 at the surface and northwesterly at 6 m s-1 at 122 m. A strong inversion was present in the lowest 200 m while upper inversions were noted on the upper air sounding. As noted in the summer experiment, cooling rates, according to the Oke et al. (1972) criteria, reflected a rural behaviour at all stations equipped with a thermograph. It is to be noted that no data on cooling rates are available for the highly urbanized sectors. One notes a relatively warm zone in the downtown area where temperature reached - 8 °C; there is also a cold zone, at the same location as during the summer experiment. The mean temperature gradient between the urban and rural sectors was 5 °C, which is comparable with that observed in August 1979 (6 °C). Thus, the urban heat island does not seem to be more intense in winter than in summer. Relatively large areas of uniform temperature were detected at places where the summer experiment indicated sharp spatial contrasts; this could be attributed to the presence of snow on the ground. The great number of measurements taken in the more urbanized sector revealed a complex spatial arrangement of smaller heat islands which are separated by boulevards or open areas (covered with snow). For the city dwellers, the temperature differences resulted in relatively sharp contrasts in clothing requirements for comfort. Urban morphology was analyzed and a multiple regression model was formulated between temperature on the one hand and altitude, land use and distance to the warmest point, on the other hand. It shows that, for both winter and summer the most important factor in explaining the heat island is distance to the warmest point while land use comes second; distance explains the form and land use explains the fine structure of the heat island.
ENSO's far reaching connection to Indian cold waves.
Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio
2016-11-23
During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.
On-chip very low junction temperature GaN-based light emitting diodes by selective ion implantation
NASA Astrophysics Data System (ADS)
Cheng, Yun-Wei; Chen, Hung-Hsien; Ke, Min-Yung; Chen, Cheng-Pin; Huang, JianJang
2008-08-01
We propose an on-wafer heat relaxation technology by selectively ion-implanted in part of the p-type GaN to decrease the junction temperature in the LED structure. The Si dopant implantation energy and concentration are characterized to exhibit peak carrier density 1×1018 cm-3 at the depth of 137.6 nm after activation in nitrogen ambient at 750 °C for 30 minutes. The implantation schedule is designed to neutralize the selected region or to create a reverse p-n diode in the p-GaN layer, which acts as the cold zone for heat dissipation. The cold zone with lower effective carrier concentration and thus higher resistance is able to divert the current path. Therefore, the electrical power consumption through the cold zone was reduced, resulting in less optical power emission from the quantum well under the cold zone. Using the diode forward voltage method to extract junction temperature, when the injection current increases from 10 to 60 mA, the junction temperature of the ion-implanted LED increases from 34.3 °C to 42.3 °C, while that of the conventional one rises from 30.3 °C to 63.6 °C. At 100 mA, the output power of the ion-implanted device is 6.09 % higher than that of the conventional device. The slight increase of optical power is due to the increase of current density outside the cold zone region of the implanted device and reduced junction temperature. The result indicates that our approach improves thermal dissipation and meanwhile maintains the linearity of L-I curves.
Spatial distribution of cold-season lightning frequency in the coastal areas of the Sea of Japan
NASA Astrophysics Data System (ADS)
Tsurushima, Daiki; Sakaida, Kiyotaka; Honma, Noriyasu
2017-12-01
The coastal areas of the Sea of Japan are a well-known hotspot of winter lightning activity. This study distinguishes between three common types of winter lightning in that region (types A-C), based on their frequency distributions and the meteorological conditions under which they occur. Type A lightning occurs with high frequency in the Tohoku district. It is mainly caused by cold fronts that accompany cyclones passing north of the Japanese islands. Type B, which occurs most frequently in the coastal areas of the Hokuriku district, is mainly caused by topographically induced wind convergence and convective instability, both of which are associated with cyclones having multiple centers. Type C's lightning frequency distribution pattern is similar to that of type B, but its principal cause is a topographically induced wind convergence generated by cold air advection from the Siberian continent. Type A is most frequently observed from October to November, while types B and C tend to appear from November to January, consistent with seasonal changes in lightning frequency distribution in Japan's Tohoku and Hokuriku districts.
Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings
NASA Astrophysics Data System (ADS)
Wegmann, Martin; Orsolini, Yvan; Zolina, Olga
2018-02-01
The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.
Evidence for Arctic Ozone Depletion in Late February and early March 1994
NASA Technical Reports Server (NTRS)
Manney, G. L.; Zurek, R. W.; Froidevaux, L.; Waters, J. W.
1995-01-01
Significant chemical ozone (O3 ) loss in the 1993-94 Arctic winter occurred mainly during an unusually late cold spell of approximately 10 days in late Feb/early Mar. Over the 30 d period studied (including the cold spell), observed vortex-averaged O3 at 465 K (approximately 40 hPa) decreased by approximately 10%. New three-dimensional, diabatic trajectory calculations show that this observed decrease represents only about half of the net chemical loss (approximately 20%) during the 30 day period. The resupply of lower stratospheric O3 by transport in Feb 1994 was considerably greater than in 1993, when transport masked only about a quarter of the chemical loss in Feb/Mar. The net estimated chemical loss over 30 days in 1994 was comparable to that over the same 30 days in 1993, but mainly occurred at a faster rate during the brief cold spell. These results highlight the impact of Arctic interannual variability on the relative roles of chemistry and dynamics in O3 evolution during recent Arctic winters.
Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida
NASA Technical Reports Server (NTRS)
Allen, L. H., Jr. (Principal Investigator)
1983-01-01
Pairs of HCMM day-night thermal infrared (IR) data were selected during the 1978-79 winter to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. The GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely corresponded to the general soil map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils, whereas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also corresponded well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model showed both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.
A Longitudinal Study of Disease Incidence among Antarctic Winter-Over Personnel.
1986-02-01
follow-up study of enlisted Navy personnel found no long-term risk for first hospital admissions. " Objective The objective of this study was to test ...the Antarctic winter and demographic. personality, and socioenvironmental factors which mediate the physical and psychological stress associated with...over personnel are at risk for disease and psychological stress upon their return to the outside world. Outbreaks of common colds have been noted among
ERIC Educational Resources Information Center
Sanders, James R.; Stufflebeam, Daniel L.
The energy crisis, specifically a shortage of natural gas, caused by the unusually cold winter of 1977, resulted in the Columbus, Ohio, schools being closed for a month. Schools heated with gas were closed, but students met one day a week in school buildings that used coal, oil, or electricity. The educational program continued with school…
Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël
2011-04-01
Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of 10%, while there was a > 10% probability of human-wildlife encounters on 67% of the remaining area of suitable wintering habitat. Only 23% of the wintering habitat was thus free of anthropogenic disturbance. By identifying zones of potential conflict, while rating its relative intensity, our model provides a powerful tool to delineate and prioritize areas where wildlife winter refuges and visitor steering measures should be implemented.
ERIC Educational Resources Information Center
Powell, W. R.
1978-01-01
In this article the Community Annual Energy Storage System ( CASES), a "thermal utility" plan for heating and cooling communities by storing summer heat and winter cold for use in the opposite season, is described. (MDR)
... ¼ whole) Artichoke Chocolate (1.5-2 ounces) Banana (½ whole) Bamboo Shoots Granola Cantaloupe Baked Beans ... Sweet Potatoes, Carrots, Beets, Winter Squash, and Rutabagas: Peel and place the vegetable in cold water so ...
NASA Astrophysics Data System (ADS)
Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.
2016-04-01
The British Isles experienced exceptional stormy and rainy weather conditions in winter 2013-2014 while large parts of central North America recorded near record minimum surface temperatures values. Potential drivers for these cold conditions include increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the Europe, particularly the UK. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We will firstly analyse anomaly patterns along such a potential link in winter 2013-14. Secondly, we will investigate whether these identified anomaly patterns show a strong interannual relationship in the recent past. Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.
Distribution of Different Biogeographical Tintinnids in Yellow Sea and Bohai Sea
NASA Astrophysics Data System (ADS)
Chen, Xue; Li, Haibo; Zhao, Yuan; Zhao, Li; Dong, Yi; Zhang, Wuchang; Xiao, Tian
2018-04-01
There were different biogeographical tintinnids in the oceans. Knowledge of their distribution pattern and mixing was important to the understanding of ecosystem functions. Yellow Sea (YS) and Bohai Sea (BS) were semi-enclosed seas influenced by warm water intrusion and YS cold bottom water. The occurrence of tintinnids in YS and BS during two cruises (summer and winter) were investigated to find out: i) whether warm-water tintinnids appeared in YS and BS; ii) whether boreal tintinnids appeared in high summer; iii) the core area of neritic tintinnids and iv) how these different biogeographical tintinnids mixed. Our results showed that tintinnid community was dominated by neritic tintinnid. We confirmed the occurrence of warm-water tintinnids in summer and winter. In summer, they intruded into BS and mainly distributed in the upper 20 m where Yellow Sea Surface Warm Water (YSSWW) developed. In winter, they were limited in the surface water of central deep region (bottom depth >50 m) of YS where were affected by Yellow Sea Warm Water (YSWW). Boreal tintinnids occurred in YS in high summer (August) and in winter, while they were not observed in BS. In summer, the highest abundance of boreal tintinnids occurred in Yellow Sea Bottom Cold Water, indicating the presence of an oversummering stock. In winter, they were concentrated in the north of YSWW. Vertically, neritic tintinnids abundance was high in the bottom layers. Horizontally, high neritic tintinnids abundance in bottom layers occurred along the 50 m isobath coinciding with the position of front systems. Front systems were the core distribution area of neritic tintinnids. High abundance areas of warm-water and boreal tintinnids were clearly separated vertically in summer, and horizontally in winter. High abundance of neritic tintinnids rarely overlapped with that of warm-water or boreal tintinnids.
Is the Climate of Bering Sea Warming and Affecting the Ecosystem?
NASA Astrophysics Data System (ADS)
Overland, James E.; Stabeno, Phyllis J.
2004-08-01
Observations from the Bering Sea are good indicators of decadal shifts in climate, as the Bering is a transition region between the cold, dry Arctic air mass to the north, and the moist, relatively warm maritime air mass to the south. The Bering Sea is also a transition region between Arctic and sub-Arctic ecosystems; this boundary can be loosely identified with the extent of winter sea-ice cover. Like a similar transition zone in the eastern North Atlantic, the Bering Sea is experiencing a northward biogeographical shift in response to changing temperature and atmospheric forcing. If this shift continues over the next decade, it will have major impacts on commercial and subsistence harvests as Arctic species are displaced by sub-Arctic species. The stakes are enormous, as this rich and diverse ecosystem currently provides 47% of the U.S. fishery production by weight, and is home to 80% of the U.S. sea bird population, 95% of northern fur seals, and major populations of Steller sea lions, walrus, and whales.
Warm Anomaly Effects on California Current Phytoplankton
NASA Astrophysics Data System (ADS)
Gomez Ocampo, E.; Gaxiola-Castro, G.; Beier, E.; Durazo, R.
2016-02-01
Positive temperature anomalies were reported in the NE Pacific Ocean since the boreal winter of 2013-2014. Previous studies showed that these anomalies were caused by lower than normal rates of heat loss from the ocean to the atmosphere and by relatively weak cold water advection to the upper ocean. Anomalous Sea Surface Temperature (SST), Absolute Dynamic Topography (ADT), and Chlorophyll (CHL) obtained from monthly remote sensing data were registered in the California Current region during August 2014. Anomalies appeared around the coastal and oceanic zones, particularly in the onshore zone between Monterey Bay, California and Magdalena Bay, Baja California. High positive SST anomalous values up to 4ºC above the long-term mean, 20 cm in ADT, and less of 4.5 mg m-3 of CHL were registered. Changes of 20 cm in ADT above the average are equivalent to 50 m thermocline deepening considering typical values of stratification for the area, which in turn influenced the availability of nutrients and light for phytoplankton growth in the euphotic zone. To examine the influence of the warm anomaly on phytoplankton production, we fitted with Generalized Additive Models the relationship between monthly primary production satellite data and ADT. Primary production inferred from the model, showed during August 2014 high negative anomalies (up to 0.5 gC m-2 d1) in the coastal zone. The first empirical orthogonal function of ADT and PP revealed that the highest ADT anomalies and the lowest primary production occurred off the Baja California Peninsula, between Punta Eugenia and Cabo San Lucas. Preliminary conclusions showed that warm anomaly affected negatively to phytoplankton organisms during August 2014, being this evident by low biomass and negative primary production anomalies as result of pycnocline deepens.
NASA Astrophysics Data System (ADS)
Kim, Yong-Yub; Cho, Yang-Ki; Kim, Young Ho
2018-06-01
The contributions of bottom cold water and planetary β-effect to the formation of the East Korean Warm Current (EKWC), the western boundary current in the East/Japan Sea (EJS), were evaluated using an idealized three-dimensional numerical model. The model results suggest that the bottom cold water and, to a lesser extent, the planetary β-effect both contribute to the formation of the EKWC. The cold water functions as the bottom of the upper layer, to control the EKWC via conservation of potential vorticity. It is known that cold waters, such as the North Korean Cold Water and Korea Strait Bottom Cold Water often observed during summer along the southwestern coast of the EJS, originate from the winter convection in the northern area. Observational studies consistently show that the EKWC strengthens in summer when the cold water extends further south along the western boundary.
Paschalidou, A K; Kassomenos, P A; McGregor, G R
2017-11-15
Although heat-related mortality has received considerable research attention, the impact of cold weather on public health is less well-developed, probably due to the fact that physiological responses to cold weather can vary substantially among individuals, age groups, diseases etc., depending on a number of behavioral and physiological factors. In the current work we use the classification techniques provided by the COST-733 software to link synoptic circulation patterns with excess cold-related mortality in 5 regions of England. We conclude that, regardless of the classification scheme used, the most hazardous conditions for public health in England are associated with the prevalence of the Easterly type of weather, favoring advection of cold air from continental Europe. It is noteworthy that there has been observed little-to-no regional variation with regards to the classification results among the 5 regions, suggestive of a spatially homogenous response of mortality to the atmospheric patterns identified. In general, the 10 different groupings of days used reveal that excess winter mortality is linked with the lowest daily minimum/maximum temperatures in the area. However it is not uncommon to observe high mortality rates during days with higher, in relative terms, temperatures, when rapidly changing weather results in an increase of mortality. Such a finding confirms the complexity of cold-related mortality and highlights the importance of synoptic climatology in understanding of the phenomenon. Copyright © 2017 Elsevier B.V. All rights reserved.
Transcriptional profiles of the annual growth cycle in Populus deltoides.
Park, Sunchung; Keathley, Daniel E; Han, Kyung-Hwan
2008-03-01
Cycling between vegetative growth and dormancy is an important adaptive mechanism in temperate woody plants. To gain insights into the underlying molecular mechanisms, we carried out global transcription analyses on stem samples from poplar (Populus deltoides Bartr. ex Marsh.) trees grown in the field and in controlled environments. Among seasonal changes in the transcriptome, up-regulation of defense-related genes predominated in early winter, whereas signaling-related genes were up-regulated during late winter. Cluster analysis of the differentially expressed genes showed that plants regulated seasonal growth by integrating environmental factors with development. Short day lengths induced some cold-associated genes without concomitant low temperature exposure, and enhanced the expression of some genes when combined with low temperature exposure. These mechanisms appear to maintain closer synchrony between cold hardiness and climate than would be achieved through responses to temperature alone.
Arambourou, Hélène; Stoks, Robby
2015-10-01
Despite the increased attention for the effects of pesticides under global warming no studies tested how winter warming affects subsequent sensitivity to pesticides. Winter warming is expected to cause delayed negative effects when it increases metabolic rates and thereby depletes energy reserves. Using a common-garden experiment, we investigated the combined effect of a 4 °C increase in winter temperature and subsequent exposure to chlorpyrifos in the aquatic larvae of replicated low- and high-latitude European populations of the damselfly Ischnura elegans. The warmer winter (8 °C) resulted in a higher winter survival and higher growth rates compared to the cold winter (4 °C) commonly experienced by European high-latitude populations. Low-latitude populations were better at coping with the warmer winter, indicating thermal adaptation to the local winter temperatures. Subsequent chlorpyrifos exposure at 20 °C induced strong negative effects on survival, growth rate, lipid content and acetylcholinesterase activity while phenoloxidase activity increased. These pesticide effects were not affected by winter warming. Our results suggest that for species where winter warming has positive effects on life history, no delayed effects on the sensitivity to subsequent pesticide exposure should be expected. Copyright © 2015 Elsevier B.V. All rights reserved.
Thomas M. Saielli; Paul G. Schaberg; Gary J. Hawley; Joshua M. Halman; Kendra M. Gurney
2012-01-01
Approximately 100 years ago, American chestnut (Castanea dentata (Marsh.) Borkh.) was rapidly removed as an overstory tree by the fungal pathogen Cryphonectria parasitica (the causal agent of chestnut blight). Currently, the most effective method of restoration involves the hybridization of American chestnut with the...
1983-09-01
cold winters. Coldest temperatures ir. winter months are caused by high pressure systems which move rapidly dohn from central Canada cr Hudson Eay... dolomitic marble; or sand (30 to 60 feet), Glacial till (30 to 50 feet), and bedrock. The materials occurring above the bedrock in the vicinity of the...Trenton Group Iberville formation Noncalcareous black shale interbedded with 1000 dolomite . Stony point formation Predominantly calcareous black shale
Belaya smert: the white death.
Rodway, George W
2012-09-01
In the late autumn of 1939, shortly after Second World War had commenced, the Soviet Union invaded Finland. This act of military aggression, henceforth known to history as the Winter War, was ostensibly carried out to secure a buffer state and better protect major urban areas such as St. Petersburg (then known as Leningrad). The Red Army's attack through the forests of northern Finland was a poorly calculated operation-in the little more than 3 months that the conflict lasted, the Soviets suffered extensive losses. The hit-and-run tactics of the small, winter-savvy Finnish Army resulted in a not significant number of Red Army casualties. But from the Soviet perspective, the Finnish soldiers were merely an annoyance compared with the real enemy--the environment. Cold injury reached epidemic proportions in the Red Army during this short conflict, apparently caused in large part by ignorance of environmental realities by the Soviet high command. Paradoxically, the Soviets arguably possessed the most extensive and sophisticated body of knowledge about cold injury prevention and treatment on earth by the late 1930s. There were significant lessons learned by the Soviets during the Winter War, however. When Germany invaded the Soviet Union in 1941, the Red Army very successfully applied these lessons during 4 years of vicious winter battles on the Eastern Front. Copyright © 2012 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
A montane Mediterranean climate supports year-round photosynthesis and high forest biomass.
Kelly, Anne E; Goulden, Michael L
2016-04-01
The mid-elevation forest of California's Sierra Nevada poses a bioclimatic paradox. Mid-elevation trees experience a montane Mediterranean climate, with near-freezing winter days and rain-free summers. The asynchrony between warmth and water input suggests low primary production, limited by photosynthetic dormancy in winter cold, and again in summer and early autumn with drought, yet this forest is characterized by tall trees and high biomass. We used eddy covariance in a mid-elevation Sierra stand to understand how winter cold and summer drought limit canopy photosynthesis and production. The trees exhibited canopy photosynthesis year-round. Trees avoided winter dormancy, and daytime CO2uptake continued despite a deep snowpack and near-freezing temperatures. Photosynthesis on sunny days continued at half of maximum rates when air temperature was 0 °C. Likewise, the vegetation avoided summer drought dormancy, and high rates of daytime CO2uptake and transpiration continued despite a 5-month period with only negligible water input. We attribute this drought avoidance to deep rooting and availability of deep soil water. Year-round photosynthesis helps explain the large biomass observed in the Sierra Nevada, and implies adaptive strategies that may contribute to the resiliency or vulnerability of Sierran vegetation to climate change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Brown, S. S.; Edwards, P. M.; Patel, S.; Dube, W. P.; Williams, E. J.; Roberts, J. M.; McLaren, R.; Kercher, J. P.; Gilman, J. B.; Lerner, B. M.; Warneke, C.; Geiger, F.; De Gouw, J. A.; Tsai, C.; Stutz, J.; Young, C. J.; Washenfelder, R. A.; Parrish, D. D.
2012-12-01
Oil and gas development in mountain basins of the Western United States has led to frequent exceedences of National Ambient Air Quality Standards for ozone during the winter season. The Uintah Basin Winter Ozone Study took place during February and March 2012 in northeast Utah with the goal of providing detailed chemical and meteorological data to understand this phenomenon. Although snow and cold pool stagnation conditions that lead to winter ozone buildup were not encountered during the study period, the detailed measurements did provide a unique data set to understand the chemistry of key air pollutants in a desert environment during winter. This presentation will examine both the photochemistry and the nighttime chemistry of nitrogen oxides, ozone and VOCs, with the goal of understanding the observed photochemistry and its relationship to nighttime chemistry through a set of box models. The photochemical box model is based on the master chemical mechanism (MCM), a detailed model for VOC degradation and ozone production. The presentation will examine the sensitivity of ozone photochemistry to different parameters, including pollutant concentrations likely to be characteristic of cold pool conditions, and the strength of radical sources derived from heterogeneous chemical reactions. The goal of the analysis will be to identify the factors most likely to be responsible for the higher ozone events that have been observed during colder years with less detailed chemical measurements.
NASA Astrophysics Data System (ADS)
Yu, Yueyue; Cai, Ming; Ren, Rongcai; Rao, Jian
2018-01-01
The relationship between continental-scale cold air outbreaks (CAOs) in the mid-latitudes and pulse signals in the stratospheric mass circulation in Northern Hemisphere winter (December-February) is investigated using ERA-Interim data for the 32 winters from 1979 to 2011. Pulse signals in the stratospheric mass circulation include "PULSE_TOT", "PULSE_W1", and "PULSE_W2" events, defined as a period of stronger meridional mass transport into the polar stratosphere by total flow, wavenumber-1, and wavenumber-2, respectively. Each type of PULSE event occurs on average 4-6 times per winter. A robust relationship is found between two dominant patterns of winter CAOs and PULSE_W1 and PULSE_W2 events. Cold temperature anomalies tend to occur over Eurasia with the other continent anomalously warm during the 2 weeks before the peak dates of PULSE_W1 events, while the opposite temperature anomaly pattern can be found after the peak dates; and during the 1-2 weeks centered on the peak dates of PULSE_W2 events, a higher probability of occurrence of CAOs is found over both continents. These relationships become more robust for PULSE_W1 and PULSE_W2 events of larger peak intensity. PULSE_TOT events are classified into five types, which have a distinct coupling relationship with PULSE_W1 and PULSE_W2 events. The specific pattern of CAOs associated with each type of PULSE_TOT event is found to be a combination of the CAO patterns associated with PULSE_W1 and PULSE_W2 events. The percentage of PULSE_TOT events belonging to the types that are dominated by PULSE_W2 events increases with the peak intensity of PULSE_TOT events. Accordingly, the related CAO pattern is close to that associated with PULSE_W1 for PULSE_TOT events with small-to-medium intensity, but tends to resemble that associated with PULSE_W2 events as the peak intensity of PULSE_TOT events increases.
NASA Technical Reports Server (NTRS)
2004-01-01
In mid-December, the weather in eastern North America cooperated with the calendar, and a wintry blast from the Arctic delivered freezing cold air, blustery winds, and snow just in time for the Winter Solstice on December 21' the Northern Hemisphere's longest night of the year and the official start of winter. This image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on December 20, 2004, the day after an Arctic storm dove down into the United States, bringing snow to New England (upper right of top image); the coastal mid-Atlantic, including Washington, D.C.; and the southern Appalachian Mountains in Tennessee and North Carolina. Over the Atlantic Ocean (image right), the fierce Arctic winds were raking the clouds into rows, like a gardener getting ready to plant the seeds of winter. The detailed close-up at the bottom of this image pair shows the cloud and snow patterns around Lake Ontario, illustrating the occurrence of 'lake-effect snow.' Areas in western upstate New York often get as much as fifteen feet or more of snow each year as cold air from Canada and the Arctic sweeps down over the relatively warm waters of Lakes Ontario and Erie. Cold air plus moisture from the lakes equals heavy snow. Since the wind generally blows from west to east, it is the 'downwind' cities like Buffalo and Rochester that receive the heaping helpings of snowfall, while cities on the upwind side of the lake, such as Toronto, receive much less. Unlike storms that begin with specific low-pressure systems in the Pacific Ocean and march eastward across the Pacific Northwest, the Rockies, the Great Plains, and sometimes the East, the lake-effect snows aren't tied to a specific atmospheric disturbance. They are more a function of geography, which means that the lakes can keep fueling snow storms for as long as they remain ice-free in early winter, as well as when they begin to thaw in late winter and early spring. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE.
Borneo Vortex and Meso-scale Convective Rainfall
NASA Astrophysics Data System (ADS)
Koh, T. Y.; Koseki, S.; Teo, C. K.
2014-12-01
We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite datasets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a perpetual cold surge. The Borneo vortex is manifested as a meso-alpha cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-alpha cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-beta scale rainfall cells. The intense rainfall in the comma-head (comma-tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-alpha cyclone system. At both meso-alpha and meso-beta scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics. Reference: Koseki, S., T.-Y. Koh and C.-K. Teo (2014), Atmospheric Chemistry and Physics, 14, 4539-4562, doi:10.5194/acp-14-4539-2014, 2014.
Improved antioxidative protection in winter swimmers.
Siems, W G; Brenke, R; Sommerburg, O; Grune, T
1999-04-01
Adaptation to oxidative stress is an improved ability to resist the damaging effects of reactive oxygen species, resulting from pre-exposure to a lower dose. Changes in uric acid and glutathione levels during ice-bathing suggest that the intensive voluntary short-term cold exposure of winter swimming produces oxidative stress. We investigated whether the repeated oxidative stress in winter swimmers results in improved antioxidative adaptation. We obtained venous blood samples from winter swimmers and determined important components of the antioxidative defense system in the erythrocytes or blood plasma: reduced and oxidized glutathione (GSH and GSSG), and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (Cat). The control group consisted of healthy people who had never participated in winter swimming. The baseline concentration of GSH and the activities of erythrocytic SOD and Cat, were higher in winter swimmers. We interpret this as an adaptative response to repeated oxidative stress, and postulate it as a new basic molecular mechanism of increased tolerance to environmental stress.
Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters
NASA Technical Reports Server (NTRS)
Drdla, K.
2003-01-01
Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.
Generalized provisional seed zones for native plants
Andrew D. Bower; J. Bradley St.Clair; Vicky Erickson
2014-01-01
Deploying well-adapted and ecologically appropriate plant materials is a core component of successful restoration projects. We have developed generalized provisional seed zones that can be applied to any plant species in the United States to help guide seed movement. These seed zones are based on the intersection of high-resolution climatic data for winter minimum...
Nikiforou, Constantinos; Nikolopoulos, Dimosthenis; Manetas, Yiannis
2011-12-15
Recent evidence indicates that winter-red leaf phenotypes in the mastic tree (Pistacia lentiscus) are more vulnerable to chronic photoinhibition during the cold season relative to winter-green phenotypes occurring in the same high light environment. This was judged by limitations in the maximum quantum yield of photosystem II (PSII), found in previous studies. In this investigation, we asked whether corresponding limitations in leaf gas exchange and carboxylation reactions could also be manifested. During the cold ("red") season, net CO₂ assimilation rates (A) and stomatal conductances (g(s)) in the red phenotype were considerably lower than in the green phenotype, while leaf internal CO₂ concentration (Ci) was higher. The differences were abolished in the "green" period of the year, the dry summer included. Analysis of A versus Ci curves indicated that CO₂ assimilation during winter in the red phenotype was limited by Rubisco content and/or activity rather than stomatal conductance. Leaf nitrogen levels in the red phenotype were considerably lower during the red-leaf period. Consequently, we suggest that the inherently low leaf nitrogen levels are linked to the low net photosynthetic rates of the red plants through a decrease in Rubisco content. Accordingly, the reduced capacity of the carboxylation reactions to act as photosynthetic electron sinks may explain the corresponding loss of PSII photon trapping efficiency, which cannot be fully alleviated by the screening effect of the accumulated anthocyanins. Copyright © 2011 Elsevier GmbH. All rights reserved.
The role of the winter residual circulation in the summer mesopause regions in WACCM
NASA Astrophysics Data System (ADS)
Sanne Kuilman, Maartje; Karlsson, Bodil
2018-03-01
High winter planetary wave activity warms the summer polar mesopause via a link between the two hemispheres. Complex wave-mean-flow interactions take place on a global scale, involving sharpening and weakening of the summer zonal flow. Changes in the wind shear occasionally generate flow instabilities. Additionally, an altering zonal wind modifies the breaking of vertically propagating gravity waves. A crucial component for changes in the summer zonal flow is the equatorial temperature, as it modifies latitudinal gradients. Since several mechanisms drive variability in the summer zonal flow, it can be hard to distinguish which one is dominant. In the mechanism coined interhemispheric coupling, the mesospheric zonal flow is suggested to be a key player for how the summer polar mesosphere responds to planetary wave activity in the winter hemisphere. We here use the Whole Atmosphere Community Climate Model (WACCM) to investigate the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. Using composite analyses, we show that in the absence of an anomalous summer mesospheric temperature gradient between the equator and the polar region, weak planetary wave forcing in the winter would lead to a warming of the summer mesosphere region instead of a cooling, and vice versa. This is opposing the temperature signal of the interhemispheric coupling that takes place in the mesosphere, in which a cold and calm winter stratosphere goes together with a cold summer mesopause. We hereby strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.
Matsukura, Keiichiro; Tsumuki, Hisaaki; Izumi, Yohei; Wada, Takashi
2008-04-01
The apple snail, Pomacea canaliculata, is an invasive freshwater snail. It increases its cold hardiness before winter. However, the physiological mechanism of cold hardiness in molluscs is poorly understood, especially in freshwater molluscs. In this study, we examined the changes in low molecular weight compounds, glycogen and lipids, in the body of P. canaliculata in association with the development of cold hardiness. When snails without cold hardiness were experimentally cold-acclimated, the amount of glycerol, glutamine, and carnosine increased, while glycogen and phenylalanine decreased. Overwintering cold-tolerant snails collected from a drained paddy field in November also showed increased glycerol in their bodies with decreasing glycogen concentration, compared to summer snails collected from a submerged field. Water content also decreased during the cold acclimation, although the water loss was minimal. These results indicate that the freshwater snail, P. canaliculata enhances cold hardiness by accumulation of some kinds of low molecular weight compounds in its body as some insects do. However, the actual function of each low molecular compound is still unknown.
Changes in ABA and gene expression in cold-acclimated sugar maple.
Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R
1997-01-01
To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.
Hajat, S; Chalabi, Z; Wilkinson, P; Erens, B; Jones, L; Mays, N
2016-08-01
To inform development of Public Health England's Cold Weather Plan (CWP) by characterizing pre-existing relationships between wintertime weather and mortality and morbidity outcomes, and identification of groups most at risk. Time-series regression analysis and episode analysis of daily mortality, emergency hospital admissions, and accident and emergency visits for each region of England. Seasonally-adjusted Poisson regression models estimating the percent change in daily health events per 1 °C fall in temperature or during individual episodes of extreme weather. Adverse cold effects were observed in all regions, with the North East, North West and London having the greatest risk of cold-related mortality. Nationally, there was a 3.44% (95% CI: 3.01, 3.87) increase in all-cause deaths and 0.78% (95% CI: 0.53, 1.04) increase in all-cause emergency admissions for every 1 °C drop in temperature below identified thresholds. The very elderly and people with COPD were most at risk from low temperatures. A&E visits for fractures were elevated during heavy snowfall periods, with adults (16-64 years) being the most sensitive age-group. Since even moderately cold days are associated with adverse health effects, by far the greatest health burdens of cold weather fell outside of the alert periods currently used in the CWP. Our findings indicate that levels 0 ('year round planning') and 1 ('winter preparedness and action') are crucial components of the CWP in comparison to the alerts. Those most vulnerable during winter may vary depending on the type of weather conditions being experienced. Recommendations are made for the CWP. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Spindelböck, Joachim P; Cook, Zoë; Daws, Matthew I; Heegaard, Einar; Måren, Inger E; Vandvik, Vigdis
2013-09-01
Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season.
Spindelböck, Joachim P.; Cook, Zoë; Daws, Matthew I.; Heegaard, Einar; Måren, Inger E.; Vandvik, Vigdis
2013-01-01
Background and Aims Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Methods Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Key Results Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Conclusions Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season. PMID:23884396
Prevalence and Potential Risk Factors for Bartonella Infection in Tunisian Stray Dogs.
Belkhiria, Jaber; Chomel, Bruno B; Ben Hamida, Taoufik; Kasten, Rickie W; Stuckey, Matthew J; Fleischman, Drew A; Christopher, Mary M; Boulouis, Henri-Jean; Farver, Thomas B
2017-06-01
Bartonellae are blood-borne and vector-transmitted pathogens, some are zoonotic, which have been reported in several Mediterranean countries. Transmission from dogs to humans is suspected, but has not been clearly demonstrated. Our objectives were to determine the seroprevalence of Bartonella henselae, Bartonella vinsonii subsp. berkhoffii, Bartonella clarridgeiae, and Bartonella bovis (as a proxy for Candidatus Bartonella merieuxii) in stray dogs from Tunisia, identify the Bartonella species infecting the dogs and evaluate potential risk factors for canine infection. Blood samples were collected between January and November 2013 from 149 dogs in 10 Tunisian governorates covering several climatic zones. Dog-specific and geographic variables were analyzed as potential risk factors for Bartonella spp. seropositivity and PCR-positivity. DNA was extracted from the blood of all dogs and tested by PCR for Bartonella, targeting the ftsZ and rpoB genes. Partial sequencing was performed on PCR-positive dogs. Twenty-nine dogs (19.5%, 95% confidence interval: 14-27.4) were seropositive for one or more Bartonella species, including 17 (11.4%) for B. vinsonii subsp. berkhoffii, 14 (9.4%) for B. henselae, 13 (8.4%) for B. clarridgeiae, and 7 (4.7%) for B. bovis. Statistical analysis revealed a few potential risk factors, mainly dog's age and breed, latitude and average winter temperature. Twenty-two (14.8%) dogs, including 8 of the 29 seropositive dogs, were PCR-positive for Bartonella based on the ftsZ gene, with 18 (81.8%) of these 22 dogs also positive for the rpoB gene. Partial sequencing showed that all PCR-positive dogs were infected with Candidatus B. merieuxii. Dogs from arid regions and regions with cold average winter temperatures were less likely to be PCR-positive than dogs from other climatic zones. The widespread presence of Bartonella spp. infection in Tunisian dogs suggests a role for stray dogs as potential reservoirs of Bartonella species in Tunisia.
The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill.
Meyer, Bettina; Freier, Ulrich; Grimm, Volker; Groeneveld, Jürgen; Hunt, Brian P V; Kerwath, Sven; King, Rob; Klaas, Christine; Pakhomov, Evgeny; Meiners, Klaus M; Melbourne-Thomas, Jessica; Murphy, Eugene J; Thorpe, Sally E; Stammerjohn, Sharon; Wolf-Gladrow, Dieter; Auerswald, Lutz; Götz, Albrecht; Halbach, Laura; Jarman, Simon; Kawaguchi, So; Krumpen, Thomas; Nehrke, Gernot; Ricker, Robert; Sumner, Michael; Teschke, Mathias; Trebilco, Rowan; Yilmaz, Noyan I
2017-12-01
A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.
Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor.
Pedersen, Sindre A; Kristiansen, Erlend; Hansen, Bjørn H; Andersen, Rolf A; Zachariassen, Karl E
2006-08-01
The antifreeze proteins (AFPs) are a family of proteins characterised by their ability to inhibit the growth of ice. These proteins have evolved as a protection against lethal freezing in freeze avoiding species. Metal stress has been shown to reduce the cold hardening in invertebrates, but no study has investigated how this type of stress affects the production of AFPs. This study demonstrates that exposure to cadmium (Cd), copper (Cu) and zinc (Zn) reduces the normal developmental increase in AFP levels in Tenebrio molitor larvae reared under summer conditions. Exposure to winter conditions, however stimulated the production of AFPs in the metal exposed larvae, and raised the concentrations of AFPs to normal winter levels. The reduced level of AFPs in metal-stressed animals acclimated to summer conditions seems to arise from alterations in the normal gene expression of AFPs. The results indicate that metal exposure may cause freeze avoiding insects to become more susceptible to lethal freezing, as they enter the winter with lowered levels of AFPs. Such an effect cannot be revealed by ordinary toxicological tests, but may nevertheless be of considerable ecological importance.
Local health and social care responses to implementing the national cold weather plan.
Heffernan, C; Jones, L; Ritchie, B; Erens, B; Chalabi, Zaid; Mays, N
2017-09-18
The Cold Weather Plan (CWP) for England was launched by the Department of Health in 2011 to prevent avoidable harm to health by cold weather by enabling individuals to prepare and respond appropriately. This study sought the views of local decision makers involved in the implementation of the CWP in the winter of 2012/13 to establish the effects of the CWP on local planning. It was part of a multi-component independent evaluation of the CWP. Ten LA areas were purposively sampled which varied in level of deprivation and urbanism. Fifty-two semi-structured interviews were held with health and social care managers involved in local planning between November 2012 and May 2013. Thematic analysis revealed that the CWP was considered a useful framework to formalize working arrangements between agencies though local leadership varied across localities. There were difficulties in engaging general practitioners, differences in defining vulnerable individuals and a lack of performance monitoring mechanisms. The CWP was welcomed by local health and social care managers, and improved proactive winter preparedness. Areas for improvement include better integration with general practice, and targeting resources at socially isolated individuals in cold homes with specific interventions aimed at reducing social isolation and building community resilience. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Green Supercomputing at Argonne
Pete Beckman
2017-12-09
Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputingâeverything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.
Synoptic aspects of Antarctic mesocyclones
NASA Astrophysics Data System (ADS)
Carleton, Andrew M.; Fitch, Mark
1993-07-01
The characteristic regimes (formation and dissipation areas, tracks) and synoptic environments of cold air mesocyclones over Antarctic and Subantarctic latitudes are determined for the contrasting winters (June, July, and August) of 1988 and 1989. Defense Meteorological Satellite Program (DMSP) thermal infrared (IR) imagery is used in conjunction with southern hemisphere pressure/height analyses. Outbreaks of mesocyclones ("active periods") are frequent in the Ross Sea sector in 1988. They are associated most often with areas of maximum horizontal gradient of the 1000- to 500-mbar thickness. Over higher latitudes of the Southeast Pacific in 1989, mesocyclones develop in association with a "cold pool" that migrates equatorward. The between-winter differences in mesocyclone frequencies are examined for associations with sea ice conditions and the continental katabatic winds using correlation and "superposed epoch" analysis of temperature data from selected automatic weather stations (AWSs). The results support a katabatic wind-sea ice extent-mesocyclone link for key sectors of the Antarctic.
The Cold Hardiness of Phrynocephalus erythrurus, the Lizard Living at Highest Altitude in the World.
Li, X T; Wang, Y; Lu, S S; Li, M; Men, S K; Bai, Y C; Tang, X L; Chen, Q
Phrynocephalus erythrurus living at Qinghai-Tibet Plateau, is believed to be the highest lizard in the world, but we know little about how these lizards cope with very low temperatures in winter. The aim of this study was to find the difference of the lizards before and after cold acclimatization. In this study the limit of supercooling and inoculative freezing, the concentration of four organic osmolytes, and the activity of lactate dehydrogenase in the plasma were measured in samples shortly after capture and in other samples after 7~8 weeks of acclimatization at 2~4 degree C. Animals acquired an ability to undergo deeper supercooling and inoculative freezing through the course of acclimatization. We find no regular changes of the four organic osmolytes after the acclimatization. We think that this species of lizard is partly freeze-tolerant and conclude that it uses supercooling to survive in winter.
Seasonal reversal at Miryang Eoreumgol (Ice Valley), Korea: observation and monitoring
NASA Astrophysics Data System (ADS)
Byun, Hi-Ryong; Tanaka, Hiroshi L.; Choi, Pom-Yong; Kim, Do-Woo
2011-12-01
We investigate an anomalous phenomenon evident in the Miryang Eoreumgol (Ice Valley), Korea: The wind and water are cold during summer and warm during winter, and ice formation does not occur in winter but in summer. We have initiated observations and investigations into the origin of heat sources particularly with regard to the mechanism of ice formation in summer. Previous theories, e.g., concerning underground gravity currents, water evaporation, diurnal and seasonal respirations of the talus, effects of ground heat, radiation and topography, etc., are considered. After a calculation of heat sources, we propose two new concepts—a repetitious heat separation mechanism and a positive feedback mechanism of cold air generation—to demonstrate that the heat mechanism of the seasonal reversal of the ice valley may be controlled by the use of the phase change between ice and water vapor with only a small amount of additional unknown energy.
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Perovich, Don; Stamnes, Knut; Stuart, Venetia (Editor)
2015-01-01
The polar regions are places of extremes. There are months when the regions are enveloped in unending darkness, and months when they are in continuous daylight. During the daylight months the sun is low on the horizon and often obscured by clouds. In the dark winter months temperatures are brutally cold, and high winds and blowing snow are common. Even in summer, temperatures seldom rise above 0degC. The cold winter temperatures cause the ocean to freeze, forming sea ice. This sea ice cover acts as a barrier limiting the transfer of heat, moisture, and momentum between the atmosphere and the ocean. It also greatly complicates the optical signature of the surface. Taken together, these factors make the polar regions a highly challenging environment for optical remote sensing of the ocean.
Brischoux, François; Dupoué, Andréaz; Lourdais, Olivier; Angelier, Frédéric
2016-02-01
Temperate ectotherms are expected to benefit from climate change (e.g., increased activity time), but the impacts of climate warming during the winter have mostly been overlooked. Milder winters are expected to decrease body condition upon emergence, and thus to affect crucial life-history traits, such as survival and reproduction. Mild winter temperature could also trigger a state of chronic physiological stress due to inadequate thermal conditions that preclude both dormancy and activity. We tested these hypotheses on a typical temperate ectothermic vertebrate, the aspic viper (Vipera aspis). We simulated different wintering conditions for three groups of aspic vipers (cold: ~6 °C, mild: ~14 °C and no wintering: ~24 °C) during a one month long period. We found that mild wintering conditions induced a marked decrease in body condition, and provoked an alteration of some hormonal mechanisms involved in emergence. Such effects are likely to bear ultimate consequences on reproduction, and thus population persistence. We emphasize that future studies should incorporate the critical, albeit neglected, winter season when assessing the potential impacts of global changes on ectotherms. Copyright © 2015 Elsevier Inc. All rights reserved.
1986-04-01
forward modeling, with the pa- be telemetered via the ARGOS system for real - rameter changes needed to bring the predictions time evaluation, and the...integrated en ’i- rtinnental measurement svs fern. quisition system to the Winter MIZEX in I-ram To control and direct the experiment, real - time Strait...to measure, under- Electromagnetic sensing via aircraft and satellites stand, and model: will be employed in real time to identify eddy " Changes in
Noble gases recycled into the mantle through cold subduction zones
NASA Astrophysics Data System (ADS)
Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.
2017-08-01
Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohata, Tetsuo; Furukawa, Teruo; Higuchi, Keiji
1994-08-01
Perennial cave ice in a cave located at Mt. Fuji in central Japan was studied to investigate the basic characteristics and the cause for existence of such ice under warm ground-level climate considering the ice cave as a thermal and hydrological system. Fuji Ice Cave is a lava tube cave 150 m in length with a collapsed part at the entrance. Measurements from 1984 to 1986 showed that the surface-level change of floor ice occurred due to freezing and melting at the surface and that melting at the bottom of the ice was negligible. The annual amplitude of change inmore » surface level was larger near the entrance. Meterological data showed that the cold air inflow to the cave was strong in winter, but in summer the cave was maintained near 0[degrees]C with only weak inflow of warm air. The predominant wind system was from the entrance to the interior in both winter and summer, but the spatial scale of the wind system was different. Heat budget consideration of the cave showed that the largest component was the strong inflow of subzero dry air mass in winter. Cooling in winter was compensated for by summer inflow of warm air, heat transport from the surrounding ground layer, and loss of sensible heat due to cooling of the cave for the observed year. Strong inflow of cold air and weak inflow of warm air, which is extremely low compared to the ground level air, seemed to be the most important condition. Thus the thermal condition of the cave is quasi-balanced at the presence condition below 0[degrees]C with ice. It can be said that the interrelated result of the climatological and special structural conditions makes this cave very cold, and allows perennial ice to exist in the cave. Other climatological factors such as precipitation seem to be minor factors. 17 refs., 3 figs., 3 tabs.« less
Beneficial effect of hot spring bathing on stress levels in Japanese macaques.
Takeshita, Rafaela S C; Bercovitch, Fred B; Kinoshita, Kodzue; Huffman, Michael A
2018-05-01
The ability of animals to survive dramatic climates depends on their physiology, morphology and behaviour, but is often influenced by the configuration of their habitat. Along with autonomic responses, thermoregulatory behaviours, including postural adjustments, social aggregation, and use of trees for shelter, help individuals maintain homeostasis across climate variations. Japanese macaques (Macaca fuscata) are the world's most northerly species of nonhuman primates and have adapted to extremely cold environments. Given that thermoregulatory stress can increase glucocorticoid concentrations in primates, we hypothesized that by using an available hot spring, Japanese macaques could gain protection against weather-induced cold stress during winter. We studied 12 adult female Japanese macaques living in Jigokudani Monkey Park, Japan, during the spring birth season (April to June) and winter mating season (October to December). We collected faecal samples for determination of faecal glucocorticoid (fGC) metabolite concentrations by enzyme immunoassay, as well as behavioural data to determine time spent in the hot springs, dominance rank, aggression rates, and affiliative behaviours. We used nonparametric statistics to examine seasonal changes in hot spring bathing, and the relationship between rank and air temperature on hot spring bathing. We used general linear mixed-effect models to examine factors impacting hormone concentrations. We found that Japanese macaques use hot spring bathing for thermoregulation during the winter. In the studied troop, the single hot spring is a restricted resource favoured by dominant females. High social rank had both costs and benefits: dominant females sustained high fGC levels, which were associated with high aggression rates in winter, but benefited by priority of access to the hot spring, which was associated with low fGC concentrations and therefore might help reduce energy expenditure and subsequent body heat loss. This unique habit of hot spring bathing by Japanese macaques illustrates how behavioural flexibility can help counter cold climate stress, with likely implications for reproduction and survival.
What's New | USDA Plant Hardiness Zone Map
water may provide milder winter weather and be in a warmer zone. Climate Change Climate changes are year), changes in zones are not reliable evidence of whether there has been global warming. Compared a result of a more recent averaging period (1974-1986 vs. 1976-2005). However, some of the changes
Analytical methods to predict liquid congealing in ram air heat exchangers during cold operation
NASA Astrophysics Data System (ADS)
Coleman, Kenneth; Kosson, Robert
1989-07-01
Ram air heat exchangers used to cool liquids such as lube oils or Ethylene-Glycol/water solutions can be subject to congealing in very cold ambients, resulting in a loss of cooling capability. Two-dimensional, transient analytical models have been developed to explore this phenomenon with both continuous and staggered fin cores. Staggered fin predictions are compared to flight test data from the E-2C Allison T56 engine lube oil system during winter conditions. For simpler calculations, a viscosity ratio correction was introduced and found to provide reasonable cold ambient performance predictions for the staggered fin core, using a one-dimensional approach.
Assessment of air quality in and around a steel industry with direct reduction iron route.
Jena, Pradip K; Behera, Dillip K; Mishra, C S K; Mohanty, Saswat K
2011-10-01
The coal based Direct Reduced Iron (DRI) route for secondary steel production is now a preferred choice in India. Steel making is invariably associated with emission of air pollutants into the environment. Air quality monitoring was carried out in Winter, Summer and Rainy seasons of 2008 in eight monitoring stations in the work zone and five stations in the residential zone of an Integrated Steel Industry located in Orissa state, India. Four air quality parameters i.e. SPM, RSPM, SO2 and NO2 were monitored. Mean SPM and RSPM values were found to be significantly high (p < 0.01) at stations nearer to source in both work zone and residential zone .The highest average SPM and RSPM values in the work zone recorded were 4869 microg/m3 and 1420 microg/m3 and in the residential zone 294 microg/m3 and 198 microg/m3 respectively. No significant difference in the SO2 and NO2 levels was observed between the work and residential zones. In general, the values of air pollutants were highest in Winter followed by Summer and Rainy season. SPM and RSPM values exceeded the National Air Quality Standards (NAAQS) in both the residential and work zones.
Mercury concentration in phytoplankton in response to warming of an autumn - winter season.
Bełdowska, Magdalena; Kobos, Justyna
2016-08-01
Among other climate changes in the southern Baltic, there is a tendency towards warming, especially in autumn-winter. As a result, the ice cover on the coastal zone often fails to occur. This is conducive to the thriving of phytoplankton, in which metals, including mercury, can be accumulated. The dry deposition of atmospheric Hg during heating seasons is more intense than in non-heating seasons, owing to the combustion of fossil fuels for heating purposes. This has resulted in studies into the role of phytoplankton in the introduction of Hg into the first link of trophic chain, as a function of autumn and winter warming in the coastal zone of the lagoon. The studies were conducted at two stations in the coastal zone of the southern Baltic, in the Puck Lagoon, between December 2011 and May 2013. The obtained results show that, in the estuary region, the lack of ice cover can lead to a 30% increase and during an "extremely warm" autumn and winter an increase of up to three-fold in the mean annual Hg pool in phytoplankton (mass of Hg in phytoplankton per liter of seawater). The Hg content in phytoplankton was higher when Mesodinium rubrum was prevalent in the biomass, while the proportion of dinoflagellates was small. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Camenisch, C.
2015-08-01
This paper applies the methods of historical climatology to present a climate reconstruction for the area of the Burgundian Low Countries during the 15th century. The results are based on documentary evidence that has been handled very carefully, especially with regard to the distinction between contemporary and non-contemporary sources. Approximately 3000 written records derived from about 100 different sources were examined and converted into seasonal seven-degree indices for temperature and precipitation. For the Late Middle Ages only a few climate reconstructions exist. There are even fewer reconstructions which include spring and autumn temperature or any precipitation information at all. This paper therefore constitutes a useful contribution to the understanding of climate and weather conditions in the less well researched but highly interesting 15th century. The extremely cold winter temperatures during the 1430s and an extremely cold winter in 1407/1408 are striking. Moreover, no other year in this century was as hot and dry as 1473. At the beginning and the end of the 1480s and at the beginning of the 1490s summers were considerably wetter than average.
Differential expression and emerging functions of non-coding RNAs in cold adaptation.
Frigault, Jacques J; Morin, Mathieu D; Morin, Pier Jr
2017-01-01
Several species undergo substantial physiological and biochemical changes to confront the harsh conditions associated with winter. Small mammalian hibernators and cold-hardy insects are examples of natural models of cold adaptation that have been amply explored. While the molecular picture associated with cold adaptation has started to become clearer in recent years, notably through the use of high-throughput experimental approaches, the underlying cold-associated functions attributed to several non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), remain to be better characterized. Nevertheless, key pioneering work has provided clues on the likely relevance of these molecules in cold adaptation. With an emphasis on mammalian hibernation and insect cold hardiness, this work first reviews various molecular changes documented so far in these processes. The cascades leading to miRNA and lncRNA production as well as the mechanisms of action of these non-coding RNAs are subsequently described. Finally, we present examples of differentially expressed non-coding RNAs in models of cold adaptation and elaborate on the potential significance of this modulation with respect to low-temperature adaptation.
Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K
2014-06-01
Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.
Winter severity and phenology of spring emergence from the nest in freshwater turtles.
Baker, Patrick Joseph; Iverson, John B; Lee, Richard E; Costanzo, Jon P
2010-07-01
Although many species of freshwater turtles emigrate to water soon after hatching, the offspring of some species overwinter on land and move to aquatic habitats in the following spring. Timing of emigration can affect the hatchlings' fitness, but the factors underlying phenology of nest emergence are incompletely understood. We tested the supposition that cold stress imposed during hibernation can influence the timing of nest emergence in three species of turtles in the central USA. In each year of the 6-year study, Chrysemys picta emerged in late March and early April and, on average, these hatchlings left their nests 2 weeks earlier than those of Graptemys geographica and 4 weeks earlier than those of Trachemys scripta. Emergence of conspecific hatchlings from different nests usually occurred over 3-7 weeks, but in some years lasted several additional weeks. Relatively few nests had siblings that emerged on the same day (i.e., synchronously); complete emergence of the typical sibling group required 1 to 2 weeks. In winter, subzero cold occurred with regularity in the nests of all species, though C. picta experienced the lowest temperatures owing to their shallower nests. However, for no species did emergence date or length of the emergence period correlate with winter minimum temperature and, at the level of the individual nest, neither did emergence synchrony or duration. Despite encountering lower temperatures, hatchlings of C. picta emigrated from their nests before those of sympatric species, suggesting that the fitness benefits of early emergence may lead to the improvement of cold-hardiness adaptations in northern populations of turtles.
Winter severity and phenology of spring emergence from the nest in freshwater turtles
NASA Astrophysics Data System (ADS)
Baker, Patrick Joseph; Iverson, John B.; Lee, Richard E.; Costanzo, Jon P.
2010-07-01
Although many species of freshwater turtles emigrate to water soon after hatching, the offspring of some species overwinter on land and move to aquatic habitats in the following spring. Timing of emigration can affect the hatchlings’ fitness, but the factors underlying phenology of nest emergence are incompletely understood. We tested the supposition that cold stress imposed during hibernation can influence the timing of nest emergence in three species of turtles in the central USA. In each year of the 6-year study, Chrysemys picta emerged in late March and early April and, on average, these hatchlings left their nests 2 weeks earlier than those of Graptemys geographica and 4 weeks earlier than those of Trachemys scripta. Emergence of conspecific hatchlings from different nests usually occurred over 3-7 weeks, but in some years lasted several additional weeks. Relatively few nests had siblings that emerged on the same day (i.e., synchronously); complete emergence of the typical sibling group required 1 to 2 weeks. In winter, subzero cold occurred with regularity in the nests of all species, though C. picta experienced the lowest temperatures owing to their shallower nests. However, for no species did emergence date or length of the emergence period correlate with winter minimum temperature and, at the level of the individual nest, neither did emergence synchrony or duration. Despite encountering lower temperatures, hatchlings of C. picta emigrated from their nests before those of sympatric species, suggesting that the fitness benefits of early emergence may lead to the improvement of cold-hardiness adaptations in northern populations of turtles.
Gornish, Elise S; Aanderud, Zachary T; Sheley, Roger L; Rinella, Mathew J; Svejcar, Tony; Englund, Suzanne D; James, Jeremy J
2015-02-01
Climate change effects on plants are expected to be primarily mediated through early life stage transitions. Snowfall variability, in particular, may have profound impacts on seedling recruitment, structuring plant populations and communities, especially in mid-latitude systems. These water-limited and frequently invaded environments experience tremendous variation in snowfall, and species in these systems must contend with harsh winter conditions and frequent disturbance. In this study, we examined the mechanisms driving the effects of snowpack depth and soil disturbance on the germination, emergence, and establishment of the native Pseudoroegnaria spicata and the invasive Bromus tectorum, two grass species that are widely distributed across the cold deserts of North America. The absence of snow in winter exposed seeds to an increased frequency and intensity of freeze-thaw cycles and greater fungal pathogen infection. A shallower snowpack promoted the formation of a frozen surface crust, reducing the emergence of both species (more so for P. spicata). Conversely, a deeper snowpack recharged the soil and improved seedling establishment of both species by creating higher and more stable levels of soil moisture availability following spring thaw. Across several snow treatments, experimental disturbance served to decrease the cumulative survival of both species. Furthermore, we observed that, regardless of snowpack treatment, most seed mortality (70-80%) occurred between seed germination and seedling emergence (November-March), suggesting that other wintertime factors or just winter conditions in general limited survival. Our results suggest that snowpack variation and legacy effects of the snowpack influence emergence and establishment but might not facilitate invasion of cold deserts.
Effect of season on peripheral resistance to localised cold stress
NASA Astrophysics Data System (ADS)
Tanaka, M.; Harimura, Y.; Tochihara, Y.; Yamazaki, S.; Ohnaka, T.; Matsui, J.; Yoshida, K.
1984-03-01
This study was carried out to determine the effect that seasonal changes have on the effect of localised cold stress on peripheral temperatures using the foot immersion method with a cold water bath. The subjects were six males and four females. The data were obtained in April, July, October and January. Skin temperature of the right index finger, the forehead, the arm, the cheek, the second toe and the instep were measured before, during and after the immersion of the feet in water at 15°C for 10 mins, as well as oxygen consumption before immersion of the feet. The average finger temperature was highest during foot immersion in the summer, next highest in the winter, then spring, and the lowest during foot immersion in the autumn. The finger temperatures during the pre-immersion period in the autumn tended to be lower than in other seasons. The finger temperatures during the pre-immersion period affected the temperature change of the finger during the immersion period. The rate of increase of the toe temperature and the foot temperature during post-immersion in the summer and the spring were greater than those in the autumn and winter. Oxygen consumption during the pre-immersion period in the autumn was significantly lower than in the other seasons (p<0.001 or 0.010). Cooling the feet caused no significant changes in the temperatures the cheek, forehead or forearm. The cheek temperature in the summer and autumn was cooler than corresponding temperatures taken in the winter and spring.
NASA Astrophysics Data System (ADS)
Grab, Stefan W.; Nash, David J.
2010-03-01
This study presents the first 19th century cold season climate chronology for the Kingdom of Lesotho in southern Africa. The chronology is constructed using a variety of documentary sources including letters, diaries, reports, monographs and newspaper articles obtained from southern African and British archives. Information relating to cold season weather phenomena during the austral autumn, winter and early spring months were recorded verbatim. Each of the cold seasons from 1833 to 1900 was then classified as “very severe”, “severe” or “normal/mild”, with a confidence rating ranging from low (1) to high (3) awarded against each annual classification. The accuracy of the document-derived chronology was verified against temperature data for Maseru for the period 1893-1900. Excellent correspondence of the document-derived chronology with the Maseru instrumental data and also with other global proxy temperature records for the 19th century is achieved. The results indicate 12 (18% of the total) very severe, 16 (23%) severe and 40 (59%) normal/mild cold seasons between 1833 and 1900. The overall trend is for more severe and snow-rich cold seasons during the early part of the study period (1833-1854) compared with the latter half of the 19th century (with the exception of the 1880s). A reduction in the duration of the frost season by over 20 days during the 19th century is also tentatively identified. Several severe to very severe cold seasons in Lesotho follow after major tropical and SH volcanic eruptions; such years are usually characterized by early frosts, and frequent and heavy snowfalls. The blocking of solar radiation and the enhanced northward displacement of polar fronts that are directly or indirectly associated with volcanic events, may account for many of the most severe Lesotho winters during the 19th century.
Winter Habitat Preferences for Florida Manatees and Vulnerability to Cold
Laist, David W.; Taylor, Cynthia; Reynolds, John E.
2013-01-01
To survive cold winter periods most, if not all, Florida manatees rely on warm-water refuges in the southern two-thirds of the Florida peninsula. Most refuges are either warm-water discharges from power plant and natural springs, or passive thermal basins that temporarily trap relatively warm water for a week or more. Strong fidelity to one or more refuges has created four relatively discrete Florida manatee subpopulations. Using statewide winter counts of manatees from 1999 to 2011, we provide the first attempt to quantify the proportion of animals using the three principal refuge types (power plants, springs, and passive thermal basins) statewide and for each subpopulation. Statewide across all years, 48.5% of all manatees were counted at power plant outfalls, 17.5% at natural springs, and 34.9 % at passive thermal basins or sites with no known warm-water features. Atlantic Coast and Southwest Florida subpopulations comprised 82.2% of all manatees counted (45.6% and 36.6%, respectively) with each subpopulation relying principally on power plants (66.6% and 47.4%, respectively). The upper St. Johns River and Northwest Florida subpopulations comprised 17.8% of all manatees counted with almost all animals relying entirely on springs (99.2% and 88.6% of those subpopulations, respectively). A record high count of 5,076 manatees in January 2010 revealed minimum sizes for the four subpopulations of: 230 manatees in the upper St. Johns River; 2,548 on the Atlantic Coast; 645 in Northwest Florida; and 1,774 in Southwest Florida. Based on a comparison of carcass recovery locations for 713 manatees killed by cold stress between 1999 and 2011 and the distribution of known refuges, it appears that springs offer manatees the best protection against cold stress. Long-term survival of Florida manatees will require improved efforts to enhance and protect manatee access to and use of warm-water springs as power plant outfalls are shut down. PMID:23527063
NASA Technical Reports Server (NTRS)
Pommereau, J. P.; Piquard, J.
1994-01-01
A light, relatively cheap and easy to operate balloonborne UV-visible spectrometer was designed for investigating ozone photochemistry in the Arctic winter. The instrument was flown 11 times during the European Arctic Stratospheric Ozone Experiment (EASOE) in winter 1991-92 in Northern Scandinavia. The first simultaneous measurements of vertical distributions of aerosols, PSC's, O3, NO2 and OClO inside the vortex during flight no. 6 on 16 January, in cold conditions are reported, which show that nitrogen oxides were almost absent (lower than 100 ppt) in the stratosphere below 22 km, while a layer of relatively large OClO concentration (15 ppt) was present at the altitude of the minimum temperature.
While many studies of power plant plume transport and transformation have been performed during the summer, few studies of these processes during the winter have been carried out. Accordingly, the U.S. Environmental Protection Agency and the Electric Power Research Institute join...
Trends in Cold Extremes and Winter Weather for the SPTC Region
DOT National Transportation Integrated Search
2017-05-31
Extreme weather poses multifaceted hazards to transportation. There is now increased awareness of the threats of climate variability and change on transportation safety and state of good repair. In particular, a non-stationary climate will potentiall...
Global Distribution of Aerosols Over the Open Ocean as Derived from the Coastal Zone Color Scanner
NASA Technical Reports Server (NTRS)
Stegmann, P. M.; Tindale, N. W.
1999-01-01
Climatological maps of monthly mean aerosol radiance levels derived from the coastal zone color scanner (CZCS) were constructed for the world's ocean basins. This is the first study to use the 7.5.-year CZCS data set to examine the distribution and seasonality of aerosols over the open ocean on a global scale. Examination of our satellite images found the most prominent large-scale patch of elevated aerosol radiances in each month off the coast of northwest Africa. The well-known, large-scale plumes of elevated aerosol levels in the Arabian Sea, the northwest Pacific, and off the east coast of North America were also successfully captured. Radiance data were extracted from 13 major open-ocean zones, ranging from the subpolar to equatorial regions. Results from these extractions revealed the aerosol load in both subpolar and subtropical zones to be higher in the Northern Hemisphere than in the Southern Hemisphere. Aerosol radiances in the subtropics of both hemispheres were about 2 times higher in summer than in winter. In subpolar regions, aerosol radiances in late spring/early summer were almost 3 times that observed in winter. In general, the aerosol signal was higher during the warmer months and lower during the cooler months, irrespective of location. A comparison between our mean monthly aerosol radiance maps with mean monthly chlorophyll maps (also from CZCS) showed similar seasonality between aerosol and chlorophyll levels in the subpolar zones of both hemispheres, i.e., high levels in summer, low levels in winter. In the subtropics of both hemispheres, however, chlorophyll levels were higher in winter months which coincided with a depressed aerosol signal. Our results indicate that the near-IR channel on ocean color sensors can be used to successfully capture well-known, large-scale aerosol plumes on a global scale and that future ocean color sensors may provide a platform for long-term synoptic studies of combined aerosol-phytoplankton productivity interactions.
[Comparison of air/soil mercury exchange between warm and cold season in Hongfeng Reservoir region].
Wang, Shao-feng; Feng, Xin-bin; Qiu, Guang-le; Fu, Xue-wu
2004-01-01
In July 2002 and March 2003, the mercury exchange flux between soil and air was measured using dynamic flux chamber method in Hongfeng Reservoir region. Mercury exchange flux is (27.4 +/- 40.1) ng x (m2 x h)(-1) (n = 255) and (5.6 +/- 19.4) ng x (m2 x h)(-1) (n = 192) in summer and winter respectively. The correlation coefficient between mercury flux and solar radiation, air temperature, soil temperature is 0.74, 0.83 and 0.80 in summer, and 0.88, 0.56 and 0.59 in winter. From the data, it was found that the mercury emission is stronger in summer than that in winter, and compared to winter, mercury exchange between soil and air depends more on meteorological conditions in summer.
NASA Astrophysics Data System (ADS)
Young, Joseph Swyler
This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this subjectively during periods with low clouds or precipitation, a time series of aerosol depths was obtained. The mean depth of the surface-based aerosol layer during PCAP events was 1861 m MSL with a standard deviation of 135 m. The aerosol layer depth, given the approximate 1300 m altitude of the valley floor, is thus about 550 m, about 46% of the basin depth. The aerosol layer is present during much of the winter and is removed only during strong or prolonged precipitation periods or when surface winds are strong. Nocturnal fogs that formed near the end of high-stability PCAP episodes had a limited effect on aerosol layer depth. Aerosol layer depth was relatively invariant during the winter and during the persistent cold-air pools, while PM10 concentrations at the valley floor varied with bulk atmospheric stability associated primarily with passage of large-scale high- and low-pressure weather systems. PM10 concentrations also increased with cold-air pool duration. Mean aerosol loading in the surface-based aerosol layer, as determined from ceilometer backscatter coefficients, showed weaker variations than those of surface PM10 concentrations, suggesting that ineffective vertical mixing and aerosol layering are present in the cold-air pools. This is supported by higher time-resolution backscatter data, and it distinguishes the persistent cold-air pools from well-mixed convective boundary layers where ground-based air pollution concentrations are closely related to time-dependent convective boundary layer/aerosol depths. These results are discussed along with recommendations for future explorations of the ceilometer and cold-air pool topics.
1989-01-01
England while waiting for an outbreak of cold air (Larson, 1988). Even before the arrival of the storm trailing the cold air behind it, both shear and...and simulation of storm -induced mixed-layer deepening. J. Phys. Oceanogr., 8. 582-599. 217 Riley, J.J., and R.W. Metcalf: 1987. Direct numerical...the severe downslope wind storm which occurs in the lee of major mountain barriers (Lilly and Kennedy, 1973: Lilly. 1978) under suitable atmospheric
Bibliography on Cold Regions Science and Technology, Volume 46, Part 2, 1992
1992-01-01
Modelling of heat capacity-temperature data for sucrose- conditions: trial study . Peck, L.. 1)992. 15p.. eng) Comparison of four cold hardiness tests on...authors are listed along with the title, date, pagination, and language of the document and the accession number. The subject index is composed of four ...eng1 46-1074 Radar backscatter measurements during the Winter Weddell Abramov Glacier and the runoff in its basin (1989. p.85- Aakjaer. P.D. Gyre Study
NASA Astrophysics Data System (ADS)
Khosrawi, Farahnaz; Kirner, Ole; Sinnhuber, Bjoern-Martin; Ruhnke, Roland; Hoepfner, Michael; Woiwode, Wolfgang; Oelhaf, Hermann; Santee, Michelle L.; Manney, Gloria L.; Froidevaux, Lucien; Murtagh, Donal; Braesicke, Peter
2016-04-01
Model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) project. The POLSTRACC project is a HALO mission (High Altitude and LOng Range Research Aircraft) that aims to investigate the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS) in a changing climate. Especially, the chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds are investigated. The model simulations were performed with a resolution of T42L90, corresponding to a quadratic Gaussian grid of approximately 2.8°× 2.8° degrees in latitude and longitude, and 90 vertical layers from the surface up to 0.01 hPa (approx. 80 km). A Newtonian relaxation technique of the prognostic variables temperature, vorticity, divergence and surface pressure towards ECMWF data was applied above the boundary layer and below 10 hPa, in order to nudge the model dynamics towards the observed meteorology. During the Arctic winter 2015/2016 a stable vortex formed in early December, with a cold pool where temperatures reached below the Nitric Acid Trihydrate (NAT) existence temperature of 195 K, thus allowing Polar Stratospheric Clouds (PSCs) to form. The early winter has been exceptionally cold and satellite observations indicate that sedimenting PSC particles have lead to denitrification as well as dehydration of stratospheric layers. In this presentation an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given and comparisons to satellite observations such as e.g. Aura/MLS and Odin/SMR will be shown.
Past and future hydro-climatic change and the 2015 drought in the interior of western Canada
NASA Astrophysics Data System (ADS)
DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Szeto, K.; Brimelow, J.; Chun, K. P.; Masud, M. B.; Bonsal, B. R.
2015-12-01
The interior of western Canada has experienced rapid and severe hydro-climatic change in recent decades. This is projected to continue in future. Since 1950, mean annual air temperature has increased by 2 °C (4 °C increase in winter daily means) with associated changes in cryospheric regime. Changes in precipitation have varied regionally; in the Prairies there has been a decrease in winter precipitation, shift from snowfall to rainfall, and increased clustering of summer rainfall events into multiple day storms. Regionally, river discharge indicates an earlier spring freshet and increased incidence of rain-on-snow peak flow events, but otherwise mixed responses due to multiple process interactions. In winter/spring 2015, persistent anomalous ridging conditions developed over western North America causing widespread drought. This produced abnormally warm and dry conditions over the Rocky Mountain headwaters of the Mackenzie and Saskatchewan Rivers, resulting in low spring snowpacks that melted earlier than normal and were followed by an atypical lack of spring rainfall. By summer 2015, most of western Canada was subject to extreme drought conditions leading to record dry soil moisture conditions in parts of the Prairies during a key crop growth time, streamflows that were greatly diminished, and extensive wildfires across the Boreal Forest. The importance of the warmer winter to this drought and the contextual trend for increasing winter warmth provide new insight into the impact of climate warming on droughts in cold regions. This talk will discuss efforts by the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) to understand and diagnose the 2015 drought, its potential linkages with the concurrent California drought and other continental events, and its relevance in the context of historical and predicted future climate change.
Contosta, Alexandra R; Adolph, Alden; Burchsted, Denise; Burakowski, Elizabeth; Green, Mark; Guerra, David; Albert, Mary; Dibb, Jack; Martin, Mary; McDowell, William H; Routhier, Michael; Wake, Cameron; Whitaker, Rachel; Wollheim, Wilfred
2017-04-01
Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, R.C.; Gourlie, B.; Price, J.
1987-05-01
During the late fall and winter, the winter flounder produces a family of unique antifreeze proteins (AFP) to prevent the lethal formation of ice crystals in its blood. They have been able to induce winter flounder AFP mRNA synthesis in vivo by lowering the ambient temperature of the fish from 18/sup 0/C in the summer months when AFP synthesis is at a minimum to 4/sup 0/C. Furthermore, they have demonstrated and thoroughly investigated this cold induction of AFP mRNA synthesis in vitro in isolated liver tissue and in nuclear preparations isolated from liver tissue. A drug selection vector (pRSV/sub gpt/)more » which uses RSV promoter for the expression of xanthine-guanine phosphoribosyltransferase (gpt) gene and contains an AFP gene and 1.7 kb of its 5' upstream control region has been constructed for studies of gene transfer into cells of other fish species. These studies were made using a variety of gene transfer techniques into tissue culture cell lines derived from rainbow trout, bluegill, and salmon. Drug resistant colonies from all three species have been obtained and the presence of AFP DNA has been positively identified by Southern analysis. In addition, Northern blot analysis has shown that both gpt gene and AFP gene are active in these cells since mRNA/sub gpt/ and mRNA/sub AFP/ can be detected by probing with the respective gene sequences.« less
NASA Technical Reports Server (NTRS)
Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun
2012-01-01
Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.
NASA Astrophysics Data System (ADS)
Parada, Carolina; Colas, Francois; Soto-Mendoza, Samuel; Castro, Leonardo
2012-01-01
An individual-based model (IBM) of anchoveta ( Engraulis ringens) larvae was coupled to a climatological hydrodynamic (Regional Oceanic Modeling System, ROMS) model for central-southern Chile to answer the question as to whether or not across- and alongshore transport off central-southern Chile enhances retention in the spawning areas during the winter and summer reproductive periods, using model-based pre-recruitment indices (simulated transport success to nursery areas). The hydrodynamic model validation showed that ROMS captures the mean Seas Surface Temperature and Eddie Kinetic Energy observed in satellite-based data over the entire region. The IBM was used to simulate the transport of eggs and larvae from spawning zones in central Chile (Constitución, Dichato, Gulf of Arauco and Lebu-Corral) to historical nursery areas (HRZ, region between 35°S and 37°S). Model results corroborated HRZ as the most successful pre-recruitment zone (particles originated in the Dichato and Gulf of Arauco spawning areas), as well as identifying Lebu-Corral as a zone of high retention with a high associated pre-recruitment index (particles originated in the Lebu-Corral spawning zone). The highest pre-recruitment values were mainly found in winter. The Constitución and Dichato spawning zones displayed a typical summer upwelling velocity pattern, while the Gulf of Arauco in summertime showed strong offshore and alongshore velocity components. The Lebu-Corral region in winter presented important near-surface cross-shore transport towards the coast (associated with downwelling events), this might be one of the major mechanisms leading to high retention levels and a high pre-recruitment index for Lebu-Corral spawning zone. The limitations of the modeling approach are discussed and put into perspective for future work.
What caused the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14?
NASA Astrophysics Data System (ADS)
Leckebusch, G. C.; Wild, S.; Befort, D. J.
2015-12-01
In winter 2013-2014, the UK experienced exceptional stormy and rainy weather conditions. Concurrently, surface temperatures over large parts of central North America fell to near record minimum values. One potential driver for these cold conditions is discussed to be the increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the British Isles. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We focus on two research questions. Firstly: Was a chain of anomaly patterns with origin in the west Pacific present in the winter 2013-14? And secondly: Can centres of action along such a chain be identified with a strong interannual relationship in the recent past? Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.
NASA Astrophysics Data System (ADS)
Zhang, Enlou; Wang, Yongbo; Sun, Weiwei; Shen, Ji
2016-02-01
We present the results of pollen analyses from a 1105 cm long sediment core from Wuxu Lake in southwestern China, which depict the variations of the East Asian winter monsoon (EAWM) and the Indian summer monsoon (ISM) during the last 12.3 ka. During the period of 12.3 to 11.3 cal ka BP, the dominance of Betula forest and open alpine shrub and meadow around Wuxu Lake indicates a climate with relatively cold winters and dry summers, corresponding to the Younger Dryas event. Between 11.3 and 10.4 cal ka BP, further expansion of Betula forest and the retreat of alpine shrubs and meadows reflect a greater seasonality with cold winters and gradually increasing summer precipitation. From 10.4 to 4.9 cal ka BP, the dense forest understory, together with the gradual decrease in Betula forest and increase in Tsuga forest, suggest that the winters became warmer and summer precipitation was at a maximum, corresponding to the Holocene climatic optimum. Between 4.9 and 2.6 cal ka BP, Tsuga forest and alpine shrubs and meadows expanded significantly, reflecting relatively warm winters and decreased summer precipitation. Since 2.6 cal ka BP, reforestation around Wuxu Lake indicates a renewed humid period in the late Holocene; however, the vegetation in the catchment may also have been affected by grazing activity during this period. The results of our study are generally consistent with previous findings; however, the timing and duration of the Holocene climatic optimum from different records are inconsistent, reflecting real contrast in local rainfall response to the ISM. Overall, the EAWM is broadly in-phase with the ISM on the orbital timescale, and both monsoons exhibit a trend of decreasing strength from the early to late Holocene, reflecting the interplay of solar insolation receipt between the winter and summer seasons and El Niño-Southern Oscillation strength in the tropical Pacific.
NASA Astrophysics Data System (ADS)
Zhang, E.; Wang, Y.; Sun, W.; Shen, J.
2015-10-01
We present the results of pollen analyses from a 1105-cm-long sediment core from Wuxu Lake in southwestern China, which depict the variations of the East Asian winter monsoon (EAWM) and the Indian summer monsoon (ISM) during the last 12.3 ka. During the period of 12.3 to 11.3 cal ka BP, the dominance of Betula forest and open alpine shrub and meadow around Wuxu Lake indicates a climate with relatively cold winters and dry summers, corresponding to the Younger Dryas event. Between 11.3 and 10.4 cal ka BP, further expansion of Betula forest and the retreat of alpine shrubs and meadows reflect a greater seasonality with cold winters and gradually increasing summer precipitation. From 10.4 to 4.9 cal ka BP, the dense forest understory, together with the gradual decrease in Betula forest and increase in Tsuga forest, suggest that the winters became warmer and summer precipitation was at a maximum, corresponding to the Holocene climatic optimum. Between 4.9 and 2.6 cal ka BP, Tsuga forest and alpine shrubs and meadows expanded significantly, reflecting relatively warm winters and decreased summer precipitation. Since 2.6 cal ka BP, reforestation around Wuxu Lake indicates a renewed strengthening of the ISM in the late Holocene; however, the vegetation in the catchment may also have been affected by grazing activity during this period. The results of our study are generally consistent with previous findings; however, the timing and duration of the Holocene climatic optimum from different records are inconsistent, reflecting real contrast in local rainfall response to the ISM. Overall, the EAWM is broadly in-phase with the ISM on the orbital timescale, and both monsoons exhibit a trend of decreasing strength from the early to late Holocene, reflecting the interplay of solar insolation receipt between the winter and summer seasons and El Niño Southern Oscillation strength in the tropical Pacific.
Don’t Let the HumBUG Get Achoo - Tips for a healthy winter at work and home
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlender, Michael H.
2006-12-15
Safety-related article for recurrinig column in the Tri-City Area Journal of Business. Focuses on seasonal wellness tips for employers and employees - namely, cold and flu prevention through personal hygiene.
Experimental study on an electrical deicing technology utilizing carbon fiber tape.
DOT National Transportation Integrated Search
2012-11-01
In cold regions, snow and ice cause serious safety problems to transportation systems. South central Alaska, particularly Anchorage, is susceptible to a number of icing : events due to frequent freeze/thaw cycles in the winter season. Traditionally, ...
Evaluating roadway subsurface drainage practices.
DOT National Transportation Integrated Search
2013-05-01
The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is pre...
Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016
NASA Astrophysics Data System (ADS)
Marsing, Andreas; Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Engel, Andreas; Hoor, Peter; Krause, Jens
2017-04-01
Reactive chlorine compounds in the polar winter stratosphere are central to the formation of the Arctic ozone hole. To study the distribution and partitioning of active chlorine and reservoir species in the lower stratosphere, we performed in-situ measurements of HCl and ClONO2 with the mass spectrometer AIMS during the POLSTRACC aircraft campaign in the Arctic winter 2015/2016 between 320 K and 410 K. In addition to chlorine reservoir gases, in-situ measurements of chemically stable tracers provide means to identify vortex air masses and to infer total inorganic chlorine (Cly). The distribution of chlorine and the degree of activation during the winter, as well as the reformation of the reservoir species at the end of the polar winter vary with altitude and potential temperature. Using trajectory calculations, we demonstrate transport pathways that distribute high amounts of previously activated chlorine into the lowermost stratosphere. Here, active chlorine may have a large oxidation capacity with respect to climate relevant trace gases.
Record low total ozone during northern winters of 1992 and 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bojkov, R.D.
1993-07-09
The authors look at recorded ozone data over the northern hemisphere during the winters of 1992 and 1993. They use data from the World Meteorological Organization data base. During both of these winter, there have been marked decreases in the column ozone levels over North America, Europe, and Siberia, in the latitude belt from 45[degrees]N to 65[degrees]N. During these winters there have been ten times as many days with ozone levels deviated more than 2[sigma] below the 35 year average. They seek explanations for these observations by looking at meterological information. Evidences indicate that there was transport of ozone deficientmore » air masses during these winters. In addition cold air masses with excess ClO show evidence of having transported into the more southern latitudes. The authors conclude there is evidence for both displacement of large air masses, and increased chemical destruction potential, to have contributed to these observed decreases.« less
Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi
Cook, Nicola; Tournière, Océane; Sneddon, Tanya; Ritchie, Michael G.
2016-01-01
Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos), in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters as an adult in northern latitudes with extreme cold. We assessed cold tolerance of dsRNA knock-down flies using two metrics: chill-coma recovery time (CCRT) and mortality rate after cold acclimation. Injection of dsRNAInos did not alter CCRT, either overall or in interaction with the cold treatment, however it did induced cold-specific mortality, with high levels of mortality observed in injected flies acclimated at 5°C but not at 19°C. Overall, injection with dsRNAInos induced a temperature-sensitive mortality rate of over 60% in this normally cold-tolerant species. qPCR analysis confirmed that dsRNA injection successfully reduced gene expression of Inos. Thus, our results demonstrate the involvement of Inos in increasing cold tolerance in D. montana. The potential mechanisms involved by which Inos increases cold tolerance are also discussed. PMID:27832122
Surface recrystallization theory of the wear of copper in liquid methane
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wisander, D. W.
1974-01-01
Copper was subjected to sliding against 440C in liquid methane. The normal load range was from 1/4 to 2 kilograms, and the sliding velocity range was from 3.1 to 25 meters per second. Over this range of experimental parameters, the wear rate of the copper rider was found to be proportional to the sliding velocity squared and to the normal load. Transmission electron microscopy was used to study the dislocation structure in the copper very near the wear scar surface. It was found that near the wear scar surface, the microstructure was characterized by a fine-cell recrystallized zone in which individual dislocations could be distinguished in the cell walls. The interiors of the cells, about 0.5 micrometer in diameter, were nearly dislocation free. Below the recrystallized layer was a zone that was intensely cold worked by the friction process. With increasing depth, this intensely cold worked zone gradually became indistinguishable from the partially cold worked bulk of the copper, representative of the initial condition of the material.
Multidisciplinary fingerprints: forensic reconstruction of an insect reinvasion
Kim, Kyung Seok; Jones, Gretchen D.; Westbrook, John K.; Sappington, Thomas W.
2010-01-01
An unexpected outbreak of boll weevils, Anthonomus grandis, an insect pest of cotton, across the Southern Rolling Plains (SRP) eradication zone of west-central Texas, USA, was detected soon after passage of Tropical Storm Erin through the Winter Garden district to the south on 16 August 2007. The synchrony and broad geographic distribution of the captured weevils suggest that long-distance dispersal was responsible for the reinvasion. We integrated three types of assessment to reconstruct the geographic origin of the immigrants: (i) DNA fingerprinting; (ii) pollen fingerprinting; and (iii) atmospheric trajectory analysis. We hypothesized the boll weevils originated in the Southern Blacklands zone near Cameron, or in the Winter Garden district near Uvalde, the nearest regions with substantial populations. Genetic tests broadly agree that the immigrants originated southeast of the SRP zone, probably in regions represented by Uvalde or Weslaco. The SRP pollen profile from weevils matched that of Uvalde better than that of Cameron. Wind trajectories supported daily wind-aided dispersal of weevils from the Uvalde region to the SRP from 17 to 24 August, but failed to support migration from the Cameron region. Taken together the forensic evidence strongly implicates the Winter Garden district near Uvalde as the source of reinvading boll weevils. PMID:19828497
NASA Astrophysics Data System (ADS)
Stager, J. C.; Mayewski, P. A.; White, J.; Chase, B. M.; Neumann, F. H.; Meadows, M. E.; King, C. D.; Dixon, D. A.
2011-12-01
The austral westerlies strongly influence precipitation and ocean circulation in the southern temperate zone, with important consequences for cultures and ecosystems. Global climate models anticipate poleward contraction of the austral westerlies with future warming, but the available paleoclimate records that might test these models have been largely limited to South America, are not fully consistent with each other, and may be complicated by influences from other climatic factors. Here we present the first fine-interval diatom and sedimentological records from the winter rainfall region of South Africa, representing precipitation during the last 1400 yr. Inferred rainfall increased ~1400-1200 cal yr BP and most notably during the Little Ice Age with pulses centered on ~600, 530, 470, 330, 200, and 90 cal yr BP. Synchronous fluctuations in Antarctic ice core chemistry strongly suggest that these variations are linked to changes in the westerlies. Partial inconsistencies among South African and South American records warn against the simplistic application of local-scale histories to the Southern Hemisphere as a whole. Nonetheless, these findings in general do support model projections of increasing aridity in austral winter rainfall zones with future warming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Rongguang, E-mail: lirongguang1980@126.com; Xin, Renlong; Chapuis, Adrien
Microstructure and mechanical properties of the Mg–4Sm (wt.%) alloy, prepared via combined processes of extrusion, cold rolling and aging, have been investigated. The hot extruded alloy exhibits a weak rare earth magnesium alloy texture with < 11 − 21 >//ED, while the cold-rolled alloy shows a stronger basal texture with < 0001 >//ND. Many tensile twins and double twins are observed in grains after rolling. The cold-rolled alloy shows a weak age-hardening response compared with the extruded alloy, which is the result of more precipitation in the twin boundary during aging. The rolled alloy exhibits almost no precipitate free zonemore » during aging compared with the extruded alloy. The higher proof stress of the rolled alloy in peak-aged condition is attributed to the presence of twin boundaries, stronger basal texture, higher dislocation density, and the suppression of precipitate free zone compared with the extruded alloy. - Highlights: • No precipitate free zone appears in cold-rolled alloy after aging. • Segregation and precipitates are observed in twin boundaries and grain boundaries. • Cold-rolled alloy shows a weak age-hardening response.« less
Mpofu, T J; Ginindza, M M; Siwendu, N A; Nephawe, K A; Mtileni, B J
2017-01-01
The study was conducted to determine the effect of agro-ecological zone, season of birth and sex on Nguni calves' pre-weaning performance. Production indices such as birth weight (BW), weaning weight (WW), pre-weaning average daily gain (P-ADG) and pre-weaning gain (P-WG) were assessed in the different agro-ecological zones. Herd records on performance of 826 Nguni calves' from nine Nguni herds representing different agro-ecological zones: arid zone (n = 217); semi-arid zone (n = 296); dry sub-humid zone (n = 118) and humid zone (n = 195) were used for the analysis of pre-weaning calf performance. General linear model (GLM) procedure of SAS (2013) was used to analyse data, whereas mean separation was conducted using Tukey's HSD test. Agro-ecological zone had a great influence (P < 0.01) on performance levels arising from pasture conditions which were dependent on rain, temperature, topography and soil type. Fluctuations in WW, P-ADG and P-WG performance across agro-ecological zones depicted the sensitivity of Nguni calves' to postnatal stress. Calves' in humid zone had higher performance with 121.21 kg for WW, 96.83 kg for P-WG and 0.477 kg/day for P-ADG. The lowest WW (114.51 kg), P-WG (89.98 kg) and P-ADG (0.438 kg/day) were observed in arid zone. Male calves were heavier at weaning (128.18 kg), P-ADG (0.503 kg/day) and total gain (103.03 kg); however, similar BW of 25 kg was observed for both male and female calves. Season had a significant (P < 0.05) effect on BW, P-ADG and P-WG. The P-ADG was 0.461 kg/day for calves born in summer and 0.449 kg/day for calves born in winter season. Calves born in summer gained 94.69 kg and calves born in winter gained 92.10 kg. Summer calves gained 2.59 kg more than winter calves. Summer heifer calves performed poorly whilst summer male calves outperformed heifer calves in terms of WW, P-WG and P-ADG. Pre-weaned calves in humid zone outperformed all calves in other agro-ecological zones. It was concluded that acceptable levels of growth are achievable from Nguni cattle under the different agro-ecological zones of Limpopo province, South Africa.
Geophysical signature of hydration-dehydration processes in active subduction zones
NASA Astrophysics Data System (ADS)
Reynard, Bruno
2013-04-01
Seismological and magneto-telluric tomographies are potential tools for imaging fluid circulation when combined with petrophysical models. Recent measurements of the physical properties of serpentine allow refining hydration of the mantle and fluid circulation in the mantle wedge from geophysical data. In the slab lithospheric mantle, serpentinization caused by bending at the trench is limited to a few kilometers below the oceanic crust (<5 km). Double Wadati-Benioff zones, 20-30 km below the crust, are explained by deformation of dry peridotites, not by serpentine dehydration. It reduces the required amount of water stored in solid phases in the slab (Reynard et al., 2010). In the cold (<700°C) fore-arc mantle wedge above the subducting slab, serpentinization is caused by the release of large amounts of hydrous fluids in the cold mantle above the dehydrating subducted plate. Low seismic velocities in the wedge give a time-integrated estimate of hydration and serpentinization. Serpentinization reaches 50-100% in hot subduction, while it is below 10% in cold subduction (Bezacier et al., 2010; Reynard, 2012). Electromagnetic profiles of the mantle wedge reveal high electrical-conductivity bodies. In hot areas of the mantle wedge (> 700°C), water released by dehydration of the slab induces melting of the mantle under volcanic arcs, explaining the observed high conductivities. In the cold melt-free wedge (< 700°C), high conductivities in electromagnetic profiles provide "instantaneous" images of fluid circulation because the measured electrical conductivity of serpentine is below 0.1 mS/m (Reynard et al., 2011). A small fraction (ca. 1% in volume) of connective high-salinity fluids accounts for the highest observed conductivities. Low-salinity fluids (≤ 0.1 m) released by slab dehydration evolve towards high-salinity (≥ 1 m) fluids during progressive serpentinization in the wedge. These fluids can mix with arc magmas at depths and account for high-chlorine melt inclusions in arc lavas. High electrical conductivities up to 1 S/m in the hydrated wedge of the hot subductions (Ryukyu, Kyushu, Cascadia) reflect high fluid concentration, while low to moderate (<0.01 S/m) conductivities in the cold subductions (N-E Japan, Bolivia) reflect low fluid flow. This is consistent with the seismic observations of extensive shallow serpentinization in hot subduction zones, while serpentinization is sluggish in cold subduction zones. Bezacier, L., et al. 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth and Planetary Science Letters, 289, 198-208. Reynard, B., 2012. Serpentine in active subduction zones. Lithos, http://dx.doi.org/10.1016/j.lithos.2012.10.012. Reynard, B., Mibe, K. & Van de Moortele, B., 2011. Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth and Planetary Science Letters, 307, 387-394. Reynard, B., Nakajima, J. & Kawakatsu, H., 2010. Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones. Geophysical Research Letters, 37, L24309.
Cold seeps and splay faults on Nankai margin
NASA Astrophysics Data System (ADS)
Henry, P.; Ashi, J.; Tsunogai, U.; Toki, T.; Kuramoto, S.; Kinoshita, M.; Lallemant, S. J.
2003-04-01
Cold seeps (bacterial mats, specific fauna, authigenic carbonates) are common on the Nankai margin and considered as evidence for seepage of methane bearing fluids. Camera and submersible surveys performed over the years have shown that cold seeps are generally associated with active faults. One question is whether part of the fluids expelled originate from the seismogenic zone and migrate along splay faults to the seafloor. The localisation of most cold seeps on the hanging wall of major thrusts may, however, be interpreted in various ways: (a) footwall compaction and diffuse flow (b) fluid channelling along the fault zone at depths and diffuse flow near the seafloor (c) erosion and channelling along permeable strata. In 2002, new observations and sampling were performed with submersible and ROV (1) on major thrusts along the boundary between the Kumano forearc basin domain and the accretionary wedge domain, (2) on a fault affecting the forearc (Kodaiba fault), (3) on mud volcanoes in the Kumano basin. In area (1) tsunami and seismic inversions indicate that the targeted thrusts are in the slip zone of the To-Nankai 1944 earthquakes. In this area, the largest seep zone, continuous over at least 2 km, coincides with the termination of a thrust trace, indicating local fluid channelling along the edge of the fault zone. Kodaiba fault is part of another splay fault system, which has both thrusting and strike-slip components and terminates westward into an en-echelon fold system. Strong seepage activity with abundant carbonates was found on a fold at the fault termination. One mud volcano, rooted in one of the en-echelon fold, has exceptionally high seepage activity compared with the others and thick carbonate crusts. These observations suggest that fluid expulsion along fault zones is most active at fault terminations and may be enhanced during fault initiation. Preliminary geochemical results indicate signatures differ between seep sites and suggests that the two fault systems tap in different sources.
Greater sage-grouse winter habitat use on the eastern edge of their range
Christopher C. Swanson; Mark A. Rumble; Nicholas W. Kaczor; Robert W. Klaver; Katie M. Herman-Brunson; Jonathan A. Jenks; Kent C. Jensen
2013-01-01
Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this...
Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass
Xiaoqing Yu; Paula M. Pijut; Stephen Byrne; Torben Asp; Guihua Bai; Yiwei Jiang
2015-01-01
Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global...
Li, Ha; Hua, Er; Zhang, Zhi-Nan
2012-12-01
An investigation was conducted on the abundance, group composition, and distribution of meiofauna at the Second Beach of Taiping Bay and the Shilaoren Beach in Qingdao in January, April, July, and October 2008, aimed to analyze the distribution and seasonal dynamics of meiofauna in the intertidal zone of Qingdao sandy beaches. The measurements of environmental factors, including sediment grain size, interstitial water salinity, interstitial water temperature, organic matter content (TOC), and chlorophyll a (Chl a) content, were made simultaneously. There existed obvious seasonal differences in the environment factors, which could be clustered into two groups, i. e. , spring-winter group (January and April) and summer-autumn group (July and October). At the Second Beach of Taiping Bay, the mean annual abundance of meiofauna was (1167.3 +/- 768.3) ind x 10 cm(-2), and the most dominant group was Nematoda, accounting for 91% of the total. The meiofaunal group composition and abundance at the Second Beach differed horizontally, with the abundance ranked as high tide zone < middle tide zone < low tide zone. The meiofaunal group composition and abundance also varied seasonally, with high values in spring/winter and low values in summer/autumn (spring > winter > autumn > summer). The vertical distribution of the meiofauna in the high and middle tide zones of the Second Beach varied seasonally too. The meiofauna migrated downward with increasing temperature, concentrated in surface layer in winter and migrated downward in summer. At the Shilaoren Beach, the mean annual abundance of meiofauna was (1130.2 +/- 1419.1) ind x 10 cm(-2), and Nematoda accounted for 85% of the total. There was a great similarity of the environmental factors in the middle tide zone of the Second Beach and Shilaoren Beach, which led to no differences in the meiofaunal group composition and abundance. However, the vertical distribution of the meiofauna differed between the two beaches. When the temperature decreased, the meiofauna at Shilaoren Beach migrated downward. The ANOVA and BIOENV analyses showed that the TOC and MD phi were most responsible for the distribution of meiofauna among the tidal zones, the interstitial water temperature, MD phi, and TOC were the main causes of the seasonal variation of meiofaunal group composition and abundance, whereas the sediment Chl a affected the vertical migration of meiofauna. Tourism-induced sediment variation was another factor affecting the meiofaunal abundance, group composition, and distribution.
1987-11-21
No matter how smoothly Goverment may insist that all that can be I done is being done in funding I health care and supporting the NHS, no matter what percentages are circulated to prove that financial allocation and commitment is rising - services continue to be curtailed.
Influence of outdoor winter environment on the course of infectious bovine keratoconjunctivitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopecky, K.E.; Pugh, G.W. Jr.; McDonald, T.J.
1981-11-01
The effect of environmental conditions on the onset, severity, and duration of Moraxella bovis infection and subsequent clinical disease was studied. Twelve calves were used; 6 were maintained under usual isolated experimental conditions (inside), and 6 were kept under normal feedlot conditions (outside) during the winter (-20 to +15 C). The cattle housed inside had a higher infection rate, a milder disease, and longer duration of infection than did the cattle kept out side. Seemingly, the stress of the cold weather caused a more severe disease of shorter duration.
2011-01-05
CAPE CANAVERAL, Fla. -- Several endangered green sea turtles that were "stunned" during two cold snaps in December 2010 are ready for release into the Mosquito Lagoon, which is part of Florida's Indian River. Workers with NASA's Kennedy Space Center, Innovative Health Applications and the Fish and Wildlife Conservation Commission rescued more than 300 turtles during this winter's frigid temperatures. Turtles that were stunned multiple times will be released in the Sebastian area of the Indian River, which often offers warmer water and could help prevent future stuns as winter progresses. NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2006-01-01
As winter turns to spring at the south polar ice cap of Mars, the rising sun reveals dark spots and fans emerging from the cold polar night. Using visual images (left) and temperature data (right) from the Thermal Emission Imaging system on NASA's Mars Odyssey orbiter, scientists have built a new model for the origin of the dark markings. Scientists propose the markings come from dark sand and dust strewn by high-speed jets of carbon-dioxide gas. These erupt from under a layer of carbon-dioxide ice that forms each Martian winter.Pach, Daniel; Knöchel, Bettina; Lüdtke, Rainer; Wruck, Katja; Willich, Stefan N; Witt, Claudia M
To compare the efficacy of applying hot dry air versus dry air at room temperature to the throat of patients with a newly acquired common cold using a symptom severity score. A randomised single-blind controlled trial with a treatment duration of 3 days and a follow-up period of 4 days was conducted at a sauna in Berlin, Germany. Between November 2007 and March 2008 and between September 2008 and April 2009, 157 patients with symptoms of the common cold were randomly assigned to an intervention group (n=80) and a control group (n=77). Participants in the intervention group inhaled hot dry air within a hot sauna, dressed in a winter coat, whereas participants in the control group inhaled dry air at room temperature within a hot sauna, also dressed in a winter coat. Area under the curve (AUC) summarising symptom severity over time (Days 2, 3, 5 and 7), symptom severity scores for individual days, intake of medication for the common cold and general ill feeling. No significant difference between groups was observed for AUC representing symptom severity over time (intervention group mean, 31.2 [SEM, 1.8]; control group mean, 35.1 [SEM, 2.3]; group difference, -3.9 [95% CI, -9.7 to 1.9]; P=0.19). However, significant differences between groups were found for medication use on Day 1 (P=0.01), symptom severity score on Day 2 (P=0.04), and participants' ratings of the effectiveness of the therapy on Day 7 (P=0.03). Inhaling hot air while in a sauna has no significant impact on overall symptom severity of the common cold. ClinicalTrials.gov identifier NCT00552981.
Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.
Janda, Tibor; Szalai, Gabriella; Leskó, Kornélia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova
2007-06-01
The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light.
NASA Astrophysics Data System (ADS)
Du, Y.; Fan, X.; He, Z.; Su, F.; Zhou, C.; Mao, H.; Wang, D.
2011-06-01
In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS). Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states, and therefore provides a powerful approach to forecasts in the future. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.
Polar Vortex Conditions During the 1995-96 Arctic Winter: MLS CL0 and HNO(sub 3)
NASA Technical Reports Server (NTRS)
Santee, M. L.; Manney, G. L.; Read, W. G.; Froidevaux, L.; Waters, J. W.
1996-01-01
Microwave Limb Sounder (MLS) measurements of lower stratospheric CLO and HNO(sub 3) during the 1995-96 Arctic winter are presented. The 1995-96 Arctic winter was both colder and more persistently cold than usual, leading to an enhancement in lower stratospheric CLO of greater magnitude, vertical extent, and duration than has been previously observed in the Arctic. Vortex concentrations of HNO(sub 3) in mid-December were large due to diabetic decent. Trajectory calculations indicate that localized severe depletions of gas-phase HNO(sub 3) in mid-February and early March did not arise from intrainment of midlatitude air into the vortex and were therefore probably related to polar stratospheric cloud (PSC) formation.
NASA Astrophysics Data System (ADS)
Boodoo, K. S.; Schelker, J.; Battin, T. J.
2016-12-01
Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. During warm summer months, diurnal vertical temperature patterns were most pronounced and were detected throughout all one-meter-depth profiles. Furthermore, permanently wetted GB sediment (-56 cm depth) temperatures above that of stream and groundwater occurred 17% of the year, particularly during summer. This is further evidence for downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB temperatures were associated with increased CO2 evasion fluxes; the strength of the relationship increased with depth (max. r2 = 0.61 at -100cm depth). This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn and winter, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. The importance of these processes is likely to increase, particularly in cold-water streams, due to the occurrence of more frequent and intense warm temperature events, as well as altered flow regimes, likely consequences of climatic change.
Trends of PM2.5 concentrations in China: A long term approach.
Fontes, Tânia; Li, Peilin; Barros, Nelson; Zhao, Pengjun
2017-07-01
The fast economic growth of China along the last two decades has created a strong impact on the environment. The occurrence of heavy haze pollution days is the most visible effect. Although many researchers have studied such problem, a high number of spatio-temporal limitations in the recent studies were identified. From our best knowledge the long trends of PM 2.5 concentrations were not fully investigated in China, in particular the year-to-year trends and the seasonal and daily cycles. Therefore, in this work the PM 2.5 concentrations collected from automatic monitors from five urban sites located in megacities with different climatic zones in China were analysed: Beijing (40°N), Chengdu (31°N), Guangzhou (23°N), Shanghai (31°N) and Shenyang (43°N). For an inter-comparison a meta-analysis was carried out. An evaluation conducted since 1999 demonstrates that PM 2.5 concentrations have been reduced until 2008, period which match with the occurrence of the Olympic Games. However, a seasonal analysis highlight that such decrease occurs mostly during warmer seasons than cold seasons. During winter PM 2.5 concentrations are typically 1.3 to 2.7 higher than in summer. The average daily cycle shows that the lowest and highest PM 2.5 concentrations often occurs in the afternoon and evening hours respectively. Such daily variations are mostly driven by the daily variation of the boundary layer depth and emissions. Although the PM 2.5 levels have showing signs of improvement, even during the warming season the values are still too high in comparison with the annual environmental standards of China (35 μg m -3 ). Moreover, during cold seasons the north regions have values twice higher than this limit. Thus, to fulfil these standards the governmental mitigation measures need to be strongly reinforced in order to optimize the daily living energy consumption, primarily in the north regions of China and during the winter periods. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tao, J.; Barros, A. P.
2013-07-01
Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are strongly modulated by the topography and catchment specific geomorphologic features that determine subsurface flow convergence zones. The three case-studies demonstrate the value of coupled prediction of flood response and debris flow initiation potential in the context of developing a regional hazard warning system.
Disruption of the European climate seasonal clock in a warming world
NASA Astrophysics Data System (ADS)
Cattiaux, J.; Cassou, C.
2015-12-01
Strength and inland penetration of the oceanic westerly flow over Europe control a large part of the temperature variability over most of the continent. Reduced westerlies, linked to high-pressure anomalies over Scandinavia, induce cold conditions in winter and warm conditions in summer. Here we propose to define the onset of these two seasons as the calendar day where the daily circulation/temperature relationship over Western Europe switches sign. According to this meteorologically-based metrics assessed from several observational datasets, we provide robust evidence for an earlier summer onset by ~10 days between the 1960s and 2000s. Results from model ensemble simulations dedicated to detection-attribution show that this calendar advance is incompatible with the sole internal climate variability and can be attributed to anthropogenic forcings. Late winter snow disappearance over Eastern Europe affects cold air intrusion to the West when easterlies blow, and is mainly responsible for the observed present-day and near-future summer advance. Our findings agree with phenological-based trends (earlier spring events) reported for many living species over Europe, for which they provide a novel dynamical interpretation beyond the traditionally evoked global warming effect. Based on business-as-usual scenario, a seasonal shift of ~25 days is expected by 2100 for summer onset, while no clear signal arises for winter onset.
NASA Technical Reports Server (NTRS)
Massom, Robert A.
1992-01-01
Data from four buoys tracked by Nimbus 6 and concurrent ice concentrations retrieved from Nimbus 7 scanning multichannel microwave radiometer data are used to investigate the progress and behavior of an area of sea ice as it drifts from the southwestern Weddell Sea. The overall drift characteristics and their relationship to ice edge displacement are examined within the framework of four zones. Three phases are identified in the large-scale behavior of the Weddell Sea ice cover, namely, a rapid equatorward and eastward advance, a quasi-equilibrium phase, and a period of rapid recession. Outbreaks of cold continental air alternate with incursions of relatively warm air from the north; warm conditions are recorded as far as 1200 km in from the ice edge in winter. Closed loops in the buoy trajectories, which are clockwise to the south of 63 deg S, reverse to become anticlockwise to the north. A coherence is observed in the response of the buoys to the passage of storms, even though the buoys separated by a distance of over 100 km.
NASA Astrophysics Data System (ADS)
Sur, Hali˙l. İ.; Özsoy, Emi˙n.; Ünlüata, Ümi˙t.
Satellite and in situ data are utilized to investigate the mesoscale dynamics of the Black Sea boundary current system with special emphasis on aspects of transport and productivity. The satellite data are especially helpful in capturing rapid sub-mesoscale motions insufficiently resolved by the in situ measurements. Various forms of isolated features, including dipole eddies and river plumes, are identified in the satellite images. Unstable flow structures at these sites appear to transport materials and momentum across the continental shelf. Species differentiation and competition are evident along the boundary current system and at the frontal regions during the development of early summer productivity. A time series of Coastal Zone Colour Scanner (CZCS) images indicate dynamical modulation of the springtime surface productivity in the southern Black Sea. Unstable meandering motions generated at Sakarya Canyon propagate east with speeds of ∼10-15 km d -1. Within weeks, a turbulent jet is created which separates from the coast, covering the entire southwestern sector. The nutrients driving the phytoplankton production (mainly Emiliana huxleyi) of the current system evidently originate from fluvial discharge entering from the northwestern region including the Danube river. The productivity pattern develops in early summer when the Danube inflow is at its peak, and through meandering motions spreads into an area several times wider than the continental shelf. In 1980, the CZCS data, and in 1991 and 1992, the Advanced Very High Resolution Radiometer (AVHRR) data indicate patches of upwelling along the west Anatolian coastline between Sakarya Canyon and Cape İnce ( Ince Burun) in summer. The upwelling phenomenon is outstanding because it occurs on a coast where normally the surface convergence near the coast implies downwelling, and under conditions of unfavorable winds. In 1992, the hydrographic data indicated the upwelling to be the result of a surface divergence of the boundary current, and sequences of satellite data indicate the role of transient dynamics. The in situ data showed the upwelling centres to be devoid of phytoplankton as well as fish eggs and larvae. The AVHRR and in situ hydrographic data in winter 1990 indicate cold water is formed over the entire western Black Sea continental shelf. The band of cold water decreases in width as it moves south and impinges on the headland at Baba Burnu, where it undergoes a sudden expansion. The maximum winter phytoplankton bloom sampled during the same period indicates explosive populations of diatoms following the band of cold water.
NASA Astrophysics Data System (ADS)
Ooi, S. H.; Samah, A. A.; Braesicke, P.
2013-08-01
Near coastal areas of the equatorial South China Sea (SCS) are one of the world's regions with highest primary productivity (phytoplankton growth). Concentrations of phytoplankton in the SCS depend significantly on atmospheric forcings and the oceanic state, in particular during the northeast (winter) monsoon season from November to March. Aided by new ocean-observing satellite data, we present a climatological overview of recent surface atmospheric and oceanic features in the equatorial SCS during the northeast monsoon to identify the dominant air-sea processes influencing and modulating the primary productivity of the region. Measured chlorophyll a concentrations are used as a proxy for phytoplankton amounts and the spatial and temporal variations are characterized according to meteorological conditions. Converging northeasterly surface winds support high chlorophyll a concentrations along East Malaysia's coastline in conjunction with a continual nutrient supply from the bottom of the continental shelf by vertical mixing. The mixing can be enhanced due to increased turbulence by wind-generated high waves when they approach shallow water from the deep basin during strong cold surges and monsoon disturbances. Intraseasonal variability during the winter monsoon is characterized by a coastal increase of chlorophyll a starting in November and peaking in January. A general decrease is observed in March. Interannual variability of chlorophyll a concentrations is influenced by ENSO (due to the known modulation of cold surge occurrences), with decreases during El Niño and increases during La Niña in early winter along the shore of East Malaysia. As an example, we discuss an enhanced phytoplankton growth event that occurred due to a typical cold surge-induced Borneo vortex event in January 2010.
Long-terms Change of Sea Surface Temperature in the South China Sea
NASA Astrophysics Data System (ADS)
Park, Y. G.; Choi, A.
2016-02-01
Using the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) the long term trend in the South China Sea (SCS) sea surface temperature (SST) between 1950 and 2008 is investigated. Both in winter and summer SST was increased by comparable amounts, but the warming patterns and the governing processes was different. During winter warming rate was greater in the deep basin in the central part, while during summer near the southern part. In winter the net heat flux into the sea was increased and could contribute to the warming. The pattern of the heat flux, however, was different from that of the warming. The heat flux was increased over the coastal area where warming was weaker, but decreased in deeper part where warming was stronger. The northeasterly monsoon wind weakened to lower the shoreward Ekman transport and the sea surface height gradient. The cyclonic gyre that transports cold northern water to south was weakened to warm the ocean. The effect manifested more strongly southward western boundary currents, and subsequently cold advection. In summer the net surface heat flux, however, was reduced and could not contribute to the warming. Over the southern part of the ocean the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is antiparallel to the mean SST gradient. Firstly, southeastward cold advection is reduced to warm the surface near the southeastern boundary of the SCS. The upwelling southeast of Vietnam was also weakened to raise the SST east of Vietnam. Thus the weakening of the wind in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different.
Hoyle, G. L.; Cordiner, H.; Good, R. B.; Nicotra, A. B.
2014-01-01
The life stages of seed germination and seedling establishment play a vital role in maintaining plant populations and determining range dynamics of species. Thus, it is not surprising that specific germination requirements and dormancy mechanisms have evolved in all major angiosperm clades. In a rapidly changing climate, we face growing pressure to manage, conserve and restore native plant species and communities. To achieve these aims, we require solid knowledge of whether and how seed germination requirements and dormancy status vary between different populations of a given species and how germination strategies may be affected by warming climatic conditions. We assessed the effect of decreasing durations of cold stratification (i.e. conditions representing a shortened winter as predicted under climate change) on germination and dormancy of the alpine herb Aciphylla glacialis. Our results confirmed previous research showing that A. glacialis seeds possess physiological dormancy that can be alleviated by cold stratification. In addition, the results demonstrated that A. glacialis seeds have underdeveloped embryos at dispersal; these grow to germinable size following 4–9 weeks at both constant 5°C and 10–5°C (day–night) temperatures. We conclude that A. glacialis exhibits morphophysiological dormancy. Furthermore, we found that the final percentage germination and dormancy status varied significantly among natural populations and that this variation did not correlate with elevation at the site of seed origin. Seeds germinated following 6–8 weeks of cold stratification, and seedlings showed no detrimental effects as a result of shorter stratification periods. Together, these results suggest that reduced duration of winter is unlikely to have direct negative impacts on germination or early seedling growth in A. glacialis. The causes and implications of the population variation in germination traits are discussed. PMID:27293636
NASA Technical Reports Server (NTRS)
Roffe, G.; Raman, R. S. V.
1981-01-01
Tests were run using a perforated plate flameholder with a relatively short attached recirculation zone and a vee gutter flameholder with a relatively long attached recirculation zone. Combustor streamlines were traced in cold flow tests at ambient pressure. The amount of secondary air entrainment in the recirculation zones of the flameholders was determined by tracer gas testing at cold flow ambient pressure conditions. Combustion tests were caried out at entrance conditions of 0.5 MPa/630K and emission of NOx, CO and unburned hydrocarbons were measured along with lean stability and flashback limits. The degree of entrainment increases as dilution air injection decreases. Flashback appears to be a function of overall equivalence ratio and resistance to flashback increases with increasing combustor entrance velocity. Lean stability limit appears to be a function of both primary zone and flameholder recirculation zone equivalence ratios and resistance to lean blowout increases with increasing combustor entrance velocity.
Seasonal changes of DNA fragmentation and quality of raw and cold-stored stallion spermatozoa.
Wach-Gygax, L; Burger, D; Malama, E; Bollwein, H; Fleisch, A; Jeannerat, E; Thomas, S; Schuler, G; Janett, F
2017-09-01
In this study annual fluctuations of DNA fragmentation and quality of cold-stored equine sperm were evaluated. Ejaculates were collected weekly during one year from 15 stallions. Ejaculate volume, sperm concentration and total sperm count were determined and semen was then extended and cold-stored for 48 h. Sperm motility was evaluated by CASA before and after 24 as well as 48 h of cold storage. In addition, the percentages of sperm with intact plasma membrane and acrosome (PMAI %) and with low intracellular Ca 2+ level were determined in cold-stored semen (24 h, 48 h). SCSA™ was performed to assess mean DFI, SD of DFI and % DFI in raw frozen-thawed as well as in extended sperm after 24 and 48 h of storage. The month of semen collection affected (P < 0.05) all parameters evaluated in raw semen and all criteria except progressive motility as well as rapid cells in semen stored for 24 and 48 h, respectively. Ejaculate volume was higher and sperm concentration lower in summer compared to winter and motility lower in July than in any other month of the year (P < 0.05). In semen processed in April and stored for 24 h the percentage of rapid cells was improved compared to January and after 48 h of storage progressive motility (%) was higher in January and October than in July (P < 0.05). After 24 h of cold storage PMAI % was higher in October than in January and after 48 h values were higher in September compared to January and February as well as from April to July (P < 0.05). Regarding sperm with low intracellular Ca +2 level (%) after storage for 24 and 48 h, higher values were measured in winter and in October compared to April, June and July (P < 0.01). Seasonal changes in DNA fragmentation were most evident with respect to mean DFI. In raw frozen-thawed semen mean DFI was lower from August to November than in June and July (P < 0.001). Values were lower during winter compared to spring and early summer (P < 0.05) and lower in December than from April to September (P < 0.001). After 24 h of cold storage mean DFI was lower in September and October when compared to January, February, May, July and November (P < 0.05) and after 48 h storage mean DFI was reduced in spring and autumn compared to February, June and July (P < 0.05). In conclusion, a seasonal effect was evident on semen characteristics of raw and cold-stored sperm. Semen quality was impaired in midsummer when low sperm motility and viability were combined with an elevated DNA fragmentation and Ca 2+ level of sperm. Copyright © 2017. Published by Elsevier Inc.
Aziz Ebrahimi; AbdolKarim Zarei; James R. McKenna; Geza Bujdoso; Keith E. Woeste
2017-01-01
We compared the genetic diversity of Juglans regia L. growing in the cold temperate region of the eastern U.S. with J. regia growing in the cold-temperate and Mediterranean regions of Europe. Ten microsatel-lite (SSR) loci were used to assess the genetic relationships among 114 total trees originating from the Midwestern USA (n...
Boucek, Ross E; Heithaus, Michael R; Santos, Rolando; Stevens, Philip; Rehage, Jennifer S
2017-10-01
Global climate forecasts predict changes in the frequency and intensity of extreme climate events (ECEs). The capacity for specific habitat patches within a landscape to modulate stressors from extreme climate events, and animal distribution throughout habitat matrices during events, could influence the degree of population level effects following the passage of ECEs. Here, we ask (i) does the intensity of stressors of an ECE vary across a landscape? And (ii) Do habitat use patterns of a mobile species influence their vulnerability to ECEs? Specifically, we measured how extreme cold spells might interact with temporal variability in habitat use to affect populations of a tropical, estuarine-dependent large-bodied fish Common Snook, within Everglades National Park estuaries (FL US). We examined temperature variation across the estuary during cold disturbances with different degrees of severity, including an extreme cold spell. Second, we quantified Snook distribution patterns when the passage of ECEs is most likely to occur from 2012 to 2016 using passive acoustic tracking. Our results revealed spatial heterogeneity in the intensity of temperature declines during cold disturbances, with some habitats being consistently 3-5°C colder than others. Surprisingly, Snook distributions during periods of greatest risk to experience an extreme cold event varied among years. During the winters of 2013-2014 and 2014-2015 a greater proportion of Snook occurred in the colder habitats, while the winters of 2012-2013 and 2015-2016 featured more Snook observed in the warmest habitats. This study shows that Snook habitat use patterns could influence vulnerability to extreme cold events, however, whether Snook habitat use increases or decreases their vulnerability to disturbance depends on the year, creating temporally dynamic vulnerability. Faunal global change research should address the spatially explicit nature of extreme climate events and animal habitat use patterns to identify potential mechanisms that may influence population effects following these disturbances. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
The Role of Temperature in the Growth and Flowering of Geophytes
Khodorova, Nadezda V.; Boitel-Conti, Michèle
2013-01-01
Among several naturally occurring environmental factors, temperature is considered to play a predominant role in controlling proper growth and flowering in geophytes. Most of them require a “warm-cold-warm” sequence to complete their annual cycle. The temperature optima for flower meristem induction and the early stages of floral organogenesis vary between nine and 25 °C, followed, in the autumn, by a several-week period of lower temperature (4–9 °C), which enables stem elongation and anthesis. The absence of low temperature treatment leads to slow shoot growth in spring and severe flowering disorders. Numerous studies have shown that the effects of the temperature surrounding the underground organs during the autumn-winter period can lead to important physiological changes in plants, but the mechanism that underlies the relationship between cold treatment and growth is still unclear. In this mini-review, we describe experimental data concerning the temperature requirements for flower initiation and development, shoot elongation, aboveground growth and anthesis in bulbous plants. The physiological processes that occur during autumn-winter periods in bulbs (water status, hormonal balance, respiration, carbohydrate mobilization) and how these changes might provoke disorders in stem elongation and flowering are examined. A model describing the relationship between the cold requirement, auxin and gibberellin interactions and the growth response is proposed. PMID:27137399
The interaction between freezing tolerance and phenology in temperate deciduous trees
Vitasse, Yann; Lenz, Armando; Körner, Christian
2014-01-01
Temperate climates are defined by distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid, and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees), and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues. PMID:25346748
Huang, Wan-Hua; Sui, Yue; Yang, Xiao-Guang; Dai, Shu-Wei; Li, Mao-Song
2013-10-01
Zoning seasonal drought based on the study of drought characteristics can provide theoretical basis for formulating drought mitigation plans and improving disaster reduction technologies in different arid zones under global climate change. Based on the National standard of meteorological drought indices and agricultural drought indices and the 1959-2008 meteorological data from 268 meteorological stations in southern China, this paper analyzed the climatic background and distribution characteristics of seasonal drought in southern China, and made a three-level division of seasonal drought in this region by the methods of combining comprehensive factors and main factors, stepwise screening indices, comprehensive disaster analysis, and clustering analysis. The first-level division was with the annual aridity index and seasonal aridity index as the main indices and with the precipitation during entire year and main crop growing season as the auxiliary indices, dividing the southern China into four primary zones, including semi-arid zone, sub-humid zone, humid zone, and super-humid zone. On this basis, the four primary zones were subdivided into nine second-level zones, including one semi-arid area-temperate-cold semi-arid hilly area in Sichuan-Yunnan Plateau, three sub-humid areas of warm sub-humid area in the north of the Yangtze River, warm-tropical sub-humid area in South China, and temperate-cold sub-humid plateau area in Southwest China, three humid areas of temperate-tropical humid area in the Yangtze River Basin, warm-tropical humid area in South China, and warm humid hilly area in Southwest China, and two super-humid areas of warm-tropical super-humid area in South China and temperate-cold super-humid hilly area in the south of the Yangtze River and Southwest China. According to the frequency and intensity of multiple drought indices, the second-level zones were further divided into 29 third-level zones. The distribution of each seasonal drought zone was illustrated, and the zonal drought characteristics and their impacts on the agricultural production were assessed. Accordingly, the drought prevention measures were proposed.
How Insects Survive Winter in the Midwest
USDA-ARS?s Scientific Manuscript database
Understanding how insects cope with cold temperatures can not only help entomologists more accurately forecast when and where insects are active, but it may also help us understand how climate change will influence insect pests. This newsletter article provides a comprehensive overview of how Midwes...
Technology Solutions Case Study: Field Performance of Inverter-Driven Heat Pumps in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Williamson and R. Aldrich
2015-09-01
To better understand and characterize heating performance, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven ASHPs across the northeast United States during the winter of 2013–2014.
Transcriptomic insights into phenological development and cold tolerance of wheat grown in the field
USDA-ARS?s Scientific Manuscript database
Low temperature (LT) acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex LT responses are mostly conducted in controlled environments that only consider the responses to single environm...
Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone
NASA Technical Reports Server (NTRS)
Comiso, J. C.; Sullivan, C. W.
1986-01-01
The radiative and physical characteristics of the Weddell Sea ice cover and its marginal ice zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated ice in winter and spring cyclic increases and decrease in brightness temperatures of consolidated ice with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. Ice concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the ice margin structure and the mass balance of fresh water and of biological features of the marginal ice zone are studied.
Large-scale Atmospheric Transport Processes
NASA Technical Reports Server (NTRS)
Plumb, R. Alan
2004-01-01
Continuing earlier work, we continued an investigation of the seasonal behavior of the edges of the stratospheric surf zone. These edges form a barrier between the rapidly mixed surf zone and the relatively isolated tropics. In collaboration with Dr Lynn Sparling at GSFC, we used a statistical analysis of HALOE and CLAES trace gas data from UARS to identify and locate these edges during each UARS observing period. We found that the edges on both sides of the equator are present all year (a fact that is important for conceptual models of stratospheric transport), though that on the summer side of the equator is much less sharp than the winter edge. The edges migrate seasonally into the summer hemisphere. Their location also shows influence of the QBO, together with the SAO at higher altitudes. Comparisons with effective diffusivities, and the edge locations, suggest that the edge is sustained by surf zone entrainment during winter, but by the residual circulation during summer.
Characteristics of the local cutaneous sensory thermoneutral zone
Zhang, Hui; Arens, Edward A.
2017-01-01
Skin temperature detection thresholds have been used to measure human cold and warm sensitivity across the temperature continuum. They exhibit a sensory zone within which neither warm nor cold sensations prevail. This zone has been widely assumed to coincide with steady-state local skin temperatures between 32 and 34°C, but its underlying neurophysiology has been rarely investigated. In this study we employ two approaches to characterize the properties of sensory thermoneutrality, testing for each whether neutrality shifts along the temperature continuum depending on adaptation to a preceding thermal state. The focus is on local spots of skin on the palm. Ten participants (age: 30.3 ± 4.8 yr) underwent two experiments. Experiment 1 established the cold-to-warm inter-detection threshold range for the palm’s glabrous skin and its shift as a function of 3 starting skin temperatures (26, 31, or 36°C). For the same conditions, experiment 2 determined a thermally neutral zone centered around a thermally neutral point in which thermoreceptors’ activity is balanced. The zone was found to be narrow (~0.98 to ~1.33°C), moving with the starting skin temperature over the temperature span 27.5–34.9°C (Pearson r = 0.94; P < 0.001). It falls within the cold-to-warm inter-threshold range (~2.25 to ~2.47°C) but is only half as wide. These findings provide the first quantitative analysis of the local sensory thermoneutral zone in humans, indicating that it does not occur only within a specific range of steady-state skin temperatures (i.e., it shifts across the temperature continuum) and that it differs from the inter-detection threshold range both quantitatively and qualitatively. These findings provide insight into thermoreception neurophysiology. NEW & NOTEWORTHY Contrary to a widespread concept in human thermoreception, we show that local sensory thermoneutrality is achievable outside the 32–34°C skin temperature range. We propose that sensory adaption underlies a new mechanism of temperature integration. Also, we have developed from vision research a new quantitative test addressing the balance in activity of cutaneous cold and warm thermoreceptors. This could have important clinical (assessment of somatosensory abnormalities in neurological disease) and applied (design of personal comfort systems) implications. PMID:28148644
Contrasting responses of the extended Gulf Stream to severe winter forcing
NASA Astrophysics Data System (ADS)
Jacobs, Z.; Grist, J. P.; Marsh, R.; Josey, S. A.; Sinha, B.
2015-12-01
Changes in the path and strength of the extended Gulf Stream, downstream of Cape Hatteras, and the North Atlantic Current (GSNAC), are associated with strong wintertime air-sea interactions that can further influence the atmospheric storm track. The GSNAC response to anomalous air-sea heat fluxes in particular is dependent on the location of excess heat loss, in turn related to meteorological circumstances. Outbreaks of cold continental air may lead to excess cooling over the Sargasso Sea, as in 1976-77. Under these circumstances, the Gulf Stream may intensify through a steepening of cross-stream density gradients. An alternative scenario prevailed during the cold outbreak of 2013-14 where excess cooling occurred over the central subpolar gyre and may have influenced the extreme storminess experienced in western Europe. An objectively-analysed temperature and salinity product (EN4) is used to investigate the variability of the GSNAC. Temperature and salinity profiles are used to obtain geostrophic transport at selected GSNAC transects, confirming strong horizontal temperature gradients and a positive geostrophic velocity anomaly at 70oW in spring 1977, the strongest spring transport seen in the 1970s at this location. In addition to observations, an eddy-resolving model hindcast spanning 1970-2013, is used to further characterise GSNAC transport variability, allowing a fuller assessment of the relationship between the winter surface heat flux, end-of-winter mixed layer depth, subtropical mode water volume and GSNAC transports. Preliminary results reveal a significant negative correlation between the winter surface heat flux over the Sargasso Sea and the GSNAC transport in the following spring.
Chemical and Dynamical Impacts of Stratospheric Sudden Warmings on Arctic Ozone Variability
NASA Technical Reports Server (NTRS)
Strahan, S. E.; Douglass, A. R.; Steenrod, S. D.
2016-01-01
We use the Global Modeling Initiative (GMI) chemistry and transport model with Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields to quantify heterogeneous chemical ozone loss in Arctic winters 2005-2015. Comparisons to Aura Microwave Limb Sounder N2O and O3 observations show the GMI simulation credibly represents the transport processes and net heterogeneous chemical loss necessary to simulate Arctic ozone. We find that the maximum seasonal ozone depletion varies linearly with the number of cold days and with wave driving (eddy heat flux) calculated from MERRA fields. We use this relationship and MERRA temperatures to estimate seasonal ozone loss from 1993 to 2004 when inorganic chlorine levels were in the same range as during the Aura period. Using these loss estimates and the observed March mean 63-90N column O3, we quantify the sensitivity of the ozone dynamical resupply to wave driving, separating it from the sensitivity of ozone depletion to wave driving. The results show that about 2/3 of the deviation of the observed March Arctic O3 from an assumed climatological mean is due to variations in O3 resupply and 13 is due to depletion. Winters with a stratospheric sudden warming (SSW) before mid-February have about 1/3 the depletion of winters without one and export less depletion to the midlatitudes. However, a larger effect on the spring midlatitude ozone comes from dynamical differences between warm and cold Arctic winters, which can mask or add to the impact of exported depletion.
Morabito, Marco; Crisci, Alfonso; Orlandini, Simone; Maracchi, Giampiero; Gensini, Gian F; Modesti, Pietro A
2008-07-01
Higher blood pressure (BP) values in cold than in hot months has been documented in hypertensives. These changes may potentially contribute to the observed excess winter cardiovascular mortality. However, the association with weather has always been investigated by considering the relationship with a single variable rather than considering the combination of ground weather variables characterizing a specific weather pattern (air mass (AM)). We retrospectively investigate in Florence (Italy) the relationship between BP and specific AMs in hypertensive subjects (n = 540) referred to our Hypertension Unit for 24-h ambulatory BP monitoring during the period of the year characterized by the highest weather variability (winter). Five different winter daily AMs were classified according to the combination of ground weather data (air temperature, cloud cover, relative humidity, atmospheric pressure, wind speed, and direction). Multiple variable analysis selected the AM as a significant predictor of mean 24-h BP (P < 0.01 for diastolic BP (DBP) and P < 0.05 for systolic BP (SBP)), daytime DBP (P < 0.001) and nighttime BP (P < 0.01 for both SBP and DBP), with higher BP values observed in cyclonic (unstable, cloudy, and mild weather) than in anticyclonic (settled, cloudless, and cold weather) days. When the association with 2-day sequences of AMs was considered, an increase in ambulatory BP followed a sudden day-to-day change of weather pattern going from anticyclonic to cyclonic days. The weather considered as a combination of different weather variables may affect BP. The forecast of a sudden change of AM could provide important information helpful for hypertensives during winter.
Adaptations to polar life in mammals and birds.
Blix, Arnoldus Schytte
2016-04-15
This Review presents a broad overview of adaptations of truly Arctic and Antarctic mammals and birds to the challenges of polar life. The polar environment may be characterized by grisly cold, scarcity of food and darkness in winter, and lush conditions and continuous light in summer. Resident animals cope with these changes by behavioural, physical and physiological means. These include responses aimed at reducing exposure, such as 'balling up', huddling and shelter building; seasonal changes in insulation by fur, plumage and blubber; and circulatory adjustments aimed at preservation of core temperature, to which end the periphery and extremities are cooled to increase insulation. Newborn altricial animals have profound tolerance to hypothermia, but depend on parental care for warmth, whereas precocial mammals are well insulated and respond to cold with non-shivering thermogenesis in brown adipose tissue, and precocial birds shiver to produce heat. Most polar animals prepare themselves for shortness of food during winter by the deposition of large amounts of fat in times of plenty during autumn. These deposits are governed by a sliding set-point for body fatness throughout winter so that they last until the sun reappears in spring. Polar animals are, like most others, primarily active during the light part of the day, but when the sun never sets in summer and darkness prevails during winter, high-latitude animals become intermittently active around the clock, allowing opportunistic feeding at all times. The importance of understanding the needs of the individuals of a species to understand the responses of populations in times of climate change is emphasized. © 2016. Published by The Company of Biologists Ltd.
ERIC Educational Resources Information Center
DiLisi, Gregory A.; Rarick, Richard A.
2007-01-01
"The 2006 Winter Meeting of the AAPT Was Over..."and the flight home from Anchorage to Cleveland was just about to end--eight hours in the air, only two complimentary beverages, no meals, a jump across four time zones, a one-year-old baby daughter, and a wife whose motto for the week was, "Why did they choose to have a winter meeting in Alaska?"…