Science.gov

Sample records for cold-bore vacuum system

  1. Considerations for design of a Fourier transform mass spectrometer in the 4.2 K cold bore of a superconducting magnet.

    PubMed

    O'Connor, Peter B

    2002-01-01

    An external source Fourier transform mass spectrometer (FTMS) constructed inside the vertical cold bore of a superconducting magnet will have dramatic advantages in effective magnetic field, noise figures, and base pressure over current commercially available external source FTMS systems. There are substantial, but solvable, difficulties in the design, primarily with regard to control of the helium boiloff rate to an acceptable level, as well as relatively minor design challenges with heat sinks, contraction of metallic ion optic elements in the extreme temperature, and tandem mass spectrometry experiments. However, the ability to construct the FTMS inside the narrow bore tube of existing, commercially available vertical bore NMR magnets will allow access to the upper magnetic field limit currently used by 900 MHz (21 Tesla) - 1 GHz (23.3 Tesla) NMR experiments. The vacuum system, simply by being held inside the cold bore at 4.2 K, will cryopump itself dropping base pressures substantially, and heat sinking the input resistor of the preamplifier to this cryogenically cooled vacuum chamber will allow reduction of the input Johnson noise by a factor of 8.4 with associated 8.4-fold improvement in signal/noise, sensitivity, and dynamic range. The simultaneous improvement of three fundamental limiting factors in the FTMS (field strength, base pressure, and Johnson noise figure) will clearly outweigh the concomitant increased helium boiloff rate particularly if this rate can be dropped to the estimated <5 L/day range. The additional use of modern cryorefrigerators will further reduce helium boiloff to zero except during MS(n) experiments and system cooldown.

  2. NSLS II Vacuum System

    SciTech Connect

    Ferreira, M.; Doom, L.; Hseuh, H.; Longo, C.; Settepani, P.; Wilson, K.; Hu, J.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning and mounting the chambers are given.

  3. ELETTRA vacuum system

    NASA Astrophysics Data System (ADS)

    Bernardini, M.

    1991-08-01

    A status report of the vacuum system of ELETTRA, the 2 GeV, 400 mA light source under construction in Trieste, will be described. The Vacuum project, presented at ``Synchrotron Radiation Vacuum Workshop'' at Riken (Japan 22-24 March 1990) and more recently at EVC-2, the European Vacuum Conference at Trieste (Italy 21-26 May 1990), is now in the phase of testing a prototype sector, which is 1/24 of the ring circumference. Details and some technological aspects of the fabrication will be reviewed together with the vacuum performances. Results of laboratory experiments on components, standard or not, allowed us to finalize the main choices in light of the general philosophy of the project and will be properly summarized.

  4. ISABELLE vacuum systems

    SciTech Connect

    Halama, H J

    1980-01-01

    The Intersecting Storage Accelerator (ISABELLE) consists of two rings having a circumference of 3.8 km each. In these rings superconducting magnets, held at 4 K, bend and focus the proton beam which is accelerated up to 400 GeV. Due to very different pressure requirements, ISABELLE has two completely independent vacuum systems. One, which operates at 1 x 10/sup -11/ Torr, provides a very clean environment for the circulating proton beam. Here only ion and titanium sublimation pumps are used to provide the vacuum. The other system maintains superconducting magnet vessels at a pressure below 1 x 10/sup -4/ Torr, since at this pressure the gas conduction becomes negligible. In this so-called insulating vacuum system, turbomolecular pumps pump the inadvertent small helium leaks. Other gases are cryocondensed on the cold surfaces of the cryogenic system. The basic element of ISABELLE known as Full Cell containing 45 meters of beam tube, 8 pumping stations, 8 superconducting magnets and complete instrumentation has been constructed, leak checked and tested. All design parameters have been achieved in both vacuum systems. The two vacuum systems are described with particular emphasis on the influence of superconducting magnets in the selection of materials and UHV components.

  5. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  6. Tritium handling in vacuum systems

    SciTech Connect

    Gill, J.T.; Coffin, D.O.

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  7. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  8. APS storage ring vacuum system

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Goeppner, G.A.; Gonczy, J.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1990-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs.

  9. Technical specification for vacuum systems

    SciTech Connect

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  10. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  11. D-Zero Vacuum System

    SciTech Connect

    Wintercorn, S.J.; /Fermilab

    1986-04-07

    The system pumping speed was calculated by taking the reciprocal of the sum of the reciprocal pump speed and the reciprocal line conductances. The conductances of the pipe were calculated from the following formulas taken from the Varian vacuum manual. This report updates the original to reflect the pumping curves and basic vacuum system characteristics for the purchased components and installed piping of the D-Zero vacuum system. The system consists of two Edward's E2M275 two stage mechanical pumps, a Leybold-Heraeus WSU2000 Blower and three Varian 4' diffusion pumps (one for each cryostat). Individual pump and system pumping speed curves and a diagram of the system is included.

  12. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    William S. McPhee

    1999-05-31

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  13. Performance of a 14-T CuNb/Nb3Sn Rutherford coil with a 300 mm wide cold bore

    NASA Astrophysics Data System (ADS)

    Oguro, Hidetoshi; Watanabe, Kazuo; Awaji, Satoshi; Hanai, Satoshi; Ioka, Shigeru; Sugimoto, Masahiro; Tsubouchi, Hirokazu

    2016-08-01

    A large-bore 14-T CuNb/Nb3Sn Rutherford coil was developed for a 25 T cryogen-free superconducting magnet. The magnet consisted of a low-temperature superconducting (LTS) magnet of NbTi and Nb3Sn Rutherford coils, and a high-temperature superconducting magnet. The Nb3Sn Rutherford coil was fabricated by the react-and-wind method for the first time. The LTS magnet reached the designed operation current of 854 A without a training quench at a 1 h ramp rate. The central magnetic field generated by the LTS magnet was measured by a Hall sensor to be 14.0 T at 854 A in a 300 mm cold bore.

  14. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  15. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  16. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  17. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  18. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  19. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  20. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  1. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  2. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  3. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  4. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  5. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  6. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  7. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  8. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  9. The APS beamline front end vacuum system

    SciTech Connect

    Nielsen, R.W.

    1993-10-15

    This report discusses the design of the vacuum system for the advanced photon source beamline front ends. Included in this report are discussions on: vacuum calculations, the differential pump; front end vacuum set points; cleaning methods and agents; and continuing and completed research and development.

  10. LCLS XTOD Tunnel Vacuum System (XVTS)

    SciTech Connect

    Beale, R; Duffy, P; Kishiyama, K; Mckernan, M; McMahon, D; Lewis, S; Trent, J; Tung, L; Shen, S

    2005-11-04

    The vacuum system of the XVTS (X-Ray Vacuum Transport System) for the LCLS (Linac Coherent Light Source) XTOD (X-ray Transport, Optics and Diagnostics) system has been analyzed and configured by the Lawrence Livermore National Laboratory's NTED (New Technologies Engineering Division) as requested by the SLAC/LCLS program. The system layout, detailed analyses and selection of the vacuum components for the XTOD tunnel section are presented in this preliminary design report. The vacuum system was analyzed and optimized using a coupled gas load balance model of sub-volumes of the components to be evacuated. Also included are the plans for procurement, mechanical integration, and the cost estimates.

  11. Vacuum systems for the ILC helical undulator

    SciTech Connect

    Malyshev, O. B.; Scott, D. J.; Bailey, I. R.; Barber, D. P.; Baynham, E.; Bradshaw, T.; Brummitt, A.; Carr, S.; Clarke, J. A.; Cooke, P.; Dainton, J. B.; Ivanyushenkov, Y.; Malysheva, L. I.; Moortgat-Pick, G. A.; Rochford, J.; Department of Physics, University of Liverpool Oxford St. Liverpool L69 7ZE; Cockcroft Institute, Warrington WA4 4AD

    2007-07-15

    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of {approx}10 MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of {approx}100 nTorr in a narrow chamber of 4-6 mm inner diameter, with a long length of 100-200 m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  12. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    Dr. M.A. Ebadian

    2000-01-13

    The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process.

  13. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vacuum abortion system. 884.5070 Section 884.5070... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to... type of device may include aspiration cannula, vacuum source, and vacuum controller. (b)...

  14. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vacuum abortion system. 884.5070 Section 884.5070... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to... type of device may include aspiration cannula, vacuum source, and vacuum controller. (b)...

  15. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vacuum abortion system. 884.5070 Section 884.5070... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to... type of device may include aspiration cannula, vacuum source, and vacuum controller. (b)...

  16. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vacuum abortion system. 884.5070 Section 884.5070... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to... type of device may include aspiration cannula, vacuum source, and vacuum controller. (b)...

  17. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vacuum abortion system. 884.5070 Section 884.5070... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to... type of device may include aspiration cannula, vacuum source, and vacuum controller. (b)...

  18. Vacuum system for the SAMURAI spectrometer

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  19. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, G.W.; Bushman, J.F.; Alger, T.W.

    1996-07-23

    A vacuum housing and pumping system is described for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof. 7 figs.

  20. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, Gerald W.; Bushman, John F.; Alger, Terry W.

    1996-01-01

    A vacuum housing and pumping system for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof.

  1. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    William S. McPhee

    2001-08-31

    The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites.

  2. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  3. Cryogenic Insulation System for Soft Vacuum

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.

    1999-01-01

    The development of a cryogenic insulation system for operation under soft vacuum is presented in this paper. Conventional insulation materials for cryogenic applications can be divided into three levels of thermal performance, in terms of apparent thermal conductivity [k-value in milliwatt per meter-kelvin (mW/m-K)]. System k-values below 0.1 can be achieved for multilayer insulation operating at a vacuum level below 1 x 10(exp -4) torr. For fiberglass or powder operating below 1 x 10(exp -3) torr, k-values of about 2 are obtained. For foam and other materials at ambient pressure, k-values around 30 are typical. New industry and aerospace applications require a versatile, robust, low-cost thermal insulation with performance in the intermediate range. The target for the new composite insulation system is a k-value below 4.8 mW/m-K (R-30) at a soft vacuum level (from 1 to 10 torr) and boundary temperatures of approximately 77 and 293 kelvin (K). Many combinations of radiation shields, spacers, and composite materials were tested from high vacuum to ambient pressure using cryostat boiloff methods. Significant improvement over conventional systems in the soft vacuum range was demonstrated. The new layered composite insulation system was also shown to provide key benefits for high vacuum applications as well.

  4. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  5. 242-A evaporator vacuum condenser system

    SciTech Connect

    Smith, V.A.

    1994-09-28

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

  6. APT/LEDA RFQ vacuum pumping system

    SciTech Connect

    Shen, S., LLNL

    1997-07-21

    This paper describes the design and fabrication of a vacuum pumping system for the ATP/LEDA (Low Energy Demonstration Accelerator) RFQ (Radio Frequency Quadrupole) linac. Resulted from the lost proton beam, gas streaming from the LEBT (Low Energy Beam Transport) and out-gassing from the surfaces of the RFQ cavity and vacuum plumbing, the total gas load will be on the order of 7.2 x 10{sup -4} Torr-liters/sec, consisting mainly of hydrogen. The system is designed to pump on a continual basis with redundancy to ensure that the minimal operating vacuum level of 1 x 10{sup -6} Torr is maintained even under abnormal conditions. Details of the design, performance analysis and the preliminary test results of the cryogenic pumps are presented.

  7. Design of the EBIS vacuum system

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.

    2011-03-28

    At Brookhaven National Laboratory the Electron Beam Ion Source (EBIS) is presently being commissioned. The EBIS will be a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC). The new preinjector has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium. The background pressure in the ionization region of the EBIS required to be low enough that it does not produce a significant number of ions from background gas. The pressure in the regions of the electron gun and electron collector can be higher than in the ionization region provided there is efficient vacuum separation between the sections. For injection the ions must be accelerated to 100KV by pulsing the EBIS platform. All associated equipment including the vacuum equipment on the platform is at a 100KV potential. The vacuum system design and the vacuum controls for the EBIS platform and transport system will be presented as well as the interface with the Booster Ring which has a pressure 10-11 Torr.

  8. APS storage ring vacuum system performance

    SciTech Connect

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-06-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented.

  9. Vacuum-cleaning System for Isolation Chambers

    PubMed Central

    Yale, Charles E.

    1969-01-01

    To encourage the utilization of the isolation chamber as a research tool, the cost of its use should be lowered. Methods and devices must be developed which make more efficient use of the space within the isolator and allow the operator to work more effectively in this confined area. A simple vacuum-cleaning system is described; it consists of a nozzle and flexible hose which connect through the isolator wall to an externally placed waste tank, attached by way of its outlet filter to a source of vacuum. The cylindrical waste tank [48 inches (1.219 m) high and 36 inches (0.914 m) in diameter] was sterilized in a large autoclave. During a 9-month test period, the system was used to remove soiled corncob bedding from a large isolator containing 90 adult monocontaminated rats. During this period, the microbial flora of the isolator was unchanged, and the time required to clean the cages was reduced by 50%. This vacuum-cleaning system is a safe, convenient, and economical means of increasing the efficiency of an isolation chamber. Images PMID:5775913

  10. Very-Low-Cost, Rugged Vacuum System

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert; Sorensen, Paul; Passow, Christian; Bilski, Steve

    2013-01-01

    NASA, DoD, DHS, and commercial industry have a need for miniaturized, rugged, low-cost vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other miniature analytical instruments. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was created based on a very small, rugged, and inexpensive- to-manufacture molecular drag pump (MDP). The MDP is enabled by the development of a miniature, veryhigh- speed, rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. Such a pump represents an order-of-magnitude reduction in mass, volume, and cost over current, commercially available, state-ofthe- art vacuum pumps. The vacuum system consists of the MDP coupled to a ruggedized rough pump (for terrestrial applications or for planets with substantial atmospheres). The rotor in the MDP consists of a simple smooth cylinder of aluminum spinning at approximately 200,000 RPM inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the motor. The compressed gas then flows down channels in the motor housing to the exhaust port of the pump. The exhaust port of the pump is connected to a diaphragm or scroll pump. This pump delivers very high performance in a very small envelope. The design was simplified so that a smaller compression ratio, easier manufacturing process, and enhanced ruggedness can be achieved at the lowest possible cost. The machining of the rotor and stators is very simple compared to that necessary to fabricate TMP

  11. Review of Current Nuclear Vacuum System Technologies

    SciTech Connect

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  12. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  13. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    PubMed

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed. PMID:26980311

  14. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    PubMed

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  15. TCS Overview and Vacuum System Upgrade

    NASA Astrophysics Data System (ADS)

    Miller, K. E.; Guo, H. Y.; Hoffman, A. L.; Milroy, R. D.; Pietrzyk, Z. A.; Slough, J. T.

    2003-10-01

    The RMF has been shown to be effective at driving toroidal currents in FRCs. Equilibrium is achieved when the torque applied to the electrons by the RMF balances the torque on the electrons due to plasma resistivity. This torque balance sets a relation between the density, the RMF, and the plasma resistivity. It does not impose a hard constraint on either the external field, or the temperature, which are related to the density through radial pressure balance. Since the temperature appears to have been limited in past experiments by impurity ingestion and subsequent radiation after the initial formation phase, the confining external field was also limited. An upgrade of the TCS vacuum chamber is presently underway to address the impurity issue and thus allow higher temperature and field operation. All o-rings are being removed and heating blankets will be installed to bake the system. Tantalum clad internal flux rings will be installed to shield the quartz vacuum wall from the plasma. Cleaning and wall conditioning will be performed with a glow discharge and boronization and/or titanium gettering.

  16. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description (SYS 47-4)

    SciTech Connect

    IRWIN, J.J.

    2000-06-13

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid P&ID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water P&ID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO.

  17. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  18. LHC World Largest Vacuum Systems Being Commissioned at CERN

    NASA Astrophysics Data System (ADS)

    Jimenez, Jose Miguel

    The CERN Large Hadron Collider (LHC) with its 26.7 km of circumference and three different vacuum systems for the beams and insulation vacuum for magnets and liquid helium transfer lines, will have the world's largest vacuum system operating over a wide range of pressures and employing an impressive array of vacuum technologies. This system is composed by 54 km of UHV vacuum for the circulating beams and 50 km of insulation vacuum. Over the 54 km of UHV beam vacuum, 48 km of this are at cryogenic temperature (1.9 K). The remaining 6 km of beam vacuum containing the insertions for “cleaning” the proton beams, radiofrequency cavities for accelerating the protons as well as beam-monitoring equipment is at ambient temperature and uses non-evaporable getter (NEG) coatings. The noble gases and methane is pumped out by 780 ion pumps. Pressure readings are provided by 170 Bayard-Alpert gauges and 1084 gauges (Pirani and cold cathode Penning). The cryogenic insulation vacuums while technically less demanding, impress by their size (50 km) and volume (15000 m3). Once roughed using mechanical pumps, the vacuum relies on the cryopumping which allows reaching pressure in the 10-4 Pa range.

  19. Vacuum Pump System Optimization Saves Energy at a Dairy Farm

    SciTech Connect

    2001-08-01

    In 1998, S&S Dairy optimized the vacuum pumping system at their dairy farm in Modesto, California. In an effort to reduce energy costs, S&S Dairy evaluated their vacuum pumping system to determine if efficiency gains and energy savings were possible.

  20. Vacuum pumps and systems: A review of current practice

    NASA Technical Reports Server (NTRS)

    Giles, Stuart

    1986-01-01

    A review of the fundamental characteristics of the many types of vacuum pumps and vacuum pumping systems is given. The optimum pumping range, relative cost, performance limitations, maintenance problems, system operating costs and similar subjects are discussed. Experiences from the thin film deposition, chemical processing, material handling, food processing and other industries, as well as space simulation are used to support conclusions and recommendations.

  1. Analysis of RFQ vacuum system for HINS tests at MDB

    SciTech Connect

    Piekarz, Henryk; /Fermilab

    2009-07-01

    The arrangement of RFQ vacuum system is briefly described. The projections of the vacuum level using standard out-gassing rates for the RFQ major components are compared with measurements. The permeation of water through the Viton O-rings of the LCW manifold inside the RFQ vacuum vessel is analyzed and compared with RGA data. A model where the out-gassing water from the vanes inner surfaces affects seriously RFQ operation is devised and compared with RFQ performance. The rate of a hydrogen gas spill from the LEBT into the RFQ vacuum space is also projected. Suggestions to correct and improve RFQ operation are presented.

  2. 14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM VAPORS TO DEPOSIT TITANIUM COATING ONTO URANIUM PARTS UNDER A VACUUM. (1/11/83) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  3. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner

  4. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  5. Vacuum system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1994-03-01

    This report presents a review of vacuum system operating experiences from particle accelerator, fusion experiment, space simulation chamber, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of vacuum system component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with vacuum systems are discussed, including personnel safety, foreign material intrusion, and factors relevant to vacuum systems being the primary confinement boundary for tritium and activated dusts. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  6. Vacuum system of the cyclotrons in VECC, Kolkata

    SciTech Connect

    Roy, Anindya; Bhole, R.B.; Akhtar, J.; Yadav, R.C.; Pal, Sarbajit; Sarkar, D.; Bhandari, R.K. E-mail: rbb@vecc.gov.in E-mail: yadav@vecc.gov.in E-mail: dsarkar@vecc.gov.in

    2011-07-01

    The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system also has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)

  7. Large high-vacuum systems for CERN accelerators

    NASA Astrophysics Data System (ADS)

    Strubin, P.

    2008-05-01

    CERN operated over the more than 50 years of its existence particle accelerators and storage rings ranging from a few tens of metre to 27 km, the size of its latest project, the Large Hadron Collider (LHC) which is under construction and will be started in 2008. The challenges began with the Intersection Storage Rings (ISR) in the seventies. With a beam pipe length of 2 × 1 km, this accelerator required innovative solutions like bake-out and glow discharge to achieve the required static vacuum level, fight against beam-induced pressure increases and cancel beam neutralisation by trapped electrons. The vacuum system of the Large Electron Positron (LEP) storage ring (in operation between 1989 and 2001) of a total length of 27 km had to cope with very high levels of synchrotron power. The beam vacuum system of LHC (2 × 27 km) integrates some parts at 1.9 K and others at room temperature and will also have to cope with dynamic effects. In addition to the beam vacuum system, LHC requires insulation vacuum for the superconducting magnets and the helium distribution line. Whereas the required pressure is not very low, the leak detection and localisation is significantly more demanding for the insulation vacuum than for the beam vacuum because of the large volumes and the thermal insulation. When the size of an accelerator grows, the difficulties are not only to get a clean and leak tight vacuum system, but also to be able to measure reliably pressure or gas composition over long distances. Furthermore, in the case of LHC the integration of the beam vacuum system was particularly difficult because of the complexity induced by a superconducting magnet scheme and the reduced space available for the beam pipes. Planning and logistics aspects during installation, including the usage of mobile pumping and diagnostic means, were much more difficult to manage in LHC than in previous projects.

  8. Improved molecular sorbent trap for high-vacuum systems

    NASA Technical Reports Server (NTRS)

    Knechtel, E. D.; Pitts, W. C.

    1971-01-01

    Closed cycle refrigeration loop in which trays holding molecular sorbent are made to serve as cooling baffles improves the performance of high vacuum systems. High performance is obtained with almost no decrease in pumping speed.

  9. Design and construction of vacuum systems for large colliders using superconducting magnets

    SciTech Connect

    Halama, H.J.

    1983-01-01

    Vacuum system requirements for proton accelerators and colliders with superconducting megnets are discussed. The vacuum systems for the colliding beam accelerator and the Tevatron are described. (WHK)

  10. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  11. PEP-II vacuum system pressure profile modeling using EXCEL

    SciTech Connect

    Nordby, M.; Perkins, C.

    1994-06-01

    A generic, adaptable Microsoft EXCEL program to simulate molecular flow in beam line vacuum systems is introduced. Modeling using finite-element approximation of the governing differential equation is discussed, as well as error estimation and program capabilities. The ease of use and flexibility of the spreadsheet-based program is demonstrated. PEP-II vacuum system models are reviewed and compared with analytical models.

  12. Investigation of cryosorption vacuum system and operation process for COIL

    NASA Astrophysics Data System (ADS)

    Xia, Liang-zhi; Wang, Jin-qu; Sang, Feng-ting; Zhao, Su-qin; Jin, Yu-qi; Fang, Ben-jie

    2007-05-01

    Cryosorption vacuum system for COIL is researched and developed. Adsorption chiller has been proposed and developed by improving the heat exchanger chiller. Compared with the heat exchanger chiller, the volume and LN II consumption of the new chiller were favourably reduced. In the present work, the new adsorption operation process, cryogenic pressure swing adsorption is adopted. Compared with thermal swing adsorption, regeneration time is shortened and LN II consumption is saved at least 80% in the new operation process. The cryosorption vacuum system was integrated to COIL and tested successfully. The weight of sorbent in adsorption bed is 22Kg, the total gas flowrate is about 0.5mol/s, the COIL's power maintains over 2kW, the total COIL's working time accounts to 100 seconds. It is concluded that the cryosorption vacuum system has the same pressure recovery capability as the large vacuum tank.

  13. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  14. Testing of vacuum system for APT/LEDA RFQ

    SciTech Connect

    Behne, D; Berg, J; DaCosta, M; Harper, M; Kishiyama, K; Schrage, D; Shen, S; Spinos, F; Valdiviez, R

    1999-03-25

    The authors have designed, built and operated two vacuum systems for the RFQ (Radio Frequency Quadrupole) in the APT/LEDA (Accelerator Production of Tritium/Low Energy Demonstration Accelerator)linac: a cryopump system for the RFQ cavity and a non-evaporable getter (NEG) pump system for the RF window system. They were designed to provide very high hydrogen pump speed (> 2 x 10{sup 4} L/s) and sorption capacity. Both systems underwent performance tests in mock assembly before the installation. This paper presents the mock test results of both vacuum systems. It also discusses the preliminary test results from the commissioning of the APT/LEDA RFQ.

  15. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    SciTech Connect

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  16. Thermal Vacuum Control Systems Options for Test Facilities

    NASA Technical Reports Server (NTRS)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  17. Cold Vacuum Drying facility HVAC system design description

    SciTech Connect

    SINGH, G.

    2000-09-22

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD.

  18. NPBIE cryogenic vacuum pumping system integrated with fuel cell system

    NASA Astrophysics Data System (ADS)

    Jalilevand, A.; Calhoun, L. D., II; Poteat, T. J.

    1988-01-01

    This paper describes the cryogenic vacuum pumping system to be used for the Neutral Particle Beam (NPB) accelerator subsystem, which will use hydrogen, rather than He, and which will be integrated with the fuel cell reactant supply system. The pumping system for the NPB Integrated Experiment is composed of two hydrogen storage tanks, a transfer manifold, eight cryopumps, two hydrogen compressors, a hydrogen heat exchanger, and a reservoir. Component analysis and system analysis were performed on a model of the cryopumping operation for the 168-hr mission. As a result, the cryopump average demand was reduced by thorough insulation of the cryosystem, a design of an efficient cryopump heat exchanger, and the expansion of hydrogen into the two-phase region. The average hydrogen consumption by the fuel cells was also reduced, using waste heat to warm fuel cell hydrogen.

  19. Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

    SciTech Connect

    Casey,R.; Haas, E.; Hseuh, H-C.; Kane, S.; Lessard, E.; Sharma, S.; Collins, J.; Toter, W. F.; Olis, D. R.; Pushka, D. R.; Ladd, P.; Jobe, R. K.

    2008-09-09

    Vacuum vessels, including evacuated chambers and insulated jacketed dewars, can pose a potential hazard to equipment and personnel from collapse, rupture due to back-fill pressurization, or implosion due to vacuum window failure. It is therefore important to design and operate vacuum systems in accordance with applicable and sound engineering principles. 10 CFR 851 defines requirements for pressure systems that also apply to vacuum vessels subject to back-fill pressurization. Such vacuum vessels are potentially subject to the requirements of the American Society of Mechanical Engineers (ASME) Pressure Vessel Code Section VIII (hereafter referred to as the 'Code'). However, the scope of the Code excludes vessels with internal or external operating pressure that do not exceed 15 pounds per square inch gauge (psig). Therefore, the requirements of the Code do not apply to vacuum systems provided that adequate pressure relief assures that the maximum internal pressure within the vacuum vessel is limited to less than 15 psig from all credible pressure sources, including failure scenarios. Vacuum vessels that cannot be protected from pressurization exceeding 15 psig are subject to the requirements of the Code. 10 CFR 851, Appendix A, Part 4, Pressure Safety, Section C addresses vacuum system requirements for such cases as follows: (c) When national consensus codes are not applicable (because of pressure range, vessel geometry, use of special materials, etc.), contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local code. Measures must include the following: (1) Design drawings, sketches, and calculations must be reviewed and approved by a qualified independent design professional (i.e., professional engineer). Documented organizational peer review is acceptable. (2) Qualified personnel must be used to perform examinations and

  20. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum...

  1. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum...

  2. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum...

  3. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum...

  4. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum...

  5. Thermal vacuum integrated system test at B-2

    NASA Astrophysics Data System (ADS)

    Kudlac, M. T.; Weaver, H. F.; Cmar, M. D.

    2012-04-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3 × 10-4 Pa (1 × 10-6 torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (139°R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/m2 at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber's cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  6. Thermal Vacuum Integrated System Test at B-2

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  7. Cold Vacuum Drying (CVD) Electrical System Design Description

    SciTech Connect

    BRISBIN, S.A.

    1999-06-17

    This document provides a technical explanation of the design and operation of the electrical system for the Cold Vacuum Drying Facility. This document identifies the requirements, and the basis for the requirements and details on how the requirements have been implemented in the design and construction of the facility. This document also provides general guidance for the surveillance, testing, and maintenance of this system.

  8. A Simple Coaxial Ceramic Based Vacuum Window for Vacuum Transmission Line of ICRF System

    NASA Astrophysics Data System (ADS)

    Rathi, D.; Mishra, K.; Goerge, S.; Varia, A.; Kulkarni, S. V.

    2011-12-01

    We present here a simple coaxial RF vacuum window designed for 200 kW power without any design complicacy and is simple to fabricate. It is achieved by sandwiching a UHV grade ceramic disk in between inner and outer straight conductors. The window has been designed and fabricated for use in the VTL section of ICRF system on ADITYA tokamak. The window has been modeled with CST Microwave Studio and transient analysis has been done for different scattering parameters. The window is found to be an excellent leak tight with leak rate better than 1.0×10-9 mbarl/s. Pressure test on window up to a 3 bar atmospheric pressure shows that it can also be used as a gas barrier in transmission lines. Low power VNA test shows a pleasing VSWR and insertion loss less than 1.07 and 0.05 dB respectively in the frequency range of 20-100MHz. Special care has been taken to minimize sharp edges to avoid pre-breakdown phenomena. Partial discharge tests at 50Hz shows an excellent result up to 24 kV peak and the observed discharge magnitude was less than 20 pC. The window shows the ultra high vacuum compatibility and it tested for high RF power at 29 MHz up to 80kW of power. This paper presents the design detail, tests conducted and the results obtained for the vacuum window.

  9. Systems and methods for analyzing liquids under vacuum

    DOEpatents

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  10. Experimental system for drilling simulated lunar rock in ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Roepke, W. W.

    1975-01-01

    An experimental apparatus designed for studying drillability of hard volcanic rock in a simulated lunar vacuum of 5 x 10 to the minus 10th power torr is described. The engineering techniques used to provide suitable drilling torque inside the ultrahigh vacuum chamber while excluding all hydrocarbon are detailed. Totally unlubricated bearings and gears were used to better approximate the true lunar surface conditions within the ultrahigh vacuum system. The drilling system has a starting torque of 30 in-lb with an unloaded running torque of 4 in-lb. Nominal torque increase during drilling is 4.5 in-lb or a total drilling torque of 8.5 in-lb with a 100-lb load on the drill bit at 210 rpm. The research shows conclusively that it is possible to design operational equipment for moderate loads operating under UHV conditions without the use of sealed bearings or any need of lubricants whatsoever.

  11. The water outgassing rate of internal surfaces of vacuum systems

    NASA Astrophysics Data System (ADS)

    Rozanov, L. N.

    2016-07-01

    On the basis of experimental adsorption isotherm the ratio between the real and geometrical surfaces was calculated and the amount of gas required to form a monolayer was defined. Simultaneous usage of Henry and Frendlih equations allowed to determine the dependence of the heat of adsorption on the logarithm of the absorbed gas amount A mathematical model of pumping of the vacuum systems with adsorbing walls is presented. This model uses the parameters of the vacuum system and the dependence of the adsorption heat on the amount of the adsorbed gas .The conditions of the existence of regular pumping regime are discussed. The structure database vacuum adsorption properties of materials was proposed. The experimental data on the determination of the adsorption outgassing rate were released.

  12. Glow discharge techniques for conditioning high vacuum systems

    SciTech Connect

    Dylla, H.F.

    1988-03-01

    A review is given of glow discharge techniques which are useful for conditioning vacuum vessels for high vacuum applications. Substantial development of glow discharge techniques has been done for the purpose of in-situ conditioning of the large ultrahigh vacuum systems for particle accelerators and magnetic fusion devices. In these applications the glow discharge treatments remove impurities from vessel surfaces in order to minimize particle-induced desorption coefficients. Cleaning mechanisms involve a mixture of sputtering and ion- (or neutral) induced desorption effects depending on the gas mixture (ArO/sub 2/ vs. H/sub 2/) and excitation method (DC, RF, and ECR). The author will review the methodology of glow discharge conditioning, diagnostic measurements provided by residual gas and surface composition analysis, and applications to vessel conditioning and materials processing. 76 refs., 16 figs.

  13. Terra Vac In Situ Vacuum Extraction System: Applications Analysis Report

    EPA Science Inventory

    This document is an evaluation of the Terra Vac in situ vacuum extraction system and its applicability as a treatment method for waste site cleanup. This report analyzes the results from the Superfund Innovative Technology Evaluation (SITE) Program’s 56-day demonstration at t...

  14. Analysis of high vacuum systems using SINDA'85

    NASA Technical Reports Server (NTRS)

    Spivey, R. A.; Clanton, S. E.; Moore, J. D.

    1993-01-01

    The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.

  15. New baking system for the RFX vacuum vessel

    SciTech Connect

    Collarin, P.; Luchetta, A.; Sonato, P.; Toigo, V.; Zaccaria, P.; Zollino, G.

    1996-12-31

    A heating system based on eddy currents has been developed for the vacuum vessel of the RFX Reversed Field Pinch device. After a testing phase, carried out at low power, the final power supply system has been designed and installed. It has been used during last year to bake out the vessel and the graphite first wall up to 320{degree}C. Recently the heating system has been completed with a control system that allows for baking sessions with an automatic control of the vacuum vessel temperature and for pulse sessions with a heated first wall. After the description of the preliminary analyses and tests, and of the main characteristics of the power supply and control systems, the experimental results of the baking sessions performed during last year are presented. 6 refs., 7 figs.

  16. Worker hazards associated with the use of grain vacuum systems.

    PubMed

    Field, W E; Heber, D J; Riedel, S M; Wettschurack, S W; Roberts, M J; Grafft, L J

    2014-07-01

    Over the past two decades, there has been more widespread use of pneumatic handling of grain at commercial grain storage facilities and on farms as these operations have increased grain storage capacity and handle larger volumes of grain and feed In some cases, manufacturers have suggested that the use of these systems is a safer alternative to removing residual grain manually in conjunction with the use of sweep augers. The use of grain vacuum systems has also been increasingly documented as a strategy in responding to grain storage fires and human entrapment and engulfment in flowing grain. With greater utilization of these machines have come reports of entrapments and engulfments. This article summarizes 27 such documented incidents, including 21 fatalities, that resulted from the use of portable grain vacuum systems. It includes specific recommendations for engineering, educational, and regulatory strategies to reduce the risks associated with the use of these systems.

  17. Instrumentation and control of the AGS Booster vacuum system

    SciTech Connect

    Gabusi, J.; Geller, J.; Hseuh, H.C.; Rosas, P.; Sandburg, J.; Shen, B.; Stattel, P.; Zapasek, R.

    1991-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. A pressure of low 10{sup {minus}11} Torr is required for the acceleration of the partially stripped, low {Beta}, very heavy ions. This paper describes the power supplies and controls for this ultra-high vacuum system with the emphasis on the operation of the ion gauge system over long cable length and on equipment interlock 4 refs., 2 figs., 1 tab.

  18. The vacuum system for technological unit development and design

    NASA Astrophysics Data System (ADS)

    Zhukeshov, A. M.; Gabdullina, A. T.; Amrenova, A. U.; Giniyatova, Sh G.; Kaibar, A.; Sundetov, A.; Fermakhan, K.

    2015-11-01

    The paper shows results of development of plasma technological unit on the basis of accelerator of vacuum arc and automated system. During the previous years, the authors investigated the operation of pulsed plasma accelerator and developed unique technologies for hardening of materials. Principles of plasma formation in pulsed plasma accelerator were put into basis of the developed unit. Operation of the pulsed arc accelerator was investigated at different parameters of the charge. The developed vacuum system is designed for production of hi-tech plasma units in high technologies in fields of nanomaterials, mechanical and power engineering and production with high added value. Unlike integrated solutions, the system is a module one to allow its low cost, high reliability and simple maintenance. The problems of use of robots are discussed to modernize the technological process.

  19. THE SNS VACUUM CONTROL SYSTEM UPGRADE FOR THE SUPERCONDUCTING LINAC

    SciTech Connect

    Williams, Derrick C

    2009-01-01

    The superconducting linac of the Spallation Neutron Source (SNS) has 23 cryomodules whose vacuum system is monitored and controlled by custom built hardware. The original control hardware was provided by Thomas Jefferson National Accelerator Facility (JLab) and contained a variety of custom boards utilizing integrated circuits to perform logic. The need for control logic changes, a desire to increase maintainability, and a desire to increase flexibility to adapt for the future has led to a Programmable Logic Controller (PLC) based upgrade. This paper provides an overview of the commercial off-the-shelf (COTS) hardware being used in the superconducting vacuum control system. Details of the design and challenges to convert a control system during small windows of maintenance periods without disrupting beam operation will be covered in this paper.

  20. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    NASA Astrophysics Data System (ADS)

    Arenz, M.; Babutzka, M.; Bahr, M.; Barrett, J. P.; Bauer, S.; Beck, M.; Beglarian, A.; Behrens, J.; Bergmann, T.; Besserer, U.; Blümer, J.; Bodine, L. I.; Bokeloh, K.; Bonn, J.; Bornschein, B.; Bornschein, L.; Büsch, S.; Burritt, T. H.; Chilingaryan, S.; Corona, T. J.; De Viveiros, L.; Doe, P. J.; Dragoun, O.; Drexlin, G.; Dyba, S.; Ebenhöch, S.; Eitel, K.; Ellinger, E.; Enomoto, S.; Erhard, M.; Eversheim, D.; Fedkevych, M.; Felden, A.; Fischer, S.; Formaggio, J. A.; Fränkle, F.; Furse, D.; Ghilea, M.; Gil, W.; Glück, F.; Gonzalez Ureña, A.; Görhardt, S.; Groh, S.; Grohmann, S.; Grössle, R.; Gumbsheimer, R.; Hackenjos, M.; Hannen, V.; Harms, F.; Haußmann, N.; Heizmann, F.; Helbing, K.; Herz, W.; Hickford, S.; Hilk, D.; Hillen, B.; Höhn, T.; Holzapfel, B.; Hötzel, M.; Howe, M. A.; Huber, A.; Jansen, A.; Kernert, N.; Kippenbrock, L.; Kleesiek, M.; Klein, M.; Kopmann, A.; Kosmider, A.; Kovalík, A.; Krasch, B.; Kraus, M.; Krause, H.; Krause, M.; Kuckert, L.; Kuffner, B.; La Cascio, L.; Lebeda, O.; Leiber, B.; Letnev, J.; Lobashev, V. M.; Lokhov, A.; Malcherek, E.; Mark, M.; Martin, E. L.; Mertens, S.; Mirz, S.; Monreal, B.; Müller, K.; Neuberger, M.; Neumann, H.; Niemes, S.; Noe, M.; Oblath, N. S.; Off, A.; Ortjohann, H.-W.; Osipowicz, A.; Otten, E.; Parno, D. S.; Plischke, P.; Poon, A. W. P.; Prall, M.; Priester, F.; Ranitzsch, P. C.-O.; Reich, J.; Rest, O.; Robertson, R. G. H.; Röllig, M.; Rosendahl, S.; Rupp, S.; Ryšavý, M.; Schlösser, K.; Schlösser, M.; Schönung, K.; Schrank, M.; Schwarz, J.; Seiler, W.; Seitz-Moskaliuk, H.; Sentkerestiová, J.; Skasyrskaya, A.; Slezák, M.; Špalek, A.; Steidl, M.; Steinbrink, N.; Sturm, M.; Suesser, M.; Telle, H. H.; Thümmler, T.; Titov, N.; Tkachev, I.; Trost, N.; Unru, A.; Valerius, K.; Vénos, D.; Vianden, R.; Vöcking, S.; Wall, B. L.; Wandkowsky, N.; Weber, M.; Weinheimer, C.; Weiss, C.; Welte, S.; Wendel, J.; Wierman, K. L.; Wilkerson, J. F.; Winzen, D.; Wolf, J.; Wüstling, S.; Zacher, M.; Zadoroghny, S.; Zbořil, M.

    2016-04-01

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10-11 mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.

  1. TMX-Upgrade vacuum-system design and analysis

    SciTech Connect

    Simonen, T.C.; Chargin, A.K.; Drake, R.P.; Nexsen, W.E.; Pickles, W.L.; Poulsen, P.; Stack, T.P.; Wong, R.L.

    1981-10-01

    This paper describes the design and analysis of the TMX Upgrade Vacuum System. TMX Upgrade is a modification of the TMX tandem mirror device. It will employ thermal barriers to further improve plasma confinement. Thermal barriers are produced by microwave heating and neutral-beam pumping. They increase the feasibility of tandem-mirror reactors by reducing both the required magnetic field strengths and the neutral-beam injection voltages.

  2. Degassing a vacuum system with in-situ UV radiation

    SciTech Connect

    Koebley, Sean R.; Outlaw, Ronald A.; Dellwo, Randy R.

    2012-11-15

    Photon-stimulated desorption (PSD) from a high-powered ultraviolet source was investigated as a technique to degas a vacuum system. A stainless steel vacuum system was pumped down from atmosphere with different time doses of 185 nm light, and the resulting outgassing rates were compared to that of a control pumpdown without UV assistance. PSD was found to provide a factor of 2 advantage in pumpdown pressure after only 30 min of UV exposure, with no additional advantage observed for longer irradiation times. Specifically, an outgassing rate of 3 Multiplication-Sign 10{sup -10} Torr L s{sup -1} cm{sup -2} was reached 3 h sooner in pumpdowns with UV assistance compared to those without UV, while a rate of 1.2 Multiplication-Sign 10{sup -10} Torr L s{sup -1} cm{sup -2} was reached 16 h sooner in UV runs. The authors calculated that about 22 monolayers of water were desorbed after 30 min of UV exposure. The results indicate that PSD by a 40 W 185 nm UV source can serve as a nonthermal technique to significantly speed the pumpdown of a vacuum system from atmosphere after only 30 min.

  3. Selection Criterion of Gauges for Vacuum Measurements of Systems with Diverse Ranges

    NASA Astrophysics Data System (ADS)

    Akram, H. M.; Fasih, A.

    Basically a vacuum gauge is a key that opens the secrets of a closed vacuum system, indicates what is happening inside the sealed makeup and has the facility to control it through evacuation system. But for the broad vacuum range, all the goings-on are not made known or commanded by a particular vacuum gauge. Consequently, various gauges of special types are used to accurately measure the vacuum of diverse ranges, together with the requisite services. Therefore, the selection of proper gauge in favor of exact vacuum metrology in conjunction with extra actions, for a particular vacuum work, is of primary importance. There are many factors that affect the appropriate gauge selection. In this paper, selection criterion for suitable vacuum gauge, supportive for accurate vacuum measurements and other critical functions of the required range, has briefly been discussed that can make the task of gauge selection simpler and exact.

  4. Low-Cost, Rugged High-Vacuum System

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert

    2012-01-01

    A need exists for miniaturized, rugged, low-cost high-vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other analytical instruments such as scanning electron microscopes. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was developed based on a very small, rugged, and inexpensive-to-manufacture molecular drag pump (MDP). The MDP is enabled by a miniature, very-high-speed (200,000 rpm), rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. The key advantages of the pump are reduced cost and improved ruggedness compared to other mechanical hig-hvacuum pumps. The machining of the rotor and stators is very simple compared to that necessary to fabricate rotor and stator blades for other pump designs. Also, the symmetry of the rotor is such that dynamic balancing of the rotor will likely not be necessary. Finally, the number of parts in the unit is cut by nearly a factor of three over competing designs. The new pump forms the heart of a complete vacuum system optimized to support analytical instruments in terrestrial applications and on spacecraft and planetary landers. The MDP achieves high vacuum coupled to a ruggedized diaphragm rough pump. Instead of the relatively complicated rotor and stator blades used in turbomolecular pumps, the rotor in the MDP consists of a simple, smooth cylinder of aluminum. This will turn at approximately 200,000 rpm inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the

  5. David Florida Laboratory Thermal Vacuum Data Processing System

    NASA Technical Reports Server (NTRS)

    Choueiry, Elie

    1994-01-01

    During 1991, the Space Simulation Facility conducted a survey to assess the requirements and analyze the merits for purchasing a new thermal vacuum data processing system for its facilities. A new, integrated, cost effective PC-based system was purchased which uses commercial off-the-shelf software for operation and control. This system can be easily reconfigured and allows its users to access a local area network. In addition, it provides superior performance compared to that of the former system which used an outdated mini-computer and peripheral hardware. This paper provides essential background on the old data processing system's features, capabilities, and the performance criteria that drove the genesis of its successor. This paper concludes with a detailed discussion of the thermal vacuum data processing system's components, features, and its important role in supporting our space-simulation environment and our capabilities for spacecraft testing. The new system was tested during the ANIK E spacecraft test, and was fully operational in November 1991.

  6. Vacuum system for the LBL advanced light source (ALS)

    SciTech Connect

    Kennedy, K.

    1988-05-01

    A 1.5 to 1.9 GeV synchrotron light source is being built at LBL. The vacuum system is designed to permit all synchrotron photons on the median plane to escape the electron channel and go into an antechamber through a 10 mm high slot. This slot offers effective RF isolation between the electron duct and the antechamber. All unused synchrotron photons within a few mrad of the median plane will be stopped by 96 nearly horizontal absorbers located in the antechamber. The gas, generated by the photons hitting the absorbers, will be directed down to reactive titanium surfaces. Twelve 10 meter long vessels constitute the vacuum chambers for all the lattice magnets. Each chamber will be machined from two thick plates of 5083-H321 aluminum and welded at the perimeter. The nominal wall thickness of the vacuum chamber is 40 mm, which makes it possible to machine a flange into the chamber without the use of welding. 5 refs., 5 figs.

  7. Technology Demonstration Summary: Terra Vac In Situ Vacuum Extraction System, Groveland, Massachusetts

    EPA Science Inventory

    Terra Vac Inc's vacuum extraction system was demonstrated at the Valley Manufactured Products Company, Inc., site in Groveland, Massachusetts. The property is part of the Groveland Wells Superfund site and is contaminated mainly by trichloroethylene (TCE). Vacuum extraction...

  8. Non-reclosing pressure relief device for vacuum systems

    DOEpatents

    Swansiger, William A.

    1994-01-01

    A non-reclosing overpressure protection device such as a rupture disc provides a non-reclosing opening upon forcible contact with a knife blade. A bellows, having an inlet capable of being sealably connected to a source of pressure (the vacuum system) and an outlet containing the rupture disc, transmits the pressure in the system to the disc. The bellows maintains the disc away from the knife when the pressure is below an overpressure amount, and carries the disc to a position when the pressure is above an overpressure amount where the disc is ruptured by the knife.

  9. Non-reclosing pressure relief device for vacuum systems

    DOEpatents

    Swansiger, W.A.

    1994-02-08

    A non-reclosing overpressure protection device such as a rupture disc provides a non-reclosing opening upon forcible contact with a knife blade. A bellows, having an inlet capable of being sealably connected to a source of pressure (the vacuum system) and an outlet containing the rupture disc, transmits the pressure in the system to the disc. The bellows maintains the disc away from the knife when the pressure is below an overpressure amount, and carries the disc to a position when the pressure is above an overpressure amount where the disc is ruptured by the knife. 6 figures.

  10. Cryogenic thermal storage system for discontinuous industrial vacuum processes

    NASA Astrophysics Data System (ADS)

    Bruzzi, M.; Chesi, A.; Baldi, A.; Tarani, F.; Mori, R.; Scaringella, M.; Carnevale, E.

    2012-10-01

    Phase Change Materials are proposed for refrigerating systems in discontinuous industrial vacuum processes where temperatures as low as -140 ÷ -100°C are necessary within time-frames representing 10÷20% of total operating time. An application is proposed for cooling systems used in a Physical Vapour Deposition (PVD) apparatus. A prototype has been manufactured which couples a cryopump with a reservoir filled with MethylCycloPentane (MCP-C6H12) and a distribution line where nitrogen in the gaseous state is flowing. Preliminary tests show that temperatures of about -120°C are actually achieved within time windows compatible with PVD applications.

  11. Status of NSLS-II Storage Ring Vacuum Systems

    SciTech Connect

    Doom,L.; Hseuh,H.; Ferreira, M.; Longo, C.; Ravindranath, V.; Settepani, P.; Sharma, S.; Wilson, K.

    2009-05-04

    National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3-GeV, high-flux and high- brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system will have extruded aluminium chambers with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers will be used to intercept the un-used bending magnet radiation. In-situ bakeout will be implemented to achieve fast conditioning during initial commissioning and after interventions.

  12. Observing quantum vacuum lensing in a neutron star binary system.

    PubMed

    Dupays, Arnaud; Robilliard, Cécile; Rizzo, Carlo; Bignami, Giovanni F

    2005-04-29

    In this Letter we study the propagation of light in the neighborhood of magnetized neutron stars. Because of the optical properties of quantum vacuum in the presence of a magnetic field, the light emitted by background astronomical objects is deviated, giving rise to a phenomenon of the same kind as the gravitational one. We give a quantitative estimation of this effect, and we discuss the possibility of its observation. We show that this effect could be detected by monitoring the evolution of the recently discovered double neutron star system J0737-3039.

  13. Observing quantum vacuum lensing in a neutron star binary system.

    PubMed

    Dupays, Arnaud; Robilliard, Cécile; Rizzo, Carlo; Bignami, Giovanni F

    2005-04-29

    In this Letter we study the propagation of light in the neighborhood of magnetized neutron stars. Because of the optical properties of quantum vacuum in the presence of a magnetic field, the light emitted by background astronomical objects is deviated, giving rise to a phenomenon of the same kind as the gravitational one. We give a quantitative estimation of this effect, and we discuss the possibility of its observation. We show that this effect could be detected by monitoring the evolution of the recently discovered double neutron star system J0737-3039. PMID:15904205

  14. Quartz microbalance device for transfer into ultrahigh vacuum systems

    SciTech Connect

    Stavale, F.; Achete, C. A.; Niehus, H.

    2008-10-15

    An uncomplicated quartz microbalance device has been developed which is transferable into ultrahigh vacuum (UHV) systems. The device is extremely useful for flux calibration of different kinds of material evaporators. Mounted on a commercial specimen holder, the device allows fast quartz microbalance transfer into the UHV and subsequent positioning exactly to the sample location where subsequent thin film deposition experiments shall be carried out. After backtransfer into an UHV sample stage, the manipulator may be loaded in situ with the specimen suited for the experiment. The microbalance device capability is demonstrated for monolayer and submonolayer vanadium depositions with an achieved calibration sensitivity of less the 0.001 ML coverage.

  15. Vacuum mechatronic laser alignment system on the Nova laser

    SciTech Connect

    Holliday, M.; Wong, K.; Shelton, R.

    1991-11-01

    The experiments conducted on NOVA are done to investigate inertially confined laser fusion reactions. To this end, the ten beams of the laser are aligned to within 30mm. The target chamber employs a vacuum mechatronic based reticle/target positioning system to accomplish this. It is a five degree-of-freedom chamber resident system, known as the Alignment Aids Positioner or AAP. The AAP aids in beam and diagnostic alignment by accurately positioning a reticle at target chamber center to with 7mm. The AAP system increases target positioning and alignment flexibility and accuracy through the use of a computer controlled multi degree-of-freedom stage assembly. This device uses microstepping DC stepper motors with encoders to achieve closed loop control in a 10{sup {minus}6} torr vacuum. The AAP has two positioning regimes to move the alignment reticle and do beam alignment. One is course positioning in the Y-Z plane that moves a high resolution stage assembly to target chamber center. The other regime is high resolution movement in the X,Y,Z and q directions. 5 refs., 9 figs.

  16. Thermal Vacuum Facility for Testing Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  17. LLNL Tandem Mirror Experiment (TMX) upgrade vacuum system

    SciTech Connect

    Pickles, W.L.; Chargin, A.K.; Drake, R.P.

    1981-09-15

    TMX Upgrade is a large, tandem, magnetic-mirror fusion experiment with stringent requirements on base pressure (10/sup -8/ torr), low H reflux from the first walls, and peak gas pressure (5 x 10/sup -7/ torr) due to neutral beam gas during plasma operation. The 225 m/sup 3/ vacuum vessel is initially evacuated by turbopumps. Cryopumps provide a continuous sink for gases other than helium, deuterium, and hydrogen. The neutral beam system introduces up to 480 l/s of H or D. The hydrogen isotopes are pumped at very high speed by titanium sublimed onto two cylindrical radially separated stainless steel quilted liners with a total surface area of 540 m/sup 2/. These surfaces (when cooled to about 80/sup 0/K) provide a pumping speed of 6 x 10/sup 7/ l/s for hydrogen. The titanium getter system is programmable and is used for heating as well as gettering. The inner plasma liner can be operated at elevated temperatures to enhance migration of gases away from the surfaces close to the plasma. Glow discharge cleaning is part of the pumpdown procedure. The design features are discussed in conjunction with the operating procedures developed to manage the dynamic vacuum conditions.

  18. THERMAL DESIGN OF THE ITER VACUUM VESSEL COOLING SYSTEM

    SciTech Connect

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    2010-01-01

    RELAP5-3D models of the ITER Vacuum Vessel (VV) Primary Heat Transfer System (PHTS) have been developed. The design of the cooling system is described in detail, and RELAP5 results are presented. Two parallel pump/heat exchanger trains comprise the design one train is for full-power operation and the other is for emergency operation or operation at decay heat levels. All the components are located inside the Tokamak building (a significant change from the original configurations). The results presented include operation at full power, decay heat operation, and baking operation. The RELAP5-3D results confirm that the design can operate satisfactorily during both normal pulsed power operation and decay heat operation. All the temperatures in the coolant and in the different system components are maintained within acceptable operating limits.

  19. Optimization and comparison of three vacuum mixing systems for porosity reduction of Simplex P cement.

    PubMed

    Davies, J P; Harris, W H

    1990-05-01

    Simplex P bone cement was prepared in three commercially available vacuum mixing systems, the Enhancement Mixer, the Mixevac II High Vacuum System, and the Mitab Vacuum System, to determine the improvement in fatigue strength associated with porosity reduction of the cement in all three systems. The results of the fatigue tests of vacuum-mixed Simplex P were also compared to the fatigue strength of Simplex P prepared by centrifugation of the cement immediately after mixing. Vacuum mixing one pack of Simplex P per syringe in all three systems was not effective in complete removal of all the large voids from the cement. Fatigue failure occurred very early in those specimens containing the large voids. There was no significant difference in fatigue life between one pack of cement per syringe mixed under vacuum in the three systems and the control cement (no vacuum, uncentrifuged). Vacuum mixing two packs of cement per syringe was more effective than one pack per syringe, and all three systems significantly increased the cycles to failure of Simplex P over the control cement. However, the Enhancement and Mitab vacuum mixing systems still produced some very weak specimens in fatigue. Two packs of cement per syringe prepared in the Mixevac II vacuum mixing system were significantly stronger in fatigue than two packs mixed in either the Enhancement or Mitab vacuum system. The Mixevac II vacuum mixing system was the most effective technique of the three vacuum mixing systems tested. Centrifugation of one or two packs of Simplex P per syringe produced a more uniform cement that was free of large voids and thus eliminated the very weak specimens.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2323141

  20. Heat transfer in vacuum packaged microelectromechanical system devices

    NASA Astrophysics Data System (ADS)

    Cai, Chunpei

    2008-01-01

    This study analyzes heat transfer effects inside vacuum packaged microelectromechanical system (MEMS) devices. A packaged device is simplified as four plates forming a square cavity, the bottom plate represents a hot chip, while the other three plates are maintained at room temperature. For a highly rarefied free molecular internal gas flow scenario, the corresponding detailed density and temperature fields are analytically determined with a proposed speculation. This speculation indicates that for a steady free molecular gas flow inside a convex closure domain formed by walls maintained at different temperatures: (1) the velocity distribution functions for those molecules diffusely reflected at different walls and traveling away from them are Maxwellian with different number densities; (2) for each distribution, ni√Ti is a constant, where ni is the number density for the group of reflected molecules, and Ti is the temperature for the ith plate. For a near continuum flow scenario, the governing energy equation degenerates to Laplace's equation with several temperature-jump wall boundary conditions. This study also includes discussions and comparisons among analytical results, simulation results from the direct simulation Monte Carlo method, and results by solving the Navier-Stokes equations with proper wall boundary conditions. The approach used in this study is generally applicable to study internal flows and heat transfer effects in other vacuum packaged MEMS devices with different shapes.

  1. Requirements and guidelines for NSLS experimental beam line vacuum systems: Revision A

    SciTech Connect

    Foerster, C.; Halama, H.; Thomlinson, W.

    1986-10-01

    Requirements are provided for NSLS beam line front ends and vacuum interlocks. Guidelines are provided for UHV beam line vacuum systems, including materials, vacuum hardware (pumps, valves, and flanges), acoustic delay lines and beam line fast valves, instrumentation, fabrication and testing, and the NSLS cleaning facility. Also discussed are the design review for experimenters' equipment that would be connected to the NSLS and acceptance tests for any beam line to be connected with the ring vacuum. Also appended are a description of the acoustic delay line as well as the NSLS vacuum standards and NSLS procedures. (LEW)

  2. Caps Seal Boltholes On Vacuum-System Flanges

    NASA Technical Reports Server (NTRS)

    Roman, Robert F.

    1993-01-01

    Sealing caps devised for boltholes on vacuum-system flanges. Used in place of leak-prone gaskets, and provide solid metal-to-metal interfaces. Each sealing cap contains square-cut circular groove in which O-ring placed. Mounted on studs protruding into access ports, providing positive seal around each bolthole. Each cap mates directly with surface of flange, in solid metal-to-metal fit, with O-ring completely captured in groove. Assembly immune to misalignment, leakage caused by vibration, and creeping distortion caused by weight of port. O-ring material chosen for resistance to high temperature; with appropriate choice of material, temperature raised to as much as 315 degrees C.

  3. LCLS XTOD Tunnel Vacuum Transport System (XVTS) Final Design Report

    SciTech Connect

    Shen, S

    2006-10-16

    The design of the X-Ray Vacuum Transport System (XVTS) for the Linac Coherent Light Source (LCLS) X-ray Transport, Optics and Diagnostics (XTOD) system has been analyzed and configured by the Lawrence Livermore National Laboratory's New Technologies Engineering Division (NTED) as requested by the SLAC/LCLS program. A preliminary design review was held on 11/14/05 [1][2]. This FDR (Final Design Report) presents system configuration, detailed analyses and selection of the mechanical and electrical components for the XTOD tunnel section, as well as the response to all issues raised in the review committee report. Also included are the plans for procurement, mechanical integration, schedule and the cost estimates. It should be noticed that, after the XVTS PDR, LCLS management has decided to lower the number of beamlines from three to one, and shorten the tunnel length from 212 m to 184 m. [3][4] The final design of XVTS system is completed. The major subjects presented in this report are: (1) Design of the complete system. (2) System analysis results. (3) ES&H issues and plan. (4) Project cost estimates and schedule.

  4. Sewerage force adjustment technology for energy conservation in vacuum sanitation systems

    NASA Astrophysics Data System (ADS)

    Guo, Zhonghua; Li, Xiaoning; Kagawa, Toshiharu

    2013-03-01

    The vacuum sanitation is the safe and sound disposal approach of human excreta under the specific environments like flights, high speed trains and submarines. However, the propulsive force of current systems is not adjustable and the energy consumption does not adapt to the real time sewerage requirement. Therefore, it is important to study the sewerage force adjustment to improve the energy efficiency. This paper proposes an energy conservation design in vacuum sanitation systems with pneumatic ejector circuits. The sewerage force is controlled by changing the systematic vacuum degree according to the amount of the excreta. In particular, the amount of the excreta is tested by liquid level sensor and mass sensor. According to the amount of the excreta, the relationship between the excreta amount and the sewerage force is studied to provide proper propulsive force. In the other aspect, to provide variable vacuum degrees for different sanitation requirements, the suction and discharge system is designed with pneumatic vacuum ejector. On the basis of the static flow-rate characteristics and the vacuum generation model, the pressure response in the ejector circuit is studied by using the static flow rate characteristics of the ejector and air status equation. The relationship is obtained between supplied compressed air and systematic vacuum degree. When the compressed air is supplied to the ejector continuously, the systematic vacuum degree increases until the vacuum degree reaches the extreme value. Therefore, the variable systematic vacuum degree is obtained by controlling the compressed air supply of the ejector. To verify the effect of energy conservation, experiments are carried out in the artificial excreta collection, and the variable vacuum-degree design saves more than 30% of the energy supply. The energy conservation is realized effectively in the new vacuum sanitation systems with good application prospect. The proposed technology provides technological

  5. Cold Vacuum Drying facility sanitary sewage collection system design description (SYS 27)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) sanitary sewage collection system. The sanitary sewage collection system provides collection and storage of effluents and raw sewage from the CVDF to support the cold vacuum drying process. This system is comprised of a sanitary sewage holding tank and pipes for collection and transport of effluents to the sanitary sewage holding tank.

  6. Digital system for vacuum and gas-filled devices testing

    NASA Astrophysics Data System (ADS)

    Pejovic, Milic M.

    2005-01-01

    This article describes an improved electrical system aimed at measuring and data acquisition of the breakdown voltage of vacuum and gas-filled devices at low pressures using a discretized dynamic method. The previous system [M. M. Pejovic, C. S. Milosavljevic, and M. M. Pejovic, Rev. Sci. Instrum. 74, 3127 (2002)] included a complex analog circuit for breakdown detection, which did not provide the required reliability. The smallest voltage step which this system could provide was 250 mV. In order to increase the reliability of the breakdown detection, the Keithley model 248 high power supply was added to the system. The breakdown is detected from a monitor output at model 248 rear panel. The disadvantage of this system was the fact that the minimal value of the voltage step in this case is 1 V. An additional Keithley model 2400 Source Meter was introduced as a serial connection with the Keithley model 248 with the aim of decreasing the minimal value of the voltage step, which is in this case 1 mV. PC controls both Keithley models using standard IEEE 488 interface bus. This system provides a minimal voltage step value of 1 mV which results in a high precision in breakdown voltage determination. The proposed system controls a large number of parameters, which makes significantly influences the breakdown voltage value. The system was tested with a neon-filled tube at 6.6 mbar, where two parameters were varied, the relaxation time and the voltage step. The experimental results are in accordance with the literature regarding the influence of these two parameters on the breakdown voltage of gas-filled tubes.

  7. An automated thermal vacuum test system for use in environmental testing of flight systems and components

    NASA Technical Reports Server (NTRS)

    Cleckner, Craig S.; Knutson, Jeffrey R.

    1991-01-01

    Unusual requirements for the Pressure Distribution/Air Data System (PD/ADS) transducer thermal vacuum testing led to the development of a conductively heated and cooled, fully automated, bell-jar test system. The system has proven to be easily adaptable for other tests and offers the advantages of quick turn-around and low operational cost.

  8. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubesa)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Blaskiewicz, M.; Brennan, J. M.; Custer, A.; Dingus, A.; Erickson, M.; Fischer, W.; Jamshidi, N.; Laping, R.; Liaw, C.-J.; Meng, W.; Poole, H. J.; Todd, R.

    2015-05-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  9. Plasma Sputtering Robotic Device for In-Situ Thick Coatings of Long, Small Diameter Vacuum Tubes

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2014-10-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed fabricated & operated. Reason for this endeavor is to alleviate the problems of unacceptable ohmic heating of stainless steel vacuum tubes and of electron clouds, due to high secondary electron yield (SEY), in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced SEY to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that 10 μm Cu coated stainless steel RHIC tube has conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. Device detail and experimental results will be presented. Work supported by Brookhaven Science Associates, LLC under

  10. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubes

    SciTech Connect

    Hershcovitch, A. Blaskiewicz, M.; Brennan, J. M.; Fischer, W.; Liaw, C.-J.; Meng, W.; Todd, R.; Custer, A.; Dingus, A.; Erickson, M.; Jamshidi, N.; Laping, R.; Poole, H. J.

    2015-05-15

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  11. VecLoader HEPA Vacuum Insulation Removal System

    SciTech Connect

    None, None

    1999-09-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the deactivation and decommissioning (D&D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE’s Office of Science and Technology sponsors Large-Scale Demonstration Projects (LSDPs) at which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to DOE’s projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, decreased costs and shortened schedules. The U.S. Department of Energy (DOE) Fernald Environmental Management Project’s (FEMP’s) Decontamination and Decommissioning (D&D) Plan requires that interior and exterior walls of buildings that are being demolished be disassembled and all insulating materials removed prior to demolition. This report provides a comparative analysis of the baseline manual insulation removal technique currently employed at the FEMP, with an innovative vacuum insulation removal system.

  12. Upgrade of the Thermal Vacuum Data System at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Palmer, John

    2000-01-01

    The Goddard Space Flight Center's new thermal vacuum data acquisition system is a networked client-sever application that enables lab operations crews to monitor all tests from a central location. The GSFC thermal vacuum lab consists of eleven chambers in Building 7 and one chamber in Building 10. The new data system was implemented for several reasons. These included the need for centralized data collection, more flexible and easier to use operator interface, greater data accessibility, a reduction in testing time and cost, and increased payload and personnel safety. Additionally, a new data system was needed for year-2000 compliance. This paper discusses the incorporation of the Thermal Vacuum Data System (TVDS) within the thermal vacuum lab at GSFC, its features and capabilities and lessons learned in its implementation. Additional topics include off-center (Internet) capability for remote monitoring and the role of TVDS in the efforts to automate thermal vacuum chamber operations.

  13. Upgrade of The Thermal Vacuum Data System at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Palmer, John; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center's new thermal vacuum data acquisition system is a networked client-sever application that enables lab operations crews to monitor all tests from a central location. The GSFC thermal vacuum lab consists of eleven chambers in Building 7 and one chamber in Building 10. The new data system was implemented for several reasons. These included the need for centralized data collection, more flexible and easier to use operator interface, greater data accessibility, a reduction in testing time and cost, and increased payload and personnel safety. Additionally, a new data system was needed for year-2000 compliance. This paper discusses the incorporation of the Thermal Vacuum Data System (TVDS) within the thermal vacuum lab at GSFC, its features and capabilities and lessons learned in its implementation. Additional topics include off-center (Internet) capability for remote monitoring and the role of TVDS in the efforts to automate thermal vacuum chamber operations.

  14. The design and structure of the ultra-high vacuum system of HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Yang, Xiaotian; Zhang, Junhui; Zhang, Xinjun; Meng, Jun; Zhan, Wenlong

    2001-12-01

    To minimize the beam loss due to charge exchange of very heavy ions with the residual gas molecules, ultra-high vacuum of 6×10-9 Pa is required for the HIRFL-CSR facility, which is the lowest pressure in a large vacuum system in China up to now. The total length of the system is about 450 meters and the total inner surface is about 263 square meters. More than 500 standard vacuum components are needed and more than 400 different chambers have to be manufactured. A lot of researches have been down to try to find out the experiences to obtain the required pressure. In this article the following contents are described: the layout of the system; the structure of main vacuum chambers; the treatment metherd to reduce the outgassing rate of the chamber wall surfaces; vacuum equipment; pressure distribution and the progress of the system.

  15. Limiter/vacuum system for plasma impurity control and exhaust in tokamaks

    SciTech Connect

    Abdou, M.; Brooks, J.; Mattas, R.

    1980-01-01

    A detailed design of a limiter/vacuum system for plasma impurity control and exhaust has been developed for the STARFIRE tokamak power plant. It is shown that the limiter/vacuum concept is a very attractive option for power reactors. It is relatively simple and inexpensive and deserves serious experimental verification.

  16. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  17. Upgrade of the DIII-D vacuum vessel protection system

    SciTech Connect

    Hollerbach, M.A.; Lee, R.L.; Smith, J.P.; Taylor, P.L.

    1993-10-01

    An upgrade of the General Atomics DIII-D tokamak armor protection system has been completed. The upgrade consisted of armoring the outer wall and the divertor gas baffle with monolithic graphite tiles and cleaning the existing floor, ceiling, and inner wall tiles to remove any deposited impurity layer from the tile surfaces. The new tiles replace the graphite tiles used as local armor for neutral beam shine through, three graphite poloidal back-up limiter bands, and miscellaneous Inconel protection tiles. The total number of tiles increased from 1636 to 3200 and corresponding vessel coverage from 40% to 90%. A new, graphite armored, toroidally continuous, gas baffle between the outer wall and the biased divertor ring was installed in order to accommodate the cryocondensation pump that was installed in parallel with the outer wall tiles. To eliminate a source of copper in the plasma, GRAFOIL gaskets replaced the copper felt metal gaskets previously used as a compliant heat transfer interface between the inertially cooled tiles and the vessel wall. GRAFOIL, an exfoliated, flexible graphite material from Union Carbide, Inc., was used between each tile and the vessel wall and also between each tile and its hold-down hardware. Testing was performed to determine the mechanical compliance, thermal conductance, and vacuum characteristics of the GRAFOIL material. To further decrease the quantity of high Z materials exposed to the plasma, the 1636 existing graphite tiles were identified, removed, and grit blasted to eliminate a thin layer of deposited metals which included nickel, chromium, and molybdenum. Prior to any processing, a selected set of tiles was tested for radioactivity, including tritium contamination. The tiles were grit blasted in a negative-pressure blasting cabinet using 37 {mu}m boron carbide powder as the blast media and dry nitrogen as the propellant.

  18. Design package for vacuum wand for fuel retrieval system

    SciTech Connect

    ROACH, H.L.

    1999-07-28

    This is a design package that contains the details for the design, fabrication, and testing of a vacuum wand that will pick up sludge and corrosion products generated during fuel assembly handling operations at K-Basin. This document contains requirements, development design information, design calculations, tests, and test reports.

  19. The vacuum system for the PEP II high energy ring straight sections

    SciTech Connect

    Wienands, U.; Daly, E.; Kulikov, A.; Kurita, N.; Nordby, M.; Perkins, C.; Reuter, E.; Seeman, J. T.

    1995-01-01

    The six straight sections of the PEP II High Energy Ring (HER) serve various functions: lattice tuning, beam injection and abort, providing space for rf cavities, longitudinal and transverse feedback, beam diagnostics and the interaction point. A stainless steel vacuum system has been designed; prototypes are currently being built. Cooling is required due to radiation coming from the last arc dipole and resistive losses in the vacuum chamber. Although the nominal beam current of the HER is 1 A the vacuum system is designed for 3 A to provide margin and an upgrade path. 5 refs., 7 figs.

  20. The vacuum system for the Munich fission fragment accelerator

    NASA Astrophysics Data System (ADS)

    Maier-Komor, P.; Faestermann, T.; Krücken, R.; Nebel, F.; Winkler, S.; Groß, M.; Habs, D.; Kester, O.; Szerypo, J.; Thirolf, P. G.

    2006-05-01

    The Munich Accelerator for Fission Fragments (MAFF) is a radioactive ion beam facility which will be installed at the new research reactor FRM-II. This new reactor became critical in Spring 2004. The heart of MAFF, the target-ion source unit will be placed in the through-going beam tube of the FRM-II. This beam tube has been installed, tested and filled with helium in 2001. The cogent authorization procedures and safety levels developed for nuclear power plants are applied for this research reactor also. Therefore, MAFF also has to obey these very strict rules, because the typical 1 g load of 235U in the MAFF source creates a fission product activity of several 10 14 Bq after one reactor cycle of 52 days. All vacuum components must withstand a pressure of 6×10 5 Pa in addition to their UHV acceptability. Even dynamic gaskets must be strictly metallic, because organic compounds would not withstand the radioactive irradiation during the design lifetime of 30 years. Only dry vacuum pumps are suitable: refrigerator cryopumps for the high-vacuum part and five stages of roots pumps for roughing and regeneration.

  1. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  2. A thermal vacuum-UV solar simulator test system for assessing microbiological viability

    NASA Technical Reports Server (NTRS)

    Ross, D. S.; Wardle, M. D.; Taylor, D. M.

    1975-01-01

    Microorganisms were exposed to a simulated space environment in order to assess the photobiological effect of broad spectrum, nonionizing solar electromagnetic radiation in terms of viability. A thermal vacuum chamber capable of maintaining a vacuum of 0.000133n/sq m and an ultraviolet rich solar simulator were the main ingredients of the test system. Results to date indicate the system to be capable of providing reliable microbiological data.

  3. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    SciTech Connect

    FOERSTER,C.

    1999-05-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front

  4. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  5. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    SciTech Connect

    Roy, Anindya Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  6. Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.

  7. Thermal Stabilization in a High Vacuum Cryogenic Optical System

    NASA Astrophysics Data System (ADS)

    Wallace, Rosa; Cripe, Jonathan; Corbitt, Thomas

    2016-03-01

    The existing technology for gravitational wave detection is limited in part by quantum noise. In our tabletop experiments, we are attempting to lower the noise floor to the quantum limit through the use of a seismically isolated cryogenic high vacuum environment, with the intention of exploring different methods to reduce quantum noise. In the development phase of this environment, we have implemented a customized strategy of ultraviolet irradiation combined with cryogenically cooled radiation shielding to reduce the impact of water vapor and blackbody radiation on the thermal stability of the cryogenic micro-components. Supported by National Science Foundation REU Site #1262890 and CAREER Award #1150531.

  8. DESIGN AND DEVELOPMENT OF THE SNS RING VACUUM INSTRUMENTATION AND CONTROL SYSTEMS.

    SciTech Connect

    HSEUH,H.C.; SMART,L.A.; TANG,J.Y.

    2001-06-18

    BNL is undertaking the design, construction and commissioning of the Spallation Neutron Source (SNS) accumulator ring and the beam transport lines [l]. Ultrahigh vacuum of 10{sup {minus}9} Torr is required in the accumulator ring to minimize beam-gas ionization, a contributing factor to the e-p instability observed in a few high-intensity proton storage rings. All vacuum instrumentation must be capable of local and remote operation to achieve a reliable vacuum system, especially in this extremely high intensity accelerator. The design and development of the SNS ring vacuum instrumentation and control through the Experimental Physics and Industrial Control System (EPICS) distributed real-time software tools are presented.

  9. OPERATION OF FUSION REACTORS IN ONE ATMOSPHERE OF AIR INSTEAD OF VACUUM SYSTEMS

    SciTech Connect

    Roth, J. Reece

    2009-07-26

    Engineering design studies of both magnetic and inertial fusion power plants have assumed that the plasma will undergo fusion reactions in a vacuum environment. Operation under vacuum requires an expensive additional major system for the reactor-a vacuum vessel with vacuum pumping, and raises the possibility of sudden unplanned outages if the vacuum containment is breached. It would be desirable in many respects if fusion reactors could be made to operate at one atmosphere with air surrounding the plasma, thus eliminating the requirement of a pressure vessel and vacuum pumping. This would have obvious economic, reliability, and engineering advantages for currently envisaged power plant reactors; it would make possible forms of reactor control not possible under vacuum conditions (i.e. adiabatic compression of the fusion plasma by increasing the pressure of surrounding gas); it would allow reactors used as aircraft engines to operate as turbojets or ramjets in the atmosphere, and it would allow reactors used as fusion rockets to take off from the surface of the earth instead of low earth orbit.

  10. Cold Vacuum Drying facility potable water system design description (SYS 26)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system.

  11. Cold vacuum chamber for diagnostics: Analysis of the measurements at the Diamond Light Source and impedance bench measurements

    NASA Astrophysics Data System (ADS)

    Voutta, R.; Gerstl, S.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; Saez de Jauregui, D.; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Migliorati, M.; Spataro, B.

    2016-05-01

    The beam heat load is an important input parameter needed for the cryogenic design of superconducting insertion devices. Theoretical models taking into account the different heating mechanisms of an electron beam to a cold bore predict smaller values than the ones measured with several superconducting insertion devices installed in different electron storage rings. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is equipped with temperature sensors, pressure gauges, mass spectrometers as well as retarding field analyzers which allow to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. COLDDIAG was installed in a straight section of the Diamond Light Source (DLS). In a previous paper the experimental equipment as well as the installation of COLDDIAG in the DLS are described [S. Gerstl et al., Phys. Rev. ST Accel. Beams 17, 103201 (2014)]. In this paper we present an overview of all the measurements performed with COLDDIAG at the DLS and their detailed analysis, as well as impedance bench measurements of the cold beam vacuum chamber performed at the Karlsruhe Institute of Technology after removal from the DLS. Relevant conclusions for the cryogenic design of superconducting insertion devices are drawn from the obtained results.

  12. Methods for identification and verification using vacuum XRF system

    NASA Technical Reports Server (NTRS)

    Schramm, Fred (Inventor); Kaiser, Bruce (Inventor)

    2005-01-01

    Apparatus and methods in which one or more elemental taggants that are intrinsically located in an object are detected by x-ray fluorescence analysis under vacuum conditions to identify or verify the object's elemental content for elements with lower atomic numbers. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, as well as provide detection by a non line-of-sight method to establish the origin of objects, as well as their point of manufacture, authenticity, verification, security, and the presence of impurities. The invention is extremely advantageous because it provides the capability to measure lower atomic number elements in the field with a portable instrument.

  13. Acquisition of reliable vacuum hardware for large accelerator systems

    SciTech Connect

    Welch, K.M.

    1995-09-06

    Credible and effective communications prove to be the major challenge in the acquisition of reliable vacuum hardware. Technical competence is necessary but not sufficient. The authors must effectively communicate with management, sponsoring agencies, project organizations, service groups, staff and with vendors. Most of Deming`s 14 quality assurance tenants relate to creating an enlightened environment of good communications. All projects progress along six distinct, closely coupled, dynamic phases. All six phases are in a state of perpetual change. These phases and their elements are discussed, with emphasis given to the acquisition phase and its related vocabulary. Large projects require great clarity and rigor as poor communications can be costly. For rigor to be cost effective, it can`t be pedantic. Clarity thrives best in a low-risk, team environment.

  14. Modeling of RHIC insulating vacuum for system pumpdown characteristics

    SciTech Connect

    Todd, R.J.; Pate, D.J.; Welch, K.M.

    1993-06-01

    This paper presents a model for predicting the pumpdown characteristics of a 480 m RHIC (Relativistic Heavy Ion Collider) vacuum cryostat. The longitudinal and transverse conductances of a typical cryostat were calculated. A voltage analogue of these conductances was constructed for room temperature conditions. The total longitudinal conductance of a room temperature cryostat was thereby achieved. This conductance was then used to calculate the diameter of an equivalent long outgassing tube, having more convenient analytical expressions for pressure profiles when pumped. The equivalent of a unit outgassing rate for this tube was obtained using previously published MLI (multi-layer insulation) outgassing data. With this model one is then able to predict a cryostat pumpdown rate as a function of the location and size of roughing pumps.

  15. Engineering Specification Document (ESD) of X-ray Vacuum Transport System (XVTS) for LCLS XTOD

    SciTech Connect

    Shen, S

    2006-01-25

    The vacuum system of the X-Ray Vacuum Transport System (XVTS) for the Linac Coherent Light Source (LCLS) X-ray Transport, Optics and Diagnostics (XTOD) system has been analyzed and configured by the Lawrence Livermore National Laboratory's New Technologies Engineering Division (NTED) as requested by the SLAC/LCLS program. The preliminary system layout, detailed analyses and suggested selection of the vacuum components for the XTOD tunnel section are presented in the preliminary design report [1]. This document briefly reviews the preliminary design and provides engineering specifications for the system, which can be used as 'design to' specifications for the final design. Also included are the requirements of plans for procurement, mechanical integration, schedule and the cost estimates.

  16. Design and Simulation of a Rotating Aperture & Vacuum System for Neutron Imaging

    SciTech Connect

    Fitsos, P; Hall, J; Rusnak, B; Shen, S

    2006-02-27

    The development of a high-energy (10Mev) neutron imaging system at Lawrence Livermore National Laboratory (LLNL) depends on a precision engineered rotating aperture and vacuum system for generating neutrons that are used for imaging dense objects. This subsystem is part of a larger system which includes a linear accelerator that creates a deuteron beam, a scintillator detector, imaging optics and a high resolution CCD camera. The rotating aperture vacuum system has been successfully simulated and tested. Results show the feasibility of the design and point toward ways to improve the design by minimizing the rotating aperture gap.

  17. Architecture and operation of the Z Pulsed Power Facility vacuum system.

    SciTech Connect

    Riddle, Allen Chauncey; Petmecky, Don; Weed, John Woodruff

    2010-11-01

    The Z Pulsed Power Facility at Sandia National Laboratories in Albuquerque, New Mexico, USA is one of the world's premier high energy density physics facilities. The Z Facility derives its name from the z-pinch phenomena which is a type of plasma confinement system that uses the electrical current in the plasma to generate a magnetic field that compresses it. Z refers to the direction of current flow, the z axis in a three dimensional Cartesian coordinate system. The multiterawatt, multimegajoule electrical pulse the Facility produces is 100-400 nanoseconds in time. Research and development programs currently being conducted on the Z Facility include inertial confinement fusion, dynamic material properties, laboratory astrophysics and radiation effects. The Z Facility vacuum system consists of two subsystems, center section and load diagnostics. Dry roughing pumps and cryogenic high vacuum pumps are used to evacuate the 40,000 liter, 200 square meter center section of the facility where the experimental load is located. Pumping times on the order of two hours are required to reduce the pressure from atmospheric to 10{sup -5} Torr. The center section is cycled from atmosphere to high vacuum for each experiment. The facility is capable of conducting one to two experiments per day. Numerous smaller vacuum pumping systems are used to evacuate load diagnostics. The megajoules of energy released during an experiment causes damage to the Facility that presents numerous challenges for reliable operation of the vacuum system.

  18. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  19. Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System

    SciTech Connect

    Baylor, Larry R; Meitner, Steven J; Barbier, Charlotte N; Combs, Stephen Kirk; Duckworth, Robert C; Edgemon, Timothy D; Rasmussen, David A; Hechler, Michael P; Kersevan, R.; Dremel, M.; Pearce, R.J.H.; Boissin, Jean Claude

    2011-01-01

    The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

  20. Summary of ACSL Simulations of the MSRE Auxiliary Charcoal Bed Vacuum System

    SciTech Connect

    Damiano, B

    2000-10-26

    The simulation of the Auxiliary Charcoal Bed (ACB) Vacuum System was performed to evaluate the original vacuum system design, detect and identify design deficiencies, investigate the effects of proposed corrections on system performance, and generally aid in refining the system design before construction and mockup testing. The simulation was performed by using the Advanced Continuous Simulation Language (ACSL). The vacuum system design goals are to provide approximately 20 SCFM of both booster gas and purge gas through the system and maintain a flow of approximately 40 SCFM with a velocity of 50 to 75 f/sec at the entrance to the cyclone separator. The model results showed that the original system design was incapable of meeting the system performance goals. Further simulations showed that the following modifications to the original vacuum system design were required to make the system performance acceptable; (1) Remove valve PCV4. (2) Modify the flow controllers FTC3 and FTC4 from the original flow range of 0-17.6 SCFM (0-500 SLM) to 0-35.3 SCFM (0-1000 SLM). (3) Replace the bellows sealed valves SV-1, SV-3A, SV-3B, SV-4A, and SV-4B with less restrictive ball valves. The simulation results saved considerable time and effort by identifying flaws in the original system design. Early identification of these flaws and the use of the simulation model to investigate possible solutions allowed corrective modifications to be made before construction of the mock up test facility.

  1. Characterization of the CEBAF 100 kV DC GaAs Photoelectron Gun Vacuum System

    SciTech Connect

    Stutzman, M L; Adderley, P; Brittian, J; Clark, J; Grames, J; Hansknecht, J; Myneni, G R; Poelker, M

    2007-05-01

    A vacuum system with pressure in the low ultra-high vacuum (UHV) range is essential for long photocathode lifetimes in DC high voltage GaAs photoguns. A discrepancy between predicted and measured base pressure in the CEBAF photoguns motivated this study of outgassing rates of three 304 stainless steel chambers with different pretreatments and pump speed measurements of non-evaporable getter (NEG) pumps. Outgassing rates were measured using two independent techniques. Lower outgassing rates were achieved by electropolishing and vacuum firing the chamber. The second part of the paper describes NEG pump speed measurements as a function of pressure through the lower part of the UHV range. Measured NEG pump speed is high at pressures above 5×10-11 Torr, but may decrease at lower pressures depending on the interpretation of the data. The final section investigates the pump speed of a locally produced NEG coating applied to the vacuum chamber walls. These studies represent the first detailed vacuum measurements of CEBAF photogun vacuum chambers.

  2. Development of a high vacuum sample preparation system for helium mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Das, N. K.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    A high vacuum sample preparation system for the 3He/4He ratio mass spectrometer (Helix SFT) has been developed to remove all the gaseous constituents excluding helium from the field gases. The sample preparation system comprises of turbo molecular pump, ion pump, zirconium getter, pipettes and vacuum gauges with controller. All these are fitted with cylindrical SS chamber using all metal valves. The field samples are initially treated with activated charcoal trap immersed in liquid nitrogen to cutoff major impurities and moisture present in the sample gas. A sample of 5 ml is collected out of this stage at a pressure of 10-2 mbar. This sample is subsequently purified at a reduced pressure of 10-7 mbar before it is injected into the ion source of the mass spectrometer. The sample pressure was maintained below 10-7 mbar with turbo molecular vacuum pumps and ion pumps. The sample gas passes through several getter elements and a cold finger with the help of manual high vacuum valves before it is fed to the mass spectrometer. Thus the high vacuum sample preparation system introduces completely clean, dry and refined helium sample to the mass spectrometer for best possible analysis of isotopic ratio of helium.

  3. Summary Report for the Investigation and Performance of the IAAC Bell Jar Vacuum System

    SciTech Connect

    Bohne, William A.; Kramer, Donald C.

    1996-02-26

    Operations associated with the vacuum processing of the F-2 converter during the RTG assembly operation were initiated on February 16 and continued through February 18, 1996. During vacuum processing on February 17, pressures less than 1x10 sub -5 torr could not be attained as required by the procedure. Although pressure readings in the 10 sub -5 torr range were achieved, the pressure could not be sustained, pressure rose and became erratic. By February 18, 1996, no improvement in the vacuum was observed and it was speculated that there might be a leak in the system. A decision was subsequently made to initiate residual gas analyzer (RGA) scans of the bell jar atmosphere to determine whether the difficulties in achieving the required vacuum were the result of a leak in the system or the outgassing of the converter. The scans obtained revealed the presence of nitrogen, oxygen, and moisture, indicating potential air in-leakage, although various troubleshooting efforts did not reveal the location of any such leak. Subsequent troubleshooting and final replacement of the vacuum system are described.

  4. The molecular branching ratio method for calibration of optical systems in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1972-01-01

    The intensity distribution of bands belonging to six molecular band systems is discussed with special emphasis on their usefulness for intensity calibration of optical systems in the vacuum ultraviolet (1000A Lambda 3000A). The theory of molecular band intensities is outlined and the technique of measuring the spectral response curve is described. Several methods for establishing an absolute intensity calibration are discussed.

  5. Vacuum Rabi splitting and intracavity dark state in a cavity-atom system

    SciTech Connect

    Hernandez, Gessler; Zhang Jiepeng; Zhu Yifu

    2007-11-15

    We report experimental measurements of the transmission spectrum of an optical cavity coupled with cold Rb atoms. We observe the multiatom vacuum Rabi splitting of a composite cavity and atom system. When a coupling field is applied to the atoms and induces the resonant two-photon Raman transition with the cavity field in a {lambda}-type system, we observe a cavity transmission spectrum with two vacuum Rabi sidebands and a central peak representing the intracavity dark state. The central peak linewidth is significantly narrowed by the dark-state resonance and its position is insensitive to the frequency change of the empty cavity.

  6. Conceptual Design of ILC Damping Ring Wiggler Straight VacuumSystem

    SciTech Connect

    Marks, S.; Kennedy, K.; Plate, D.; Schlueter, R.D.; Zisman, M.

    2007-06-22

    The positron and electron damping rings for the International Linear Collider will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR superconducting design. There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC Reference Design Report. Particular emphasis will be placed on photon power load calculations and the absorber design.

  7. Design for ANL 7 GeV storage ring vacuum system

    SciTech Connect

    Wehrle, R.B.; Nielsen, R.W.

    1988-01-01

    The 7-GeV Advanced Photon Source (APS) design includes a storage ring having a 1060-m circumference with the capability of accommodating 34 insertion devices (ID) and their associated photon beam lines. An additional 35 photon lines can be provided from bending magnets. The vacuum system for the storage ring is designed to maintain a beam-on operating pressure of 1n Torr or less to achieve a positron beam lifetime of approximately 20 hours. The vacuum system and it's current developmental status are described.

  8. Schematics of ISO and Japanese Standards on Flange Sealing Systems and Fittings for Vacuum Equipments, and Their Correlations

    NASA Astrophysics Data System (ADS)

    Kurokouchi, Satoshi; Kikuchi, Toshio; Akimichi, Hitoshi; Hirata, Masahiro

    To keep flexibility on construction of vacuum system, understanding of standardization scheme for demountable sealing system consisting of flanges and metal gasket or elastomer O-ring is highly beneficial for both suppliers and users of vacuum equipments. Here we present main contents of international and national standards of flange sealing systems and their correlation, along with some commentaries on states of conformity with standards of commercially available vacuum flanges. Outlines of standards of vacuum fittings, and recent activities for revision and establishment of standards are also reported.

  9. Cold Vacuum Drying (CVD) Facility General Service Helium System Design Description

    SciTech Connect

    SHAPLEY, B.J.

    2000-04-20

    The purpose of this System Design Description (SDD) is to describe the characteristics of the Cold Vacuum Drying (CVD) Facility general service helium system. The general service helium system is a general service facility process support system, but does include safety-class structures, systems and components (SSCs) providing protection to the offsite public. The general service helium system also performs safety-significant functions that provide protection to onsite workers. The general helium system essential function is to provide helium (He) to support process functions during all phases of facility operations. General service helium is used to purge the cask and the MCO in order to maintain their internal atmospheres below hydrogen flammability concentrations. The general service helium system also supplies helium to purge the process water conditioning (PWC) lines and components and the vacuum purge system (VPS) vacuum pump. The general service helium system, if available following an Safety Class Instrument and Control System (SCIC) Isolation and Purge (IS0 and PURGE) Trip, can provide an alternate general service helium system source to supply the Safety-Class Helium (SCHe) System.

  10. Cold Vacuum Drying facility fire protection system design description (SYS 24)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings.

  11. New developments with design and construction of a thermal/vacuum qualified photogrammetric system

    NASA Astrophysics Data System (ADS)

    Amiri Parian, Jafar; Cozzani, Alessandro; Appolloni, Matteo; Casarosa, Gianluca

    In the frame of the development of a photogrammetric system to be used in thermal/vacuum chambers at the European Space Research and Technology Centre (ESTEC) of European Space Agency (ESA) and other sites across Europe, the design of a network using micro-cameras was specified by ESA-ESTEC. A thermal/vacuum qualified photogrammetric system, which is able to work and acquire images in vacuum and at cryo-temperatures, was constructed by ESA-ESTEC Test Centre Division. The current system uses four space qualified one-mega pixel cameras and is able to measure large space structures in vacuum and at temperatures down to -170 ∘C with a global accuracy better than 1 part per 100,000 in object space. Several tests aiming at the qualification of the sensors and system in terms of operation and accuracy have been carried out. Special measures have been developed and special attention has been taken into account specifically for the first application of the photogrammetric system. It is to verify the ESA's Herschel Telescope Flight Model alignment positioning.

  12. Definition and means of maintaining the process vacuum liquid detection interlock systems portion of the PFP safety envelope

    SciTech Connect

    Thomas, R.J.

    1997-01-02

    The Process Vacuum Liquid Detection interlock systems prevent intrusion of process liquids into the HEPA filters downstream of demisters {number_sign}6 and {number_sign}7 during Process Vacuum System operation. This prevents liquid intrusion into the filters which could cause a criticality. The Safety Envelope (SE) includes the equipment which detects the presence of liquids in the vacuum headers; isolates the filters; shuts down the vacuum pumps; and alarms the condition. The presence of liquid in the HC-4, HC-7, and HC-227S glovebox vacuum traps or a high level of liquid in the 236-Z Tank 50 will isolate these portions of the vacuum system from the main headers. This report identifies the equipment in the SE; operating, maintenance, and surveillance procedures needed to maintain the SE equipment; and rationale for exclusion of some equipment and testing from the SE.

  13. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap.

    PubMed

    Jin, Seokmin; Lim, Mikyung; Lee, Seung S; Lee, Bong Jae

    2016-03-21

    Artificially designed hyperbolic metamaterial (HMM) possesses extraordinary electromagnetic features different from those of naturally existing materials. In particular, the dispersion relation of waves existing inside the HMM is hyperbolic rather than elliptical; thus, waves that are evanescent in isotropic media become propagating in the HMM. This characteristic of HMMs opens a novel way to spectrally control the near-field thermal radiation in which evanescent waves in the vacuum gap play a critical role. In this paper, we theoretically investigate the performance of a near-field thermophotovoltaic (TPV) energy conversion system in which a W/SiO2-multilayer-based HMM serves as the emitter at 1000 K and InAs works as the TPV cell at 300 K. By carefully designing the thickness of constituent materials of the HMM emitter, the electric power of the near-field TPV devices can be increased by about 6 times at 100-nm vacuum gap as compared to the case of the plain W emitter. Alternatively, in regards to the electric power generation, HMM emitter at experimentally achievable 100-nm vacuum gap performs equivalently to the plain W emitter at 18-nm vacuum gap. We show that the enhancement mechanism of the HMM emitter is due to the coupled surface plasmon modes at multiple metal-dielectric interfaces inside the HMM emitter. With the minority carrier transport model, the optimal p-n junction depth of the TPV cell has also been determined at various vacuum gaps. PMID:27136882

  14. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap.

    PubMed

    Jin, Seokmin; Lim, Mikyung; Lee, Seung S; Lee, Bong Jae

    2016-03-21

    Artificially designed hyperbolic metamaterial (HMM) possesses extraordinary electromagnetic features different from those of naturally existing materials. In particular, the dispersion relation of waves existing inside the HMM is hyperbolic rather than elliptical; thus, waves that are evanescent in isotropic media become propagating in the HMM. This characteristic of HMMs opens a novel way to spectrally control the near-field thermal radiation in which evanescent waves in the vacuum gap play a critical role. In this paper, we theoretically investigate the performance of a near-field thermophotovoltaic (TPV) energy conversion system in which a W/SiO2-multilayer-based HMM serves as the emitter at 1000 K and InAs works as the TPV cell at 300 K. By carefully designing the thickness of constituent materials of the HMM emitter, the electric power of the near-field TPV devices can be increased by about 6 times at 100-nm vacuum gap as compared to the case of the plain W emitter. Alternatively, in regards to the electric power generation, HMM emitter at experimentally achievable 100-nm vacuum gap performs equivalently to the plain W emitter at 18-nm vacuum gap. We show that the enhancement mechanism of the HMM emitter is due to the coupled surface plasmon modes at multiple metal-dielectric interfaces inside the HMM emitter. With the minority carrier transport model, the optimal p-n junction depth of the TPV cell has also been determined at various vacuum gaps.

  15. Vacuum gage calibration system for 10 to the minus 8th power to 10 torr

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1969-01-01

    Calibration system consists of a gas source, a source pressure gage, source volume, transfer volume and test chamber, plus appropriate piping, valves and vacuum source. It has been modified to cover as broad a range as possible while still providing accuracy and convenience.

  16. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  17. Cold Vacuum Drying facility civil structural system design description (SYS 06)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.

  18. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    NASA Astrophysics Data System (ADS)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  19. PTC-6 vacuum system: WallWalker{trademark} and Blastrac{reg_sign} shot blast cleaning system

    SciTech Connect

    1998-02-01

    The LTC Americas, Inc. wall decontamination technology consisted of two pneumatic hand-held tools: (1) a roto-peen scaler that used star cutters and (2) a 3-piston hammer with reciprocating bits. The hand-held tools were used in conjunction with the LTC PTC-6 vacuum system which captured dust and debris as the wall decontamination took place. Recommendations for improved worker safety and health during use of the PTC-6 vacuum system with hand-held tools include: (1) keeping all hoses and lines as orderly as possible in compliance with good housekeeping requirements; (2) ergonomic training to include techniques in lifting, bending, stooping, twisting, etc.; (3) use of a clamping system to hold hoses to the vacuum system; (4) a safety line on the air line connections; (5) use of a mechanical lifting system for waste drum removal; and (6) the use of ergonomically designed tools.

  20. Remote vacuum or pressure sealing device and method for critical isolated systems

    DOEpatents

    Brock, James David; Keith, Christopher D.

    2012-07-10

    A remote vacuum or pressure sealing apparatus and method for making a radiation tolerant, remotely prepared seal that maintains a vacuum or pressure tight seal throughout a wide temperature range. The remote sealing apparatus includes a fixed threaded sealing surface on an isolated system, a gasket, and an insert consisting of a plug with a protruding sample holder. An insert coupling device, provided for inserting samples within the isolated system, includes a threaded fastener for cooperating with the fixed threaded sealing surface on the isolated system. The insert coupling device includes a locating pin for azimuthal orientation, coupling pins, a tooted coaxial socket wrench, and an insert coupling actuator for actuating the coupling pins. The remote aspect of the sealing apparatus maintains the isolation of the system from the user's environment, safely preserving the user and the system from detrimental effect from each respectively.

  1. Integration of LHCD system with SST1 machine and its high power rf performance in vacuum

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Ambulkar, K. K.; Dalakoti, S.; Parmar, P. R.; Virani, C. G.; Thakur, A. L.

    2014-02-01

    A 2.0 MW CW lower hybrid current drive (LHCD) system based on 3.7 GHz klystron sources, is in advanced stage of commissioning, which would drive and sustain plasma current, non-inductively, in superconducting steadystate tokamak (SST1) for long pulse operation. Four klystrons, each rated for 0.5 MW CW rf power, delivers 2.0 MW of rf power to four layer of the LHCD system, which finally feeds the rf power to grill antenna. The antenna system along with vacuum window and vacuum transmission line is successfully integrated on the machine. Its vacuum and pressurization compatibility has been successfully established. To validate the high power performance of LHCD system for SST1 machine, stage-wise commissioning of LHCD system in staggered manner is planned. It has been envisaged that LHCD power may be gradually increased initially, since full power may not be required during the initial phases of SST1 plasma operation. Also if the system is integrated in steps or in phases, then integration issues, as well as high power operational issues, if any, can be addressed, attended and handled in a simpler way before integrating all the layers to the grill antenna. To begin with, one klystron is connected to one layer, out of four layers, which energizes a quarter of the grill antenna. Gradually, the rf power and its pulse length is increased to validate high power performance of the system. Arcing and reflections are observed as rf power is gradually increased. The problems are analysed and after taking appropriate remedial action the system performance is improved for operation up to 160kW. Several trains of short pulses are launched in SST1 vacuum vessel for rf conditioning of the LHCD system. Normally, reflections are high when power is launched in vacuum; therefore the pulse length is restricted up to 100 milliseconds. The high power performance of this layer, connected with grill antenna is validated by launching high power microwaves in vacuum vessel of SST1 machine

  2. Comparative emissions of random orbital sanding between conventional and self-generated vacuum systems.

    PubMed

    Liverseed, David R; Logan, Perry W; Johnson, Carl E; Morey, Sandy Z; Raynor, Peter C

    2013-03-01

    Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects.

  3. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    NASA Astrophysics Data System (ADS)

    Naidu, M. C. A.; Nolakha, Dinesh; Saharkar, B. S.; Kavani, K. M.; Patel, D. R.

    2012-11-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of "Open loop, auto reversing liquid nitrogen based thermal system". System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  4. Comparative Emissions of Random Orbital Sanding between Conventional and Self-Generated Vacuum Systems

    PubMed Central

    Liverseed, David R.

    2013-01-01

    Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects. PMID:23065674

  5. Vacuum system of the 3MeV industrial electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Jayaprakash, D.; Mishra, R. L.; Ghodke, S. R.; kumar, M.; kumar, M.; Nanu, K.; Mittal, K. C., Dr

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF6 gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1×10-7mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm × 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50μm thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  6. Spinning rotor gauge based vacuum gauge calibration system at the Institute for Plasma Research (IPR)

    NASA Astrophysics Data System (ADS)

    Semwal, Pratibha; Khan, Ziauddin; Dhanani, Kalpesh R.; Pathan, Firozkhan S.; George, Siju; Raval, Dilip C.; Thankey, Prashant L.; Paravastu, Yuvakiran; M, Himabindu

    2012-11-01

    The Steady-state Superconducting Tokamak (SST-1) is an indigenously built medium sized fusion device at IPR designed for plasma duration of 1000 seconds. It consists of two large vacuum chambers - Vacuum Vessel (16 m3) and Cryostat (39 m3) which will be pumped to UHV and HV pressures respectively using a set of turbo molecular pumps, Cryo-pumps and Roots pumps. The total as well as the partial pressure measurement in these chambers will be carried out using a set of Pirani gauges, Bayard Alpert type gauges, Capacitance manometers and Residual Gas Analyzers (RGA). A reliable and accurate pressure measurement is essential for successful operation of SST-1 machine. For this purpose a gauge calibration system is set up in SST-1 Vacuum laboratory based on Spinning Rotor Gauge which can measure absolute pressure in the range 1.0 mbar to 1.0 × 10-7 mbar. This system is designed to calibrate up to five gauges simultaneously for different gases in different operating pressure ranges of the gauges. This paper discusses the experimental set-up and the procedure adopted for the calibration of such vacuum gauges.

  7. Impurity control and vacuum pumping system design and analysis for next-generation tokamaks

    SciTech Connect

    Haines, J.R.

    1985-01-01

    Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) preconceptual design. Efforts concentrated on the pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. Analysis results indicate that the limiter/vacuum pumping system design provides marginally adequate helium ash removal. Difficulties in providing adequate helium ash removal for more compact or higher fusion-power-density devices are addressed. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs.

  8. Project W-320 high vacuum 241-AY-102 annulus ventilation system operability test report

    SciTech Connect

    Bailey, J.W.

    1998-03-12

    This report documents the test results of OTP-320-001, Tank 241-AY-102 Annulus Ventilation System Testing. Included in the appendices are: (1) Supporting documentation prepared to demonstrate the structural integrity of the tank at high annulus vacuum (<20 INWG), and (2) a report that identifies potential cross connections between the primary and annulus ventilation systems. These cross connections were verified to be eliminated prior to the start of testing.

  9. Cold Vacuum Drying facility crane and hoist system design description (SYS 14)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) crane and hoist system. The overhead crane and hoist system is located in the process bays of the CVDF. It supports the processes required to drain the water and dry the spent nuclear fuel contained in the multi-canister overpacks after they have been removed from the K-Basins. The cranes will also be used to assist maintenance activities within the bays, as required.

  10. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  11. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2013-12-03

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  12. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2014-05-13

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  13. Two-stage flow-dividing system for the calibration of vacuum gauges

    SciTech Connect

    Yoshida, Hajime; Arai, Kenta; Akimichi, Hitoshi; Hirata, Masahiro

    2008-01-15

    A two-stage flow-dividing system was developed for calibrating an ionization gauge (IG) and residual gas analyzer (RGA). This system generates a stable high and ultrahigh vacuum from 8x10{sup -3} to 2x10{sup -7} Pa by adjusting the pressure in the first chamber using N{sub 2}, Ar, He, and H{sub 2}. The calibration pressure in the third chamber is calculated from the pressure in the second chamber using their linear relation in molecular flow. The uncertainty of the generated pressure was comparable to or several times larger than that of the continuous-expansion system. However, this system has a simple configuration and is easy to operate compared with the continuous-expansion system because it has no moving parts. Results of the calibration of IG and RGA showed that the two-stage flow-dividing system is useful for a routine calibration of practical vacuum gauges in high and ultrahigh vacuum.

  14. Design and operation of the Rover vacuum system

    SciTech Connect

    Wagner, E.P. Jr.; Griffith, D.L.; Rivera, J.M.

    1997-08-01

    The Rover process for recovering unused uranium from graphite fuels was operated during 1983 and 1984, and then shut down in 1984. The first steps of the process used fluidized alumina beds to burn away the graphite and produce a uranium bearing ash. The ash was then transferred to a different process cell for acid dissolution. At the time of shutdown, a significant, but unmeasureable, quantity of highly enriched uranium was left in the process vessels. Normal decontamination procedures could not be used due to plugged process lines and the exclusion of moderator materials (water or finely divided organic substances) for criticality safety. The presence of highly enriched uranium in poorly defined quantity and configuration led to concerns for criticality safety, nuclear materials accountability, and physical security. A project was established to eliminate these concerns by cleaning and/or removing the process vessels, piping, and cells and sending the recovered Uranium Bearing Material (UBM) to secure storage. A key element of this project was the design of a system for collecting and transporting dry solids to a location where they could be loaded into critically favorable storage cans.

  15. Note: A simple sample transfer alignment for ultra-high vacuum systems

    NASA Astrophysics Data System (ADS)

    Tamtögl, A.; Carter, E. A.; Ward, D. J.; Avidor, N.; Kole, P. R.; Jardine, A. P.; Allison, W.

    2016-06-01

    The alignment of ultra-high-vacuum sample transfer systems can be problematic when there is no direct line of sight to assist the user. We present the design of a simple and cheap system which greatly simplifies the alignment of sample transfer devices. Our method is based on the adaptation of a commercial digital camera which provides live views from within the vacuum chamber. The images of the camera are further processed using an image recognition and processing code which determines any misalignments and reports them to the user. Installation has proven to be extremely useful in order to align the sample with respect to the transfer mechanism. Furthermore, the alignment software can be easily adapted for other systems.

  16. Analytical solutions for a single vertical drain with time-dependent vacuum combined surcharge preloading in membrane and membraneless systems

    NASA Astrophysics Data System (ADS)

    Geng, X. Y.; Indraratna, B.; Rujikiatkamjorn, C.

    2010-06-01

    Vertical drains combined with vacuum pressure and surcharge preloading are widely used to accelerate the consolidation process of soft clay in order to decrease the pore pressure as well as to increase the effective stress. Currently there are two types of vacuum preloading systems commercially available; (a) membrane system with an airtight membrane over the drainage layer and, (b) membraneless system where a vacuum system is connected to individual drain. Their effectiveness varies from site to site depending on the type of soil treated and the characteristics of the drain-vacuum system. This study presents the analytical solutions of vertical drains with vacuum preloading for both membrane and membraneless systems. According to the field and laboratory observations, the vacuum in both of the membraneless and membrane system was assumed to be decreasing along the drain whereas in the membrane system, it was maintained at a constant level. This model was verified by using the measured settlements and excess pore pressures obtained from large-scale laboratory testing and case studies in Australia. The analytical solutions improved the accuracy of predicting the dissipation of pore water pressure and the associated settlement. The effects of the permeability of the sand blanket in a membrane system and the possible loss of vacuum were also discussed.

  17. Cold Vacuum Drying Facility Crane and Hoist System Design Description (SYS 14)

    SciTech Connect

    TRAN, Y.S.

    2000-06-07

    This system design description (SDD) is for the Cold Vacuum Drying (CVD) Facility overhead crane and hoist system. The overhead crane and hoist system is a general service system. It is located in the process bays of the CVD Facility, supports the processes required to drain the water and dry the spent nuclear fuel (SNF) contained in the multi-canister overpacks (MCOs) after they have been removed from the K-Basins. The location of the system in the process bay is shown.

  18. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  19. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Rosenmann, Daniel; Preissner, Curt; Freeland, John W.; Kersell, Heath; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  20. Vacuum system of the high energy ring of an asymmetric B-factory based on PEP

    SciTech Connect

    Barletta, W.A.; Calderon, M.O.; Wong, R. ); Jenkins, T.M. )

    1991-05-07

    The multi-ampere currents required for high luminosity operation of an asymmetric B factory leads to extremely stressing requirements on a vacuum system suitable for maintaining long beam-gas lifetimes and acceptable background levels in the detector. We present the design for a Cu alloy vacuum chamber and its associated pumping system for the 9 GeV electron storage ring of the proposed B factory based on PEP. The excellent thermal and photo-desorption properties of Cu allows handling the high proton flux in a conventional, single chamber design with distributed ion pumps. The x-ray opacity of the Cu is sufficiently high that no additional lead shielding is necessary to protect the dipoles from the intense synchrotron radiation generated by the beam. The design allows chamber commissioning in <500 hr of operation. 5 refs., 3 figs., 2 tabs.

  1. Quantum dissipation in a neutrino system propagating in vacuum and in matter

    NASA Astrophysics Data System (ADS)

    Guzzo, Marcelo M.; de Holanda, Pedro C.; Oliveira, Roberto L. N.

    2016-07-01

    Considering the neutrino state like an open quantum system, we analyze its propagation in vacuum or in matter. After defining what can be called decoherence and relaxation effects, we show that in general the probabilities in vacuum and in constant matter can be written in a similar way, which is not an obvious result for such system. From this result, we analyze the situation where neutrino evolution satisfies the adiabatic limit and use this formalism to study solar neutrinos. We show that the decoherence effect may not be bounded by the solar neutrino data and review some results in the literature, in particular the current results where solar neutrinos were used to put bounds on decoherence effects through a model-dependent approach. We conclude explaining how and why these models are not general and we reinterpret these constraints.

  2. RELAP5 Model of the Vacuum Vessel Primary Heat Transfer System

    SciTech Connect

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    2010-07-01

    This report describes the RELAP5 models that have been developed for the Vacuum Vessel (VV) Primary Heat Transfer System (PHTS). The models are intended to be used to examine the transient performance of the VV PHTS, and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the models and to examine general VV PHTS transient behavior. The models can be used as a starting point to develop transient modeling capability in several directions including control system modeling, safety evaluations, etc, and are not intended to represent the final VV PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, heat exchanger control may not be necessary, and that temperatures within the vacuum vessel during decay heat operation remain low.

  3. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    NASA Astrophysics Data System (ADS)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy; Ardenkjær-Larsen, Jan Henrik

    2016-05-01

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation in the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.

  4. Surface decontamination using a teleoperated vehicle and Kelly spray/vacuum system

    SciTech Connect

    Zollinger, W.T.; Dyches, G.M.

    1990-01-01

    A commercial teleoperated wheeled vehicle was fitted with a modified commercial spray/vacuum decontamination system to allow floor and wall decontamination of an existing process room in one of the chemical separations areas at the Savannah River Site (SRS). Custom end-of-arm tooling was designed to provide sufficient compliance for routine cleaning operations. An operator console was designed to allow complete control of the vehicle base and are movements as well as viewing operations via multiple television monitors. 3 refs.

  5. Surface decontamination using a teleoperated vehicle and Kelly spray/vacuum system

    SciTech Connect

    Zollinger, W.T.; Dyches, G.M.

    1990-12-31

    A commercial teleoperated wheeled vehicle was fitted with a modified commercial spray/vacuum decontamination system to allow floor and wall decontamination of an existing process room in one of the chemical separations areas at the Savannah River Site (SRS). Custom end-of-arm tooling was designed to provide sufficient compliance for routine cleaning operations. An operator console was designed to allow complete control of the vehicle base and are movements as well as viewing operations via multiple television monitors. 3 refs.

  6. Endoscopic vacuum-assisted closure system (E-VAC): case report and review of the literature

    PubMed Central

    Borejsza-Wysocki, Maciej; Bobkiewicz, Adam; Malinger, Stanisław; Świrkowicz, Józef; Hermann, Jacek; Drews, Michał; Banasiewicz, Tomasz

    2015-01-01

    Negative pressure wound therapy (NPWT) has become a standard in the treatment of chronic and difficult healing wounds. Negative pressure wound therapy is applied to the wound via a special vacuum-sealed sponge. Nowadays, the endoscopic vacuum-assisted wound closure system (E-VAC) has been proven to be an important alternative in patients with upper and lower intestinal leakage not responding to standard endoscopic and/or surgical treatment procedures. Endoscopic vacuum-assisted wound closure system provides perfect wound drainage and closure of various kinds of defect and promotes tissue granulation. Our experience has shown that E-VAC may significantly improve the morbidity and mortality rate. Moreover, E-VAC may be useful in a multidisciplinary approach – from upper gastrointestinal to rectal surgery complications. On the other hand, major limitations of the E-VAC system are the necessity of repeated endoscopic interventions and constant presence of well-trained staff. Further, large-cohort studies need to be performed to establish the applicability and effectiveness of E-VAC before routine widespread use can be recommended. PMID:26240633

  7. A low cost imaging displacement measurement system for spacecraft thermal vacuum testing

    NASA Technical Reports Server (NTRS)

    Dempsey, Brian

    2006-01-01

    A low cost imaging displacement technique suitable for use in thermal vacuum testing was built and tested during thermal vacuum testing of the space infrared telescope facility (SIRTF, later renamed Spitzer infrared telescope facility). The problem was to measure the relative displacement of different portions of the spacecraft due to thermal expansion or contraction. Standard displacement measuring instrumentation could not be used because of the widely varying temperatures on the spacecraft and for fear of invalidating the thermal vacuum testing. The imaging system was conceived, designed, purchased, and installed in approximately 2 months at very low cost. The system performed beyond expectations proving that sub millimeter displacements could be measured from over 2 meters away. Using commercial optics it was possible to make displacement measurements down to 10 (mu)m. An automated image processing tool was used to process the data, which not only speeded up data reduction, but showed that velocities and accelerations could also be measured. Details of the design and capabilities of the system are discussed along with the results of the test on the observatory. Several images from the actual test are presented.

  8. Performance of the beam chamber vacuum system of K = 500 cyclotron at Variable Energy Cyclotron Centre Kolkata

    SciTech Connect

    Pal, Gautam DuttaGupta, Anjan; Chakrabarti, Alok

    2014-07-15

    The beam chamber of Variable Energy Cyclotron Centre, Kolkata's K = 500 superconducting cyclotron is pumped by liquid helium cooled cryopanel with liquid nitrogen cooled radiation shield. Performance of the vacuum system was evaluated by cooling the cryopanel assembly with liquid nitrogen and liquid helium. Direct measurement of beam chamber pressure is quite difficult because of space restrictions and the presence of high magnetic field. Pressure gauges were placed away from the beam chamber. The beam chamber pressure was evaluated using a Monte Carlo simulation software for vacuum system and compared with measurements. The details of the vacuum system, measurements, and estimation of pressure of the beam chamber are described in this paper.

  9. Six movements measurement system employed for GAIA secondary mirror positioning system vacuum tests at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Garranzo García-Ibarrola, Daniel; Belenguer Dávila, Tomás

    2008-07-01

    In this work, the optical measurement system employed to evaluate the performance of a 6 degrees of freedom (dof) positioning mechanism under cryogenic conditions is explored. The mechanism, the flight model of three translations and three rotations positioning mechanism, was developed by the Spanish company SENER (for ASTRIUM) to fulfil the high performance requirements from ESA technology preparatory program for the positioning of a secondary mirror within the GAIA Astrometric Mission. Its performance has been evaluated under vacuum and temperature controlled conditions (up to a 10-6mbar and 100K) at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA). After the description of the 'alignment tool' developed to compare a fixed reference with the optical signal corresponding to the movement under evaluation, the optical system that allows measuring the displacements and the rotations in the three space directions is reported on. Two similar bread-boards were defined and mounted for the measurements purpose, one containing two distancemeters, in order to measure the displacements through the corresponding axis, and an autocollimator in order to obtain the rotations on the plane whose normal vector is the axis mentioned before, and other one containing one distancemeter and one autocollimator. Both distancemeter and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions.

  10. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  11. A novel technique for cardiopulmonary bypass using vacuum system for venous drainage with pressure relief valve: an experimental study.

    PubMed

    Taketani, S; Sawa, Y; Masai, T; Ichikawa, H; Kagisaki, K; Yamaguchi, T; Ohtake, S; Matsuda, H

    1998-04-01

    To decrease the circuit priming volume, develop safety, and simplify the equipment, a cardiopulmonary bypass (CPB) circuit using a vacuum suction venous drainage system with a pressure relief valve was developed. The efficacy of this vacuum system was compared to that of a conventional siphon system. The system contains a powerful vacuum generator and a pressure relief valve to keep the negative pressure constant when blood suction is used. Using 8 mongrel dogs, the feasibility and the efficacy of this CPB system was tested. The changes in the negative pressure in the reservoir were within 5 mm Hg whether the suction lines were switched on or off. In all animals the amount of blood in the venous reservoir was stable throughout bypass. The decrease of priming volume was from 725 ml (siphon system) to 250 ml (vacuum system). At the end of CPB, the levels of hemoglobin in the vacuum system were significantly higher than those in the siphon system. These results demonstrated that this vacuum drainage system can provide simplification and a miniaturization of the cardiopulmonary bypass circuit resulting in low hemodilution during CPB.

  12. Repeating pulsed magnet system for axion-like particle searches and vacuum birefringence experiments

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Inada, T.; Namba, T.; Asai, S.; Kobayashi, T.; Matsuo, A.; Kindo, K.; Nojiri, H.

    2016-10-01

    We have developed a repeating pulsed magnet system which generates magnetic fields of about 10 T in a direction transverse to an incident beam over a length of 0.8 m with a repetition rate of 0.2 Hz. Its repetition rate is by two orders of magnitude higher than usual pulsed magnets. It is composed of four low resistance racetrack coils and a 30 kJ transportable capacitor bank as a power supply. The system aims at axion-like particle searches with a pulsed light source and vacuum birefringence measurements. We report on the details of the system and its performances.

  13. Versatile, low-cost, computer-controlled, sample positioning system for vacuum applications

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1991-01-01

    A versatile, low-cost, easy to implement, microprocessor-based motorized positioning system (MPS) suitable for accurate sample manipulation in a Second Ion Mass Spectrometry (SIMS) system, and for other ultra-high vacuum (UHV) applications was designed and built at NASA LeRC. The system can be operated manually or under computer control. In the latter case, local, as well as remote operation is possible via the IEEE-488 bus. The position of the sample can be controlled in three linear orthogonal and one angular coordinates.

  14. Plasticizer contamination from vacuum system O-rings in a quadrupole ion trap mass spectrometer.

    PubMed

    Verge, Kent M; Agnes, George R

    2002-08-01

    The outgassing of plasticizers from Buna-N and Viton o-rings under vacuum lead to undesired ion-molecule chemistry in an Electrospray Quadrupole Ion Trap Mass Spectrometer. In experiments with the helium bath gas pressure >1.2 mTorr, or whenever analyte ions were stored for >100 ms, extensive loss of analyte ions by proton transfer or adduction with o-ring plasticizers bis(2-ethylhexyl) phthalate and bis(2-ethylhexyl) adipate occurred. A temporary solution to this contamination problem was found to be overnight refluxing in hexane of all the o-rings in the vacuum system. This procedure alleviated this plasticizer contamination for approximately 100 hours of operation. These results, and those that lead to identification of the contamination as plasticizers outgassing from o-rings are described. PMID:12216729

  15. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  16. PBFA-2 vacuum system design using a lumped parameter computer model

    NASA Astrophysics Data System (ADS)

    Cap, J. S.; Schneider, L. X.; Boyes, J. D.

    The PBFA-2 vacuum vessel which houses the power flow lines and ion diode presented a difficult engineering problem in analyzing the pressure distribution throughout the chamber. The vessel utilizes a typical construction of stacked lucite and aluminum rings with their associated high outgassing loads. The transmission lines are a series of stacked cones and toroids that form an inter-connected network of annular pathways. Calculating the steady state pressure distribution required solving 30 simultaneous equations, and any transient solution was virtually impossible by hand. This paper describes a computer model developed using the direct analogy between fluid flow parameters and electrical parameters. This model can then be solved as a lumped parameter electrical circuit using the differential network analysis program, SCEPTRE. The overall design of the vacuum system, including the choice of helium cryopumps and water vapor cryopumps to handle the anticipated heavy water vapor load, is also discussed.

  17. Histologic validation of vacuum sealed, formalin-free tissue preservation, and transport system.

    PubMed

    Zarbo, Richard J

    2015-01-01

    We describe five validation trials of new vacuum sealing technologies that change the approach to the preanalytic "front end" of specimen transport, handling, and processing and illustrate their adaptation and integration into existing Lean laboratory operations with reduction in formalin use and personnel exposure to this toxic and potentially carcinogenic fixative. These trials provide histologic assessment by numerous pathologists of tissues processed in this new paradigm and define the financial advantages of applying this technology to the postanalytic or "back end" process of tissue storage. We conclude that the TisssueSAFE and SealSAFE vacuum sealing systems are both promising technologies for preserving fresh human specimens that can promote a safer environment by markedly reducing formalin use in operating room theaters and can minimize formalin use by laboratories. PMID:25636425

  18. Note: Fixture for characterizing electrochemical devices in-operando in traditional vacuum systems

    SciTech Connect

    Whaley, Josh A.; McDaniel, Anthony H.; El Gabaly, Farid; Farrow, Roger L.; Linne, Mark A.; McCarty, Kevin F.; Grass, Michael E.; Hussain, Zahid; Liu Zhi; Bluhm, Hendrik

    2010-08-15

    We describe a fixture that allows electrochemical devices to be studied under electrical bias in the type of vacuum systems commonly used in surface science. Three spring-loaded probes provide independent contacts for device operation and the characterization in vacuum or under in situ conditions with reactive gases. We document the robustness of the electrical contacts over large temperature changes and their reliability for conventional electrochemical measurements such as impedance spectroscopy. The optical access provided to the device enables the analysis by many techniques, as we demonstrate using x-ray photoelectron spectroscopy to measure local electrical potentials on a solid-oxide electrolyte device operating at high temperature in near-ambient pressure.

  19. Qualification of Target Chamber Vacuum Systems Cleanliness using Sol-Gel Coatings

    SciTech Connect

    Miller, P; Stowers, I F; Ertel, J R

    2006-01-03

    This document defines the procedure necessary to qualify the airborne molecular cleanliness (AMC) of vacuum systems (enclosures or large components) that are placed within the National Ignition Facility (NIF) target chamber or are attached to it and communicate with it during vacuum operation. This test is specific to the NIF target chamber because the allowable time dependent rate of rise in the pore filling of a sol-gel coated SAW sensor is based on some nominal change-out time for the disposable debris shields. These debris shields will be sol-gel coated and thus they represent a means of ''pumping'' AMCs from the target chamber. The debris shield pumping rate sets the allowable change in pore filling with time specified in the test procedure. This document describes a two-part procedure that provides both a static measurement of sol-gel pore filling at the end of a 48-hour test period and a dynamic record of pore-filling measured throughout the test period. Successful qualification of a vacuum system requires that both the static and dynamic measurements meet the criteria set forth in Section 7 of this document.

  20. Vertically configured collimator for cryogenic vacuum testing of meter scale optical systems

    NASA Astrophysics Data System (ADS)

    Sabatke, Derek; Meyer, Steve; Siegel, Noah; Byrd, Don; Spuhler, Peter; Atcheson, Paul; Martella, Mark; Penniman, Edwin

    2007-09-01

    Ball Aerospace has constructed a new collimator for interferometric and image quality testing of meter scale optical systems under cryogenic, vacuum conditions. Termed the Vertical Collimator Assembly (VCA), it features 1.5 m diameter off-axis parabolic and calibration flat mirrors. In order to preserve as large a volume as possible for the unit under test, the main platform is suspended inside its vacuum chamber by a hexapod, with the parabolic mirror mounted overhead. A simultaneous interferometer facilitates collimator alignment and monitoring, as well as wavefront quality measurements for the test unit. Diffusely illuminated targets may be employed for through-focus image quality measurements with pinholes and bar targets. Mechanical alignment errors induced by thermal and structural perturbations are monitored with a three-beam distance measuring interferometer to enable mid-test compensation. Sources for both interferometer systems are maintained at atmospheric pressure while still directly mounted to the main platform, reducing vibration and stability problems associated with thermal vacuum testing. Because path lengths inside the ambient pressure vessels are extremely short, problems related to air turbulence and layering are also mitigated. In-chamber support equipment is insulated and temperature controlled, allowing testing while the chamber shrouds and test unit are brought to cryogenic temperatures.

  1. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    SciTech Connect

    H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

    2006-05-01

    Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  2. Cold Vacuum Drying facility personnel monitoring system design description (SYS 12)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) instrument air (IA) system that provides instrument quality air to the CVDF. The IA system provides the instrument quality air used in the process, HVAC, and HVAC instruments. The IA system provides the process skids with air to aid in the purging of the annulus of the transport cask. The IA system provides air for the solenoid-operated valves and damper position controls for isolation, volume, and backdraft in the HVAC system. The IA system provides air for monitoring and control of the HVAC system, process instruments, gas-operated valves, and solenoid-operated instruments. The IA system also delivers air for operating hand tools in each of the process bays.

  3. Vacuum Rabi splitting effect in nanomechanical QED system with nonlinear resonator

    NASA Astrophysics Data System (ADS)

    Zhao, MingYue; Gao, YiBo

    2016-08-01

    Considering the intrinsic nonlinearity in a nanomechanical resonator coupled to a charge qubit, vacuum Rabi splitting effect is studied in a nanomechanical QED (qubit-resonator) system. A driven nonlinear Jaynes-Cummings model describes the dynamics of this qubit-resonator system. Using quantum regression theorem and master equation approach, we have calculated the two-time correlation spectrum analytically. In the weak driving limit, these analytical results clarify the influence of the driving strength and nonlinearity parameter on the correlation spectrum. Also, numerical calculations confirm these analytical results.

  4. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  5. Vacuum mechatronics first international workshop

    SciTech Connect

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. )

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  6. Methyl methacrylate levels in orthopedic surgery: comparison of two conventional vacuum mixing systems.

    PubMed

    Jelecevic, Jasmin; Maidanjuk, Stanislaw; Leithner, Andreas; Loewe, Kai; Kuehn, Klaus-Dieter

    2014-05-01

    Poly-methyl methacrylate bone cements contain methyl methacrylate (MMA), which is known for its sensitizing and toxic properties. Therefore, in most European countries and in the USA, guidelines or regulations exist for occupational exposures. The use of vacuum mixing systems can significantly reduce airborne MMA concentrations during bone setting. Our goal was to test two commonly used vacuum mixing systems (Palamix(®) and Optivac(®)) using Palacos(®) R bone cement for their effectiveness at preventing MMA vapor release in a series of standardized trials in a laboratory as well as in an operating theatre. MMA was quantified every second over a period of 3 min using a photoionization detector (MiniRAE(®) 3000) device positioned in the breathing area of the user. Significant differences in MMA mean vapor concentrations over 180 s were observed in the two experimental spaces, with the highest mean concentrations (7.61 and 7.98 ppm for Palamix(®) and Optivac(®), respectively) observed in a laboratory with nine air changes per hour and the lowest average concentrations (1.06 and 1.12 ppm for Palamix(®) and Optivac(®), respectively) in an operating theatre with laminar flow ventilation and 22 air changes per hour. No significant differences in overall MMA concentrations were found between the two vacuum mixing systems in either location. Though, differences were found between both systems during single mixing phases. Thus, typical handling of MMA in orthopedic procedures must be seen as not harmful as concentrations do not reach the short-term exposure limit of 100 ppm. Additionally, laminar airflow seems to have an influence on lowering MMA concentrations in operation theatres.

  7. SOIL VAPOR EXTRACTION SYSTEM DESIGN: A CASE STUDY COMPARING VACUUM AND POREGAS VELOCITY CUTOFF CRITERIA

    SciTech Connect

    Dixon, K; Ralph Nichols, R

    2006-07-24

    Soil vapor extraction (SVE) systems are typically designed based on the results of a vadose zone pumping test (transient or steady state) using a pressure criteria to establish the zone of influence (ZOI). A common problem associated with pressure based SVE design is overestimating the ZOI of the extraction well. The vacuum criteria commonly used to establish the boundary of the ZOI results in large areas with very low pore velocities and thus long cleanup times. As a result, design strategies based upon critical pore gas velocity (CPGV) have increased in popularity. The CPGV is used in an effort to loosely incorporate the effects of mass transfer limitations into the design of SVE systems. Critical pore gas velocity designs use a minimum pore gas velocity rather than minimum vacuum to identify the extent of the treatment zone of an SVE system. The CPGV is typically much larger than the pore gas velocity at the perimeter of vacuum based (ZOI) designs resulting in shorter cleanup times. In this paper, we report the results of testing performed at the Savannah River Site (SRS) to determine the influence of a vapor extraction well based upon both a pressure and pore gas velocity design criteria. Results from this testing show that a SVE system designed based upon a CPGV is more robust and will have shorter cleanup times due to increased flow throughout the treatment zone. Pressure based SVE design may be appropriate in applications where soil gas containment is the primary objective; however, in cases where the capture and removal of contaminated soil gas is the primary objective, CPGV is a better design criteria.

  8. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect

    J. C. Giglio; A. A. Jackson

    2012-03-01

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  9. Development of a two-color projection system for the KHILS Vacuum Cold Chamber (KVACC)

    NASA Astrophysics Data System (ADS)

    Flynn, David S.; Marlow, Steven A.; Kircher, James R.; Glattke, Eric W.; Murrer, Robert Lee; Weir, John S.

    2000-07-01

    The KHILS Vacuum Cold Chamber (KVACC) was developed to provide the capability of performing hardware-in-the-loop testing of infrared seekers requiring scenes involving cold backgrounds. Being able to project cold backgrounds enables the projector to simulate high-altitude exoatmospheric engagements. Previous tests with the KVACC projection system have used only one resistive-array projection device. In order to realistically stimulate a 2-color seeker, it is necessary to project in two, independently controlled IR bands. Missile interceptors commonly use two or more colors; thus, a 2-color projection capability has been developed for the KVACC system. The 2- color projection capability is being accomplished by optically combining two Phase 3 WISP arrays with a dichroic beam combiner. Both WISP arrays are cooled to user-selected temperatures ranging from ambient temperature to below 150 K. In order to test the projection system, a special-purpose camera has also been developed. The camera is designed to operate inside the vacuum chamber. It has a cooled, all- reflective broadband optical system to enable the measurement of low radiance levels in the 3 - 12 micrometer spectrum. Camera upgrades later this year will allow measurements in two independent wavebands. Both the camera and the projector will be described in this paper.

  10. Design and Analysis of Vacuum Pumping Systems for SNS DTL and CCL Linac

    SciTech Connect

    Shen, S; Tung, L; Kishiyama, K; Nederbragt, W; Bernardin,; Bustos, G; Gillis, R; Meyer, Sr, R

    2001-06-14

    The mechanical design of the vacuum pumping systems for SNS DTL (Drift Tube Linac) and CCL (Cavity Coupled Linac) linac systems is summarized. Both vacuum systems were modeled to select the optimal pump configuration. The pressure history in up to 182 sub-volumes was analyzed in detail. Included in the model are time-dependent outgassing rates and pressure-dependent pump speeds for a variety of gas species. With this information, we solved for the pressure history during roughing and with turbo and ion pumps. The number and size of each pump were optimized to achieve the desired pressure with minimal costs. In the optimized design, directly mounted ion pumps were provided for six DTL tanks. For four CCL modules (each in length of 12-15 m), ion pumps with manifolds were selected. With all metallic surface outgassing, seal leakage and expected gas loads from all diagnostic devices taken into account, the designed systems can provide operating drift-tube pressure below 1.8 x 10{sup -7} Torr and CCL beamline pressures below 9.2 x 10{sup -8} Torr even under abnormal conditions. Details of the design and the modeling results are presented.

  11. Influence of the electrode system on the emission characteristics of a vacuum spark

    SciTech Connect

    Bashutin, O. A. Alkhimova, M. A.; Vovchenko, E. D.; Dodulad, E. I.; Savelov, A. S.; Sarantsev, S. A.

    2013-11-15

    The influence of the electrode system on the emission characteristics of a high-current low-inductance vacuum spark is investigated. It is shown that the structure and composition of the spark plasma radiating in the X-ray spectral range depend substantially on the geometry and relative position of the electrodes. A mechanism related to the effect of the initial distribution of the electric field in the electrode gap is proposed to explain such a dependence. The conditions in which the radiating plasma forms from the erosion products of one or both electrodes are determined.

  12. O-Ring sealing arrangements for ultra-high vacuum systems

    DOEpatents

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  13. Application of MIVM for Sn-Zn System in Vacuum Distillation

    NASA Astrophysics Data System (ADS)

    Kong, LingXin; Yang, Bin; Xu, BaoQiang; Li, YiFu; Hu, Yuanshou; Liu, DaChun

    2015-03-01

    The activities of components of Sn-Zn system were predicted based on the molecular interaction volume model (MIVM). The separation coefficients and the vapor-liquid phase equilibrium of Sn-Zn system were also predicted using the MIVM. The predicted results indicated that the content of tin in the vapor phase was 0.000052 wt pct, while in the liquid phase, it was 99.98 wt pct at 1173 K (900 °C). Experimental investigations into the separation of Sn-Zn alloy by vacuum distillation were carried out for the proper interpretation of the predicted results. The effects of vacuum level (15 to 200 Pa), distillation temperatures [873 K to 1273 K (600 °C to 1000 °C)], and soaking time (20 to 60 minutes) were studied. The experimental results indicated that the content of tin in the vapor phase was 0.001 wt pct, while in the liquid phase, it was 99.98 wt pct at 1173 K (900 °C). The experimental results match well with the predicted data, suggesting that the MIVM is a suitable model for Sn-Zn system.

  14. Material Total Mass Loss in Vacuum Obtained From Various Outgassing Systems

    NASA Technical Reports Server (NTRS)

    Scialdone, John; Isaac, Peggy; Clatterbuck, Carroll; Hunkeler, Ronald

    2000-01-01

    Several instruments including the Cahn Microbalance, the Knudsen Cell, the micro-CVCM, and the vacuum Thermogravimetric Analyzer (TGA) were used in the testing of a graphite/epoxy (GR/EP) composite that is proposed for use as a rigidizing element of an inflatable deployment system. This GR/EP will be cured in situ. The purpose of this testing is to estimate the gaseous production resulting from the curing of the GR/EP composite, to predict the resulting pressure, and to calculate the required venting. Every test was conducted under vacuum at 125 degrees C for 24 hours. Upon comparison of the results, the ASTM E-595 was noted to have given readings that were consistently lower than those obtained using the other instruments, which otherwise provided similar results. The GR/EP was tested using several different geometric arrangements. This paper describes the analysis evaluating the molecular and continuum flow of the outgassing products issuing from the exit port of the ASTM E-595 system. The effective flow conductance provided by the physical dimensions of the vent passage of the ASTM E-595 system and that of the material sample among other factors were investigated to explain the reduced amount of outgassing released during the 24-hour test period.

  15. Geoscience Laser Altimeter System (GLAS) Instrument: Flight Loop Heat Pipe (LHP) Acceptance Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with

  16. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    SciTech Connect

    SINGH, G.

    2000-10-17

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  17. Modernization of the control system and the electrical equipment of DSV vacuum arc furnaces

    NASA Astrophysics Data System (ADS)

    Dednev, A. A.; Kisselman, M. A.; Nekhamin, S. M.; Kalinin, V. I.; Koshelev, Yu. N.

    2010-06-01

    The results of modernizing one of the DSV-3.2-G1 arc furnaces at OAO Elektrostal’ Metallurgical Works are presented. New automatic control system ACS DSV-3.2 with functions of maintenance, control, and correction of the main technical parameters of vacuum arc remelting is created. The electric furnace is equipped with a modern visual control system for a heat and a unique inert gas (helium) supply system. The rod motion drive is replaced by a modern drive with frequency control of its motion velocity. New control cabinet and desk made of modern elements are mounted. Melting of a pilot series of EP-718 alloy ingots supports the high quality and reliability of the new control systems.

  18. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  19. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air

    SciTech Connect

    Ryberg, D.; Fierro, A.; Dickens, J.; Neuber, A.

    2014-10-15

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF{sub 6}, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization.

  20. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air.

    PubMed

    Ryberg, D; Fierro, A; Dickens, J; Neuber, A

    2014-10-01

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF6, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization. PMID:25362373

  1. IMPEDANCE CONSIDERATIONS FOR THE DESIGN OF THE VACUUM SYSTEM OF THE CERN PS2

    SciTech Connect

    Bane, K.L.F.; Stupakov, G.; Wienands, U.; Benedikt, M.; Grudiev, A.; Mahner, E.; /SLAC /CERN

    2010-08-26

    In order for the LHC to reach an ultimate luminosity goal of 10{sup 35}/cm{sup 2}/s, CERN is considering upgrade options for the LHC injector chain, including a new 50 GeV synchrotron of about 1.3 km length for protons and heavy ions, to be called the PS2 [1]. The proton energy will be ramped from 4 GeV to 50 GeV in 1.2 s, and the design proton current for LHC operation is 2.7 A. In the LARP framework, we are studying the instability thresholds and the impedance requirements of the vacuum system for the PS2. Goal of this study is to develop an impedance budget for the machine. We consider the standard single and multi-bunch collective effects that may be an issue in the PS2. For single bunch, we study the microwave instability and the transverse mode coupling instability (TMCI); for multi-bunch, the transverse coupled bunch instability. While the impedance budget will include many components in the machine, at present, we only have sufficient information to include the resistance of the beam pipe, the vacuum flanges that connect the various pieces of the vacuum chamber, and space charge impedance in our estimate. Note that earlier estimates of the impedance and its effects in the PS2 can be found in Ref. [2]. Table 1 presents selected PS2 parameters that will be used in the calculations. The equations used, unless indicated otherwise, can be found in Ref. [3].

  2. Construction and measurements of an improved vacuum-swing-adsorption radon-mitigation system

    NASA Astrophysics Data System (ADS)

    Street, J.; Bunker, R.; Dunagan, C.; Loose, X.; Schnee, R. W.; Stark, M.; Sundarnath, K.; Tronstad, D.

    2015-08-01

    In order to reduce backgrounds from radon-daughter plate-out onto detector surfaces, an ultra-low-radon cleanroom is being commissioned at the South Dakota School of Mines and Technology. An improved vacuum-swing-adsorption radon mitigation system and cleanroom build upon a previous design implemented at Syracuse University that achieved radon levels of ˜0.2 Bq m-3. This improved system will employ a better pump and larger carbon beds feeding a redesigned cleanroom with an internal HVAC unit and aged water for humidification. With the rebuilt (original) radon mitigation system, the new low-radon cleanroom has already achieved a > 300× reduction from an input activity of 58.6 ± 0.7 Bq m-3 to a cleanroom activity of 0.13 ± 0.06 Bq m-3.

  3. Construction and measurements of an improved vacuum-swing-adsorption radon-mitigation system

    SciTech Connect

    Street, J. Bunker, R.; Dunagan, C.; Loose, X.; Schnee, R. W.; Stark, M.; Sundarnath, K.; Tronstad, D.

    2015-08-17

    In order to reduce backgrounds from radon-daughter plate-out onto detector surfaces, an ultra-low-radon cleanroom is being commissioned at the South Dakota School of Mines and Technology. An improved vacuum-swing-adsorption radon mitigation system and cleanroom build upon a previous design implemented at Syracuse University that achieved radon levels of ∼0.2 Bq m{sup −3}. This improved system will employ a better pump and larger carbon beds feeding a redesigned cleanroom with an internal HVAC unit and aged water for humidification. With the rebuilt (original) radon mitigation system, the new low-radon cleanroom has already achieved a > 300× reduction from an input activity of 58.6 ± 0.7 Bq m{sup −3} to a cleanroom activity of 0.13 ± 0.06 Bq m{sup −3}.

  4. Electro-magnetic stress-induced degradation of insulation vacuum of a large cryo-magnetic system

    NASA Astrophysics Data System (ADS)

    Bhattachryya, Pranab; Gupta, Anjan Dutta; Dhar, S.; Pal, Gautam; Mukherjee, Paramita

    2016-07-01

    In superconducting magnets, the cold mass is placed in a vacuum vessel to reduce heat load to the liquid helium system. Helium leaks into the vacuum vessel can degrade the insulation vacuum, which can, in turn, cause an increase in the heat load to the liquid helium system. These leaks are called cold leaks, as they show up when the coil is cooled with liquid helium. K500 superconducting cyclotron magnet at Variable Energy Cyclotron Centre, Kolkata has such cold leaks in the helium vessel that developed during cool down. The leak rate increases with the increase of current in the superconducting coils. This paper describes a series of experiments carried out on the superconducting cyclotron magnet to find the level of degradation of insulation vacuum and measure the increase in heat load with magnet current. The leak rate was also measured and the leak size was estimated analytically. Detail magneto-structural analysis was done using Finite Element Method (FEM) to identify highly stressed zones in the helium vessel and found out that highly stressed zones coincide with the weld zones. The magneto-structural stress was applied on an estimated size of single crack and found that crack tip stress could reach beyond elastic limit of the material. We can predict that the full design current may be unachievable in this situation. Mitigation of increased heat load was also done using an additional vacuum pump for the insulation vacuum space.

  5. Antenna-based ultrahigh vacuum microwave frequency scanning tunneling microscopy system.

    PubMed

    Giridharagopal, Rajiv; Zhang, Jun; Kelly, Kevin F

    2011-05-01

    The instrumental synthesis of high resolution scanning tunneling microscopy (STM) with the ability to measure differential capacitance with atomic scale resolution is highly desirable for fundamental metrology and for the study of novel physical characteristics. Microwave frequency radiation directed at the tip-sample junction in an STM system allows for such high-resolution differential capacitance information. This ability is particularly critical in ultrahigh vacuum environments, where the additional parameter space afforded by including a capacitance measurement would prove powerful. Here we describe the modifications made to a commercial scanning tunneling microscope to allow for broad microwave frequency alternating current scanning tunneling microscopy (ACSTM) in ultrahigh vacuum conditions using a relatively simple loop antenna and microwave difference frequency detection. The advantages of our system are twofold. First, the use of a removable antenna on a commercial STM prevents interference with other UHV processes while providing a simple method to retrofit any commercial UHV-STM with UHV-ACSTM capability. Second, mounting the microwave antenna on a translator allows for specific tuning of the system to replicate experimental conditions between samples, which is particularly critical in sensitive systems like organic thin films or single molecules where small changes in incident power can affect the results. Our innovation therefore provides a valuable approach to give nearly any commercial STM, be it an ambient or UHV system, the capability to measure atomic-scale microwave studies such as differential capacitance or even single molecule microwave response, and it ensures that experimental ACSTM conditions can be held constant between different samples. PMID:21639510

  6. Non Evaporable Getter (NEG) Coatings for Vacuum Systems in Synchrotron Radiation Facilities

    NASA Astrophysics Data System (ADS)

    Manini, Paolo; Conte, Andrea; Raimondi, Stefano; Bonucci, Antonio

    2007-01-01

    Non evaporable Getter (NEG) films, sputter deposited onto the internal surfaces of vacuum chambers, have been proposed by CERN to substantially reduce the gas pressure in UHV-XHV systems. The NEG film acts as a conductance-free distributed pump inside a chamber. Being a barrier for gases it also reduces thermal out-gassing, thus allowing the achievement of very demanding pressure conditions. These features are ideal for very narrow, conductance limited chambers, like Insertion Devices, which cannot be always efficiently pumped by ordinary means. Recent investigations have also shown that NEG coatings do present additional interesting features, like low secondary electron yield and low gas de-sorption rates under ions, electrons and photons bombardment, compared to traditional technical surfaces. Experimental tests, carried out in several high energy machines and synchrotron radiations facilities have so far confirmed the benefits of NEG films in term of better vacuum, longer beam life time and stability, simplified machine design, reduced conditioning time and overall improved machine performances. For these reasons, NEG coating technology is now gaining increasing attention and it is seriously considered for upgrades in a number of machines and for future projects. In the present paper, we report SAES getters experience on NEG coating of chambers of different geometries, materials and sizes for a variety of projects related to synchrotron radiation facilities. Examples of applications in various machines, as well as typical issues related to chambers preparation, film deposition, quality control and characterization, are given.

  7. Resolving the vacuum fluctuations of an optomechanical system using an artificial atom

    NASA Astrophysics Data System (ADS)

    Lecocq, F.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W.

    2015-08-01

    Heisenberg’s uncertainty principle results in one of the strangest quantum behaviours: a mechanical oscillator can never truly be at rest. Even at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. However, direct energy detection of the oscillator in its ground state makes it seem motionless, and in linear position measurements detector noise can masquerade as mechanical fluctuations. Thus, how can we resolve quantum fluctuations? Here, we parametrically couple a micromechanical oscillator to a microwave cavity to prepare the system in its quantum ground state and then amplify the remaining vacuum fluctuations into real energy quanta. We monitor the photon/phonon-number distributions using a superconducting qubit, allowing us to resolve the quantum vacuum fluctuations of the macroscopic oscillator’s motion. Our results further demonstrate the ability to control a long-lived mechanical oscillator using a non-Gaussian resource, directly enabling applications in quantum information processing and enhanced detection of displacement and forces.

  8. Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  9. Energy, Vacuum, Gas Fueling, and Security Systems for the Spherical Tokamak MEDUSA-CR

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jeferson; Soto, Christian; Carvajal, Johan; Ribeiro, Celso

    2013-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14 m, a < 0.10 m, BT < 0.5 T, Ip < 40 kA, 3 ms pulse) is being recommissioned in Costa Rica Institute of Technology. The main objectives of the MEDUSA-CR project are training and to clarify several issues in relevant physics for conventional and mainly STs, including beta studies in bean-shaped ST plasmas, transport, heating and current drive via Alfvén wave, and natural divertor STs with ergodic magnetic limiter. We present here the energy, vacuum, gas fueling, and security systems for MEDUSA-CR device. The interface with the control and data acquisition systems based on National Instruments (NI) software (LabView) and hardware (on loan to our laboratory via NI-Costa Rica) are also presented. VIE-ITCR, IAEA-CRP contract 17592, National Instruments of Costa Rica.

  10. Operation of a Thin-Film Inflatable Concentrator System Demonstrated in a Solar Thermal Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Thin-film inflatable solar concentrators offer significant advantages in comparison to stateof- the-art rigid panel concentrators, including low weight, low stowage volume, and simple gas deployment. From June 10 to 22, 2001, the ElectroMagnetic Radiation Control Experiment (EMRCE) Team used simulated solar energy to demonstrate the operation of an inflatable concentrator system at NASA Glenn Research Center's Tank 6 thermal vacuum facility. The joint Government/industry test team was composed of engineers and technicians from Glenn, the Air Force Research Laboratory, SRS Technologies, and ATK Thiokol Propulsion. The research hardware consisted of the following: 1) A thin-film inflatable concentrator; 2) The hexapod pointing and focus control system; 3) Two rigidized support struts using two candidate technologies - ultraviolet-rigidized glass and radiation-cured isographite.

  11. Use of vacuum arc plasma guns for a metal puff Z-pinch system

    SciTech Connect

    Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Baksht, R. B.

    2011-09-15

    The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of the Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.

  12. Stereotactic vacuum-assisted biopsies on a digital breast 3D-tomosynthesis system.

    PubMed

    Viala, Juliette; Gignier, Pierre; Perret, Baudouin; Hovasse, Claudie; Hovasse, Denis; Chancelier-Galan, Marie-Dominique; Bornet, Gregoire; Hamrouni, Adel; Lasry, Jean-Louis; Convard, Jean-Paul

    2013-01-01

    The purpose of this study was to describe our operating process and to report results of 118 stereotactic vacuum-assisted biopsies performed on a digital breast 3D-tomosynthesis system. From October 2009 to December 2010, 118 stereotactic vacuum assisted biopsies have been performed on a digital breast 3D-tomosynthesis system. Informed consent was obtained for all patients. A total of 106 patients had a lesion, six had two lesions. Sixty-one lesions were clusters of micro-calcifications, 54 were masses and three were architectural distortions. Patients were in lateral decubitus position to allow shortest skin-target approach (or sitting). Specific compression paddle, adapted on the system, performed, and graduated, allowing localization in X-Y. Tomosynthesis views define the depth of lesion. Graduated Coaxial localization kit determines the beginning of the biopsy window. Biopsies were performed with an ATEC-Suros, 9 Gauge handpiece. All biopsies, except one, have reached the lesions. Five hemorrhages were incurred in the process, but no interruption was needed. Eight breast hematomas, were all spontaneously resolved. One was an infection. About 40% of patients had a skin ecchymosis. Processing is fast, easy, and requires lower irradiation dose than with classical stereotactic biopsies. Histology analysis reported 45 benign clusters of micro-calcifications, 16 malignant clusters of micro-calcifications, 24 benign masses, and 33 malignant masses. Of 13 malignant lesions, digital 2D-mammography failed to detect eight lesions and underestimated the classification of five lesions. Digital breast 3D-tomosynthesis depicts malignant lesions not visualized on digital 2D-mammography. Development of tomosynthesis biopsy unit integrated to stereotactic system will permit histology analysis for suspicious lesions.

  13. Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels

    SciTech Connect

    Childs, Kenneth W; Stovall, Therese K; Biswas, Kaushik; Carbary, Lawrence D

    2013-01-01

    A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential system performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.

  14. Design and installation of a low particulate, ultrahigh vacuum system for a high power free-electron laser

    SciTech Connect

    Fred Dylla; George Biallas; Butch Dillon-Townes; Erich Feldl; Ganapati Rao Myneni; Jim Parkinson; Joe Preble; Tim Siggins; S. Williams; Mark Wiseman

    1999-03-01

    A high-average power (kW) infrared (IR) free-electron laser (FEL) is currently being commissioned for the Jefferson Laboratory FEL User Facility. The IR FEL is driven by a unique superconducting rf linac which is recirculated to recover electron beam power that is not radiated in the FEL. The design and installation of the vacuum system for the FEL involved particular attention to minimizing particulate contamination which could cause problems with the superconducting acceleration cavities and the high power FEL optics. Particulate contamination levels of all vacuum components were monitored during the cleaning process using laser scattering. Cleaning, transport, and installation procedures were developed to minimize the contamination of the complete system. We will summarize a data base we compiled of particulate contamination levels of the various components installed in the FEL vacuum system.

  15. Vacuum distillation: vapor filtered-catalytic oxidation water reclamation system utilizing radioisotopes

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Kurg, E. K.

    1971-01-01

    The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.

  16. [Development and design of a new sonography rigid bronchoscopy and corollary vacuum-assisted biopsy device system].

    PubMed

    Zhang, Li; Zhang, Xiangdong; Tan, Xiaojiang; Zhang, Ruixiang; Dong, Fuwen

    2014-02-01

    The present study was to develop and design a new sonography rigid bronchoscopy and corollary vacuum-assisted biopsy device system with less injury and complication. The system combined ultrasonic-probe with ultrasound catheter, a new medical ultrasound technique, and rigid bronchoscopy (RB) which is improved with an auxiliary vacuum-assisted biopsy device. The principle of the device is vacuum suction and rotary knife. The reduced outer diameter of the RB led to less pain and lower complications for the patient. With the help of ultrasonic-probe (30 MHz), lesions and blood vessels can be identified clearly and unintentional puncture and damage to blood vessels can be avoided. Plenty of lesions can be obtained quickly through the vacuum-assisted biopsy device without getting puncture needle in and out repeatedly. The novel endobronchial sonography rigid bronchoscopy and matched vacuum-assisted biopsy device has many remarkable advantages. It can enlarge the applied range of the RB from endobronchial to mediastinal lesions, avoiding unintentional puncture of vessels. Obtaining multiple samples with a higher accuracy rate than that by other sampling techniques, minimizing operation time, alleviating pain and decreasing the complication rate, the system makes up the technical deficiency for the diagnosis and treatment of the mediastinal lesions, to a certain degree.

  17. Vacuum Hold-Down System for Heat-Treating Thin Films

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1987-01-01

    In improved furnace concept for heat-treating thin films, vacuum ports in vacuum plate(s) hold films connected together in zones so vacuum applied separately to each zone. Allows material being held to shrink or expand while still being held in place. Unclamped zones expand or contract , relieving local stresses so entire sheet accommades thermally induced changes without cracking. Applications include manufacture of thin semiconductor films for solar cells and of membranes for electrolytic production of oxygen.

  18. Vacuum Deployment and Testing of a 4-Quadrant Scalable Inflatable Solar Sail System

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Derbes, Billy; Galena, Daisy; Friese, Dave

    2005-01-01

    Solar sails reflect photons streaming from the sun and transfer momentum to the sail. The thrust, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful missions utilizing solar sail propulsion. The team of L'Garde, Jet Propulsion Laboratories, Ball Aerospace, and Langley Research Center, under the direction of the NASA In-Space Propulsion office, has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The baseline design currently in development and testing was optimized around the 1 AU solar sentinel mission. Featuring inflatably deployed sub-T(sub g), rigidized beam components, the 10,000 sq m sail and support structure weighs only 47.5 kg, including margin, yielding an areal density of 4.8 g/sq m. Striped sail architecture, net/membrane sail design, and L'Garde's conical boom deployment technique allows scalability without high mass penalties. This same structural concept can be scaled to meet and exceed the requirements of a number of other useful NASA missions. This paper discusses the interim accomplishments of phase 3 of a 3-phase NASA program to advance the technology readiness level (TRL) of the solar sail system from 3 toward a technology readiness level of 6 in 2005. Under earlier phases of the program many test articles have been fabricated and tested successfully. Most notably an unprecedented 4-quadrant 10 m solar sail ground test article was fabricated, subjected to launch environment tests, and was successfully deployed under simulated space conditions at NASA Plum Brook s 30m vacuum facility. Phase 2 of the program has seen much development and testing of this design validating assumptions, mass estimates, and predicted mission scalability. Under Phase 3 a much larger 20 m square test article including subscale vane has been fabricated and tested. A 20 m system

  19. TATRA: a versatile high-vacuum tape transportation system for decay studies at radioactive-ion beam facilities

    NASA Astrophysics Data System (ADS)

    Matoušek, V.; Sedlák, M.; Venhart, M.; Janičkovič, D.; Kliman, J.; Petrík, K.; Švec, P.; Švec, , P.; Veselský, M.

    2016-03-01

    A compact and versatile tape transport system for the collection and counting of radioactive samples from radioactive ion beam facilities has been developed. It uses an amorphous metallic tape for transportation of the activity. Because of this material, the system can hold very good vacuum, typically below 10-7 mbar.

  20. Multiple internal seal ring micro-electro-mechanical system vacuum packaging method

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Bae, Youngsam (Inventor); Wiberg, Dean V. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum packaging method that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  1. Construction and measurements of a vacuum-swing-adsorption radon-mitigation system

    SciTech Connect

    Schnee, R. W.; Bunker, R.; Ghulam, G.; Jardin, D.; Kos, M.; Tenney, A. S.

    2013-08-08

    Long-lived alpha and beta emitters in the {sup 222}Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the Beta Cage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ∼20× reduction at its output, from 7.47±0.56 to 0.37±0.12 Bq/m{sup 3}, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m{sup 3}.

  2. Construction and measurements of a vacuum-swing-adsorption radon-mitigation system

    NASA Astrophysics Data System (ADS)

    Schnee, R. W.; Bunker, R.; Ghulam, G.; Jardin, D.; Kos, M.; Tenney, A. S.

    2013-08-01

    Long-lived alpha and beta emitters in the 222Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the Beta Cage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ˜20× reduction at its output, from 7.47±0.56 to 0.37±0.12 Bq/m3, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m3.

  3. Multiple internal seal right micro-electro-mechanical system vacuum package

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Bae, Youngsam (Inventor); Wiberg, Dean V. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2007-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum package that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  4. Microstructure evolution and density behavior of CP Ti parts elaborated by Self-developed vacuum selective laser melting system

    NASA Astrophysics Data System (ADS)

    Zhang, Baicheng; Liao, Hanlin; Coddet, Christian

    2013-08-01

    This work mainly focuses on the evolution of density behavior and microstructure of commercial pure (CP) Ti parts elaborated by SLM under vacuum system (1 × 10-4 bar) developed at the IRTES-LERMPS laboratory. The mechanism of melt and evaporation process during selective laser melting (SLM) under vacuum environment is also presented in this paper. The surface quality, density and microhardness of Ti samples were measured as a mechanical property. Fine hexagonal crystal structure of α can be found with low scanning velocity, martensitic formation α‧ can be observed with high scanning velocity, the method of scanning twice can enlarge the of grain size. A systemic SLM process under vacuum is proposed to calculate the maximum temperature of the molten pool and reveals the evolution of the solidification of melting pool under the laser beam irradiation.

  5. Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum

    NASA Astrophysics Data System (ADS)

    Starosvetsky, Y.; Ben-Meir, Y.

    2013-06-01

    In the present paper we study the mechanism that leads to the formation of regular patterns of energy localization and complete recurrent energy transport in the homogeneous systems of anharmonic oscillators and oscillatory chains subjected to a state of sonic vacuum. The basic model under investigation comprises a system of purely anharmonic oscillators as well as oscillatory chains given to a localized excitation where the initial energy is imported to one of the oscillators or oscillatory chains. The results of numerical simulations reveal the existence of a strong classical beating phenomenon, characterized by complete, recurrent, resonant energy exchanges between the oscillators and oscillatory chain and this in the state of sonic vacuum where no regular resonant frequencies can be defined. In this study we show that formation of the recurrent energy exchanges in this highly degenerate model is strictly stipulated by the system parameters. Thus, for instance, choosing the parameter of coupling below a certain threshold leads to significant energy localization on one of the oscillators or oscillatory chains. However, increasing the strength of coupling above the threshold leads to the formation of a strong beating response. The analytical study pursued in this paper predicts the origin of formation of a strong beating phenomenon and provides the necessary conditions on the system parameter for its excitation. Moreover, careful analysis of the beating phenomenon reveals the qualitatively different global bifurcation undergone by this type of highly nonstationary regime. The theoretical study is further extended to the system of coupled purely anharmonic lattices. Thus we show analytically and numerically that excitation of some particular solutions (e.g., spatially periodic standing waves and standing breathers) on one of the lattices results in the formation of similar patterns of energy (wave) localization as well as the regime of complete recurrent interchain

  6. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    SciTech Connect

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T.; Rasmussen, David A.; Hechler, Michael P.; Pearce, Robert J. H.; Dremel, Mattias; Boissin, J.-C.

    2014-01-29

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  7. Vacuum Rabi oscillations observed in a flux qubit LC-oscillator system

    NASA Astrophysics Data System (ADS)

    Semba, Kouichi

    2007-03-01

    Superconducting circuit containing Josephson junctions is one of the promising candidates as a quantum bit (qubit) which is an essential ingredient for quantum computation [1]. A three-junction flux qubit [2] is one of such candidates. On the basis of fundamental qubit operations [3,4], the cavity QED like experiments are possible on a superconductor chip by replacing an atom with a flux qubit, and a high-Q cavity with a superconducting LC-circuit. By measuring qubit state just after the resonant interaction with the LC harmonic oscillator, we have succeeded in time domain experiment of vacuum Rabi oscillations, exchange of a single energy quantum, in a superconducting flux qubit LC harmonic oscillator system [5]. The observed vacuum Rabi frequency 140 MHz is roughly 2800 times larger than that of Rydberg atom coupled to a single photon in a high-Q cavity [6]. This is a direct evidence that strong coupling condition can be rather easily established in the case of macroscopic superconducting quantum circuit. We are also considering this quantum LC oscillator as a quantum information bus by sharing it with many flux qubits, then spatially separated qubits can be controlled coherently by a set of microwave pulses. [1] F. Wilhelm and K. Semba, in Physical Realizations of Quantum Computing: Are the DiVincenzo Criteria Fulfilled in 2004?, (World Scientific; April, 2006) [2] J. E. Mooij et al., Science 285, 1036 (1999). [3] T. Kutsuzawa et al., Appl. Phys. Lett. 87, 073501 (2005). [4] S. Saito et al., Phys. Rev. Lett. 96, 107001 (2006). [5] J. Johansson et al., Phys. Rev. Lett. 93, 127006 (2006). [6] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).

  8. Evaluation of Static Mixer Flow Enhancements for Cryogenic Viscous Compressor Prototype for ITER Vacuum System

    SciTech Connect

    Duckworth, Robert C; Baylor, Larry R; Meitner, Steven J; Combs, Stephen Kirk; Ha, Tam T; Morrow, Michael; Biewer, Theodore M; Rasmussen, David A; Hechler, Michael P; Pearce, R.J.H.; Dremel, M.; Boissin, Jean Claude

    2014-01-01

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (50 to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype

  9. Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System

    SciTech Connect

    Carbajo, Juan J; Yoder Jr, Graydon L; Dell'Orco, Giovanni; Curd, Warren; Kim, Seokho H

    2010-01-01

    A RELAP5-3D model of the ITER (Latin for the way ) vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.

  10. Application of MIVM for Pb-Sn System in Vacuum Distillation

    NASA Astrophysics Data System (ADS)

    Kong, Lingxin; Yang, Bin; Li, Yifu; Xu, Baoqiang; Liu, Dachun; Jia, Guobin

    2012-12-01

    The activity coefficients of components of the Pb-Sn binary alloy system were calculated based on the molecular interaction volume model (MIVM). A significant advantage of this model lies in its ability to predict the thermodynamic properties of liquid alloys using only two binary infinite activity coefficients. Based on the MIVM, the vapor-liquid phase equilibrium of the Pb-Sn alloy system in vacuum distillation has been predicted using the activity coefficients of Pb and Sn. The results showed that the content of tin in the vapor phase was 0.008 wt pct, while in the liquid phase, it was 83 wt pct at 1173 K (900 °C); it reached 0.022 wt pct in the vapor phase, while in the liquid phase, it was 92 wt pct at 1223 K (950 °C); and it was 0.052 wt pct in the vapor phase, while in the liquid phase, it was 97.88 wt pct at 1273 K (1000 °C). The content of tin in the vapor phase increased with the distillation temperature increasing. Experimental investigations into the separation of Pb and Sn from the Pb-Sn alloy by vacuum distillation were carried out for the proper interpretation of the results of the model. The influence of the distillation time (20 to 80 minutes) and the distillation temperatures of 1173 K, 1223 K, and 1273 K (900 °C, 950 °C, and 1000 °C) on the separating effect was also studied. The experimental results showed that the content of tin in the vapor phase was 0.085 wt pct, while in liquid phase, it was 83 wt pct under the operational conditions of distillation temperature of 1173 K (900 °C), evaporation time of 20 minutes, and chamber pressure of 20 Pa; it reached 0.18 wt pct in the vapor phase, while in the liquid phase, it was 92 wt pct at 1223 K (950 °C), 20 minutes, and 20 Pa; and it was 0.35 wt pct in the vapor phase, while in the liquid phase, it was 97.88 wt pct at 1273 K (1000 °C), 20 minutes, and 20 Pa. In all these experiments, it was observed that the content of tin in the vapor phase increased as the distillation time and

  11. Field-induced decay of the quantum vacuum: Visualizing pair production in a classical photonic system

    SciTech Connect

    Longhi, S.

    2010-02-15

    The phenomenon of vacuum decay, that is, electron-positron pair production due to the instability of the quantum electrodynamics vacuum in an external field, is a remarkable prediction of Dirac theory whose experimental observation is still lacking. Here a classic wave optics analog of vacuum decay, based on light propagation in curved waveguide superlattices, is proposed. This photonic analog enables a simple and experimentally accessible visualization in space of the process of pair production as breakup of an initially negative-energy Gaussian wave packet, representing an electron in the Dirac sea, under the influence of an oscillating electric field.

  12. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    NASA Astrophysics Data System (ADS)

    Fabian, P. E.; Munshi, N. A.; Denis, R. J.

    2002-05-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 108 Gy.

  13. Comparison of Alternatives to the 2004 Vacuum Vessel Heat Transfer System

    SciTech Connect

    Yoder Jr, Graydon L; Carbajo, Juan J; Kim, Seokho H

    2010-12-01

    A study comparing different alternatives for the Vacuum Vessel Primary Heat Transfer System has been completed. Three alternatives were proposed in a Project Change Request (PCR-190) by relocating the heat exchangers (HXs) from the roof of the Tokamak building to inside the Vacuum Vessel Pressure Suppression System (VVPSS) tank. The study evaluated the three alternatives and recommended modifications to one of them to arrive at a preferred configuration that included relocating the HXs inside the Tokamak building but outside the VVPSS tank as well as including a small safety-rated pump and HX in parallel to the main circulation pump and HX. The Vacuum Vessel (VV) Primary Heat Transfer System (PHTS) removes heat generated in the VV during normal operation (10 MW, pulsed power) as well as the decay heat from the VV itself and from the structures/components attached to the VV (first wall, blanket, and divertor {approx}0.48 MW peak). Therefore, the VV PHTS has two safety functions: (1) contain contaminated cooling water (similar to the other PHTSs) and (2) provide passive cooling during an accident event. The 2004 design of the VV PHTS consists of two independent loops, each loop cooling half of the 18 VV segments with a nominal flow of 475 kg/s of water at about 1.1 MPa and 100 C. The total flow for both loops is 950 kg/s. Both loops are required to remove the heat load during normal plasma operation. During accident conditions, only one loop is needed to remove by natural convection (no pump needed) the decay heat of the complete VV and attached components. The heat is transferred to heat exchanger (HXs) located on top of the roof, outside the Tokamak building. These HXs are air-to-water (A/W) HXs. Three alternatives have been proposed for this cooling system. For a detailed discussion of these alternatives, please refer to Project Change Request, PCR-190 (Ref. 1). A brief introduction is given here. Alternative 1 includes only one main forced circulation loop with a

  14. LTC America`s, Inc. PTC-6 vacuum system (metal): Baseline report

    SciTech Connect

    1997-07-31

    The LTC coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC coating removal system consisted of several hand tools, a Roto Peen scaler, and a needlegun. They are designed to remove coatings from steel, concrete, brick, and wood. These hand tools are used with the LTC PTC-6 vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. The dust exposure was minimal but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  15. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    SciTech Connect

    NELSON, J.V.

    1999-05-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  16. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  17. Introduction to total- and partial-pressure measurements in vacuum systems

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Kern, F. A.

    1989-01-01

    An introduction to the fundamentals of total and partial pressure measurement in the vacuum regime (760 x 10 to the -16th power Torr) is presented. The instrument most often used in scientific fields requiring vacuum measurement are discussed with special emphasis on ionization type gauges and quadrupole mass spectrometers. Some attention is also given to potential errors in measurement as well as calibration techniques.

  18. TFTR diagnostic vacuum controller

    SciTech Connect

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  19. High Power Proton Accelerator Development at KAERI and its Vacuum System

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Ho; Park, Mi Young; Kim, Kui Young; Kim, Kye Ryung; Kim, Jun Yeon; Cho, Yong-Sub

    The Proton Engineering Frontier Project (PEFP), approved and launched by the Korean government in July 2002, includes a 100 MeV proton linear accelerator (linac) development and programs for its utilization and application. The main goals in the first phase of the project, spanning from 2002 to 2005, were the design of a 100 MeV proton linac and the development of a 20 MeV linac consisting of a 50 keV proton injector, a 3 MeV radio frequency quadrupole (RFQ), and a 20 MeV drift tube linac (DTL). The 50 keV injector and 3 MeV RFQ have been installed and tested, and the 20 MeV DTL is being assembled, tuned and under a beam test. At the same time, the utilization programs using the proton beam have been planned, and some are now under way. The vacuum system of the 20 MeV proton linac and its related issues, especially in operation with a high duty, are discussed in detail.

  20. Thermal Vacuum/Balance Test Results of Swift BAT with Loop Heat Pipe Thermal System

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2004-01-01

    The Swift Burst Alert Telescope (BAT) Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate PAP), and two loop heat pipes (LHPs) transport heat from the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array xA1 ASIC temperatures. The radiator has AZ-Tek's AZW-LA-II low solar absorptance white paint as the thermal coating, and is located on the anti-sun side of the spacecraft. A thermal balance (T/B) test on the BAT was successfully completed. It validated that the thermal design satisfies the temperature requirements of the BAT in the flight thermal environments. Instrument level and observatory level thermal vacuum (TN) cycling tests of the BAT Detector Array by using the LHP thermal system were successfully completed. This paper presents the results of the T/B test and T N cycling tests.

  1. Probing vacuum-induced coherence via magneto-optical rotation in molecular systems

    NASA Astrophysics Data System (ADS)

    Kumar, Pardeep; Deb, Bimalendu; Dasgupta, Shubhrangshu

    2016-05-01

    Vacuum-induced coherence (VIC) arises due to the quantum interference between the spontaneous emission pathways from the degenerate excited states to a common ground state. The stringent requirement for the VIC to occur is the nonorthogonality of the transition dipole matrix elements. Unlike atoms, molecules are the promising systems for exploration of VIC, as it is possible to identify the non-orthogonal transitions due to the coupling of the rotation of molecular axis with molecular electronic angular momentum. Usually, the possible signatures of VIC are obtained by manipulating the absorption of the probe field. In this paper, we show how the dispersion of the probe field can be manipulated to obtain a measurable signature of VIC. Precisely speaking, we explore a way to probe VIC in molecules by observing its influence on magneto-optical rotation (MOR). We show that VIC in the presence of a control laser and a magnetic field can lead to large enhancement in the rotation of the plane of polarization of a linearly polarized weak laser with vanishing circular dichroism. This effect can be realized in cold molecular gases. Such a large MOR angle may be used as a tool for optical magnetometry to detect weak magnetic field with large measurement sensitivity.

  2. A controlled-flow vacuum-free bottle system enhances preterm infants' nutritive sucking skills.

    PubMed

    Fucile, Sandra; Gisel, Erika; Schanler, Richard J; Lau, Chantal

    2009-06-01

    We have shown that a controlled-flow vacuum-free bottle system (CFVFB) vs. a standard bottle (SB) facilitates overall transfer and rate of milk transfer, and shortens oral feeding duration in very-low-birth-weight (VLBW) infants. We aimed to understand the basis by which this occurs. Thirty infants (19 males; 27 +/- 1 weeks gestation) were randomized to a CFVFB or SB. Outcomes monitored at 1-2 and 6-8 oral feedings/day when infants were around 34 and 36 weeks postmenstrual age, respectively, included: overall transfer (% volume taken/volume prescribed), rate of milk transfer (ml/min), sucking stage, frequency of suction (#S/s) and expression (#E/s), suction amplitude (mmHg), and sucking burst duration (s). At both periods we confirmed that infants using a CFVFB vs. SB demonstrated greater overall transfer and rate of milk transfer, along with more mature sucking stages. Suction and expression frequencies were decreased with CFVFB vs. SB at 1-2 oral feeding/day; only that of suction was reduced at 6-8 oral feedings/day. No group differences in suction amplitude and burst duration were observed. We speculate that oral feeding performance improves without significant change in sucking effort with a CFVFB vs. SB. In addition, we have shown that VLBW infants can tolerate faster milk flow than currently presumed. Finally, the use of a CFVFB may reduce energy expenditure as it enhances feeding performance without increasing sucking effort.

  3. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  4. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  5. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum.

    PubMed

    Xu, Yuntao; Dibble, Collin J; Petrik, Nikolay G; Smith, R Scott; Joly, Alan G; Tonkyn, Russell G; Kay, Bruce D; Kimmel, Greg A

    2016-04-28

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ∼10(10) K/s for temperature increases of ∼100-200 K are obtained. Subsequent rapid cooling (∼5 × 10(9) K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ∼±2.7% leading to a temperature uncertainty of ∼±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  6. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum.

    PubMed

    Xu, Yuntao; Dibble, Collin J; Petrik, Nikolay G; Smith, R Scott; Joly, Alan G; Tonkyn, Russell G; Kay, Bruce D; Kimmel, Greg A

    2016-04-28

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ∼10(10) K/s for temperature increases of ∼100-200 K are obtained. Subsequent rapid cooling (∼5 × 10(9) K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ∼±2.7% leading to a temperature uncertainty of ∼±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces. PMID:27131543

  7. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.; Smith, R. Scott; Joly, Alan G.; Tonkyn, Russell G.; Kay, Bruce D.; Kimmel, Greg A.

    2016-04-01

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ˜1010 K/s for temperature increases of ˜100-200 K are obtained. Subsequent rapid cooling (˜5 × 109 K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ˜±2.7% leading to a temperature uncertainty of ˜±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  8. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  9. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    expert members on the subject to deliver lectures and take part in devising courses in the universities. IVS publishes a quarterly called the `Bulletin of Indian Vacuum Society' since its inception, in which articles on vacuum and related topics are published. NIRVAT, news, announcements, and reports are the other features of the Bulletin. The articles in the Bulletin are internationally abstracted. The Bulletin is distributed free to all the members of the society. The society also publishes proceedings of national/international symposia and seminars, manuals, lecture notes etc. It has published a `Vacuum Directory' containing very useful information on vacuum technology. IVS has also set up its own website http://www.ivsnet.org in January 2002. The website contains information about IVS, list of members, list of EC members, events and news, abstracts of articles published in the `Bulletin of Indian Vacuum Society', utilities, announcements, reports, membership and other forms which can be completed online and also gives links to other vacuum societies. Our Society has been a member of the executive council of the International Union of Vacuum Science, Techniques and Applications (IUVSTA) and its various committees since 1970. In 1983 IVS conducted an International Symposium on Vacuum Technology and Nuclear Applications in BARC, Mumbai, under the sponsorship of IUVSTA. In 1987 IVS arranged the Triennial International Conference on Thin Films in New Delhi, where more than 200 foreign delegates participated. IVS also hosted the IUVSTA Executive Council Meeting along with the conference. The society organized yet again an International Conference on Vacuum Science and Technology and SRS Vacuum Systems at CAT, Indore in1995. IVS arranges the prestigious Professor Balakrishnan Memorial Lecture in memory of its founder vice-president. Leading scientists from India and abroad in the field are invited to deliver the talks. So far 23 lectures have been held in this series. IVS

  10. Vacuum-Compatible Wideband White Light and Laser Combiner Source System

    NASA Technical Reports Server (NTRS)

    Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.

    2010-01-01

    For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a

  11. A multichamber system for analyzing the outgassing, deposition, and associated optical degradation properties of materials in a vacuum.

    PubMed

    Singal, Jack; Schindler, Rafe; Chang, Chihway; Czodrowski, Patrick; Kim, Peter

    2010-02-01

    We report on the camera materials test chamber, a multivessel apparatus that analyzes the outgassing consequences of candidate materials for use in the vacuum cryostat of a new telescope camera. The system measures the outgassing products and rates of samples of materials at different temperatures and collects films of outgassing products to measure the effects on light transmission in six optical bands. The design of the apparatus minimizes potential measurement errors introduced by background contamination.

  12. Comparisons of Hamaker constants for ceramic systems with intervening vacuum or water: From force laws and physical properties

    SciTech Connect

    Ackler, H.D.; Chiang, Y.M.; French, R.H.

    1996-05-10

    Van der Waals dispersive forces produce attractive interactions between bodies, playing an important role in many material systems influencing colloidal and emulsion stability, wetting behavior, and intergranular forces in glass-ceramic systems. It is of technological importance to accurately quantify these interactions, conveniently represented by the Hamaker constant, A. To set the current level of accuracy for determining A, they were calculated from Lifshitz theory using full spectral data for muscovite mica, Al{sub 2}O{sub 3}, SiO{sub 2}, Si{sub 3}N{sub 4}, and rutile TiO{sub 2}, separated by vacuum or water. These were compared to Hamaker constants calculated from physical properties using the Tabor-Winterton approximation, a single oscillator model, a multiple oscillator model, and A`s calculated using force vs separation data from surface force apparatus and atomic force microscope studies. For materials with refractive indices between 1.4 and 1.8 separated by vacuum, all methods produce similar values, but for indices larger than 1.8 separated by vacuum, and any of these materials separated by water, results span a broader range. The present level of accuracy for the determination of Hamaker constants, here taken to be represented by the level of agreement between various methods, ranges from about 10% for the case of SiO{sub 2}/vacuum/SiO{sub 2} and TiO{sub 2}/water/TiO{sub 2} to a factor of approximately 7 for mica/water/mica.

  13. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  14. Tritium handling experience in vacuum systems at TSTA (Tritium Systems Test Assembly)

    SciTech Connect

    Anderson, J.L.; Jenkins, E.M.; Walthers, C.R.; Yoshida, H.; Fukui, H.; Naruse, Y.; Japan Atomic Energy Research Inst., Tokai, Ibaraki )

    1989-01-01

    Compound cryopumps have been added to the Tritium Systems Test Assembly (TSTA) integrated fusion fuel loop. Operations have been performed which closely simulate an actual fusion reactor pumping scenario. In addition, performance data have been taken that support the concept of using coconut charcoal as a sorbent at 4K for pumping helium. Later tests show that coconut charcoal may be used to co-pump D,T and He mixtures on a single 4K panel. Rotary spiral pumps have been used successfully in several applications at TSTA and have acquired more than 9000 hours of maintenance-free operation. Metal bellows pumps have been used to back the spiral pumps and have been relatively trouble free in loop operations. Bellows pumps also have more than 9000 hours of maintenance-free operation. 5 refs., 6 figs.

  15. Upgrade of the tangentially viewing vacuum ultraviolet (VUV) telescope system for 2D fluctuation measurement in the large helical device

    NASA Astrophysics Data System (ADS)

    Wang, Z. J.; Ming, T. F.; Gao, X.; Du, X. D.; Ohdachi, S.

    2016-11-01

    A high-speed tangentially viewing vacuum ultraviolet (VUV) telescope system, using an inverse Schwarzschild-type optic system was developed to study fluctuations in the Large Helical Device (LHD). However, for the original system, the sampling rate was restricted to below 2000 Hz due to the low signal to noise (S/N) ratio in the experiment. In order to improve the S/N ratio, upgrade of the system was made. With this upgraded optical system, the maximum framing rate is improved to 6000 fps with a similar spatial resolution. Rotation of the m = 2 structure caused by the magnetohydrodynamic (MHD) instability is measured by the upgraded system. The spatial structure of the image is consistent with the synthetic image assuming the interchange mode type displacement of the flux surfaces.

  16. Eco-sewerage System Design for Modern Office Buildings: based on Vacuum and Source-separation Technology

    NASA Astrophysics Data System (ADS)

    Xu, Kangning; Wang, Chengwen; Zheng, Min; Yuan, Xin

    2010-11-01

    This study aimed to construct an on-site eco-sewerage system for modern office buildings in urban area based on combined innovative technologies of vacuum and source-separation. Results showed that source-separated grey water had low concentrations of pollutants, which helped the reuse of grey water. However, the system had a low separation efficiency between the yellow water and the brown water, which was caused by the plug problem in the urine collection from the urine-diverting toilets. During the storage of yellow water for liquid fertilizer production, nearly all urea nitrogen transferred to ammonium nitrogen and about 2/3 phosphorus was lost because of the struvite precipitation. Total bacteria and coliforms increased first in the storage, but then decreased to low concentrations. The anaerobic/anoxic/aerobic MBR had high elimination rates of COD, ammonium nitrogen and total nitrogen of the brown water, which were 94.2%, 98.1% and 95.1%, respectively. However, the effluent still had high contents of colority, nitrate and phosphorus, which affected the application of the effluent for flushing water. Even though, the effluent might be used as dilution water for the yellow water fertilizer. Based on the results and the assumption of an ideal operation of the vacuum source-separation system, a future plan for on-site eco-sewerage system of modern office buildings was constructed. Its sustainability was validated by the analysis of the substances flow of water and nutrients.

  17. Detector system with high time resolution for the continuous measurement of spectra in the vacuum ultraviolet wavelength range

    NASA Astrophysics Data System (ADS)

    Biel, W.; Bertschinger, G.

    2004-07-01

    A new detector system with high time resolution (1 ms) has been developed and applied for the continuous measurement of spectra in the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) wavelength region at the fusion plasma experiment Torus Experiment for Technology-Oriented Research (TEXTOR). The system consists of an open multichannel-plate (MCP) detector with subsequent first generation (Gen I) light amplifier and a camera head which is based on a linear photodiode array with 1024 elements (pixels). The camera head provides the output signals of the individual pixels sequentially as an analog voltage with a full spectra rate of 1000 per second, which are measured using a PC-based data acquisition system. Three vacuum spectrometers operating in the VUV/EUV region (10-130 nm) have been equipped with the new system and a successful campaign of measurements from about 4000 discharges at TEXTOR has been performed. Spectra are recorded with a usable linear dynamic range of 10 bit and a wavelength resolution corresponding to a width of 3-4 pixels.

  18. A unique dosing system for the production of OH under high vacuum for the study of environmental heterogeneous reactions

    SciTech Connect

    Brown, Matthew A.; Johanek, Viktor; Hemminger, John C.

    2008-02-15

    A unique dosing system for the production of hydroxyl radicals under high vacuum for the study of environmental heterogeneous reactions is described. Hydroxyl radicals are produced by the photodissociation of a hydrogen peroxide aqueous gas mixture with 254 nm radiation according to the reaction H{sub 2}O{sub 2}+h{nu} (254 nm){yields}OH+OH. Under the conditions of the current design, 0.6% conversion of hydrogen peroxide is expected yielding a hydroxyl number density on the order of 10{sup 10} molecules/cm{sup 3}. The flux distribution of the dosing system is calculated using a Monte Carlo simulation method and compared with the experimentally determined results. The performance of this unique hydroxyl dosing system is demonstrated for the heterogeneous reaction with a solid surface of potassium iodide. Coupling of the hydroxyl radical dosing system to a quantitative surface analysis system should help provide molecular level insight into detailed reaction mechanisms.

  19. Electron fluctuation induced resonance broadening in nano electromechanical systems: the origin of shear force in vacuum.

    PubMed

    Siria, A; Barois, T; Vilella, K; Perisanu, S; Ayari, A; Guillot, D; Purcell, S T; Poncharal, P

    2012-07-11

    This article presents a study of the poorly understood "shear-force" used in an important class of near-field instruments that use mechanical resonance feedback detection. In the case of a metallic probe near a metallic surface in vacuum, we show that in the 10-60 nm range there is no such a thing as a shear-force in the sense of the nonconservative friction force. Fluctuations of the oscillator resonance frequency, likely induced by local charge variations, could account for the reported effects in the literature without introducing a dissipative force.

  20. Successful management of abdominal wound dehiscence using a vacuum assisted closure system combined with mesh-mediated medial traction.

    PubMed

    Lord, A C; Hompes, R; Venkatasubramaniam, A; Arnold, S

    2015-01-01

    Management of the open abdomen has advanced significantly in recent years with the increasing use of vacuum assisted closure (VAC) techniques leading to increased rates of fascial closure. We present the case of a patient who suffered two complete abdominal wall dehiscences after an elective laparotomy, meaning primary closure was no longer possible. She was treated successfully with a VAC system combined with continuous medial traction using a Prolene(®) mesh. This technique has not been described before in the management of patients following wound dehiscence. PMID:25519257

  1. Successful management of abdominal wound dehiscence using a vacuum assisted closure system combined with mesh-mediated medial traction.

    PubMed

    Lord, A C; Hompes, R; Venkatasubramaniam, A; Arnold, S

    2015-01-01

    Management of the open abdomen has advanced significantly in recent years with the increasing use of vacuum assisted closure (VAC) techniques leading to increased rates of fascial closure. We present the case of a patient who suffered two complete abdominal wall dehiscences after an elective laparotomy, meaning primary closure was no longer possible. She was treated successfully with a VAC system combined with continuous medial traction using a Prolene(®) mesh. This technique has not been described before in the management of patients following wound dehiscence.

  2. Effect of surface roughness on erosion rates of pure copper coupons in pulsed vacuum arc system

    NASA Astrophysics Data System (ADS)

    Rao, Lakshminarayana; Munz, Richard J.

    2007-12-01

    Vacuum arc erosion measurements were performed on copper cathodes having different surface roughness and surface patterns in 10-5 Torr vacuum (1.3324 mPa), in an external magnetic field of 0.04 T. Different surface patterns and surface roughness were created by grit blasting with alumina grits (G-cathodes) and grinding with silicon carbide emery paper (E-cathodes). The erosion rates of these cathodes were obtained by measuring the weight loss of the electrode after igniting as many as 135 arc pulses, each of which was 500 µs long at an arc current of 125 A. The erosion rates measured indicate that erosion rates decrease with decreasing roughness levels. Results obtained indicate that both surface roughness and surface patterns affect the erosion rate. Having patterns perpendicular to the direction of cathode spot movement gives lower erosion rates than having patterns parallel to arc movement. Isotropic surfaces give lower erosion rates than patterned surfaces at the same roughness.

  3. Setting up of in-vacuum PIXE system for direct elemental analysis of thick solid environmental samples.

    PubMed

    Rihawy, M S; Ismail, I M; Halloum, D

    2016-04-01

    Experimental set-up, development, characterization, and calibration of an in-vacuum PIXE system at the tandem accelerator facility of the Atomic Energy Commission of Syria (AECS) is described. The PIXE system calibration involved experimental characterization of the X-ray detector parameters and careful determination of the H-values that control dependence of the detector solid angle with the X-ray energies and correct imperfect values of the detector efficiency. Setting up of an electron flood gun to compensate charge built up and utilization of a beam profile monitor to perform indirect measurement of the beam charge, provide a direct PIXE measurement of thick insulating samples in-vacuum. The PIXE system has been subsequently examined to verify its ability to perform direct PIXE measurements on geological materials. A combination of minimum sample preparation procedures and specific experimental conditions applied enables simple and accurate elemental analysis. Elemental concentrations of several elements heavier than sodium in different reference geological samples, at about 5-10% absolute accuracy for most elements, have been determined. Comprehensive discussion of the obtained elemental concentration values, for most elements of visible X-ray peaks in the PIXE spectra, has been considered. PMID:26803668

  4. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Sobrado, J. M.; Martín-Soler, J.; Martín-Gago, J. A.

    2015-10-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  5. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    SciTech Connect

    Sobrado, J. M. Martín-Soler, J.; Martín-Gago, J. A.

    2015-10-15

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  6. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover.

    PubMed

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2015-10-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  7. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover.

    PubMed

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2015-10-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration. PMID:26520990

  8. DEVELOPMENT AND DEMONSTRATION OF A SUPERCRITICAL HELIUM-COOLED CRYOGENIC VISCOUS COMPRESSOR PROTOTYPE FOR THE ITER VACUUM SYSTEM

    SciTech Connect

    Duckworth, Robert C; Baylor, Larry R; Meitner, Steven J; Combs, Stephen Kirk; Rasmussen, David A; Edgemon, Timothy D; Hechler, Michael P; Barbier, Charlotte N; Pearce, R.J.H.; Kersevan, R.; Dremel, M.; Boissin, Jean Claude

    2012-01-01

    As part of the vacuum system for the ITER fusion project, a cryogenic viscouscompressor (CVC) is being developed to collect hydrogenic exhaust gases from the toruscryopumps and compress them to a high enough pressure by regeneration for pumping tothe tritium reprocessing facility. Helium impurities that are a byproduct of the fusionreactions pass through the CVC and are pumped by conventional vacuum pumps andexhausted to the atmosphere. Before the development of a full-scale CVC, a representative,small-scale test prototype was designed, fabricated, and tested. With cooling provided bycold helium gas, hydrogen gas was introduced into the central column of the test prototypepump at flow rates between 0.001 g/s and 0.008 g/s. Based on the temperatures and flowrates of the cold helium gas, different percentages of hydrogen gas were frozen to the column surface wall as the hydrogen gas flow rate increased. Results from the measured temperatures and pressures will form a benchmark that will be used to judge future heattransfer enhancements to the prototype CVC and to develop a computational fluid dynamicmodel that will help develop design parameters for the full-scale CVC.

  9. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  10. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  11. Vacuum arc deposition devices

    NASA Astrophysics Data System (ADS)

    Boxman, R. L.; Zhitomirsky, V. N.

    2006-02-01

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  12. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  13. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  14. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  15. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  16. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  17. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  18. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  19. Reduced dust emission industrial vacuum system. Final report/project accomplishments summary, CRADA Number KCP941001

    SciTech Connect

    Yerganian, S.; Wilson, S.

    1997-02-01

    The purpose of this project was to modify the design of a Billy Goat Industries VQ series industrial litter vacuum cleaner currently in production to allow it to be effective in a dusty environment. Other desired results were that the new design be easily and economically manufacturable, safe and easy for the operator to use and maintain, and easily adaptable to the rest of the Billy Goat Industries product line. To meet these objectives, the project plan was divided into four main phases. The first phase consisted of design overview and concept development. The second phase consisted of developing a detailed design based on the lessons learned from the prototype built in the first phase. The third phase consisted of refinement of the detailed design based on testing and marketing review. The fourth phase consisted of final reporting on the activities of the CRADA. The project has been terminated due to technical difficulties and a lack of confidence that practical, marketable solutions to these problems could be found.

  20. Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions.

    PubMed

    Trebbin, Martin; Krüger, Kilian; DePonte, Daniel; Roth, Stephan V; Chapman, Henry N; Förster, Stephan

    2014-05-21

    We present microfluidic chip based devices that produce liquid jets with micrometer diameters while operating at very low flow rates. The chip production is based on established soft-lithographical techniques employing a three-layer design protocol. This allows the exact, controlled and reproducible design of critical parts such as nozzles and the production of nozzle arrays. The microfluidic chips reproducibly generate liquid jets exiting at perfect right angles with diameters between 20 μm and 2 μm, and under special circumstances, even down to 0.9 μm. Jet diameter, jet length, and the domain of the jetting/dripping instability can be predicted and controlled based on the theory for liquid jets in the plate-orifice configuration described by Gañán-Calvo et al. Additionally, conditions under which the device produces highly reproducible monodisperse droplets at exact and predictable rates can be achieved. The devices operate under atmospheric and under vacuum conditions making them highly relevant for a wide range of applications, for example, for free-electron lasers. Further, the straightforward integration of additional features such as a jet-in-jet is demonstrated. This device design has the potential to integrate more features based on established microfluidic components and may become a standard device for small liquid jet production.

  1. Bioremediation of a PAH-contaminated gasworks site with the Ebiox vacuum heap system

    SciTech Connect

    Eiermann, D.R.; Bolliger, R.

    1995-12-31

    A former gasworks site in the industrial city of Winterthur, Switzerland, was extremely contaminated with polycyclic aromatic hydrocarbons (PAHs); benzene, toluene, ethylbenzene, and xylenes (BTEX); phenols; ammonia; and mineral oils. Three vacuum heaps, with a total volume of 10,500 m{sup 3} of contaminated soil, were bioremediated during 1993/94. Separating excavated soil material into different soil qualities was of particular importance because of the pathway definition of the specific soil material. Excavation of contamination took longer than 10 months, delivering continuously different contaminated soil-type material for bioremediation. Conditioning and subsequent biostimulation of the large soil volumes were the prerequisites for most advanced milieu optimization. The degradation results demonstrated the potential for successful application of bioremediation on former industrial sites. PAH-concentration reductions ranged from 75 to 83% for the soil values and from 87 to 98% for the elution values. Soil and elution target qualities were met within 6 to 12 months, depending on initial PAH-concentration and soil structure. The achieved target quality for the bioremediated soil allowed subsequent reuse as high-value backfill material for the ongoing building project.

  2. Performance of a Cryogenic 21 Meter-Path Copper Herriott Cell Vacuum Coupled to a Bruker 125HR System

    NASA Astrophysics Data System (ADS)

    Mantz, Arlan W.; Sung, Keeyoon; Crawford, Timothy J.; Yu, Shanshan; Brown, Linda R.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    2013-06-01

    Accurate modeling of planetary atmospheres requires a detailed knowledge of the temperature and pressure dependence of spectroscopic line parameters of atmospheric molecules. With this requirement in mind, a new Herriott cell having a 21 meter folded absorption path was designed and fabricated with Oxygen-Free High Conductivity (OFHC) copper body and gold coated OFHC copper mirrors to operate for the first time with a broad-band Fourier transform spectrometer. The cell, enclosed in an isolated vacuum box, is cooled by a CTI Cryogenics, Inc. model 1050 closed-cycle helium refrigerator which also cryopumps the vacuum box. The temperature of the cell is monitored by a silicon temperature sensor and regulated by a Lakeshore model 331 temperature controller. The new cell system was integrated to the JPL Bruker model 125HR interferometer with transfer optics which are fully evacuated to 12 mTorr (the pressure inside the interferometer). The optics were through-put matched for entrance apertures smaller than 2 mm. The system has successfully operated for several months at gas sample temperatures between 75 and 250 K with extremely good stability to obtain spectra of methane, carbon dioxide, and oxygen bands between 0.76 and 3 μm. We present the characterization and performance of the Herriott cell system and preliminary analyses of newly recorded spectra. Research described in this paper was performed at Connecticut College, the Jet Propulsion Laboratory, California Institute of Technology, NASA Langley Research Center, and The College of William and Mary under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  3. All-glass vacuum tube collector heat transfer model used in forced-circulation solar water heating system

    SciTech Connect

    Li, Zhiyong; Chen, Chao; Luo, Hailiang; Zhang, Ye; Xue, Yaning

    2010-08-15

    The aim of this paper is to establish the heat transfer model of all-glass vacuum tube collector used in forced-circulation solar water heating system. In this model, the simplified heat transfer of collector is composed of the natural convection in single glass tube and forced flow in manifold header. Thus the heat balance equation of water in single tube and the heat balance equation of water in manifold header have been established. The flow equation is also built by analyzing the friction and buoyancy in tube. Through solved these equations the relationship between the collector average temperature, the outlet temperature and natural convection flow rate have been obtained. From this relationship and energy balance equation of collector, the collector outlet temperature can be calculated. The validated experiments of this model were carried out in winter of Beijing. (author)

  4. Evaluation of an In-Situ, Liquid Lubrication System for Space Mechanisms Using a Vacuum Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Pepper, Stephen V.

    2002-01-01

    Many moving mechanical assemblies (MMAs) for space applications rely on a small, initial charge of lubricant for the entire mission lifetime, often in excess of five years. In many cases, the premature failure of a lubricated component can result in mission failure. If lubricant could be resupplied to the contact in-situ, the life of the MMA could be extended. A vacuum spiral orbit tribometer (SOT) was modified to accept a device to supply re-lubrication during testing. It was successfully demonstrated that a liquid lubricant (Pennzane (Registered Trademark)/Nye 2001A) could be evaporated into a contact during operation, lowering the friction coefficient and therefore extending the life of the system.

  5. Observations of the Au/Si(111) System with a High-Resolution Ultrahigh-Vacuum Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Endo, Akira; Ino, Shozo

    1993-10-01

    Secondary electron (SE) imaging with a high-resolution ultrahigh-vacuum scanning electron microscope (UHV-SEM) has been applied to the observation of the Au/Si(111) system. Domains of the 5× 2-Au or \\sqrt{3}×\\sqrt{3}-Au structure partially covering a Si(111)-7× 7 surface are clearly observed. Domains of 5× 2-Au formed by Au deposition onto a substrate held at ˜870 K show threefold elongation corresponding to three equivalent kinds of domains rotated 120° to each other. On the other hand, 5× 2-Au regions formed by partial Au desorption by heating at ˜1270 K from an entirely covered surface display larger size without such elongation. Granular clusters, a few nm in size, of Au formed by deposition approximately at room temperature, and large three-dimensional islands formed in the Stranski-Krastanov growth mode are also clearly imaged.

  6. Design and Analysis of a Getter-Based Vacuum Pumping System for a Rocket-Borne Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Everett, E. A.; Syrstad, E. A.; Dyer, J. S.

    2010-12-01

    The mesosphere / lower thermosphere (MLT) is a transition region where the turbulent mixing of earth’s lower atmosphere gives way to the molecular diffusion of space. This region hosts a rich array of chemical processes and atmospheric phenomena, and serves to collect and distribute particles of all sizes in thin layers. Spatially resolved in situ characterization of these layers is very difficult, due to the elevated pressure of the MLT, limited access via high-speed sounding rockets, and the enormous variety of charged and neutral species that range in size from atoms to smoke and dust particles. In terrestrial applications, time-of-flight mass spectrometry (TOF-MS) is the technique of choice for performing fast, sensitive composition measurements with extremely large mass range. However, because of its reliance on high voltages and microchannel plate (MCP) detectors prone to discharge at elevated pressures, TOF-MS has rarely been employed for measurements of the MLT, where ambient pressures approach 10 mTorr. We present a novel, compact mass spectrometer design appropriate for deployment aboard sounding rockets. This Hadamard transform time-of-flight mass spectrometer (HT-TOF-MS) applies a multiplexing technique through pseudorandom beam modulation and spectral deconvolution to achieve very high measurement duty cycles (50%), with a theoretically unlimited mass range. The HT-TOF-MS employs a simple, getter-based vacuum pumping system and pressure-tolerant MCP to allow operation in the MLT. The HT-TOF-MS must provide sufficient vacuum pumping to 1) maintain a minimum mean free path inside the instrument, to avoid spectral resolution loss, and 2) to avoid MCP failure through electrostatic discharge. The design incorporates inexpensive, room temperature tube getters loaded with nano-structured barium to meet these pumping speed requirements, without the use of cryogenics or mechanical pumping systems. We present experimental results for gettering rates and

  7. Positioning Accuracy in Stereotactic Radiotherapy Using a Mask System With Added Vacuum Mouth Piece and Stereoscopic X-Ray Positioning

    SciTech Connect

    Santvoort, Jan van Wiggenraad, Ruud; Bos, Petra

    2008-09-01

    Purpose: For cranial patients receiving stereotactic radiotherapy, we use the Exactrac stereoscopic X-ray system to optimize patient positioning. Patients are immobilized with the BrainLAB Mask System (BrainLAB, Feldkirchen, Germany). We have developed an adapter to this system that accommodates a vacuum mouth piece (VMP). Measurements with the Exactrac system have been performed to study the positioning accuracy after corrections with this system and to evaluate the accuracy of the VMP vs. the standard available upper jaw support (UJS). Methods and Materials: Positioning results were collected for 20 patients with the UJS and 20 patients with the VMP, before treatment (1,122 fractions) and after treatment (400 fractions). For all 6 degrees of freedom the average, the random error and systematic error were calculated. Results: The average vector length before and after correction with the Exactrac system was 2.1 {+-} 1.2 mm and 0.7 {+-} 0.6 mm respectively for UJS and 1.7 {+-} 0.7 mm and 0.4 {+-} 0.4 mm for VMP. Interfraction positioning for translations was greatly improved after correction with the Exactrac system (p < 0.0005) and is better with VMP than with UJS (p = 0.005). Outliers were greatly reduced. Interfraction rotations were significantly smaller for VMP. Intrafraction errors for vertical and longitudinal translations and for rotations were smaller for the VMP. Conclusions: Positioning correction using the Exactrac X-ray system greatly improves accuracy. Adding the VMP results in even better patient fixation and smaller rotations, making it a useful addition to the Mask System. Combined, this is a convenient and accurate alternative to invasive fixation methods.

  8. Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-01

    Vacuum metallurgy separation (VMS) is a technically feasible method to recover Pb, Cd and other heavy metals from crushed e-wastes. To further determine the environmental impacts and safety of this method, heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system are evaluated in this article. The mass concentrations of total suspended particulate (TSP) and PM10 are 0.1503 and 0.0973 mg m(-3) near the facilities. The concentrations of Pb, Cd and Sn in TSP samples are 0.0104, 0.1283 and 0.0961 μg m(-3), respectively. Health risk assessments show that the hazard index of Pb is 3.25 × 10(-1) and that of Cd is 1.09 × 10(-1). Carcinogenic risk of Cd through inhalation is 1.08 × 10(-5). The values of the hazard index and risk indicate that Pb and Cd will not cause non-cancerous effects or carcinogenic risk on workers. The noise sources are mainly the mechanical vacuum pump and the water cooling pump. Both of them have the noise levels below 80 dB (A). The thermal safety assessment shows that the temperatures of the vacuum metallurgy separation system surface are all below 303 K after adopting the circulated water cooling and heat insulation measures. This study provides the environmental information of the vacuum metallurgy separation system, which is of assistance to promote the industrialisation of vacuum metallurgy separation for recovering heavy metals from e-wastes.

  9. Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-01

    Vacuum metallurgy separation (VMS) is a technically feasible method to recover Pb, Cd and other heavy metals from crushed e-wastes. To further determine the environmental impacts and safety of this method, heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system are evaluated in this article. The mass concentrations of total suspended particulate (TSP) and PM10 are 0.1503 and 0.0973 mg m(-3) near the facilities. The concentrations of Pb, Cd and Sn in TSP samples are 0.0104, 0.1283 and 0.0961 μg m(-3), respectively. Health risk assessments show that the hazard index of Pb is 3.25 × 10(-1) and that of Cd is 1.09 × 10(-1). Carcinogenic risk of Cd through inhalation is 1.08 × 10(-5). The values of the hazard index and risk indicate that Pb and Cd will not cause non-cancerous effects or carcinogenic risk on workers. The noise sources are mainly the mechanical vacuum pump and the water cooling pump. Both of them have the noise levels below 80 dB (A). The thermal safety assessment shows that the temperatures of the vacuum metallurgy separation system surface are all below 303 K after adopting the circulated water cooling and heat insulation measures. This study provides the environmental information of the vacuum metallurgy separation system, which is of assistance to promote the industrialisation of vacuum metallurgy separation for recovering heavy metals from e-wastes. PMID:25391553

  10. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  11. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  12. First generation solar adaptive optics system for 1-m New Vacuum Solar Telescope at Fuxian Solar Observatory

    NASA Astrophysics Data System (ADS)

    Rao, Chang-Hui; Zhu, Lei; Rao, Xue-Jun; Zhang, Lan-Qiang; Bao, Hua; Ma, Xue-An; Gu, Nai-Ting; Guan, Chun-Lin; Chen, Dong-Hong; Wang, Cheng; Lin, Jun; Jin, Zen-Yu; Liu, Zhong

    2016-02-01

    The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable mirror (DM), a correlating Shack-Hartmann (SH) wavefront sensor (WFS) based on the absolute difference algorithm and a real time controller (RTC), has been developed and installed at the 1-m New Vacuum Solar Telescope (NVST) that is part of Fuxian Solar Observatory (FSO). Compared with the 37-element solar AO system developed for the 26-cm Solar Fine Structure Telescope, administered by Yunnan Astronomical Observatories, this AO system has two updates: one is the subaperture arrangement of the WFS changed from square to hexagon; the other is the high speed camera of the WFS and the corresponding real time controller. The WFS can be operated at a frame rate of 2100 Hz and the error correction bandwidth can exceed 100 Hz. After AO correction, the averaged residual image motion and the averaged RMS wavefront error are reduced to 0.06″ and 45 nm, respectively. The results of on-sky testing observations demonstrate better contrast and finer structures of the images taken with AO than those without AO.

  13. Vacuum phenomenon.

    PubMed

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome. PMID:27147527

  14. Vacuum phenomenon.

    PubMed

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome.

  15. Distributed I/O Control System Implementation for the 1238 Optical Witness Sample Thermoelectric Quartz Crystal Microbalance Thermal Vacuum Bakeout Chamber

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K.

    2002-01-01

    The 1238 Thermal Vacuum Bakeout Chamber is used to test materials to determine if they meet space program contamination requirements. The system was previously manual in its operation, in that there was no supervisory control system and therefore, no means for automated operation. Marshall Space Flight Center (MSFC) requested that its operation be automated. The subsequent process implemented involved a hybrid scenario that included existing hardware, a distributed input and output (I/O) system and a graphical user interface (GUI).

  16. Vacuum type D initial data

    NASA Astrophysics Data System (ADS)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space-time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  17. Vacuum type D initial data

    NASA Astrophysics Data System (ADS)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space–time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  18. Influence of food intrinsic complexity on Listeria monocytogenes growth in/on vacuum-packed model systems at suboptimal temperatures.

    PubMed

    Baka, Maria; Noriega, Estefanía; Van Langendonck, Kristof; Van Impe, Jan F

    2016-10-17

    Food intrinsic factors e.g., food (micro)structure, compositional and physicochemical aspects, which are mutually dependent, influence microbial growth. While the effect of composition and physicochemical properties on microbial growth has been thoroughly assessed and characterised, the role of food (micro)structure still remains unravelled. Most studies on food (micro)structure focus on comparing planktonic growth in liquid (microbiological) media with colonial growth in/on solid-like systems or on real food surfaces. However, foods are not only liquids or solids; they can also be emulsions or gelled emulsions and have complex compositions. In this study, Listeria monocytogenes growth was studied on the whole spectrum of (micro)structure, in terms of food (model) systems. The model systems varied not only in (micro)structure, which was the target of the study, but also in compositional and physicochemical characteristics, which was an inevitable consequence of the (micro)structural variability. The compositional and physicochemical differences were mainly due to the presence or absence of fat and gelling agents. The targeted (micro)structures were: i) liquids, ii) aqueous gels, iii) emulsions and iv) gelled emulsions. Furthermore, the microbial dynamics were studied and compared in/on all these model systems, as well as on a compositionally predefined canned meat, developed in order to have equal compositional level to the gelled emulsion model system and represent a real food system. Frankfurter sausages were the targeted real foods, selected as a case study, to which the canned meat had similar compositional characteristics. All systems were vacuum packed and incubated at 4, 8 and 12°C. The most appropriate protocol for the preparation of the model systems was developed. The pH, water activity and resistance to penetration of the model systems were characterised. Results indicated that low temperature contributes to growth variations among the model systems

  19. Influence of food intrinsic complexity on Listeria monocytogenes growth in/on vacuum-packed model systems at suboptimal temperatures.

    PubMed

    Baka, Maria; Noriega, Estefanía; Van Langendonck, Kristof; Van Impe, Jan F

    2016-10-17

    Food intrinsic factors e.g., food (micro)structure, compositional and physicochemical aspects, which are mutually dependent, influence microbial growth. While the effect of composition and physicochemical properties on microbial growth has been thoroughly assessed and characterised, the role of food (micro)structure still remains unravelled. Most studies on food (micro)structure focus on comparing planktonic growth in liquid (microbiological) media with colonial growth in/on solid-like systems or on real food surfaces. However, foods are not only liquids or solids; they can also be emulsions or gelled emulsions and have complex compositions. In this study, Listeria monocytogenes growth was studied on the whole spectrum of (micro)structure, in terms of food (model) systems. The model systems varied not only in (micro)structure, which was the target of the study, but also in compositional and physicochemical characteristics, which was an inevitable consequence of the (micro)structural variability. The compositional and physicochemical differences were mainly due to the presence or absence of fat and gelling agents. The targeted (micro)structures were: i) liquids, ii) aqueous gels, iii) emulsions and iv) gelled emulsions. Furthermore, the microbial dynamics were studied and compared in/on all these model systems, as well as on a compositionally predefined canned meat, developed in order to have equal compositional level to the gelled emulsion model system and represent a real food system. Frankfurter sausages were the targeted real foods, selected as a case study, to which the canned meat had similar compositional characteristics. All systems were vacuum packed and incubated at 4, 8 and 12°C. The most appropriate protocol for the preparation of the model systems was developed. The pH, water activity and resistance to penetration of the model systems were characterised. Results indicated that low temperature contributes to growth variations among the model systems

  20. Static and dynamic analyses on the MFTF (Mirror Fusion Test Facility)-B Axicell Vacuum Vessel System: Final report

    SciTech Connect

    Ng, D.S.

    1986-09-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) is a large-scale, tandem-mirror-fusion experiment. MFTF-B comprises many highly interconnected systems, including a magnet array and a vacuum vessel. The vessel, which houses the magnet array, is supported by reinforced concrete piers and steel frames resting on an array of foundations and surrounded by a 7-ft-thick concrete shielding vault. The Pittsburgh-Des Moines (PDM) Corporation, which was awarded the contract to design and construct the vessel, carried out fixed-base static and dynamic analyses of a finite-element model of the axicell vessel and magnet systems, including the simulation of various loading conditions and three postulated earthquake excitations. Meanwhile, LLNL monitored PDM's analyses with modeling studies of its own, and independently evaluated the structural responses of the vessel in order to define design criteria for the interface members and other project equipment. The assumptions underlying the finite-element model and the behavior of the axicell vessel are described in detail in this report, with particular emphasis placed on comparing the LLNL and PDM studies and on analyzing the fixed-base behavior with the soil-structure interaction, which occurs between the vessel and the massive concrete vault wall during a postulated seismic event. The structural members that proved sensitive to the soil effect are also reevaluated.

  1. He leak detection in the presence of deuterium background in tokamak vacuum systems

    SciTech Connect

    Blanchard, W.R.; Krawchuk, R.B.; Dylla, H.F.

    1982-04-01

    Helium leak detection systems for magnetic fusion devices present several unique design problems because of the large dynamic range required and the high partial pressures of D/sub 2/ encountered. We describe the design and operation of a He leak detector system for the PDX tokamak. The system consists of a differentially-pumped, low resolution, He mass spectrometer which is interfaced to the foreline of one of the torus turbomolecular pump lines. The He detector has a minimum throughput sensitivity of 10/sup -10/ Torrxl/s, and the torus-integrated system has been designed for detection of torus leaks over the range of 10/sup -7/ to 10 Torrxl/s. Minimum leak-rates on the 38 m/sup 3/ PDX vessel which have been quantified using this system are approx.3 x 10/sup -8/ Torrxl/s. When PDX is operated with D/sub 2/ plasmas it is necessary to reduce the partial pressure of D/sub 2/ by a factor of 100 within the mass spectrometer to maintain this sensitivity in the presence of the torus D/sub 2/ outgassing. We have designed and incorporated a D/sub 2/ filter which employs a Zr--Al getter assembly to affect the required D/sub 2/ pressure reduction.

  2. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  3. Photon reflectivity distributions from the LHC beam screen and their implications on the arc beam vacuum system

    NASA Astrophysics Data System (ADS)

    Mahne, N.; Baglin, V.; Collins, I. R.; Giglia, A.; Pasquali, L.; Pedio, M.; Nannarone, S.; Cimino, R.

    2004-07-01

    In particle accelerators with intense positively charged bunched beams, an electron cloud may induce beam instabilities and the related beam induced electron multipacting (BIEM) can result in an undesired pressure rise. In a cryogenic machine such as the large hadron collider (LHC), the BIEM will introduce additional heat load. When present, synchrotron radiation (SR) may generate a significant number of photoelectrons, that may play a role in determining the onset and the detailed properties of the electron cloud related instability. Since electrons are constrained to move along field lines, those created on the accelerator equator in a strong vertical (dipole) field cannot participate in the e-cloud build-up. Therefore, for the LHC there has been a continuous effort to find solutions to absorb the photons on the equator. The solution adopted for the LHC dipole beam screens is a saw-tooth structure on the illuminated equator. SR from a bending magnet beamline at ELETTRA, Italy (BEAR) has been used to measure the reflectivities (forward, back-scattered and diffuse), for a flat and a saw-tooth structured Cu co-laminated surface using both white light SR, similar to the one emitted by LHC, and monochromatic light. Our data show that the saw-tooth structure does reduce the total reflectivity and modifies the photon energy distribution of the reflected photons. The implications of these results on the LHC arc vacuum system are discussed.

  4. On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum

    SciTech Connect

    Weber, A.; Mainz, R.; Schock, H. W.

    2010-01-15

    In this paper the Sn loss from thin films of the material system Cu-Zn-Sn-S and the subsystems Cu-Sn-S and Sn-S in high vacuum is investigated. A combination of in situ x-ray diffractometry and x-ray fluorescence (XRF) at a synchrotron light source allowed identifying phases, which tend to decompose and evaporate a Sn-containing compound. On the basis of the XRF results a quantification of the Sn loss from the films during annealing experiments is presented. It can be shown that the evaporation rate from the different phases decreases according to the order SnS{yields}Cu{sub 2}SnS{sub 3}{yields}Cu{sub 4}SnS{sub 4}{yields}Cu{sub 2}ZnSnS{sub 4}. The phase SnS is assigned as the evaporating compound. The influence of an additional inert gas component on the Sn loss and on the formation of Cu{sub 2}ZnSnS{sub 4} thin films is discussed.

  5. Numerical Study of Virtual Cathode Behavior in Vacuum Collective Ion Acceleration Systems.

    NASA Astrophysics Data System (ADS)

    Grossmann, John Mark

    The behavior of an intense relativistic beam of electrons injected into a cylindrical conducting drift tube is investigated with the aid of an electrostatic simulation code. The relevance of such a study is in linear beam, evacuated drift tube systems where high energy ions are observed when the beam interacts with a source of ions. In our numerical study, the beam's motion is assumed to be purely one dimensional; however, the electric field is solved in two dimensions using special "method of lines" techniques. One of the two principal techniques is developed to accurately resolve the extreme local gradients in charge density and potential existing in the drift tube. It is a Galerkin solution of Poisson's equation on a non-uniform mesh and has an operations count of O(N('2)) and convergence rate in energy norm of O(1/N). The other O(N log(,N)N) technique uses FFT methods on a uniform mesh and converges in uniform norm O(1/N('2)). It is found that when the injected current of the beam is above a threshold or limiting value the beam-drift tube system reacts by abruptly forming a dense clump of electrons near the injection end of the tube. This clump prevents the steady flow of electrons downstream and is called a virtual cathode (VC). A detailed picture of the VC formation process is provided by our simulations, together with a display of the dynamic behavior of the VC at various injection currents and parameter regimes. The VC oscillates in well depth and position at about the plasma frequency of the dense clump of electrons. The potential at the clump oscillates between (phi)(,0) and 1.6 (phi)(,0) where (phi)(,0) is the energy of the injected electrons. In addition, the VC sprays a group of electrons downstream every plasma period in such a manner that the average current associated with the stream is close to the limiting current. Peak electric fields at the anode are in the range 200-600 MV/m for our system parameters. Finally, a preliminary investigation is

  6. Development of particle characteristics diagnosis system for nanoparticle analysis in vacuum

    NASA Astrophysics Data System (ADS)

    Kim, Dongbin; Mun, Jihun; Kim, HyeongU; Yun, Ju-Young; Kim, Yong-Ju; Kim, TaeWan; Kim, Taesung; Kang, Sang-Woo

    2016-02-01

    A particle characteristics diagnosis system (PCDS) was developed to measure nano-sized particle properties by a combination of particle beam mass spectrometry, scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS). It allows us to measure the size distributions of nano-sized particles in real time, and the shape and composition can be determined by in situ SEM imaging and EDS scanning. PCDS was calibrated by measuring the size-classified nano-sized NaCl particles generated using an aqueous solution of NaCl by an atomizer. After the calibration, the characteristics of nano-sized particles sampled from the exhaust line of the plasma-enhanced chemical vapor deposition process were determined using PCDS.

  7. Accelerated life test of the USDOE OC-OTEC experimental system refurbished with magnetic bearings for the 3rd stage vacuum compressor. Final report

    SciTech Connect

    Vega, L.A.

    1997-04-01

    This report documents the accelerated life test (time-to-failure) performed, at the request of DOE, to evaluate the viability of the magnetic bearing system installed in the stage 3 vacuum pump. To this effect the plant was successfully operated for over 500 hours during the period September-November 1996. The first part of this report discusses system performance by deriving subsystem and system performance parameters from a typical record. This is followed by the discussion of the life tests. The instrumentation used to estimate the performance parameters given here is depicted. The third stage pump was operated for 535 hours without incident. It is concluded that magnetic bearings are the preferable choice for the OC-OTEC centrifugal vacuum pumps.

  8. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  9. Performance of a Cryogenic Multipath Herriott Cell Vacuum-Coupled to a Bruker IFS-125HR System

    NASA Astrophysics Data System (ADS)

    Mantz, Arlan; Sung, Keeyoon; Crawford, Timothy J.; Brown, Linda; Smith, Mary Ann H.

    2014-06-01

    Accurate modeling of atmospheric trace gases requires detailed knowledge of spectroscopic line parameters at temperatures and pressures relevant to the atmospheric layers where the spectroscopic signatures form. Pressure-broadened line shapes, frequency shifts, and their temperature dependences, are critical spectroscopic parameters that limit the accuracy of state-of-the-art atmospheric remote sensing. In order to provide temperature dependent parameters from controlled laboratory experiments, a 20.946 ± 0.001 m long path Herriott cell and associated transfer optics were designed and fabricated at Connecticut College to operate in the near infrared using a Bruker 125 HR Fourier transform spectrometer. The cell body and gold coated mirrors are fabricated with Oxygen-Free High Conductivity (OFHC) copper. Transfer optics are through-put matched for entrance apertures smaller than 2 mm. A closed-cycle Helium refrigerator cools the cell and cryopumps the surrounding vacuum box. This new system and its transfer optics are fully evacuated to ˜10 mTorr (similar to the pressure inside the interferometer). Over a period of several months, this system has maintained extremely good stability in recording spectra at gas sample temperatures between 75 and 250 K. The absorption path length and cell temperatures are validated using CO spectra. The characterization of the Herriott cell is described along with its performance and future applications. We thank Drs. V. Malathy Devi and D. Chris Benner at The College of William and Mary for helpful discussion. Research described in this paper was performed at Connecticut College, the Jet Propulsion Laboratory, California Institute of Technology, and NASA Langley Research Center, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  10. High resolution vacuum ultraviolet emission spectrum of D2: the B' 1Sigmau+-->X 1Sigmag+ band system.

    PubMed

    Roudjane, Mourad; Tchang-Brillet, W-U Lydia; Launay, Françoise

    2007-08-01

    In this work, we have extended our previous high resolution study of the vacuum ultraviolet emission spectrum of the D2 molecule [M. Roudjane, et al. J. Chem. Phys. 125, 214305 (2006)] up to 124.2 nm in order to investigate the B' 1Sigmau+-->X 1Sigmag+ band system. The analysis of the spectrum has been carried out by means of a complex spectrum visual identification code IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656, (1993)] and supported by theoretical calculations using ab initio data [L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); G. Staszewska and L. Wolniewicz, J. Mol. Spectrosc. 212, 208 (2002); L. Wolniewicz and G. Staszewska, 220, 45 (2003)] which provided level energies and transition probabilities. More than 1480 new emission lines have been observed and 109 bands belonging to the B' 1Sigmau+-->X 1Sigmag+ system have been identified between 84.1 and 121.6 nm. Except for the upsilon'-0 bands that were reported in absorption [I. Dabrowski and G. Herzberg, Can. J. Phys. 52, 1110 (1974)], all the upsilon'-upsilon" bands are reported here for the first time. The analysis led to the determination of 111 rovibronic energy levels in the B' 1Sigmau+ state, of which 31 with higher rotational numbers J are new. Observed perturbations are accounted for through a set of coupled equations involving the four excited electronic states B 1Sigmau+, B' 1Sigmau+, C 1Piu, and D 1Piu and including nonadiabatic couplings. The solution of this set provides the percent contribution of these four states to each of the observed rovibronic level.

  11. Managing Coil Epoxy Vacuum Impregnation Systems at the Manufacturing Floor Level To Achieve Ultimate Properties in State-of-the-Art Magnet Assemblies

    SciTech Connect

    J.G. Hubrig; G.H. Biallas

    2005-05-01

    Liquid epoxy resin impregnation systems remain a state-of-the-art polymer material for vacuum and vacuum/pressure impregnation applications in the manufacture of both advanced and conventional coil winding configurations. Epoxy resins inherent latitude in processing parameters accounts for their continued popularity in engineering applications, but also for the tendency to overlook or misinterpret the requisite processing parameters on the manufacturing floor. Resin system impregnation must be managed in detail in order to achieve device life cycle reliability. This closer look reveals how manufacturing floor level management of material acceptance, handling and storage, pre- and post- impregnation processing and cure can be built into a manufacturing plan to increase manufacturing yield, lower unit cost and ensure optimum life cycle performance of the coil.

  12. Chemical dry etching of GaAs and InP by Cl2 using a new ultrahigh-vacuum dry-etching molecular-beam-epitaxy system

    NASA Astrophysics Data System (ADS)

    Furuhata, N.; Miyamoto, H.; Okamoto, A.; Ohata, K.

    1989-01-01

    Damage and contamination-free chemical dry etching of (100)GaAs and (100)InP by Cl2 was demonstrated using a new ultrahigh-vacuum dry-etching molecular-beam-epitaxy (BME) system. This system consists of a combined etching chamber, an MBE chamber, and a sample preparation chamber, all at ultrahigh vacuum. A mirrorlike surface was obtained after etching at substrate temperatures ranging from 300 to 400 C for GaAs, and from 200 to 400 C for InP. In situ reflection high-energy electron diffraction observations were accomplished for GaAs, with a mirrorlike surface after etching, and (2 x 4) surface reconstruction was observed. Results show that a smooth surface was formed at an atomic level.

  13. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  14. Measurement of plasma diamagnetism in the SINP tokamak by a flux loop system inside the vacuum vessel

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Kumar, R.; Hui, A. K.

    2001-11-01

    Plasma diamagnetism has been measured in the SINP tokamak by a toroidal flux loop placed inside the vacuum vessel. The flux due to the strong toroidal field has been compensated for by a coplaner annular loop which encircles but does not contain the plasma column. The influence of the eddy currents in the vacuum vessel and the conducting shell in these loops has been calculated analytically by a circuit model using the theory of linear networks and compensated accordingly. This method has been shown to yield an almost exact compensation for toroidal flux (˜0.01%) as well as pickups from other fields. Typical results with plasma shots have been presented.

  15. Vacuum foil insulation system

    DOEpatents

    Hanson, John P.; Sabolcik, Rudolph E.; Svedberg, Robert C.

    1976-11-16

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly.

  16. A Multi-Chamber System for Analyzing the Outgassing, Deposition,and Associated Optical Degradation Properties of Materials in a Vacuum

    SciTech Connect

    Singal, Jack; Schindler, Rafe; Chang, Chihway; Czodrowski, Patrick; Kim, Peter; /KIPAC, Menlo Park /SLAC /Stanford U.

    2009-12-11

    We report on the Camera Materials Test Chamber, a multi-vessel apparatus which analyzes the outgassing consequences of candidate materials for use in the vacuum cryostat of a new telescope camera. The system measures the outgassing products and rates of samples of materials at different temperatures, and collects films of outgassing products to measure the effects on light transmission in six optical bands. The design of the apparatus minimizes potential measurement errors introduced by background contamination.

  17. Mechanical properties of vacuum-sintered equimolar CaO-Y{sub 2}O{sub 3} system

    SciTech Connect

    Wagh, A.S. |; Maiya, P.S.; Poeppel, R.B.; Russell, R.; Suratwala, T.; Roberts, D.

    1991-04-01

    Dense composite material was fabricated aimed at pyrochemical container applications by vacuum-sintering an equimolar mixture of CaO and Y{sub 2}O{sub 3}. Its mechanical and physical properties were characterized: flexural strength, fracture toughness, thermal shock resistance, microstructure, density.

  18. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    SciTech Connect

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.

  19. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  20. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  1. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  2. Preparation and characterization of carbons for the retention of halogens in the condenser vacuum system of a thermonuclear plant

    NASA Astrophysics Data System (ADS)

    Román, S.; González, J. F.; Gañán, J.; Sabio, E.; González-García, C. M.; Ramiro, A.; Mangut, V.

    2006-06-01

    Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 °C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO 2, the influence of the temperature (700-950 °C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N 2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N 2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has SBET of 741 m 2 g -1, Vmi of 0.39 cm 3 g -1 and a iodine retention capacity of 429.3 mg g -1): carbon C (gasification with CO 2 at 850 °C during 1 h), with SBET of 523 m 2 g -1, Vmi of 0.33 cm 3 g -1 and a iodine retention capacity of 402.5 mg g -1, and carbon D (gasification with CO 2 at 900 °C during 1 h), whose SBET is 672 m 2 g -1, Vmi is 0.28 cm 3 g -1 and has a iodine retention capacity of 345.2 mg g -1.

  3. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  4. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2015-01-01

    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.

  5. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z{sub eff} measurement based on bremsstrahlung continuum in HL-2A tokamak

    SciTech Connect

    Zhou Hangyu; Cui Zhengying; Fu Bingzhong; Sun Ping; Gao Yadong; Xu Yuan; Lu Ping; Yang Qingwei; Duan Xuru; Morita, Shigeru; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 A-500 A. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z{sub eff}. The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 A-500 A by comparing the intensity between VUV and EUV line emissions.

  6. Pilot test of a vacuum extraction system for environmental remediation of chlorinated solvents at the Savannah River Site

    SciTech Connect

    Looney, B.B.; Pickett, J.B.; Malot, J.J.

    1991-12-29

    Vacuum extraction is an environmental restoration technique that is currently being applied to the remediation of soils and shallow segments that are contaminated with volatile constituents. In 1987, a h study was performed to evaluate the performance and potential applicability of this technology at the Savannah River Site (SRS). Vacuum extraction is useful when volatile constituents are present in the vadose zone. The technology has been used to remediate a number of sites across the country, including leading underground storage tanks, spill sites, landfill, and production facilities. The primary objective of the pilot study was to test the performance of the technology under the conditions specific to many of the potential areas of application at SRS. There is only a limited body of literature documenting field studiesin similar environments with in sands and clayey zones and a relatively thick vadose zone. Careful studies of this type are needed to develop full scale designs at SRS. The vacuum extraction pilot study at SRS was performed by a mm consisting of technical representatives of the Environmental Sciences Section in the Savannah River Laboratory (SRL), the Raw Materials Engineering and Technology Section of SRS, and TerraVac Inc., a subcontractor with experience in this field.

  7. Electrical Strength of Multilayer Vacuum Insulators

    SciTech Connect

    Harris, J R; Kendig, M; Poole, B; Sanders, D M; Caporaso, G J

    2008-07-01

    The electrical strength of vacuum insulators is a key constraint in the design of particle accelerators and pulsed power systems. Vacuum insulating structures assembled from alternating layers of metal and dielectric can result in improved performance compared to conventional insulators, but previous attempts to optimize their design have yielded seemingly inconsistent results. Here, we present two models for the electrical strength of these structures, one assuming failure by vacuum arcing between adjacent metal layers and the other assuming failure by vacuum surface flashover. These models predict scaling laws which are in agreement with the experimental data currently available.

  8. Leak detection inside a vacuum vessel

    SciTech Connect

    Obara, K.; Abe, T.; Itou, Y.; Iwama, J.

    1981-01-01

    A facility for leak detection inside a vacuum vessel is developed. It will take the place of conventional helium leak detection method. The facility consists of several devices; a unidirectional detector (a sensor), a vacuum tight manipulator, a simulated defect, a vacuum vessel with a turbomolecular pump system and others. Leak detection experiment on the facility was performed and the position of 3.0*10/sup -///6Torr/BULLET/1/sec helium leak was detected on condition that the sensor was at a distance of 18mm from the defect, and the pressure in the vacuum vessel was 5.0*10/sup -8/Torr.

  9. APS Storage Ring vacuum chamber fabrication

    SciTech Connect

    Goeppner, G.A.

    1990-01-01

    The 1104-m circumference Advanced Photon Source Storage Ring Vacuum System is composed of 240 individual sections, which are fabricated from a combination of aluminum extrusions and machined components. The vacuum chambers will have 3800 weld joints, each subject to strict vacuum requirements, as well as a variety of related design criteria. The vacuum criteria and chamber design are reviewed, including a discussion of the weld joint geometries. The critical fabrication process parameters for meeting the design requirements are discussed. The experiences of the prototype chamber fabrication program are presented. Finally, the required facilities preparation for construction activity is briefly described. 6 refs., 6 figs., 1 tab.

  10. Electrical strength of multilayer vacuum insulators

    NASA Astrophysics Data System (ADS)

    Harris, J. R.; Kendig, M.; Poole, B.; Sanders, D. M.; Caporaso, G. J.

    2008-12-01

    The electrical strength of vacuum insulators is a key constraint in the design of particle accelerators and pulsed power systems. Vacuum insulating structures assembled from alternating layers of metal and dielectric can result in improved performance compared to conventional insulators, but previous attempts to optimize their design have yielded seemingly inconsistent results. Here, we present two models for the electrical strength of these structures, one assuming failure by vacuum arcing between adjacent metal layers and the other assuming failure by vacuum surface flashover. These models predict scaling laws which are in agreement with the experimental data currently available.

  11. Lightweight Vacuum Jacket for Cryogenic Insulation. Volume 1

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility of producing a lightweight vacuum jacket using state-of-the-art technology and materials was examined. Design and analytical studies were made on a full-scale, orbital maneuvering system fuel tank. Preliminary design details were made for the tank assembly, including an optimized vacuum jacket and multilayer insulation system. A half-scale LH2 test model was designed and fabricated, and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of .000001 atmosphere ml of helium per second was measured, approximately 1500 hours of vacuum pressure were sustained, and 29 vacuum-pressure cycles were experienced prior to failure.

  12. Vacuum control subsystem for the Fermilab Tevatron

    SciTech Connect

    Zagel, J.R.; Chapman, L.J.

    1981-06-01

    The CAMAC 170 module and CIA crate provide a convenient, cost effective method of interfacing any system requiring a large number of simple devices to be multiplexed into the Accelerator Control System. The system is ideal for relatively slowly changing systems where ten bit analog to digital conversions are sufficiently accurate. Together with vacuum interface CIA cards and prom-based software resident in the 170, this system is used to provide intelligent local monitoring and control for the Tevatron vacuum subsystems. Although not implemented in the vacuum interface, digital to analog converters could be included on the plug in modules as well, providing a total digital and analog multiplexing scheme. 2 refs.

  13. Microscale Digital Vacuum Electronic Gates

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  14. Gas-fired vacuum technology

    SciTech Connect

    Schultz, T.J.; Bender, J.W.

    2000-04-01

    The modern phase of gas-fired vacuum furnace development began in 1986 under two programs sponsored by the Gas Research Institute . Since then, a tremendous amount of gas industry and private money and time have been spent on the development of this important technology. A key barrier has been the temperature capability of gas-fired designs. Recognizing this, Surface Combustion first began commercial development for low temperature applications and designs. This work resulted in several US patents and ultimately the VacuDraw vacuum tempering furnace. Other commercial configurations and larger sizes subsequently evolved from this successful effort. The most recent development in gas-fired vacuum furnace technology, and perhaps the most significant to date, is the installation and operation of the first multichamber, 1,065 C (1,950 F) system designed for tool steel heat treatment. This article provides an overview of this equipment and describes its key design and performance features.

  15. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  16. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system.

    PubMed

    Li, Xue-Mei; Zhao, Baolong; Wang, Zhouwei; Xie, Ming; Song, Jianfeng; Nghiem, Long D; He, Tao; Yang, Chi; Li, Chunxia; Chen, Gang

    2014-01-01

    This study examined the performance of a novel hybrid system of forward osmosis (FO) combined with vacuum membrane distillation (VMD) for reclaiming water from shale gas drilling flow-back fluid (SGDF). In the hybrid FO-VMD system, water permeated through the FO membrane into a draw solution reservoir, and the VMD process was used for draw solute recovery and clean water production. Using a SGDF sample obtained from a drilling site in China, the hybrid system could achieve almost 90% water recovery. Quality of the reclaimed water was comparable to that of bottled water. In the hybrid FO-VMD system, FO functions as a pre-treatment step to remove most contaminants and constituents that may foul or scale the membrane distillation (MD) membrane, whereas MD produces high quality water. It is envisioned that the FO-VMD system can recover high quality water not only from SGDF but also other wastewaters with high salinity and complex compositions. PMID:24622553

  17. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system.

    PubMed

    Li, Xue-Mei; Zhao, Baolong; Wang, Zhouwei; Xie, Ming; Song, Jianfeng; Nghiem, Long D; He, Tao; Yang, Chi; Li, Chunxia; Chen, Gang

    2014-01-01

    This study examined the performance of a novel hybrid system of forward osmosis (FO) combined with vacuum membrane distillation (VMD) for reclaiming water from shale gas drilling flow-back fluid (SGDF). In the hybrid FO-VMD system, water permeated through the FO membrane into a draw solution reservoir, and the VMD process was used for draw solute recovery and clean water production. Using a SGDF sample obtained from a drilling site in China, the hybrid system could achieve almost 90% water recovery. Quality of the reclaimed water was comparable to that of bottled water. In the hybrid FO-VMD system, FO functions as a pre-treatment step to remove most contaminants and constituents that may foul or scale the membrane distillation (MD) membrane, whereas MD produces high quality water. It is envisioned that the FO-VMD system can recover high quality water not only from SGDF but also other wastewaters with high salinity and complex compositions.

  18. Quantification of Quantum Entanglement in a Multiparticle System of Two-Level Atoms Interacting with a Squeezed Vacuum State of the Radiation Field

    NASA Astrophysics Data System (ADS)

    Deb, Ram Narayan

    2016-07-01

    We quantify multiparticle quantum entanglement in a system of N two-level atoms interacting with a squeezed vacuum state of the electromagnetic field. We calculate the amount of quantum entanglement present among one hundred such two-level atoms and also show the variation of that entanglement with the radiation field parameter. We show the continuous variation of the amount of quantum entanglement as we continuously increase the number of atoms from N = 2 to N = 100. We also discuss that the multiparticle correlations among the N two-level atoms are made up of all possible bipartite correlations among the N atoms.

  19. Quantum vacuum noise in physics and cosmology.

    PubMed

    Davies, P. C. W.

    2001-09-01

    The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics. PMID:12779491

  20. Diamagnetic measurements in the STOR-M tokamak by a flux loop system exterior to the vacuum vessel

    NASA Astrophysics Data System (ADS)

    Trembach, Dallas; Xiao, Chijin; Dreval, Mykola; Hirose, Akira

    2009-05-01

    Diamagnetic measurements of poloidal beta have been performed in the STOR-M tokamak by a flux loop placed exterior to the vacuum chamber with compensation for the vacuum toroidal field using a nonenclosing coplanar coil, and vibrational compensation from auxiliary coils. It was found that in STOR-M conditions (20% toroidal magnetic field decay over discharge) there is significant influence on the diamagnetic flux measurements from strong residual signals, presumably from image currents being induced by the toroidal field coils, requiring further compensation. A blank (nonplasma) shot is used specifically to eliminate the residual component which is not proportional to the toroidal magnetic field. Data from normal Ohmic discharge operation is presented and calculations of poloidal beta from coil data (βθ˜0.5) is found to be in reasonable agreement with the values of poloidal beta obtained from measurements of electron density and Spitzer temperature with neoclassical corrections for trapped electrons. Contributions present in the blank shot (residual) signal and the limitations of this method are discussed.

  1. [Vertebral vacuum phenomena].

    PubMed

    Hamzé, B; Leaute, F; Wybier, M; Laredo, J D

    1995-01-01

    The spinal vacuum phenomenon is a collection of gas within the disk space, the vertebral body, the apophyseal joint or the spinal canal. The intradiscal vacuum phenomenon is frequently observed in degenerative disk disease and crystal-induced diskopathy. This has obvious significance to the radiologist, who, on observing a narrowed disk space or collapsed vertebral body, might otherwise consider infectious or neoplastic spondylitis, a likely possibility. The presence of vacuum phenomenon militates against the diagnosis of infection or tumor.

  2. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  3. Pseudoredundant vacuum energy

    SciTech Connect

    Batra, Puneet; Hinterbichler, Kurt; Hui, Lam; Kabat, Daniel

    2008-08-15

    We discuss models that can account for today's dark energy. The underlying cosmological constant may be Planck scale but starts as a redundant coupling which can be eliminated by a field redefinition. The observed vacuum energy arises when the redundancy is explicitly broken, say by a nonminimal coupling to curvature. We give a recipe for constructing models, including R+1/R-type models, that realize this mechanism and satisfy all solar system constraints on gravity. A similar model, based on Gauss-Bonnet gravity, provides a technically natural explanation for dark energy and exhibits an interesting seesaw behavior: a large underlying cosmological constant gives rise to both low- and high-curvature solutions. Such models could be statistically favored in the string landscape.

  4. Intelligent control of vacuum aluminum brazing

    SciTech Connect

    Zhong, G.; Pai, D.M.; Badgley, S.

    1995-06-01

    Vacuum brazing is a versatile modern day metal joining method. It usually includes vacuum producing, heating and residual gas analyzing systems. When used to join aluminum parts, the quality of the brazed joint is highly dependent on the residual gases in the vacuum, especially the residual oxygen and water vapor in the vacuum chamber which affect the formation of oxides. These vacuum environment brazing contaminants are reduced during the out-gassing processes of degassing and desorption during heating under vacuum. Exceeding the boundary limits of these contaminants causes unacceptable flow of braze filler in the joints during the brazing process. Identification of the quality control boundary for vacuum brazing of aluminum alloy makes computer control of vacuum brazing quality for aluminum alloys possible. The present study utilizes a residual gas analyzer (RGA) to monitor the partial pressures of residual gases during brazing. These data are transported to computer through the RS-232 interface port on the RGA, and used in real time to monitor the brazing quality by an algorithm based on the quality control boundary. If the quality is bad, the computer will send a ``hold`` signal to the heating system via another Rs-232 port until the environment is reestablished within the acceptable boundary.

  5. Modular ultrahigh vacuum-compatible gas-injection system with an adjustable gas flow for focused particle beam-induced deposition

    SciTech Connect

    Klingenberger, D.; Huth, M.

    2009-09-15

    A gas-injection system (GIS) heats up a powdery substance and transports the resulting gas through a capillary into a vacuum chamber. Such a system can be used to guide a (metal)organic precursor gas very close to the focal area of an electron or ion beam, where a permanent deposit is created and adheres to the substrate. This process is known as focused particle beam-induced deposition. The authors present design principles and give construction details of a GIS suitable for ultrahigh vacuum usage. The GIS is composed of several self-contained components which can be customized rather independently. It allows for a continuously adjustable gas-flow rate. The GIS was attached to a standard scanning electron microscope (JEOL 6100) and tested with the tungsten precursor W(CO){sub 6}. The analysis of the deposits by means of atomic force microscopy and energy dispersive x-ray spectroscopy provides clear evidence that excellent gas-flow-rate stability and ensuing growth rate and metal-content reproducibility are experienced.

  6. Application of Molecular Interaction Volume Model for Phase Equilibrium of Sn-Based Binary System in Vacuum Distillation

    NASA Astrophysics Data System (ADS)

    Kong, Lingxin; Yang, Bin; Xu, Baoqiang; Li, Yifu

    2014-09-01

    Based on the molecular interaction volume model (MIVM), the activities of components of Sn-Sb, Sb-Bi, Sn-Zn, Sn-Cu, and Sn-Ag alloys were predicted. The predicted values are in good agreement with the experimental data, which indicate that the MIVM is of better stability and reliability due to its good physical basis. A significant advantage of the MIVM lies in its ability to predict the thermodynamic properties of liquid alloys using only two parameters. The phase equilibria of Sn-Sb and Sn-Bi alloys were calculated based on the properties of pure components and the activity coefficients, which indicates that Sn-Sb and Sn-Bi alloys can be separated thoroughly by vacuum distillation. This study extends previous investigations and provides an effective and convenient model on which to base refining simulations for Sn-based alloys.

  7. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    SciTech Connect

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  8. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)…

  9. Anaerobic polymers as high vacuum leak sealants

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1982-01-01

    Anaerobic polymers are useful as solventless leak sealants with good vacuum properties at moderate temperatures. Loctite 290 can seal leaks in a range generally encountered in carefully constructed ultrahigh vacuum and high vacuum systems. It was found that small leaks are sealed best under vacuum, whereas large leaks should be sealed at atmospheric pressure. The high-temperature behavior of Loctite 290 is limited by its fast cure, which prevents deep penetration into small leaks; cracking eventually occurs at the entrance to the leak. Repeated thermal cycling to about 300 C is possible, however, provided viscosity, curing time, and leak size are properly matched to ensure penetration into the body of the leak. This may require special formulations for high temperature vacuum applications.

  10. 46 CFR 64.65 - Vacuum relief device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Vacuum relief device. 64.65 Section 64.65 Shipping COAST... HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.65 Vacuum relief device. (a) Each MPT that is designed for an external pressure of less than 7.5 psig must have a...

  11. 46 CFR 64.65 - Vacuum relief device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Vacuum relief device. 64.65 Section 64.65 Shipping COAST... HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.65 Vacuum relief device. (a) Each MPT that is designed for an external pressure of less than 7.5 psig must have a...

  12. 46 CFR 64.65 - Vacuum relief device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Vacuum relief device. 64.65 Section 64.65 Shipping COAST... HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.65 Vacuum relief device. (a) Each MPT that is designed for an external pressure of less than 7.5 psig must have a...

  13. 46 CFR 64.65 - Vacuum relief device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Vacuum relief device. 64.65 Section 64.65 Shipping COAST... HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.65 Vacuum relief device. (a) Each MPT that is designed for an external pressure of less than 7.5 psig must have a...

  14. 46 CFR 64.65 - Vacuum relief device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Vacuum relief device. 64.65 Section 64.65 Shipping COAST... HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.65 Vacuum relief device. (a) Each MPT that is designed for an external pressure of less than 7.5 psig must have a...

  15. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  16. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    SciTech Connect

    Rutkowski, M. M.; Zeng Zhaoquan; McNicholas, K. M.; Brillson, L. J.

    2013-06-15

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift ({approx}1 eV) in the core level binding energies was observed.

  17. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    NASA Astrophysics Data System (ADS)

    Rutkowski, M. M.; McNicholas, K. M.; Zeng, Zhaoquan; Brillson, L. J.

    2013-06-01

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (˜1 eV) in the core level binding energies was observed.

  18. Cross sections and band strengths for the N2O/+/ /A 2Sigma+ to X 2Pi/ system produced by vacuum ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Judge, D. L.

    1974-01-01

    Analysis of cross sections that have been obtained for the production of the N2O(+) (A 2Sigma+ to X 2Pi) fluorescence, using vacuum ultraviolet radiation between 462 and 755 A. The fluorescence spectra produced using incident photons of 715.6- and 754.9-A wavelengths are presented, as well as the relative fluorescence cross sections for the individual observed bands of the above-mentioned N2O(+) system. Finally, absolute cross sections for the production of the N2O(+) (A 2Sigma+ to X 2Pi) system are presented, as well as band strengths for the A 2Sigma+(0,0,0) to X 2Pi(n1,n2,0) fluorescence.

  19. Characterization and Evaluation of Ti-Zr-V Non-evaporable Getter Films Used in Vacuum Systems

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J.; Seraphim, R. M.; Ramirez, A. J.; Tabacniks, M. H.; Nascente, P. A. P.

    Among several methods used to obtain ultra-high vacuum (UHV) for particles accelerators chambers, it stands out the internal coating with metallic films capable of absorbing gases, called NEG (non-evaporable getter). Usually these materials are constituted by elements of great chemical reactivity and solubility (such as Ti, Zr, and V), at room temperature for oxygen and other gases typically found in UHV, such as H2, CO, and CO2. Gold and ternary Ti-Zr-V films were produced by magnetron sputtering, and their composition, structure, morphology, and aging characteristics were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission gun sc anning electronmicroscopy (FEG-SEM), atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM). The comparison between the produced films and commercial samples indicated that the desirable characteristics depend on the nanometric structure of the films and that this structure is sensitive to the heat treatments.

  20. Running Jobs in the Vacuum

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Ubeda Garcia, M.

    2014-06-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously "in the vacuum" rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  1. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2000-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  2. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2001-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  3. Changing MFTF vacuum environment

    SciTech Connect

    Margolies, D.; Valby, L.

    1982-08-19

    The Mirror Fusion Test Facility (MFTF) vaccum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10/sup 9/ to 5 x 10/sup 10/ particles per cc. The maximum leak rate of 10/sup -6/ tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorbtion pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described.

  4. Case study: Vacuuming for VOCs

    SciTech Connect

    Das, A.; Mazowiecki, C.R.

    1996-06-01

    The soil-vapor extraction system, which draws VOC-laden vapors from the subsurface, has become a popular remediation tool. The soil-vapor extraction (SVE) system, also know as {open_quotes}venting,{close_quotes} has proven to be a popular and cost-effective choice to remediate sites contaminated with volatile organic compounds (VOCs) in the vadose zone. The SVE system includes airflow in the subsurface by applying a vacuum through extraction wells. The system is described in this article, with a report on performance monitoring included.

  5. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  6. Vacuum levels and milk-flow-dependent vacuum drops affect machine milking performance and teat condition in dairy cows.

    PubMed

    Besier, J; Bruckmaier, R M

    2016-04-01

    Different levels of claw vacuum during machine milking may influence milking performance and teat condition. The claw vacuum acts on the teat and is responsible for removal and transport of milk but is also causing potential effects on the teat tissue. In the absence of milk flow, the claw vacuum is similar as the system vacuum. During milk flow, the claw vacuum drops to lower levels depending on lifting height and tube length and diameter, which may influence milking performance and the mechanical load on the teat tissue. The goal of the present study was to investigate the effects of high system vacuum and extremely low claw vacuum during milk flow on milking performance and teat condition after milking recorded by ultrasound. Treatments were control (treatment 1) with a system vacuum of 42 and a minimum claw vacuum during milk flow of 33 kPa; treatment 2 representing a system vacuum of 50 kPa, with a minimum claw vacuum almost similar as treatment 1 (34 kPa); and treatment 3 with the same system vacuum as treatment 1 but a claw vacuum drop during milk flow down to 24 kPa. Total milk yield was similar in all treatments, but strip yield was lower in treatment 3 than in the other treatments. Milk flow was similar in treatment 1 and treatment 2, but was reduced in treatment 3, thus causing a prolonged milking time in treatment 3. Teat wall thickness was increased and teat cistern diameter was decreased in treatment 2 as compared with the other treatments. The results demonstrate that the minimum claw vacuum had the main influence on milking performance independent of the level of the system vacuum and related vacuum drops and a low minimum claw vacuum caused low milk flow and long milking times. Teat condition at the end of milking, however, was mainly dependent on the system vacuum, and the load on the teat tissue was obviously increased at a system vacuum of 50 kPa. This effect was obviously occurring toward the end of milking when milk flow decreased and hence

  7. A study of LC-39 cryogenic systems. Part 1: A study of the vacuum insulated transfer lines at Kennedy Space Center. Part 2: Cooldown pressure surges

    NASA Technical Reports Server (NTRS)

    Ludtke, P. R.; Voth, R. O.

    1971-01-01

    The vacuum liquid hydrogen and liquid oxygen transfer lines at Kennedy Space Center were studied to evaluate the feasibility of using a condensing gas such as CO2 inside the vacuum spaces to achieve a condensing-vacuum. The study indicates that at ambient temperature, a maximum vacuum hyphen space pressure of 4000 microns is acceptable for the LH2 transfer lines. In addition, the cooldown procedures for the 14-inch cross-country liquid oxygen line was studied using a simplified mathematical model. Preliminary cooldown times are presented for various heat leak rates to the line and for two vent configurations.

  8. Corrosive behavior of chromium carbide-based films formed on steel using a filtered cathodic vacuum arc system

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Chun; Chang, Ku-Ling; Shih, Han C.

    2007-03-01

    The formation of chromium carbide-based hard-coatings on steels using a 90°-bend filtered cathodic vacuum arc (FCVA) has extensive industrial applications; such coatings are free of macroparticles and exhibit excellent characteristics. In this investigation, a working pressure of C 2H 2/Ar was adopted to synthesize amorphous chromium carbide film (a-C:Cr) and crystalline chromium carbide film (cryst-Cr 3C 2) from a Cr target (99.95%) at 500 °C under a substrate voltage of -50 V. The corrosion behavior of a-C:Cr coated on steel (a-C:Cr/steel) and cryst-Cr 3C 2 coated on steel (cryst-Cr 3C 2/steel) were compared in terms of open-circuit potentials (OCP) and polarization resistance ( Rp) in an aerated 3.5 wt% NaCl aqueous solution, as determined by electrochemical impedance spectroscopy (EIS). The XRD results indicated that the transformation of a-C:Cr to cryst-Cr 3C 2 is distinct as the working pressure declines from 1.2 × 10 -2 to 2.9 × 10 -3 Torr. The OCP of a-C:Cr/steel and cryst-Cr 3C 2/steel resemble each other and both assembly are nobler than uncoated steel. The Rp of the coatings exceeds that of the uncoated steel. The SEM observation and the EIS results demonstrate that the cryst-Cr 3C 2/steel more effectively isolates the defects than dose a-C:Cr/steel.

  9. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  10. Assembly of a Vacuum Chamber: A Hands-On Approach to Introduce Mass Spectrometry

    ERIC Educational Resources Information Center

    Bussie`re, Guillaume; Stoodley, Robin; Yajima, Kano; Bagai, Abhimanyu; Popowich, Aleksandra K.; Matthews, Nicholas E.

    2014-01-01

    Although vacuum technology is essential to many aspects of modern physical and analytical chemistry, vacuum experiments are rarely the focus of undergraduate laboratories. We describe an experiment that introduces students to vacuum science and mass spectrometry. The students first assemble a vacuum system, including a mass spectrometer. While…

  11. Cosmic vacuum and galaxy formation

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2006-04-01

    It is demonstrated that the protogalactic perturbations must enter the nonlinear regime before the red shift z≈ 1; otherwise they would be destroyed by the antigravity of the vacuum dark energy at the subsequent epoch of the vacuum domination. At the zrrV={M/[(8π/3)ρV]}1/3, where M is the mass of a given over-density and ρV is the vacuum density. The criterion provides a new relation between the largest mass condensations and their spatial scales. All the real large-scale systems follow this relation definitely. It is also shown that a simple formula is possible for the key quantity in the theory of galaxy formation, namely the initial amplitude of the perturbation of the gravitational potential in the protogalactic structures. The amplitude is time independent and given in terms of the Friedmann integrals, which are genuine physical characteristics of the cosmic energies. The results suggest that there is a strong correspondence between the global design of the Universe as a whole and the cosmic structures of various masses and spatial scales.

  12. Mirror moving in quantum vacuum of a massive scalar field

    NASA Astrophysics Data System (ADS)

    Wang, Qingdi; Unruh, William G.

    2015-09-01

    We present a mirror model moving in the quantum vacuum of a massive scalar field and study its motion under infinitely fluctuating quantum vacuum stress. The model is similar to the one in [Q. Wang and W. G. Unruh, Motion of a mirror under infinitely fluctuating quantum vacuum stress Phys. Rev. D 89, 085009 (2014).], but this time there is no divergent effective mass to weaken the effect of divergent vacuum energy density. We show that this kind of weakening is not necessary. The vacuum friction and strong anticorrelation property of the quantum vacuum are enough to confine the mirror's position fluctuations. This is another example illustrating that while the actual value of the vacuum energy can be physically significant even for a nongravitational system, and that its infinite value makes sense, but that its physical effect can be small despite this infinity.

  13. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  14. High throughput vacuum chemical epitaxy

    NASA Astrophysics Data System (ADS)

    Fraas, L. M.; Malocsay, E.; Sundaram, V.; Baird, R. W.; Mao, B. Y.; Lee, G. Y.

    1990-10-01

    We have developed a vacuum chemical epitaxy (VCE) reactor which avoids the use of arsine and allows multiple wafers to be coated at one time. Our vacuum chemical epitaxy reactor closely resembles a molecular beam epitaxy system in that wafers are loaded into a stainless steel vacuum chamber through a load chamber. Also as in MBE, arsenic vapors are supplied as reactant by heating solid arsenic sources thereby avoiding the use of arsine. However, in our VCE reactor, a large number of wafers are coated at one time in a vacuum system by the substitution of Group III alkyl sources for the elemental metal sources traditionally used in MBE. Higher wafer throughput results because in VCE, the metal-alkyl sources for Ga, Al, and dopants can be mixed at room temperature and distributed uniformly though a large area injector to multiple substrates as a homogeneous array of mixed element molecular beams. The VCE reactor that we have built and that we shall describe here uniformly deposits films on 7 inch diameter substrate platters. Each platter contains seven two inch or three 3 inch diameter wafers. The load chamber contains up to nine platters. The vacuum chamber is equipped with two VCE growth zones and two arsenic ovens, one per growth zone. Finally, each oven has a 1 kg arsenic capacity. As of this writing, mirror smooth GaAs films have been grown at up to 4 μm/h growth rate on multiple wafers with good thickness uniformity. The background doping is p-type with a typical hole concentration and mobility of 1 × 10 16/cm 3 and 350 cm 2/V·s. This background doping level is low enough for the fabrication of MESFETs, solar cells, and photocathodes as well as other types of devices. We have fabricated MESFET devices using VCE-grown epi wafers with peak extrinsic transconductance as high as 210 mS/mm for a threshold voltage of - 3 V and a 0.6 μm gate length. We have also recently grown AlGaAs epi layers with up to 80% aluminum using TEAl as the aluminum alkyl source. The Al

  15. Medical abortion and manual vacuum aspiration for legal abortion protect women's health and reduce costs to the health system: findings from Colombia.

    PubMed

    Rodriguez, Maria Isabel; Mendoza, Willis Simancas; Guerra-Palacio, Camilo; Guzman, Nelson Alvis; Tolosa, Jorge E

    2015-02-01

    The majority of abortions in Colombia continue to take place outside the formal health system under a range of conditions, with the majority of women obtaining misoprostol from a thriving black market for the drug and self-administering the medication. We conducted a cost analysis to compare the costs to the health system of three approaches to the provision of abortion care in Colombia: post-abortion care for complications of unsafe abortions, and for legal abortions in a health facility, misoprostol-only medical abortion and vacuum aspiration abortion. Hospital billing records from three institutions, two large maternity hospitals and one specialist reproductive health clinic, were analysed for procedure and complication rates, and costs by diagnosis. The majority of visits (94%) were to the two hospitals for post-abortion care; the other 6% were for legal abortions. Only one minor complication was found among the women having legal abortions, a complication rate of less than 1%. Among the women presenting for post-abortion care, 5% had complications during their treatment, mainly from infection or haemorrhage. Legal abortions were associated not only with far fewer complications for women, but also lower costs for the health system than for post-abortion care. We calculated based on our findings that for every 1,000 women receiving post-abortion care instead of a legal abortion within the health system, 16 women experienced avoidable complications, and the health system spent US $48,000 managing them. Increasing women's access to safe abortion care would not only reduce complications for women, but would also be a cost-saving strategy for the health system. PMID:25702076

  16. Medical abortion and manual vacuum aspiration for legal abortion protect women's health and reduce costs to the health system: findings from Colombia.

    PubMed

    Rodriguez, Maria Isabel; Mendoza, Willis Simancas; Guerra-Palacio, Camilo; Guzman, Nelson Alvis; Tolosa, Jorge E

    2015-02-01

    The majority of abortions in Colombia continue to take place outside the formal health system under a range of conditions, with the majority of women obtaining misoprostol from a thriving black market for the drug and self-administering the medication. We conducted a cost analysis to compare the costs to the health system of three approaches to the provision of abortion care in Colombia: post-abortion care for complications of unsafe abortions, and for legal abortions in a health facility, misoprostol-only medical abortion and vacuum aspiration abortion. Hospital billing records from three institutions, two large maternity hospitals and one specialist reproductive health clinic, were analysed for procedure and complication rates, and costs by diagnosis. The majority of visits (94%) were to the two hospitals for post-abortion care; the other 6% were for legal abortions. Only one minor complication was found among the women having legal abortions, a complication rate of less than 1%. Among the women presenting for post-abortion care, 5% had complications during their treatment, mainly from infection or haemorrhage. Legal abortions were associated not only with far fewer complications for women, but also lower costs for the health system than for post-abortion care. We calculated based on our findings that for every 1,000 women receiving post-abortion care instead of a legal abortion within the health system, 16 women experienced avoidable complications, and the health system spent US $48,000 managing them. Increasing women's access to safe abortion care would not only reduce complications for women, but would also be a cost-saving strategy for the health system.

  17. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  18. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region.

    PubMed

    Plogmaker, Stefan; Linusson, Per; Eland, John H D; Baker, Neville; Johansson, Erik M J; Rensmo, Håkan; Feifel, Raimund; Siegbahn, Hans

    2012-01-01

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of ~8 to ~120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  19. The moon-Earth system...As a vacuum gravity energy machine? A Hint about the Nature of Universal Gravity that May Have Been Overlooked

    NASA Astrophysics Data System (ADS)

    Masters, Roy

    2011-10-01

    We revisit the theories describing the moon raising the tides by virtue of pull gravity combined with the moon's centripetal angular momentum. We show that if gravity is considered as the attractive interaction between individual bodies, then a laboring moon doing work would have fallen to earth eons ago. Isaac Newton's laws of motion cannot work with pull gravity, but they do with Einstein's gravity as a property of the universe, which produces a continuous infusion of energy. In other words, the moon-Earth system becomes the first observable vacuum gravity energy machine. In other words the dynamics of what appears to be a closed system has been producing energy that continues raising the tides into perpetuity along with the force needed for the moon to escape the Earth's gravitational pull 4cm per year. All this is in defiance of Newton's first law which says ``If no force is added to a body it cannot accelerate.'' In this theory, a flowing space-time curves with three dimensions of force. A (flowing) spatial fabric bends around mass and displaces the inverse square field vanishing point property of matter with the appearance of a push-force square of the distance. In other words, the immeasurable universal gravity field appears as measurable local gravitation, concentrating universal gravitational pressure with the square of the distance from the very point was supposed to have disappeared. Needless to say such ``gravity'' necessitates a different beginning.

  20. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region

    SciTech Connect

    Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan; Feifel, Raimund; Siegbahn, Hans; Linusson, Per; Eland, John H. D.; Baker, Neville

    2012-01-15

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  1. VACUUM SEALING MEANS FOR LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-12

    S>A vacuum seal is designed in which the surface tension of a thin layer of liquid metal of low vapor pressure cooperates with adjacent surfaces to preclude passages of gases across pressure differentials as low as 10/sup -8/ mm Hg. Mating contiguous surfaces composed of copper, brass, stainless steel, nickel, molybdenum, tungsten, tantalum, glass, quartz, and/or synthetic mica are disposed to provide a maximum tolerance, D, expressed by 2 gamma /P/sub 1/, where gamma is the coefflcient of the surface tension of the metal sealant selected in dynes/cm/sub 2/. Means for heating the surfaces remotely is provided where temperatures drop below about 250 deg C. A sealant consisting of an alloy of gallium, indium, and tin, among other combinations tabulated, is disposed therebetween after treating the surfaces to improve wettability, as by ultrasonic vibrations, the surfaces and sealants being selected according to the anticipated experimental conditions of use. (AEC)

  2. Gas injected vacuum switch

    DOEpatents

    Hardin, K. Dan

    1977-01-01

    The disclosure relates to a gas injected vacuum switch comprising a housing having an interior chamber, a conduit for evacuating the interior chamber, within the chamber an anode and a cathode spaced from the anode, and a detonator for injecting electrically conductive gas into the chamber between the anode and the cathode to provide a current path therebetween.

  3. Vacuum ultraviolet holography

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.; Harris, S. E.; Young, J. F.

    1974-01-01

    The authors report the first demonstration of holographic techniques in the vacuum ultraviolet spectral region. Holograms were produced with coherent 1182 A radiation. The holograms were recorded in polymethyl methacrylate and read out with an electron microscope. A holographic grating with a fringe spacing of 836 A was produced and far-field Fraunhofer holograms of sub-micron particles were recorded.

  4. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  5. Ultra high vacuum seal arrangement

    DOEpatents

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  6. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  7. Vacuum Pickup for Solar Cells

    NASA Technical Reports Server (NTRS)

    Frasch, W.

    1982-01-01

    Flexible vacuum cups that handle solar cells conform to shape or cell back surfaces. Cups lift vertically, without tilt that might cause stress on interconnections, inaccurate placement, or damage to cells. Vacuum source is venturi valve mounted on air manifold.

  8. Rubber-coated bellows improves vibration damping in vacuum lines

    NASA Technical Reports Server (NTRS)

    Hegland, D. E.; Smith, R. J.

    1966-01-01

    Compact-vibration damping systems, consisting of rubber-coated metal bellows with a sliding O-ring connector, are used in vacuum lines. The device presents a metallic surface to the vacuum system and combines flexibility with the necessary stiffness. It protects against physical damage, reduces fatigue failure, and provides easy mating of nonparallel lines.

  9. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  10. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve must begin to open only at a pressure exceeding 3.5 kPa gauge (approx. 0.5 psig). (b) A...

  11. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve must begin to open only at a pressure exceeding 3.5 kPa gauge (approx. 0.5 psig). (b) A...

  12. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve must begin to open only at a pressure exceeding 3.5 kPa gauge (approx. 0.5 psig). (b) A...

  13. High specific surface area aerogel cryoadsorber for vacuum pumping applications

    DOEpatents

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    2000-01-01

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  14. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve must begin to open only at a pressure exceeding 3.5 kPa gauge (approx. 0.5 psig). (b) A...

  15. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve must begin to open only at a pressure exceeding 3.5 kPa gauge (approx. 0.5 psig). (b) A...

  16. High Specific Surface area Aerogel Cryoadsorber for Vacuum Pumping Applications

    SciTech Connect

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    1998-12-22

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  17. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  18. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  19. Investigation on the passivated Si/Al2O3 interface fabricated by non-vacuum spatial atomic layer deposition system.

    PubMed

    Lien, Shui-Yang; Yang, Chih-Hsiang; Wu, Kuei-Ching; Kung, Chung-Yuan

    2015-01-01

    Currently, aluminum oxide stacked with silicon nitride (Al2O3/SiNx:H) is a promising rear passivation material for high-efficiency P-type passivated emitter and rear cell (PERC). It has been indicated that atomic layer deposition system (ALD) is much more suitable to prepare high-quality Al2O3 films than plasma-enhanced chemical vapor deposition system and other process techniques. In this study, an ultrafast, non-vacuum spatial ALD with the deposition rate of around 10 nm/min, developed by our group, is hired to deposit Al2O3 films. Upon post-annealing for the Al2O3 films, the unwanted delamination, regarded as blisters, was found by an optical microscope. This may lead to a worse contact within the Si/Al2O3 interface, deteriorating the passivation quality. Thin stoichiometric silicon dioxide films prepared on the Si surface prior to Al2O3 fabrication effectively reduce a considerable amount of blisters. The residual blisters can be further out-gassed when the Al2O3 films are thinned to 8 nm and annealed above 650°C. Eventually, the entire PERC with the improved triple-layer SiO2/Al2O3/SiNx:H stacked passivation film has an obvious gain in open-circuit voltage (V oc) and short-circuit current (J sc) because of the increased minority carrier lifetime and internal rear-side reflectance, respectively. The electrical performance of the optimized PERC with the V oc of 0.647 V, J sc of 38.2 mA/cm(2), fill factor of 0.776, and the efficiency of 19.18% can be achieved.

  20. Solar heated vacuum flask

    SciTech Connect

    Posnansky, M.

    1980-04-08

    The wall of a protective jacket of a vacuum flask, containing a double-walled vessel whose walls are permeable to solar radiation , includes parts capable of being swung open. These parts and a wall part situated between them each have a reflective coating. The reflective surfaces of these coatings, viewed in crosssection, extend along a parabola when the movable wall parts are opened out, so that incident solar radiation is collected in the core zone of the vessel. A solar-radiation absorbing member may be disposed in this core zone, E.G., a metal tube having a black outer surface. Liquid contents of such a vacuum flask can be heated by means of solar energy.

  1. Vacuum tool manipulator

    DOEpatents

    Zollinger, W.T.

    1993-11-23

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm. 6 figures.

  2. Vacuum tool manipulator

    DOEpatents

    Zollinger, William T.

    1993-01-01

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  3. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  4. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Edison's vacuum technology patents

    NASA Astrophysics Data System (ADS)

    Waits, Robert K.

    2003-07-01

    During 1879 Thomas Edison's Menlo Park, New Jersey laboratory developed the means to evacuate glass lamp globes to less than a mTorr in 20 min and in mid-1880 began production of carbon-filament incandescent lamps. Among Edison's nearly 1100 U.S. patents are five for vacuum pump improvements, and at least eight others that are vacuum-related; all applied for between 1880 and 1886. Inspired by an 1878 article by De La Rue and Müller [Philos. Trans. R. Soc. London, Ser. A 169, 155 (1878)] on studies of glow discharges, Edison devised a combination pump using the Geissler pump as a rough pump and the Sprengel pump for continuous exhaustion. Edison's patents described means to control the mercury flow and automate the delivery of the mercury to banks of up to a hundred pumps. Other patents described various means to remove residual gases during lamp processing.

  6. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  7. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  8. Electrostatic Levitator Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  9. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  10. A road map to extreme high vacuum

    NASA Astrophysics Data System (ADS)

    Adderley, P.; Myneni, G.

    2008-05-01

    Ultimate pressure of a well-designed vacuum system very much depends on pretreatments, processing and procedures [1, 2]. Until now much attention has been paid to minimizing hydrogen outgassing from the vacuum chamber wall materials, however, procedures and processing deserve further scrutiny. For reducing the gas load, high sensitivity helium leak detection techniques with sensitivities better than 1×10-12 Torr l/sec should be used. Effects that are induced by vacuum instrumentation need to be reduced in order to obtain accurate pressure measurements. This paper presents the current status of the CEBAF DC photogun. This state of the art technology is driving the need for Extreme High Vacuum (XHV). We also present sensitive helium leak detection techniques with RGA's, vacuum gauge and RGA calibration procedures, metal sponges for cryosorption pumping of hydrogen to XHV, low cost surface diffusion barriers for reducing the hydrogen gas load and clean assembly procedures. Further, alternative backing pump systems based on active NEGs [3] for turbo molecular pumps are also discussed.

  11. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  12. Giant vacuum forces via transmission lines

    PubMed Central

    Shahmoon, Ephraim; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry and in emerging technologies involving, e.g., microelectromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension, we find a much stronger and longer-range interaction than in free space. This enhancement may have profound implications on many-particle and bulk systems and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line. PMID:25002503

  13. A Road Map to Extreme High Vacuum

    SciTech Connect

    Myneni, Ganapati Rao

    2007-06-20

    Ultimate pressure of a well-designed vacuum system very much depends on pretreatments, processing and the procedures [1,2]. Until now much attention has been paid in minimizing hydrogen outgassing from the chamber material. However, procedures and processing deserves further scrutiny than hitherto given so far. For reducing the gas load, high sensitivity helium leak detection techniques with sensitivities better than 1× 10-12 Torr l/sec need to be used. Effects that are induced by vacuum instrumentation need to be reduced in order to obtain accurate pressure measurements. This presentation will discuss: clean assembly procedures, metal sponges for cryosorption pumping of hydrogen to extreme high vacuum, low cost surface diffusion barriers for reducing the hydrogen gas load, cascade pumping, sensitive helium leak detection techniques and the use of modified extractor and residual gas analyzers. Further, alternative back up pumping systems based on active NEG’s [3] for turbo molecular pumps will be presented.

  14. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  15. Vacuum Pyrolysis and Related ISRU Techniques

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Pomeroy, Brian R.; Banks, Ian S.; Benz, Alexis

    2007-01-01

    A number of ISRU-related techniques have been developed at NASA Goddard Space Flight Center. The focus of the team has been on development of the vacuum pyrolysis technique for the production of oxygen from the lunar regolith. However, a number of related techniques have also been developed, including solar concentration, solar heating of regolith, resistive heating of regolith, sintering, regolith boiling, process modeling, parts manufacturing, and instrumentation development. An initial prototype system was developed to vaporize regolith simulants using a approx. l square meter Fresnel lens. This system was successfully used to vaporize quantities of approx. lg, and both mass spectroscopy of the gasses produced and Scanning Electron Microscopy (SEM) of the slag were done to show that oxygen was produced. Subsequent tests have demonstrated the use of a larger system With a 3.8m diameter reflective mirror to vaporize the regolith. These results and modeling of the vacuum pyrolysis reaction have indicated that the vaporization of the oxides in the regolith will occur at lower temperature for stronger vacuums. The chemical modeling was validated by testing of a resistive heating system that vaporized quantities of approx. 10g of MLS-1A. This system was also used to demonstrate the sintering of regolith simulants at reduced temperatures in high vacuum. This reduction in the required temperature prompted the development of a small-scale resistive heating system for application as a scientific instrument as well as a proof-of principle experiment for oxygen production.

  16. Study of Vacuum Energy Physics for Breakthrough Propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Technical Monitor); Maclay, G. Jordan; Hammer, Jay; Clark, Rod; George, Michael; Kim, Yeong; Kir, Asit

    2004-01-01

    This report summarizes the accomplishments during a three year research project to investigate the use of surfaces, particularly in microelectromechanical systems (MEMS), to exploit quantum vacuum forces. During this project, we developed AFM instrumentation to repeatably measure Casimir forces in the nanoNewton range at 10 6 torr, designed an experiment to measure attractive and repulsive quantum vacuum forces, developed a QED based theory of Casimir forces that includes non-ideal material properties for rectangular cavities and for multilayer slabs, developed theoretical models for a variety of microdevices utilizing vacuum forces, applied vacuum physics to a gedanken spacecraft, and investigated a new material with a negative index of refraction.

  17. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  18. Lightweight Vacuum Jacket for Cryogenic Insulation - Appendices to Final Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility is demonstrated of producing a lightweight vacuum jacket using state-of-the-art technology and materials. Design and analytical studies were made on an orbital maneuvering system fuel tank. Preliminary design details were completed for the tank assembly which included an optimized vacuum jacket and multilayered insulation system. A half-scale LH2 test model was designed and fabricated and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of 0.00001 was measured, approximately 1500 hours of vacuum pressure was sustained, and 29 vacuum pressure cycles were experienced prior to failure. For vol. 1, see N75-26192.

  19. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  20. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  1. Vacuum Head Checks Foam/Substrate Bonds

    NASA Technical Reports Server (NTRS)

    Lloyd, James F.

    1989-01-01

    Electromechanical inspection system quickly gives measurements indicating adhesion, or lack thereof, between rigid polyurethane foam and aluminum substrate. Does not damage inspected article, easy to operate, and used to perform "go/no-go" evaluations or as supplement to conventional destructive pull-plug testing. Applies vacuum to small area of foam panel and measures distance through which foam pulled into vacuum. Probe head applied to specimen and evacuated through hose to controller/monitor unit. Digital voltmeter in unit reads deflection of LVDT probe head.

  2. Explosion proofing the ``explosion proof`` vacuum cleaner

    SciTech Connect

    Jones, R.D.; Chen, K.C.; Holmes, S.W.

    1995-07-01

    Because of the low humidity environments required in the fabrication of nuclear explosives, assembly technicians can be charged to tens of kilovolts while operating, for example, compressed air, venturi-type, `explosion proof` vacuum cleaners. Nuclear explosives must be isolated from all sources of, and return paths for, AC power and from any part of the lightning protection system. This requirement precludes the use of static ground conductors to drain any charge accumulations. Accordingly, an experimental study of the basic charging mechanisms associated with vacuum operations were identified, the charge generation efficacies of various commercial cleaners were established, and a simple method for neutralizing the charge was devised.

  3. Soil remediation by surface heating and vacuum extraction

    SciTech Connect

    Stegemeir, G.L.; Vinegar, H.J.

    1995-12-01

    A novel in-situ, thermal-vacuum method has been developed to remove contaminants from near-surface soils and pavements. Heat is supplied to the soil by downward conduction from a surface heater. Vaporized products are collected under an impermeable sheet into a vacuum system for further treatment or disposal.

  4. Vacuum bell therapy

    PubMed Central

    Sesia, Sergio

    2016-01-01

    Background For specific therapy to correct pectus excavatum (PE), conservative treatment with the vacuum bell (VB) was introduced more than 10 years ago in addition to surgical repair. Preliminary results using the VB were encouraging. We report on our 13-year experience with the VB treatment including the intraoperative use during the Nuss procedure and present some technical innovations. Methods A VB with a patient-activated hand pump is used to create a vacuum at the anterior chest wall. Three different sizes of vacuum bells, as well as a model fitted for young women, exist. The appropriate size is selected according to the individual patient’s age and ventral surface. The device should be used at home for a minimum of 30 minutes (twice a day), and may be used up to a maximum of several hours daily. The intensity of the applied negative pressure can be evaluated with an integrated pressure gauge during follow-up visits. A prototype of an electronic model enables us to measure the correlation between the applied negative pressure and the elevation of the anterior chest wall. Results Since 2003, approx. 450 patients between 2 to 61 years of age started the VB therapy. Age and gender specific differences, depth of PE, symmetry or asymmetry, and concomitant malformations such as scoliosis and/or kyphosis influence the clinical course and success of VB therapy. According to our experience, we see three different groups of patients. Immediate elevation of the sternum was confirmed thoracoscopically during the Nuss procedure in every patient. Conclusions The VB therapy has been established as an alternative therapeutic option in selected patients suffering from PE. The initial results up to now are encouraging, but long-term results comprising more than 15 years are so far lacking, and further evaluation and follow-up studies are necessary. PMID:27747177

  5. Vacuum Flushing of Sewer Solids (Slides)

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  6. MAGNETIC MEASUREMENT SYSTEM FOR THE NSLS SUPERCONDUCTING UNDULATOR VERTICAL TEST FACILITY.

    SciTech Connect

    HARDER, D.; CHOUHAN, S.; LEHECKA, M.; RAKOWSKY, G.; SKARITKA, J.; TANABE, T.

    2005-05-16

    One of the challenges of small-gap superconducting undulators is measurement of magnetic fields within the cold bore to characterize the device performance and to determine magnetic field errors for correction or shimming, as is done for room-temperature undulators. Both detailed field maps and integrated field measurements are required. This paper describes a 6-element, cryogenic Hall probe field mapper for the NSLS superconducting undulator Vertical Test Facility (VTF) [1]. The probe is designed to work in an aperture only 3 mm high. A pulsed-wire insert is also being developed, for visualization of the trajectory, for locating steering errors and for determining integrated multi-pole errors. The pulsed-wire insert will be interchangeable with the Hall probe mapper. The VTF and the magnetic measurement systems can accommodate undulators up to 0.4 m in length.

  7. Plasmons in QED vacuum

    NASA Astrophysics Data System (ADS)

    Petrov, E. Yu.; Kudrin, A. V.

    2016-09-01

    The problem of longitudinal oscillations of an electric field and a charge polarization density in a quantum electrodynamics (QED) vacuum is considered. Within the framework of semiclassical analysis, we calculate time-periodic solutions of bosonized (1 +1 )-dimensional QED (massive Schwinger model). Applying the Bohr-Sommerfeld quantization condition, we determine the mass spectrum of charge-zero bound states (plasmons) which correspond in quantum theory to the found classical solutions. We show that the existence of such plasmons does not contradict any fundamental physical laws and study qualitatively their excitation in a (3 +1 )-dimensional real world.

  8. 46 CFR 39.2015 - Tank barge pressure-vacuum indicating device-B/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank barge pressure-vacuum indicating device-B/ALL. 39... SYSTEMS Equipment and Installation § 39.2015 Tank barge pressure-vacuum indicating device—B/ALL. A fixed... barge with a vapor collection system. The pressure-sensing device must measure the pressure vacuum...

  9. 46 CFR 39.2015 - Tank barge pressure-vacuum indicating device-B/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank barge pressure-vacuum indicating device-B/ALL. 39... SYSTEMS Equipment and Installation § 39.2015 Tank barge pressure-vacuum indicating device—B/ALL. A fixed... barge with a vapor collection system. The pressure-sensing device must measure the pressure vacuum...

  10. Fluid leakage detector for vacuum applications

    NASA Technical Reports Server (NTRS)

    Farkas, Tibor (Inventor); Kim, Brian Byungkyu (Inventor); Nguyen, Bich Ngoc (Inventor)

    2002-01-01

    A leak detection system for use with a fluid conducting system in a vacuum environment, such as space, is described. The system preferably includes a mesh-like member substantially disposed about the fluid conducting system, and at least one sensor disposed within the mesh-like member. The sensor is capable of detecting a decrease in temperature of the mesh-like member when a leak condition causes the fluid of the fluid conducting system to freeze when exposed to the vacuum environment. Additionally, a signal processor in preferably in communication with the sensor. The sensor transmits an electrical signal to the signal processor such that the signal processor is capable of indicating the location of the fluid leak in the fluid conducting system.

  11. MOLECULAR VACUUM PUMP

    DOEpatents

    Eckberg, E.E.

    1960-09-27

    A multiple molecular vacuum pump capable of producing a vacuum of the order of 10/sup -9/ mm Hg is described. The pump comprises a casing of an aggregate of paired and matched cylindrical plates, a recessed portion on one face of each plate concentrically positioned formed by a radially extending wall and matching the similarly recessed portion of its twin plate of that pair of plates and for all paired and matched plates; a plurality of grooves formed in the radially extending walls of each and all recesses progressing in a spiral manner from their respective starting points out at the periphery of the recess inwardly to the central area; a plurality of rotors rotatably mounted to closely occupy the spaces as presented by the paired and matched recesses between all paired plates; a hollowed drive-shaft perforated at points adjacent to the termini of all spiral grooves; inlet ports at the starting points of all grooves and through all plates at common points to each respectively; and a common outlet passage presented by the hollow portion of the perforated hollowed drive-shaft of the molecular pump. (AEC)

  12. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  13. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  14. The effect of vacuum devices on penile hemodynamics

    SciTech Connect

    Katz, P.G.; Haden, H.T.; Mulligan, T.; Zasler, N.D. )

    1990-01-01

    External vacuum devices are being used increasingly for the management of erectile dysfunction. There is limited information regarding the effect of vacuum devices on penile blood flow and potential for ischemic penile injury. The penile xenon washout rate was measured before and after application of 2 vacuum systems in 15 subjects. Compared to flaccid state measurements the xenon washout rate did not change significantly with the Synergist Erection System but it was significantly reduced with the Osbon ErecAid System. However, the degree and duration of decrease in penile blood flow that may result in ischemic changes are unknown.

  15. Testing of improved polyimide actuator rod seals at high temperature and under vacuum conditions for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.

    1974-01-01

    Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.

  16. ULTRA HIGH VACUUM VALVE

    DOEpatents

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  17. THERMOCOUPLE VACUUM GAUGE

    DOEpatents

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  18. Vacuum requirements for heavy ion recirculating induction linacs

    SciTech Connect

    Barnard, J.J.; Yu, S.S. ); Faltens, A. )

    1990-12-01

    We examine the requirements of the vacuum system for the LLNL/LBL recirculating induction linac concept. We reexamine processes, including beam stripping, background gas ionization, intra-beam charge exchange and desorption of gas molecules from the wall due to the incident ionized gas molecules and stripped ions, in the context of the proposed recirculator. We discuss implications for the vacuum system layout and estimate the cost of such a system. 18 refs., 2 figs., 1 tab.

  19. Breather cloth for vacuum curing

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1979-01-01

    Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.

  20. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  1. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  2. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  3. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  4. Vacuum Enhanced Cutaneous Biopsy Instrument

    SciTech Connect

    Collins, Joseph

    1999-06-25

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  5. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  6. Flow Visualization Proposed for Vacuum Cleaner Nozzle Designs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In 1995, the NASA Lewis Research Center and the Kirby Company (a major vacuum cleaner company) began negotiations for a Space Act Agreement to conduct research, technology development, and testing involving the flow behavior of airborne particulate flow behavior. Through these research efforts, we hope to identify ways to improve suction, flow rate, and surface agitation characteristics of nozzles used in vacuum cleaner nozzles. We plan to apply an advanced visualization technology, known as Stereoscopic Imaging Velocimetry (SIV), to a Kirby G-4 vacuum cleaner. Resultant data will be analyzed with a high-speed digital motion analysis system. We also plan to evaluate alternative vacuum cleaner nozzle designs. The overall goal of this project is to quantify both velocity fields and particle trajectories throughout the vacuum cleaner nozzle to optimize its "cleanability"--its ability to disturb and remove embedded dirt and other particulates from carpeting or hard surfaces. Reference

  7. Application of porcelain enamel as an ultra-high-vacuum-compatible electrical insulator

    SciTech Connect

    Biscardi, C.; Hseuh, H.; Mapes, M.

    2000-07-01

    Many accelerator vacuum system components require electrical insulation internal to the vacuum system. Some accelerator components at Brookhaven National Laboratory are installed in ultra-high-vacuum systems which require the insulation to have excellent vacuum characteristics, be radiation resistant, and be able to withstand high temperatures when used on baked systems. Porcelain enamel satisfies all these requirements. This article describes the process and application of coating metal parts with porcelain enamel to provide electrical insulation. The mechanical and vacuum testing of Marman flanges coated with porcelain and using metal Helicoflex seals to form a zero-length electrical break are detailed. The use of porcelain enameled parts is attractive since it can be done quickly, is inexpensive and environmentally safe, and most of all satisfies stringent vacuum system requirements. (c) 2000 American Vacuum Society.

  8. Evolution of the vacuum Rabi sidebands

    NASA Astrophysics Data System (ADS)

    Gripp, Jurgen

    1997-12-01

    We study the semiclassical behavior of a system of two cascaded atoms-cavities to explore the feasibility of driving a quantum optical system with non-classical light. An efficient coupling between the two cavities is necessary and relies on matching the spectral features between sender and receiver. The characterization of these spectral properties is the main focus of this work. The fundamental interaction of a collection of two-level atoms with a single mode of a weakly driven optical resonator causes a normal mode splitting, called the vacuum Rabi splitting. For increasing intensities of the driving field, the spectrum of the atoms-cavity system undergoes an evolution from this two peaked vacuum Rabi doublet to the single peaked spectrum of a strongly driven system in which the atoms are saturated. We study this evolution experimentally and make absolute comparisons with theory. The system shows an avoided crossing between atoms and cavity and non-linear behavior of the vacuum Rabi peaks, causing frequency hysteresis for intermediate intensities of the driving field. We develop an intuitively understandable approach, based on the phase difference between input and output field of the atoms-cavity system, leading to analytical expressions that explain the experimental results quantitatively.

  9. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vapor overpressure and vacuum protection. 154.814 Section 154.814 Navigation and Navigable Waters COAST... vacuum protection. (a) A facility's vapor collection system must have the capacity for collecting cargo... vessel's cargo tanks between 80 percent of the highest setting of any of the vessel's vacuum...

  10. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vapor overpressure and vacuum protection. 154.814 Section 154.814 Navigation and Navigable Waters COAST... vacuum protection. (a) A facility's vapor collection system must have the capacity for collecting cargo... vessel's cargo tanks between 80 percent of the highest setting of any of the vessel's vacuum...

  11. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Vapor overpressure and vacuum protection-TB/ALL. 39.20... SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... psig; (3) Prevent a vacuum in the cargo tank vapor space, whether generated by withdrawal of cargo...

  12. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vapor overpressure and vacuum protection. 154.814 Section 154.814 Navigation and Navigable Waters COAST... vacuum protection. (a) A facility's vapor collection system must have the capacity for collecting cargo... vessel's cargo tanks between 80 percent of the highest setting of any of the vessel's vacuum...

  13. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Vapor overpressure and vacuum protection-TB/ALL. 39.20... SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... psig; (3) Prevent a vacuum in the cargo tank vapor space, whether generated by withdrawal of cargo...

  14. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vapor overpressure and vacuum protection. 154.814 Section 154.814 Navigation and Navigable Waters COAST... vacuum protection. (a) A facility's vapor collection system must have the capacity for collecting cargo... vessel's cargo tanks between 80 percent of the highest setting of any of the vessel's vacuum...

  15. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Vapor overpressure and vacuum protection-TB/ALL. 39.20... SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo... psig; (3) Prevent a vacuum in the cargo tank vapor space, whether generated by withdrawal of cargo...

  16. Hadron Contribution to Vacuum Polarisation

    NASA Astrophysics Data System (ADS)

    Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z.

    2016-10-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle-antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e- annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingredients to high precision tests of the Standard Theory.

  17. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  18. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  19. Effect of vacuum conditions and plasma concentration on the chemical composition and adhesion of vacuum-plasma coatings

    NASA Astrophysics Data System (ADS)

    Borisov, D. P.; Kuznetsov, V. M.; Slabodchikov, V. A.

    2015-11-01

    The paper reports on the chemical composition of titanium nitride (TiN) and silicon (Si) coatings deposited with a new technological vacuum plasma setup which comprises magnetron sputtering systems, arc evaporators, and an efficient plasma generator. It is shown that due to highly clean vacuum conditions and highly clean surface treatment in the gas discharge plasma, both the coating-substrate interface and the coatings as such are almost free from oxygen and carbon. It is found that the coating-substrate interface represents a layer of thickness ≥ 60 nm formed through vacuum plasma mixing of the coating and substrate materials. The TiN coatings obtained on the new equipment display a higher adhesion compared to brass coatings deposited by industrial technologies via intermediate titanium oxide layers. It is concluded that the designed vacuum plasma equipment allows efficient surface modification of materials and articles by vacuum plasma immersion processes.

  20. 4. VACUUM PUMP (CONDENSATE RETURN). Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VACUUM PUMP (CONDENSATE RETURN). - Hot Springs National Park, Bathhouse Row, Buckstaff Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 Mile North of U.S. Highway 70, Hot Springs, Garland County, AR