Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin
2015-07-01
Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype. © 2014 Scandinavian Plant Physiology Society.
Jończyk, M; Sobkowiak, A; Trzcinska-Danielewicz, J; Skoneczny, M; Solecka, D; Fronk, J; Sowiński, P
2017-10-01
In maize seedlings, severe cold results in dysregulation of circadian pattern of gene expression causing profound modulation of transcription of genes related to photosynthesis and other key biological processes. Plants live highly cyclic life and their response to environmental stresses must allow for underlying biological rhythms. To study the interplay of a stress and a rhythmic cue we investigated transcriptomic response of maize seedlings to low temperature in the context of diurnal gene expression. Severe cold stress had pronounced effect on the circadian rhythm of a substantial proportion of genes. Their response was strikingly dual, comprising either flattening (partial or complete) of the diel amplitude or delay of expression maximum/minimum by several hours. Genes encoding central oscillator components behaved in the same dual manner, unlike their Arabidopsis counterparts reported earlier to cease cycling altogether upon cold treatment. Also numerous genes lacking circadian rhythm responded to the cold by undergoing up- or down-regulation. Notably, the transcriptome changes preceded major physiological manifestations of cold stress. In silico analysis of metabolic processes likely affected by observed gene expression changes indicated major down-regulation of photosynthesis, profound and multifarious modulation of plant hormone levels, and of chromatin structure, transcription, and translation. A role of trehalose and stachyose in cold stress signaling was also suggested. Meta-analysis of published transcriptomic data allowed discrimination between general stress response of maize and that unique to severe cold. Several cis- and trans-factors likely involved in the latter were predicted, albeit none of them seemed to have a major role. These results underscore a key role of modulation of diel gene expression in maize response to severe cold and the unique character of the cold-response of the maize circadian clock.
Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup
2015-01-10
Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops. Copyright © 2014 Elsevier B.V. All rights reserved.
Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver
Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.
2013-01-01
Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377
Tang, Bin; Liu, Xiao-Jun; Shi, Zuo-Kun; Shen, Qi-Da; Xu, Yan-Xia; Wang, Su; Zhang, Fan; Wang, Shi-Gui
2017-06-01
Harmonia axyridis is an important predatory lady beetle that is a natural enemy of agricultural and forestry pests. In this research, the cold hardiness induced genes and their expression changes in H. axyridis were screened and detected by the way of the transcriptome and qualitative real-time PCR under normal and low temperatures, using high-throughput transcriptome and digital gene-expression-tag technologies. We obtained a 10Gb transcriptome and an 8Mb gene expression tag pool using Illumina deep sequencing technology and RNA-Seq analysis (accession number SRX540102). Of the 46,980 non-redundant unigenes identified, 28,037 (59.7%) were matched to known genes in GenBank, 21,604 (46.0%) in Swiss-Prot, 19,482 (41.5%) in Kyoto Encyclopedia of Genes and Genomes and 13,193 (28.1%) in Gene Ontology databases. Seventy-five percent of the unigene sequences had top matches with gene sequences from Tribolium castaneum. Results indicated that 60 genes regulated the entire cold-acclimation response, and, of these, seven genes were always up-regulated and five genes always down-regulated. Further screening revealed that six cold-resistant genes, E3 ubiquitin-protein ligase, transketolase, trehalase, serine/arginine repetitive matrix protein 2, glycerol kinase and sugar transporter SWEET1-like, play key roles in the response. Expression from a number of the differentially expressed genes was confirmed with quantitative real-time PCR (HaCS_Trans). The paper attempted to identify cold-resistance response genes, and study the potential mechanism by which cold acclimation enhances the insect's cold endurance. Information on these cold-resistance response genes will improve the development of low-temperature storage technology of natural enemy insects for future use in biological control. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Yun-Wei; Chen, Hung-Chi; Jen, Wei-Fu; Liu, Li-Yu; Chang, Men-Chi
2015-01-01
Cold stress affects rice growth, quality and yield. The investigation of genome-wide gene expression is important for understanding cold stress tolerance in rice. We performed comparative transcriptome analysis of the shoots and roots of 2 rice seedlings (TNG67, cold-tolerant; and TCN1, cold-sensitive) in response to low temperatures and restoration of normal temperatures following cold exposure. TNG67 tolerated cold stress via rapid alterations in gene expression and the re-establishment of homeostasis, whereas the opposite was observed in TCN1, especially after subsequent recovery. Gene ontology and pathway analyses revealed that cold stress substantially regulated the expression of genes involved in protein metabolism, modification, translation, stress responses, and cell death. TNG67 takes advantage of energy-saving and recycling resources to more efficiently synthesize metabolites compared with TCN1 during adjustment to cold stress. During recovery, expression of OsRR4 type-A response regulators was upregulated in TNG67 shoots, whereas that of genes involved in oxidative stress, chemical stimuli and carbohydrate metabolic processes was downregulated in TCN1. Expression of genes related to protein metabolism, modification, folding and defense responses was upregulated in TNG67 but not in TCN1 roots. In addition, abscisic acid (ABA)-, polyamine-, auxin- and jasmonic acid (JA)-related genes were preferentially regulated in TNG67 shoots and roots and were closely associated with cold stress tolerance. The TFs AP2/ERF were predominantly expressed in the shoots and roots of both TNG67 and TCN1. The TNG67-preferred TFs which express in shoot or root, such as OsIAA23, SNAC2, OsWRKY1v2, 24, 53, 71, HMGB, OsbHLH and OsMyb, may be good candidates for cold stress tolerance-related genes in rice. Our findings highlight important alterations in the expression of cold-tolerant genes, metabolic pathways, and hormone-related and TF-encoding genes in TNG67 rice during cold stress and recovery. The cross-talk of hormones may play an essential role in the ability of rice plants to cope with cold stress. PMID:26133169
Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H.; Dandekar, Abhaya M.; Granell, Antonio
2014-01-01
Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury. PMID:24598973
Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H; Dandekar, Abhaya M; Granell, Antonio
2014-01-01
Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury.
Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming
2013-01-01
Background Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. Results In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. Conclusions This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas. PMID:24349370
Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming
2013-01-01
Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas.
Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather
2014-01-01
The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.
Zhang, Junhong; Wang, Taotao; Li, Hanxia; Zhang, Yuyang; Yu, Chuying; Ye, Zhibiao
2012-01-01
The wild species Solanum habrochaites is more cold tolerant than the cultivated tomato (S. lycopersicum). To explore the mechanisms underlying cold tolerance of S. habrochaites, seedlings of S. habrochaites LA1777 introgression lines (ILs), as well as the two parents, were evaluated under low temperature (4°C). The IL LA3969 and its donor parent LA1777 were found to be more cold tolerant than the recurrent parent S. lycopersicum LA4024. The differences in physiology and global gene expression between cold-tolerant (LA1777 and LA3969) and -sensitive (LA4024) genotypes under cold stress were further investigated. Comparative transcriptome analysis identified 1613, 1456, and 1523 cold-responsive genes in LA1777, LA3969, and LA4024, respectively. Gene ontology (GO) term enrichment analysis revealed that more GO biological process terms were significantly enriched among the up-regulated genes in the two tolerant genotypes, whereas more biological processes were significantly repressed by cold stress in the sensitive one. A total of 92 genes with significant differential expression between tolerant and sensitive genotypes under cold stress were identified. Among these, many stress-related GO terms were significantly enriched, such as ‘response to stimulus’ and ‘response to stress’. Moreover, GO terms ‘response to hormone stimulus’, ‘response to reactive oxygen species (ROS)’, and ‘calcium-mediated signaling’ were also overrepresented. Several transcripts involved in hormone or ROS homeostasis were also differentially expressed. ROS, hormones, and calcium as signaling molecules may play important roles in regulating gene expression in response to cold stress. Moreover, the expression of various transcription factors, post-translational proteins, metabolic enzymes, and photosynthesis-related genes was also specifically modulated. These specific modifications may play pivotal roles in conferring cold tolerance in tomato. These results not only provide new insights into the molecular mechanisms of cold tolerance in tomato, but also provide potential candidate genes for genetic improvement. PMID:23226384
Chen, Liang; Fan, Jibiao; Hu, Longxing; Hu, Zhengrong; Xie, Yan; Zhang, Yingzi; Lou, Yanhong; Nevo, Eviatar; Fu, Jinmin
2015-09-11
Cold stress is regarded as a key factor limiting widespread use for bermudagrass (Cynodon dactylon). Therefore, to improve cold tolerance for bermudagrass, it is urgent to understand molecular mechanisms of bermudagrass response to cold stress. However, our knowledge about the molecular responses of this species to cold stress is largely unknown. The objective of this study was to characterize the transcriptomic response to low temperature in bermudagrass by using RNA-Seq platform. Ten cDNA libraries were generated from RNA samples of leaves from five different treatments in the cold-resistant (R) and the cold-sensitive (S) genotypes, including 4 °C cold acclimation (CA) for 24 h and 48 h, freezing (-5 °C) treatments for 4 h with or without prior CA, and controls. When subjected to cold acclimation, global gene expressions were initiated more quickly in the R genotype than those in the S genotype. The R genotype activated gene expression more effectively in response to freezing temperature after 48 h CA than the S genotype. The differentially expressed genes were identified as low temperature sensing and signaling-related genes, functional proteins and transcription factors, many of which were specifically or predominantly expressed in the R genotype under cold treatments, implying that these genes play important roles in the enhanced cold hardiness of bermudagrass. KEGG pathway enrichment analysis for DEGs revealed that photosynthesis, nitrogen metabolism and carbon fixation pathways play key roles in bermudagrass response to cold stress. The results of this study may contribute to our understanding the molecular mechanism underlying the responses of bermudagrass to cold stress, and also provide important clues for further study and in-depth characterization of cold-resistance breeding candidate genes in bermudagrass.
Zhang, Xinhua; Teixeira da Silva, Jaime A.; Niu, Meiyun; Li, Mingzhi; He, Chunmei; Zhao, Jinhui; Zeng, Songjun; Duan, Jun; Ma, Guohua
2017-01-01
Santalum album L. (Indian sandalwood) is an economically important plant species because of its ability to produce highly valued perfume oils. Little is known about the mechanisms by which S. album adapts to low temperatures. In this study, we obtained 100,445,724 raw reads by paired-end sequencing from S. album leaves. Physiological and transcriptomic changes in sandalwood seedlings exposed to 4 °C for 0–48 h were characterized. Cold stress induced the accumulation of malondialdehyde, proline and soluble carbohydrates, and increased the levels of antioxidants. A total of 4,424 differentially expressed genes were responsive to cold, including 3,075 cold-induced and 1,349 cold-repressed genes. When cold stress was prolonged, there was an increase in the expression of cold-responsive genes coding for transporters, responses to stimuli and stress, regulation of defense response, as well as genes related to signal transduction of all phytohormones. Candidate genes in the terpenoid biosynthetic pathway were identified, eight of which were significantly involved in the cold stress response. Gene expression analyses using qRT-PCR showed a peak in the accumulation of SaCBF2 to 4, 50-fold more than control leaves and roots following 12 h and 24 h of cold stress, respectively. The CBF-dependent pathway may play a crucial role in increasing cold tolerance. PMID:28169358
Hemsley, Piers A.; Hurst, Charlotte H.; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R.; De Cothi, Elizabeth A.; Steele, John F.; Knight, Heather
2014-01-01
The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation–induced freezing tolerance. In addition, these three subunits are required for low temperature–induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770
Pan, Cheng; Wang, Yiwei; Kong, Lei; Jiang, Huiguang; Xu, Yiqun; Wang, Wenzhi; Pan, Yuting; Li, Yeyun; Jiang, Changjun
2017-01-01
Cold environment is the main constraint for tea plants (Camellia sinensis) distribution and tea farming. We identified two tea cultivars, called var. sinensis cv. Shuchazao (SCZ) with a high cold-tolerance and var. assamica cv. Yinghong9 (YH9) with low cold-tolerance. To better understand the response mechanism of tea plants under cold stress for improving breeding, we compared physiological and biochemical responses, and associated genes expression in response to 7-day and 14-day cold acclimation, followed by 7-day de-acclimation in these two tea cultivars. We found that the low EL50, low Fv/Fm, and high sucrose and raffinose accumulation are responsible for higher cold tolerance in SCZ comparing with YH9. We then measured the expression of 14 key homologous genes, known as involved in these responses in other plants, for each stages of treatment in both cultivars using RT-qPCR. Our results suggested that the increased expression of CsCBF1 and CsDHNs coupling with the accumulation of sucrose play key roles in conferring higher cold resistance in SCZ. Our findings have revealed key genes regulation responsible for cold resistance, which help to understand the cold-resistant mechanisms and guide breeding in tea plants. PMID:29211766
Ban, Qiuyan; Wang, Xuewen; Pan, Cheng; Wang, Yiwei; Kong, Lei; Jiang, Huiguang; Xu, Yiqun; Wang, Wenzhi; Pan, Yuting; Li, Yeyun; Jiang, Changjun
2017-01-01
Cold environment is the main constraint for tea plants (Camellia sinensis) distribution and tea farming. We identified two tea cultivars, called var. sinensis cv. Shuchazao (SCZ) with a high cold-tolerance and var. assamica cv. Yinghong9 (YH9) with low cold-tolerance. To better understand the response mechanism of tea plants under cold stress for improving breeding, we compared physiological and biochemical responses, and associated genes expression in response to 7-day and 14-day cold acclimation, followed by 7-day de-acclimation in these two tea cultivars. We found that the low EL50, low Fv/Fm, and high sucrose and raffinose accumulation are responsible for higher cold tolerance in SCZ comparing with YH9. We then measured the expression of 14 key homologous genes, known as involved in these responses in other plants, for each stages of treatment in both cultivars using RT-qPCR. Our results suggested that the increased expression of CsCBF1 and CsDHNs coupling with the accumulation of sucrose play key roles in conferring higher cold resistance in SCZ. Our findings have revealed key genes regulation responsible for cold resistance, which help to understand the cold-resistant mechanisms and guide breeding in tea plants.
Kidokoro, Satoshi; Watanabe, Keitaro; Ohori, Teppei; Moriwaki, Takashi; Maruyama, Kyonoshin; Mizoi, Junya; Myint Phyu Sin Htwe, Nang; Fujita, Yasunari; Sekita, Sachiko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2015-02-01
Soybean (Glycine max) is a globally important crop, and its growth and yield are severely reduced by abiotic stresses, such as drought, heat, and cold. The cis-acting element DRE (dehydration-responsive element)/CRT plays an important role in activating gene expression in response to these stresses. The Arabidopsis DREB1/CBF genes that encode DRE-binding proteins function as transcriptional activators in the cold stress responsive gene expression. In this study, we identified 14 DREB1-type transcription factors (GmDREB1s) from a soybean genome database. The expression of most GmDREB1 genes in soybean was strongly induced by a variety of abiotic stresses, such as cold, drought, high salt, and heat. The GmDREB1 proteins activated transcription via DREs (dehydration-responsive element) in Arabidopsis and soybean protoplasts. Transcriptome analyses using transgenic Arabidopsis plants overexpressing GmDREB1s indicated that many of the downstream genes are cold-inducible and overlap with those of Arabidopsis DREB1A. We then comprehensively analyzed the downstream genes of GmDREB1B;1, which is closely related to DREB1A, using a transient expression system in soybean protoplasts. The expression of numerous genes induced by various abiotic stresses were increased by overexpressing GmDREB1B;1 in soybean, and DREs were the most conserved element in the promoters of these genes. The downstream genes of GmDREB1B;1 included numerous soybean-specific stress-inducible genes that encode an ABA receptor family protein, GmPYL21, and translation-related genes, such as ribosomal proteins. We confirmed that GmDREB1B;1 directly activates GmPYL21 expression and enhances ABRE-mediated gene expression in an ABA-independent manner. These results suggest that GmDREB1 proteins activate the expression of numerous soybean-specific stress-responsive genes under diverse abiotic stress conditions. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Cold exposure down-regulates immune response pathways in ferret aortic perivascular adipose tissue.
Reynés, Bàrbara; van Schothorst, Evert M; García-Ruiz, Estefanía; Keijer, Jaap; Palou, Andreu; Oliver, Paula
2017-05-03
Perivascular adipose tissue (PVAT) surrounds blood vessels and releases paracrine factors, such as cytokines, which regulate local inflammation. The inflammatory state of PVAT has an important role in vascular disease; a pro-inflammatory state has been related with atherosclerosis development, whereas an anti-inflammatory one is protective. Cold exposure beneficially affects immune responses and, could thus impact the pathogenesis of cardiovascular diseases. In this study, we investigated the effects of one-week of cold exposure at 4°C of ferrets on aortic PVAT (aPVAT) versus subcutaneous adipose tissue. Ferrets were used because of the similarity of their adipose tissues to those of humans. A ferret-specific Agilent microarray was designed to cover the complete ferret genome and global gene expression analysis was performed. The data showed that cold exposure altered gene expression mainly in aPVAT. Most of the regulated genes were associated with cell cycle, immune response and gene expression regulation, and were mainly down-regulated. Regarding the effects on immune response, cold acclimation decreased the expression of genes involved in antigen recognition and presentation, cytokine signalling and immune system maturation and activation. This immunosuppressive gene expression pattern was depot-specific, as it was not observed in the inguinal subcutaneous depot. Interestingly, this depression in immune response related genes was also evident in peripheral blood mononuclear cells (PBMC). In conclusion, these results reveal that cold acclimation produces an inhibition of immune response-related pathways in aPVAT, reflected in PBMC, indicative of an anti-inflammatory response, which can potentially be exploited for the enhancement or maintenance of cardiovascular health.
Reynés, Bàrbara; Klein Hazebroek, Marlou; García-Ruiz, Estefanía; Keijer, Jaap; Oliver, Paula; Palou, Andreu
2017-01-01
Objectives: Cold exposure induces hyperphagia to counteract fat loss related to lipid mobilization and thermogenic activation. The aim of this study was investigate on the molecular mechanisms involved in cold-induced compensatory hyperphagia. Methods: We analyzed the effect of cold exposure on gene expression of orexigenic and anorexigenic peptides, and of leptin signaling-related genes in the hypothalamus of rats at different ages (1, 2, 4, and 6 months), as well as in ferrets. We also evaluated the potential of peripheral blood mononuclear cells to reflect hypothalamic molecular responses. Results: As expected, cold exposure induced hypoleptinemia in rats, which could be responsible for the increased ratio of orexigenic/anorexigenic peptides gene expression in the hypothalamus, mainly due to decreased anorexigenic gene expression, especially in young animals. In ferrets, which resemble humans more closely, cold exposure induced greater changes in hypothalamic mRNA levels of orexigenic genes. Despite the key role of leptin in food intake control, the effect of cold exposure on the expression of key hypothalamic leptin signaling cascade genes is not clear. In our study, cold exposure seemed to affect leptin signaling in 4-month-old rats (increased Socs3 and Lepr expression), likely associated with the smaller-increase in food intake and decreased body weight observed at this particular age. Similarly, cold exposed ferrets showed greater hypothalamic Socs3 and Stat3 gene expression. Interestingly, peripheral blood mononuclear cells (PBMC) mimicked the hypothalamic increase in Lepr and Socs3 observed in 4-month-old rats, and the increased Socs3 mRNA expression observed in ferrets in response to cold exposure. Conclusions: The most outstanding result of our study is that PBMC reflected the specific modulation of leptin signaling observed in both animal models, rats and ferrets, which points forwards PBMC as easily obtainable biological material to be considered as a potential surrogate tissue to perform further studies on the regulation of hypothalamic leptin signaling in response to cold exposure. PMID:28860997
Chen, Lin; Yang, Yang; Liu, Can; Zheng, Yanyan; Xu, Mingshuang; Wu, Na; Sheng, Jiping; Shen, Lin
2015-08-28
WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress. Copyright © 2015 Elsevier Inc. All rights reserved.
Zarka, Daniel G.; Vogel, Jonathan T.; Cook, Daniel; Thomashow, Michael F.
2003-01-01
The Arabidopsis CBF1, 2, and 3 genes (also known as DREB1b, c, and a, respectively) encode transcriptional activators that have a central role in cold tolerance. CBF1-3 are rapidly induced upon exposing plants to low temperature, followed by expression of CBF-targeted genes, the CBF regulon, resulting in an increase in plant freezing tolerance. At present, little is known about the cold-sensing mechanism that controls CBF expression. Results presented here indicate that this mechanism does not require a cold shock to bring about the accumulation of CBF transcripts, but instead, absolute temperature is monitored with a greater degree of input, i.e. lower temperature, resulting in a greater output, i.e. higher levels of CBF transcripts. Temperature-shift experiments also indicate that the cold-sensing mechanism becomes desensitized to a given low temperature, such as 4°C, and that resensitization to that temperature requires between 8 and 24 h at warm temperature. Gene fusion experiments identified a 125-bp section of the CBF2 promoter that is sufficient to impart cold-responsive gene expression. Mutational analysis of this cold-responsive region identified two promoter segments that work in concert to impart robust cold-regulated gene expression. These sequences, designated ICEr1 and ICEr2 (induction of CBF expression region 1 or 2), were also shown to stimulate transcription in response to mechanical agitation and the protein synthesis inhibitor, cycloheximide. PMID:14500791
Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava
2015-01-01
Background The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. Principal Findings We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. Conclusions The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperaures below -8°C. PMID:26034990
Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava
2015-01-01
The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperatures below -8°C.
A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.
Mikkelsen, Michael D; Thomashow, Michael F
2009-10-01
The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.
Catalá, Rafael; López-Cobollo, Rosa; Mar Castellano, M.; Angosto, Trinidad; Alonso, José M.; Ecker, Joseph R.; Salinas, Julio
2014-01-01
In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis. PMID:25122152
2012-01-01
Background Cassava is an important tropical root crop adapted to a wide range of environmental stimuli such as drought and acid soils. Nevertheless, it is an extremely cold-sensitive tropical species. Thus far, there is limited information about gene regulation and signalling pathways related to the cold stress response in cassava. The development of microarray technology has accelerated the study of global transcription profiling under certain conditions. Results A 60-mer oligonucleotide microarray representing 20,840 genes was used to perform transcriptome profiling in apical shoots of cassava subjected to cold at 7°C for 0, 4 and 9 h. A total of 508 transcripts were identified as early cold-responsive genes in which 319 sequences had functional descriptions when aligned with Arabidopsis proteins. Gene ontology annotation analysis identified many cold-relevant categories, including 'Response to abiotic and biotic stimulus', 'Response to stress', 'Transcription factor activity', and 'Chloroplast'. Various stress-associated genes with a wide range of biological functions were found, such as signal transduction components (e.g., MAP kinase 4), transcription factors (TFs, e.g., RAP2.11), and reactive oxygen species (ROS) scavenging enzymes (e.g., catalase 2), as well as photosynthesis-related genes (e.g., PsaL). Seventeen major TF families including many well-studied members (e.g., AP2-EREBP) were also involved in the early response to cold stress. Meanwhile, KEGG pathway analysis uncovered many important pathways, such as 'Plant hormone signal transduction' and 'Starch and sucrose metabolism'. Furthermore, the expression changes of 32 genes under cold and other abiotic stress conditions were validated by real-time RT-PCR. Importantly, most of the tested stress-responsive genes were primarily expressed in mature leaves, stem cambia, and fibrous roots rather than apical buds and young leaves. As a response to cold stress in cassava, an increase in transcripts and enzyme activities of ROS scavenging genes and the accumulation of total soluble sugars (including sucrose and glucose) were also detected. Conclusions The dynamic expression changes reflect the integrative controlling and transcriptome regulation of the networks in the cold stress response of cassava. The biological processes involved in the signal perception and physiological response might shed light on the molecular mechanisms related to cold tolerance in tropical plants and provide useful candidate genes for genetic improvement. PMID:22321773
Transcriptional Analysis of Resistance to Low Temperatures in Bermudagrass Crown Tissues
Melmaiee, Kalpalatha; Anderson, Michael; Elavarthi, Sathya; Guenzi, Arron; Canaan, Patricia
2015-01-01
Bermudagrass (Cynodon dactylon L pers.) is one of the most geographically adapted and utilized of the warm-season grasses. However, bermudagrass adaptation to the Northern USA is limited by freeze damage and winterkill. Our study provides the first large-scale analyses of gene expression in bermudagrass regenerative crown tissues during cold acclimation. We compared gene expression patterns in crown tissues from highly cold tolerant “MSU” and susceptible “Zebra” genotypes exposed to near-freezing temperatures. Suppressive subtractive hybridization was used to isolate putative cold responsive genes Approximately, 3845 transcript sequences enriched for cold acclimation were deposited in the GenBank. A total of 4589 ESTs (3184 unigenes) including 744 ESTs associated with the bermudagrass disease spring dead spot were printed on microarrays and hybridized with cold acclimated complementary Deoxyribonucleic acid (cDNA). A total of 587 differentially expressed unigenes were identified in this study. Of these only 97 (17%) showed significant NCBI matches. The overall expression pattern revealed 40% more down- than up-regulated genes, which was particularly enhanced in MSU compared to Zebra. Among the up-regulated genes 68% were uniquely expressed in MSU (36%) or Zebra (32%). Among the down-regulated genes 40% were unique to MSU, while only 15% to Zebra. Overall expression intensity was significantly higher in MSU than in Zebra (p value ≤ 0.001) and the overall number of genes expressed at 28 days was 2.7 fold greater than at 2 days. These changes in expression patterns reflect the strong genotypic and temporal response to cold temperatures. Additionally, differentially expressed genes from this study can be utilized for developing molecular markers in bermudagrass and other warm season grasses for enhancing cold hardiness. PMID:26348040
Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang
2017-01-01
Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures. PMID:29131867
Cui, Mingming; Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang
2017-01-01
Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures.
Zhou, Mingqi; Wu, Lihua; Liang, Jing; Shen, Chen; Lin, Juan
2012-05-01
The cold-responsive (COR) genes involved in C-repeat binding factor signaling pathway function essentially in cold acclimation of higher plants. A novel COR gene CbCOR15a from shepherd's purse (Capsella bursa-pastoris) was predicted to be a homolog of COR15 in Arabidopsis. The analysis of tissue specific expression pattern as well as characterization of the CbCOR15a promoter revealed that the expression of CbCOR15a was induced by coldness not only in leaves and stem but also in roots. Sequence analysis showed that a 909 bp promoter region of CbCOR15a contained two CRT/DRE elements, two ABRE elements, one auxin-responsive TGA-element and one MeJA-responsive CGTCA-motif. In young seedlings the expression of CbCOR15a could be apparently increased by SA, ABA, MeJA and IAA, and transiently increased by GA(3) accompanied by obvious feedback suppression. According to the altered physiological index values in tobacco under cold treatments, the overexpression of CbCOR15a significantly increased the cold tolerance of transgenic tobacco plants. It can be suggested that CbCOR15a was involved in cold response of Capsella bursa-pastoris associated with SA, ABA, MeJA, IAA and GA(3) regulation and confers enhanced cold acclimation in transgenic plants.
Zhang, Yuhong; Wu, Hongsheng; Xie, Jiaqin; Jiang, Ruixin; Deng, Congshuang; Pang, Hong
2015-11-19
Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect's ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses. Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect's response to heat- and cold-stress. These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.
Abdul Kayum, Md.; Nath, Ujjal Kumar; Park, Jong-In; Choi, Eung Kyoo; Song, Jae-Young; Kim, Hoy-Taek; Nou, Ill-Sup
2018-01-01
Plant growth and development can be adversely affected by cold stress, limiting productivity. The glutathione S-transferase (GST) family comprises important detoxifying enzymes, which play major roles in biotic and abiotic stress responses by reducing the oxidative damage caused by reactive oxygen species. Pumpkins (Cucurbita maxima) are widely grown, economically important, and nutritious; however, their yield can be severely affected by cold stress. The identification of putative candidate genes responsible for cold-stress tolerance, including the GST family genes, is therefore vital. For the first time, we identified 32 C. maxima GST (CmaGST) genes using a combination of bioinformatics approaches and characterized them by expression profiling. These CmaGST genes represent seven of the 14 known classes of plant GSTs, with 18 CmaGSTs categorized into the tau class. The CmaGSTs were distributed across 13 of pumpkin’s 20 chromosomes, with the highest numbers found on chromosomes 4 and 6. The large number of CmaGST genes resulted from gene duplication; 11 and 5 pairs of CmaGST genes were segmental- and tandem-duplicated, respectively. In addition, all CmaGST genes showed organ-specific expression. The expression of the putative GST genes in pumpkin was examined under cold stress in two lines with contrasting cold tolerance: cold-tolerant CP-1 (C. maxima) and cold-susceptible EP-1 (Cucurbita moschata). Seven genes (CmaGSTU3, CmaGSTU7, CmaGSTU8, CmaGSTU9, CmaGSTU11, CmaGSTU12, and CmaGSTU14) were highly expressed in the cold-tolerant line and are putative candidates for use in breeding cold-tolerant crop varieties. These results increase our understanding of the cold-stress-related functions of the GST family, as well as potentially enhancing pumpkin breeding programs. PMID:29439434
Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua
2016-01-01
The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892
Legrand, Sylvain; Marque, Gilles; Blassiau, Christelle; Bluteau, Aurélie; Canoy, Anne-Sophie; Fontaine, Véronique; Jaminon, Odile; Bahrman, Nasser; Mautord, Julie; Morin, Julie; Petit, Aurélie; Baranger, Alain; Rivière, Nathalie; Wilmer, Jeroen; Delbreil, Bruno; Lejeune-Hénaut, Isabelle
2013-09-01
Cold stress affects plant growth and development. In order to better understand the responses to cold (chilling or freezing tolerance), we used two contrasted pea lines. Following a chilling period, the Champagne line becomes tolerant to frost whereas the Terese line remains sensitive. Four suppression subtractive hybridisation libraries were obtained using mRNAs isolated from pea genotypes Champagne and Terese. Using quantitative polymerase chain reaction (qPCR) performed on 159 genes, 43 and 54 genes were identified as differentially expressed at the initial time point and during the time course study, respectively. Molecular markers were developed from the differentially expressed genes and were genotyped on a population of 164 RILs derived from a cross between Champagne and Terese. We identified 5 candidate genes colocalizing with 3 different frost damage quantitative trait loci (QTL) intervals and a protein quantity locus (PQL) rich region previously reported. This investigation revealed the role of constitutive differences between both genotypes in the cold responses, in particular with genes related to glycine degradation pathway that could confer to Champagne a better frost tolerance. We showed that freezing tolerance involves a decrease of expression of genes related to photosynthesis and the expression of a gene involved in the production of cysteine and methionine that could act as cryoprotectant molecules. Although it remains to be confirmed, this study could also reveal the involvement of the jasmonate pathway in the cold responses, since we observed that two genes related to this pathway were mapped in a frost damage QTL interval and in a PQL rich region interval, respectively. Copyright © 2013 Elsevier GmbH. All rights reserved.
Sobkowiak, Alicja; Jończyk, Maciej; Jarochowska, Emilia; Biecek, Przemysław; Trzcinska-Danielewicz, Joanna; Leipner, Jörg; Fronk, Jan; Sowiński, Paweł
2014-06-01
Maize, despite being thermophyllic due to its tropical origin, demonstrates high intraspecific diversity in cold-tolerance. To search for molecular mechanisms of this diversity, transcriptomic response to cold was studied in two inbred lines of contrasting cold-tolerance. Microarray analysis was followed by extensive statistical elaboration of data, literature data mining, and gene ontology-based classification. The lines used had been bred earlier specifically for determination of QTLs for cold-performance of photosynthesis. This allowed direct comparison of present transcriptomic data with the earlier QTL mapping results. Cold-treated (14 h at 8/6 °C) maize seedlings of cold-tolerant ETH-DH7 and cold-sensitive ETH-DL3 lines at V3 stage showed strong, consistent response of the third leaf transcriptome: several thousand probes showed similar, statistically significant change in both lines, while only tens responded differently in the two lines. The most striking difference between the responses of the two lines to cold was the induction of expression of ca. twenty genes encoding membrane/cell wall proteins exclusively in the cold-tolerant ETH-DH7 line. The common response comprised mainly repression of numerous genes related to photosynthesis and induction of genes related to basic biological activity: transcription, regulation of gene expression, protein phosphorylation, cell wall organization. Among the genes showing differential response, several were close to the QTL regions identified in earlier studies with the same inbred lines and associated with biometrical, physiological or biochemical parameters. These transcripts, including two apparently non-protein-coding ones, are particularly attractive candidates for future studies on mechanisms determining divergent cold-tolerance of inbred maize lines.
Cold Shock as a Screen for Genes Involved in Cold Acclimatization in Neurospora crassa
Watters, Michael K.; Manzanilla, Victor; Howell, Holly; Mehreteab, Alexander; Rose, Erik; Walters, Nicole; Seitz, Nicholas; Nava, Jacob; Kekelik, Sienna; Knuth, Laura; Scivinsky, Brianna
2018-01-01
When subjected to rapid drops of temperature (cold shock), Neurospora responds with a temporary shift in its morphology. This report is the first to examine this response genetically. We report here the results of a screen of selected mutants from the Neurospora knockout library for alterations in their morphological response to cold shock. Three groups of knockouts were selected to be subject to this screen: genes previously suspected to be involved in hyphal development as well as knockouts resulting in morphological changes; transcription factors; and genes homologous to E. coli genes known to alter their expression in response to cold shock. A total of 344 knockout strains were subjected to cold shock. Of those, 118 strains were identified with altered responses. We report here the cold shock morphologies and GO categorizations of strains subjected to this screen. Of strains with knockouts in genes associated with hyphal growth or morphology, 33 of 131 tested (25%) showed an altered response to cold shock. Of strains with knockouts in transcription factor genes, 30 of 145 (20%) showed an altered response to cold shock. Of strains with knockouts in genes homologous to E. coli genes which display altered levels of transcription in response to cold shock, a total of 55 of 68 tested (81%) showed an altered cold shock response. This suggests that the response to cold shock in these two organisms is largely shared in common. PMID:29563189
Li, Qiang; Byrns, Brook; Badawi, Mohamed A.; Diallo, Abdoulaye Banire; Danyluk, Jean; Sarhan, Fathey; Zou, Jitao
2018-01-01
Cold acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex cold responses are mostly conducted in controlled environments that only consider the responses to single environmental variables. In this study, we have comprehensively profiled global transcriptional responses in crowns of field-grown spring and winter wheat (Triticum aestivum) genotypes and their near-isogenic lines with the VRN-A1 alleles swapped. This in-depth analysis revealed multiple signaling, interactive pathways that influence cold tolerance and phenological development to optimize plant growth and development in preparation for a wide range of over-winter stresses. Investigation of genetic differences at the VRN-A1 locus revealed that a vernalization requirement maintained a higher level of cold response pathways while VRN-A1 genetically promoted floral development. Our results also demonstrated the influence of genetic background on the expression of cold and flowering pathways. The link between delayed shoot apex development and the induction of cold tolerance was reflected by the gradual up-regulation of abscisic acid-dependent and C-REPEAT-BINDING FACTOR pathways. This was accompanied by the down-regulation of key genes involved in meristem development as the autumn progressed. The chromosome location of differentially expressed genes between the winter and spring wheat genetic backgrounds showed a striking pattern of biased gene expression on chromosomes 6A and 6D, indicating a transcriptional regulation at the genome level. This finding adds to the complexity of the genetic cascades and gene interactions that determine the evolutionary patterns of both phenological development and cold tolerance traits in wheat. PMID:29259104
Gilmour, Sarah J.; Sebolt, Audrey M.; Salazar, Maite P.; Everard, John D.; Thomashow, Michael F.
2000-01-01
We further investigated the role of the Arabidopsis CBF regulatory genes in cold acclimation, the process whereby certain plants increase in freezing tolerance upon exposure to low temperature. The CBF genes, which are rapidly induced in response to low temperature, encode transcriptional activators that control the expression of genes containing the C-repeat/dehydration responsive element DNA regulatory element in their promoters. Constitutive expression of either CBF1 or CBF3 (also known as DREB1b and DREB1a, respectively) in transgenic Arabidopsis plants has been shown to induce the expression of target COR (cold-regulated) genes and to enhance freezing tolerance in nonacclimated plants. Here we demonstrate that overexpression of CBF3 in Arabidopsis also increases the freezing tolerance of cold-acclimated plants. Moreover, we show that it results in multiple biochemical changes associated with cold acclimation: CBF3-expressing plants had elevated levels of proline (Pro) and total soluble sugars, including sucrose, raffinose, glucose, and fructose. Plants overexpressing CBF3 also had elevated P5CS transcript levels suggesting that the increase in Pro levels resulted, at least in part, from increased expression of the key Pro biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthase. These results lead us to propose that CBF3 integrates the activation of multiple components of the cold acclimation response. PMID:11115899
Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J
2001-02-01
Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.
Guo, Yan; Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang
2002-05-28
Low temperature regulates gene expression in bacteria, yeast, and animals as well as in plants. However, the signal transduction cascades mediating the low temperature responses are not well understood in any organism. To identify components in low temperature signaling genetically, we isolated Arabidopsis thaliana mutants in which cold-responsive genes are no longer induced by low temperatures. One of these mutations, los1-1, specifically blocks low temperature-induced transcription of cold-responsive genes. Surprisingly, cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element binding factors (CBF/DREB1s), is enhanced by the los1-1 mutation. The los1-1 mutation also reduces the capacity of plants to develop freezing tolerance but does not impair the vernalization response. Genetic analysis indicated that los1-1 is a recessive mutation in a single nuclear gene. The LOS1 gene encodes a translation elongation factor 2-like protein. Protein labeling studies show that new protein synthesis is blocked in los1-1 mutant plants specifically in the cold. These results reveal a critical role of new protein synthesis in the proper transduction of low temperature signals. Our results also suggest that cold-induced transcription of CBF/DREB1s is feedback inhibited by their gene products or by products of their downstream target genes.
Complementary regulation of four Eucalyptus CBF genes under various cold conditions
Navarro, M.; Marque, G.; Ayax, C.; Keller, G.; Borges, J. P.; Marque, C.; Teulières, C.
2009-01-01
CBF transcription factors play central roles in the control of freezing tolerance in plants. The isolation of two additional CBF genes, EguCBF1c and EguCBF1d, from E. gunnii, one of the cold-hardiest Eucalyptus species, is described. While the EguCBF1D protein sequence is very similar to the previously characterized EguCBF1A and EguCBF1B sequences, EguCBF1C is more distinctive, in particular in the AP2-DBD (AP2-DNA binding domain). The expression analysis of the four genes by RT-qPCR reveals that none of them is specific to one stress but they are all preferentially induced by cold, except for the EguCBF1c gene which is more responsive to salt. The calculation of the transcript copy number enables the quantification of constitutive CBF gene expression. This basal level, significant for the four genes, greatly influences the final EguCBF1 transcript level in the cold. A cold shock at 4 °C, as well as a progressive freezing which mimics a natural frost episode, trigger a fast and strong response of the EguCBF1 genes, while growth at acclimating temperatures results in a lower but more durable induction. The differential expression of the four EguCBF1 genes under these cold regimes suggests that there is a complementary regulation. The high accumulation of the CBF transcript, observed in response to the different types of cold conditions, might be a key for the winter survival of this evergreen broad-leaved tree. PMID:19457981
Kalapos, Balázs; Novák, Aliz; Dobrev, Petre; Vítámvás, Pavel; Marincs, Ferenc; Galiba, Gábor; Vanková, Radomira
2017-01-01
The effect of short- and long-term cold treatment on the abscisic acid (ABA) and cytokinin (CK) metabolism, and their main biosynthesis- and signaling-related genes were investigated in freezing-sensitive and freezing-tolerant wheat genotypes. Varieties Cheyenne and Chinese Spring substituted with the 5A Cheyenne chromosome, which represented freezing-tolerant genotypes, were compared with the freezing-sensitive Chinese Spring. Hormone levels and gene expression data indicated that the short- and long-term cold treatments are associated with specific regulation of the accumulation of cold-protective proteins and phytohormone levels, as well as the expression profiles of the hormone-related genes. The significant differences were observed between the genotypes, and between their leaf and crown tissues, too. The level of dehydrins, including WCS120 protein, and expression of WCS120 gene were considerably higher in the freezing-tolerant genotypes after 21 days of cold treatment. Expression of Cor14b and CBF14, cold-responsive regulator genes, was increased by cold treatment in all genotypes, to higher extent in freezing-tolerant genotypes. Cluster analysis revealed that the tolerant genotypes had a similar response to cold treatment, regarding expression of the ABA and CK metabolic genes, as well as hormone levels in leaves. As far as hormone levels in crowns are concerned, however, the strongly freezing-tolerant Cheyenne variety clustered separately from the Chinese Spring and the substitution line, which were more similar to each other after both 1 and 21 days of cold treatment than to Cheyenne. Based on these results we concluded that the 5A chromosome of wheat might have both a direct and an indirect impact on the phytohormone-dependent cold-induced freezing tolerance. Based on the gene expression data, novel genetic markers could be developed, which may be used to determine the freezing tolerance level in a wide range of wheat varieties. PMID:29238355
An, Dong; Ma, Qiuxiang; Wang, Hongxia; Yang, Jun; Zhou, Wenzhi; Zhang, Peng
2017-05-01
Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.
Zheng, Chao; Wang, Yu; Ding, Zhaotang; Zhao, Lei
2016-01-01
In field conditions, especially in arid and semi-arid areas, tea plants are often simultaneously exposed to various abiotic stresses such as cold and drought, which have profound effects on leaf senescence process and tea quality. However, most studies of gene expression in stress responses focus on a single inciting agent, and the confounding effect of multiple stresses on crop quality and leaf senescence remain unearthed. Here, global transcriptome profiles of tea leaves under separately cold and drought stress were compared with their combination using RNA-Seq technology. This revealed that tea plants shared a large overlap in unigenes displayed “similar” (26%) expression pattern and avoid antagonistic responses (lowest level of “prioritized” mode: 0%) to exhibit very congruent responses to co-occurring cold and drought stress; 31.5% differential expressed genes and 38% of the transcriptome changes in response to combined stresses were unpredictable from cold or drought single-case studies. We also identified 319 candidate genes for enhancing plant resistance to combined stress. We then investigated the combined effect of cold and drought on tea quality and leaf senescence. Our results showed that drought-induced leaf senescence were severely delayed by (i) modulation of a number of senescence-associated genes and cold responsive genes, (ii) enhancement of antioxidant capacity, (iii) attenuation of lipid degradation, (iv) maintenance of cell wall and photosynthetic system, (v) alteration of senescence-induced sugar effect/sensitivity, as well as (vi) regulation of secondary metabolism pathways that significantly influence the quality of tea during combined stress. Therefore, care should be taken when utilizing a set of stresses to try and maximize leaf longevity and tea quality. PMID:28018394
Control of flowering time and cold response by a NAC-domain protein in Arabidopsis.
Yoo, So Yeon; Kim, Yunhee; Kim, Soo Young; Lee, Jong Seob; Ahn, Ji Hoon
2007-07-25
Plants must integrate complex signals from environmental and endogenous cues to fine-tune the timing of flowering. Low temperature is one of the most common environmental stresses that affect flowering time; however, molecular mechanisms underlying the cold temperature regulation of flowering time are not fully understood. We report the identification of a novel regulator, LONG VEGETATIVE PHASE 1 (LOV1), that controls flowering time and cold response. An Arabidopsis mutant, longvegetative phase 1-1D (lov1-1D) showing the late-flowering phenotype, was isolated by activation tagging screening. Subsequent analyses demonstrated that the phenotype of the mutant resulted from the overexpression of a NAC-domain protein gene (At2g02450). Both gain- and loss-of-function alleles of LOV1 affected flowering time predominantly under long-day but not short-day conditions, suggesting that LOV1 may act within the photoperiod pathway. The expression of CONSTANS (CO), a floral promoter, was affected by LOV1 level, suggesting that LOV1 controls flowering time by negatively regulating CO expression. The epistatic relationship between CO and LOV1 was consistent with this proposed regulatory pathway. Physiological analyses to elucidate upstream signalling pathways revealed that LOV1 regulates the cold response in plants. Loss of LOV1 function resulted in hypersensitivity to cold temperature, whereas a gain-of-function allele conferred cold tolerance. The freezing tolerance was accompanied by upregulation of cold response genes, COLD-REGULATED 15A (COR15A) and COLD INDUCED 1 (KIN1) without affecting expression of the C-repeat-binding factor/dehydration responsive element-binding factor 1 (CBF/DREB1) family of genes. Our study shows that LOV1 functions as a floral repressor that negatively regulates CO expression under long-day conditions and acts as a common regulator of two intersecting pathways that regulate flowering time and the cold response, respectively. Our results suggest an overlapping pathway for controlling cold stress response and flowering time in plants.
Response of microRNAs to cold treatment in the young spikes of common wheat.
Song, Guoqi; Zhang, Rongzhi; Zhang, Shujuan; Li, Yulian; Gao, Jie; Han, Xiaodong; Chen, Mingli; Wang, Jiao; Li, Wei; Li, Genying
2017-02-28
MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.
Park, Youngjin; Kim, Yonggyun
2014-08-01
Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhu, Qihui; Zhang, Linlin; Li, Li; Que, Huayong; Zhang, Guofan
2016-04-01
As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters' cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster's response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters.
Lauxmann, Martin A.; Brun, Bianca; Borsani, Julia; Bustamante, Claudia A.; Budde, Claudio O.; Lara, María V.; Drincovich, María F.
2012-01-01
Cold storage is extensively used to slow the rapid deterioration of peach (Prunus persica L. Batsch) fruit after harvest. However, peach fruit subjected to long periods of cold storage develop chilling injury (CI) symptoms. Post-harvest heat treatment (HT) of peach fruit prior to cold storage is effective in reducing some CI symptoms, maintaining fruit quality, preventing softening and controlling post-harvest diseases. To identify the molecular changes induced by HT, which may be associated to CI protection, the differential transcriptome of peach fruit subjected to HT was characterized by the differential display technique. A total of 127 differentially expressed unigenes (DEUs), with a presence-absence pattern, were identified comparing peach fruit ripening at 20°C with those exposed to a 39°C-HT for 3 days. The 127 DEUs were divided into four expression profile clusters, among which the heat-induced (47%) and heat-repressed (36%) groups resulted the most represented, including genes with unknown function, or involved in protein modification, transcription or RNA metabolism. Considering the CI-protection induced by HT, 23-heat-responsive genes were selected and analyzed during and after short-term cold storage of peach fruit. More than 90% of the genes selected resulted modified by cold, from which nearly 60% followed the same and nearly 40% opposite response to heat and cold. Moreover, by using available Arabidopsis microarray data, it was found that nearly 70% of the peach-heat responsive genes also respond to cold in Arabidopsis, either following the same trend or showing an opposite response. Overall, the high number of common responsive genes to heat and cold identified in the present work indicates that HT of peach fruit after harvest induces a cold response involving complex cellular processes; identifying genes that are involved in the better preparation of peach fruit for cold-storage and unraveling the basis for the CI protection induced by HT. PMID:23236430
Ronges, Daria; Walsh, Jillian P; Sinclair, Brent J; Stillman, Jonathon H
2012-06-01
Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 h at 8°C enhanced cold tolerance during a 1 h exposure to -2°C relative to crabs acclimated to 18°C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm- and cold-acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12 h of thermal acclimation. Genes strongly upregulated in warm-acclimated crabs represented immune response and extracellular/intercellular processes, suggesting that warm-acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold-acclimated crabs included many that are involved in glucose production, suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold-acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene-expression-related changes in homeostasis begin within 12 h, the length of a tidal cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffer, M.A.; Fischer, R.L.
We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases. We now demonstrate that C14 mRNA accumulation is a response common to both high (40{degree}C) and low (4{degree}C) temperature stresses. Exposure of tomato fruit to 40{degree}C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4{degree}C, but slower than the induction of many heat shock messages by 40{degree}C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activatemore » C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed.« less
Chawade, Aakash; Lindlöf, Angelica; Olsson, Björn; Olsson, Olof
2013-01-01
Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. PMID:24349120
Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria.
Maksimov, Eugene G; Mironov, Kirill S; Trofimova, Marina S; Nechaeva, Natalya L; Todorenko, Daria A; Klementiev, Konstantin E; Tsoraev, Georgy V; Tyutyaev, Eugene V; Zorina, Anna A; Feduraev, Pavel V; Allakhverdiev, Suleyman I; Paschenko, Vladimir Z; Los, Dmitry A
2017-09-01
Membrane fluidity is the important regulator of cellular responses to changing ambient temperature. Bacteria perceive cold by the transmembrane histidine kinases that sense changes in thickness of the cytoplasmic membrane due to its rigidification. In the cyanobacterium Synechocystis, about a half of cold-responsive genes is controlled by the light-dependent transmembrane histidine kinase Hik33, which also partially controls the responses to osmotic, salt, and oxidative stress. This implies the existence of some universal, but yet unknown signal that triggers adaptive gene expression in response to various stressors. Here we selectively probed the components of photosynthetic machinery and functionally characterized the thermodynamics of cyanobacterial photosynthetic membranes with genetically altered fluidity. We show that the rate of oxidation of the quinone pool (PQ), which interacts with both photosynthetic and respiratory electron transport chains, depends on membrane fluidity. Inhibitor-induced stimulation of redox changes in PQ triggers cold-induced gene expression. Thus, the fluidity-dependent changes in the redox state of PQ may universally trigger cellular responses to stressors that affect membrane properties.
Guo, Yan; Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang
2002-01-01
Low temperature regulates gene expression in bacteria, yeast, and animals as well as in plants. However, the signal transduction cascades mediating the low temperature responses are not well understood in any organism. To identify components in low temperature signaling genetically, we isolated Arabidopsis thaliana mutants in which cold-responsive genes are no longer induced by low temperatures. One of these mutations, los1–1, specifically blocks low temperature-induced transcription of cold-responsive genes. Surprisingly, cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element binding factors (CBF/DREB1s), is enhanced by the los1–1 mutation. The los1–1 mutation also reduces the capacity of plants to develop freezing tolerance but does not impair the vernalization response. Genetic analysis indicated that los1–1 is a recessive mutation in a single nuclear gene. The LOS1 gene encodes a translation elongation factor 2-like protein. Protein labeling studies show that new protein synthesis is blocked in los1–1 mutant plants specifically in the cold. These results reveal a critical role of new protein synthesis in the proper transduction of low temperature signals. Our results also suggest that cold-induced transcription of CBF/DREB1s is feedback inhibited by their gene products or by products of their downstream target genes. PMID:12032361
Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma
2015-01-01
Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated japonica ssp. as indicated by the up/downregulation of various stress-responsive pathways identified from gene expression analysis. The cold-stress response is described in relation to the stress signaling pathways, showing complex adaptive mechanisms in different genotypes. PMID:26230579
Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; Del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Ruiz, Oscar A; Carrasco, Pedro
2011-02-01
Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the over-expression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlated with the induction of known stress-responsive genes, and suggested that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.
Chen, Liang; Zhong, Hui; Ren, Feng; Guo, Qian-Qian; Hu, Xu-Peng; Li, Xue-Bao
2011-04-01
Cold stress, which causes dehydration damage to the plant cell, is one of the most common abiotic stresses that adversely affect plant growth and crop productivity. To improve its cold-tolerance, plants often enhance expression of some cold-related genes. In this study, a cold-regulated gene encoding 25 KDa of protein was isolated from Brassica napus cDNA library using a macroarray analysis, and is consequently designated as BnCOR25. RT-PCR analysis demonstrated that BnCOR25 was expressed at high levels in hypocotyls, cotyledons, stems, and flowers, but its mRNA was found at low levels in roots and leaves. Northern blot analysis revealed that BnCOR25 transcripts were significantly induced by cold and osmotic stress treatment. The data also showed that BnCOR25 gene expression is mediated by ABA-dependent pathway. Overexpression of BnCOR25 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival probability under cold stress, and overexpression of BnCOR25 in Arabidopsis enhances plant tolerance to cold stress. These results suggested that the BnCOR25 gene may play an important role in conferring freezing/cold tolerance in plants.
2012-01-01
Background Plant growth is greatly affected by low temperatures, and the expression of a number of genes is induced by cold stress. Although many genes in the cold signaling pathway have been identified in Arabidopsis, little is known about the transcription factors involved in the cold stress response in apple. Results Here, we show that the apple bHLH (basic helix-loop-helix) gene MdCIbHLH1 (Cold-Induced bHLH1), which encodes an ICE-like protein, was noticeably induced in response to cold stress. The MdCIbHLH1 protein specifically bound to the MYC recognition sequences in the AtCBF3 promoter, and MdCIbHLH1 overexpression enhanced cold tolerance in transgenic Arabidopsis. In addition, the MdCIbHLH1 protein bound to the promoters of MdCBF2 and favorably contributed to cold tolerance in transgenic apple plants by upregulating the expression of MdCBF2 through the CBF (C-repeat-binding factor) pathway. Our findings indicate that MdCIbHLH1 functions in stress tolerance in different species. For example, ectopic MdCIbHLH1 expression conferred enhanced chilling tolerance in transgenic tobacco. Finally, we observed that cold induces the degradation of the MdCIbHLH1 protein in apple and that this degradation was potentially mediated by ubiquitination and sumoylation. Conclusions Based on these findings, MdCIbHLH1 encodes a transcription factor that is important for the cold tolerance response in apple. PMID:22336381
Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.
Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2005-02-01
cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.
Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro
2008-01-01
The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673
Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco
2015-01-01
Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298
Wang, Lu; Yao, Lina; Hao, Xinyuan; Li, Nana; Qian, Wenjun; Yue, Chuan; Ding, Changqing; Zeng, Jianming; Yang, Yajun; Wang, Xinchao
2018-04-01
Thirteen SWEET transporters were identified in Camellia sinensis and the cold-suppression gene CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. The sugars will eventually be exported transporters (SWEET) family of sugar transporters in plants is a recently identified protein family of sugar uniporters that contain seven transmembrane helices harbouring two MtN3 motifs. SWEETs play important roles in various biological processes, including plant responses to environmental stimuli. In this study, 13 SWEET transporters were identified in Camellia sinensis and were divided into four clades. Transcript abundances of CsSWEET genes were detected in various tissues. CsSWEET1a/1b/2a/2b/2c/3/9b/16/17 were expressed in all of the selected tissues, whereas the expression of CsSWEET5/7/9a/15 was not detected in some tissues, including those of mature leaves. Expression analysis of nine CsSWEET genes in leaves in response to abiotic stresses, natural cold acclimation and Colletotrichum camelliae infection revealed that eight CsSWEET genes responded to abiotic stress, while CsSWEET3 responded to C. camelliae infection. Functional analysis of 13 CsSWEET activities in yeast revealed that CsSWEET1a/1b/7/17 exhibit transport activity for glucose analogues and other types of hexose molecules. Further characterization of the cold-suppression gene CsSWEET16 revealed that this gene is localized in the vacuolar membrane. CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. Together, these findings demonstrate that CsSWEET genes play important roles in the response to abiotic and biotic stresses in tea plants and provide insights into the characteristics of SWEET genes in tea plants, which could serve as the basis for further functional identification of such genes.
Trichostatin A Selectively Suppresses the Cold-Induced Transcription of the ZmDREB1 Gene in Maize
Hu, Yong; Zhang, Lu; Zhao, Lin; Li, Jun; He, Shibin; Zhou, Kun; Yang, Fei; Huang, Min; Jiang, Li; Li, Lijia
2011-01-01
Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs) catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA) under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase). The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective. PMID:21811564
An, Dong; Ma, Qiuxiang; Yan, Wei; Zhou, Wenzhi; Liu, Guanghua; Zhang, Peng
2016-01-01
Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.
Jeon, Jin; Kim, Jungmook
2013-01-01
The Arabidopsis (Arabidopsis thaliana) two-component signaling system, which is composed of sensor histidine kinases, histidine phosphotransfer proteins, and response regulators, mediates the cytokinin response and various other plant responses. We have previously shown that ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and cold-inducible type A ARABIDOPSIS RESPONSE REGULATORS (ARRs) play roles in cold signaling. However, the roles of type B ARRs and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEINS (AHPs) have not been investigated in cold signaling. Here, we show that ARR1 and AHP2, AHP3, and AHP5 play positive roles in the cold-inducible expression of type A ARRs. arr1 mutants showed greatly reduced cold-responsive expression of type A ARRs compared with the wild type, whereas ARR1-overexpressing Arabidopsis exhibited the hypersensitive cold response of type A ARRs as well as enhanced freezing tolerance with cytokinin, suggesting that ARR1 functions as a positive factor of cold signaling. Transgenic Arabidopsis expressing ARR1ΔDDK:GR lacking the amino-terminal receiver domain showed wild-type expression levels of type A ARRs in response to cold, indicating that the signal receiver domain of ARR1 might be important for cold-responsive expression of type A ARRs. ahp2 ahp3 ahp5 triple mutations greatly reduced type A ARR expression in response to cold, whereas the single or double ahp mutants displayed wild-type levels of ARR expression, suggesting that AHP2, AHP3, and AHP5 are redundantly involved in cold signaling. Taken together, these results suggest that ARR1 mediates cold signal via AHP2, AHP3, or AHP5 from AHK2 and AHK3 to express type A ARRs. We further identified a cold transcriptome affected by ahk2 ahk3 mutations by microarray analysis, revealing a new cold-responsive gene network regulated downstream of AHK2 and AHK3. PMID:23124324
Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera
2014-01-01
Background WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by stressful climate conditions such as cold stress and the role of WRKY genes in the survival of grapevine under these conditions remains unknown. Results We identified a total of 59 VvWRKYs from the V. vinifera genome, belonging to four subgroups according to conserved WRKY domains and zinc-finger structure. The majority of VvWRKYs were expressed in more than one tissue among the 7 tissues examined which included young leaves, mature leaves, tendril, stem apex, root, young fruits and ripe fruits. Publicly available microarray data suggested that a subset of VvWRKYs was activated in response to diverse stresses. Quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 36 VvWRKYs are changed following cold exposure. Comparative analysis was performed on data from publicly available microarray experiments, previous global transcriptome analysis studies, and qRT-PCR. We identified 15 VvWRKYs in at least two of these databases which may relate to cold stress. Among them, the transcription of three genes can be induced by exogenous ABA application, suggesting that they can be involved in an ABA-dependent signaling pathway in response to cold stress. Conclusions We identified 59 VvWRKYs from the V. vinifera genome and 15 of them showed cold stress-induced expression patterns. These genes represented candidate genes for future functional analysis of VvWRKYs involved in the low temperature-related signal pathways in grape. PMID:24755338
Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert
2013-01-01
Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression. PMID:23776682
Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu
2018-04-01
Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum , thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.
Transcriptional Activation by Heat and Cold of a Thiol Protease Gene in Tomato
Schaffer, Mark A.; Fischer, Robert L.
1990-01-01
We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases (MA Schaffer, RL Fischer [1988] Plant Physiol 87: 431-436). We now demonstrate that C14 mRNA accumulation is a response common to both high (40°C) and low (4°C) temperature stresses. Exposure of tomato fruit to 40°C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4°C, but slower than the induction of many heat shock messages by 40°C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activate C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667644
Transcriptomic characterization of temperature stress responses in larval zebrafish.
Long, Yong; Li, Linchun; Li, Qing; He, Xiaozhen; Cui, Zongbin
2012-01-01
Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28 °C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16 °C) or heat (34 °C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish.
Vermeulen, C J; Sørensen, P; Kirilova Gagalova, K; Loeschcke, V
2013-09-01
In sexually reproducing species, increased homozygosity often causes a decline in fitness, called inbreeding depression. Recently, researchers started describing the functional genomic changes that occur during inbreeding, both in benign conditions and under environmental stress. To further this aim, we have performed a genome-wide gene expression study of inbreeding depression, manifesting as cold sensitivity and conditional lethality. Our focus was to describe general patterns of gene expression during inbreeding depression and to identify specific processes affected in our line. There was a clear difference in gene expression between the stressful restrictive environment and the benign permissive environment in both the affected inbred line and the inbred control line. We noted a strong inbreeding-by-environment interaction, whereby virtually all transcriptional differences between lines were found in the restrictive environment. Functional annotation showed enrichment of transcripts coding for serine proteases and their inhibitors (serpins and BPTI/Kunitz family), which indicates activation of the innate immune response. These genes have previously been shown to respond transcriptionally to cold stress, suggesting the conditional lethal effect is associated with an exaggerated cold stress response. The set of differentially expressed genes significantly overlapped with those found in three other studies of inbreeding depression, demonstrating that it is possible to detect a common signature across different genetic backgrounds. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Al-Ameri, Salma; Al-Mahmoud, Bassam; Awwad, Falah; Al-Rawashdeh, Ahmed; Iratni, Rabah; AbuQamar, Synan
2014-01-01
Signaling pathways controlling biotic and abiotic stress responses may interact synergistically or antagonistically. To identify the similarities and differences among responses to diverse stresses, we analyzed previously published microarray data on the transcriptomic responses of Arabidopsis to infection with Botrytis cinerea (a biotic stress), and to cold, drought, and oxidative stresses (abiotic stresses). Our analyses showed that at early stages after B. cinerea inoculation, 1498 genes were up-regulated (B. cinerea up-regulated genes; BUGs) and 1138 genes were down-regulated (B. cinerea down-regulated genes; BDGs). We showed a unique program of gene expression was activated in response each biotic and abiotic stress, but that some genes were similarly induced or repressed by all of the tested stresses. Of the identified BUGs, 25%, 6% and 12% were also induced by cold, drought and oxidative stress, respectively; whereas 33%, 7% and 5.5% of the BDGs were also down-regulated by the same abiotic stresses. Coexpression and protein-protein interaction network analyses revealed a dynamic range in the expression levels of genes encoding regulatory proteins. Analysis of gene expression in response to electrophilic oxylipins suggested that these compounds are involved in mediating responses to B. cinerea infection and abiotic stress through TGA transcription factors. Our results suggest an overlap among genes involved in the responses to biotic and abiotic stresses in Arabidopsis. Changes in the transcript levels of genes encoding components of the cyclopentenone signaling pathway in response to biotic and abiotic stresses suggest that the oxylipin signal transduction pathway plays a role in plant defense. Identifying genes that are commonly expressed in response to environmental stresses, and further analyzing the functions of their encoded products, will increase our understanding of the plant stress response. This information could identify targets for genetic modification to improve plant resistance to multiple stresses. PMID:25422934
Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco
2015-02-01
Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
NASA Astrophysics Data System (ADS)
Huang, Xiaosan; Li, Kongqing; Jin, Cong; Zhang, Shaoling
2015-12-01
ICE1 transcription factor plays an important role in plant cold stress via regulating the expression of stress-responsive genes. In this study, a PuICE1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. The expression levels of the PuICE1 were induced by cold, dehydration and salt, with the greatest induction under cold conditions. PuICE1 was localized in the nucleus and could bind specifically to the MYC element in the PuDREBa promoter. The PuICE1 fused to the GAL4 DNA-binding domain to have transcriptional activation activity. Ectopic expression of the PuICE1 in tomato conferred enhanced tolerance to cold stress at cold temperatures, less electrolyte leakage, less MDA content, higher chlorophyll content, higher survival rate, higher proline content, higher activities of enzymes. In additon, steady-state mRNA levels of six stress-responsive genes coding for either functional or regulatory genes were induced to higher levels in the transgenic lines by cold stress. Yeast two-hybrid, transient assay, split luciferase complementation and BiFC assays all revealed that PuHHP1 protein can physically interact with PuICE1. Taken together, these results demonstrated that PuICE1 plays a positive role in cold tolerance, which may be due to enhancement of PuDREBa transcriptional levels through interacting with the PuHHP1.
Doherty, Colleen J; Van Buskirk, Heather A; Myers, Susan J; Thomashow, Michael F
2009-03-01
The Arabidopsis thaliana CBF cold response pathway plays a central role in cold acclimation. It is characterized by rapid cold induction of genes encoding the CBF1-3 transcription factors, followed by expression of the CBF gene regulon, which imparts freezing tolerance. Our goal was to further the understanding of the cis-acting elements and trans-acting factors involved in expression of CBF2. We identified seven conserved DNA motifs (CM), CM1 to 7, that are present in the promoters of CBF2 and another rapidly cold-induced gene encoding a transcription factor, ZAT12. The results presented indicate that in the CBF2 promoter, CM4 and CM6 have negative regulatory activity and that CM2 has both negative and positive activity. A Myc binding site in the CBF2 promoter was also found to have positive regulatory effects. Moreover, our results indicate that members of the calmodulin binding transcription activator (CAMTA) family of transcription factors bind to the CM2 motif, that CAMTA3 is a positive regulator of CBF2 expression, and that double camta1 camta3 mutant plants are impaired in freezing tolerance. These results establish a role for CAMTA proteins in cold acclimation and provide a possible point of integrating low-temperature calcium and calmodulin signaling with cold-regulated gene expression.
Ruan, Meng-Bin; Guo, Xin; Wang, Bin; Yang, Yi-Ling; Li, Wen-Qi; Yu, Xiao-Ling; Zhang, Peng; Peng, Ming
2017-06-15
The myeloblastosis (MYB) transcription factor superfamily is the largest transcription factor family in plants, playing different roles during stress response. However, abiotic stress-responsive MYB transcription factors have not been systematically studied in cassava (Manihot esculenta), an important tropical tuber root crop. In this study, we used a genome-wide transcriptome analysis to predict 299 putative MeMYB genes in the cassava genome. Under drought and cold stresses, many MeMYB genes exhibited different expression patterns in cassava leaves, indicating that these genes might play a role in abiotic stress responses. We found that several stress-responsive MeMYB genes responded to abscisic acid (ABA) in cassava leaves. We characterize four MeMYBs, namely MeMYB1, MeMYB2, MeMYB4, and MeMYB9, as R2R3-MYB transcription factors. Furthermore, RNAi-driven repression of MeMYB2 resulted in drought and cold tolerance in transgenic cassava. Gene expression assays in wild-type and MeMYB2-RNAi cassava plants revealed that MeMYB2 may affect other MeMYBs as well as MeWRKYs under drought and cold stress, suggesting crosstalk between MYB and WRKY family genes under stress conditions in cassava. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Carrasco, Pedro
2011-01-01
Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlates with the induction of known stress-responsive genes, and suggests that putrescine may be directly or indirectly involved in ABA metabolism and gene expression. PMID:21330789
Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis1
Haake, Volker; Cook, Daniel; Riechmann, José Luis; Pineda, Omaira; Thomashow, Michael F.; Zhang, James Z.
2002-01-01
In plants, low temperature and dehydration activate a set of genes containing C-repeat/dehydration-responsive elements in their promoter. It has been shown previously that the Arabidopsis CBF/DREB1 transcription activators are critical regulators of gene expression in the signal transduction of cold acclimation. Here, we report the isolation of an apparent homolog of the CBF/DREB1 proteins (CBF4) that plays the equivalent role during drought adaptation. In contrast to the three already identified CBF/DREB1 homologs, which are induced under cold stress, CBF4 gene expression is up-regulated by drought stress, but not by low temperature. Overexpression of CBF4 in transgenic Arabidopsis plants results in the activation of C-repeat/dehydration-responsive element containing downstream genes that are involved in cold acclimation and drought adaptation. As a result, the transgenic plants are more tolerant to freezing and drought stress. Because of the physiological similarity between freezing and drought stress, and the sequence and structural similarity of the CBF/DREB1 and the CBF4 proteins, we propose that the plant's response to cold and drought evolved from a common CBF-like transcription factor, first through gene duplication and then through promoter evolution. PMID:12376631
Bonnett, Tiffany; Pitt, Caitlin; Spooner, Luke J.; Fraser, Jordie; Yuen, Macaire M.S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P.W.
2016-01-01
Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period—early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome. PMID:27441109
Robert, Jeanne A; Bonnett, Tiffany; Pitt, Caitlin; Spooner, Luke J; Fraser, Jordie; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W
2016-01-01
Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period-early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome.
Zhao, Danying; Shen, Lin; Fan, Bei; Yu, Mengmeng; Zheng, Yang; Lv, Shengnan; Sheng, Jiping
2009-10-20
C-repeat/dehydration-responsive element binding factor (CBF) is a transcription factor regulating cold response in plants, of which little is known in fruits. We showed a double-peak expression pattern of Lycopersicon esculentum putative transcriptional activator CBF1 (LeCBF1) in mature green fruit. The peaks appeared at 2 and 16 h after subjection to cold storage (2 degrees C). The second peak was coincident with, and thus caused by a peak in endogenous ethylene production. We showed that LeCBF1 expression was regulated by exogenous ethylene and 1-methylcyclopropene, and was not expressed without cold induction. LeCBF1 expression was different in the five maturation stages of fruits, but expression peaked at 2 h at all stages.
Zhou, Aimin; Ma, Hongping; Liu, Enhui; Jiang, Tongtong; Feng, Shuang; Gong, Shufang; Wang, Jingang
2017-04-17
Dianthus spiculifolius , a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation.
Zhou, Aimin; Ma, Hongping; Liu, Enhui; Jiang, Tongtong; Feng, Shuang; Gong, Shufang; Wang, Jingang
2017-01-01
Dianthus spiculifolius, a perennial herbaceous flower and a member of the Caryophyllaceae family, has strong resistance to cold and drought stresses. To explore the transcriptional responses of D. spiculifolius to individual and combined stresses, we performed transcriptome sequencing of seedlings under normal conditions or subjected to cold treatment (CT), simulated drought treatment (DT), or their combination (CTDT). After de novo assembly of the obtained reads, 112,015 unigenes were generated. Analysis of differentially expressed genes (DEGs) showed that 2026, 940, and 2346 genes were up-regulated and 1468, 707, and 1759 were down-regulated in CT, DT, and CTDT samples, respectively. Among all the DEGs, 182 up-regulated and 116 down-regulated genes were identified in all the treatment groups. Analysis of metabolic pathways and regulatory networks associated with the DEGs revealed overlaps and cross-talk between cold and drought stress response pathways. The expression profiles of the selected DEGs in CT, DT, and CTDT samples were characterized and confirmed by quantitative RT-PCR. These DEGs and metabolic pathways may play important roles in the response of D. spiculifolius to the combined stress. Functional characterization of these genes and pathways will provide new targets for enhancement of plant stress tolerance through genetic manipulation. PMID:28420173
Liu, Weihua; Cheng, Chunzhen; Lai, Gongti; Lin, Yuling; Lai, Zhongxiong
2015-01-01
Banana cultivars may experience chilling or freezing injury in some of their cultivated regions, where wild banana can still grow very well. The clarification of the cold-resistant mechanism of wild banana is vital for cold-resistant banana breeding. In this study, the central stress integrator gene KIN10 and some cold-acclimation related genes (HOS1 and ICE1s) from the cold-resistant wild banana 'Huanxi' (Musa itinerans) were cloned and their expression patterns under different temperature treatments were analyzed. Thirteen full-length cDNA transcripts including 6 KIN10s, 1 HOS1 and 6 ICE1s were successfully cloned. Quantitative real-time PCR (qRT-PCR) results showed that all these genes had the highest expression levels at the critical temperature of banana (13 °C). Under chilling temperature (4 °C), the expression level of KIN10 reduced significantly but the expression of HOS1 was still higher than that at the optimal temperature (28 °C, control). Both KIN10 and HOS1 showed the lowest expression levels at 0 °C, the expression level of ICE1, however, was higher than control. As sucrose plays role in plant cold-acclimation and in regulation of KIN10 and HOS1 bioactivities, the sucrose contents of wild banana under different temperatures were detected. Results showed that the sucrose content increased as temperature lowered. Our result suggested that KIN10 may participate in cold stress response via regulating sucrose biosynthesis, which is helpful in regulating cold acclimation pathway in wild banana.
van der Krol, Alexander R.; van Poecke, Remco M.P.; Vorst, Oscar F.J.; Voogt, Charlotte; van Leeuwen, Wessel; Borst-Vrensen, Tanja W.M.; Takatsuji, Hiroshi; van der Plas, Linus H.W.
1999-01-01
The ZPT2-2 gene belongs to the EPF gene family in petunia (Petunia hybrida), which encodes proteins with TFIIIA-type zinc-finger DNA-binding motifs. To elucidate a possible function for ZPT2-2, we analyzed its pattern of expression in relation to different developmental and physiological stress signals. The activity of the ZPT2-2 promoter was analyzed using a firefly luciferase (LUC) reporter gene, allowing for continuous measurements of transgene activity in planta. We show that ZPT2-2::LUC is active in all plant tissues, but is strongly modulated in cotyledons upon germination, in leaves in response to desiccation, cold treatment, wounding, or ultraviolet-B light, and in petal tissue in response to pollination of the stigma. Analysis of mRNA levels indicated that the modulations in ZPT2-2::LUC expression reflect modulations in endogenous ZPT2-2 gene expression. The change in ZPT2-2::LUC activity by cold treatment, wounding, desiccation, and ultraviolet-B light suggest that the phytohormones ethylene and jasmonic acid are involved in regulating the expression of ZPT2-2. Although up-regulation of expression of ZPT2-2 can be blocked by inhibitors of ethylene perception, expression in plants is not induced by exogenously applied ethylene. The application of jasmonic acid does result in an up-regulation of gene activity and, thus, ZPT2-2 may play a role in the realization of the jasmonic acid hormonal responses in petunia. PMID:10594102
Tang, Zhonghui; Zhang, Liping; Xu, Chenguang; Yuan, Shaohua; Zhang, Fengting; Zheng, Yonglian; Zhao, Changping
2012-01-01
The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress. PMID:22508932
Hingston, Patricia; Chen, Jessica; Allen, Kevin; Truelstrup Hansen, Lisbeth
2017-01-01
The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium’s cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, p<0.05) in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5×) observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response. PMID:28662112
Hingston, Patricia; Chen, Jessica; Allen, Kevin; Truelstrup Hansen, Lisbeth; Wang, Siyun
2017-01-01
The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium's cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, p<0.05) in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5×) observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response.
Phadtare, Sangita; Severinov, Konstantin
2009-11-01
In Escherichia coli, temperature downshift elicits cold shock response, which is characterized by induction of cold shock proteins. CspA, the major cold shock protein of E. coli, helps cells to acclimatize to low temperature by melting the secondary structures in nucleic acids and acting as a transcription antiterminator. CspA and its homologues contain the cold shock domain and belong to the oligomer binding protein family, which also includes S1 domain proteins such as IF1. Structural similarity between IF1 and CspA homologues suggested a functional overlap between these proteins. Indeed IF1 can melt secondary structures in RNA and acts as transcription antiterminator in vivo and in vitro. Here, we show that in spite of having these critical activities, IF1 does not complement cold-sensitivity of a csp quadruple deletion strain. DNA microarray analysis shows that overproduction of IF1 and Csp leads to changes in expression of different sets of genes. Importantly, several genes which were previously shown to require Csp proteins for their expression at low temperature did not respond to IF1. Moreover, in vitro, we show that a transcription terminator responsive to Csp does not respond to IF1. Our results suggest that Csp proteins and IF1 have different sets of target genes as they may be suppressing the function of different types of transcription termination elements in specific genes.
Maruyama, Kyonoshin; Todaka, Daisuke; Mizoi, Junya; Yoshida, Takuya; Kidokoro, Satoshi; Matsukura, Satoko; Takasaki, Hironori; Sakurai, Tetsuya; Yamamoto, Yoshiharu Y.; Yoshiwara, Kyouko; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2012-01-01
The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (46 = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species. PMID:22184637
Metzger, David C H; Schulte, Patricia M
2018-04-14
Phenotypic plasticity occurs at a variety of timescales, but little is known about the degree to which plastic responses at different timescales are associated with similar underlying molecular processes, which is critical for assessing the effects of plasticity on evolutionary trajectories. To address this issue, we identified differential gene expression in response to developmental temperature in the muscle transcriptome of adult threespine stickleback (Gasterosteus aculeatus) exposed to 12, 18 and 24°C until hatch and then held at 18°C for 9 months and compared these results to differential gene expression in response to adult thermal acclimation in stickleback developed at 18°C and then acclimated to 5 and 25°C as adults. Adult thermal acclimation affected the expression of 7,940 and 7,015 genes in response to cold and warm acclimation, respectively, and 4,851 of these genes responded in both treatments. In contrast, the expression of only 33 and 29 genes was affected by cold and warm development, respectively. The majority of the genes affected by developmental temperature were also affected by adult acclimation temperature. Many genes that were differentially expressed as a result of adult acclimation were associated with previously identified temperature-dependent effects on DNA methylation patterns, suggesting a role of epigenetic mechanisms in regulating gene expression plasticity during acclimation. Taken together, these results demonstrate similarities between the persistent effects of developmental plasticity on gene expression and the effects of adult thermal acclimation, emphasizing the potential for mechanistic links between plasticity acting at these different life stages. © 2018 John Wiley & Sons Ltd.
Proteomic Characterization of Inbreeding-Related Cold Sensitivity in Drosophila melanogaster
Beck, Hans C.; Petersen, Jørgen; Gagalova, Kristina Kirilova; Loeschcke, Volker
2013-01-01
Inbreeding depression is a widespread phenomenon of central importance to agriculture, medicine, conservation biology and evolutionary biology. Although the population genetic principles of inbreeding depression are well understood, we know little about its functional genomic causes. To provide insight into the molecular interplay between intrinsic stress responses, inbreeding depression and temperature tolerance, we performed a proteomic characterization of a well-defined conditional inbreeding effect in a single line of Drosophila melanogaster, which suffers from extreme cold sensitivity and lethality. We identified 48 differentially expressed proteins in a conditional lethal line as compared to two control lines. These proteins were enriched for proteins involved in hexose metabolism, in particular pyruvate metabolism, and many were found to be associated with lipid particles. These processes can be linked to known cold tolerance mechanisms, such as the production of cryoprotectants, membrane remodeling and the build-up of energy reserves. We checked mRNA-expression of seven genes with large differential protein expression. Although protein expression poorly correlated with gene expression, we found a single gene (CG18067) that, after cold shock, was upregulated in the conditional lethal line both at the mRNA and protein level. Expression of CG18067 also increased in control flies after cold shock, and has previously been linked to cold exposure and chill coma recovery time. Many differentially expressed proteins in our study appear to be involved in cold tolerance in non-inbred individuals. This suggest the conditional inbreeding effect to be caused by misregulation of physiological cold tolerance mechanisms. PMID:23658762
Zhang, Ying; Yu, Hongjun; Yang, Xueyong; Li, Qiang; Ling, Jian; Wang, Hong; Gu, Xingfang; Huang, Sanwen; Jiang, Weijie
2016-11-01
Plant WRKY transcription factors are trans-regulatory proteins that are involved in plant immune responses, development and senescence; however, their roles in abiotic stress are still not well understood, especially in the horticultural crop cucumber. In this study, a novel cucumber WRKY gene, CsWRKY46 was cloned and identified, which was up-regulated in response to cold stress and exogenous abscisic acid (ABA) treatment. CsWRKY46 is belonging to group II of the WRKY family, CsWRKY46 was found exclusively in the nucleus, as indicated by a transient expression assay. Yeast one-hybrid assay shown that CsWRKY46 interact with the W-box in the promoter of ABI5. Transgenic Arabidopsis lines over-expressing CsWRKY46, WRK46-OE1 and WRK46-OE5 had higher seedling survival rates upon freezing treatment compared with that of the wild-type. The above over-expression lines also showed much a higher proline accumulation, less electrolyte leakage and lower malondialdehyde (MDA) levels. Furthermore, the CsWRKY46 overexpression lines were hypersensitive to ABA during seed germination, but the seedlings were not. Quantitative RT-PCR analyses revealed that the expression levels of the ABA-responsive transcription factor ABI5 were higher in the WRKY46-OE lines than in wild-type and that the overexpression of CsWRKY46 increased the expression of stress-inducible genes, including RD29A and COR47. Taken together, our results demonstrated that CsWRKY46 from cucumber conferred cold tolerance to transgenic plants and positively regulated the cold signaling pathway in an ABA-dependent manner. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Yang, Tianbao; Peng, Hui; Whitaker, Bruce D; Jurick, Wayne M
2013-07-01
Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage. © 2013 Scandinavian Plant Physiology Society.
Tacken, Emma; Ireland, Hilary; Gunaseelan, Kularajathevan; Karunairetnam, Sakuntala; Wang, Daisy; Schultz, Keith; Bowen, Judith; Atkinson, Ross G.; Johnston, Jason W.; Putterill, Jo; Hellens, Roger P.; Schaffer, Robert J.
2010-01-01
Fruit softening in apple (Malus × domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples. PMID:20237022
Zhang, Zhenzhu; Chen, Xiuling; Guan, Xin; Liu, Yang; Chen, Hongyu; Wang, Tingting; Mouekouba, Liana Dalcantara Ongouya; Li, Jingfu; Wang, Aoxue
2014-01-01
Homeodomain-leucine zipper (HD-Zip) proteins are a kind of transcriptional factors that play a vital role in plant growth and development. However, no detailed information of HD-Zip family in tomato has been reported till now. In this study, 51 HD-Zip genes (SlHZ01-51) in this family were identified and categorized into 4 classes by exon-intron and protein structure in tomato (Solanum lycopersicum) genome. The synthetical phylogenetic tree of tomato, Arabidopsis and rice HD-Zip genes were established for an insight into their evolutionary relationships and putative functions. The results showed that the contribution of segmental duplication was larger than that of tandem duplication for expansion and evolution of genes in this family of tomato. The expression profile results under abiotic stress suggested that all SlHZ I genes were responsive to cold stress. This study will provide a clue for the further investigation of functional identification and the role of tomato HD-Zip I subfamily in plant cold stress responses and developmental events.
Fang, Yi-Kai; Huang, Kuo-Yang; Huang, Po-Jung; Lin, Rose; Chao, Mei; Tang, Petrus
2015-12-01
Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted disease in the world. This infection affects millions of individuals worldwide annually. Although direct sexual contact is the most common mode of transmission, increasing evidence indicates that T. vaginalis can survive in the external environment and can be transmitted by contaminated utensils. We found that the growth of T. vaginalis under cold conditions is greatly inhibited, but recovers after placing these stressed cells at the normal cultivation temperature of 37 °C. However, the mechanisms by which T. vaginalis regulates this adaptive process are unclear. An expressed sequence tag (EST) database generated from a complementary DNA library of T. vaginalis messenger RNAs expressed under cold-culture conditions (4 °C, TvC) was compared with a previously published normal-cultured EST library (37 °C, TvE) to assess the cold-stress responses of T. vaginalis. A total of 9780 clones were sequenced from the TvC library and were mapped to 2934 genes in the T. vaginalis genome. A total of 1254 genes were expressed in both the TvE and TvC libraries, and 1680 genes were only found in the TvC library. A functional analysis showed that cold temperature has effects on many cellular mechanisms, including increased H2O2 tolerance, activation of the ubiquitin-proteasome system, induction of iron-sulfur cluster assembly, and reduced energy metabolism and enzyme expression. The current study is the first large-scale transcriptomic analysis in cold-stressed T. vaginalis and the results enhance our understanding of this important protist. Copyright © 2014. Published by Elsevier B.V.
Pegoraro, Camila; Tadiello, Alice; Girardi, César L; Chaves, Fábio C; Quecini, Vera; de Oliveira, Antonio Costa; Trainotti, Livio; Rombaldi, Cesar Valmor
2015-11-18
Postharvest fruit conservation relies on low temperatures and manipulations of hormone metabolism to maintain sensory properties. Peaches are susceptible to chilling injuries, such as 'woolliness' that is caused by juice loss leading to a 'wooly' fruit texture. Application of gibberellic acid at the initial stages of pit hardening impairs woolliness incidence, however the mechanisms controlling the response remain unknown. We have employed genome wide transcriptional profiling to investigate the effects of gibberellic acid application and cold storage on harvested peaches. Approximately half of the investigated genes exhibited significant differential expression in response to the treatments. Cellular and developmental process gene ontologies were overrepresented among the differentially regulated genes, whereas sequences in cell death and immune response categories were underrepresented. Gene set enrichment demonstrated a predominant role of cold storage in repressing the transcription of genes associated to cell wall metabolism. In contrast, genes involved in hormone responses exhibited a more complex transcriptional response, indicating an extensive network of crosstalk between hormone signaling and low temperatures. Time course transcriptional analyses demonstrate the large contribution of gene expression regulation on the biochemical changes leading to woolliness in peach. Overall, our results provide insights on the mechanisms controlling the complex phenotypes associated to postharvest textural changes in peach and suggest that hormone mediated reprogramming previous to pit hardening affects the onset of chilling injuries.
Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes
2013-01-01
Background Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. Results In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. Conclusions A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted regulatory network model was able to identify new ecotype specific transcription factors and their regulatory interactions, which might be crucial for their local geographic adaptation to cold temperature. Additionally, since the approach presented here is general, it could be adapted to study networks regulating biological process in any biological systems. PMID:24148294
Chaudhary, Saurabh; Sharma, Prakash C.
2015-01-01
Seabuckthorn (Hippophae rhamnoides L.), an important plant species of Indian Himalayas, is well known for its immense medicinal and nutritional value. The plant has the ability to sustain growth in harsh environments of extreme temperatures, drought and salinity. We employed DeepSAGE, a tag based approach, to identify differentially expressed genes under cold and freeze stress in seabuckthorn. In total 36.2 million raw tags including 13.9 million distinct tags were generated using Illumina sequencing platform for three leaf tissue libraries including control (CON), cold stress (CS) and freeze stress (FS). After discarding low quality tags, 35.5 million clean tags including 7 million distinct clean tags were obtained. In all, 11922 differentially expressed genes (DEGs) including 6539 up regulated and 5383 down regulated genes were identified in three comparative setups i.e. CON vs CS, CON vs FS and CS vs FS. Gene ontology and KEGG pathway analysis were performed to assign gene ontology term to DEGs and ascertain their biological functions. DEGs were mapped back to our existing seabuckthorn transcriptome assembly comprising of 88,297 putative unigenes leading to the identification of 428 cold and freeze stress responsive genes. Expression of randomly selected 22 DEGs was validated using qRT-PCR that further supported our DeepSAGE results. The present study provided a comprehensive view of global gene expression profile of seabuckthorn under cold and freeze stresses. The DeepSAGE data could also serve as a valuable resource for further functional genomics studies aiming selection of candidate genes for development of abiotic stress tolerant transgenic plants. PMID:25803684
Chaudhary, Saurabh; Sharma, Prakash C
2015-01-01
Seabuckthorn (Hippophae rhamnoides L.), an important plant species of Indian Himalayas, is well known for its immense medicinal and nutritional value. The plant has the ability to sustain growth in harsh environments of extreme temperatures, drought and salinity. We employed DeepSAGE, a tag based approach, to identify differentially expressed genes under cold and freeze stress in seabuckthorn. In total 36.2 million raw tags including 13.9 million distinct tags were generated using Illumina sequencing platform for three leaf tissue libraries including control (CON), cold stress (CS) and freeze stress (FS). After discarding low quality tags, 35.5 million clean tags including 7 million distinct clean tags were obtained. In all, 11922 differentially expressed genes (DEGs) including 6539 up regulated and 5383 down regulated genes were identified in three comparative setups i.e. CON vs CS, CON vs FS and CS vs FS. Gene ontology and KEGG pathway analysis were performed to assign gene ontology term to DEGs and ascertain their biological functions. DEGs were mapped back to our existing seabuckthorn transcriptome assembly comprising of 88,297 putative unigenes leading to the identification of 428 cold and freeze stress responsive genes. Expression of randomly selected 22 DEGs was validated using qRT-PCR that further supported our DeepSAGE results. The present study provided a comprehensive view of global gene expression profile of seabuckthorn under cold and freeze stresses. The DeepSAGE data could also serve as a valuable resource for further functional genomics studies aiming selection of candidate genes for development of abiotic stress tolerant transgenic plants.
cDNA sequence and expression of a cold-responsive gene in Citrus unshiu.
Hara, M; Wakasugi, Y; Ikoma, Y; Yano, M; Ogawa, K; Kuboi, T
1999-02-01
A cDNA clone encoding a protein (CuCOR19), the sequence of which is similar to Poncirus COR19, of the dehydrin family was isolated from the epicarp of Citrus unshiu. The molecular mass of the predicted protein was 18,980 daltons. CuCOR19 was highly hydrophilic and contained three repeating elements including Lys-rich motifs. The gene expression in leaves increased by cold stress.
Bilyk, Kevin T; Cheng, C-H Christina
2014-12-01
Through evolution in the isolated, freezing (-1.9°C) Southern Ocean, Antarctic notothenioid fish have become cold-adapted as well as cold-specialized. Notothenioid cold specialization is most evident in their limited tolerance to heat challenge, and an apparent loss of the near universal inducible heat shock (HSP70) response. Beyond these it remains unclear how broadly cold specialization pervades the underlying tissue-wide cellular responses. We report the first analysis of massively parallel RNA sequencing (RNA-seq) to identify gene expression changes in the liver in response to elevated body temperature of a high-latitude Antarctic nototheniid, the highly cold-adapted and cold-specialized cryopelagic bald notothen, Pagothenia borchgrevinki. From a large (14,873) mapped set of qualified, annotated liver transcripts, we identified hundreds of significantly differentially expressed genes following two and four days of 4°C exposure, suggesting substantial transcriptional reorganization in the liver when body temperature was raised 5°C above native water temperature. Most notably, and in sharp contrast to heat stressed non-polar fish species, was a widespread down-regulation of nearly all classes of molecular chaperones including HSP70, as well as polyubiquitins that are associated with proteosomal degradation of damaged proteins. In parallel, genes involved in the cell cycle were down-regulated by day two of 4°C exposure, signifying slowing cellular proliferation; by day four, genes associated with transcriptional and translational machineries were down-regulated, signifying general slowing of protein biosynthesis. The log2 fold differential transcriptional changes are generally of small magnitudes but significant, and in total portray a broad down turn of cellular activities in response to four days of elevated body temperature in the cold-specialized bald notothen. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Qingyuan; Lei, Sheng; Du, Kebing; Li, Lizhi; Pang, Xufeng; Wang, Zhanchang; Wei, Ming; Fu, Shao; Hu, Limin; Xu, Lin
2016-01-01
Camellia is a well-known ornamental flower native to Southeast of Asia, including regions such as Japan, Korea and South China. However, most species in the genus Camellia are cold sensitive. To elucidate the cold stress responses in camellia plants, we carried out deep transcriptome sequencing of ‘Jiangxue’, a cold-tolerant cultivar of Camellia japonica, and approximately 1,006 million clean reads were generated using Illumina sequencing technology. The assembly of the clean reads produced 367,620 transcripts, including 207,592 unigenes. Overall, 28,038 differentially expressed genes were identified during cold acclimation. Detailed elucidation of responses of transcription factors, protein kinases and plant hormone signalling-related genes described the interplay of signal that allowed the plant to fine-tune cold stress responses. On the basis of global gene regulation of unsaturated fatty acid biosynthesis- and jasmonic acid biosynthesis-related genes, unsaturated fatty acid biosynthesis and jasmonic acid biosynthesis pathways were deduced to be involved in the low temperature responses in C. japonica. These results were supported by the determination of the fatty acid composition and jasmonic acid content. Our results provide insights into the genetic and molecular basis of the responses to cold acclimation in camellia plants. PMID:27819341
Identification of genes involved in cold-shock response in rainbow trout (Oncorhynchus mykiss).
Borchel, Andreas; Verleih, Marieke; Rebl, Alexander; Goldammer, Tom
2017-09-01
A rapid decline in temperature poses a major challenge for poikilothermic fish, as their entire metabolism depends on ambient temperature. The gene expression of rainbow trout Oncorhynchus mykiss having undergone such a cold shock (0◦C) was compared to a control (5◦C) in a microarray and quantitative real-time PCR based study. The tissues of gill, kidney and liver were examined. The most differently expressed genes were found in liver, many of them contributing to the network 'cellular compromise, cellular growth and proliferation'.However, the number of genes found to be regulated at 0◦Cwas surprisingly low. Instead of classical genes involved in temperature shock, the three genes encoding fibroblast growth factor 1 (fgf1), growth arrest and DNA-damageinducible, alpha (gadd45a) and sclerostin domain-containing protein 1 (sostdc1) were upregulated in the liver upon cold shock in two different rainbow trout strains, suggesting that these genes may be considered as general biomarkers for cold shock in rainbow trout.
Huang, Wen; Ren, Chunhua; Li, Hongmei; Huo, Da; Wang, Yanhong; Jiang, Xiao; Tian, Yushun; Luo, Peng; Chen, Ting; Hu, Chaoqun
2017-01-01
The Pacific white shrimp (Litopenaeus vannamei) is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824) and Metabolic pathways (ko01100) were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress.
Huang, Wen; Ren, Chunhua; Li, Hongmei; Huo, Da; Wang, Yanhong; Jiang, Xiao; Tian, Yushun; Luo, Peng; Hu, Chaoqun
2017-01-01
The Pacific white shrimp (Litopenaeus vannamei) is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824) and Metabolic pathways (ko01100) were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress. PMID:28575089
Transcriptome Response Mediated by Cold Stress in Lotus japonicus.
Calzadilla, Pablo I; Maiale, Santiago J; Ruiz, Oscar A; Escaray, Francisco J
2016-01-01
Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures.
Guerriero, Gea; Legay, Sylvain; Hausman, Jean-Francois
2014-01-01
Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses. PMID:25084115
Braving the attitude of altitude: Caragana jubata at work in cold desert of Himalaya
Bhardwaj, Pardeep Kumar; Kapoor, Ritu; Mala, Deep; Bhagwat, Geetika; Acharya, Vishal; Singh, Anil Kumar; Vats, Surender Kumar; Ahuja, Paramvir Singh; Kumar, Sanjay
2013-01-01
The present work was conducted to understand the basis of adaptation in Caragana jubata in its niche environment at high altitude cold desert of Himalaya. Molecular data showed predominance of genes encoding chaperones and those involved in growth and development at low temperature (LT), a major cue operative at high altitude. Importantly, these genes expressed in C. jubata in its natural habitat. Their homologues in Arabidopsis thaliana, Oryza sativa, and Glycine max did not exhibit similar trend of gene expression at LT. Constitutive expression and a quick up-regulation of the above genes suggested the ability of C. jubata to adjust its cellular machinery to maintain growth and development in its niche. This was reflected in LT50 (the temperature at which 50% injury occurred) and LT mediated photosynthetic acclimatory response. Such molecular and physiological plasticity enables C. jubata to thrive in the high altitude cold desert of Himalayas. PMID:23289064
Yang, Yuting; Zhang, Xu; Chen, Yun; Guo, Jinlong; Ling, Hui; Gao, Shiwu; Su, Yachun; Que, Youxiong; Xu, Liping
2016-01-01
Sugarcane, accounting for 80% of world's sugar, originates in the tropics but is cultivated mainly in the subtropics. Therefore, chilling injury frequently occurs and results in serious losses. Recent studies in various plant species have established microRNAs as key elements in the post-transcriptional regulation of response to biotic and abiotic stresses including cold stress. Though, its accuracy is largely influenced by the use of reference gene for normalization, quantitative PCR is undoubtedly a popular method used for identification of microRNAs. For identifying the most suitable reference genes for normalizing miRNAs expression in sugarcane under cold stress, 13 candidates among 17 were investigated using four algorithms: geNorm, NormFinder, deltaCt, and Bestkeeper, and four candidates were excluded because of unsatisfactory efficiency and specificity. Verification was carried out using cold-related genes miR319 and miR393 in cold-tolerant and sensitive cultivars. The results suggested that miR171/18S rRNA and miR171/miR5059 were the best reference gene sets for normalization for miRNA RT-qPCR, followed by the single miR171 and 18S rRNA. These results can aid research on miRNA responses during sugarcane stress, and the development of sugarcane tolerant to cold stress. This study is the first report concerning the reference gene selection of miRNA RT-qPCR in sugarcane. PMID:26904058
USDA-ARS?s Scientific Manuscript database
Background: To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expressi...
Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress.
Vighi, I L; Benitez, L C; do Amaral, M N; Auler, P A; Moraes, G P; Rodrigues, G S; da Maia, L C; Pinto, L S; Braga, E J B
2016-11-03
Different rice (Oryza sativa L.) genotypes were subjected to high salinity and low temperature (150 mM NaCl and 13°C, respectively) for 0, 6, 24, 48, or 72 h. We evaluated the simultaneous expression of the genes OsCATA, OsCATB, and OsCATC, correlated gene expression with enzyme activity, and verified the regulation of these genes through identification of cis-elements in the promoter region. The hydrogen peroxide content increased in a tolerant genotype and decreased in a sensitive genotype under both stress conditions. Lipid peroxidation increased in the tolerant genotype when exposed to cold, and in the sensitive genotype when exposed to high salinity. Catalase activity significantly increased in both genotypes when subjected to 13°C. In the tolerant genotype, OsCATA and OsCATB were the most responsive to high salinity and cold, while in the sensitive genotype, OsCATA and OsCATC responded positively to saline stress, as did OsCATA and OsCATB to low temperature. Cis-element analysis identified different regulatory sequences in the catalase promoter region of each genotype. The sensitive genotype maintained a better balance between hydrogen oxyacid levels, catalase activity, and lipid peroxidation under low temperature than the resistant genotype. OsCATA and OsCATB were the most responsive in the salt-tolerant genotype to cold, OsCATA and OsCATC were the most responsive to saline stress, and OsCATA and OsCATB were the most responsive to chilling stress in the sensitive genotype. There were positive correlations between catalase activity and OsCATB expression in the tolerant genotype under saline stress and in the sensitive genotype under cold stress.
Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress.
Dutilleul, Christelle; Chavarria, Heidy; Rézé, Nathalie; Sotta, Bruno; Baudouin, Emmanuel; Guillas, Isabelle
2015-12-01
Although sphingolipids emerged as important signals for plant response to low temperature, investigations have been limited so far to the function of long-chain base intermediates. The formation and function of ceramide phosphates (Cer-Ps) in chilled Arabidopsis were explored. Cer-Ps were analysed by thin layer chromatography (TLC) following in vivo metabolic radiolabelling. Ceramide kinase activity, gene expression and growth phenotype were determined in unstressed and cold-stressed wild type (WT) and Arabidopsis ceramide kinase mutant acd5. A rapid and transient formation of Cer-P occurs in cold-stressed WT Arabidopsis plantlets and cultured cells, which is strongly impaired in acd5 mutant. Although concomitant, Cer-P formation is independent of long-chain base phosphate (LCB-P) formation. No variation of ceramide kinase activity was measured in vitro in WT plantlets upon cold stress but the activity in acd5 mutant was further reduced by cold stress. At the seedling stage, acd5 response to cold was similar to that of WT. Nevertheless, acd5 seed germination was hypersensitive to cold and abscisic acid (ABA), and ABA-dependent gene expression was modified in acd5 seeds when germinated at low temperature. Our data involve for the first time Cer-P and ACD5 in low temperature response and further underline the complexity of sphingolipid signalling operating during cold stress. © 2015 John Wiley & Sons Ltd.
Lv, Yan; Yang, Mei; Hu, Dan; Yang, Zeyu; Ma, Siqi; Li, Xianghua; Xiong, Lizhong
2017-02-01
Cold stress is one of the major limiting factors for rice (Oryza sativa) productivity. Several MYB transcriptional factors have been reported as important regulators in the cold stress response, but the molecular mechanisms are largely unknown. In this study, we characterized a cold-responsive R2R3-type MYB gene, OsMYB30, for its regulatory function in cold tolerance in rice. Functional analysis revealed that overexpression of OsMYB30 in rice resulted in increased cold sensitivity, while the osmyb30 knockout mutant showed increased cold tolerance. Microarray and quantitative real-time polymerase chain reaction analyses revealed that a few β-amylase (BMY) genes were down-regulated by OsMYB30. The BMY activity and maltose content, which were decreased and increased in the OsMYB30 overexpression and osmyb30 knockout mutant, respectively, were correlated with the expression patterns of the BMY genes. OsMYB30 was shown to bind to the promoters of the BMY genes. These results suggested that OsMYB30 exhibited a regulatory effect on the breakdown of starch through the regulation of the BMY genes. In addition, application of maltose had a protective effect for cell membranes under cold stress conditions. Furthermore, we identified an OsMYB30-interacting protein, OsJAZ9, that had a significant effect in suppressing the transcriptional activation of OsMYB30 and in the repression of BMY genes mediated by OsMYB30. These results together suggested that OsMYB30 might be a novel regulator of cold tolerance through the negative regulation of the BMY genes by interacting with OsJAZ9 to fine-tune the starch breakdown and the content of maltose, which might contribute to the cold tolerance as a compatible solute. © 2017 American Society of Plant Biologists. All Rights Reserved.
Wang, Yong; Ding, Guanqun; Gu, Tingting; Ding, Jing; Li, Yi
2017-08-01
Carotenoid dioxygenases, including 9-cis-epoxycarotenoid dioxygenases (NCEDs) and carotenoid cleavage dioxygenases (CCDs), can selectively cleave carotenoids into various apocarotenoid products that play important roles in fleshy fruit development and abiotic stress response. In this study, we identified 12 carotenoid dioxygenase genes in diploid strawberry Fragaria vesca, and explored their evolution with orthologous genes from nine other species. Phylogenetic analyses suggested that the NCED and CCDL groups moderately expanded during their evolution, whereas gene numbers of the CCD1, CCD4, CCD7, and CCD8 groups maintained conserved. We characterized the expression profiles of FveNCED and FveCCD genes during flower and fruit development, and in response to several abiotic stresses. FveNCED1 expression positively responded to osmotic, cold, and heat stresses, whereas FveNCED2 was only induced under cold stress. In contrast, FveNCED2 was the unique gene highly and continuously increasing in receptacle during fruit ripening, which co-occurred with the increase in endogenous abscisic acid (ABA) content previously reported in octoploid strawberry. The differential expression patterns suggested that FveNCED1 and FveNCED2 were key genes for ABA biosynthesis in abiotic stress responses and fruit ripening, respectively. FveCCD1 exhibited the highest expression in most stages of flower and fruit development, while the other FveCCDs were expressed in a subset of stages and tissues. Our study suggests distinct functions of FveNCED and FveCCD genes in fruit development and stress responses and lays a foundation for future study to understand the roles of these genes and their metabolites, including ABA and other apocarotenoid products, in the growth and development of strawberry.
An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway.
An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin
2018-02-01
Cold stress is an adverse stimulus that affects plant growth and development, and the C-repeat binding factor (CBF) cold-regulatory cascade has been regarded as a master regulator in the plant response to cold stress. Here, we showed that a NAC transcription factor modulated low-temperature tolerance. MdNAC029/MdNAP, an apple NAC gene was isolated and its role in regulating cold tolerance was investigated. MdNAC029 was responsive to low-temperature treatment, and over-expression of MdNAC029 reduced cold tolerance in apple calli and Arabidopsis. Furthermore, EMSA assays and transient expression assays demonstrated that MdNAC029 directly repressed the expression of MdCBF1 and MdCBF4 by binding to their promoters. Taken together, our data suggest that MdNAC029 functions as a negative regulator in regulating plant cold tolerance in a CBF-dependent manner, providing a deeper understanding of NAC transcription-factor-mediated cold tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.
Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2014-01-01
Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.
Sanhueza, Dayan; Vizoso, Paula; Balic, Iván; Campos-Vargas, Reinaldo; Meneses, Claudio
2015-01-01
Cold storage (CS) can induce a physiological disorder known as chilling injury (CI) in nectarine fruits. The main symptom is mealiness that is perceived as non-juicy fruit by consumers. Postharvest treatments such as controlled atmosphere (CA; a high CO2 concentration and low O2) have been used under cold conditions to avoid this disorder. With the objective of exploring the mechanisms involved in the CA effect on mealiness prevention, we analyzed transcriptomic changes under six conditions of "Red Pearl" nectarines by RNA-Seq. Our analysis included just harvested nectarines, juicy non-stored fruits, fruits affected for CI after CS and fruits stored in a combination of CA plus CS without CI phenotype. Nectarines stored in cold conditions combined with CA treatment resulted in less mealiness; we obtained 21.6% of juice content compared with just CS fruits (7.7%; mealy flesh). RNA-Seq data analyses were carried out to study the gene expression for different conditions assayed. During ripening, we detected that nectarines exposed to CA treatment expressed a similar number of genes compared with fruits that were not exposed to cold conditions. Firm fruits have more differentially expressed genes than soft fruits, which suggest that most important changes occur during CS. On the other hand, gene ontology analysis revealed enrichment mainly in metabolic and cellular processes. Differentially expressed genes analysis showed that low O2 concentrations combined with cold conditions slows the metabolic processes more than just the cold storage, resulting mainly in the suppression of primary metabolism and cold stress response. This is a significant step toward unraveling the molecular mechanism that explains the effectiveness of CA as a tool to prevent CI development on fruits.
Sanhueza, Dayan; Vizoso, Paula; Balic, Iván; Campos-Vargas, Reinaldo; Meneses, Claudio
2015-01-01
Cold storage (CS) can induce a physiological disorder known as chilling injury (CI) in nectarine fruits. The main symptom is mealiness that is perceived as non-juicy fruit by consumers. Postharvest treatments such as controlled atmosphere (CA; a high CO2 concentration and low O2) have been used under cold conditions to avoid this disorder. With the objective of exploring the mechanisms involved in the CA effect on mealiness prevention, we analyzed transcriptomic changes under six conditions of “Red Pearl” nectarines by RNA-Seq. Our analysis included just harvested nectarines, juicy non-stored fruits, fruits affected for CI after CS and fruits stored in a combination of CA plus CS without CI phenotype. Nectarines stored in cold conditions combined with CA treatment resulted in less mealiness; we obtained 21.6% of juice content compared with just CS fruits (7.7%; mealy flesh). RNA-Seq data analyses were carried out to study the gene expression for different conditions assayed. During ripening, we detected that nectarines exposed to CA treatment expressed a similar number of genes compared with fruits that were not exposed to cold conditions. Firm fruits have more differentially expressed genes than soft fruits, which suggest that most important changes occur during CS. On the other hand, gene ontology analysis revealed enrichment mainly in metabolic and cellular processes. Differentially expressed genes analysis showed that low O2 concentrations combined with cold conditions slows the metabolic processes more than just the cold storage, resulting mainly in the suppression of primary metabolism and cold stress response. This is a significant step toward unraveling the molecular mechanism that explains the effectiveness of CA as a tool to prevent CI development on fruits. PMID:26483806
Zhao, Pincang; Liu, Panpan; Yuan, Guangxiao; Jia, Junting; Li, Xiaoxia; Qi, Dongmei; Chen, Shuangyan; Ma, Tian; Liu, Gongshe; Cheng, Liqin
2016-01-01
Water is a critical environmental factor that restricts the geographic distribution of plants. Sheepgrass [Leymus chinensis, (Trin.) Tzvel] is an important forage grass in the Eurasia Steppe and a close germplasm for wheat and barley. This native grass adapts well to adverse environments such as cold, salinity, alkalinity and drought, and it can survive when the soil moisture may be less than 6% in dry seasons. However, little is known about how sheepgrass tolerates water stress at the molecular level. Here, drought stress experiment and RNA-sequencing (RNA-seq) was performed in three pools of RNA samples (control, drought stress, and rewatering). We found that sheepgrass seedlings could still survive when the soil water content (SWC) was reduced to 14.09%. Differentially expressed genes (DEGs) analysis showed that 7320 genes exhibited significant responses to drought stress. Of these DEGs, 2671 presented opposite expression trends before and after rewatering. Furthermore, ~680 putative sheepgrass-specific water responsive genes were revealed that can be studied deeply. Gene ontology (GO) annotation revealed that stress-associated genes were activated extensively by drought treatment. Interestingly, cold stress-related genes were up-regulated greatly after drought stress. The DEGs of MAPK and calcium signal pathways, plant hormone ABA, jasmonate, ethylene, brassinosteroid signal pathways, cold response CBF pathway participated coordinatively in sheepgrass drought stress response. In addition, we identified 288 putative transcription factors (TFs) involved in drought response, among them, the WRKY, NAC, AP2/ERF, bHLH, bZIP, and MYB families were enriched, and might play crucial and significant roles in drought stress response of sheepgrass. Our research provided new and valuable information for understanding the mechanism of drought tolerance in sheepgrass. Moreover, the identification of genes involved in drought response can facilitate the genetic improvement of crops by molecular breeding. PMID:27446180
Deng, Long-Qun; Yu, Hao-Qiang; Liu, Yan-Ping; Jiao, Pei-Pei; Zhou, Shu-Feng; Zhang, Su-Zhi; Li, Wan-Chen; Fu, Feng-Ling
2014-04-10
Antifreeze proteins are a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival under the subzero environments. Ammopiptanthus nanus is the unique evergreen broadleaf bush endemic to the Mid-Asia deserts. It survives at the west edge of the Tarim Basin from the disappearance of the ancient Mediterranean in the Tertiary Period. Its distribution region is characterized by the arid climate and extreme temperatures, where the extreme temperatures range from -30 °C to 40 °C. In the present study, the antifreeze protein gene AnAFP of A. nanus was used to transform Escherichia coli and tobacco, after bioinformatics analysis for its possible function. The transformed E. coli strain expressed the heterologous AnAFP gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of cold tolerance. The transformed tobacco lines expressed the heterologous AnAFP gene in response to cold stress, and showed a less change of relative electrical conductivity under cold stress, and a less wilting phenotype after 16 h of -3 °C cold stress and thawing for 1h than the untransformed wild-type plants. All these results imply the potential value of the AnAFP gene to be used in genetic modification of commercially important crops for improvement of cold tolerance. Copyright © 2014 Elsevier B.V. All rights reserved.
Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María Del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel
2015-01-01
We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity.
Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel
2015-01-01
We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity. PMID:26177024
NASA Astrophysics Data System (ADS)
Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing
2015-03-01
Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).
USDA-ARS?s Scientific Manuscript database
Background: Low environmental temperatures are among the most challenging stressors in poultry industries. Although landmark studies using acute severe cold exposure have been conducted, still the molecular mechanisms underlying cold-stress responses in birds are not completely defined. In the pre...
Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina
2015-03-01
Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize. © 2014 John Wiley & Sons Ltd.
Kurepin, Leonid V.; Dahal, Keshav P.; Savitch, Leonid V.; Singh, Jas; Bode, Rainer; Ivanov, Alexander G.; Hurry, Vaughan; Hüner, Norman P. A.
2013-01-01
Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways. PMID:23778089
Wu, Lijun; Zhang, Zhijin; Zhang, Haiwen; Wang, Xue-Chen; Huang, Rongfeng
2008-01-01
Abiotic stresses such as drought, cold, and salinity affect normal growth and development in plants. The production and accumulation of reactive oxygen species (ROS) cause oxidative stress under these abiotic conditions. Recent research has elucidated the significant role of ethylene response factor (ERF) proteins in plant adaptation to abiotic stresses. Our earlier functional analysis of an ERF protein, JERF3, indicated that JERF3-expressing tobacco (Nicotiana tabacum) adapts better to salinity in vitro. This article extends that study by showing that transcriptional regulation of JERF3 in the oxidative stress response modulates the increased tolerance to abiotic stresses. First, we confirm that JERF3-expressing tobacco enhances adaptation to drought, freezing, and osmotic stress during germination and seedling development. Then we demonstrate that JERF3-expressing tobacco imparts not only higher expression of osmotic stress genes compared to wild-type tobacco, but also the activation of photosynthetic carbon assimilation/metabolism and oxidative genes. More importantly, this regulation of the expression of oxidative genes subsequently enhances the activities of superoxide dismutase but reduces the content of ROS in tobacco under drought, cold, salt, and abscisic acid treatments. This indicates that JERF3 also modulates the abiotic stress response via the regulation of the oxidative stress response. Further assays indicate that JERF3 activates the expression of reporter genes driven by the osmotic-responsive GCC box, DRE, and CE1 and by oxidative-responsive as-1 in transient assays, suggesting the transcriptional activation of JERF3 in the expression of genes involved in response to oxidative and osmotic stress. Our results therefore establish that JERF3 activates the expression of such genes through transcription, resulting in decreased accumulation of ROS and, in turn, enhanced adaptation to drought, freezing, and salt in tobacco. PMID:18945933
Bao, Gegen; Zhuo, Chunliu; Qian, Chunmei; Xiao, Ting; Guo, Zhenfei; Lu, Shaoyun
2016-01-01
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses, while L-ascorbic acid (AsA) that is also named vitamin C is an important antioxidant and involves in plant stress tolerance and the immune system in domestic animals. Transgenic tobacco (Nicotiana tabacum L.) and stylo [Stylosanthes guianensis (Aublet) Swartz], a forage legume, plants co-expressing stylo 9-cis-epoxycarotenoid dioxygenase (SgNCED1) and yeast D-arabinono-1,4-lactone oxidase (ALO) genes were generated in this study, and tolerance to drought and chilling was analysed in comparison with transgenic tobacco overexpressing SgNCED1 or ALO and the wild-type plants. Compared to the SgNCED1 or ALO transgenic plants, in which only ABA or AsA levels were increased, both ABA and AsA levels were increased in transgenic tobacco and stylo plants co-expressing SgNCED1 and ALO genes. Compared to the wild type, an enhanced drought tolerance was observed in SgNCED1 transgenic tobacco plants with induced expression of drought-responsive genes, but not in ALO plants, while an enhanced chilling tolerance was observed in ALO transgenic tobaccos with induced expression of cold-responsive genes, but not in SgNCED1 plants. Co-expression of SgNCED1 and ALO genes resulted in elevated tolerance to both drought and chilling in transgenic tobacco and stylo plants with induced expression of both drought and cold-responsive genes. Our result suggests that co-expression of SgNCED1 and ALO genes is an effective way for use in forage plant improvement for increased tolerance to drought and chilling and nutrition quality. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Schwartz, Tonia S; Murray, Shauna; Seebacher, Frank
2008-04-22
Many animals upregulate metabolism in response to cold. Uncoupling proteins (UCPs) increase proton conductance across the mitochondrial membrane and can thereby alleviate damage from reactive oxygen species that may form as a result of metabolic upregulation. Our aim in this study was to determine whether reptiles (Crocodylus porosus) possess UCP genes. If so, we aimed to place reptilian UCP genes within a phylogenetic context and to determine whether the expression of UCP genes is increased during cold acclimation. We provide the first evidence that UCP2 and UCP3 genes are present in reptiles. Unlike in other vertebrates, UCP2 and UPC3 are expressed in liver and skeletal muscle of the crocodile, and both are upregulated in liver during cold acclimation but not in muscle. We identified two transcripts of UCP3, one of which produces a truncated protein similar to the UCP3S transcript in humans, and the resulting protein lacks the predicted nucleotide-binding regulatory domain. Our molecular phylogeny suggests that uncoupling protein 1 (UCP1) is ancestral and has been lost in archosaurs. In birds, UCP3 may have assumed a similar function as UCP1 in mammals, which has important ramifications for understanding endothermic heat production.
Dalmasso, Marion; Aubert, Julie; Briard-Bion, Valérie; Chuat, Victoria; Deutsch, Stéphanie-Marie; Even, Sergine; Falentin, Hélène; Jan, Gwénaël; Jardin, Julien; Maillard, Marie-Bernadette; Parayre, Sandrine; Piot, Michel; Tanskanen, Jarna; Thierry, Anne
2012-01-01
Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C). Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C), inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1(T) strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from 30°C to 4°C (P<0.05 and |fold change|>1). At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1(T) strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival.
Dalmasso, Marion; Aubert, Julie; Briard-Bion, Valérie; Chuat, Victoria; Deutsch, Stéphanie-Marie; Even, Sergine; Falentin, Hélène; Jan, Gwénaël; Jardin, Julien; Maillard, Marie-Bernadette; Parayre, Sandrine; Piot, Michel; Tanskanen, Jarna; Thierry, Anne
2012-01-01
Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C). Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C), inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1T strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from 30°C to 4°C (P<0.05 and |fold change|>1). At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1T strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival. PMID:22253706
Rey, Benjamin; Dégletagne, Cyril; Duchamp, Claude
2016-12-01
In this article, we present differentially expressed gene profiles in the pectoralis muscle of wild juvenile king penguins that were either naturally acclimated to cold marine environment or experimentally immersed in cold water as compared with penguin juveniles that never experienced cold water immersion. Transcriptomic data were obtained by hybridizing penguins total cDNA on Affymetrix GeneChip Chicken Genome arrays and analyzed using maxRS algorithm , " Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays " (Dégletagne et al., 2010) [1] . We focused on genes involved in multiple antioxidant pathways. For better clarity, these differentially expressed genes were clustered into six functional groups according to their role in controlling redox homeostasis. The data are related to a comprehensive research study on the ontogeny of antioxidant functions in king penguins, "Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus)" (Rey et al., 2016) [2] . The raw microarray dataset supporting the present analyses has been deposited at the Gene Expression Omnibus (GEO) repository under accessions GEO: GSE17725 and GEO: GSE82344.
Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis
Nguyen, Khoa D.; Qiu, Yifu; Cui, Xiaojin; Goh, Y.P. Sharon; Mwangi, Julia; David, Tovo; Mukundan, Lata; Brombacher, Frank; Locksley, Richard M.; Chawla, Ajay
2011-01-01
All homeotherms utilize thermogenesis to maintain core body temperature, ensuring that cellular functions and physiologic processes can ensue in cold environments1-3. In the prevailing model, when the hypothalamus senses cold temperatures, it triggers sympathetic discharge, resulting in the release of noradrenaline in brown adipose tissue (BAT) and white adipose tissue (WAT)4,5. Acting via the β3-adrenergic receptors, noradrenaline induces lipolysis in white adipocytes6, whereas it stimulates the expression of thermogenic genes, such as PPARγ coactivator 1a (Ppargc1a), uncoupling protein 1 (Ucp1), and acyl-CoA synthetase long-chain family member 1 (Acsl1), in brown adipocytes7-9. However, the precise nature of all the cell types involved in this efferent loop is not well established. Here we report an unexpected requirement for the interleukin 4 (IL4)-stimulated program of alternative macrophage activation in adaptive thermogenesis. Cold exposure rapidly promoted alternative activation of adipose tissue macrophages, which secrete catecholamines to induce thermogenic gene expression in BAT and lipolysis in WAT. Absence of alternatively activated macrophages impaired metabolic adaptations to cold, whereas administration of IL4 increased thermogenic gene expression, fatty acid mobilization, and energy expenditure, all in a macrophage-dependent manner. We have thus discovered a surprising role for alternatively activated macrophages in the orchestration of an important mammalian stress response, the response to cold. PMID:22101429
Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei
2017-04-01
The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Jayasundara, Nishad; Gardner, Luke D; Block, Barbara A
2013-11-01
Little is known about the mechanisms underpinning thermal plasticity of vertebrate hearts. Bluefin tuna hearts offer a unique model to investigate processes underlying thermal acclimation. Their hearts, while supporting an endothermic physiology, operate at ambient temperature, and are presented with a thermal challenge when migrating to different thermal regimes. Here, we examined the molecular responses in atrial and ventricular tissues of Pacific bluefin tuna acclimated to 14°C, 20°C, and 25°C. Quantitative PCR studies showed an increase in sarcoplasmic reticulum Ca(2+) ATPase gene expression with cold acclimation and an induction of Na(+)/Ca(2+)-exchanger gene at both cold and warm temperatures. These data provide evidence for thermal plasticity of excitation-contraction coupling gene expression in bluefin tunas and indicate an increased capacity for internal Ca(2+) storage in cardiac myocytes at 14°C. Transcriptomic analysis showed profound changes in cardiac tissues with acclimation. A principal component analysis revealed that temperature effect was greatest on gene expression in warm-acclimated atrium. Overall data showed an increase in cardiac energy metabolism at 14°C, potentially compensating for cold temperature to optimize bluefin tuna performance in colder oceans. In contrast, metabolic enzyme activity and gene expression data suggest a decrease in ATP production at 25°C. Expression of genes involved in protein turnover and molecular chaperones was also decreased at 25°C. Expression of genes involved in oxidative stress response and programmed cell death suggest an increase in oxidative damage and apoptosis at 25°C, particularly in the atrium. These findings provide insights into molecular processes that may characterize cardiac phenotypes at upper thermal limits of teleosts.
Chung, Nana; Park, Jonghoon; Lim, Kiwon
2017-01-01
[Purpose] The purpose of this study was to determine whether exercise or/and cold exposure regulate mitochondria biogenesis-related gene expression in soleus and inguinal adipose tissue of mice. [Methods] Forty ICR 5-week old male mice were divided into four groups: thermoneutrality-untrained (23 ± 1 °C in room temperature, n=10), cold-water immersion (24 ± 1 °C, n=10), exercise in neutral temperature (34 ± 1 °C, n=10), and exercise in cold temperature (24 ± 1 °C, n=10). The mice performed swimming exercise (30 min to 60 min, 5 times) for 8 weeks. After 8 weeks, we confirmed mitochondrial biogenesis-related gene expression changes for peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), nuclear respiratory factors 1 (NRF1), and mitochondrial transcription factor A (Tfam) in soleus muscle and inguinal adipose tissue, and the related protein expression in soleus muscle. [Results] In soleus muscle, PGC-1α expression significantly increased in response to cold exposure (p = 0.006) and exercise (p = 0.05). There was also significant interaction between exercise and cold exposure (p = 0.005). Only exercise had a significant effect on NRF1 relative expression (p=0.001). Neither cold exposure nor the interaction showed significant effects (p = 0.1222 and p = 0.875, respectively). Relative Tfam expression did not show any significant effect from exercise. In inguinal adipose tissue, relative PGC-1α expression did not significantly change in any group. NRF1 expression showed a significant change from exercise (p = 0.01) and cold exposure (p = 0.011). There was also a significant interaction between exercise and cold exposure (p = 0.000). Tfam mRNA expression showed a significant effect from exercise (p=0.000) and an interaction between exercise and cold exposure (p=0.001). Only temperature significantly affected PGC-1α protein levels (p=0.045). Neither exercise nor the interaction were significant (p = 0.397 and p = 0.292, respectively). NRF1 protein levels did not show a significant effect in any experimental treatments. Tfam protein levels showed a significant effect in the exercise group (p=0.012), but effects of neither cold exposure nor the interaction were significant (p = 0.085 and p=0.374, respectively). [Conclusion] Exercise and cold exposure promoted increased expression of mitochondrial biogenesis- related genes in soleus muscle. Only cold exposure had a significant effect on PGC-1α protein expression and only exercise had a significant effect on Tfam protein expression. In inguinal adipose tissue, there was interaction between exercise and cold exposure in expression of mitochondrial biogenesis-related genes. PMID:28715885
Karimi, Marzieh; Ghazanfari, Farahnaz; Fadaei, Adeleh; Ahmadi, Laleh; Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein
2016-01-01
Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.
Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein
2016-01-01
Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants. PMID:27253370
NASA Astrophysics Data System (ADS)
Li, Guilin; Zhang, Yanming; Ni, Yong; Wang, Ying; Xu, Baohua; Guo, Xingqi
2018-04-01
It is known that melatonin plays an indispensable role in the defense against some environment-induced stresses. The melatonin receptor (MTNR) is also closely linked to the environmental stress response in mammals. However, little is known about the function of the MTNR in insects, including honeybees. In this study, we identified a MTNR from Apis cerana cerana named AccMTNR1A, which contained a typical seven-transmembrane domain common to this family of receptors. A subcellular localization analysis showed that AccMTNR1A was localized in the cytomembrane. Additionally, we found that cold stress apparently boosted AccMTNR1A transcription, indicating that AccMTNR1A possibly connects to the cold stress response. The knockdown of AccMTNR1A attenuated the expression level of some genes associated with the cold stress response, suggesting that AccMTNR1A likely plays an analogous role with these genes during low temperature stress response. Moreover, silencing of AccMTNR1A also suppressed the transcription of some antioxidant genes, prompting the possibility that the response of AccMTNR1A to cold stress response may be related to antioxidant signaling pathways. Collectively, the findings presented here provide evidence that AccMTNR1A may play essential roles in protecting Apis cerana cerana from cold stress.
Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok
2018-01-01
Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 (DaCBF4), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4-overexpressing transgenic rice plant (Ubi:DaCBF4) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice. PMID:29774046
Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok
2018-01-01
Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 ( DaCBF4 ), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4 -overexpressing transgenic rice plant ( Ubi:DaCBF4 ) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice.
Hormonal control of cold stress responses in plants.
Eremina, Marina; Rozhon, Wilfried; Poppenberger, Brigitte
2016-02-01
Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.
Des Marteaux, Lauren E; McKinnon, Alexander H; Udaka, Hiroko; Toxopeus, Jantina; Sinclair, Brent J
2017-05-08
Cold tolerance is a key determinant of temperate insect distribution and performance. Chill-susceptible insects lose ion and water homeostasis during cold exposure, but prior cold acclimation improves both cold tolerance and defense of homeostasis. The mechanisms underlying these processes are mostly unknown; cold acclimation is thought to enhance ion transport in the cold and/or prevent leak of water and ions. To identify candidate mechanisms of cold tolerance plasticity we generated transcriptomes of ionoregulatory tissues (hindgut and Malpighian tubules) from Gryllus pennsylvanicus crickets and compared gene expression in warm- and cold-acclimated individuals. We assembled a G. pennsylvanicus transcriptome de novo from 286 million 50-bp reads, yielding 70,037 contigs (~44% of which had putative BLAST identities). We compared the transcriptomes of warm- and cold-acclimated hindguts and Malpighian tubules. Cold acclimation led to a ≥ 2-fold change in the expression of 1493 hindgut genes (733 downregulated, 760 upregulated) and 2008 Malpighian tubule genes (1009 downregulated, 999 upregulated). Cold-acclimated crickets had altered expression of genes putatively associated with ion and water balance, including: a downregulation of V-ATPase and carbonic anhydrase in the Malpighian tubules and an upregulation of Na + -K + ATPase in the hindgut. We also observed acclimation-related shifts in the expression of cytoskeletal genes in the hindgut, including actin and actin-anchoring/stabilizing proteins, tubulin, α-actinin, and genes involved in adherens junctions organization. In both tissues, cold acclimation led to differential expression of genes encoding cytochrome P450s, glutathione-S-transferases, apoptosis factors, DNA repair, and heat shock proteins. This is the first G. pennsylvanicus transcriptome, and our tissue-specific approach yielded new candidate mechanisms of cold tolerance plasticity. Cold acclimation may reduce loss of hemolymph volume in the cold by 1) decreasing primary urine production via reduced expression of carbonic anhydrase and V-ATPase in the Malpighian tubules and 2) by increasing Na + (and therefore water) reabsorption across the hindgut via increase in Na + -K + ATPase expression. Cold acclimation may reduce chilling injury by remodeling and stabilizing the hindgut epithelial cytoskeleton and cell-to-cell junctions, and by increasing the expression of genes involved in DNA repair, detoxification, and protein chaperones.
Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi
2015-01-01
Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance. PMID:26270529
Zhao, Tian-Tian; Zhang, Jin; Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi
2015-01-01
Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance.
Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L.
Chen, Ru-gang; Jing, Hua; Guo, Wei-li; Wang, Shu-Bin; Ma, Fang; Pan, Bao-Gui; Gong, Zhen-Hui
2015-12-01
We cloned a dehydrins gene CaDHN1 from pepper and the expression of CaDHN1 was markedly upregulated by cold, salt, osmotic stresses and salicylic acid (SA) treatment. Dehydrins (DHNs) are a subfamily of group 2 late embryogenesis-abundant (LEA) proteins that are thought to play an important role in enhancing abiotic stress tolerance in plants. In this study, a DHN EST (Expressed Sequence Tag) was obtained from 6 to 8 true leaves seedlings of pepper cv P70 (Capsicum annuum L.) by our laboratory. However, the DHN gene in pepper was not well characterized. According to this EST sequence, we isolated a DHN gene, designated as CaDHN1, and investigated the response and expression of this gene under various stresses. Our results indicated that CaDHN1 has the DHN-specific and conserved K- and S- domain and encodes 219 amino acids. Phylogenetic analysis showed that CaDHN1 belonged to the SKn subgroup. Tissue expression profile analysis revealed that CaDH N1 was expressed predominantly in fruits and flowers. The expression of CaDHN1 was markedly upregulated in response to cold, salt, osmotic stresses and salicylic acid (SA) treatment, but no significant change by abscisic acid (ABA) and heavy metals treatment. Loss of function of CaDHN1 using the virus-induced gene silencing (VIGS) technique led to decreased tolerance to cold-, salt- and osmotic-induced stresses. Overall, these results suggest that CaDHN1 plays an important role in regulating the abiotic stress resistance in pepper plants.
NASA Astrophysics Data System (ADS)
Carreiro-Silva, M.; Cerqueira, T.; Godinho, A.; Caetano, M.; Santos, R. S.; Bettencourt, R.
2014-06-01
Cold-water corals (CWCs) are thought to be particularly vulnerable to ocean acidification (OA) due to increased atmospheric pCO2, because they inhabit deep and cold waters where the aragonite saturation state is naturally low. Several recent studies have evaluated the impact of OA on organism-level physiological processes such as calcification and respiration. However, no studies to date have looked at the impact at the molecular level of gene expression. Here, we report results of a long-term, 8-month experiment to compare the physiological responses of the CWC Desmophyllum dianthus to OA at both the organismal and gene expression levels under two pCO2/pH treatments: ambient pCO2 (460 μatm, pHT = 8.01) and elevated pCO2 (997 μatm, pHT = 7.70). At the organismal level, no significant differences were detected in the calcification and respiration rates of D. dianthus. Conversely, significant differences were recorded in gene expression profiles, which showed an up-regulation of genes involved in cellular stress (HSP70) and immune defence (mannose-binding c-type lectin). Expression of alpha-carbonic anhydrase, a key enzyme involved in the synthesis of coral skeleton, was also significantly up-regulated in corals under elevated pCO2, indicating that D. dianthus was under physiological reconditioning to calcify under these conditions. Thus, gene expression profiles revealed physiological impacts that were not evident at the organismal level. Consequently, understanding the molecular mechanisms behind the physiological processes involved in a coral's response to elevated pCO2 is critical to assess the ability of CWCs to acclimate or adapt to future OA conditions.
Hassanpour, H; Khosravi Alekoohi, Z; Madreseh, S; Bahadoran, S; Nasiri, L
2016-10-01
Quantitative real-time PCR was carried out to evaluate gene expression of heat shock proteins (HSP) (HSP27, HSP56, HSP60, HSP70, HSP90 and ubiquitin) in the brain (hindbrain, midbrain, forebrain) of chickens with cold-induced pulmonary hypertension. The ratio of the right ventricle to the total ventricle (index of pulmonary hypertension in chickens) was increased in the cold-induced pulmonary hypertensive chickens at 42 d of age compared with control. The HSP genes were expressed in the three parts of the brain in the two experimental groups. In the hindbrain of cold-induced pulmonary hypertensive chickens, the relative gene expression of HSP27, HSP60, HSP70 and HSP90 was decreased while gene expression of HSP56 and ubiquitin was increased compared with controls. In the midbrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased compared with controls while HSP27 and HSP90 were decreased. In the forebrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased while the expression of the HSP27 gene was decreased compared with controls. It is concluded that overexpression of HSPs in the forebrain and midbrain probably delays the pathological process of cold stress whereas diminished expression of HSP genes in the hindbrain may affect the normal function of brain centres in this area to exacerbate pulmonary hypertension.
Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin
2015-01-01
Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future. PMID:26403200
Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin
2015-09-25
Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future.
Le, Mai Q; Pagter, Majken; Hincha, Dirk K
2015-01-01
During cold acclimation plants increase in freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, plants of many species, including Arabidopsis thaliana, become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures after cold acclimation. There is hardly any information available about the molecular basis of this adaptation. Here, we have used microarrays and a qRT-PCR primer platform covering 1,880 genes encoding transcription factors (TFs) to monitor changes in gene expression in the Arabidopsis accessions Columbia-0, Rschew and Tenela during the first 3 days of sub-zero acclimation at -3 °C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY TFs may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes are down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription are up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.
MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple.
An, Jian-Ping; Yao, Ji-Fang; Wang, Xiao-Na; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin
2017-11-01
Cold stress is a major external stimulator that affects crop quality and productivity. The CBF cold regulatory pathway has been regarded as a master regulator in the response to cold stress. In this study, we found that the apple bZIP transcription factor, MdHY5, was responsive to cold treatment both at the transcriptional and at the post-translational levels. Moreover, overexpression of MdHY5 enhanced cold tolerance in apple calli and Arabidopsis. Subsequently, EMSA assay and transient expression assay demonstrated that MdHY5 positively regulated the transcript of MdCBF1 by binding to G-Box motif of its promoter. Furthermore, MdHY5 also regulated the expression of CBF-independent cold-regulated genes. Taken together, our data suggest that MdHY5 positively modulates plant cold tolerance through CBF-dependent and CBF-independent pathways, providing a deeper understanding of MdHY5-regulated cold tolerance in apple. Copyright © 2017 Elsevier GmbH. All rights reserved.
Litta, Pietro; Saccardi, Carlo; Gizzo, Salvatore; Conte, Lorena; Ambrosi, Giulia; Sissi, Claudia; Palumbo, Manlio
2015-08-01
Electrical surgical devices may determine tissue damage through lateral thermal spread and activation of inflammatory processes. Several tissue effects are associated with the use of different surgical instruments. The aim of the present study was to compare tissue damage following the application of cold knife biopsy, bipolar electrocoagulation and the ultracision harmonic scalpel, through the analysis of inflammatory gene mediator expression. Three fragments of the round ligament (length 0.5 cm) were obtained from 22 females who had undergone total or subtotal laparoscopic hysterectomy using three different modes of resection: Cold knife biopsy, bipolar electrocoagulation and ultracision harmonic scalpel. The tissue fragments were examined by quantitative polymerase chain reaction (qPCR) analysis of selected cytokines. Gene expression analysis demonstrated large standard deviations due to individual variability among patients and indicated variability in the concentrations of cytokines in the three different samples. The quantity of cytokine mRNA in the cold knife biopsy samples was generally greater than those obtained by other techniques. Tumor necrosis factor-α expression was significantly higher in the sample obtained with the ultracision harmonic scalpel and bipolar electrocoagulation (P=0.033) when compared with cold knife biopsy. The inflammatory response was analyzed by the quantification of gene expression through the use of qPCR. The ultracision harmonic scalpel and bipolar electrocoagulation triggered the inflammatory cascade and resulted in an increased production of cytokines compared with cold knife biopsy.
Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance.
Zwack, Paul J; Compton, Margaret A; Adams, Cami I; Rashotte, Aaron M
2016-03-01
Cytokinin response factor 4 (CRF4) shows a short-term induction by cold (4 °C) that appears to play a role in non-acclimated freezing tolerance as seen in mutant and overexpression lines. Responses to abiotic stresses, such as cold stress, are critical to plant growth and optimal production. Examination of Arabidopsis cytokinin response factors (CRFs) showed transcriptional induction after exposure to cold (4 °C). In particular, CRF4 was strongly induced in both root and shoot tissues. As CRF4 is one of several CRFs not transcriptionally regulated by cytokinin, we further investigated its response to cold. Peak CRF4 induction occurred 6 h post cold exposure, after which expression was maintained at moderately elevated levels during extended cold and subsequent treatment recovery. Examination of CRF4 mutant and overexpression lines under standard (non-cold) conditions revealed little difference from WT. One exception was a small, but significant increase in primary root growth of overexpression plants (CRF4OX). Under cold conditions, the only phenotype observed was a reduction in the rate of germination of CRF4OX seeds. The pattern of CRF4 expression along with the lack of strong phenotype at 4 °C led us to hypothesize that cold induction of CRF4 could play a role in short-term cold acclimation leading to increased freeze tolerance. Examination of CRF4OX and crf4 plants exposed to freezing temperatures revealed mutants lacking expression of CRF4 were more sensitive to freezing, while CRF4OXs with increased levels CRF4 levels were more tolerant. Altered transcript expression of CBF and COR15a cold signaling pathway genes in crf4 mutant and overexpression lines suggest that CRF4 may be potentially connected to this pathway. Overall this indicates that CRF4 plays an important role in both cold response and freezing stress.
Wang, Jiangying; Wu, Bin; Fan, Zhengqi; Li, Xinlei; Ni, Sui
2017-01-01
Ascorbate peroxidase (APX) acts indispensably in synthesizing L-ascorbate (AsA) which is pivotal to plant stress tolerance by detoxifying reactive oxygen species (ROS). Enhanced activity of APX has been shown to be a key step for genetic engineering of improving plant tolerance. However it needs a deeper understanding on the maintenance of cellular ROS homeostasis in response to stress. In this study, we identified and characterized an APX (CaAPX) gene from Camellia azalea. Quantitative real-time PCR (qRT-PCR) analysis showed that CaAPX was expressed in all tissues and peaked in immature green fruits; the expression levels were significantly upregulated upon cold and hot stresses. Transgenic plants displayed marked enhancements of tolerance under both cold and heat treatments, and plant growth was correlated with CaAPX expression levels. Furthermore, we monitored the activities of several ROS-scavenging enzymes including Cu/Zn-SOD, CAT, DHAR, and MDHAR, and we showed that stress tolerance was synchronized with elevated activities of ROS-scavenging. Moreover, gene expression analysis of ROS-scavenging enzymes revealed a role of CaAPX to orchestrate ROS signaling in response to temperature stresses. Overall, this study presents a comprehensive characterization of cellular response related to CaAPX expression and provides insights to breed crops with high temperature tolerances. PMID:28386551
Wang, Jiangying; Wu, Bin; Yin, Hengfu; Fan, Zhengqi; Li, Xinlei; Ni, Sui; He, Libo; Li, Jiyuan
2017-01-01
Ascorbate peroxidase (APX) acts indispensably in synthesizing L-ascorbate (AsA) which is pivotal to plant stress tolerance by detoxifying reactive oxygen species (ROS). Enhanced activity of APX has been shown to be a key step for genetic engineering of improving plant tolerance. However it needs a deeper understanding on the maintenance of cellular ROS homeostasis in response to stress. In this study, we identified and characterized an APX ( CaAPX ) gene from Camellia azalea . Quantitative real-time PCR (qRT-PCR) analysis showed that CaAPX was expressed in all tissues and peaked in immature green fruits; the expression levels were significantly upregulated upon cold and hot stresses. Transgenic plants displayed marked enhancements of tolerance under both cold and heat treatments, and plant growth was correlated with CaAPX expression levels. Furthermore, we monitored the activities of several ROS-scavenging enzymes including Cu/Zn-SOD , CAT , DHAR , and MDHAR , and we showed that stress tolerance was synchronized with elevated activities of ROS-scavenging. Moreover, gene expression analysis of ROS-scavenging enzymes revealed a role of CaAPX to orchestrate ROS signaling in response to temperature stresses. Overall, this study presents a comprehensive characterization of cellular response related to CaAPX expression and provides insights to breed crops with high temperature tolerances.
Maruyama, Kyonoshin; Urano, Kaoru; Yoshiwara, Kyouko; Morishita, Yoshihiko; Sakurai, Nozomu; Suzuki, Hideyuki; Kojima, Mikiko; Sakakibara, Hitoshi; Shibata, Daisuke; Saito, Kazuki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2014-01-01
Correlations between gene expression and metabolite/phytohormone levels under abiotic stress conditions have been reported for Arabidopsis (Arabidopsis thaliana). However, little is known about these correlations in rice (Oryza sativa ‘Nipponbare’), despite its importance as a model monocot. We performed an integrated analysis to clarify the relationships among cold- and dehydration-responsive metabolites, phytohormones, and gene transcription in rice. An integrated analysis of metabolites and gene expression indicated that several genes encoding enzymes involved in starch degradation, sucrose metabolism, and the glyoxylate cycle are up-regulated in rice plants exposed to cold or dehydration and that these changes are correlated with the accumulation of glucose (Glc), fructose, and sucrose. In particular, high expression levels of genes encoding isocitrate lyase and malate synthase in the glyoxylate cycle correlate with increased Glc levels in rice, but not in Arabidopsis, under dehydration conditions, indicating that the regulation of the glyoxylate cycle may be involved in Glc accumulation under dehydration conditions in rice but not Arabidopsis. An integrated analysis of phytohormones and gene transcripts revealed an inverse relationship between abscisic acid (ABA) signaling and cytokinin (CK) signaling under cold and dehydration stresses; these stresses increase ABA signaling and decrease CK signaling. High levels of Oryza sativa 9-cis-epoxycarotenoid dioxygenase transcripts correlate with ABA accumulation, and low levels of Cytochrome P450 (CYP) 735A transcripts correlate with decreased levels of a CK precursor in rice. This reduced expression of CYP735As occurs in rice but not Arabidopsis. Therefore, transcriptional regulation of CYP735As might be involved in regulating CK levels under cold and dehydration conditions in rice but not Arabidopsis. PMID:24515831
Perspective Research Progress in Cold Responses of Capsella bursa-pastoris
Noman, Ali; Kanwal, Hina; Khalid, Noreen; Sanaullah, Tayyaba; Tufail, Aasma; Masood, Atifa; Sabir, Sabeeh-ur-Rasool; Aqeel, Muhammad; He, Shuilin
2017-01-01
Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding. PMID:28855910
Tan, Huaqiang; Huang, Haitao; Tie, Manman; Tang, Yi; Lai, Yunsong; Li, Huanxiu
2016-01-01
Cowpea (V. unguiculata L. Walp.) is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars-"Dubai bean" and "Ningjiang-3", which are tolerant and sensitive to chilling, respectively-were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18%) had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs) in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic engineering, and advance our knowledge of the genes involved in the complex regulatory networks of this plant under cold stress.
Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukii
Alford, Lucy; Yeoh, Joseph GC; Marley, Richard; Dornan, Anthony J; Dow, Julian AT; Davies, Shireen A
2017-01-01
Abstract BACKGROUND Neuropeptides are central to the regulation of physiological and behavioural processes in insects, directly impacting cold and desiccation survival. However, little is known about the control mechanisms governing these responses in Drosophila suzukii. The close phylogenetic relationship of D. suzukii with Drosophila melanogaster allows, through genomic and functional studies, an insight into the mechanisms directing stress tolerance in D. suzukii. RESULTS Capability (Capa), leucokinin (LK), diuretic hormone 44 (DH44) and DH31 neuropeptides demonstrated a high level of conservation between D. suzukii and D. melanogaster with respect to peptide sequences, neuronal expression, receptor localisation, and diuretic function in the Malpighian tubules. Despite D. suzukii's ability to populate cold environments, it proved sensitive to both cold and desiccation. Furthermore, in D. suzukii, Capa acts as a desiccation‐ and cold stress‐responsive gene, while DH 44 gene expression is increased only after desiccation exposure, and the LK gene after nonlethal cold stress recovery. CONCLUSION This study provides a comparative investigation into stress tolerance mediation by neuroendocrine signalling in two Drosophila species, providing evidence that similar signalling pathways control fluid secretion in the Malpighian tubules. Identifying processes governing specific environmental stresses affecting D. suzukii could lead to the development of targeted integrated management strategies to control insect pest populations. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28714258
Bai, Bin; Wu, Jun; Sheng, Wen-Tao; Zhou, Bo; Zhou, Li-Jie; Zhuang, Wen; Yao, Dong-Ping; Deng, Qi-Yun
2015-05-18
Rice is highly sensitive to cold stress during reproductive developmental stages, and little is known about the mechanisms of cold responses in rice anther. Using the HiSeq™ 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Pei'ai64S) were analyzed at the fertility sensitive stage under cold stress. Approximately 243 million clean reads were obtained from four libraries and aligned against the oryza indica genome and 1497 and 5652 differentially expressed genes (DEGs) were identified in P64S and Y58S, respectively. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for these DEGs. Functional classification of DEGs was also carried out. The DEGs common to both genotypes were mainly involved in signal transduction, metabolism, transport, and transcriptional regulation. Most of the DEGs were unique for each comparison group. We observed that there were more differentially expressed MYB (Myeloblastosis) and zinc finger family transcription factors and signal transduction components such as calmodulin/calcium dependent protein kinases in the Y58S comparison group. It was also found that ribosome-related DEGs may play key roles in cold stress signal transduction. These results presented here would be particularly useful for further studies on investigating the molecular mechanisms of rice responses to cold stress.
Bai, Bin; Wu, Jun; Sheng, Wen-Tao; Zhou, Bo; Zhou, Li-Jie; Zhuang, Wen; Yao, Dong-Ping; Deng, Qi-Yun
2015-01-01
Rice is highly sensitive to cold stress during reproductive developmental stages, and little is known about the mechanisms of cold responses in rice anther. Using the HiSeq™ 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Pei’ai64S) were analyzed at the fertility sensitive stage under cold stress. Approximately 243 million clean reads were obtained from four libraries and aligned against the oryza indica genome and 1497 and 5652 differentially expressed genes (DEGs) were identified in P64S and Y58S, respectively. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for these DEGs. Functional classification of DEGs was also carried out. The DEGs common to both genotypes were mainly involved in signal transduction, metabolism, transport, and transcriptional regulation. Most of the DEGs were unique for each comparison group. We observed that there were more differentially expressed MYB (Myeloblastosis) and zinc finger family transcription factors and signal transduction components such as calmodulin/calcium dependent protein kinases in the Y58S comparison group. It was also found that ribosome-related DEGs may play key roles in cold stress signal transduction. These results presented here would be particularly useful for further studies on investigating the molecular mechanisms of rice responses to cold stress. PMID:25993302
Tungjitwitayakul, Jatuporn; Tatun, Nujira; Vajarasathira, Boongeua; Sakurai, Sho
2015-06-01
The maize weevil, Sitophilus zeamais Motschulsky, is a major pest of rice and other postharvest grain stocks in tropical countries. Heating and cooling treatments have been adopted to control this pest. Because heat shock protein (hsp) genes respond to temperature stress, we examined the association of hsp genes with development and thermal stress in S. zeamais. The temperature response of the insect to heat and cold treatments was assessed at four developmental stages: egg, larva, pupa, and adult. LT50 values at high temperatures were similar among the four developmental stages, while adults were the most tolerant to low temperatures, and eggs, larvae, and pupae exhibited similar LT50 values. Expression levels of three hsps--Szhsp70, Szhsc70, and Szhsp90--fluctuated substantially throughout the four stages at a rearing temperature of 28°C. Heat shock and cold shock increased the expression of all three hsps, and the highest upregulation was observed at 40°C, although the intensity of upregulation varied among the three genes: strongly in Szhsp70, moderately in Szhsp90, and slightly in Szhsc70. Basal expression of the three hsps at 28°C and gene responses to heat and cold shock also varied significantly at the tissue level. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhang, Yunqin; Miao, Zhenyan; Xie, Can; Meng, Xiangzhao; Deng, Jie; Mysore, Kirankumar S.; Frugier, Florian; Wang, Tao
2016-01-01
Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula. In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling. Among these, we showed that MtCBF4 directly activates the transcription of the COLD ACCLIMATION SPECIFIC15 (MtCAS15) gene. To gain insights into how MtCBF4 is transcriptionally regulated in response to cold, an R2R3-MYB TF, MtMYB3, was identified based on a yeast one-hybrid screen as binding directly to MYB cis-elements in the MtCBF4 promoter, leading to the inhibition of MtCBF4 expression. In addition, another MYB TF, MtMYB61, identified as an interactor of MtMYB3, can relieve the inhibitory effect of MtMYB3 on MtCBF4 transcription. This study, therefore, supports a model describing how MtCBF4 is regulated by antagonistic MtMYB3/MtMYB61 TFs, leading to the up-regulation of downstream targets such as MtCAS15 acting in cold acclimation in M. truncatula. PMID:27578551
González-Segovia, Eric; Ross-Ibarra, Jeffrey; Simpson, June K.
2017-01-01
Background Gene regulatory variation has been proposed to play an important role in the adaptation of plants to environmental stress. In the central highlands of Mexico, farmer selection has generated a unique group of maize landraces adapted to the challenges of the highland niche. In this study, gene expression in Mexican highland maize and a reference maize breeding line were compared to identify evidence of regulatory variation in stress-related genes. It was hypothesised that local adaptation in Mexican highland maize would be associated with a transcriptional signature observable even under benign conditions. Methods Allele specific expression analysis was performed using the seedling-leaf transcriptome of an F1 individual generated from the cross between the highland adapted Mexican landrace Palomero Toluqueño and the reference line B73, grown under benign conditions. Results were compared with a published dataset describing the transcriptional response of B73 seedlings to cold, heat, salt and UV treatments. Results A total of 2,386 genes were identified to show allele specific expression. Of these, 277 showed an expression difference between Palomero Toluqueño and B73 alleles under benign conditions that anticipated the response of B73 cold, heat, salt and/or UV treatments, and, as such, were considered to display a prior stress response. Prior stress response candidates included genes associated with plant hormone signaling and a number of transcription factors. Construction of a gene co-expression network revealed further signaling and stress-related genes to be among the potential targets of the transcription factors candidates. Discussion Prior activation of responses may represent the best strategy when stresses are severe but predictable. Expression differences observed here between Palomero Toluqueño and B73 alleles indicate the presence of cis-acting regulatory variation linked to stress-related genes in Palomero Toluqueño. Considered alongside gene annotation and population data, allele specific expression analysis of plants grown under benign conditions provides an attractive strategy to identify functional variation potentially linked to local adaptation. PMID:28852597
Insect capa neuropeptides impact desiccation and cold tolerance
Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.
2015-01-01
The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885
Yang, Liang; Wu, Kangcheng; Gao, Peng; Liu, Xiaojuan; Li, Guangpu; Wu, Zujian
2014-02-01
Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hashim, Noor Haza Fazlin; Bharudin, Izwan; Abu Bakar, Mohd Faizal; Huang, Kie Kyon; Alias, Halimah; Lee, Bernard K. B.; Mat Isa, Mohd Noor; Mat-Sharani, Shuhaila; Sulaiman, Suhaila; Tay, Lih Jinq; Zolkefli, Radziah; Muhammad Noor, Yusuf; Law, Douglas Sie Nguong; Abdul Rahman, Siti Hamidah; Md-Illias, Rosli; Abu Bakar, Farah Diba; Najimudin, Nazalan; Abdul Murad, Abdul Munir; Mahadi, Nor Muhammad
2018-01-01
Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival. PMID:29385175
Abreu, Emanuel F. M.; Aragão, Francisco J. L.
2007-01-01
Background and Aims Myo-inositol-1l-phosphate synthase (MIPS) catalyses the conversion of d-glucose 6-phosphate to 1-l-myo-inositol-1-phosphate, the first and rate-limiting step in the biosynthesis of all inositol-containing compounds. Inositol phospholipids play a vital role in membrane trafficking and signalling pathways, auxin storage and transport, phytic acid biosynthesis, cell wall biosynthesis and production of stress-related molecules. In the present study, an MIPS cDNA from developing Passiflora edulis f. flavicarpa seeds was characterized and an investigation made into its spatial and differential expression, as well as changes in its transcription during exposure of growing plants to cold and heat stresses. Methods The MIPS-encoding gene was isolated by polymerase chain reaction (PCR) methods, and transcript levels were examined using semi-quantitative reverse transcription–PCR (RT–PCR) during seed development and in response to heat and cold stress. In addition, the copy number of the cloned PeMIPS1 gene in the genome of Passiflora edulis, P. eichleriana, P. caerulea, P. nitida and P. coccinea was determined by Southern blot analyses. Key Results A full-length cDNA clone of the PeMIPS1 from P. edulis was isolated and characterized. Southern blot analyses indicated that the genomic DNA might have diverse sequences of MIPS-encoding genes and one copy of the cloned PeMIPS1 gene in the genomes of P. edulis, P. eichleriana, P. caerulea, P. nitida and P. coccinea. RT–PCR expression analyses revealed the presence of PeMIPS1 transcripts in ovules, pollen grains and leaves, and during the seed developmental stages, where it peaked at 9 d after pollination. The PeMIPS1 gene is differentially regulated under cold and heat stress, presenting a light-responsive transcription. Conclusions Experimental data suggest that PeMIPS1 transcription plays an important role in the establishment of developmental programmes and during the response of plants to environmental changes. The PeMIPS1 is differentially transcribed during cold and heat stress, presenting a light response pattern, suggesting that it is important for environmental stress response. PMID:17138579
Sun, Tao; Zhang, Lei; Yang, Yanjun; Qi, Jianshuang; Yan, Shufeng; Han, Xiaohua; Wang, Huizhong; Shen, Chenjia
2015-01-01
The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses. PMID:25742625
Zhang, Jun-Feng; Xu, Yong-Qing; Dong, Jia-Min; Peng, Li-Na; Feng, Xu; Wang, Xu; Li, Fei; Miao, Yu; Yao, Shu-Kuan; Zhao, Qiao-Qin; Feng, Shan-Shan; Hu, Bao-Zhong
2018-01-01
Plant expansins are proteins involved in cell wall loosening, plant growth, and development, as well as in response to plant diseases and other stresses. In this study, we identified 128 expansin coding sequences from the wheat (Triticum aestivum) genome. These sequences belong to 45 homoeologous copies of TaEXPs, including 26 TaEXPAs, 15 TaEXPBs and four TaEXLAs. No TaEXLB was identified. Gene expression and sub-expression profiles revealed that most of the TaEXPs were expressed either only in root tissues or in multiple organs. Real-time qPCR analysis showed that many TaEXPs were differentially expressed in four different tissues of the two wheat cultivars—the cold-sensitive ‘Chinese Spring (CS)’ and the cold-tolerant ‘Dongnongdongmai 1 (D1)’ cultivars. Our results suggest that the differential expression of TaEXPs could be related to low-temperature tolerance or sensitivity of different wheat cultivars. Our study expands our knowledge on wheat expansins and sheds new light on the functions of expansins in plant development and stress response. PMID:29596529
Brulle, Franck; Bernard, Fabien; Vandenbulcke, Franck; Cuny, Damien; Dumez, Sylvain
2014-04-01
Real-time quantitative PCR is nowadays a standard method to study gene expression variations in various samples and experimental conditions. However, to interpret results accurately, data normalization with appropriate reference genes appears to be crucial. The present study describes the identification and the validation of suitable reference genes in Brassica oleracea leaves. Expression stability of eight candidates was tested following drought and cold abiotic stresses by using three different softwares (BestKeeper, NormFinder and geNorm). Four genes (BolC.TUB6, BolC.SAND1, BolC.UBQ2 and BolC.TBP1) emerged as the most stable across the tested conditions. Further gene expression analysis of a drought- and a cold-responsive gene (BolC.DREB2A and BolC.ELIP, respectively), confirmed the stability and the reliability of the identified reference genes when used for normalization in the leaves of B. oleracea. These four genes were finally tested upon a benzene exposure and all appeared to be useful reference genes along this toxicological condition. These results provide a good starting point for future studies involving gene expression measurement on leaves of B. oleracea exposed to environmental modifications.
Distinct Calcium Signaling Pathways Regulate Calmodulin Gene Expression in Tobacco1
van der Luit, Arnold H.; Olivari, Claudio; Haley, Ann; Knight, Marc R.; Trewavas, Anthony J.
1999-01-01
Cold shock and wind stimuli initiate Ca2+ transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca2+ pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca2+ transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca2+ signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca2+ dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca2+ signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm. PMID:10557218
Nakamichi, Norihito; Takao, Saori; Kudo, Toru; Kiba, Takatoshi; Wang, Yin; Kinoshita, Toshinori; Sakakibara, Hitoshi
2016-05-01
Plant circadian clocks control the timing of a variety of genetic, metabolic and physiological processes. Recent studies revealed a possible molecular mechanism for circadian clock regulation. Arabidopsis thaliana (Arabidopsis) PSEUDO-RESPONSE REGULATOR (PRR) genes, including TIMING OF CAB EXPRESSION 1 (TOC1), encode clock-associated transcriptional repressors that act redundantly. Disruption of multiple PRR genes results in drastic phenotypes, including increased biomass and abiotic stress tolerance, whereas PRR single mutants show subtle phenotypic differences due to genetic redundancy. In this study, we demonstrate that constitutive expression of engineered PRR5 (PRR5-VP), which functions as a transcriptional activator, can increase biomass and abiotic stress tolerance, similar to prr multiple mutants. Concomitant analyses of relative growth rate, flowering time and photosynthetic activity suggested that increased biomass of PRR5-VP plants is mostly due to late flowering, rather than to alterations in photosynthetic activity or growth rate. In addition, genome-wide gene expression profiling revealed that genes related to cold stress and water deprivation responses were up-regulated in PRR5-VP plants. PRR5-VP plants were more resistant to cold, drought and salinity stress than the wild type, whereas ft tsf and gi, well-known late flowering and increased biomass mutants, were not. These findings suggest that attenuation of PRR function by a single transformation of PRR-VP is a valuable method for increasing biomass as well as abiotic stress tolerance in Arabidopsis. Because the PRR gene family is conserved in vascular plants, PRR-VP may regulate biomass and stress responses in many plants, but especially in long-day annual plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ligaba-Osena, Ayalew; Subramani, Mayavan; Brown, Adrianne; Melmaiee, Kalpalatha; Hossain, Khwaja
2017-01-01
Histone deacetylases (HDACs) are important regulators of gene transcription thus controlling multiple cellular processes. Despite its essential role in plants, HDA6 is yet to be validated in common bean. In this study, we show that HDA6 is involved in plant development and stress response. Differential expression of HDA6 was determined in various tissues and the expression was seen to be upregulated with plant age (seedling < flowering < maturity). Higher expression was observed in flowers and pods than in stem, leaf, and root. Upregulation of HDA6 gene during cold stress implies its prominent role in abiotic stress. Furthermore, the HDA6 gene was isolated from three common bean genotypes and sequence analyses revealed homology with functionally characterized homologs in model species. The 53 kDa translated product was detected using an HDA6 specific antibody and recombinant protein overexpressed in Escherichia coli showed HDAC activity in vitro. To our knowledge, this is the first report in the agriculturally important crop common bean describing the functional characterization and biological role of HDA6. PMID:28127547
Sasani, Shahryar; Hemming, Megan N.; Oliver, Sandra N.; Greenup, Aaron; Tavakkol-Afshari, Reza; Mahfoozi, Siroos; Poustini, Kazem; Sharifi, Hamid-Reza; Dennis, Elizabeth S.; Peacock, W. James; Trevaskis, Ben
2009-01-01
Responses to prolonged low-temperature treatment of imbibed seeds (vernalization) were examined in barley (Hordeum vulgare). These occurred in two phases: the perception of prolonged cold, which occurred gradually at low temperatures, and the acceleration of reproductive development, which occurred after vernalization. Expression of the VERNALIZATION1 gene (HvVRN1) increased gradually in germinating seedlings during vernalization, both at the shoot apex and in the developing leaves. This occurred in darkness, independently of VERNALIZATION2 (HvVRN2), consistent with the hypothesis that expression of HvVRN1 is induced by prolonged cold independently of daylength flowering-response pathways. After vernalization, expression of HvVRN1 was maintained in the shoot apex and leaves. This was associated with accelerated inflorescence initiation and with down-regulation of HvVRN2 in the leaves. The largest determinant of HvVRN1 expression levels in vernalized plants was the length of seed vernalization treatment. Daylength did not influence HvVRN1 expression levels in shoot apices and typically did not affect expression in leaves. In the leaves of plants that had experienced a saturating seed vernalization treatment, expression of HvVRN1 was higher in long days, however. HvFT1 was expressed in the leaves of these plants in long days, which might account for the elevated HvVRN1 expression. Long-day up-regulation of HvVRN1 was not required for inflorescence initiation, but might accelerate subsequent stages of inflorescence development. Similar responses to seed vernalization were also observed in wheat (Triticum aestivum). These data support the hypothesis that VRN1 is induced by cold during winter to promote spring flowering in vernalization-responsive cereals. PMID:19357429
Weiner, Juliane; Rohde, Kerstin; Krause, Kerstin; Zieger, Konstanze; Klöting, Nora; Kralisch, Susan; Kovacs, Peter; Stumvoll, Michael; Blüher, Matthias; Böttcher, Yvonne; Heiker, John T
2017-06-01
Several studies have demonstrated anti-diabetic and anti-obesogenic properties of visceral adipose tissue-derived serine protease inhibitor (vaspin) and so evoked its potential use for treatment of obesity-related diseases. The aim of the study was to unravel physiological regulators of vaspin expression and secretion with a particular focus on its role in brown adipose tissue (BAT) biology. We analyzed the effects of obesogenic diets and cold exposure on vaspin expression in liver and white and brown adipose tissue (AT) and plasma levels. Vaspin expression was analyzed in isolated white and brown adipocytes during adipogenesis and in response to adrenergic stimuli. DNA-methylation within the vaspin promoter was analyzed to investigate acute epigenetic changes after cold-exposure in BAT. Our results demonstrate a strong induction of vaspin mRNA and protein expression specifically in BAT of both cold-exposed and high-fat (HF) or high-sugar (HS) fed mice. While obesogenic diets also upregulated hepatic vaspin mRNA levels, cold exposure tended to increase vaspin gene expression of inguinal white adipose tissue (iWAT) depots. Concomitantly, vaspin plasma levels were decreased upon obesogenic or thermogenic triggers. Vaspin expression was increased during adipogenesis but unaffected by sympathetic activation in brown adipocytes. Analysis of vaspin promoter methylation in AT revealed lowest methylation levels in BAT, which were acutely reduced after cold exposure. Our data demonstrate a novel BAT-specific regulation of vaspin gene expression upon physiological stimuli in vivo with acute epigenetic changes that may contribute to cold-induced expression in BAT. We conclude that these findings indicate functional relevance and potentially beneficial effects of vaspin in BAT function.
Transcriptional profiles of the annual growth cycle in Populus deltoides.
Park, Sunchung; Keathley, Daniel E; Han, Kyung-Hwan
2008-03-01
Cycling between vegetative growth and dormancy is an important adaptive mechanism in temperate woody plants. To gain insights into the underlying molecular mechanisms, we carried out global transcription analyses on stem samples from poplar (Populus deltoides Bartr. ex Marsh.) trees grown in the field and in controlled environments. Among seasonal changes in the transcriptome, up-regulation of defense-related genes predominated in early winter, whereas signaling-related genes were up-regulated during late winter. Cluster analysis of the differentially expressed genes showed that plants regulated seasonal growth by integrating environmental factors with development. Short day lengths induced some cold-associated genes without concomitant low temperature exposure, and enhanced the expression of some genes when combined with low temperature exposure. These mechanisms appear to maintain closer synchrony between cold hardiness and climate than would be achieved through responses to temperature alone.
Cabello, Julieta V; Arce, Agustín L; Chan, Raquel L
2012-01-01
Plants deal with cold temperatures via different signal transduction pathways. The HD-Zip I homologous transcription factors HaHB1 from sunflower and AtHB13 from Arabidopsis were identified as playing a key role in such cold response. The expression patterns of both genes were analyzed indicating an up-regulation by low temperatures. When these genes were constitutively expressed in Arabidopsis, the transgenic plants showed similar phenotypes including cell membrane stabilization under freezing treatments and cold tolerance. An exploratory transcriptomic analysis of HaHB1 transgenic plants indicated that several transcripts encoding glucanases and chitinases were induced. Moreover, under freezing conditions some proteins accumulated in HaHB1 plants apoplasts and these extracts exerted antifreeze activity in vitro. Three genes encoding two glucanases and a chitinase were overexpressed in Arabidopsis and these plants were able to tolerate freezing temperatures. All the obtained transgenic plants exhibited cell membrane stabilization after a short freezing treatment. Finally, HaHB1 and AtHB13 were used to transiently transform sunflower and soybean leading to the up-regulation of HaHB1/AtHB13-target homologues thus indicating the conservation of cold response pathways. We propose that HaHB1 and AtHB13 are involved in plant cold tolerance via the induction of proteins able to stabilize cell membranes and inhibit ice growth. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Porto, Diogo Denardi; Bruneau, Maryline; Perini, Pâmela; Anzanello, Rafael; Renou, Jean-Pierre; dos Santos, Henrique Pessoa; Fialho, Flávio Bello; Revers, Luís Fernando
2015-05-01
Apple production depends on the fulfilment of a chilling requirement for bud dormancy release. Insufficient winter chilling results in irregular and suboptimal bud break in the spring, with negative impacts on apple yield. Trees from apple cultivars with contrasting chilling requirements for bud break were used to investigate the expression of the entire set of apple genes in response to chilling accumulation in the field and controlled conditions. Total RNA was analysed on the AryANE v.1.0 oligonucleotide microarray chip representing 57,000 apple genes. The data were tested for functional enrichment, and differential expression was confirmed by real-time PCR. The largest number of differentially expressed genes was found in samples treated with cold temperatures. Cold exposure mostly repressed expression of transcripts related to photosynthesis, and long-term cold exposure repressed flavonoid biosynthesis genes. Among the differentially expressed selected candidates, we identified genes whose annotations were related to the circadian clock, hormonal signalling, regulation of growth, and flower development. Two genes, annotated as FLOWERING LOCUS C-like and MADS AFFECTING FLOWERING, showed strong differential expression in several comparisons. One of these two genes was upregulated in most comparisons involving dormancy release, and this gene's chromosomal position co-localized with the confidence interval of a major quantitative trait locus for the timing of bud break. These results indicate that photosynthesis and auxin transport are major regulatory nodes of apple dormancy and unveil strong candidates for the control of bud dormancy. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Chang, Chia-Hao; Lin, Jing-Yun; Lo, Wan-Yu; Lee, Tsung-Han
2017-11-01
The milkfish (Chanos chanos), an important aquaculture species, is intolerant to cold environments. Temperature fluctuations in the environment affect the physiological response, behavior, and survival rate of the fish. The warm-temperature-acclimation associated 65-kDa protein (Wap65) of teleosts was identified after heat shock treatment and has two isoforms. Both the isoforms were involved in the induction of immune responses in fish. They showed high degree of sequence conservation with the mammalian hemopexin and had high affinity for heme, which helped in the neutralization of free-heme and its transport to the liver. In this study, we isolated and characterized the two isoforms of wap65 genes (Ccwap65-1 and Ccwap65-2) from the liver of milkfish. The Ccwap65-1 and Ccwap65-2 are mainly expressed in livers of milkfish. In hypothermal treatment, the expression levels of Ccwap65-2 in the livers of SW and FW milkfish were up-regulated after exposure to low temperature (18 °C) for 12 h and 96 h compared to those in the normal temperature (28 °C) group, respectively. After intraperitoneal injection of lipopolysaccharide (LPS), the expression of Ccwap65-2 was elevated in both SW and FW milkfish, whereas that of Ccwap65-1 was not affected in both the groups. Thus, Ccwap65-2 expressed in the milkfish liver under hypothermal stress was identified as a novel immune biomarker. In addition, according to the transcriptome database, up-regulation of the other immune-response genes indicated increased pathogen infection status under hypothermal stress. Acute increase in the expression of hepatic Ccwap65-2 in response to pathogen infection might lead to better cold tolerance of SW milkfish compared to that of the FW individuals upon cold challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prasad, Kasavajhala V. S. K.; Abdel-Hameed, Amira A. E.; Xing, Denghui; Reddy, Anireddy S. N.
2016-01-01
Abiotic and biotic stresses cause significant yield losses in all crops. Acquisition of stress tolerance in plants requires rapid reprogramming of gene expression. SR1/CAMTA3, a member of signal responsive transcription factors (TFs), functions both as a positive and a negative regulator of biotic stress responses and as a positive regulator of cold stress-induced gene expression. Using high throughput RNA-seq, we identified ~3000 SR1-regulated genes. Promoters of about 60% of the differentially expressed genes have a known DNA binding site for SR1, suggesting that they are likely direct targets. Gene ontology analysis of SR1-regulated genes confirmed previously known functions of SR1 and uncovered a potential role for this TF in salt stress. Our results showed that SR1 mutant is more tolerant to salt stress than the wild type and complemented line. Improved tolerance of sr1 seedlings to salt is accompanied with the induction of salt-responsive genes. Furthermore, ChIP-PCR results showed that SR1 binds to promoters of several salt-responsive genes. These results suggest that SR1 acts as a negative regulator of salt tolerance by directly repressing the expression of salt-responsive genes. Overall, this study identified SR1-regulated genes globally and uncovered a previously uncharacterized role for SR1 in salt stress response. PMID:27251464
Barth, M Benjamin; Buchwalder, Katja; Kawahara, Akito Y; Zhou, Xin; Liu, Shanlin; Krezdorn, Nicolas; Rotter, Björn; Horres, Ralf; Hundsdoerfer, Anna K
2018-01-01
The European spurge hawkmoth, Hyles euphorbiae (Lepidoptera, Sphingidae), has been intensively studied as a model organism for insect chemical ecology, cold hardiness and evolution of species delineation. To understand species isolation mechanisms at a molecular level, this study aims at determining genetic factors underlying two adaptive ecological trait candidates, phorbol ester (TPA) detoxification and seasonal cold acclimation. A draft transcriptome of H. euphorbiae was generated using Illumina sequencing, providing the first genomic resource for the hawkmoth subfamily Macroglossinae. RNA expression levels in tissues of experimental TPA feeding larvae and cooled pupae was compared to levels in control larvae and pupae using 26 bp RNA sequence tag libraries (DeepSuperSAGE). Differential gene expression was assessed by homology searches of the tags in the transcriptome. In total, 389 and 605 differentially expressed transcripts for detoxification and cold hardiness, respectively, could be identified and annotated with proteins. The majority (22 of 28) of differentially expressed detox transcripts of the four 'drug metabolism' enzyme groups (cytochrome P450 (CYP), carboxylesterases (CES), glutathione S-transferases (GST) and lipases) are up-regulated. Triacylglycerol lipase was significantly over proportionally annotated among up-regulated detox transcripts. We record several up-regulated lipases, GSTe2, two CESs, CYP9A21, CYP6BD6 and CYP9A17 as candidate genes for further H. euphorbiae TPA detoxification analyses. Differential gene expression of the cold acclimation treatment is marked by metabolic depression with enriched Gene Ontology terms among down-regulated transcripts almost exclusively comprising metabolism, aerobic respiration and dissimilative functions. Down-regulated transcripts include energy expensive respiratory proteins like NADH dehydrogenase, cytochrome oxidase and ATP synthase. Gene expression patterns show shifts in carbohydrate metabolism towards cryoprotectant production. The Glycolysis enzymes, G1Pase, A1e, Gpi and an Akr isoform are up-regulated. Glycerol, an osmolyte which lowers the body liquid supercooling point, appears to be the predominant polyol cryoprotectant in H. euphorbiae diapause pupae. Several protein candidates involved in glucose, glycerol, myo-inositol and potentially sorbitol and trehalose synthesis were identified. A majority of differently expressed transcripts unique for either detoxification or cold hardiness indicates highly specialized functional adaptation which may have evolved from general cell metabolism and stress response.The transcriptome and extracted candidate biomarkers provide a basis for further gene expression studies of physiological processes and adaptive traits in H. euphorbiae .
Qi, Yanxiang; Liu, Xiaomei; Pu, Jinji
2018-01-01
The NAC transcription factors involved plant development and response to various stress stimuli. However, little information is available concerning the NAC family in the woodland strawberry. Herein, 37 NAC genes were identified from the woodland strawberry genome and were classified into 13 groups based on phylogenetic analysis. And further analyses of gene structure and conserved motifs showed closer relationship of them in every subgroup. Quantitative real-time PCR evaluation different tissues revealed distinct spatial expression profiles of the FvNAC genes. The comprehensive expression of FvNAC genes revealed under abiotic stress (cold, heat, drought, salt), signal molecule treatments (H2O2, ABA, melatonin, rapamycin), biotic stress (Colletotrichum gloeosporioides and Ralstonia solanacearum). Expression profiles derived from quantitative real-time PCR suggested that 5 FvNAC genes responded dramatically to the various abiotic and biotic stresses, indicating their contribution to abiotic and biotic stresses resistance in woodland strawberry. Interestingly, FvNAC genes showed greater extent responded to the cold treatment than other abiotic stress, and H2O2 exhibited a greater response than ABA, melatonin, and rapamycin. For biotic stresses, 3 FvNAC genes were up-regulated during infection with C. gloeosporioides, while 6 FvNAC genes were down-regulated during infection with R. solanacearum. In conclusion, this study identified candidate FvNAC genes to be used for the genetic improvement of abiotic and biotic stress tolerance in woodland strawberry. PMID:29897926
Defour, Merel; Dijk, Wieneke; Ruppert, Philip; Nascimento, Emmani B M; Schrauwen, Patrick; Kersten, Sander
2018-04-01
Chronic cold exposure causes white adipose tissue (WAT) to adopt features of brown adipose tissue (BAT), a process known as browning. Previous studies have hinted at a possible role for the transcription factor Peroxisome Proliferator-Activated Receptor alpha (PPARα) in cold-induced browning. Here we aimed to investigate the importance of PPARα in driving transcriptional changes during cold-induced browning in mice. Male wildtype and PPARα-/- mice were housed at thermoneutrality (28 °C) or cold (5 °C) for 10 days. Whole genome expression analysis was performed on inguinal WAT. In addition, other analyses were carried out. Whole genome expression data of livers of wildtype and PPARα-/- mice fasted for 24 h served as positive control for PPARα-dependent gene regulation. Cold exposure increased food intake and decreased weight of BAT and WAT to a similar extent in wildtype and PPARα-/- mice. Except for plasma non-esterified fatty acids, none of the cold-induced changes in plasma metabolites were dependent on PPARα genotype. Histological analysis of inguinal WAT showed clear browning upon cold exposure but did not reveal any morphological differences between wildtype and PPARα-/- mice. Transcriptomics analysis of inguinal WAT showed a marked effect of cold on overall gene expression, as revealed by principle component analysis and hierarchical clustering. However, wildtype and PPARα-/- mice clustered together, even after cold exposure, indicating a similar overall gene expression profile in the two genotypes. Pathway analysis revealed that cold upregulated pathways involved in energy usage, oxidative phosphorylation, and fatty acid β-oxidation to a similar extent in wildtype and PPARα-/- mice. Furthermore, cold-mediated induction of genes related to thermogenesis such as Ucp1, Elovl3, Cox7a1, Cox8, and Cidea, as well as many PPAR target genes, was similar in wildtype and PPARα-/- mice. Finally, pharmacological PPARα activation had a minimal effect on expression of cold-induced genes in murine WAT. Cold-induced changes in gene expression in inguinal WAT are unaltered in mice lacking PPARα, indicating that PPARα is dispensable for cold-induced browning. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.).
Barrios, Abel; Caminero, Constantino; García, Pedro; Krezdorn, Nicolas; Hoffmeier, Klaus; Winter, Peter; Pérez de la Vega, Marcelino
2017-06-30
Frost is one of the main abiotic stresses limiting plant distribution and crop production. To cope with the stress, plants evolved adaptations known as cold acclimation or chilling tolerance to maximize frost tolerance. Cold acclimation is a progressive acquisition of freezing tolerance by plants subjected to low non-freezing temperatures which subsequently allows them to survive exposure to frost. Lentil is a cool season grain legume that is challenged by winter frost in some areas of its cultivation. To better understand the genetic base of frost tolerance differential gene expression in response to cold acclimation was investigated. Recombinant inbred lines (RILs) from the cross Precoz x WA8649041 were first classified as cold tolerant or cold susceptible according to their response to temperatures between -3 to -15 °C. Then, RILs from both extremes of the response curve were cold acclimated and the leaf transcriptomes of two bulks each of eight frost tolerant and seven cold susceptible RILs were investigated by Deep Super-SAGE transcriptome profiling. Thus, four RNA bulks were analysed: the acclimated susceptible, the acclimated tolerant and the respective controls (non-acclimated susceptible and non-acclimated tolerant). Approximately 16.5 million 26 nucleotide long Super-SAGE tags were sequenced in the four sets (between ~3 and 5.4 millions). In total, 133,077 different unitags, each representing a particular transcript isoform, were identified in these four sets. Tags which showed a significantly different abundance in any of the bulks (fold change ≥4.0 and a significant p-value <0.001) were selected and used to identify the corresponding lentil gene sequence. Three hundred of such lentil sequences were identified. Most of their known homologs coded for glycine-rich, cold and drought-regulated proteins, dormancy-associated proteins, proline-rich proteins (PRPs) and other membrane proteins. These were generally but not exclusively over-expressed in the acclimated tolerant lines. This set of candidate genes implicated in the response to frost in lentil represents an useful base for deeper and more detailed investigations into this important agronomic trait in future.
Genome-Wide Analysis of the Complex Transcriptional Networks of Rice Developing Seeds
Xue, Liang-Jiao; Zhang, Jing-Jing; Xue, Hong-Wei
2012-01-01
Background The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. Principal Findings Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. Conclusions These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed. PMID:22363552
The cold response of CBF genes in barley is regulated by distinct signaling mechanisms.
Marozsán-Tóth, Zsuzsa; Vashegyi, Ildikó; Galiba, Gábor; Tóth, Balázs
2015-06-01
Cold acclimation ability is crucial in the winter survival of cereals. In this process CBF transcription factors play key role, therefore understanding the regulation of these genes might provide useful knowledge for molecular breeding. In the present study the signal transduction pathways leading to the cold induction of different CBF genes were investigated in barley cv. Nure using pharmacological approach. Our results showed that the cold induced expression of CBF9 and CBF14 transcription factors is regulated by phospholipase C, phospholipase D pathways and calcium. On the contrary, these pathways have negative effect on the cold induction of CBF12 that is regulated by a different, as yet unidentified pathway. The diversity in the regulation of these transcription factors corresponds to their sequence based phylogenetic relationships suggesting that their evolutionary separation happened on structural, functional and regulational levels as well. On the CBF effector gene level, the signaling regulation is more complex, resultant effect of multiple pathways. Copyright © 2015 Elsevier GmbH. All rights reserved.
Cai, Wangting; Yang, Yaling; Wang, Weiwei; Guo, Guangyan; Liu, Wei; Bi, Caili
2018-03-01
The basic leucine zipper (bZIP) proteins play important roles against abiotic stress in plants, including cold stress. However, most bZIPs involved in plant freezing tolerance are positive regulators. Only a few bZIPs function negatively in cold stress response. In this study, TabZIP6, a Group C bZIP transcription factor gene from common wheat (Triticum aestivum L.), was cloned and characterized. The transcript of TabZIP6 was strongly induced by cold treatment (4 °C). TabZIP6 is a nuclear-localized protein with transcriptional activation activity. Arabidopsis plants overexpressing TabZIP6 showed decreased tolerance to freezing stress. Microarray as well as quantitative real-time PCR (qRT-PCR) analysis showed that CBFs and some key COR genes, including COR47 and COR15B, were down-regulated by cold treatment in TabZIP6-overexpressing Arabidopsis lines. TabZIP6 was capable of binding to the G-box motif and the CBF1 and CBF3 promoters in yeast cells. A yeast two-hybrid assay revealed that TabZIP6, as well as the other two Group S bZIP proteins involved in cold stress tolerance in wheat, Wlip19 and TaOBF1, can form homodimers by themselves and heterodimers with each other. These results suggest that TabZIP6 may function negatively in the cold stress response by binding to the promoters of CBFs, and thereby decreasing the expression of downstream COR genes in TabZIP6-overexpressing Arabidopsis seedlings. Copyright © 2018. Published by Elsevier Masson SAS.
Low Temperature Induction of Arabidopsis CBF1, 2, and 3 Is Gated by the Circadian Clock1
Fowler, Sarah G.; Cook, Daniel; Thomashow, Michael F.
2005-01-01
Exposing Arabidopsis (Arabidopsis thaliana) plants to low temperature results in rapid induction of CBF1, 2, and 3 (CBF1-3; also known as DREB1B, C, and A, respectively), which encode transcriptional activators that induce expression of a battery of genes that increase plant freezing and chilling tolerance. Recently, it has been shown that basal levels of CBF3 transcripts and those of certain CBF-regulated genes exhibit circadian cycling. Here, we further explored the regulation of CBF1-3 by the circadian clock. The results indicated that the extent to which CBF1-3 transcripts accumulated in response to low temperature was dependent on the time of day that the plants were exposed to low temperature and that this was regulated by the circadian clock. The highest and lowest levels of cold-induced CBF1-3 transcript accumulation occurred at 4 and 16 h after subjective dawn, respectively. An analysis of CBF2 promoter-reporter gene fusions indicated that this control included transcriptional regulation. In addition, the cold responsiveness of RAV1 and ZAT12, genes that are cold induced in parallel with CBF1-3, was also subject to circadian regulation. However, whereas the maximum level of cold-induced RAV1 transcript accumulation occurred at the same time of day as did CBF1-3 transcripts, that of ZAT12 was in reverse phase, i.e. the highest level of cold-induced ZAT12 transcript accumulation occurred 16 h after subjective dawn. These results indicate that cold-induced expression of CBF1-3, RAV1, and ZAT12 is gated by the circadian clock and suggest that this regulation likely occurs through at least two nonidentical (though potentially overlapping) signaling pathways. PMID:15728337
Sun, Mingzhe; Yang, Junkai; Cui, Na; Zhu, Yanming
2017-01-01
The PHD-finger family has been demonstrated to be involved in regulating plant growth and development. However, little information is given for its role in environmental stress responses. Here, we identified a total of 59 PHD family genes in the rice genome. These OsPHDs genes were located on eleven chromosomes and synteny analysis only revealed nine duplicated pairs within the rice PHD family. Phylogenetic analysis of all OsPHDs and PHDs from other species revealed that they could be grouped into two major clusters. Furthermore, OsPHDs were clustered into eight groups and members from different groups displayed a great divergence in terms of gene structure, functional domains and conserved motifs. We also found that with the exception of OsPHD6, all OsPHDs were expressed in at least one of the ten tested tissues and OsPHDs from certain groups were expressed in specific tissues. Moreover, our results also uncovered differential responses of OsPHDs expression to environmental stresses, including ABA (abscisic acid), water deficit, cold and high Cd. By using quantitative real-time PCR, we further confirmed the differential expression of OsPHDs under these stresses. OsPHD1/7/8/13/33 were differentially expressed under water deficit and Cd stresses, while OsPHD5/17 showed altered expression under water deficit and cold stresses. Moreover, OsPHD3/44/28 displayed differential expression under ABA and Cd stresses. In conclusion, our results provide valuable information on the rice PHD family in plant responses to environmental stress, which will be helpful for further characterizing their biological roles in responding to environmental stresses.
Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Yang, Tae-Jin; Hur, Yoonkang; Nou, Ill-Sup
2014-10-15
Flavonoids including anthocyanins provide flower and leaf colors, as well as other derivatives that play diverse roles in plant development and interactions with the environment. Dihydroflavonol 4-reductase (DFR) is part of an important step in the flavonoid biosynthetic pathway of anthocyanins. This study characterized 12 DFR genes of Brassica rapa and investigated their association with anthocyanin coloration, as well as cold and freezing stress in several genotypes of B. rapa. Comparison of sequences of these genes with DFR gene sequences from other species revealed a high degree of homology. Constitutive expression of the genes in several pigmented and non-pigmented lines of B. rapa demonstrated correlation with anthocyanin accumulation for BrDFR8 and 9. Conversely, BrDFR2, 4, 8 and 9 only showed very high responses to cold stress in pigmented B. rapa samples. BrDFR1, 3, 5, 6 and 10 responded to cold and freezing stress treatments, regardless of pigmentation. BrDFRs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold and freezing stress. Thus, the above results suggest that these genes are associated with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold and/or freezing stress resistant Brassica crops with desirable colors as well. These findings may also facilitate exploration of the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stresses. Copyright © 2014 Elsevier B.V. All rights reserved.
Host genetic variation influences gene expression response to rhinovirus infection.
Çalışkan, Minal; Baker, Samuel W; Gilad, Yoav; Ober, Carole
2015-04-01
Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.
Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei
2016-01-01
Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666
Rao, Rajesh R; Long, Jonathan Z; White, James P; Svensson, Katrin J; Lou, Jesse; Lokurkar, Isha; Jedrychowski, Mark P; Ruas, Jorge L; Wrann, Christiane D; Lo, James C; Camera, Donny M; Lachey, Jenn; Gygi, Steven; Seehra, Jasbir; Hawley, John A; Spiegelman, Bruce M
2014-06-05
Exercise training benefits many organ systems and offers protection against metabolic disorders such as obesity and diabetes. Using the recently identified isoform of PGC1-α (PGC1-α4) as a discovery tool, we report the identification of meteorin-like (Metrnl), a circulating factor that is induced in muscle after exercise and in adipose tissue upon cold exposure. Increasing circulating levels of Metrnl stimulates energy expenditure and improves glucose tolerance and the expression of genes associated with beige fat thermogenesis and anti-inflammatory cytokines. Metrnl stimulates an eosinophil-dependent increase in IL-4 expression and promotes alternative activation of adipose tissue macrophages, which are required for the increased expression of the thermogenic and anti-inflammatory gene programs in fat. Importantly, blocking Metrnl actions in vivo significantly attenuates chronic cold-exposure-induced alternative macrophage activation and thermogenic gene responses. Thus, Metrnl links host-adaptive responses to the regulation of energy homeostasis and tissue inflammation and has therapeutic potential for metabolic and inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Lili; Li, Zhenjun; Li, Jingfu; Wang, Aoxue
2013-01-01
The C-repeat (CRT)/dehydration-responsive element (DRE) binding factor (CBF/DREB1) transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1) was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193–228 (SsCBF1193–228). The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23755095
NASA Technical Reports Server (NTRS)
Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.
2002-01-01
Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.
Wathugala, Deepthi L; Hemsley, Piers A; Moffat, Caroline S; Cremelie, Pieter; Knight, Marc R; Knight, Heather
2012-07-01
• Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold- and drought-inducible gene expression and freezing- and osmotic-stress tolerance. Its identification as a component of the MEDIATOR transcriptional co-activator complex led us to address its involvement in other transcriptional responses. • Gene expression responses to Pseudomonas syringae, ultraviolet-C (UV-C) irradiation, salicylic acid (SA) and jasmonic acid (JA) were investigated in three sfr6 mutant alleles by quantitative real-time PCR and susceptibility to UV-C irradiation and Pseudomonas infection were assessed. • sfr6 mutants were more susceptible to both Pseudomonas syringae infection and UV-C irradiation. They exhibited correspondingly weaker PR (pathogenesis-related) gene expression than wild-type Arabidopsis following these treatments or after direct application of SA, involved in response to both UV-C and Pseudomonas infection. Other genes, however, were induced normally in the mutants by these treatments. sfr6 mutants were severely defective in expression of plant defensin genes in response to JA; ectopic expression of defensin genes was provoked in wild-type but not sfr6 by overexpression of ERF5. • SFR6/MED16 controls both SA- and JA-mediated defence gene expression and is necessary for tolerance of Pseudomonas syringae infection and UV-C irradiation. It is not, however, a universal regulator of stress gene transcription and is likely to mediate transcriptional activation of specific regulons only. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Carvallo, Marcela A; Pino, María-Teresa; Jeknic, Zoran; Zou, Cheng; Doherty, Colleen J; Shiu, Shin-Han; Chen, Tony H H; Thomashow, Michael F
2011-07-01
Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112-156 million years, it seems likely that these conserved cold-regulated genes-many of which encode transcription factors and proteins of unknown function-have fundamental roles in plant growth and development at low temperature.
Zolotarov, Yevgen; Strömvik, Martina
2015-01-01
Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved.
Transcriptomic insights into phenological development and cold tolerance of wheat grown in the field
USDA-ARS?s Scientific Manuscript database
Low temperature (LT) acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex LT responses are mostly conducted in controlled environments that only consider the responses to single environm...
Han, Zhaofen; Yu, Huimin; Zhao, Zhong; Hunter, David; Luo, Xinjuan; Duan, Jun; Tian, Lining
2016-01-01
The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.
Co-regulation analysis of co-expressed modules under cold and pathogen stress conditions in tomato.
Abedini, Davar; Rashidi Monfared, Sajad
2018-06-01
A primary mechanism for controlling the development of multicellular organisms is transcriptional regulation, which carried out by transcription factors (TFs) that recognize and bind to their binding sites on promoter region. The distance from translation start site, order, orientation, and spacing between cis elements are key factors in the concentration of active nuclear TFs and transcriptional regulation of target genes. In this study, overrepresented motifs in cold and pathogenesis responsive genes were scanned via Gibbs sampling method, this method is based on detection of overrepresented motifs by means of a stochastic optimization strategy that searches for all possible sets of short DNA segments. Then, identified motifs were checked by TRANSFAC, PLACE and Soft Berry databases in order to identify putative TFs which, interact to the motifs. Several cis/trans regulatory elements were found using these databases. Moreover, cross-talk between cold and pathogenesis responsive genes were confirmed. Statistical analysis was used to determine distribution of identified motifs on promoter region. In addition, co-regulation analysis results, illustrated genes in pathogenesis responsive module are divided into two main groups. Also, promoter region was crunched to six subareas in order to draw the pattern of distribution of motifs in promoter subareas. The result showed the majority of motifs are concentrated on 700 nucleotides upstream of the translational start site (ATG). In contrast, this result isn't true in another group. In other words, there was no difference between total and compartmentalized regions in cold responsive genes.
Sánchez, Edith; Fekete, Csaba; Lechan, Ronald M.; Joseph-Bravo, Patricia
2007-01-01
Neural stimuli, such as suckling or cold exposure, increase TRH mRNA in the paraventricular nucleus (PVN) of the rat hypothalamus, yet only suckling induces prolactin secretion. As TRH co-localizes with cocaine-and amphetamine-regulated transcript (CART) in hypophysiotropic neurons of the PVN, and CART inhibits TRH-induced prolactin release but not TRH-induced TSH release in adenohypophyseal cell cultures, we raised the possibility that differential regulation of CART gene expression in the PVN may explain the differences in prolactin secretion following each of the two stimuli. Primiparous female rats were mated and handled daily during the pre- and postpartum periods. After delivery, the litter was adjusted to 8 pups and at mid-lactation, dams were separated from their pups for 8 hours and exposed to either 1h of cold or 30 min of suckling. Long term effects of suckling were studied by separating pups from their mothers for 24h, followed by a 12h period of continuous suckling. Serum TSH levels increased in response to cold exposure, while prolactin levels were increased by suckling and diminished by cold exposure. CART mRNA levels increased in rostral and mid parts of the medial parvocellular PVN following cold exposure but not after suckling stimulation. These data demonstrate a differential regulation of CART gene expression in hypophysiotropic neurons in response to stimuli that increase TRH mRNA levels, and suggest that CART activation in the PVN may contribute to the decrease in PRL release when the thyroid axis is activated by cold exposure. Section: Regulatory systems PMID:17174283
Ergon, Åshild; Melby, Tone I.; Höglind, Mats; Rognli, Odd A.
2016-01-01
Plants adapted to cold winters go through annual cycles of gain followed by loss of freezing tolerance (cold acclimation and deacclimation). Warm spells during winter and early spring can cause deacclimation, and if temperatures drop, freezing damage may occur. Many plants are vernalized during winter, a process making them competent to flower in the following summer. In winter cereals, a coincidence in the timing of vernalization saturation, deacclimation, downregulation of cold-induced genes, and reduced ability to reacclimate, occurs under long photoperiods and is under control of the main regulator of vernalization requirement in cereals, VRN1, and/or closely linked gene(s). Thus, the probability of freezing damage after a warm spell may depend on both vernalization saturation and photoperiod. We investigated the role of vernalization and the VRN1-region on freezing tolerance of meadow fescue (Festuca pratensis Huds.), a perennial grass species. Two F2 populations, divergently selected for high and low vernalization requirement, were studied. Each genotype was characterized for the copy number of one of the four parental haplotypes of the VRN1-region. Clonal plants were cold acclimated for 2 weeks or vernalized/cold acclimated for a total of 9 weeks, after which the F2 populations reached different levels of vernalization saturation. Vernalized and cold acclimated plants were deacclimated for 1 week and then reacclimated for 2 weeks. All treatments were given at 8 h photoperiod. Flowering response, freezing tolerance and expression of the cold-induced genes VRN1, MADS3, CBF6, COR14B, CR7 (BLT14), LOS2, and IRI1 was measured. We found that some genotypes can lose some freezing tolerance after vernalization and a deacclimation–reacclimation cycle. The relationship between vernalization and freezing tolerance was complex. We found effects of the VRN1-region on freezing tolerance in plants cold acclimated for 2 weeks, timing of heading after 9 weeks of vernalization, expression of COR14B, CBF6, and LOS2 in vernalized and/or deacclimated treatments, and restoration of freezing tolerance during reacclimation. While expression of VRN1, COR14B, CBF6, LOS2, and IRI1 was correlated, CR7 was associated with vernalization requirement by other mechanisms, and appeared to play a role in freezing tolerance in reacclimated plants. PMID:26941767
Burbank, Lindsey P; Stenger, Drake C
2016-05-01
Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.
Arabidopsis ESK1 encodes a novel regulator of freezing tolerance.
Xin, Zhanguo; Mandaokar, Ajin; Chen, Junping; Last, Robert L; Browse, John
2007-03-01
The eskimo1 (esk1) mutation of Arabidopsis resulted in a 5.5 degrees C improvement in freezing tolerance in the absence of cold acclimation. Here we show that the increase in freezing tolerance is not associated with any increase in the ability to survive drought or salt stresses, which are similar to freezing in their induction of cellular dehydration. Genome-wide comparisons of gene expression between esk1-1 and wild type indicate that mutations at esk1 result in altered expression of transcription factors and signaling components and of a set of stress-responsive genes. Interestingly, the list of 312 genes regulated by ESK1 shows greater overlap with sets of genes regulated by salt, osmotic and abscisic acid treatments than with genes regulated by cold acclimation or by the transcription factors CBF3 and ICE1, which have been shown to control genetic pathways for freezing tolerance. Map-based cloning identified the esk1 locus as At3g55990. The wild-type ESK1 gene encodes a 57-kDa protein and is a member of a large gene family of DUF231 domain proteins whose members encode a total of 45 proteins of unknown function. Our results indicate that ESK1 is a novel negative regulator of cold acclimation. Mutations in the ESK1 gene provide strong freezing tolerance through genetic regulation that is apparently very different from previously described genetic mechanisms of cold acclimation.
Zhang, Rong-Xiang; Qin, Li-Jun; Zhao, De-Gang
2017-07-20
Inositol is a cyclic polyol that is involved in various physiological processes, including signal transduction and stress adaptation in plants. l- myo -inositol monophosphatase (IMPase) is one of the metal-dependent phosphatase family members and catalyzes the last reaction step of biosynthesis of inositol. Although increased IMPase activity induced by abiotic stress has been reported in chickpea plants, the role and regulation of the IMP gene in rice ( Oryza sativa L.) remains poorly understood. In the present work, we obtained a full-length cDNA sequence coding IMPase in the cold tolerant rice landraces in Gaogonggui, which is named as OsIMP . Multiple alignment results have displayed that this sequence has characteristic signature motifs and conserved enzyme active sites of the phosphatase super family. Phylogenetic analysis showed that IMPase is most closely related to that of the wild rice Oryza brachyantha , while transcript analysis revealed that the expression of the OsIMP is significantly induced by cold stress and exogenous abscisic acid (ABA) treatment. Meanwhile, we cloned the 5' flanking promoter sequence of the OsIMP gene and identified several important cis -acting elements, such as LTR (low-temperature responsiveness), TCA-element (salicylic acid responsiveness), ABRE-element (abscisic acid responsiveness), GARE-motif (gibberellin responsive), MBS (MYB Binding Site) and other cis -acting elements related to defense and stress responsiveness. To further investigate the potential function of the OsIMP gene, we generated transgenic tobacco plants overexpressing the OsIMP gene and the cold tolerance test indicated that these transgenic tobacco plants exhibit improved cold tolerance. Furthermore, transgenic tobacco plants have a lower level of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), and a higher content of total chlorophyll as well as increased antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), when compared to wild type (WT) tobacco plants under normal and cold stress conditions.
Zhou, Yuzhen; Li, Yushu; Zhuo, Xiaokang; Ahmad, Sagheer; Han, Yu; Yong, Xue; Zhang, Qixiang
2018-01-01
Plants facing the seasonal variations always need a growth restraining mechanism when temperatures turn down. C-repeat binding factor (CBF) genes work essentially in the cold perception. Despite lots of researches on CBFs, the multiple crosstalk is still interesting on their interaction with hormones and dormancy-associated MADS (DAM) genes in the growth and dormancy control. Therefore, this study highlights roles of PmCBFs in cold-induced dormancy from different orgens. And a sense-response relationship between PmCBFs and PmDAMs is exhibited in this process, jointly regulated by six PmCBFs and PmDAM4–6. Meantime, GA3 and ABA showed negative and positive correlation with PmCBFs expression levels, respectively. We also find a high correlation between IAA and PmDAM1–3. Finally, we display the interaction mode of PmCBFs and PmDAMs, especially PmCBF1-PmDAM1. These results can disclose another view of molecular mechanism in plant growth between cold-response pathway and dormancy regulation together with genes and hormones. PMID:29360732
Cold-induced ependymin expression in zebrafish and carp brain: implications for cold acclimation.
Tang, S J; Sun, K H; Sun, G H; Lin, G; Lin, W W; Chuang, M J
1999-10-01
Cold acclimation has been suggested to be mediated by alternations in the gene expression pattern in the cold-adapted fish. To investigate the mechanism of cold acclimation in fish brain at the molecular level, relevant subsets of differentially expressed genes of interest were identified and cloned by the PCR-based subtraction suppression hybridization. Characterization of the selected cold-induced cDNA clones revealed one encoding ependymin. This gene was shown to be brain-specific. The expression of ependymin was induced by a temperature shift from 25 degrees C to 6 degrees C in Cyprinus carpio or 12 degrees C in Danio rerio. Activation of ependymin was detected 2 h after cold exposure and peaked at more than 10-fold at 12 h. This peak level remains unchanged until the temperature returns to 25 degrees C. Although the amount of soluble ependymin protein in brain was not changed by cold treatment, its level in the fibrous insoluble polymers increased 2-fold after exposure to low temperature. These findings indicate that the increase in ependymin expression is an early event that may play an important role in the cold acclimation of fish.
Amini, Saeed; Maali-Amiri, Reza; Mohammadi, Rahmat; Kazemi-Shahandashti, Seyyedeh-Sanam
2017-02-01
We evaluated the effect of TiO 2 nanoparticles (NPs) on cold tolerance (CT) development in two chickpea (Cicer arietinum L.) genotypes (Sel96Th11439, cold tolerant, and ILC533, cold susceptible) by using cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique during the first and sixth days of cold stress (CS) at 4 °C. Selective amplification by primer combinations generated 4200 transcript-derived fragments (TDFs) while 100 of them (2.62%) were differentially expressed. During CS, 60 differentially expressed TDFs of TiO 2 NPs-treated plants were cloned and 10 of them produced successfully readable sequences. These data represented different groups of genes involved in metabolism pathways, cellular defense, cell connections and signaling, transcriptional regulation and chromatin architecture. Two out of 10 TDFs were unknown genes with uncharacterized functions or sequences without homology to known ones. The network-based analysis showed a gene-gene relationship in response to CS. Quantitative reverse-transcriptase polymerase chain reaction (qPCR) confirmed differential expression of identified genes (six out of 10 TDFs) with potential functions in CT and showed similar patterns with cDNA-AFLP results. An increase in transcription level of these TDFs, particularly on the first day of CS, was crucial for developing CT through decreasing electrolyte leakage index (ELI) content in tolerant plants compared to susceptible ones, as well as in TiO 2 NPs-treated plants compared to control ones. It could also indicate probable role of TiO 2 NPs against CS-induced oxidative stress. Therefore, a new application of TiO 2 NPs in CT development is suggested for preventing or controlling the damages in field conditions and increasing crop productivity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Zhang, Ning; Zhang, Lingran; Shi, Chaonan; Zhao, Lei; Cui, Dangqun; Chen, Feng
2018-05-25
Crops are often subjected to a combination of stresses in the field. To date, studies on the physiological and molecular responses of common wheat to a combination of osmotic and cold stresses, however, remain unknown. In this study, wheat seedlings exposed to osmotic-cold stress for 24 h showed inhibited growth, as well as increased lipid peroxidation, relative electrolyte leakage, and soluble sugar contents. iTRAQ-based quantitative proteome method was employed to determine the proteomic profiles of the roots and leaves of wheat seedlings exposed to osmotic-cold stress conditions. A total of 250 and 258 proteins with significantly altered abundance in the roots and leaves were identified, respectively, and the majority of these proteins displayed differential abundance, thereby revealing organ-specific differences in adaptation to osmotic-cold stress. Yeast two hybrid assay examined five pairs of stress/defense-related protein-protein interactions in the predicted protein interaction network. Furthermore, quantitative real-time PCR analysis indicated that abiotic stresses increased the expression of three candidate protein genes, i.e., TaGRP2, CDCP, and Wcor410c in wheat leaves. Virus-induced gene silencing indicated that three genes TaGRP2, CDCP, and Wcor410c were involved in modulating osmotic-cold stress in common wheat. Our study provides useful information for the elucidation of molecular and genetics bases of osmotic-cold combined stress in bread wheat.
Boutrand, Laetitia-Barbollat; Thépot, Amélie; Muther, Charlotte; Boher, Aurélie; Robic, Julie; Guéré, Christelle; Vié, Katell; Damour, Odile; Lamartine, Jérôme
2017-01-01
Human skin is subject to frequent changes in ambient temperature and humidity and needs to cope with these environmental modifications. To decipher the molecular response of human skin to repeated climatic change, a versatile model of skin equivalent subject to "hot-wet" (40°C, 80% relative humidity [RH]) or "cold-dry" (10°C, 40% RH) climatic stress repeated daily was used. To obtain an exhaustive view of the molecular mechanisms elicited by climatic change, large-scale gene expression DNA microarray analysis was performed and modulated function was determined by bioinformatic annotation. This analysis revealed several functions, including epidermal differentiation and extracellular matrix, impacted by repeated variations in climatic conditions. Some of these molecular changes were confirmed by histological examination and protein expression. Both treatments (hot-wet and cold-dry) reduced the expression of genes encoding collagens, laminin, and proteoglycans, suggesting a profound remodeling of the extracellular matrix. Strong induction of the entire family of late cornified envelope genes after cold-dry exposure, confirmed at protein level, was also observed. These changes correlated with an increase in epidermal differentiation markers such as corneodesmosin and a thickening of the stratum corneum, indicating possible implementation of defense mechanisms against dehydration. This study for the first time reveals the complex pattern of molecular response allowing adaption of human skin to repeated change in its climatic environment.
Shin, Hyunsuk; Oh, Youngjae; Kim, Daeil
2015-08-01
To boost our understanding of a recent outbreak of freezing injury, we sought to confirm distinctive features between the shoot tissues of the peach (Prunus persica) cultivars Daewol and Kiraranokiwami by mimicking unseasonable changes of temperatures that occur in the early spring through repeated deacclimation and reacclimation treatments. Patterns of cold hardiness declined dramatically during the deacclimation and rose during the reacclimation in both cultivars. Our results indicated that 'Daewol' possessed higher capacity in response to repeated deacclimation and reacclimation treatments than 'Kiraranokiwami'. 'Daewol' showed more sensitive changes in the carbohydrates in response to warm and low temperatures compared with 'Kiraranokiwami'. 'Daewol' indicated almost similar repeated down- and up-patterns in soluble sugar content in response to repeated deacclimation and reacclimation, whereas it indicated repeated up- and down-patterns in starch content. However, 'Kiraranokiwami' showed a progressive increase in the soluble sugar content and a progressive decrease in starch content. Notably, patterns of accumulation of a 60-kDa dehydrin protein encoded by the PpDhn1 gene were confirmed through western blotting and paralleled fluctuations of cold hardiness in both cultivars. Expression of this dehydrin was weak in both cultivars during deacclimation but its band intensity increased during reacclimation. Changes in related genes (β-amylase, PpDhn1, PpDhn2 and PpDhn3) were positively correlated with changes in cold hardiness throughout the experiment. Our results indicate that recent repeated warm periods may cause premature deacclimation in the early spring, and that more cold-tolerant cultivar may be more resilient to freezing injury caused by unstable temperature conditions. © 2014 Scandinavian Plant Physiology Society.
Changes in ABA and gene expression in cold-acclimated sugar maple.
Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R
1997-01-01
To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.
Pino, María-Teresa; Jeknić, Zoran; Zou, Cheng; Shiu, Shin-Han; Chen, Tony H. H.; Thomashow, Michael F.
2011-01-01
Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112–156 million years, it seems likely that these conserved cold-regulated genes—many of which encode transcription factors and proteins of unknown function—have fundamental roles in plant growth and development at low temperature. PMID:21511909
Liu, Hai-Yan; Dai, Jin-Ran; Feng, Dong-Ru; Liu, Bing; Wang, Hong-Bin; Wang, Jin-Fa
2010-03-01
Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack.
Priyanka, B; Sekhar, K; Sunita, T; Reddy, V D; Rao, Khareedu Venkateswara
2010-03-01
Pigeonpea, a major grain legume crop with remarkable drought tolerance traits, has been used for the isolation of stress-responsive genes. Herein, we report generation of ESTs, transcript profiles of selected genes and validation of candidate genes obtained from the subtracted cDNA libraries of pigeonpea plants subjected to PEG/water-deficit stress conditions. Cluster analysis of 124 selected ESTs yielded 75 high-quality ESTs. Homology searches disclosed that 55 ESTs share significant similarity with the known/putative proteins or ESTs available in the databases. These ESTs were characterized and genes relevant to the specific physiological processes were identified. Of the 75 ESTs obtained from the cDNA libraries of drought-stressed plants, 20 ESTs proved to be unique to the pigeonpea. These sequences are envisaged to serve as a potential source of stress-inducible genes of the drought stress-response transcriptome, and hence may be used for deciphering the mechanism of drought tolerance of the pigeonpea. Expression profiles of selected genes revealed increased levels of m-RNA transcripts in pigeonpea plants subjected to different abiotic stresses. Transgenic Arabidopsis lines, expressing Cajanus cajan hybrid-proline-rich protein (CcHyPRP), C. cajan cyclophilin (CcCYP) and C. cajan cold and drought regulatory (CcCDR) genes, exhibited marked tolerance, increased plant biomass and enhanced photosynthetic rates under PEG/NaCl/cold/heat stress conditions. This study represents the first report dealing with the isolation of drought-specific ESTs, transcriptome analysis and functional validation of drought-responsive genes of the pigeonpea. These genes, as such, hold promise for engineering crop plants bestowed with tolerance to major abiotic stresses.
Luo, Cong; He, Xin-Hua; Hu, Ying; Yu, Hai-xia; Ou, Shi-Jin; Fang, Zhong-Bin
2014-09-15
Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango. Copyright © 2014 Elsevier B.V. All rights reserved.
Tsutsui, Tomokazu; Kato, Wataru; Asada, Yutaka; Sako, Kaori; Sato, Takeo; Sonoda, Yutaka; Kidokoro, Satoshi; Yamaguchi-Shinozaki, Kazuko; Tamaoki, Masanori; Arakawa, Keita; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Shinozaki, Kazuo; Matsui, Minami; Ikeda, Akira; Yamaguchi, Junji
2009-11-01
Plants have evolved intricate mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses in their environment. The Arabidopsis DEAR1 (DREB and EAR motif protein 1; At3g50260) gene encodes a protein containing significant homology to the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) domain and the EAR (ethylene response factor-associated amphiphilic repression) motif. We show here that DEAR1 mRNA accumulates in response to both pathogen infection and cold treatment. Transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) showed a dwarf phenotype and lesion-like cell death, together with constitutive expression of PR genes and accumulation of salicylic acid. DEAR1ox also showed more limited P. syringae pathogen growth compared to wild-type, consistent with an activated defense phenotype. In addition, transient expression experiments revealed that the DEAR1 protein represses DRE/CRT (dehydration-responsive element/C-repeat)-dependent transcription, which is regulated by low temperature. Furthermore, the induction of DREB1/CBF family genes by cold treatment was suppressed in DEAR1ox, leading to a reduction in freezing tolerance. These results suggest that DEAR1 has an upstream regulatory role in mediating crosstalk between signaling pathways for biotic and abiotic stress responses.
Shen, Yingfang; Wu, Xiaopei; Liu, Demei; Song, Shengjing; Liu, Dengcai; Wang, Haiqing
2016-05-27
Histone methylation is an epigenetic modification mechanism that regulates gene expression in eukaryotic cells. Jumonji C domain-containing demethylases are involved in removal of methyl groups at lysine or arginine residues. The JmjC domain-only member, JMJ30/JMJD5 of Arabidopsis, is a component of the plant circadian clock. Although some plant circadian clock genes undergo alternative splicing in response to external cues, there is no evidence that JMJ30/JMJD5 is regulated by alternative splicing. In this study, the expression of an Arabidopsis JMJ30/JMJD5 ortholog in Medicago truncatula, MtJMJC5, in response to circadian clock and abiotic stresses were characterized. The results showed that MtJMJC5 oscillates with a circadian rhythm, and undergoes cold specifically induced alternative splicing. The cold-induced alternative splicing could be reversed after ambient temperature returning to the normal. Sequencing results revealed four alternative splicing RNA isoforms including a full-length authentic protein encoding variant, and three premature termination condon-containing variants due to alternative 3' splice sites at the first and second intron. Under cold treatment, the variants that share a common 3' alternative splicing site at the second intron were intensively up-regulated while the authentic protein encoding variant and the premature termination condon-containing variant only undergoing a 3' alternative splicing at the first intron were down regulated. Although all the premature termination condon-harboring alternative splicing variants were sensitive to nonsense-mediated decay, the premature termination codon-harboring alternative splicing variants sharing the 3' alternative splicing site at the second intron showed less sensitivity than the one only containing the 3' alternative slicing site at the first intron under cold treatment. These results suggest that the cold-dependent alternative splicing of MtJMJC5 is likely a species or genus-specific mechanism of gene expression regulation on RNA levels, and might play a role in epigenetic regulation of the link between the circadian clock and ambient temperature fluctuation in Medicago. Copyright © 2016 Elsevier Inc. All rights reserved.
Novák, Aliz; Boldizsár, Ákos; Ádám, Éva; Kozma-Bognár, László; Majláth, Imre; Båga, Monica; Tóth, Balázs; Chibbar, Ravindra; Galiba, Gábor
2016-03-01
C-repeat binding factor 14 (CBF14) is a plant transcription factor that regulates a set of cold-induced genes, contributing to enhanced frost tolerance during cold acclimation. Many CBF genes are induced by cool temperatures and regulated by day length and light quality, which affect the amount of accumulated freezing tolerance. Here we show that a low red to far-red ratio in white light enhances CBF14 expression and increases frost tolerance at 15°C in winter Triticum aesitivum and Hordeum vulgare genotypes, but not in T. monococcum (einkorn), which has a relatively low freezing tolerance. Low red to far-red ratio enhances the expression of PHYA in all three species, but induces PHYB expression only in einkorn. Based on our results, a model is proposed to illustrate the supposed positive effect of phytochrome A and the negative influence of phytochrome B on the enhancement of freezing tolerance in cereals in response to spectral changes of incident light. CBF-regulon, barley, cereals, cold acclimation, freezing tolerance, light regulation, low red/far-red ratio, phytochrome, wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Lovell, John T; Schwartz, Scott; Lowry, David B; Shakirov, Eugene V; Bonnette, Jason E; Weng, Xiaoyu; Wang, Mei; Johnson, Jenifer; Sreedasyam, Avinash; Plott, Christopher; Jenkins, Jerry; Schmutz, Jeremy; Juenger, Thomas E
2016-04-01
Climatic adaptation is an example of a genotype-by-environment interaction (G×E) of fitness. Selection upon gene expression regulatory variation can contribute to adaptive phenotypic diversity; however, surprisingly few studies have examined how genome-wide patterns of gene expression G×E are manifested in response to environmental stress and other selective agents that cause climatic adaptation. Here, we characterize drought-responsive expression divergence between upland (drought-adapted) and lowland (mesic) ecotypes of the perennial C4 grass,Panicum hallii, in natural field conditions. Overall, we find that cis-regulatory elements contributed to gene expression divergence across 47% of genes, 7.2% of which exhibit drought-responsive G×E. While less well-represented, we observe 1294 genes (7.8%) with transeffects.Trans-by-environment interactions are weaker and much less common than cis G×E, occurring in only 0.7% oft rans-regulated genes. Finally, gene expression heterosis is highly enriched in expression phenotypes with significant G×E. As such, modes of inheritance that drive heterosis, such as dominance or overdominance, may be common among G×E genes. Interestingly, motifs specific to drought-responsive transcription factors are highly enriched in the promoters of genes exhibiting G×E and transregulation, indicating that expression G×E and heterosis may result from the evolution of transcription factors or their binding sites.P. hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (Panicum virgatum). Accordingly, the results here not only aid in the discovery of the genetic mechanisms that underlie local adaptation but also provide a foundation to improve switchgrass yield under water-limited conditions. © 2016 Lovell et al.; Published by Cold Spring Harbor Laboratory Press.
Environmental perception and epigenetic memory: mechanistic insight through FLC
Berry, Scott; Dean, Caroline
2015-01-01
Chromatin plays a central role in orchestrating gene regulation at the transcriptional level. However, our understanding of how chromatin states are altered in response to environmental and developmental cues, and then maintained epigenetically over many cell divisions, remains poor. The floral repressor gene FLOWERING LOCUS C (FLC) in Arabidopsis thaliana is a useful system to address these questions. FLC is transcriptionally repressed during exposure to cold temperatures, allowing studies of how environmental conditions alter expression states at the chromatin level. FLC repression is also epigenetically maintained during subsequent development in warm conditions, so that exposure to cold may be remembered. This memory depends on molecular complexes that are highly conserved among eukaryotes, making FLC not only interesting as a paradigm for understanding biological decision-making in plants, but also an important system for elucidating chromatin-based gene regulation more generally. In this review, we summarize our understanding of how cold temperature induces a switch in the FLC chromatin state, and how this state is epigenetically remembered. We also discuss how the epigenetic state of FLC is reprogrammed in the seed to ensure a requirement for cold exposure in the next generation. Significance Statement FLOWERING LOCUS C (FLC) regulation provides a paradigm for understanding how chromatin can be modulated to determine gene expression in a developmental context. This review describes our current mechanistic understanding of how FLC expression is genetically specified and epigenetically regulated throughout the plant life cycle, and how this determines plant life-history strategy. PMID:25929799
A comparison of Frost expression among species and life stages of Drosophila.
Bing, X; Zhang, J; Sinclair, Brent J
2012-02-01
Frost (Fst) is a gene associated with cold exposure in Drosophila melanogaster. We used real-time PCR to assess whether cold exposure induces expression of Fst in 10 different life stages of D. melanogaster, and adults of seven other Drosophila species. We exposed groups of individuals to 0 °C (2 h), followed by 1 h recovery (22 °C). Frost was significantly upregulated in response to cold in eggs, third instar larvae, and 2- and 5-day-old male and female adults in D. melanogaster. Life stages in which cold did not upregulate Fst had high constitutive expression. Frost is located on the opposite strand of an intron of Diuretic hormone (DH), but cold exposure did not upregulate DH. Frost orthologues were identified in six other species within the Melanogaster group (Drosophila sechellia, Drosophila simulans, Drosophila yakuba, Drosophila erecta, Drosophila ananassae and Drosophila mauritiana). Frost orthologues were upregulated in response to cold exposure in both sexes in adults of all of these species. The predicted structure of a putative Frost consensus protein shows highly conserved tandem repeats of motifs involved in cell signalling (PEST and TRAF2), suggesting that Fst might encode an adaptor protein involved in acute stress or apoptosis signalling in vivo. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
Bai, Longqiang; Liu, Yumei; Mu, Ying; Anwar, Ali; He, Chaoxing; Yan, Yan; Li, Yansu; Yu, Xianchang
2018-01-01
Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of alpha (Gα), beta (Gβ), and gamma (Gγ) subunits are central signal transducers mediating the cellular response to multiple stimuli, such as cold, in eukaryotes. Plant Gγ subunits, divided into A, B, and C three structurally distinct types, provide proper cellular localization and functional specificity to the heterotrimer complex. Here, we demonstrate that a type C Gγ subunit CsGG3.2 is involved in the regulation of the CBF regulon and plant tolerance to cold stresses in cucumber (Cucumis sativus L.). We showed that CsGG3.2 transcript abundance was positively induced by cold treatments. Transgenic cucumber plants (T1) constitutively over-expressing CsGG3.2 exhibits tolerance to chilling conditions and increased expression of CBF genes and their regulon. Antioxidative enzymes, i.e., superoxide dismutase, catalase, peroxidase, and glutathione reductase activities increased in cold-stressed transgenic plants. The reactive oxygen species, oxygen free radical and H2O2, production, as well as membrane lipid peroxidation (MDA) production decreased in transgenic plants, suggesting a better antioxidant system to cope the oxidative-damages caused by cold stress. These findings provide evidence for a critical role of CsGG3.2 in mediating cold signal transduction in plant cells. PMID:29719547
Wang, Yi; Hua, Jian
2009-10-01
Temperature has a profound effect on plant growth and development. However, the molecular mechanisms underlying this regulation are not well understood. In particular, how moderate temperature variations are perceived and transduced inside the plant cells remains obscure. In this study, we analyzed transcriptional responses to a moderate decrease in temperature (cooling) in Arabidopsis thaliana. The cooling response involves a weaker and more transient induction of cold-induced genes, such as COR15a, than cold response. This induction probably accounts for the increase in freezing tolerance by cooling acclimation. Cooling also induces some defense response genes, and their induction, but not that of COR15a, requires the salicylic acid signaling pathway. Analysis of the regulation of COR15a reveals that cooling induction is mediated through the same C repeat/dehydration-responsive (CRT/DRE) element as cold induction. Furthermore, we identified a role for CBF1 and CBF4 in transducing signals of moderate decreases in temperature. It appears that variants of the CBF signaling cascade are utilized in cold and cooling responses, and a moderate decrease in temperature may invoke an adaptive response to prepare plants to cope with a more drastic decrease in temperature.
Hu, Pingsha; Maiti, Tapabrata
2011-01-01
Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request.
Hu, Pingsha; Maiti, Tapabrata
2011-01-01
Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request. PMID:21611181
Lee, Jun Hyung; Yu, Duk Jun; Kim, Su Jin; Choi, Doil; Lee, Hee Jae
2012-12-01
Changes in cold hardiness, carbohydrate content and β-amylase gene expression were monitored in the shoots of the highbush blueberry (Vaccinium corymbosum L.) cultivars 'Sharpblue' and 'Jersey' during cold acclimation (CA) and deacclimation (DA). The seasonal patterns were similar in both cultivars, but the levels of cold hardiness determined by electrolyte leakage analysis were significantly different; 'Jersey' was hardier than 'Sharpblue'. Cold hardiness was closely related to total soluble sugar content (r = -0.98** and -0.99** for 'Sharpblue' and 'Jersey', respectively). In 'Jersey', more soluble sugars accumulated during CA. Of the detected soluble sugars, glucose, fructose and raffinose contents were significantly associated with cold hardiness in both cultivars. Sucrose was abundant in both cultivars, and stachyose content changed significantly during CA and DA. However, they were not associated with cold hardiness. A sharp decrease in starch contents in the middle of CA coincided with β-amylase gene (VcBMY) expression, indicating the conversion of starch into soluble sugars. During CA, VcBMY was expressed up to twofold higher in 'Jersey' than in 'Sharpblue'. These results suggest that intraspecies differences in the cold hardiness of highbush blueberries are associated with total soluble sugar content, which is driven partly by differential expression of VcBMY.
Hall, Jennifer R; Clow, Kathy A; Rise, Matthew L; Driedzic, William R
2015-09-01
Aquaglyceroporins (GLPs) are integral membrane proteins that facilitate passive movement of water, glycerol and urea across cellular membranes. In this study, GLP-encoding genes were characterized in rainbow smelt (Osmerus mordax mordax), an anadromous teleost that accumulates high glycerol and modest urea levels in plasma and tissues as an adaptive cryoprotectant mechanism in sub-zero temperatures. We report the gene and promoter sequences for two aqp10b paralogs (aqp10ba, aqp10bb) that are 82% identical at the predicted amino acid level, and aqp9b. Aqp10bb and aqp9b have the 6 exon structure common to vertebrate GLPs. Aqp10ba has 8 exons; there are two additional exons at the 5' end, and the promoter sequence is different from aqp10bb. Molecular phylogenetic analysis suggests that the aqp10b paralogs arose from a gene duplication event specific to the smelt lineage. Smelt GLP transcripts are ubiquitously expressed; however, aqp10ba transcripts were highest in kidney, aqp10bb transcripts were highest in kidney, intestine, pyloric caeca and brain, and aqp9b transcripts were highest in spleen, liver, red blood cells and kidney. In cold-temperature challenge experiments, plasma glycerol and urea levels were significantly higher in cold- compared to warm-acclimated smelt; however, GLP transcript levels were generally either significantly lower or remained constant. The exception was significantly higher aqp10ba transcript levels in kidney. High aqp10ba transcripts in smelt kidney that increase significantly in response to cold temperature in congruence with plasma urea suggest that this gene duplicate may have evolved to allow the re-absorption of urea to concomitantly conserve nitrogen and prevent freezing. Copyright © 2015 Elsevier Inc. All rights reserved.
Beta(3)-adrenergic signaling acutely down regulates adipose triglyceride lipase in brown adipocytes.
Deiuliis, Jeffrey A; Liu, Li-Fen; Belury, Martha A; Rim, Jong S; Shin, Sangsu; Lee, Kichoon
2010-06-01
Mice exposed to cold rely upon brown adipose tissue (BAT)-mediated nonshivering thermogenesis to generate body heat using dietary glucose and lipids from the liver and white adipose tissue. In this report, we investigate how cold exposure affects the PI3 K/Akt signaling cascade and the expression of genes involved in lipid metabolism and trafficking in BAT. Cold exposure at an early time point led to the activation of the PI3 K/Akt, insulin-like signaling cascade followed by a transient decrease in adipose triglyceride lipase (ATGL) gene and protein expression in BAT. To further investigate how cold exposure-induced signaling altered ATGL expression, cultured primary brown adipocytes were treated with the beta(3)-adrenergic receptor (beta(3)AR) agonist CL 316,243 (CL) resulting in activation of PI3 K/Akt, ERK 1/2, and p38 signaling pathways and significantly decreased ATGL protein levels. ATGL protein levels decreased significantly 30 min post CL treatment suggesting protein degradation. Inhibition of PKA signaling by H89 rescued ATGL levels. The effects of PKA signaling on ATGL were shown to be independent of relevant pathways downstream of PKA such as PI3 K/Akt, ERK 1/2, and p38. However, CL treatment in 3T3-L1 adipocytes did not decrease ATGL protein and mRNA expression, suggesting a distinct response in WAT to beta3-adrenergic agonism. Transitory effects, possibly attributed to acute Akt activation during the early recruitment phase, were noted as well as stable changes in gene expression which may be attributed to beta3-adrenergic signaling in BAT.
Schneeberger, Stefan; Amberger, Albert; Mandl, Julia; Hautz, Theresa; Renz, Oliver; Obrist, Peter; Meusburger, Hugo; Brandacher, Gerald; Mark, Walter; Strobl, Daniela; Troppmair, Jakob; Pratschke, Johann; Margreiter, Raimund; Kuznetsov, Andrey V
2010-12-01
Chronic rejection (CR) remains an unsolved hurdle for long-term heart transplant survival. The effect of cold ischemia (CI) on progression of CR and the mechanisms resulting in functional deficit were investigated by studying gene expression, mitochondrial function, and enzymatic activity. Allogeneic (Lew→F344) and syngeneic (Lew→Lew) heart transplantations were performed with or without 10 h of CI. After evaluation of myocardial contraction, hearts were excised at 2, 10, 40, and 60 days for investigation of vasculopathy, gene expression, enzymatic activities, and mitochondrial respiration. Gene expression studies identified a gene cluster coding for subunits of the mitochondrial electron transport chain regulated in response to CI and CR. Myocardial performance, mitochondrial function, and mitochondrial marker enzyme activities declined in all allografts with time after transplantation. These declines were more rapid and severe in CI allografts (CR-CI) and correlated well with progression of vasculopathy and fibrosis. Mitochondria related gene expression and mitochondrial function are substantially compromised with the progression of CR and show that CI impacts on progression, gene profile, and mitochondrial function of CR. Monitoring mitochondrial function and enzyme activity might allow for earlier detection of CR and cardiac allograft dysfunction. © 2010 The Authors. Journal compilation © 2010 European Society for Organ Transplantation.
Yokota, Hirokazu; Iehisa, Julio C M; Shimosaka, Etsuo; Takumi, Shigeo
2015-03-15
In common wheat, cultivar differences in freezing tolerance are considered to be mainly due to allelic differences at two major loci controlling freezing tolerance. One of the two loci, Fr-2, is coincident with a cluster of genes encoding C-repeat binding factors (CBFs), which induce downstream Cor/Lea genes during cold acclimation. Here, we conducted microarray analysis to study comprehensive changes in gene expression profile under long-term low-temperature (LT) treatment and to identify other LT-responsive genes related to cold acclimation in leaves of seedlings and crown tissues of a synthetic hexaploid wheat line. The microarray analysis revealed marked up-regulation of a number of Cor/Lea genes and fructan biosynthesis-related genes under the long-term LT treatment. For validation of the microarray data, we selected four synthetic wheat lines that contain the A and B genomes from the tetraploid wheat cultivar Langdon and the diverse D genomes originating from different Aegilops tauschii accessions with distinct levels of freezing tolerance after cold acclimation. Quantitative RT-PCR showed increased transcript levels of the Cor/Lea, CBF, and fructan biosynthesis-related genes in more freezing-tolerant lines than in sensitive lines. After a 14-day LT treatment, a significant difference in fructan accumulation was observed among the four lines. Therefore, the fructan biosynthetic pathway is associated with cold acclimation in development of wheat freezing tolerance and is another pathway related to diversity in freezing tolerance, in addition to the CBF-mediated Cor/Lea expression pathway. Copyright © 2014 Elsevier GmbH. All rights reserved.
Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp
Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli
2016-01-01
In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015
McCoy, Eric S.; Taylor-Blake, Bonnie; Street, Sarah E.; Pribisko, Alaine L.; Zheng, Jihong; Zylka, Mark J.
2013-01-01
SUMMARY Calcitonin gene-related peptide (CGRP) is a classic molecular marker of peptidergic primary somatosensory neurons. Despite years of research, it is unknown if these neurons are required to sense pain or other sensory stimuli. Here, we found that genetic ablation of CGRPα-expressing sensory neurons reduced sensitivity to noxious heat, capsaicin and itch (histamine and chloroquine) and impaired thermoregulation but did not impair mechanosensation or β-alanine itch—stimuli associated with nonpeptidergic sensory neurons. Unexpectedly, ablation enhanced behavioral responses to cold stimuli and cold mimetics without altering peripheral nerve responses to cooling. Mechanistically, ablation reduced tonic and evoked activity in postsynaptic spinal neurons associated with TRPV1/heat, while profoundly increasing tonic and evoked activity in spinal neurons associated with TRPM8/cold. Our data reveal that CGRPα sensory neurons encode heat and itch and tonically cross-inhibit cold-responsive spinal neurons. Disruption of this crosstalk unmasks cold hypersensitivity, with mechanistic implications for neuropathic pain and temperature perception. PMID:23523592
Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R
2005-09-01
We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.
D'Angeli, Simone; Matteucci, Maya; Fattorini, Laura; Gismondi, Angelo; Ludovici, Matteo; Canini, Antonella; Altamura, Maria Maddalena
2016-05-01
Cold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation. Positive relationships between OeFAD8, OeOSM , and OeLIP19 and olive-tree cold-acclimation exist, and couple with increased lipid unsaturation and cutinisation. Olive-tree is a woody species with no winter-dormancy and low frost-tolerance. However, cold-tolerant genotypes were empirically selected, highlighting that cold-acclimation might be acquired. Proteins needed for olive-tree cold-acclimation are unknown, even if roles for osmotin (OeOSM) as leaf cryoprotectant, and seed lipid-transfer protein for endosperm cutinisation under cold, were demonstrated. In other species, FAD8, coding a desaturase producing α-linolenic acid, is activated by temperature-lowering, concomitantly with bZIP-LIP19 genes. The research was focussed on finding OeLIP19 gene(s) in olive-tree genome, and analyze it/their expression, and that of OeFAD8 and OeOSM, in drupes and leaves under different cold-conditions/developmental stages/genotypes, in comparison with changes in unsaturated lipids and cell wall cutinisation. Cold-induced cytosolic calcium transients always occurred in leaves/drupes of some genotypes, e.g., Moraiolo, but ceased in others, e.g., Canino, at specific drupe stages/cold-treatments, suggesting cold-acclimation acquisition only in the latter genotypes. Canino and Moraiolo were selected for further analyses. Cold-acclimation in Canino was confirmed by an electrolyte leakage from leaf/drupe membranes highly reduced in comparison with Moraiolo. Strong increases in fruit-epicarp/leaf-epidermis cutinisation characterized cold-acclimated Canino, and positively coupled with OeOSM expression, and immunolocalization of the coded protein. OeFAD8 expression increased with cold-acclimation, as the production of α-linolenic acid, and related compounds. An OeLIP19 gene was isolated. Its levels changed with a trend similar to OeFAD8. All together, results sustain a positive relationship between OeFAD8, OeOSM and OeLIP19 expression in olive-tree cold-acclimation. The parallel changes in unsaturated lipids and cutinisation concur to suggest orchestrated roles of the coded proteins in the process.
Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu
2013-08-01
The inducer of cbf expression (ICE)-C-repeat binding factor/DRE binding factor1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several jasmonate ZIM-domain (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance.
Ezaki, Bunichi; Suzuki, Masakatsu; Motoda, Hirotoshi; Kawamura, Masako; Nakashima, Susumu; Matsumoto, Hideaki
2004-01-01
The gene expression of two Al-induced Arabidopsis glutathione S-transferase genes, AtGST1 and AtGST11, was analyzed to investigate the mechanism underlying the response to Al stress. An approximately 1-kb DNA fragment of the 5′-upstream region of each gene was fused to a β-glucuronidase (GUS) reporter gene (pAtGST1::GUS and pAtGST11::GUS) and introduced into Arabidopsis ecotype Landsberg erecta. The constructed transgenic lines showed a time-dependent gene expression to a different degree in the root and/or leaf by Al stress. The pAtGST1::GUS gene was induced after a short Al treatment (maximum expression after a 2-h exposure), while the pAtGST11::GUS gene was induced by a longer Al treatment (approximately 8 h for maximum expression). Since the gene expression was observed in the leaf when only the root was exposed to Al stress, a signaling system between the root and shoot was suggested in Al stress. A GUS staining experiment using an adult transgenic line carrying the pAtGST11::GUS gene supported this suggestion. Furthermore, Al treatment simultaneously with various Ca depleted conditions in root region enhanced the gene expression of the pAtGST11::GUS in the shoot region. This result suggested that the degree of Al toxicity in the root reflects the gene response of pAtGST11::GUS in the shoot via the deduced signaling system. Both transgenic lines also showed an increase of GUS activity after cold stress, heat stress, metal toxicity, and oxidative damages, suggesting a common induction mechanism in response to the tested stresses including Al stress. PMID:15047894
Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit.
Luo, Dong-Lan; Ba, Liang-Jie; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye
2017-05-10
Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Lin, Yi; Zhang, Xue-Ying; Wang, De-Hua
2015-06-01
Cold commonly affects growth and reproductive development in small mammals. Here, we test the hypothesis that low ambient temperature will affect growth and puberty onset, associated with altered hypothalamic Kiss-1 gene expression and serum leptin concentration in wild rodents. Male Brandt's voles ( Lasiopodomys brandtii) were exposed to cold (4 ± 1 °C) and warm (23 ± 1 °C) conditions from the birth and sacrificed on different developmental stages (day 26, day 40, day 60, and day 90, respectively). Brandt's voles increased the thermogenic capacity of brown adipose tissue, mobilized body fat, decreased serum leptin levels, and delayed the reproductive development especially on day 40 in the cold condition. They increased food intake to compensate for the high energy demands in the cold. The hypothalamic Kiss-1 gene expression on day 26 was decreased, associated with lower wet testis mass and testis testosterone concentration on day 40, in the cold-exposed voles compared to that in the warm. Serum leptin was positively correlated with body fat, testis mass, and testosterone concentration. These data suggested that cold exposure inhibited hypothalamic Kiss-1 gene expression during the early stage of development, decreased serum leptin concentration, and delayed reproductive development in male Brandt's voles.
Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica.
Liang, Dong; Xia, Hui; Wu, Shan; Ma, Fengwang
2012-12-01
The family of dehydrin genes has important roles in protecting higher plants against abiotic stress, such as drought, salinity and cold. However, knowledge about apple dehydrin gene family is limited. In the present study, we used a bioinformatics approach to identify members of that family in apple (Malus domestica). A total of 12 apple dehydrin genes (MdDHNs) were identified and located on various chromosomes. All putative proteins from those genes contained a typical K domain. Among 12 MdDHNs, nine were cloned and their expression patterns were investigated. Expression profiling indicated that the these nine dehydrin genes display differential expression patterns in various tissues. Moreover, transcript levels of some MdDHNs were up-regulated significantly under drought, low temperature, or ABA treatment, which indicated their important roles during stress adaptation. These results demonstrate that the apple dehydrin gene family may function in tissue development and plant stress responses.
Xu, Kai; Niu, Qingsheng; Zhao, Huiting; Du, Yali; Jiang, Yusuo
2017-01-01
The biological activity and geographical distribution of honey bees is strongly temperature-dependent, due to their ectothermic physiology. In China, the endemic Apis cerana cerana exhibits stronger cold hardiness than Western honey bees, making the former species important pollinators of winter-flowering plants. Although studies have examined behavioral and physiological mechanisms underlying cold resistance in bees, data are scarce regarding the exact molecular mechanisms. Here, we investigated gene expression in A. c. cerana under two temperature treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs) and relevant biological processes, respectively. Across the temperature treatments, 501 DEGs were identified. A gene ontology analysis showed that DEGs were enriched in pathways related to sugar and amino acid biosynthesis and metabolism, as well as calcium ion channel activity. Additionally, heat shock proteins, zinc finger proteins, and serine/threonine-protein kinases were differentially expressed between the two treatments. The results of this study provide a general digital expression profile of thermoregulation genes responding to cold hardiness in A. c. cerana. Our data should prove valuable for future research on cold tolerance mechanisms in insects, and may be beneficial in breeding efforts to improve bee hardiness.
Yue, Runqing; Lu, Caixia; Sun, Tao; Peng, Tingting; Han, Xiaohua; Qi, Jianshuang; Yan, Shufeng; Tie, Shuanggui
2015-01-01
The calmodulin-binding transcription activators (CAMTA) play critical roles in plant growth and responses to environmental stimuli. However, how CAMTAs function in responses to abiotic and biotic stresses in maize (Zea mays L.) is largely unknown. In this study, we first identified all the CAMTA homologous genes in the whole genome of maize. The results showed that nine ZmCAMTA genes showed highly diversified gene structures and tissue-specific expression patterns. Many ZmCAMTA genes displayed high expression levels in the roots. We then surveyed the distribution of stress-related cis-regulatory elements in the −1.5 kb promoter regions of ZmCAMTA genes. Notably, a large number of stress-related elements present in the promoter regions of some ZmCAMTA genes, indicating a genetic basis of stress expression regulation of these genes. Quantitative real-time PCR was used to test the expression of ZmCAMTA genes under several abiotic stresses (drought, salt, and cold), various stress-related hormones [abscisic acid, auxin, salicylic acid (SA), and jasmonic acid] and biotic stress [rice black-streaked dwarf virus (RBSDV) infection]. Furthermore, the expression pattern of ZmCAMTA genes under RBSDV infection was analyzed to investigate their potential roles in responses of different maize cultivated varieties to RBSDV. The expression of most ZmCAMTA genes responded to both abiotic and biotic stresses. The data will help us to understand the roles of CAMTA-mediated Ca2+ signaling in maize tolerance to environmental stresses. PMID:26284092
Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.
The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species ( G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes ( FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes ( FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. These data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.« less
Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium
Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; ...
2014-11-18
The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species ( G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes ( FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes ( FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. These data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.« less
Teets, Nicholas M; Kawarasaki, Yuta; Lee, Richard E; Denlinger, David L
2013-02-01
The Antarctic midge, Belgica antarctica, experiences sub-zero temperatures and desiccating conditions for much of the year, and in response to these environmental insults, larvae undergo rapid shifts in metabolism, mobilizing carbohydrate energy reserves to promote synthesis of low-molecular-mass osmoprotectants. In this study, we measured the expression of 11 metabolic genes in response to thermal and dehydration stress. During both heat and cold stress, we observed upregulation of phosphoenolpyruvate carboxykinase (pepck) and glycogen phosphorylase (gp) to support rapid glucose mobilization. In contrast, there was a general downregulation of pathways related to polyol, trehalose, and proline synthesis during both high- and low-temperature stress. Pepck was likewise upregulated in response to different types of dehydration stress; however, for many of the other genes, expression patterns depended on the nature of dehydration stress. Following fast dehydration, expression patterns were similar to those observed during thermal stress, i.e., upregulation of gp accompanied by downregulation of trehalose and proline synthetic genes. In contrast, gradual, prolonged dehydration (both at a constant temperature and in conjunction with chilling) promoted marked upregulation of genes responsible for trehalose and proline synthesis. On the whole, our data agree with known metabolic adaptations to stress in B. antarctica, although a few discrepancies between gene expression patterns and downstream metabolite contents point to fluxes that are not controlled at the level of transcription.
Wang, Feng; Hou, Xilin; Tang, Jun; Wang, Zhen; Wang, Shuming; Jiang, Fangling; Li, Ying
2012-04-01
WRKY TFs belong to one of the largest families of transcriptional regulators in plants and form integral parts of signaling webs that modulate many plant processes. BcWRKY46, a cDNA clone encoding a polypeptide of 284 amino acids and exhibited the structural features of group III of WRKY protein family, was isolated from the cold-treated leaves of Pak-choi (Brassica campestris ssp. chinensis Makino, syn. B. rapa ssp. chinensis) using the cDNA-AFLP technique. Expression of this gene was induced quickly and strongly in response to various environmental stresses, including low temperatures, ABA, salt and dehydration. Constitutive expression of BcWRKY46 in tobacco under the control of the CaMV35S promoter reduced the susceptibility of transgenic tobacco to freezing, ABA, salt and dehydration stresses. Our studies suggest that BcWRKY46 plays an important role in responding to ABA and abiotic stress.
Huda, Kazi Md Kamrul; Banu, Mst Sufara Akhter; Pathi, Krishna Mohan; Tuteja, Narendra
2013-01-01
Plasma membrane Ca(2+)ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+)) from the cell, hence regulating Ca(2+) level within cells. Though plant Ca(2+)ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. The 1478 bp promoter sequence of rice plasma membrane Ca(2+)ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+)ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. The rice plasma membrane Ca(2+)ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible nature of this promoter could grant wide applicability in plant biotechnology.
Miladi, Hanene; Elabed, Hamouda; Ben Slama, Rihab; Rhim, Amel; Bakhrouf, Amina
2017-03-01
Listeria monocytogenes is a food-borne pathogen of humans and other animals. The striking ability to survive several stresses usually used for food preservation makes L. monocytogenes one of the biggest concerns to the food industry. This ubiquity can be partly explained by the ability of the organism to grow and persist at very low temperatures, a consequence of its ability to accumulate cryoprotective compound called osmolytes. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the stress response genes opuCA and betL (encoding carnitine and betaine transporters, respectively) and the housekeeping gene 16S rRNA. Assays were conducted on mid-exponential phase L. monocytogenes cells exposed to conditions reflecting cold and freezing stress, conditions usually used to preserve foods. We showed that expression of the two cold-adapted genes encoded the transporters of the cryoprotectants carnitine and betaine in ATCC 19115 and the food-isolated L. monocytogenes S1 is induced after cold and freezing stress exposure. Furthermore, transcriptional analysis of the genes encoding opuCA and betL revealed that each transporter is induced to different degrees upon cold shock of L. monocytogenes ATCC 19115 and S1. Our results confirm an increase in carnitine uptake at low temperatures more than in betaine after cold-shocked temperature compared to the non-stress control treatment. It was concluded the use of carnitine and betaine as cryoprotectants is essential for rapid induction of the tested stress response under conditions typically encountered during food preservation.
Shah, Jigna; Desai, Prerak T.; Chen, Dong; Stevens, John R.
2013-01-01
Salmonella is an important cause of bacterial food-borne gastroenteritis. Salmonella encounters multiple abiotic stresses during pathogen elimination methods used in food processing, and these stresses may influence its subsequent survivability within the host or in the environment. Upon ingestion, Salmonella is exposed to gastrointestinal acidity, a first line of the host innate defense system. This study tested the hypothesis that abiotic stresses encountered during food processing alter the metabolic mechanisms in Salmonella that enable survival and persistence during subsequent exposure to the host gastrointestinal acidic environment. Out of the four different abiotic stresses tested, viz., cold, peroxide, osmotic, and acid, preadaptation of the log-phase culture to cold stress (5°C for 5 h) significantly enhanced survival during subsequent acid stress (pH 4.0 for 90 min). The gene expression profile of Salmonella preadapted to cold stress revealed induction of multiple genes associated with amino acid metabolism, oxidative stress, and DNA repair, while only a few of the genes in the above-mentioned stress response and repair pathways were induced upon exposure to acid stress alone. Preadaptation to cold stress decreased the NAD+/NADH ratio and hydroxyl (OH·) radical formation compared with those achieved with the exposure to acid stress alone, indicating alteration of aerobic respiration and the oxidative state of the bacteria. The results from this study suggest that preadaptation to cold stress rescues Salmonella from the deleterious effect of subsequent acid stress exposure by induction of genes involved in stress response and repair pathways, by modification of aerobic respiration, and by redox modulation. PMID:24056458
NASA Astrophysics Data System (ADS)
Malmendal, Anders; Sørensen, Jesper Givskov; Overgaard, Johannes; Holmstrup, Martin; Nielsen, Niels Chr.; Loeschcke, Volker
2013-05-01
We investigated the global metabolite response to artificial selection for tolerance to stressful conditions such as cold, heat, starvation, and desiccation, and for longevity in Drosophila melanogaster. Our findings were compared to data from other levels of biological organization, including gene expression, physiological traits, and organismal stress tolerance phenotype. Overall, we found that selection for environmental stress tolerance changes the metabolomic 1H NMR fingerprint largely in a similar manner independent of the trait selected for, indicating that experimental evolution led to a general stress selection response at the metabolomic level. Integrative analyses across data sets showed little similarity when general correlations between selection effects at the level of the metabolome and gene expression were compared. This is likely due to the fact that the changes caused by these selection regimes were rather mild and/or that the dominating determinants for gene expression and metabolite levels were different. However, expression of a number of genes was correlated with the metabolite data. Many of the identified genes were general stress response genes that are down-regulated in response to selection for some of the stresses in this study. Overall, the results illustrate that selection markedly alters the metabolite profile and that the coupling between different levels of biological organization indeed is present though not very strong for stress selection at this level. The results highlight the extreme complexity of environmental stress adaptation and the difficulty of extrapolating and interpreting responses across levels of biological organization.
Nguyen, Hong C; Cao, Phi B; San Clemente, Hélène; Ployet, Raphaël; Mounet, Fabien; Ladouce, Nathalie; Harvengt, Luc; Marque, Christiane; Teulieres, Chantal
2017-04-01
Annotation of the Eucalyptus grandis genome showed a large amplification of the dehydration-responsive element binding 1/C-repeat binding factor (DREB1/CBF) group without recent DREB2 gene duplication compared with other plant species. The present annotation of the CBF and DREB2 genes from a draft of the Eucalyptus gunnii genome sequence reveals at least one additional CBF copy in the E. gunnii genome compared with E. grandis, suggesting that this group is still evolving, unlike the DREB2 group. This study aims to investigate the redundancy/neo- or sub-functionalization of the duplicates and the relative involvement of the two groups in abiotic stress responses in both E. grandis and E. gunnii (lower growth but higher cold resistance). A comprehensive transcriptional analysis using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR) was performed on leaves, stems and roots from the two Eucalyptus species after cold, heat or drought treatment. A large CBF cluster accounted for most of the cold response in all the organs, whereas heat and drought responses mainly involved a small CBF cluster and the DREB2 genes. In addition, CBF putative target genes, known to be involved in plant tolerance and development, were found to be cold-regulated. The higher transcript amounts of both the CBF and target genes in the cold tolerant E. gunnii contrasted with the higher CBF induction rates in the fast growing E. grandis. Altogether, the present results, in agreement with previous data about Eucalyptus transgenic lines over-expressing CBF, suggest that these factors, which promote both stress protection and growth limitation, participate in the trade-off between growth and resistance in this woody species. © 2016 Scandinavian Plant Physiology Society.
Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels.
Cooper, Scott T; Sell, Shawn S; Fahrenkrog, Molly; Wilkinson, Kory; Howard, David R; Bergen, Hannah; Cruz, Estefania; Cash, Steve E; Andrews, Matthew T; Hampton, Marshall
2016-07-01
Mammalian hibernators adapt to prolonged periods of immobility, hypometabolism, hypothermia, and oxidative stress, each capable of reducing bone marrow activity. In this study bone marrow transcriptomes were compared among thirteen-lined ground squirrels collected in July, winter torpor, and winter interbout arousal (IBA). The results were consistent with a suppression of acquired immune responses, and a shift to innate immune responses during hibernation through higher complement expression. Consistent with the increase in adipocytes found in bone marrow of hibernators, expression of genes associated with white adipose tissue are higher during hibernation. Genes that should strengthen the bone by increasing extracellular matrix were higher during hibernation, especially the collagen genes. Finally, expression of heat shock proteins were lower, and cold-response genes were higher, during hibernation. No differential expression of hematopoietic genes involved in erythrocyte or megakaryocyte production was observed. This global view of the changes in the bone marrow transcriptome over both short term (torpor vs. IBA) and long term (torpor vs. July) hypothermia can explain several observations made about circulating blood cells and the structure and strength of the bone during hibernation. Copyright © 2016 the American Physiological Society.
Anttila, K; Eliason, E J; Kaukinen, K H; Miller, K M; Farrell, A P
2014-05-01
The main findings of the current study were that exposing adult sockeye salmon Onchorhynchus nerka to a warm temperature that they regularly encounter during their river migration induced a heat shock response at an mRNA level, and this response was exacerbated with forced swimming. Similar to the heat shock response, increased immune defence-related responses were also observed after warm temperature treatment and with a swimming challenge in two different populations (Chilko and Nechako), but with some important differences. Microarray analyses revealed that 347 genes were differentially expressed between the cold (12-13° C) and warm (18-19° C) treated fish, with stress response (GO:0006950) and response to fungus (GO:0009620) elevated with warm treatment, while expression for genes involved in oxidative phosphorylation (GO:0006119) and electron transport chain (GO:0022900) elevated for cold-treated fish. Analysis of single genes with real-time quantitative PCR revealed that temperature had the most significant effect on mRNA expression levels, with swimming and population having secondary influences. Warm temperature treatment for the Chilko population induced expression of heat shock protein (hsp) 90α, hsp90β and hsp30 as well as interferon-inducible protein. The Nechako population, which is known to have a narrower thermal tolerance window than the Chilko population, showed even more pronounced stress responses to the warm treatment and there was significant interaction between population and temperature treatment for hsp90β expression. Moreover, significant interactions were noted between temperature treatment and swimming challenge for hsp90α and hsp30, and while swimming challenge alone increased expression of these hsps, the expression levels were significantly elevated in warm-treated fish swum to exhaustion. In conclusion, it seems that adult O. nerka currently encounter conditions that induce several cellular defence mechanisms during their once-in-the-lifetime migration. As river temperatures continue to increase, it remains to be seen whether or not these cellular defences provide sufficient protection for all O. nerka populations. © 2014 The Fisheries Society of the British Isles.
Singh, Varinder; Kaul, Sunil C.; Wadhwa, Renu; Pati, Pratap Kumar
2015-01-01
Quantitative real-time PCR (qRT-PCR) is now globally used for accurate analysis of transcripts levels in plants. For reliable quantification of transcripts, identification of the best reference genes is a prerequisite in qRT-PCR analysis. Recently, Withania somnifera has attracted lot of attention due to its immense therapeutic potential. At present, biotechnological intervention for the improvement of this plant is being seriously pursued. In this background, it is important to have comprehensive studies on finding suitable reference genes for this high valued medicinal plant. In the present study, 11 candidate genes were evaluated for their expression stability under biotic (fungal disease), abiotic (wounding, salt, drought, heat and cold) stresses, in different plant tissues and in response to various plant growth regulators (methyl jasmonate, salicylic acid, abscisic acid). The data as analyzed by various software packages (geNorm, NormFinder, Bestkeeper and ΔCt method) suggested that cyclophilin (CYP) is a most stable gene under wounding, heat, methyl jasmonate, different tissues and all stress conditions. T-SAND was found to be a best reference gene for salt and salicylic acid (SA) treated samples, while 26S ribosomal RNA (26S), ubiquitin (UBQ) and beta-tubulin (TUB) were the most stably expressed genes under drought, biotic and cold treatment respectively. For abscisic acid (ABA) treated samples 18S-rRNA was found to stably expressed gene. Finally, the relative expression level of the three genes involved in the withanolide biosynthetic pathway was detected to validate the selection of reliable reference genes. The present work will significantly contribute to gene analysis studies in W. somnifera and facilitate in improving the quality of gene expression data in this plant as well as and other related plant species. PMID:25769035
Zeng, Changying; Ding, Zehong; Zhou, Fang; Zhou, Yufei; Yang, Ruiju; Yang, Zi; Wang, Wenquan; Peng, Ming
2017-12-12
Background : Cassava, an important tropical crop, has remarkable drought tolerance, but is very sensitive to cold. The growth, development, and root productivity of cassava are all adversely affected under cold and drought. Methods : To profile the transcriptional response to cold and drought stresses, cassava seedlings were respectively subjected to 0, 6, 24, and 48 h of cold stress and 0, 4, 6, and 10 days of drought stress. Their folded leaves, fully extended leaves, and roots were respectively investigated using RNA-seq. Results : Many genes specifically and commonly responsive to cold and drought were revealed: genes related to basic cellular metabolism, tetrapyrrole synthesis, and brassinosteroid metabolism exclusively responded to cold; genes related to abiotic stress and ethylene metabolism exclusively responded to drought; and genes related to cell wall, photosynthesis, and carbohydrate metabolism, DNA synthesis/chromatic structure, abscisic acid and salicylic acid metabolism, and calcium signaling commonly responded to both cold and drought. Discussion : Combined with cold- and/or drought-responsive transcription factors, the regulatory networks responding to cold and drought in cassava were constructed. All these findings will improve our understanding of the specific and common responses to cold and drought in cassava, and shed light on genetic improvement of cold and drought tolerance in cassava.
Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava
Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian
2016-01-01
The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava. PMID:26904033
Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.
Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian
2016-01-01
The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.
Bello, Babatunde; Zhang, Xueyan; Liu, Chuanliang; Yang, Zhaoen; Yang, Zuoren; Wang, Qianhua; Zhao, Ge; Li, Fuguang
2014-01-01
The molecular mechanisms of stress tolerance and the use of modern genetics approaches for the improvement of drought stress tolerance have been major focuses of plant molecular biologists. In the present study, we cloned the Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 (GhSnRK2) gene and investigated its functions in transgenic Arabidopsis. We further elucidated the function of this gene in transgenic cotton using virus-induced gene silencing (VIGS) techniques. We hypothesized that GhSnRK2 participates in the stress signaling pathway and elucidated its role in enhancing stress tolerance in plants via various stress-related pathways and stress-responsive genes. We determined that the subcellular localization of the GhSnRK2-green fluorescent protein (GFP) was localized in the nuclei and cytoplasm. In contrast to wild-type plants, transgenic plants overexpressing GhSnRK2 exhibited increased tolerance to drought, cold, abscisic acid and salt stresses, suggesting that GhSnRK2 acts as a positive regulator in response to cold and drought stresses. Plants overexpressing GhSnRK2 displayed evidence of reduced water loss, turgor regulation, elevated relative water content, biomass, and proline accumulation. qRT-PCR analysis of GhSnRK2 expression suggested that this gene may function in diverse tissues. Under normal and stress conditions, the expression levels of stress-inducible genes, such as AtRD29A, AtRD29B, AtP5CS1, AtABI3, AtCBF1, and AtABI5, were increased in the GhSnRK2-overexpressing plants compared to the wild-type plants. GhSnRK2 gene silencing alleviated drought tolerance in cotton plants, indicating that VIGS technique can certainly be used as an effective means to examine gene function by knocking down the expression of distinctly expressed genes. The results of this study suggested that the GhSnRK2 gene, when incorporated into Arabidopsis, functions in positive responses to drought stress and in low temperature tolerance. PMID:25393623
Ying, Mengchao; Kidou, Shin-Ichiro
2017-07-01
To adapt to cold conditions, barley plants rely on specific mechanisms, which have not been fully understood. In this study, we characterized a novel barley cold-induced gene identified using a PCR-based high coverage gene expression profiling method. The identified gene encodes a small protein that we named CISP1 (Cold-induced Small Protein 1). Homology searches of sequence databases revealed that CISP1 homologs (CISP2 and CISP3) exist in barley genome. Further database analyses showed that the CISP1 homologs were widely distributed in cold-tolerant plants such as wheat and rye. Quantitative reverse transcription PCR analyses indicated that the expression of barley CISP genes was markedly increased in roots exposed to cold conditions. In situ hybridization analyses showed that the CISP1 transcripts were localized in the root tip and lateral root primordium. We also demonstrated that the CISP1 protein bound to RNA. Taken together, these findings indicate that CISP1 and its homologs encoding small RNA-binding proteins may serve as RNA chaperones playing a vital role in the cold adaptation of barley root. This is the first report describing the likely close relationship between root-specific genes and the cold adaptation process, as well as the potential function of the identified genes. Copyright © 2017 Elsevier B.V. All rights reserved.
Cold Shock Domain Protein 3 Regulates Freezing Tolerance in Arabidopsis thaliana*
Kim, Myung-Hee; Sasaki, Kentaro; Imai, Ryozo
2009-01-01
In response to cold, Escherichia coli produces cold shock proteins (CSPs) that have essential roles in cold adaptation as RNA chaperones. Here, we demonstrate that Arabidopsis cold shock domain protein 3 (AtCSP3), which shares a cold shock domain with bacterial CSPs, is involved in the acquisition of freezing tolerance in plants. AtCSP3 complemented a cold-sensitive phenotype of the E. coli CSP quadruple mutant and displayed nucleic acid duplex melting activity, suggesting that AtCSP3 also functions as an RNA chaperone. Promoter-GUS transgenic plants revealed tissue-specific expression of AtCSP3 in shoot and root apical regions. When exposed to low temperature, GUS activity was extensively induced in a broader region of the roots. In transgenic plants expressing an AtCSP3-GFP fusion, GFP signals were detected in both the nucleus and cytoplasm. An AtCSP3 knock-out mutant (atcsp3-2) was sensitive to freezing compared with wild-type plants under non-acclimated and cold-acclimated conditions, whereas expression of C-repeat-binding factors and their downstream genes during cold acclimation was not altered in the atcsp3-2 mutant. Overexpression of AtCSP3 in transgenic plants conferred enhanced freezing tolerance over wild-type plants. Together, the data demonstrated an essential role of RNA chaperones for cold adaptation in higher plants. PMID:19556243
Xie, Zeyi; Zhou, Zhilin; Li, Hongmin; Yu, Jingjing; Jiang, Jiaojiao; Tang, Zhonghou; Ma, Daifu; Zhang, Baohong; Han, Yonghua; Li, Zongyun
2018-05-21
Sweetpotato (Ipomoea batatas L.) is a globally important economic food crop. It belongs to Convolvulaceae family and origins in the tropics; however, sweetpotato is sensitive to cold stress during storage. In this study, we performed transcriptome sequencing to investigate the sweetpotato response to chilling stress during storage. A total of 110,110 unigenes were generated via high-throughput sequencing. Differentially expressed genes (DEGs) analysis showed that 18,681 genes were up-regulated and 21,983 genes were down-regulated in low temperature condition. Many DEGs were related to the cell membrane system, antioxidant enzymes, carbohydrate metabolism, and hormone metabolism, which are potentially associated with sweetpotato resistance to low temperature. The existence of DEGs suggests a molecular basis for the biochemical and physiological consequences of sweetpotato in low temperature storage conditions. Our analysis will provide a new target for enhancement of sweetpotato cold stress tolerance in postharvest storage through genetic manipulation. Copyright © 2018. Published by Elsevier Inc.
Roy, Dipan; Paul, Amit; Roy, Adrita; Ghosh, Ritesh; Ganguly, Payel; Chaudhuri, Shubho
2014-01-01
The rice ortholog of DREB1, OsDREB1b, is transcriptionally induced by cold stress and over-expression of OsDREB1b results in increase tolerance towards high salt and freezing stress. This spatio-temporal expression of OsDREB1b is preceded by the change in chromatin structure at the promoter and the upstream region for gene activation. The promoter and the upstream region of OsDREB1b genes appear to be arranged into a nucleosome array. Nucleosome mapping of ∼700bp upstream region of OsDREB1b shows two positioned nucleosomes between −610 to −258 and a weakly positioned nucleosome at the core promoter and the TSS. Upon cold stress, there is a significant change in the nucleosome arrangement at the upstream region with increase in DNaseI hypersensitivity or MNase digestion in the vicinity of cis elements and TATA box at the core promoter. ChIP assays shows hyper-acetylation of histone H3K9 throughout the locus whereas region specific increase was observed in H3K14ac and H3K27ac. Moreover, there is an enrichment of RNA PolII occupancy at the promoter region during transcription activation. There is no significant change in the H3 occupancy in OsDREB1b locus negating the possibility of nucleosome loss during cold stress. Interestingly, cold induced enhanced transcript level of OsDREB1b as well as histone H3 acetylation at the upstream region was found to diminish when stressed plants were returned to normal temperature. The result indicates absolute necessity of changes in chromatin conformation for the transcription up-regulation of OsDREB1b gene in response to cold stress. The combined results show the existence of closed chromatin conformation at the upstream and promoter region of OsDREB1b in the transcription “off” state. During cold stress, changes in region specific histone modification marks promote the alteration of chromatin structure to facilitate the binding of transcription machinery for proper gene expression. PMID:24940877
Weinberg, Michael V.; Schut, Gerrit J.; Brehm, Scott; Datta, Susmita; Adams, Michael W. W.
2005-01-01
The hyperthermophilic archaeon, Pyrococcus furiosus, was grown on maltose near its optimal growth temperature, 95°C, and at the lower end of the temperature range for significant growth, 72°C. In addition, cultures were shocked by rapidly dropping the temperature from 95 to 72°C. This resulted in a 5-h lag phase, during which time little growth occurred. Transcriptional analyses using whole-genome DNA microarrays representing 2,065 open reading frames (ORFs) in the P. furiosus genome showed that cells undergo three very different responses at 72°C: an early shock (1 to 2 h), a late shock (5 h), and an adapted response (occurring after many generations at 72°C). Each response involved the up-regulation in the expression of more than 30 ORFs unique to that response. These included proteins involved in translation, solute transport, amino acid biosynthesis, and tungsten and intermediary carbon metabolism, as well as numerous conserved-hypothetical and/or membrane-associated proteins. Two major membrane proteins were evident after one-dimensional sodium dodecyl sulfate-gel analysis of cold-adapted cells, and staining revealed them to be glycoproteins. Their cold-induced expression evident from the DNA microarray analysis was confirmed by quantitative PCR. Termed CipA (PF0190) and CipB (PF1408), both appear to be solute-binding proteins. While the archaea do not contain members of the bacterial cold shock protein (Csp) family, they all contain homologs of CipA and CipB. These proteins are also related phylogenetically to some cold-responsive genes recently identified in certain bacteria. The Cip proteins may represent a general prokaryotic-type cold response mechanism that is present even in hyperthermophilic archaea. PMID:15601718
Stillman, Jonathon H; Tagmount, Abderrahmane
2009-10-01
Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.
Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E
2015-10-01
Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.
Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan
2016-01-01
Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393
Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan
2016-08-05
Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops.
Roychoudhury, Aryadeep; Paul, Saikat; Basu, Supratim
2013-07-01
Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.
Cook, Daniel; Fowler, Sarah; Fiehn, Oliver; Thomashow, Michael F.
2004-01-01
The Arabidopsis CBF cold response pathway has a central role in cold acclimation, the process whereby plants increase in freezing tolerance in response to low nonfreezing temperatures. Here we examined the changes that occur in the Arabidopsis metabolome in response to low temperature and assessed the role of the CBF cold response pathway in bringing about these modifications. Of 434 metabolites monitored by GC-time-of-flight MS, 325 (75%) were found to increase in Arabidopsis Wassilewskija-2 (Ws-2) plants in response to low temperature. Of these 325 metabolites, 256 (79%) also increased in nonacclimated Ws-2 plants in response to overexpression of C-repeat/dehydration responsive element-binding factor (CBF)3. Extensive cold-induced changes also occurred in the metabolome of Arabidopsis Cape Verde Islands-1 (Cvi-1) plants, which were found to be less freezing tolerant than Ws-2 plants. However, low-temperature-induced expression of CBF1, CBF2, CBF3, and CBF-targeted genes was much lower in Cvi-1 than in Ws-2 plants, and the low-temperature metabolome of Cvi-1 plants was depleted in metabolites affected by CBF3 overexpression. Taken together, the results indicate that the metabolome of Arabidopsis is extensively reconfigured in response to low temperature, and that the CBF cold response pathway has a prominent role in this process. PMID:15383661
Wu, Jiao; Zhang, Yali; Yin, Ling; Qu, Junjie; Lu, Jiang
2014-12-01
Low temperatures cause severe damage to none cold hardy grapevines. A preliminary survey with Solexa sequencing technology was used to analyze gene expression profiles of cold hardy Vitis amurensis 'Zuoshan-1' after cold acclimation at 4 °C for 48 h. A total of 16,750 and 18,068 putative genes were annotated for 4 °C-treated and control library, respectively. Among them, 393 genes were upregulated for at least 20-fold, while 69 genes were downregulated for at least 20-fold under the 4 °C treatment for 48 h. A subset of 101 genes from this survey was investigated further using reverse transcription polymerase chain reaction (RT-PCR). Genes associated with signaling events in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), including generation of calcium signals (CNGC, CMLs), jasmonic acid signal (JAZ1), oxidative burst (Rboh), and phosphorylation (FLS2, BAK, MEKK1, MKKs) cascades, were upregulated after cold acclimation. Disease resistance genes (RPM1, RPS5, RIN4, PBS1) in the process of effector-triggered immunity (ETI) were also upregulated in the current condition. Defense-related genes (WRKYs, PR1, MIN7) involved in both PTI and ETI processes were abundantly expressed after cold acclimation. Our results indicated that plant-pathogen interaction pathways were linked to the cold acclimation in V. amurensis grapevine. Other biotic- and abiotic-related genes, such as defense (protein phosphatase 2C, U-box domain proteins, NCED1, stilbene synthase), transcription (DREBs, MYBs, ERFs, ZFPs), signal transduction (kinase, calcium, and auxin signaling), transport (ATP-binding cassette (ABC) transporters, auxin:hydrogen symporter), and various metabolism, were also abundantly expressed in the cold acclimation of V. Amurensis 'Zuoshan-1' grapevine. This study revealed a series of critical genes and pathways to delineate important biological processes affected by low temperature in 'Zuoshan-1'.
Chen, Yu; Xu, Bin; Yang, Zhimin; Huang, Bingru
2015-01-01
Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2 .- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or ‘dwarfism’, both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits. PMID:26177510
Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response.
Dahlsten, Elias; Isokallio, Marita; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu
2014-01-01
Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.
Martínez-Paz, Pedro; Morales, Mónica; Martín, Raquel; Martínez-Guitarte, José Luis; Morcillo, Gloria
2014-07-01
Small heat shock proteins constitute the most diverse and least conserved group within the large family of heat shock proteins, which play a crucial role in cell response to environmental insults. Chironomus riparius larvae are widely used in environmental research for testing pollutant toxicity in sediments and freshwater environments. Different genes, such as Hsp70, Hsc70, Hsp90, and Hsp40, have been identified in this species as sensitive biomarkers for xenobiotics, but small Hsps genes remain largely unknown. In this study, the Hsp27 has been characterized in C. riparius and its transcriptional response evaluated under several environmental stimuli. The Hsp27 gene was mapped by FISH on polytene chromosomes at region I-C4 and was found to encode a 195 aa protein, which contains an α-crystallin domain bounded by three conserved regions. This protein shows homology with Drosophila melanogaster HSP27, Ceratitis capitata HSP27, and Sarcophaga crassipalpis HSP25. Real-time reverse transcriptase-polymerase chain reaction analysis showed that heat shock (35 °C) and cadmium dramatically upregulate this gene. Moreover, exposures to triclosan and bisphenol A were able to significantly increase mRNA levels. However, neither nonylphenol nor tributyltin altered Hsp27 gene expression. The transcriptional activity of Hsp27 gene was modulated during cold stress. Interestingly, cold shock (4 °C) significantly reduced Hsp27 transcripts, but this gene was significantly overexpressed during the recovery time at the normal growing temperature. These results show that the Hsp27 gene is sensitive to different environmental stimuli, including endocrine-disrupting pollutants, suggesting its potential as a suitable biomarker for ecotoxicological studies in aquatic systems.
USDA-ARS?s Scientific Manuscript database
Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing powe...
Singh, Roshan Kumar; Jaishankar, Jananee; Muthamilarasan, Mehanathan; Shweta, Shweta; Dangi, Anand; Prasad, Manoj
2016-09-02
Heat shock proteins (HSPs) perform significant roles in conferring abiotic stress tolerance to crop plants. In view of this, HSPs and their encoding genes were extensively characterized in several plant species; however, understanding their structure, organization, evolution and expression profiling in a naturally stress tolerant crop is necessary to delineate their precise roles in stress-responsive molecular machinery. In this context, the present study has been performed in C4 panicoid model, foxtail millet, which resulted in identification of 20, 9, 27, 20 and 37 genes belonging to SiHSP100, SiHSP90, SiHSP70, SiHSP60 and SisHSP families, respectively. Comprehensive in silico characterization of these genes followed by their expression profiling in response to dehydration, heat, salinity and cold stresses in foxtail millet cultivars contrastingly differing in stress tolerance revealed significant upregulation of several genes in tolerant cultivar. SisHSP-27 showed substantial higher expression in response to heat stress in tolerant cultivar, and its over-expression in yeast system conferred tolerance to several abiotic stresses. Methylation analysis of SiHSP genes suggested that, in susceptible cultivar, higher levels of methylation might be the reason for reduced expression of these genes during stress. Altogether, the study provides novel clues on the role of HSPs in conferring stress tolerance.
Small GTPases and Stress Responses of vvran1 in the Straw Mushroom Volvariella volvacea
Yan, Jun-Jie; Xie, Bin; Zhang, Lei; Li, Shao-Jie; van Peer, Arend F.; Wu, Ta-Ju; Chen, Bing-Zhi; Xie, Bao-Gui
2016-01-01
Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H2O2) stress, and could be repressed by diphenyleneiodonium chloride (DPI), a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD) inhibitor diethy dithiocarbamate (DDC), could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O2−) generation indicated that vvran1 could be one of the candidate genes in the downstream of O2− mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses. PMID:27626406
Li, Xi-Hong; Wu, Mao-Yu; Wang, Ai-Li; Jiang, Yu-Qian; Jiang, Yun-Hong
2012-01-01
Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. ‘Wujiuxiang’), anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic genes in ‘Wujiuxiang’ pears during developmental ripening and temperature-induced storage. The expression of genes that encode flavanone 3-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, and R2R3 MYB transcription factor (PcMYB10) was strongly positively correlated with anthocyanin accumulation in ‘Wujiuxiang’ pears in response to both developmental and cold-temperature induction. Hierarchical clustering analysis revealed the expression patterns of the set of target genes, of which PcMYB10 and most anthocyanin biosynthetic genes were related to the same cluster. The present work may help explore the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stress at the transcriptional level in plants. PMID:23029391
Epigenetic switch from repressive to permissive chromatin in response to cold stress.
Park, Junghoon; Lim, Chae Jin; Shen, Mingzhe; Park, Hee Jin; Cha, Joon-Yung; Iniesto, Elisa; Rubio, Vicente; Mengiste, Tesfaye; Zhu, Jian-Kang; Bressan, Ray A; Lee, Sang Yeol; Lee, Byeong-Ha; Jin, Jing Bo; Pardo, Jose M; Kim, Woe-Yeon; Yun, Dae-Jin
2018-06-05
Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47 Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance. Copyright © 2018 the Author(s). Published by PNAS.
Epigenetic switch from repressive to permissive chromatin in response to cold stress
Park, Junghoon; Lim, Chae Jin; Shen, Mingzhe; Park, Hee Jin; Cha, Joon-Yung; Iniesto, Elisa; Rubio, Vicente; Mengiste, Tesfaye; Bressan, Ray A.; Lee, Sang Yeol; Lee, Byeong-ha; Kim, Woe-Yeon; Yun, Dae-Jin
2018-01-01
Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis. However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47. Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance. PMID:29784800
Ghangal, Rajesh; Raghuvanshi, Saurabh; Sharma, Prakash C
2012-02-01
A cDNA library was constructed from the mature leaves of seabuckthorn (Hippophae rhamnoides). Expressed Sequence Tags (ESTs) were generated by single pass sequencing of 4500 cDNA clones. We submitted 3412 ESTs to dbEST of NCBI. Clustering of these ESTs yielded 1665 unigenes comprising of 345 contigs and 1320 singletons. Out of 1665 unigenes, 1278 unigenes were annotated by similarity search while the remaining 387 unannotated unigenes were considered as organism specific. Gene Ontology (GO) analysis of the unigene dataset showed 691 unigenes related to biological processes, 727 to molecular functions and 588 to cellular component category. On the basis of similarity search and GO annotation, 43 unigenes were found responsive to biotic and abiotic stresses. To validate this observation, 13 genes that are known to be associated with cold stress tolerance from previous studies in Arabidopsis and 3 novel transcripts were examined by Real time RT-PCR to understand the change in expression pattern under cold/freeze stress. In silico study of occurrence of microsatellites in these ESTs revealed the presence of 62 Simple Sequence Repeats (SSRs), some of which are being explored to assess genetic diversity among seabuckthorn collections. This is the first report of generation of transcriptome data providing information about genes involved in managing plant abiotic stress in seabuckthorn, a plant known for its enormous medicinal and ecological value. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian
2016-03-07
The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Hong, E-mail: Zhai.h@hotmail.com; Bai, Xi, E-mail: baixi@neau.edu.cn; Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn
2010-04-16
We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not alteredmore » in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven {beta}-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.« less
Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua
2018-01-01
Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46–1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold, and showed higher responsiveness in BS compared with RIR chickens, suggesting greater adaptability of the thyroid in BS chickens. Moreover, 10,053 differential splicing events were revealed among the groups, with RNA splicing and processing, gene expression, transport, and metabolism being the main affected biological processes, identifying a valuable alternative splicing repertoire for the chicken thyroid. A short isoform of TPO (encoding thyroid peroxidase) containing multiple open reading frames was generated in both breeds by skipping exons 4 and 5 in the cold environment. These findings provide novel clues for future studies of the molecular mechanisms underlying cold adaptation and/or acclimation in chickens. PMID:29320582
Xie, Shanshan; Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua
2018-01-01
Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold, and showed higher responsiveness in BS compared with RIR chickens, suggesting greater adaptability of the thyroid in BS chickens. Moreover, 10,053 differential splicing events were revealed among the groups, with RNA splicing and processing, gene expression, transport, and metabolism being the main affected biological processes, identifying a valuable alternative splicing repertoire for the chicken thyroid. A short isoform of TPO (encoding thyroid peroxidase) containing multiple open reading frames was generated in both breeds by skipping exons 4 and 5 in the cold environment. These findings provide novel clues for future studies of the molecular mechanisms underlying cold adaptation and/or acclimation in chickens.
Zhang, Zhiqiang; Wang, Yafang; Chang, Leqin; Zhang, Tong; An, Jie; Liu, Yushi; Cao, Yuman; Zhao, Xia; Sha, Xuyang; Hu, Tianming; Yang, Peizhi
2016-02-01
The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.
Acute and chronic cold exposure differentially affects the browning of porcine white adipose tissue.
Gao, Y; Qimuge, N R; Qin, J; Cai, R; Li, X; Chu, G Y; Pang, W J; Yang, G S
2018-07-01
Piglets are characteristically cold intolerant and thus susceptible to high mortality. However, browning of white adipose tissue (WAT) can induce non-shivering thermogenesis as a potential strategy to facilitate the animal's response to cold. Whether cold exposure can induce browning of subcutaneous WAT (sWAT) in piglets in a similar manner as it can in humans remains largely unknown. In this study, piglets were exposed to acute cold (4°C, 10 h) or chronic cold exposure (8°C, 15 days), and the genes and proteins of uncoupling protein 1 (UCP1)-dependent and independent thermogenesis, mitochondrial biogenesis, lipogenic and lipolytic processes were analysed. Interestingly, acute cold exposure induced browning of porcine sWAT, smaller adipocytes and the upregulated expression of UCP1, PGC1α, PGC1β, C/EBPβ, Cidea, UCP3, CKMT1 and PM20D1. Conversely, chronic cold exposure impaired the browning process, reduced mitochondrial numbers and the expression of browning markers, including UCP1, PGC1α and PRDM16. The present study demonstrated that acute cold exposure (but not chronic cold exposure) induces porcine sWAT browning. Thus, browning of porcine sWAT could be a novel strategy to balance the body temperature of piglets, and thus could be protective against cold exposure.
Hu, Wei; Xia, Zhiqiang; Yan, Yan; Ding, Zehong; Tie, Weiwei; Wang, Lianzhe; Zou, Meiling; Wei, Yunxie; Lu, Cheng; Hou, Xiaowan; Wang, Wenquan; Peng, Ming
2015-01-01
Cassava is an important food and potential biofuel crop that is tolerant to multiple abiotic stressors. The mechanisms underlying these tolerances are currently less known. CBL-interacting protein kinases (CIPKs) have been shown to play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to abiotic stress. However, no data is currently available about the CPK family in cassava. In this study, a total of 25 CIPK genes were identified from cassava genome based on our previous genome sequencing data. Phylogenetic analysis suggested that 25 MeCIPKs could be classified into four subfamilies, which was supported by exon-intron organizations and the architectures of conserved protein motifs. Transcriptomic analysis of a wild subspecies and two cultivated varieties showed that most MeCIPKs had different expression patterns between wild subspecies and cultivatars in different tissues or in response to drought stress. Some orthologous genes involved in CIPK interaction networks were identified between Arabidopsis and cassava. The interaction networks and co-expression patterns of these orthologous genes revealed that the crucial pathways controlled by CIPK networks may be involved in the differential response to drought stress in different accessions of cassava. Nine MeCIPK genes were selected to investigate their transcriptional response to various stimuli and the results showed the comprehensive response of the tested MeCIPK genes to osmotic, salt, cold, oxidative stressors, and ABA signaling. The identification and expression analysis of CIPK family suggested that CIPK genes are important components of development and multiple signal transduction pathways in cassava. The findings of this study will help lay a foundation for the functional characterization of the CIPK gene family and provide an improved understanding of abiotic stress responses and signaling transduction in cassava. PMID:26579161
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James
DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein–DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressormore » activity observed in the transactivation assays using Arabidopsis protoplasts. Additionally, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. Our results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Finally, although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.« less
Sinha, Somya; Raxwal, Vivek K.; Joshi, Bharat; Jagannath, Arun; Katiyar-Agarwal, Surekha; Goel, Shailendra; Kumar, Amar; Agarwal, Manu
2015-01-01
Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5–15 DAP) and late stages (20–30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as “core cold-inducible” transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene expression profiles of selected transcripts by qPCR and found a high degree of concordance between the two analyses. To our knowledge this is the first report of transcriptome sequencing of cold-stressed B. juncea siliques. The data generated in this study would be a valuable resource for not only understanding the cold stress signaling pathway but also for introducing cold hardiness in B. juncea. PMID:26579175
Han, Lanlan; Fan, Dong; Zhao, Kuijun
2014-01-01
The soybean pod borer (Leguminivora glycinivorella Matsumura) successfully survives the winter because of its high expression of 70-kDa heat shock proteins (HSP70s) during its overwintering diapause. The amount of HSP70s is different under different environmental stresses. In this study, inducible heat shock protein 70 and its constitutive heat shock cognate 70 were cloned by RT-PCR and RACE. These genes were named Lg-hsp70 and Lg-hsc70, respectively. Gene transcription and protein expression after cold stress treatment (5°C to −5°C) were analyzed by western blotting and by qRT-PCR for four populations that were sampled in the northeast region of China, including Shenyang, Gongzhuling, Harbin and Heihe, when the soybean pod borer was in diapause. As the cold shock temperature decreased, the levels of Lg-HSP70s were significantly up-regulated. The amount of cold-induced Lg-HSP70s was highest in the southernmost population (Shenyang, 41°50′N) and lowest in the northernmost population (Heihe, 50°22′N). These results support the hypothesis that the soybean pod borer in the northeast region of China displays phenotypic plasticity, and the accumulation of Lg-HSP70s is a strategy for overcoming environmental stress. These results also suggest that the induction of HSP70 synthesis, which is a complex physiological adaptation, can evolve quickly and inherit stability. PMID:25330365
2012-01-01
Background Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. Results High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. Conclusions Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response. PMID:22257588
Song, Guo-Qing; Gao, Xuan
2017-06-19
Constitutive expression of the CBF/DREB1 for increasing freezing tolerance in woody plants is often associated with other phenotypic changes including dwarf plant and delayed flowering. These phenotypic changes have been observed when Arabidopsis DWARF AND DELAYED FLOWERING 1 (DDF1) was overexpressed in A. thaliana plants. To date, the DDF1 orthologues have not been studied in woody plants. The aim of this study is to investigate transcriptomic responses to the overexpression of blueberry (Vaccinium corymbosum) DDF1 (herein, VcDDF1-OX). The VcDDF1-OX resulted in enhanced freezing tolerance in tetraploid blueberry plants and did not result in significant changes in plant size, chilling requirement, and flowering time. Comparative transcriptome analysis of transgenic 'Legacy-VcDDF1-OX' plants containing an overexpressed VcDDF1 with non-transgenic highbush blueberry 'Legacy' plants revealed the VcDDF1-OX derived differentially expressed (DE) genes and transcripts in the pathways of cold-response, plant flowering, DELLA proteins, and plant phytohormones. The increase in freezing tolerance was associated to the expression of cold-regulated genes (CORs) and the ethylene pathway genes. The unchanged plant size, dormancy and flowering were due to the minimal effect of the VcDDF1-OX on the expression of DELLA proteins, flowering pathway genes, and the other phytohormone genes related to plant growth and development. The DE genes in auxin and cytokinin pathways suggest that the VcDDF1-OX has also altered plant tolerance to drought and high salinity. A DDF1 orthologue in blueberry functioned differently from the DDF1 reported in Arabidopsis. The overexpression of VcDDF1 or its orthologues is a new approach to increase freezing tolerance of deciduous woody plant species with no obvious effect on plant size and plant flowering time.
Global depression in gene expression as a response to rapid thermal changes in vent mussels
Boutet, Isabelle; Tanguy, Arnaud; Le Guen, Dominique; Piccino, Patrice; Hourdez, Stéphane; Legendre, Pierre; Jollivet, Didier
2009-01-01
Hydrothermal vent mussels belonging to the genus Bathymodiolus are distributed worldwide and dominate communities at shallow Atlantic hydrothermal sites. While organisms inhabiting coastal ecosystems are subjected to predictable oscillations of physical and chemical variables owing to tidal cycles, the vent mussels sustain pronounced temperature changes over short periods of time, correlated to the alternation of oxic/anoxic phases. In this context, we focused on the short-term adaptive response of mussels to temperature change at a molecular level. The mRNA expression of 23 genes involved in various cell functions of the vent mussel Bathymodiolus azoricus was followed after heat shocks for either 30 or 120 min, at 25 and 30°C over a 48 h recovery period at 5°C. Mussels were genotyped at 10 enzyme loci to explore a relationship between natural genetic variation, gene expression and temperature adaptation. Results indicate that the mussel response to increasing temperature is a depression in gene expression, such a response being genotypically correlated at least for the Pgm-1 locus. This suggests that an increase in temperature could be a signal triggering anaerobiosis for B. azoricus or this latter alternatively behaves more like a ‘cold’ stenotherm species, an attribute more related to its phylogenetic history, a cold seeps/wood fall origin. PMID:19515664
Yudin, Nikolay S; Larkin, Denis M; Ignatieva, Elena V
2017-12-28
Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals. After a search for publications containing keywords: "whole genome", "transcriptome or exome sequencing data", and "genome-wide genotyping array data" authors looked for information related to genetic signatures ascribable to positive selection in Arctic or Antarctic mammalian species. Publications related to Human, Arctic fox, Yakut horse, Mammoth, Polar bear, and Minke whale were chosen. The compendium of genes that potentially underwent positive selection in >1 of these six species consisted of 416 genes. Twelve of them showed traces of positive selection in three species. Gene ontology term enrichment analysis of 416 genes from the compendium has revealed 13 terms relevant to the scope of this study. We found that enriched terms were relevant to three major groups: terms associated with collagen proteins and the extracellular matrix; terms associated with the anatomy and physiology of cilium; terms associated with docking. We further revealed that genes from compendium were over-represented in the lists of genes expressed in the lung and liver. A compendium combining mammalian genes involved in adaptation to cold environment was designed, based on the intersection of positively selected genes from six Arctic and Antarctic species. The compendium contained 416 genes that have been positively selected in at least two species. However, we did not reveal any positively selected genes that would be related to cold adaptation in all species from our list. But, our work points to several strong candidate genes involved in mechanisms and biochemical pathways related to cold adaptation response in different species.
Genes critical for the induction of cold acclimation in wheat (Triticum aestivum L.)
USDA-ARS?s Scientific Manuscript database
Phenotypic studies have shown that cold acclimation in wheat and its relatives start at different temperatures. To gain insight into the underlying mechanisms that regulate the induction of cold-acclimation process in cereals we compared the expression of genes in winter-habit (winter Norstar and w...
Shah, Syed Tariq; Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Arain, Saima; Yu, Shuxun
2013-12-01
NAC (NAM, ATAF, and CUC) is a plant-specific transcription factor family with diverse roles in plant development and stress regulation. In this report, stress-responsive NAC genes (GhNAC8-GhNAC17) isolated from cotton (Gossypium hirsutum L.) were characterised in the context of leaf senescence and stress tolerance. The characterisation of NAC genes during leaf senescence has not yet been reported for cotton. Based on the sequence characterisation, these GhNACs could be classified into three groups belonging to three known NAC sub-families. Their predicted amino acid sequences exhibited similarities to NAC genes from other plant species. Senescent leaves were the sites of maximum expression for all GhNAC genes except GhNAC10 and GhNAC13, which showed maximum expression in fibres, collected from 25 days post anthesis (DPA) plants. The ten GhNAC genes displayed differential expression patterns and levels during natural and induced leaf senescence. Quantitative RT-PCR and promoter analyses suggest that these genes are induced by ABA, ethylene, drought, salinity, cold, heat, and other hormonal treatments. These results support a role for cotton GhNAC genes in transcriptional regulation of leaf senescence, stress tolerance and other developmental stages of cotton. © 2013.
Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu
2013-01-01
The INDUCER OF CBF EXPRESSION (ICE)–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance. PMID:23933884
Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; ...
2015-12-28
DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein–DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressormore » activity observed in the transactivation assays using Arabidopsis protoplasts. Additionally, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. Our results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Finally, although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.« less
Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; Borba, Ana Rita; Lourenço, Tiago; Abreu, Isabel A.; Ouwerkerk, Pieter B.F.; Quail, Peter H.; Oliveira, M. Margarida; Saibo, Nelson J. M.
2016-01-01
DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein-DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressor activity observed in the transactivation assays using Arabidopsis protoplasts. In addition, we showed that OsPIF14 is indeed a Phytochrome Interacting Factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. All together, these results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses. PMID:26732823
Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui
2017-07-01
CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.
Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N
2011-03-01
Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.
SanClemente, H.; Mounet, F.; Dunand, C.; Marque, G.; Marque, C.; Teulières, C.
2015-01-01
Background The AP2/ERF family includes a large number of developmentally and physiologically important transcription factors sharing an AP2 DNA-binding domain. Among them DREB1/CBF and DREB2 factors are known as master regulators respectively of cold and heat/osmotic stress responses. Experimental Approaches The manual annotation of AP2/ERF family from Eucalyptus grandis, Malus, Populus and Vitis genomes allowed a complete phylogenetic study for comparing the structure of this family in woody species and the model Arabidopsis thaliana. Expression profiles of the whole groups of EgrDREB1 and EgrDREB2 were investigated through RNAseq database survey and RT-qPCR analyses. Results The structure and the size of the AP2/ERF family show a global conservation for the plant species under comparison. In addition to an expansion of the ERF subfamily, the tree genomes mainly differ with respect to the group representation within the subfamilies. With regard to the E. grandis DREB subfamily, an obvious feature is the presence of 17 DREB1/CBF genes, the maximum reported to date for dicotyledons. In contrast, only six DREB2 have been identified, which is similar to the other plants species under study, except for Malus. All the DREB1/CBF and DREB2 genes from E. grandis are expressed in at least one condition and all are heat-responsive. Regulation by cold and drought depends on the genes but is not specific of one group; DREB1/CBF group is more cold-inducible than DREB2 which is mainly drought responsive. Conclusion These features suggest that the dramatic expansion of the DREB1/CBF group might be related to the adaptation of this evergreen tree to climate changes when it expanded in Australia. PMID:25849589
Isolation and characterization of a water stress-specific genomic gene, pwsi 18, from rice.
Joshee, N; Kisaka, H; Kitagawa, Y
1998-01-01
One of the water stress-specific cDNA clones of rice characterised previously, wsi18, was selected for further study. The wsi18 gene can be induced by water stress conditions such as mannitol, NaCl, and dryness, but not by ABA, cold, or heat. A genomic clone for wsi18, pwsi18, contained about 1.7 kbp of the 5' upstream sequence, two introns, and the full coding sequence. The 5'-upstream sequence of pwsi18 contained putative cis-acting elements, namely an ABA-responsive element (ABRE), three G-boxes, three E-boxes, a MEF-2 sequence, four direct and two inverted repeats, and four sequences similar to DRE, which is involved in the dehydration response of Arabidopsis genes. The gusA reporter gene under the control of the pwsi18 promoter showed transient expression in response to water stress. Deletion of the downstream DRE-like sequence between the distal G-boxes-2 and -3 resulted in rather low GUS expression.
Shi, Yiting; Tian, Shouwei; Hou, Lingyan; Huang, Xiaozhen; Zhang, Xiaoyan; Guo, Hongwei; Yang, Shuhua
2012-01-01
The phytohormone ethylene regulates multiple aspects of plant growth and development and responses to environmental stress. However, the exact role of ethylene in freezing stress remains unclear. Here, we report that ethylene negatively regulates plant responses to freezing stress in Arabidopsis thaliana. Freezing tolerance was decreased in ethylene overproducer1 and by the application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid but increased by the addition of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine or the perception antagonist Ag+. Furthermore, ethylene-insensitive mutants, including etr1-1, ein4-1, ein2-5, ein3-1, and ein3 eil1, displayed enhanced freezing tolerance. By contrast, the constitutive ethylene response mutant ctr1-1 and EIN3-overexpressing plants exhibited reduced freezing tolerance. Genetic and biochemical analyses revealed that EIN3 negatively regulates the expression of CBFs and type-A Arabidopsis response regulator5 (ARR5), ARR7, and ARR15 by binding to specific elements in their promoters. Overexpression of these ARR genes enhanced the freezing tolerance of plants. Thus, our study demonstrates that ethylene negatively regulates cold signaling at least partially through the direct transcriptional control of cold-regulated CBFs and type-A ARR genes by EIN3. Our study also provides evidence that type-A ARRs function as key nodes to integrate ethylene and cytokinin signaling in regulation of plant responses to environmental stress. PMID:22706288
Holliday, Jason A; Ralph, Steven G; White, Richard; Bohlmann, Jörg; Aitken, Sally N
2008-01-01
Cold acclimation in conifers is a complex process, the timing and extent of which reflects local adaptation and varies widely along latitudinal gradients for many temperate and boreal tree species. Despite their ecological and economic importance, little is known about the global changes in gene expression that accompany autumn cold acclimation in conifers. Using three populations of Sitka spruce (Picea sitchensis) spanning the species range, and a Picea cDNA microarray with 21,840 unique elements, within- and among-population gene expression was monitored during the autumn. Microarray data were validated for selected genes using real-time PCR. Similar numbers of genes were significantly twofold upregulated (1257) and downregulated (967) between late summer and early winter. Among those upregulated were dehydrins, pathogenesis-related/antifreeze genes, carbohydrate and lipid metabolism genes, and genes involved in signal transduction and transcriptional regulation. Among-population microarray hybridizations at early and late autumn time points revealed substantial variation in the autumn transcriptome, some of which may reflect local adaptation. These results demonstrate the complexity of cold acclimation in conifers, highlight similarities and differences to cold tolerance in annual plants, and provide a solid foundation for functional and genetic studies of this important adaptive process.
Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold.
Machado, Frederico Sander Mansur; Zhang, Zhi; Su, Yan; de Goede, Paul; Jansen, Remi; Foppen, Ewout; Coimbra, Cândido Celso; Kalsbeek, Andries
2018-01-01
Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia ( p < 0.001). Light phase cold exposure also increased metabolic rate and LA ( p < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase ( p < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP ( p < 0.0001) and REV-ERBα ( p < 0.01) in the BAT and CLOCK ( p < 0.05), PER2 ( p < 0.05), CRY1 ( p < 0.05), CRY2 ( p < 0.01), and REV-ERBα ( p < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.
Gonzalez, Lauren E; Keller, Kristen; Chan, Karen X; Gessel, Megan M; Thines, Bryan C
2017-07-17
The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1-1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant stress hormones JA and ABA. The positive effect that FBS1 has on JA processes and the negative effect it has on at least some ABA processes indicates that it in part regulates cellular responses balanced between these two important stress hormones. More broadly then, FBS1 may aid plant cells in switching between certain biotic (JA) and abiotic (ABA) stress responses. Finally, because FBS1 regulates a subset of JA biosynthesis and response genes, we conclude that it might have a role in tuning hormone responses to particular circumstances at the transcriptional level.
Bertrand, Annick; Prévost, Danielle; Bigras, Francine J.; Castonguay, Yves
2007-01-01
Background and Aims The objective of the study was to assess the impact of elevated CO2 in interaction with rhizobial strains on freezing tolerance and cold-induced molecular changes in alfalfa. Methods Alfalfa inoculated with two different strains of rhizobium (A2 and NRG34) was grown and cold acclimated (2 weeks at 2 °C) under either 400 (ambient) or 800 µmol mol−1 (elevated) CO2. Key Results Plants acclimated under 400 µmol mol−1 CO2 were more freezing tolerant than those maintained under 800 µmol mol−1. Cryoprotective sugars typically linked with the acquisition of freezing tolerance such as sucrose, stachyose and raffinose increased in roots in response to low temperature but did not differ between CO2 treatments. Similarly high CO2 did not alter the expression of many cold-regulated (COR) genes although it significantly increased the level of transcripts encoding a COR gene homologous to glyceraldehyde-3-phosphate-dehydrogenase (GAPDH). A significant effect of rhizobial strain was observed on both freezing tolerance and gene expression. Plants of alfalfa inoculated with strain A2 were more freezing tolerant than those inoculated with strain NRG34. Transcripts of COR genes homologous to a pathogenesis-related protein (PR-10) and to a nuclear-targeted protein were markedly enhanced in roots of alfalfa inoculated with strain A2 as compared with strain NRG34. Transcripts encoding the vegetative storage proteins (VSPs) β-amylase and chitinase were more abundant in roots of non-acclimated plants inoculated with strain NRG34 than with strain A2. Conclusions Taken together, the results suggest that elevated CO2 stimulates plant growth and reduces freezing tolerance. The acquisition of cold tolerance is also influenced by the rhizobial strain, as indicated by lower levels of expression of COR genes and sustained accumulation of VSP-encoding transcripts in alfalfa inoculated with strain NRG34 as compared with strain A2. PMID:17218341
Moskalev, Alexey; Zhikrivetskaya, Svetlana; Krasnov, George; Shaposhnikov, Mikhail; Proshkina, Ekaterina; Borisoglebsky, Dmitry; Danilov, Anton; Peregudova, Darya; Sharapova, Irina; Dobrovolskaya, Eugenia; Solovev, Ilya; Zemskaya, Nadezhda; Shilova, Lyubov; Snezhkina, Anastasia; Kudryavtseva, Anna
2015-01-01
The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms.
Dyson, Beth C.; Miller, Matthew A.E.; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G.
2016-01-01
Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing. PMID:27440755
Alonso-Peral, Maria M; Oliver, Sandra N; Casao, M Cristina; Greenup, Aaron A; Trevaskis, Ben
2011-01-01
The VERNALIZATION1 (VRN1) gene of temperate cereals is transcriptionally activated by prolonged cold during winter (vernalization) to promote flowering. To investigate the mechanisms controlling induction of VRN1 by prolonged cold, different regions of the VRN1 gene were fused to the GREEN FLUORESCENT PROTEIN (GFP) reporter and expression of the resulting gene constructs was assayed in transgenic barley (Hordeum vulgare). A 2 kb segment of the promoter of VRN1 was sufficient for GFP expression in the leaves and shoot apex of transgenic barley plants. Fluorescence increased at the shoot apex prior to inflorescence initiation and was subsequently maintained in the developing inflorescence. The promoter was also sufficient for low-temperature induction of GFP expression. A naturally occurring insertion in the proximal promoter, which is associated with elevated VRN1 expression and early flowering in some spring wheats, did not abolish induction of VRN1 transcription by prolonged cold, however. A translational fusion of the promoter and transcribed regions of VRN1 to GFP, VRN1::GFP, was localised to nuclei of cells at the shoot apex of transgenic barley plants. The distribution of VRN1::GFP at the shoot apex was similar to the expression pattern of the VRN1 promoter-GFP reporter gene. Fluorescence from the VRN1::GFP fusion protein increased in the developing leaves after prolonged cold treatment. These observations suggest that the promoter of VRN1 is targeted by mechanisms that trigger vernalization-induced flowering in economically important temperate cereal crops.
Makhnovskii, P A; Kuzmin, I V; Nefedova, L N; Kima, A I
2016-01-01
Drosophila melanogaster is the only invertebrate that contains endogenous retroviruses, which are called errantiviruses. Two domesticated genes, Grp and Iris, which originate from errantivirus gag and env, respectively, have been found in the D. melanogaster genome. The functions performed by the genes in Drosophila are still unclear. To identify the functions of domesticated gag and env in the D. melanogaster genome, expression of Iris and Grp was studied in strains differing by the presence or absence of the functional gypsy errantivirus. In addition, the expression levels were measured after injection of gram-positive and gram-negative bacteria, which activate different immune response pathways, and exposure to various abiotic stress factors. The presence of functional D. melanogaster retrovirus gypsy was found to increase the Grp expression level in somatic tissues of the carcass, while exerting no effect on the Iris expression level. Activation of the immune response in D. melanogaster by bacteria Bacillus cereus increased the Grp expression level and did not affect Iris expression. As for the effects of abiotic stress factors (oxidative stress, starvation, and heat and cold stress), the Grp expression level increased in response to starvation in D. melanogaster females, and the Iris expression level was downregulated in heat shock and oxidative stress. Based on the findings, Grp was assumed to play a direct role in the immune response in D. melanogaster; Iris is not involved in immune responses, but and apparently performs a cell function that is inhibited in stress.
Identification of NADPH oxidase family members associated with cold stress in strawberry.
Zhang, Yunting; Li, Yali; He, Yuwei; Hu, Wenjie; Zhang, Yong; Wang, Xiaorong; Tang, Haoru
2018-04-01
NADPH oxidase is encoded by a small gene family (Respiratory burst oxidase homologs, Rbohs ) and plays an important role in regulating various biological processes. However, little information about this gene family is currently available for strawberry. In this study, a total of seven Rboh genes were identified from strawberry through genomewide analysis. Gene structure analysis showed the number of exons ranged from 10 to 23, implying that this variation occurred in FvRboh genes by the insertion and distribution of introns; the order and approximate size of exons were relatively conserved. FvRbohC was predicted to localize to the thylakoid membrane of the chloroplast, while other members were computed to localize to the plasma membrane, indicating different functions. Amino acid sequence alignment, conserved domain, and motif analysis showed that all identified FvRbohs had typical features of plant Rbohs. Phylogenetic analysis of Rbohs from strawberry, grape, Arabidopsis, and rice suggested that the FvRbohs could be divided into five subgroups and showed a closer relationship with those from grape and Arabidopsis than those from rice. The expression patterns of FvRboh genes in root, stem, leaf, flower, and fruit revealed robust tissue specificity. The expression levels of FvRbohA and FvRbohD were quickly induced by cold stress, followed by an increase in NADPH oxidase activity, leading to O2- accumulation and triggering the antioxidant reaction by the transient increases in SOD activity. This suggested these two genes may be involved in cold stress and defense responses in strawberry.
Ye, Jianqiu; Yang, Hai; Shi, Haitao; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Yan, Yan; Luo, Ying; Xia, Zhiqiang; Wang, Wenquan; Peng, Ming; Li, Kaimian; Zhang, He; Hu, Wei
2017-11-02
Mitogen-activated protein kinase kinase kinases (MAPKKKs), an important unit of MAPK cascade, play crucial roles in plant development and response to various stresses. However, little is known concerning the MAPKKK family in the important subtropical and tropical crop cassava. In this study, 62 MAPKKK genes were identified in the cassava genome, and were classified into 3 subfamilies based on phylogenetic analysis. Most of MAPKKKs in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis showed that MAPKKK genes participated in tissue development and response to drought stress. Comparative expression profiles revealed that many MAPKKK genes were activated in cultivated varieties SC124 and Arg7 and the function of MeMAPKKKs in drought resistance may be different between SC124/Arg7 and W14. Expression analyses of the 7 selected MeMAPKKK genes showed that most of them were significantly upregulated by osmotic, salt and ABA treatments, whereas slightly induced by H 2 O 2 and cold stresses. Taken together, this study identified candidate MeMAPKKK genes for genetic improvement of abiotic stress resistance and provided new insights into MAPKKK -mediated cassava resistance to drought stress.
Huda, Kazi Md. Kamrul; Banu, Mst. Sufara Akhter; Pathi, Krishna Mohan; Tuteja, Narendra
2013-01-01
Background Plasma membrane Ca2+ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca2+) from the cell, hence regulating Ca2+ level within cells. Though plant Ca2+ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. Results The 1478 bp promoter sequence of rice plasma membrane Ca2+ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca2+ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The −1478 to −886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for −1210 and −886 bp flanking region. The −1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The −1210 and −886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the −886 bp and −519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. Conclusions The rice plasma membrane Ca2+ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible nature of this promoter could grant wide applicability in plant biotechnology. PMID:23469243
Yang, Yongchao; Wang, Yongqi; Mo, Yanling; Zhang, Ruimin; Zhang, Yong; Ma, Jianxiang; Wei, Chunhua
2018-01-01
Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III) and five subgroups (IIa-IIe) in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses. PMID:29338040
Yang, Xiaozhen; Li, Hao; Yang, Yongchao; Wang, Yongqi; Mo, Yanling; Zhang, Ruimin; Zhang, Yong; Ma, Jianxiang; Wei, Chunhua; Zhang, Xian
2018-01-01
Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III) and five subgroups (IIa-IIe) in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses.
Matteucci, M.; D'Angeli, S.; Errico, S.; Lamanna, R.; Perrotta, G.; Altamura, M. M.
2011-01-01
The olive tree lacks dormancy and is low temperature sensitive, with differences in cold tolerance and oil quality among genotypes. The oil is produced in the drupe, and the unsaturated fatty acids contribute to its quality. The aim of the present research was to investigate the relationship among development, cold response, expression of fatty acid desaturase (FAD) genes, and unsaturated fatty acid composition in drupes belonging to genotypes differing in leaf cold tolerance, but producing good oil (i.e. the non-hardy Moraiolo, the semi-hardy Frantoio, and the hardy Canino). In all genotypes, cold sensitivity, evaluated by cold-induced transient increases in cytosolic calcium, was high in the epi-mesocarp cells before oil body formation, and decreased during oil biogenesis. However, genotype-dependent differences in cold sensitivity appeared at the end of oil production. Genotype-dependent differences in FAD2.1, FAD2.2, FAD6, and FAD7 expression levels occurred in the epi-mesocarp cells during the oleogenic period. However, FAD2.1 and FAD7 were always the highest in the first part of this period. FAD2.2 and FAD7 increased after cold applications during oleogenesis, independently of the genotype. Unsaturated fatty acids increased in the drupes of the non-hardy genotype, but not in those of the hardy one, after cold exposure at the time of the highest FAD transcription. The results show a direct relationship between FAD expression and lipid desaturation in the drupes of the cold-sensitive genotype, and an inverse relationship in those of the cold-resistant genotype, suggesting that drupe cold acclimation requires a fine FAD post-transcriptional regulation. Hypotheses relating FAD desaturation to storage and membrane lipids, and genotype cold hardiness are discussed. PMID:21357772
Zhou, Yong; Hu, Lifang; Wu, Hao; Jiang, Lunwei
2017-01-01
Superoxide dismutase (SOD) proteins are widely present in the plant kingdom and play important roles in different biological processes. However, little is known about the SOD genes in cucumber. In this study, night SOD genes were identified from cucumber (Cucumis sativus) using bioinformatics-based methods, including 5 Cu/ZnSODs, 3 FeSODs, and 1 MnSOD. Gene structure and motif analysis indicated that most of the SOD genes have relatively conserved exon/intron arrangement and motif composition. Phylogenetic analyses with SODs from cucumber and several other species revealed that these SOD proteins can be traced back to two ancestral SODs before the divergence of monocot and dicot plants. Many cis-elements related to stress responses and plant hormones were found in the promoter sequence of each CsSOD gene. Gene expression analysis revealed that most of the CsSOD genes are expressed in almost all the tested tissues. qRT-PCR analysis of 8 selected CsSOD genes showed that these genes could respond to heat, cold, osmotic, and salt stresses. Our results provide a basis for further functional research on SOD gene family in cucumber and facilitate their potential applications in the genetic improvement of cucumber. PMID:28808654
Choi, Min Ji; Park, Ye Rin; Park, Su Jung; Kang, Hunseung
2015-11-01
Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Colton-Gagnon, Katia; Ali-Benali, Mohamed Ali; Mayer, Boris F.; Dionne, Rachel; Bertrand, Annick; Do Carmo, Sonia; Charron, Jean-Benoit
2014-01-01
Background and Aims Cold is a major constraint for cereal cultivation under temperate climates. Winter-hardy plants interpret seasonal changes and can acquire the ability to resist sub-zero temperatures. This cold acclimation process is associated with physiological, biochemical and molecular alterations in cereals. Brachypodium distachyon is considered a powerful model system to study the response of temperate cereals to adverse environmental conditions. To date, little is known about the cold acclimation and freezing tolerance capacities of Brachypodium. The main objective of this study was to evaluate the cold hardiness of seven diploid Brachypodium accessions. Methods An integrated approach, involving monitoring of phenological indicators along with expression profiling of the major vernalization regulator VRN1 orthologue, was followed. In parallel, soluble sugars and proline contents were determined along with expression profiles of two COR genes in plants exposed to low temperatures. Finally, whole-plant freezing tests were performed to evaluate the freezing tolerance capacity of Brachypodium. Key Results Cold treatment accelerated the transition from the vegetative to the reproductive phase in all diploid Brachypodium accessions tested. In addition, low temperature exposure triggered the gradual accumulation of BradiVRN1 transcripts in all accessions tested. These accessions exhibited a clear cold acclimation response by progressively accumulating proline, sugars and COR gene transcripts. However, whole-plant freezing tests revealed that these seven diploid accessions only have a limited capacity to develop freezing tolerance when compared with winter varieties of temperate cereals such as wheat and barley. Furthermore, little difference in terms of survival was observed among the accessions tested despite their previous classification as either spring or winter genotypes. Conclusions This study is the first to characterize the freezing tolerance capacities of B. distachyon and provides strong evidence that some diploid accessions such as Bd21 have a facultative growth habit. PMID:24323247
Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen
2016-07-01
Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.
Wang, Zhuo; Huang, Suzhen; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Xu, Biyu; Jin, Zhiqiang
2013-09-01
Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet. Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.
He, Chunmei; Teixeira da Silva, Jaime A; Tan, Jianwen; Zhang, Jianxia; Pan, Xiaoping; Li, Mingzhi; Luo, Jianping; Duan, Jun
2017-08-23
The WRKY family, one of the largest families of transcription factors, plays important roles in the regulation of various biological processes, including growth, development and stress responses in plants. In the present study, 63 DoWRKY genes were identified from the Dendrobium officinale genome. These were classified into groups I, II, III and a non-group, each with 14, 28, 10 and 11 members, respectively. ABA-responsive, sulfur-responsive and low temperature-responsive elements were identified in the 1-k upstream regulatory region of DoWRKY genes. Subsequently, the expression of the 63 DoWRKY genes under cold stress was assessed, and the expression profiles of a large number of these genes were regulated by low temperature in roots and stems. To further understand the regulatory mechanism of DoWRKY genes in biological processes, potential WRKY target genes were investigated. Among them, most stress-related genes contained multiple W-box elements in their promoters. In addition, the genes involved in polysaccharide synthesis and hydrolysis contained W-box elements in their 1-k upstream regulatory regions, suggesting that DoWRKY genes may play a role in polysaccharide metabolism. These results provide a basis for investigating the function of WRKY genes and help to understand the downstream regulation network in plants within the Orchidaceae.
Tao, Peng; Guo, Weiling; Li, Biyuan; Wang, Wuhong; Yue, Zhichen; Lei, Juanli; Zhao, Yanting; Zhong, Xinmin
2016-06-01
NADP-dependent malic enzymes (NADP-MEs) play essential roles in both normal development and stress responses in plants. Here, genome-wide analysis was performed to identify 65 putative NADP-ME genes from 12 crucifer species. These NADP-ME genes were grouped into five categories of syntenic orthologous genes and were divided into three clades of a phylogenic tree. Promoter motif analysis showed that NADP-ME1 genes in Group IV were more conserved with each other than the other NADP-ME genes in Groups I and II. A nucleotide motif involved in ABA responses, desiccation and seed development was found in the promoters of most NADP-ME1 genes. Generally, the NADP-ME genes of Brassica rapa, B. oleracea and B. napus had less introns than their corresponding Arabidopsis orthologs. In these three Brassica species, the NADP-ME genes derived from the least fractionated subgenome have lost less introns than those from the medium fractionated and most fractionated subgenomes. BrNADP-ME1 showed the highest expression in petals and mature embryos. Two paralogous NADP-ME2 genes (BrNADP-ME2a and BrNADP-ME2b) shared similar expression profiles and differential expression levels. BrNADP-ME3 showed down-regulation during embryogenesis and reached its lowest expression in early cotyledonary embryos. BrNADP-ME4 was expressed widely in multiple organs and showed high expression during the whole embryogenesis process. Different NADP-ME genes of B. rapa showed differential gene expression profiles in young leaves after ABA treatment or cold stress. Our genome-wide identification and characterization of NADP-ME genes extend our understanding of the evolution or function of this family in Brassicaceae.
Geeleher, Paul; Zhang, Zhenyu; Wang, Fan; Gruener, Robert F; Nath, Aritro; Morrison, Gladys; Bhutra, Steven; Grossman, Robert L; Huang, R Stephanie
2017-10-01
Obtaining accurate drug response data in large cohorts of cancer patients is very challenging; thus, most cancer pharmacogenomics discovery is conducted in preclinical studies, typically using cell lines and mouse models. However, these platforms suffer from serious limitations, including small sample sizes. Here, we have developed a novel computational method that allows us to impute drug response in very large clinical cancer genomics data sets, such as The Cancer Genome Atlas (TCGA). The approach works by creating statistical models relating gene expression to drug response in large panels of cancer cell lines and applying these models to tumor gene expression data in the clinical data sets (e.g., TCGA). This yields an imputed drug response for every drug in each patient. These imputed drug response data are then associated with somatic genetic variants measured in the clinical cohort, such as copy number changes or mutations in protein coding genes. These analyses recapitulated drug associations for known clinically actionable somatic genetic alterations and identified new predictive biomarkers for existing drugs. © 2017 Geeleher et al.; Published by Cold Spring Harbor Laboratory Press.
Cai, Hongsheng; Tian, Shan; Liu, Changlai; Dong, Hansong
2011-10-10
Abiotic stress seriously affects crop growth and productivity. To better understand the mechanisms plant uses to cope with drought, cold and salt stress, it is necessary to isolate and characterize important regulators response to these stresses. In this study, we cloned a MYB gene from wheat (Triticum aestivum L.) and designated it as TaMYB3R1 based on its conserved three repeats in MYB domain. The sequence of TaMYB3R1 protein shares high identity to other plant MYB3R proteins. Subcellular localization experiment in onion epidermal cells proved that TaMYB3R1 localized in the nucleus. Trans-activation essays in yeast cells confirmed that TaMYB3R1 was a transcriptional activator, and only C-terminal region was able to activate the expression of β-galactosidase. DNA-binding test showed the MSA cis element-binding activity of TaMYB3R1. After exogenous application of phytohormone ABA, the expression of TaMYB3R1 was induced, and its transcripts accumulated up to 24h; this is also the case for MeJA treatment, but after it peaked at 4h, it decreased to low levels. However, either SA or ET had no obvious effect on the expression of TaMYB3R1. Furthermore, the TaMYB3R1 was initially expressed at low levels and was gradually induced following treatment with salt, and continued to increase up to 72 h. This was similar for the cold treatment. In contrast, the peak appeared at 6h of the PEG treatment, and then gradually decreased to low levels. Our results suggest that TaMYB3R1 is potentially involved in wheat response to drought, salt and cold stress. Copyright © 2011 Elsevier B.V. All rights reserved.
Cheng, Weining; Li, Dan; Wang, Yue; Liu, Yang; Zhu-Salzman, Keyan
2016-12-01
Sitodiplosis mosellana Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of hsp70, hsc70 and hsp90 from S. mosellana larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsps included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of hsp90 was consistent with the known classification of insects. Expression of hsp70 and hsp90 were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, hsp70 was more strongly expressed in summer than in winter whereas hsp90 displayed the opposite pattern. Abundance of hsc70 mRNA was comparable prior to and during diapauses and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae (⩾30°C) or cold-stressed over-wintering larvae (⩽0°C) could further elevate expression of these three genes, but temperature extremes i.e. as high as 45°C or as low as -15°C failed to trigger such expression patterns. Notably, hsp70 was most sensitive to heat stress and hsp90 was most sensitive to cold stress. These results suggested that hsp70 and hsp90 play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, hsc70 most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dingkuhn, Michael; Pasco, Richard; Pasuquin, Julie Mae; Damo, Jean; Soulié, Jean-Christophe; Raboin, Louis-Marie; Dusserre, Julie; Sow, Abdoulaye; Manneh, Baboucarr; Shrestha, Suchit; Kretzschmar, Tobias
2017-07-10
Low night and high day temperatures during sensitive reproductive stages cause spikelet sterility in rice. Phenotyping of tolerance traits in the field is difficult because of temporal interactions with phenology and organ temperature differing from ambient. Physiological models can be used to separate these effects. A 203-accession indica rice diversity panel was phenotyped for sterility in ten environments in Senegal and Madagascar and climate data were recorded. Here we report on sterility responses while a companion study reported on phenology. The objectives were to improve the RIDEV model of rice thermal sterility, to estimate response traits by fitting model parameters, and to link the response traits to genomic regions through genome-wide association studies (GWAS). RIDEV captured 64% of variation of sterility when cold acclimation during vegetative stage was simulated, but only 38% when it was not. The RIDEV parameters gave more and stronger quantitative trait loci (QTLs) than index variables derived more directly from observation. The 15 QTLs identified at P<1 × 10-5 (33 at P<1 × 10-4) were related to sterility effects of heat, cold, cold acclimation, or unexplained causes (baseline sterility). Nine annotated genes were found on average within the 50% linkage disequilibrium (LD) region. Among them, one to five plausible candidate genes per QTL were identified based on known expression profiles (organ, stage, stress factors) and function. Meiosis-, development- and flowering-related genes were frequent, as well a stress signaling kinases and transcription factors. Putative epigenetic factors such as DNA methylases or histone-related genes were frequent in cold-acclimation QTLs, and positive-effect alleles were frequent in cold-tolerant highland rice from Madagascar. The results indicate that epigenetic control of acclimation may be important in indica rice genotypes adapted to cool environments. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Genome-wide analysis of WRKY gene family in Cucumis sativus
2011-01-01
Background WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. Results We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Conclusions Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes. PMID:21955985
Genome-wide analysis of WRKY gene family in Cucumis sativus.
Ling, Jian; Jiang, Weijie; Zhang, Ying; Yu, Hongjun; Mao, Zhenchuan; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan
2011-09-28
WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.
NASA Astrophysics Data System (ADS)
Zhang, Weixing; Zhu, Ming; Zhang, Ge; Liu, Feng; Wang, Hongfang; Guo, Xingqi; Xu, Baohua
2016-04-01
Estrogen-related receptor (ERR), which belongs to the nuclear receptor superfamily, has been implicated in diverse physiological processes involving the estrogen signaling pathway. However, little information is available on ERR in Apis cerana cerana. In this report, we isolated the ERR gene and investigated its involvement in antioxidant defense. Quantitative real-time polymerase chain reaction (qPCR) revealed that the highest mRNA expression occurred in eggs during different developmental stages. The expression levels of AccERR were highest in the muscle, followed by the rectum. The predicted transcription factor binding sites in the promoter of AccERR suggested that AccERR potentially functions in early development and in environmental stress responses. The expression of AccERR was induced by cold (4 °C), heat (42 °C), ultraviolet light (UV), HgCl2, and various types of pesticides (phoxim, deltamethrin, triadimefon, and cyhalothrin). Western blot was used to measure the expression levels of AccERR protein. These data suggested that AccERR might play a vital role in abiotic stress responses.
Expansion and stress responses of the AP2/EREBP superfamily in cotton.
Liu, Chunxiao; Zhang, Tianzhen
2017-01-31
The allotetraploid cotton originated from one hybridization event between an extant progenitor of Gosssypium herbaceum (A 1 ) or G. arboreum (A 2 ) and another progenitor, G. raimondii Ulbrich (D 5 ) 1-1.5 million years ago (Mya). The APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factors constitute one of the largest and most conserved gene families in plants. They are characterized by their AP2 domain, which comprises 60-70 amino acids, and are classified into four main subfamilies: the APETALA2 (AP2), Related to ABI3/VP1 (RAV), Dehydration-Responsive Element Binding protein (DREB) and Ethylene-Responsive Factor (ERF) subfamilies. The AP2/EREBP genes play crucial roles in plant growth, development and biotic and abiotic stress responses. Hence, understanding the molecular characteristics of cotton stress tolerance and gene family expansion would undoubtedly facilitate cotton resistance breeding and evolution research. A total of 269 AP2/EREBP genes were identified in the G. raimondii (D5) cotton genome. The protein domain architecture and intron/exon structure are simple and relatively conserved within each subfamily. They are distributed throughout all chromosomes but are clustered on various chromosomes due to genomic tandem duplication. We identified 73 tandem duplicated genes and 221 segmental duplicated gene pairs which contributed to the expansion of AP2/EREBP superfamily. Of them, tandem duplication was the most important force of the expansion of the B3 group. Transcriptome analysis showed that 504 AP2/EREBP genes were expressed in at least one tested G. hirsutum TM-1 tissues. In G. hirsutum, 151 non-repeated genes of the DREB and ERF subfamily genes were responsive to different stresses: 132 genes were induced by cold, 63 genes by drought and 94 genes by heat. qRT-PCR confirmed that 13 GhDREB and 15 GhERF genes were induced by cold and/or drought. No transcripts detected for 53 of the 111 tandem duplicated genes in TM-1. In addition, some homoeologous genes showed biased expression toward either A-or D-subgenome. The AP2/EREBP genes were obviously expanded in Gossypium. The GhDREB and GhERF genes play crucial roles in cotton stress responses. Our genome-wide analysis of AP2/EREBP genes in cotton provides valuable information for characterizing the molecular functions of AP2/EREBP genes and reveals insights into their evolution in polyploid plants.
NASA Astrophysics Data System (ADS)
Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab
2015-11-01
To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.
USDA-ARS?s Scientific Manuscript database
Understanding naturally evolved adaptation to arid climates may be a key factor in developing crops that can thrive during extreme climate fluctuations. Malus sieversii (Ledeb.) M. Roem. is a wild apple species that has adapted to harsh environments in Kazakhstan, including extreme cold and dry reg...
Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E
2016-09-01
Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. © 2016 Hollerer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo
2015-10-01
Grapefruits are among the citrus species more sensitive to cold and develop chilling injury symptoms during prolonged postharvest storage at temperatures lower than 8 ℃-10 ℃. The plant hormone ethylene has been described either to protect or potentiate chilling injury development in citrus whereas little is known about transcriptional regulation of ethylene biosynthesis, perception and response during cold storage and how the hormone is regulating its own perception and signaling cascade. Then, the objective of the present study was to explore the transcriptional changes in the expression of ethylene biosynthesis, receptors and response genes during cold storage of the white Marsh and the red Star Ruby grapefruits. The effect of the ethylene action inhibitor, 1-MCP, was evaluated to investigate the involvement of ethylene in the regulation of the genes of its own biosynthesis and perception pathway. Ethylene production was very low at the harvest time in fruits of both varieties and experienced only minor changes during storage. By contrast, inhibition of ethylene perception by 1-MCP markedly induced ethylene production, and this increase was highly stimulated during shelf-life at 20 ℃, as well as transcription of ACS and ACO. These results support the auto-inhibitory regulation of ethylene in grapefruits, which acts mainly at the transcriptional level of ACS and ACO genes. Moreover, ethylene receptor1 and ethylene receptor3 were induced by cold while no clear role of ethylene was observed in the induction of ethylene receptors. However, ethylene appears to be implicated in the transcriptional regulation of ERFs both under cold storage and shelf-life. © The Author(s) 2014.
Shi, Haitao; Chan, Zhulong
2014-09-01
Melatonin (N-acetyl-5-methoxytryptamine) is not only a widely known animal hormone, but also an important regulator in plant development and multiple abiotic stress responses. Recently, it has been revealed that melatonin alleviated cold stress through mediating several cold-related genes, including C-REPEAT-BINDING FACTORs (CBFs)/Drought Response Element Binding factors (DREBs), COR15a, and three transcription factors (CAMTA1, ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10), and ZAT12). In this study, we quantified the endogenous melatonin level in Arabidopsis plant leaves and found the endogenous melatonin levels were significantly induced by cold stress (4 °C) treatment. In addition, we found one cysteine2/histidine2-type zinc finger transcription factor, ZAT6, was involved in melatonin-mediated freezing stress response in Arabidopsis. Interestingly, exogenous melatonin enhanced freezing stress resistance was largely alleviated in AtZAT6 knockdown plants, but was enhanced in AtZAT6 overexpressing plants. Moreover, the expression levels of AtZAT6 and AtCBFs were commonly upregulated by cold stress (4 °C) and exogenous melatonin treatments, and modulation of AtZAT6 expression significantly affected the induction AtCBFs transcripts by cold stress (4 °C) and exogenous melatonin treatments. Taken together, AtZAT6-activated CBF pathway might be essential for melatonin-mediated freezing stress response in Arabidopsis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mousavi, Sadegh; Alisoltani, Arghavan; Shiran, Behrouz; Fallahi, Hossein; Ebrahimie, Esameil; Imani, Ali; Houshmand, Saadollah
2014-01-01
Almond (Prunus dulcis Mill.), one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond's transcriptome under the cold stress conditions. In the current research, we used RNA-seq technique to study the response of the reproductive tissues of almond (anther and ovary) to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated de novo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE) genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomly selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant.
Shiran, Behrouz; Fallahi, Hossein; Ebrahimie, Esameil; Imani, Ali; Houshmand, Saadollah
2014-01-01
Almond (Prunus dulcis Mill.), one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond’s transcriptome under the cold stress conditions. In the current reserch, we used RNA-seq technique to study the response of the reporuductive tissues of almond (anther and ovary) to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated de novo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE) genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomley selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant. PMID:25122458
Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang
1999-01-01
The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways. PMID:9880362
Assessing Oil Spill Impacts to Cold-Water Corals of the Deep Gulf of Mexico
NASA Astrophysics Data System (ADS)
DeLeo, D. M.; Lengyel, S. D.; Cordes, E. E.
2016-02-01
The Deepwater Horizon (DWH) disaster and subsequent cleanup efforts resulted in the release of an unprecedented amount of oil and chemical dispersants in the deep waters of the Gulf of Mexico (GoM). Over the years, numerous detrimental effects have been documented including impacts to cold-water coral ecosystems. Assessing and quantifying these effects is crucial to understanding the long-term consequences to affected coral populations as well as their resilience. We conducted live exposure experiments to investigate the toxicity of oil and dispersants on two deep-sea corals, Callogorgia delta and Paramuricea type B3. For both species, the treatments containing dispersants had a more pronounced effect than oil treatments alone. In addition, RNA from unexposed and DWH spill-impacted Paramuricea biscaya was extracted and sequenced using Illumina technology. A de novo reference transcriptome was produced and used to explore stress-induced variations in gene expression. Current findings show overexpression of genes coding for Cytochrome p450 (CYP1A1), Tumor necrosis factor receptor-associated factors (TRAFs), Peroxidasin and additional genes involved in innate immunity and apoptotic pathways. CYP1A1 is involved in the metabolism of xenobiotics and has been previously used as a diagnostic tool for aquatic pollution. TRAFs are responsible for regulating pathways involved in immune and inflammatory responses and were likewise overexpressed in thermally stressed shallow-water corals. Ribosomal proteins were also significantly underexpressed. These genes among others found in our expression data serve as useful biomarker candidates for assessing and monitoring future spill impacts as resource extraction continues in the deep waters of the GoM. Our results also provide insights into the responses of deep-sea corals to toxin exposure, implications of applying dispersants to oil spills and a novel reference assembly for a relatively under-studied group of cold-water corals.
Mo, Chunyan; Wan, Shumin; Xia, Youquan; Ren, Ning; Zhou, Yang; Jiang, Xingyu
2018-01-01
Cassava is an energy crop that is tolerant of multiple abiotic stresses. It has been reported that the interaction between Calcineurin B-like (CBL) protein and CBL-interacting protein kinase (CIPK) is implicated in plant development and responses to various stresses. However, little is known about their functions in cassava. Herein, 8 CBL ( MeCBL ) and 26 CIPK ( MeCIPK ) genes were isolated from cassava by genome searching and cloning of cDNA sequences of Arabidopsis CBL s and CIPK s. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression levels of MeCBL and MeCIPK genes were different in different tissues throughout the life cycle. The expression patterns of 7 CBL and 26 CIPK genes in response to NaCl, PEG, heat and cold stresses were analyzed by quantitative real-time PCR (qRT-PCR), and it was found that the expression of each was induced by multiple stimuli. Furthermore, we found that many pairs of CBLs and CIPKs could interact with each other via investigating the interactions between 8 CBL and 25 CIPK proteins using a yeast two-hybrid system. Yeast cells co-transformed with cassava MeCIPK24, MeCBL10 , and Na + /H + antiporter MeSOS1 genes exhibited higher salt tolerance compared to those with one or two genes. These results suggest that the cassava CBL-CIPK signal network might play key roles in response to abiotic stresses.
Mo, Chunyan; Wan, Shumin; Xia, Youquan; Ren, Ning; Zhou, Yang; Jiang, Xingyu
2018-01-01
Cassava is an energy crop that is tolerant of multiple abiotic stresses. It has been reported that the interaction between Calcineurin B-like (CBL) protein and CBL-interacting protein kinase (CIPK) is implicated in plant development and responses to various stresses. However, little is known about their functions in cassava. Herein, 8 CBL (MeCBL) and 26 CIPK (MeCIPK) genes were isolated from cassava by genome searching and cloning of cDNA sequences of Arabidopsis CBLs and CIPKs. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression levels of MeCBL and MeCIPK genes were different in different tissues throughout the life cycle. The expression patterns of 7 CBL and 26 CIPK genes in response to NaCl, PEG, heat and cold stresses were analyzed by quantitative real-time PCR (qRT-PCR), and it was found that the expression of each was induced by multiple stimuli. Furthermore, we found that many pairs of CBLs and CIPKs could interact with each other via investigating the interactions between 8 CBL and 25 CIPK proteins using a yeast two-hybrid system. Yeast cells co-transformed with cassava MeCIPK24, MeCBL10, and Na+/H+ antiporter MeSOS1 genes exhibited higher salt tolerance compared to those with one or two genes. These results suggest that the cassava CBL-CIPK signal network might play key roles in response to abiotic stresses. PMID:29552024
Gene expression analysis to understand cold tolerance in citrus
USDA-ARS?s Scientific Manuscript database
Citrus cultivars show a wide range of tolerance to cold temperatures. Lemons and limes are known to be sensitive to cold while certain mandarins and trifoliate oranges can endure severe winters. To understand the mechanism of cold tolerance in citrus, we selected three known cold-sensitive and three...
A role for jasmonates in the release of dormancy by cold stratification in wheat
Xu, Qian; Truong, Thy T.; Barrero, Jose M.; Jacobsen, John V.; Hocart, Charles H.; Gubler, Frank
2016-01-01
Hydration at low temperatures, commonly referred to as cold stratification, is widely used for releasing dormancy and triggering germination in a wide range of species including wheat. However, the molecular mechanism that underlies its effect on germination has largely remained unknown. Our previous studies showed that methyl-jasmonate, a derivative of jasmonic acid (JA), promotes dormancy release in wheat. In this study, we found that cold-stimulated germination of dormant grains correlated with a transient increase in JA content and expression of JA biosynthesis genes in the dormant embryos after transfer to 20 oC. The induction of JA production was dependent on the extent of cold imbibition and precedes germination. Blocking JA biosynthesis with acetylsalicylic acid (ASA) inhibited the cold-stimulated germination in a dose-dependent manner. In addition, we have explored the relationship between JA and abscisic acid (ABA), a well-known dormancy promoter, in cold regulation of dormancy. We found an inverse relationship between JA and ABA content in dormant wheat embryos following stratification. ABA content decreased rapidly in response to stratification, and the decrease was reversed by addition of ASA. Our results indicate that the action of JA on cold-stratified grains is mediated by suppression of two key ABA biosynthesis genes, TaNCED1 and TaNCED2. PMID:27140440
Shang, Sang; Wu, Chunlai; Huang, Chao; Tie, Weiwei; Yan, Yan; Ding, Zehong; Xia, Zhiqiang; Wang, Wenquan; Peng, Ming; Tian, Libo; Hu, Wei
2018-02-20
GENERAL REGULATORY FACTOR (GRF) proteins play vital roles in the regulation of plant growth, development, and response to abiotic stress. However, little information is known for this gene family in cassava ( Manihot esculenta ). In this study, 15 MeGRFs were identified from the cassava genome and were clustered into the ε and the non-ε groups according to phylogenetic, conserved motif, and gene structure analyses. Transcriptomic analyses showed eleven Me GRFs with constitutively high expression in stems, leaves, and storage roots of two cassava genotypes. Expression analyses revealed that the majority of GRFs showed transcriptional changes under cold, osmotic, salt, abscisic acid (ABA), and H₂O₂ treatments. Six Me GRFs were found to be commonly upregulated by abiotic stress, ABA, and H₂O₂ treatments, which may be the converging points of multiple signaling pathways. Interaction network analysis identified 18 possible interactors of MeGRFs. Taken together, this study elucidates the transcriptional control of Me GRFs in tissue development and the responses of abiotic stress and related signaling in cassava. Some constitutively expressed, tissue-specific, and abiotic stress-responsive candidate MeGRF genes were identified for the further genetic improvement of crops.
Lyu, Likang; Wen, Haishen; Li, Yun; Li, Jifang; Zhao, Ji; Zhang, Simin; Song, Min; Wang, Xiaojie
2018-06-14
In the present study, we conducted an RNA-Seq analysis to characterize the genes and pathways involved in acute thermal and cold stress responses in the liver of black rockfish, a viviparous teleost that has the ability to cope with a wide range of temperature changes. A total of 584 annotated differentially expressed genes (DEGs) were identified in all three comparisons (HT vs NT, HT vs LT and LT vs NT). Based on an enrichment analysis, DEGs with a potential role in stress accommodation were classified into several categories, including protein folding, metabolism, immune response, signal transduction, molecule transport, membrane, and cell proliferation/apoptosis. Considering that thermal stress has a greater effect than cold stress in black rockfish, 24 shared DEGs in the intersection of the HT vs LT and HT vs NT groups were enriched in 2 oxidation-related gene ontology (GO) terms. Nine important heat-stress-reducing pathways were significantly identified and classified into 3 classes: immune and infectious diseases, organismal immune system and endocrine system. Eight DEGs (early growth response protein 1, bile salt export pump, abcb11, hsp70a, rtp3, 1,25-dihydroxyvitamin d(3) 24-hydroxylase, apoa4, transcription factor jun-b-like and an uncharacterized gene) were observed among all three comparisons, strongly implying their potentially important roles in temperature stress responses.
Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang
2016-01-01
The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085
Cao, Min; Wang, Dongmei; Mao, Yunxiang; Kong, Fanna; Bi, Guiqi; Xing, Qikun; Weng, Zhen
2017-01-01
Bangia fuscopurpurea is a traditional mariculture crop having high nutritional value, eicosapntemacnioc acid (EPA) production, and protein content. As an intertidal species, it can tolerate drastic changes in abiotic factors such as temperature, hydration, and light radiation; however, genomic information on the evolutionary aspect and mechanism of EPA enrichment in B. fuscopurpurea and the role of EPA in cold tolerance in this species remain elusive. We conducted transcriptome profile analysis in B. fuscopurpurea to investigate the biological functions of genes associated with resistance to various environment factors. We identified 41,935 unigenes that were assembled and applied to public databases to define their functional annotation (NR, GO, KEGG, KOG, and SwissProt). We further identified genes that encoded key enzymes in EPA biosynthesis; five paralogous genes encoding delta5 desaturase were detected in B. fuscopurpurea. Fatty acid profiling and gene expression analysis of B. fuscopurpurea grown under cold stress were simultaneously performed. The EPA content was increased by 29.8% in the samples grown at 4°C, while the total amount of fatty acids remained unchanged. Moreover, all the EPA biosynthesis-related desaturase and elongase genes were upregulated under cold stress. Thus, we hypothesized that diverse EPA biosynthesis pathways and significant increase in gene copy numbers of fatty acid desaturases, together with the concomitant elevation in the transcriptional level of genes associated with fatty acid metabolism, lead to EPA accumulation and subsequently affect membrane fluidity, contributing to cold stress resistance in B. fuscopurpurea. Our findings not only provide a fundamental genetic background for further research in B. fuscopurpurea, but also have important implications for screening and genetic engineering of algae and plants for EPA production.
Mao, Yunxiang; Kong, Fanna; Bi, Guiqi; Xing, Qikun; Weng, Zhen
2017-01-01
Bangia fuscopurpurea is a traditional mariculture crop having high nutritional value, eicosapntemacnioc acid (EPA) production, and protein content. As an intertidal species, it can tolerate drastic changes in abiotic factors such as temperature, hydration, and light radiation; however, genomic information on the evolutionary aspect and mechanism of EPA enrichment in B. fuscopurpurea and the role of EPA in cold tolerance in this species remain elusive. We conducted transcriptome profile analysis in B. fuscopurpurea to investigate the biological functions of genes associated with resistance to various environment factors. We identified 41,935 unigenes that were assembled and applied to public databases to define their functional annotation (NR, GO, KEGG, KOG, and SwissProt). We further identified genes that encoded key enzymes in EPA biosynthesis; five paralogous genes encoding delta5 desaturase were detected in B. fuscopurpurea. Fatty acid profiling and gene expression analysis of B. fuscopurpurea grown under cold stress were simultaneously performed. The EPA content was increased by 29.8% in the samples grown at 4°C, while the total amount of fatty acids remained unchanged. Moreover, all the EPA biosynthesis-related desaturase and elongase genes were upregulated under cold stress. Thus, we hypothesized that diverse EPA biosynthesis pathways and significant increase in gene copy numbers of fatty acid desaturases, together with the concomitant elevation in the transcriptional level of genes associated with fatty acid metabolism, lead to EPA accumulation and subsequently affect membrane fluidity, contributing to cold stress resistance in B. fuscopurpurea. Our findings not only provide a fundamental genetic background for further research in B. fuscopurpurea, but also have important implications for screening and genetic engineering of algae and plants for EPA production. PMID:29240755
Cao, Haishun; Wang, Li; Nawaz, Muhammad A.; Niu, Mengliang; Sun, Jingyu; Xie, Junjun; Kong, Qiusheng; Huang, Yuan; Cheng, Fei; Bie, Zhilong
2017-01-01
Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata) is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA) treatment. Furthermore, the ectopic expression (EE) of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops. PMID:29234347
Donovan, Marissa R; Marr, Michael T
2016-09-02
Maintaining protein homeostasis is critical for survival at the cellular and organismal level (Morimoto, R. I. (2011) Cold Spring Harb. Symp. Quant. Biol. 76, 91-99). Cells express a family of molecular chaperones, the heat shock proteins, during times of oxidative stress to protect against proteotoxicity. We have identified a second stress responsive transcription factor, dFOXO, that works alongside the heat shock transcription factor to activate transcription of both the small heat shock protein and the large heat shock protein genes. This expression likely protects cells from protein misfolding associated with oxidative stress. Here we identify the regions of the Hsp70 promoter essential for FOXO-dependent transcription using in vitro methods and find a physiological role for FOXO-dependent expression of heat shock proteins in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Diallo, Amadou; Kane, Ndjido; Agharbaoui, Zahra; Badawi, Mohamed; Sarhan, Fathey
2010-01-13
The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.
Nguyen, Phuong; Greene, Elizabeth; Ishola, Peter; Huff, Geraldine; Donoghue, Annie; Bottje, Walter; Dridi, Sami
2015-01-01
Low environmental temperatures are among the most challenging stressors in poultry industries. Although landmark studies using acute severe cold exposure have been conducted, still the molecular mechanisms underlying cold-stress responses in birds are not completely defined. In the present study we determine the effect of chronic mild cold conditioning (CMCC) on growth performances and on the expression of key metabolic-related genes in three metabolically important tissues: brain (main site for feed intake control), liver (main site for lipogenesis) and muscle (main site for thermogenesis). 80 one-day old male broiler chicks were divided into two weight-matched groups and maintained in two different temperature floor pen rooms (40 birds/room). The temperature of control room was 32°C, while the cold room temperature started at 26.7°C and gradually reduced every day (1°C/day) to reach 19.7°C at the seventh day of the experiment. At day 7, growth performances were recorded (from all birds) and blood samples and tissues were collected (n = 10). The rest of birds were maintained at the same standard environmental condition for two more weeks and growth performances were measured. Although feed intake remained unchanged, body weight gain was significantly increased in CMCC compared to the control chicks resulting in a significant low feed conversion ratio (FCR). Circulating cholesterol and creatine kinase levels were higher in CMCC chicks compared to the control group (P<0.05). CMCC significantly decreased the expression of both the hypothalamic orexigenic neuropeptide Y (NPY) and anorexigenic cocaine and amphetamine regulated transcript (CART) in chick brain which may explain the similar feed intake between the two groups. Compared to the control condition, CMCC increased the mRNA abundance of AMPKα1/α2 and decreased mTOR gene expression (P<0.05), the master energy and nutrient sensors, respectively. It also significantly decreased the expression of fatty acid synthase (FAS) gene in chick brain compared to the control. Although their roles are still unknown in avian species, adiponectin (Adpn) and its related receptors (AdipoR1 and 2) were down regulated in the brain of CMCC compared to control chicks (P<0.05). In the liver, CMCC significantly down regulated the expression of lipogenic genes namely FAS, acetyl-CoA carboxylase alpha (ACCα) and malic enzyme (ME) and their related transcription factors sterol regulatory element binding protein 1/2 (SREBP-1 and 2). Hepatic mTOR mRNA levels and phosphorylated mTOR at Ser2448 were down regulated (P<0.05), however phosphorylated ACCαSer79 (inactivation) was up regulated (P<0.05) in CMCC compared to control chicks, indicating that CMCC switch hepatic catabolism on and inhibits hepatic lipogenesis. In the muscle however, CMCC significantly up regulated the expression of carnitine palmitoyltransferase 1 (CPT-1) gene and the mRNA and phosphorylated protein levels of mTOR compared to the control chicks, indicating that CMCC enhanced muscle fatty acid β-oxidation. In conclusion, this is the first report indicating that CMCC may regulate AMPK-mTOR expression in a tissue specific manner and identifying AMPK-mTOR as a potential molecular signature that controls cellular fatty acid utilization (inhibition of hepatic lipogenesis and induction of muscle fatty acid β-oxidation) to enhance growth performance during mild cold acclimation.
Alternative Splicing of Barley Clock Genes in Response to Low Temperature
Calixto, Cristiane P. G.; Simpson, Craig G.; Waugh, Robbie; Brown, John W. S.
2016-01-01
Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement. PMID:27959947
Fischer, Iris; Steige, Kim A.; Stephan, Wolfgang; Mboup, Mamadou
2013-01-01
The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced) gene family and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S. chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense. By investigating gene expression differences at the population level we provide further support of our previous conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights the importance of wild Solanum species as a genetic resource for their cultivated relatives. PMID:24205149
Jue, Dengwei; Sang, Xuelian; Liu, Liqin; Shu, Bo; Wang, Yicheng; Xie, Jianghui; Liu, Chengming; Shi, Shengyou
2018-03-15
Ubiquitin-conjugating enzymes (E2s or UBC enzymes) play vital roles in plant development and combat various biotic and abiotic stresses. Longan ( Dimocarpus longan Lour.) is an important fruit tree in the subtropical region of Southeast Asia and Australia; however the characteristics of the UBC gene family in longan remain unknown. In this study, 40 D. longan UBC genes ( DlUBCs ), which were classified into 15 groups, were identified in the longan genome. An RNA-seq based analysis showed that DlUBCs showed distinct expression in nine longan tissues. Genome-wide RNA-seq and qRT-PCR based gene expression analysis revealed that 11 DlUBCs were up- or down-regualted in the cultivar "Sijimi" (SJ), suggesting that these genes may be important for flower induction. Finally, qRT-PCR analysis showed that the mRNA levels of 13 DlUBCs under SA (salicylic acid) treatment, seven under methyl jasmonate (MeJA) treatment, 27 under heat treatment, and 16 under cold treatment were up- or down-regulated, respectively. These results indicated that the DlUBCs may play important roles in responses to abiotic stresses. Taken together, our results provide a comprehensive insight into the organization, phylogeny, and expression patterns of the longan UBC genes, and therefore contribute to the greater understanding of their biological roles in longan.
Min, Q; Cheng, S Y; Xi, J F; Ma, J; Xin, T R; Xia, B; Zou, Z W
BACKGROUND: Thitarodes larvae are the host of the caterpillar fungus Ophiocordyceps sinensis. Low temperature is the main environmental limitation for larvae growth. To better understand the cold adaption process in T. pui larvae, the expression patterns of trehalose-6-phosphate synthase (TpTPS), heat shock protein 70 (TpHSP70), and heat shock protein 90 (TpHSP90) were investigated upon short and long-term exposure to 0°C. The 6th instar T. pui larvae were collected in July 2013. TpTPS was firstly sequenced and expression patterns of TpTPS, TpHSP70 and TpHSP90 were investigated using quantitative PCR. Full-length cDNA of TpTPS was 3,012 bp, with an open reading frame of 2,472 bp and an encoding protein of 823 amino acids. TpTPS up-regulation was induced by cold exposure. TpHSP70 expression is altered by cold exposure, but remained low. TpHSP90 expression was obviously up regulated in long-term cold stimulation. All three genes (TpTPS, TpHSP70 and TpHSP90) have likely contributed to cold tolerance in T. pui larvae, TpTPS and TpHSP90 potentially being more important.
Dhawan, Sunita Singh; Shukla, Preeti; Gupta, Pankhuri; Lal, R K
2016-05-01
Ocimum (Lamiaceae) is an important source of essential oils and aroma chemicals especially eugenol, methyl eugenol, linalool, methyl chavicol etc. An elite evergreen hybrid has been developed from Ocimum kilimandscharicum and Ocimum basilicum, which demonstrated adaptive behavior towards cold stress. A comparative molecular analysis has been done through RAPD, AFLP, and ISSR among O. basilicum and O. kilimandscharicum and their evergreen cold-tolerant hybrid. The RAPD and AFLP analyses demonstrated similar results, i.e., the hybrid of O. basilicum and O. kilimandscharicum shares the same cluster with O. kilimandscharicum, while O. basilicum behaves as an outgroup, whereas in ISSR analysis, the hybrid genotype grouped in the same cluster with O. basilicum. Ocimum genotypes were analyzed and compared for their trichome density. There were distinct differences on morphology, distribution, and structure between the two kinds of trichomes, i.e., glandular and non-glandular. Glandular trichomes contain essential oils, polyphenols, flavonoids, and acid polysaccharides. Hair-like trichomes, i.e., non-glandular trichomes, help in keeping the frost away from the living surface cells. O. basilicum showed less number of non-glandular trichomes on leaves compared to O. kilimandscharicum and the evergreen cold-tolerant hybrid. Trichomes were analyzed in O. kilimandscharicum, O. basilicum, and their hybrid. An increased proline content at the biochemical level represents a higher potential to survive in a stress condition like cold stress. In our analysis, the proline content is quite higher in tolerant variety O. kilimandscharicum, low in susceptible variety O. basilicum, and intermediate in the hybrid. Gene expression analysis was done in O. basilicum, O. kilimandscharicum and their hybrid for TTG1, GTL1, and STICHEL gene locus which regulates trichome development and its formation and transcription factors WRKY and MPS involved in the regulation of plant responses to freezing and cold. The analysis showed that O. kilimandscharicum and the hybrid were very close to each other but O. basilicum was more distinct in all respects. The overexpression of the WRKY coding gene showed high expression in the hybrid as compared to O. kilimandscharicum and O. basilicum and the transcription factor microspore-specific (MPS) promoter has also shown overexpression in the hybrid for its response against cold stress. The developed evergreen interspecific hybrid may thus provide a base to various industries which are dependent upon the bioactive constituents of Ocimum species.
Xin, Haiping; Zhu, Wei; Wang, Lina; Xiang, Yue; Fang, Linchuan; Li, Jitao; Sun, Xiaoming; Wang, Nian; Londo, Jason P.; Li, Shaohua
2013-01-01
Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate transcripts may contribute to the excellent cold-hardiness of V. amurensis. PMID:23516547
Arguedas-Villa, Carolina; Kovacevic, Jovana; Allen, Kevin J; Stephan, Roger; Tasara, Taurai
2014-06-01
Sixty-two strains of Listeria monocytogenes isolated in Canada and Switzerland were investigated. Comparison based on molecular genotypes confirmed that strains in these two countries are genetically diverse. Interestingly strains from both countries displayed similar range of cold growth phenotypic profiles. Based on cold growth lag phase duration periods displayed in BHI at 4 °C, the strains were similarly divided into groups of fast, intermediate and slow cold adaptors. Overall Swiss strains had faster exponential cold growth rates compared to Canadian strains. However gene expression analysis revealed no significant differences between fast and slow cold adapting strains in the ability to induce nine cold adaptation genes (lmo0501, cspA, cspD, gbuA, lmo0688, pgpH, sigB, sigH and sigL) in response to cold stress exposure. Neither was the presence of Stress survival islet 1 (SSI-1) analysed by PCR associated with enhanced cold adaptation. Phylogeny based on the sigL gene subdivided strains from these two countries into two major and one minor cluster. Fast cold adaptors were more frequently in one of the major clusters (cluster A), whereas slow cold adaptors were mainly in the other (cluster B). Genetic differences between these two major clusters are associated with various amino acid substitutions in the predicted SigL proteins. Compared to the EGDe type strain and most slow cold adaptors, most fast cold adaptors exhibited five identical amino acid substitutions (M90L, S203A/S203T, S304N, S315N, and I383T) in their SigL proteins. We hypothesize that these amino acid changes might be associated with SigL protein structural and functional changes that may promote differences in cold growth behaviour between L. monocytogenes strains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauen, Thomas; Frye, Bjoern C.; Pneumology, University Medical Center, University of Freiburg, Freiburg
Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3′ enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3′ adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPOmore » production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. - Highlights: • Hypoxia drives nuclear translocation of cold shock protein YB-1. • YB-1 physically interacts with hypoxia-inducible factor (HIF)-1α. • YB-1 binds to the hypoxia-responsive element (HRE) within the erythropoietin (EPO) 3′ enhancer. • YB-1 trans-regulates transcription of hypoxia-dependent genes such as EPO and VEGF.« less
Gong, Zhizhong; Lee, Hojoung; Xiong, Liming; Jagendorf, André; Stevenson, Becky; Zhu, Jian-Kang
2002-01-01
Susceptibility to chilling injury prevents the cultivation of many important crops and limits the extended storage of horticultural commodities. Although freezing tolerance is acquired through cold-induced gene expression changes mediated in part by the CBF family of transcriptional activators, whether plant chilling resistance or sensitivity involves the CBF genes is not known. We report here that an Arabidopsis thaliana mutant impaired in the cold-regulated expression of CBF genes and their downstream target genes is sensitive to chilling stress. Expression of CBF3 under a strong constitutive promoter restores chilling resistance to the mutant plants. The mutated gene was cloned and found to encode a nuclear localized RNA helicase. Our results identify a regulator of CBF genes, and demonstrate the importance of gene regulation and the CBF transcriptional activators in plant chilling resistance. PMID:12165572
Dubé, Marie-Pier; Castonguay, Yves; Cloutier, Jean; Michaud, Josée; Bertrand, Annick
2013-03-01
Dehydrin defines a complex family of intrinsically disordered proteins with potential adaptive value with regard to freeze-induced cell dehydration. Search within an expressed sequence tags library from cDNAs of cold-acclimated crowns of alfalfa (Medicago sativa spp. sativa L.) identified transcripts putatively encoding K(3)-type dehydrins. Analysis of full-length coding sequences unveiled two highly homologous sequence variants, K(3)-A and K(3)-B. An increase in the frequency of genotypes yielding positive genomic amplification of the K(3)-dehydrin variants in response to selection for superior tolerance to freezing and the induction of their expression at low temperature strongly support a link with cold adaptation. The presence of multiple allelic forms within single genotypes and independent segregation indicate that the two K(3) dehydrin variants are encoded by distinct genes located at unlinked loci. The co-inheritance of the K(3)-A dehydrin with a Y(2)K(4) dehydrin restriction fragment length polymorphism with a demonstrated impact on freezing tolerance suggests the presence of a genome domain where these functionally related genes are located. These results provide additional evidence that dehydrin play important roles with regard to tolerance to subfreezing temperatures. They also underscore the value of recurrent selection to help identify variants within a large multigene family in allopolyploid species like alfalfa.
D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M
2013-01-01
FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Chen, Xin; Zhang, Jin; Liu, Qingzhong; Guo, Wei; Zhao, Tiantian; Ma, Qinghua; Wang, Guixi
2014-01-01
The genus Corylus is an important woody species in Northeast China. Its products, hazelnuts, constitute one of the most important raw materials for the pastry and chocolate industry. However, limited genetic research has focused on Corylus because of the lack of genomic resources. The advent of high-throughput sequencing technologies provides a turning point for Corylus research. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive database for the Corylus heterophylla Fisch floral buds. The C. heterophylla Fisch floral buds transcriptome was sequenced using the Illumina paired-end sequencing technology. We produced 28,930,890 raw reads and assembled them into 82,684 contigs. A total of 40,941 unigenes were identified, among which 30,549 were annotated in the NCBI Non-redundant (Nr) protein database and 18,581 were annotated in the Swiss-Prot database. Of these annotated unigenes, 25,311 and 10,514 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. We could map 17,207 unigenes onto 128 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database. Additionally, based on the transcriptome, we constructed a candidate cold tolerance gene set of C. heterophylla Fisch floral buds. The expression patterns of selected genes during four stages of cold acclimation suggested that these genes might be involved in different cold responsive stages in C. heterophylla Fisch floral buds. The transcriptome of C. heterophylla Fisch floral buds was deep sequenced, de novo assembled, and annotated, providing abundant data to better understand the C. heterophylla Fisch floral buds transcriptome. Candidate genes potentially involved in cold tolerance were identified, providing a material basis for future molecular mechanism analysis of C. heterophylla Fisch floral buds tolerant to cold stress.
Huang, Xiao-San; Wang, Wei; Zhang, Qian; Liu, Ji-Hong
2013-01-01
The basic helix-loop-helix (bHLH) transcription factors are involved in a variety of physiological processes. However, plant bHLHs functioning in cold tolerance and the underlying mechanisms remain poorly understood. Here, we report the identification and functional characterization of PtrbHLH isolated from trifoliate orange (Poncirus trifoliata). The transcript levels of PtrbHLH were up-regulated under various abiotic stresses, particularly cold. PtrbHLH was localized in the nucleus with transactivation activity. Overexpression of PtrbHLH in tobacco (Nicotiana tabacum) or lemon (Citrus limon) conferred enhanced tolerance to cold under chilling or freezing temperatures, whereas down-regulation of PtrbHLH in trifoliate orange by RNA interference (RNAi) resulted in elevated cold sensitivity. A range of stress-responsive genes was up-regulated or down-regulated in the transgenic lemon. Of special note, several peroxidase (POD) genes were induced after cold treatment. Compared with the wild type, POD activity was increased in the overexpression plants but decreased in the RNAi plants, which was inversely correlated with the hydrogen peroxide (H2O2) levels in the tested lines. Treatment of the transgenic tobacco plants with POD inhibitors elevated the H2O2 levels and greatly compromised their cold tolerance, while exogenous replenishment of POD enhanced cold tolerance of the RNAi line. In addition, transgenic tobacco and lemon plants were more tolerant to oxidative stresses. Yeast one-hybrid assay and transient expression analysis demonstrated that PtrbHLH could bind to the E-box elements in the promoter region of a POD gene. Taken together, these results demonstrate that PtrbHLH plays an important role in cold tolerance, at least in part, by positively regulating POD-mediated reactive oxygen species removal. PMID:23624854
2015-01-01
Background The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. Results We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. Conclusions Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms. PMID:26694630
Byun, Mi Young; Lee, Jungeun; Cui, Li Hua; Kang, Yoonjee; Oh, Tae Kyung; Park, Hyun; Lee, Hyoungseok; Kim, Woo Taek
2015-07-01
Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Durack, Juliana; Ross, Tom; Bowman, John P.
2013-01-01
The ability of Listeria monocytogenes to adapt to various food and food- processing environments has been attributed to its robustness, persistence and prevalence in the food supply chain. To improve the present understanding of molecular mechanisms involved in hyperosmotic and low-temperature stress adaptation of L. monocytogenes, we undertook transcriptomics analysis on three strains adapted to sub-lethal levels of these stress stimuli and assessed functional gene response. Adaptation to hyperosmotic and cold-temperature stress has revealed many parallels in terms of gene expression profiles in strains possessing different levels of stress tolerance. Gene sets associated with ribosomes and translation, transcription, cell division as well as fatty acid biosynthesis and peptide transport showed activation in cells adapted to either cold or hyperosmotic stress. Repression of genes associated with carbohydrate metabolism and transport as well as flagella was evident in stressed cells, likely linked to activation of CodY regulon and consequential cellular energy conservation. PMID:24023890
Molecular cloning of low-temperature-inducible ribosomal proteins from soybean.
Kim, Kee-Young; Park, Seong-Whan; Chung, Young-Soo; Chung, Chung-Han; Kim, Jung-In; Lee, Jai-Heon
2004-05-01
Three ribosomal protein genes induced by low-temperature treatment were isolated from soybean. GmRPS13 (742 bp) encodes a 17.1 kDa protein which has 95% identity with the 40S ribosomal protein S13 of Panax ginseng (AB043974). GmRPS6 (925 bp) encodes a 28.1 kDa protein which has 94% identity with the 40S ribosomal protein S6 of Asparagus officinalis (AJ277533). GmRPL37 (494 bp) encodes a 10.7 kDa protein which has 85% identity with the 60S ribosomal protein L37 of Arabidopsis thaliana (AF370216). The expression of these ribosomal protein genes started to increase 3 d after low-temperature treatment, whereas the cold-stress protein src1 was highly induced from the first day. Such late response of these ribosomal protein genes may be due to secondary signals during cold adaptation. The induction of ribosomal protein genes might enhance the translation process or help proper ribosome functioning under low-temperature conditions.
Min, Hye Jo; Jung, Ye Jin; Kang, Bin Goo; Kim, Woo Taek
2016-03-01
Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature (4°C) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.
Wei, Wei; Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Feng, Jia-Yue
2016-08-01
WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale.
Wang, Tao; Song, Zheng; Wei, Li; Li, Lubin
2018-03-01
The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators, and the members regulate multiple biological processes. However, there is limited information on WRKYs in Dendrobium officinale. In this study, 52 WRKY family genes of D. officinale were surveyed for the first time. Conserved domain, phylogenetic, exon-intron construction, and expression analyses were performed for the DoWRKY genes. Two major types of intron splicing (PR and VQR introns) were found, and the intron insertion position was observed to be relatively conserved in the conserved DoWRKY domains. The expression profiles of nine DoWRKYs were analyzed in cold- and methyl jasmonate (MeJA)-treated D. officinale seedlings; the DoWRKYs showed significant expression changes at different levels, which suggested their vital roles in stress tolerance. Moreover, the expression trends of most of the DoWRKYs after the simultaneous cold stress and MeJA treatment were the opposite of those of DoWRKYs after the individual cold stress and MeJA treatments, suggesting that the two stresses might have antagonistic effects and affect the adaptive capacity of the plants to stresses. Twelve DoWRKY genes were differentially expressed between symbiotic and asymbiotic germinated seeds; all were upregulated in the symbiotic germinated seeds except DoWRKY16. These differences in expression of DoWRKYs might be involved in promoting in vitro symbiotic germination of seeds with Tulasnella-like fungi. Our findings will be useful for further studies on the WRKY family genes in orchids.
MyomiR-133 regulates brown fat differentiation through Prdm16.
Trajkovski, Mirko; Ahmed, Kashan; Esau, Christine C; Stoffel, Markus
2012-12-01
Brown adipose tissue (BAT) uses the chemical energy of lipids and glucose to produce heat, a function that can be induced by cold exposure or diet. A key regulator of BAT is the gene encoding PR domain containing 16 (Prdm16), whose expression can drive differentiation of myogenic and white fat precursors to brown adipocytes. Here we show that after cold exposure, the muscle-enriched miRNA-133 is markedly downregulated in BAT and subcutaneous white adipose tissue (SAT) as a result of decreased expression of its transcriptional regulator Mef2. miR-133 directly targets and negatively regulates PRDM16, and inhibition of miR-133 or Mef2 promotes differentiation of precursors from BAT and SAT to mature brown adipocytes, thereby leading to increased mitochondrial activity. Forced expression of miR-133 in brown adipogenic conditions prevents the differentiation to brown adipocytes in both BAT and SAT precursors. Our results point to Mef2 and miR-133 as central upstream regulators of Prdm16 and hence of brown adipogenesis in response to cold exposure in BAT and SAT.
Genome-wide analysis of the GH3 family in apple (Malus × domestica).
Yuan, Huazhao; Zhao, Kai; Lei, Hengjiu; Shen, Xinjie; Liu, Yun; Liao, Xiong; Li, Tianhong
2013-05-02
Auxin plays important roles in hormone crosstalk and the plant's stress response. The auxin-responsive Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acids (JAs) to amino acids during hormone- and stress-related signaling pathways. With the sequencing of the apple (Malus × domestica) genome completed, it is possible to carry out genomic studies on GH3 genes to indentify candidates with roles in abiotic/biotic stress responses. Malus sieversii Roem., an apple rootstock with strong drought tolerance and the ancestral species of cultivated apple species, was used as the experimental material. Following genome-wide computational and experimental identification of MdGH3 genes, we showed that MdGH3s were differentially expressed in the leaves and roots of M. sieversii and that some of these genes were significantly induced after various phytohormone and abiotic stress treatments. Given the role of GH3 in the negative feedback regulation of free IAA concentration, we examined whether phytohormones and abiotic stresses could alter the endogenous auxin level. By analyzing the GUS activity of DR5::GUS-transformed Arabidopsis seedlings, we showed that ABA, SA, salt, and cold treatments suppressed the auxin response. These findings suggest that other phytohormones and abiotic stress factors might alter endogenous auxin levels. Previous studies showed that GH3 genes regulate hormonal homeostasis. Our study indicated that some GH3 genes were significantly induced in M. sieversii after various phytohormone and abiotic stress treatments, and that ABA, SA, salt, and cold treatments reduce the endogenous level of axuin. Taken together, this study provides evidence that GH3 genes play important roles in the crosstalk between auxin, other phytohormones, and the abiotic stress response by maintaining auxin homeostasis.
mRNA Transcript Abundance during Plant Growth and the Influence of Li + Exposure
Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; ...
2014-10-23
Lithium (Li) toxicity in plants is, at a minimum, a function of Li + concentration, exposure time, species and growth conditions. Most plant studies with Li + focus on short-term acute exposures. This study examines short- and long-term effects of Li + exposure in Arabidopsis with Li + uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li +-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li + resembled priormore » studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li + exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li + exposure increases expression signal transduction genes. The identification of new Li +-sensitive genes and a gene-based “response plan” for acute and chronic Li + exposure are delineated.« less
mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.
Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E
2014-12-01
Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng
2017-01-01
Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.
Zhu, Mingku; Chen, Guoping; Dong, Tingting; Wang, Lingling; Zhang, Jianling; Zhao, Zhiping; Hu, Zongli
2015-01-01
The DEAD-box RNA helicases are involved in almost every aspect of RNA metabolism, associated with diverse cellular functions including plant growth and development, and their importance in response to biotic and abiotic stresses is only beginning to emerge. However, none of DEAD-box genes was well characterized in tomato so far. In this study, we reported on the identification and characterization of two putative DEAD-box RNA helicase genes, SlDEAD30 and SlDEAD31 from tomato, which were classified into stress-related DEAD-box proteins by phylogenetic analysis. Expression analysis indicated that SlDEAD30 was highly expressed in roots and mature leaves, while SlDEAD31 was constantly expressed in various tissues. Furthermore, the expression of both genes was induced mainly in roots under NaCl stress, and SlDEAD31 mRNA was also increased by heat, cold, and dehydration. In stress assays, transgenic tomato plants overexpressing SlDEAD31 exhibited dramatically enhanced salt tolerance and slightly improved drought resistance, which were simultaneously demonstrated by significantly enhanced expression of multiple biotic and abiotic stress-related genes, higher survival rate, relative water content (RWC) and chlorophyll content, and lower water loss rate and malondialdehyde (MDA) production compared to wild-type plants. Collectively, these results provide a preliminary characterization of SlDEAD30 and SlDEAD31 genes in tomato, and suggest that stress-responsive SlDEAD31 is essential for salt and drought tolerance and stress-related gene regulation in plants.
Pulp Sensitivity: Influence of Sex, Psychosocial Variables, COMT Gene, and Chronic Facial Pain.
Mladenovic, Irena; Krunic, Jelena; Supic, Gordana; Kozomara, Ruzica; Bokonjic, Dejan; Stojanovic, Nikola; Magic, Zvonko
2018-05-01
The purpose of this study was to evaluate the associations of variability in pulp sensitivity with sex, psychosocial variables, the gene that encodes for the enzyme catechol-O-methyltransferase (COMT), and chronic painful conditions (temporomandibular disorders [TMDs]). The study was composed of 97 subjects (68 women and 29 men aged 20-44 years). The electric (electric pulp tester) and cold (refrigerant spray) stimuli were performed on mandibular lateral incisors. The results were expressed as pain threshold values for electric pulp stimulation (0-80 units) and as pain intensity scores (visual numeric scale from 0-10) for cold stimulation. The Research Diagnostic Criteria for TMD were used to assess TMD, depression, and somatization. DNA extracted from peripheral blood was genotyped for 3 COMT polymorphisms (rs4680, rs6269, and rs165774) using the real-time TaqMan method. Multivariate linear regression was used to investigate the joint effect of the predictor variables (clinical and genetic) on pulp sensitivity (dependent variables). Threshold responses to electric stimuli were related to female sex (P < .01) and the homozygous GG genotype for the rs165774 polymorphism (P < .05). Pain intensity to cold stimuli was higher in TMD patients (P < .01) and tended to be higher in women. Multivariate linear regression identified sex and the rs165774 COMT polymorphism as the determinants of electric pain sensitivity, whereas TMD accounts for the variability in the cold response. Our findings indicate that sex/a COMT gene variant and TMD as a chronic painful condition may contribute to individual variation in electric and cold pulp sensitivity, respectively. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun
2018-03-15
Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.
Gravity Persistent Signal 1 (GPS1) reveals novel cytochrome P450s involved in gravitropism.
Withers, John C; Shipp, Matthew J; Rupasinghe, Sanjeewa G; Sukumar, Poornima; Schuler, Mary A; Muday, Gloria K; Wyatt, Sarah E
2013-01-01
Gravity is an important environmental factor that affects growth and development of plants. In response to changes in gravity, directional growth occurs along the major axes and lateral branches of both shoots and roots. The gravity persistent signal (gps) mutants of Arabidopsis thaliana were previously identified as having an altered response to gravity when reoriented relative to the gravity vector in the cold, with the gps1 mutant exhibiting a complete loss of tropic response under these conditions. Thermal asymmetric interlaced (TAIL) PCR was used to identify the gene defective in gps1. Gene expression data, molecular modeling and computational substrate dockings, quantitative RT-PCR analyses, reporter gene fusions, and physiological analyses of knockout mutants were used to characterize the genes identified. Cloning of the gene defective in gps1 and genetic complementation revealed that GPS1 encodes CYP705A22, a cytochrome P450 monooxygenase (P450). CYP705A5, a closely related family member, was identified as expressed specifically in roots in response to gravistimulation, and a mutation affecting its expression resulted in a delayed gravity response, increased flavonol levels, and decreased basipetal auxin transport. Molecular modeling coupled with in silico substrate docking and diphenylboric acid 2-aminoethyl ester (DBPA) staining indicated that these P450s are involved in biosynthesis of flavonoids potentially involved in auxin transport. The characterization of two novel P450s (CYP705A22 and CYP705A5) and their role in the gravity response has offered new insights into the regulation of the genetic and physiological controls of plant gravitropism.
Niu, Fangfang; Wang, Chen; Yan, Jingli; Guo, Xiaohua; Wu, Feifei; Yang, Bo; Deyholos, Michael K; Jiang, Yuan-Qing
2016-09-01
NAC transcription factors (TFs) are plant-specific and play important roles in development, responses to biotic and abiotic cues and hormone signaling. So far, only a few NAC genes have been reported to regulate cell death. In this study, we identified and characterized a NAC55 gene isolated from oilseed rape (Brassica napus L.). BnaNAC55 responds to multiple stresses, including cold, heat, abscisic acid (ABA), jasmonic acid (JA) and a necrotrophic fungal pathogen Sclerotinia sclerotiorum. BnaNAC55 has transactivation activity and is located in the nucleus. BnaNAC55 is able to form homodimers in planta. Unlike ANAC055, full-length BnaNAC55, but not either the N-terminal NAC domain or C-terminal regulatory domain, induces ROS accumulation and hypersensitive response (HR)-like cell death when expressed both in oilseed rape protoplasts and Nicotiana benthamiana. Furthermore, BnaNAC55 expression causes obvious nuclear DNA fragmentation. Moreover, quantitative reverse transcription PCR (qRT-PCR) analysis identified that the expression levels of multiple genes regulating ROS production and scavenging, defense response as well as senescence are significantly induced. Using a dual luciferase reporter assay, we further confirm that BnaNAC55 could activate the expression of a few ROS and defense-related gene expression. Taken together, our work has identified a novel NAC TF from oilseed rape that modulates ROS accumulation and cell death.
Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress
Pérez-Torrado, Roberto; Oliveira, Bruno M.; Zemančíková, Jana; Sychrová, Hana; Querol, Amparo
2016-01-01
Production and balance of glycerol is essential for the survival of yeast cells in certain stressful conditions as hyperosmotic or cold shock that occur during industrial processes as winemaking. These stress responses are well-known in S. cerevisiae, however, little is known in other phylogenetically close related Saccharomyces species associated with natural or fermentation environments such as S. uvarum, S. paradoxus or S. kudriavzevii. In this work we have investigated the expression of four genes (GPD1, GPD2, STL1, and FPS1) crucial in the glycerol pool balance in the four species with a biotechnological potential (S. cerevisiae; S. paradoxus; S. uvarum; and S. kudriavzevii), and the ability of strains to grow under osmotic and cold stresses. The results show different pattern and level of expression among the different species, especially for STL1. We also studied the function of Stl1 glycerol symporter in the survival to osmotic changes and cell growth capacity in winemaking environments. These experiments also revealed a different functionality of the glycerol transporters among the different species studied. All these data point to different strategies to handle glycerol accumulation in response to winemaking stresses as hyperosmotic or cold-hyperosmotic stress in the different species, with variable emphasis in the production, influx, or efflux of glycerol. PMID:27064588
Systematic identification of light-regulated cold-responsive proteome in a model cyanobacterium.
Chen, Weiyang; Fang, Longfa; Huang, Xiahe; Ge, Haitao; Wang, Jinlong; Wang, Xiaorong; Zhang, Yuanya; Sui, Na; Xu, Wu; Wang, Yingchun
2018-05-15
Differential expression of cold-responsive proteins is necessary for cyanobacteria to acclimate to cold stress frequently occurring in their natural habitats. Accumulating evidence indicates that cold-induced expression of certain proteins is dependent on light illumination, but a systematic identification of light-dependent and/or light-independent cold-responsive proteins in cyanobacteria is still lacking. Herein, we comprehensively identified cold-responsive proteins in a model cyanobacterium Synechocystis sp. PCC 6803 (Hereafter Synechocystis) that was cold-stressed in light or in dark. In total, 72 proteins were identified as cold-responsive, including 19 and 17 proteins whose cold-responsiveness are light-dependent and light-independent, respectively. Bioinformatic analysis revealed that outer membrane proteins, proteins involved in translation, and proteins involved in divergent types of stress responses were highly enriched in the cold-responsive proteins. Moreover, a protein network responsible for nitrogen assimilation and amino acid biosynthesis, transcription, and translation were upregulated in response to the cold stress. The network contains both light-dependent and light-independent cold-responsive proteins, probably for fine tuning its activity to endow Synechocystis the flexibility necessary for cold adaptation in their natural habitats, where days and nights are alternating. Together, our results should serve as an important resource for future study toward understanding the mechanism of cold acclimation in cyanobacteria. Photosynthetic cyanobacteria need to acclimate to frequently occurring abiotic stresses such as cold in their natural habitats, and the acclimation process has to be coordinated with photosynthesis, the light-dependent process that provides carbon and energy for propagation of cyanobacteria. It is conceivable that cold-induced differential protein expression can also be regulated by light. Hence it is important to systematically identify cold responsive proteins that are regulated or not regulated by light to better understand the mechanism of cold acclimation in cyanobacteria. In this manuscript, we identified a network involved in protein synthesis that were upregulated by cold. The network contains both light-dependent and light-independent cold-inducible proteins, presumably for fine tuning the activity of the network in natural habitats of cyanobacteria where days and nights are alternating. This finding underscores the significance of proteome reprograming toward enhancing protein synthesis in cold adaptation. Copyright © 2018 Elsevier B.V. All rights reserved.
Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj
2008-11-01
Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.
Chen, Jiaming; Yang, Xiaoqiang; Huang, Xiaomao; Duan, Shihua; Long, Chuan; Chen, Jiakuan; Rong, Jun
2017-02-28
Cold tolerance is a key determinant of the geographical distribution range of a plant species and crop production. Cold acclimation can enhance freezing-tolerance of plant species through a period of exposure to low nonfreezing temperatures. As a subtropical evergreen broadleaf plant, oil-tea camellia demonstrates a relatively strong tolerance to freezing temperatures. Moreover, wild oil-tea camellia is an essential genetic resource for the breeding of cultivated oil-tea camellia, one of the four major woody oil crops in the world. The aims of our study are to identify variations in transcriptomes of wild oil-tea camellia from different latitudes and elevations, and discover candidate genes for cold acclimation. Leaf transcriptomes were obtained of wild oil-tea camellia from different elevations in Lu and Jinggang Mountains, China. Huge amounts of simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs) and insertion/deletions (InDels) were identified. Based on SNPs, phylogenetic analysis was performed to detect genetic structure. Wild oil-tea camellia samples were genetically differentiated mainly between latitudes (between Lu and Jinggang Mountains) and then among elevations (within Lu or Jinggang Mountain). Gene expression patterns of wild oil-tea camellia samples were compared among different air temperatures, and differentially expressed genes (DEGs) were discovered. When air temperatures were below 10 °C, gene expression patterns changed dramatically and majority of the DEGs were up-regulated at low temperatures. More DEGs concerned with cold acclimation were detected at 2 °C than at 5 °C, and a putative C-repeat binding factor (CBF) gene was significantly up-regulated only at 2 °C, suggesting a stronger cold stress at 2 °C. We developed a new method for identifying significant functional groups of DEGs. Among the DEGs, transmembrane transporter genes were found to be predominant and many of them encoded transmembrane sugar transporters. Our study provides one of the largest transcriptome dataset in the genus Camellia. Wild oil-tea camellia populations were genetically differentiated between latitudes. It may undergo cold acclimation when air temperatures are below 10 °C. Candidate genes for cold acclimation may be predominantly involved in transmembrane transporter activities.
Zhang, Lina; Zhang, Lichao; Xia, Chuan; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying
2016-01-01
NAC transcription factors play diverse roles in plant development and responses to abiotic stresses. However, the biological roles of NAC family members in wheat are not well understood. Here, we reported the isolation and functional characterization of a novel wheat TaNAC47 gene. TaNAC47 encoded protein, localizing in the nucleus, is able to bind to the ABRE cis-element and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional activator. We also showed that TaNAC47 is differentially expressed in different tissues, and its expression was induced by the stress treatments of salt, cold, polyethylene glycol and exogenous abscisic acid. Furthermore, overexpression of TaNAC47 in Arabidopsis resulted in ABA hypersensitivity and enhancing tolerance of transgenic plants to drought, salt, and freezing stresses. Strikingly, overexpression of TaNAC47 was found to activate the expression of downstream genes and change several physiological indices that may enable transgenic plants to overcome unfavorable environments. Taken together, these results uncovered an important role of wheat TaNAC47 gene in response to ABA and abiotic stresses. PMID:26834757
Zhang, Lina; Zhang, Lichao; Xia, Chuan; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying
2015-01-01
NAC transcription factors play diverse roles in plant development and responses to abiotic stresses. However, the biological roles of NAC family members in wheat are not well understood. Here, we reported the isolation and functional characterization of a novel wheat TaNAC47 gene. TaNAC47 encoded protein, localizing in the nucleus, is able to bind to the ABRE cis-element and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional activator. We also showed that TaNAC47 is differentially expressed in different tissues, and its expression was induced by the stress treatments of salt, cold, polyethylene glycol and exogenous abscisic acid. Furthermore, overexpression of TaNAC47 in Arabidopsis resulted in ABA hypersensitivity and enhancing tolerance of transgenic plants to drought, salt, and freezing stresses. Strikingly, overexpression of TaNAC47 was found to activate the expression of downstream genes and change several physiological indices that may enable transgenic plants to overcome unfavorable environments. Taken together, these results uncovered an important role of wheat TaNAC47 gene in response to ABA and abiotic stresses.
Stecyk, Jonathan A W; Couturier, Christine S; Fagernes, Cathrine E; Ellefsen, Stian; Nilsson, Göran E
2012-03-01
The mRNA expression of heat-shock protein 90 (HSP90) and heat-shock cognate 70 (HSC70) was examined in cardiac chambers and telencephalon of warm- (21°C) and cold-acclimated (5°C) turtles (Trachemys scripta) exposed to normoxia, prolonged anoxia or anoxia followed by reoxygenation. Additionally, the suitability of total RNA as well as mRNA from β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and cyclophilin A (PPIA) for normalizing gene expression data was assessed, as compared to the use of an external RNA control. Measurements of HSP90 and HSC70 mRNA expression revealed that anoxia and reoxygenation have tissue- and gene-specific effects. By and large, the alterations support previous investigations on HSP protein abundance in the anoxic turtle heart and brain, as well as the hypothesized roles of HSP90 and HSC70 during stress and non-stress conditions. However, more prominent was a substantially increased HSP90 and HSC70 mRNA expression in the cardiac chambers with cold acclimation. The finding provides support for the notion that cold temperature induces a number of adaptations in tissues of anoxia-tolerant vertebrates that precondition them for winter anoxia. β-actin, GAPDH and PPIA mRNA expression and total RNA also varied with oxygenation state and acclimation temperature in a tissue- and gene-specific manner, as well as among tissue types, thus disqualifying them as suitable for real-time RT-PCR normalization. Thus, the present data highlights the advantages of normalizing real-time RT-PCR data to an external RNA control, an approach that also allows inter-tissue and potentially inter-species comparisons of target gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Baev, Vesselin; Milev, Ivan; Naydenov, Mladen; Vachev, Tihomir; Apostolova, Elena; Mehterov, Nikolay; Gozmanva, Mariyana; Minkov, Georgi; Sablok, Gaurav; Yahubyan, Galina
2014-11-01
Small RNA profiling and assessing its dependence on changing environmental factors have expanded our understanding of the transcriptional and post-transcriptional regulation of plant stress responses. Insufficient data have been documented earlier to depict the profiling of small RNA classes in temperature-associated stress which has a wide implication for climate change biology. In the present study, we report a comparative assessment of the genome-wide profiling of small RNAs in Arabidopsis thaliana using two conditional responses, induced by high- and low-temperature. Genome-wide profiling of small RNAs revealed an abundance of 21 nt small RNAs at low temperature, while high temperature showed an abundance of 21 nt and 24 nt small RNAs. The two temperature treatments altered the expression of a specific subset of mature miRNAs and displayed differential expression of a number of miRNA isoforms (isomiRs). Comparative analysis demonstrated that a large number of protein-coding genes can give rise to differentially expressed small RNAs following temperature shifts. Low temperature caused accumulation of small RNAs, corresponding to the sense strand of a number of cold-responsive genes. In contrast, high temperature stimulated the production of small RNAs of both polarities from genes encoding functionally diverse proteins. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Dametto, Andressa; Sperotto, Raul A; Adamski, Janete M; Blasi, Édina A R; Cargnelutti, Denise; de Oliveira, Luiz F V; Ricachenevsky, Felipe K; Fregonezi, Jeferson N; Mariath, Jorge E A; da Cruz, Renata P; Margis, Rogério; Fett, Janette P
2015-09-01
Rice productivity is largely affected by low temperature, which can be harmful throughout plant development, from germination to grain filling. Germination of indica rice cultivars under cold is slow and not uniform, resulting in irregular emergence and small plant population. To identify and characterize novel genes involved in cold tolerance during the germination stage, two indica rice genotypes (sister lines previously identified as cold-tolerant and cold-sensitive) were used in parallel transcriptomic analysis (RNAseq) under cold treatment (seeds germinating at 13 °C for 7 days). We detected 1,361 differentially expressed transcripts. Differences in gene expression found by RNAseq were confirmed for 11 selected genes using RT-qPCR. Biological processes enhanced in the cold-tolerant seedlings include: cell division and expansion (confirmed by anatomical sections of germinating seeds), cell wall integrity and extensibility, water uptake and membrane transport capacity, sucrose synthesis, generation of simple sugars, unsaturation of membrane fatty acids, wax biosynthesis, antioxidant capacity (confirmed by histochemical staining of H2O2), and hormone and Ca(2+)-signaling. The cold-sensitive seedlings respond to low temperature stress increasing synthesis of HSPs and dehydrins, along with enhanced ubiquitin/proteasome protein degradation pathway and polyamine biosynthesis. Our findings can be useful in future biotechnological approaches aiming to cold tolerance in indica rice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ioannidi, Eugenia; Kalamaki, Mary S; Engineer, Cawas; Pateraki, Irene; Alexandrou, Dimitris; Mellidou, Ifigeneia; Giovannonni, James; Kanellis, Angelos K
2009-01-01
L-ascorbate (the reduced form of vitamin C) participates in diverse biological processes including pathogen defence mechanisms, and the modulation of plant growth and morphology, and also acts as an enzyme cofactor and redox status indicator. One of its chief biological functions is as an antioxidant. L-ascorbate intake has been implicated in the prevention/alleviation of varied human ailments and diseases including cancer. To study the regulation of accumulation of this important nutraceutical in fruit, the expression of 24 tomato (Solanum lycopersicon) genes involved in the biosynthesis, oxidation, and recycling of L-ascorbate during the development and ripening of fruit have been characterized. Taken together with L-ascorbate abundance data, the results show distinct changes in the expression profiles for these genes, implicating them in nodal regulatory roles during the process of L-ascorbate accumulation in tomato fruit. The expression of these genes was further studied in the context of abiotic and post-harvest stress, including the effects of heat, cold, wounding, oxygen supply, and ethylene. Important aspects of the hypoxic and post-anoxic response in tomato fruit are discussed. The data suggest that L-galactose-1-phosphate phosphatase could play an important role in regulating ascorbic acid accumulation during tomato fruit development and ripening.
Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun
2016-01-01
Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.
Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun
2016-01-01
Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice. PMID:26752408
Zeng, Mu-Heng; Liu, Sheng-Hong; Yang, Miao-Xian; Zhang, Ya-Jun; Liang, Jia-Yong; Wan, Xiao-Rong; Liang, Hong
2013-01-01
Clathrin, a three-legged triskelion composed of three clathrin heavy chains (CHCs) and three light chains (CLCs), plays a critical role in clathrin-mediated endocytosis (CME) in eukaryotic cells. In this study, the genes ZmCHC1 and ZmCHC2 encoding clathrin heavy chain in maize were cloned and characterized for the first time in monocots. ZmCHC1 encodes a 1693-amino acid-protein including 29 exons and 28 introns, and ZmCHC2 encodes a 1746-amino acid-protein including 28 exons and 27 introns. The high similarities of gene structure, protein sequences and 3D models among ZmCHC1, and Arabidopsis AtCHC1 and AtCHC2 suggest their similar functions in CME. ZmCHC1 gene is predominantly expressed in maize roots instead of ubiquitous expression of ZmCHC2. Consistent with a typical predicted salicylic acid (SA)-responsive element and four predicted ABA-responsive elements (ABREs) in the promoter sequence of ZmCHC1, the expression of ZmCHC1 instead of ZmCHC2 in maize roots is significantly up-regulated by SA or ABA, suggesting that ZmCHC1 gene may be involved in the SA signaling pathway in maize defense responses. The expressions of ZmCHC1 and ZmCHC2 genes in maize are down-regulated by azide or cold treatment, further revealing the energy requirement of CME and suggesting that CME in plants is sensitive to low temperatures. PMID:23880865
Falavigna, Vítor da Silveira; Miotto, Yohanna Evelyn; Porto, Diogo Denardi; Anzanello, Rafael; Santos, Henrique Pessoa dos; Fialho, Flávio Bello; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís Fernando
2015-11-01
Dehydrins (DHN) are proteins involved in plant adaptive responses to abiotic stresses, mainly dehydration. Several studies in perennial crops have linked bud dormancy progression, a process characterized by the inability to initiate growth from meristems under favorable conditions, with DHN gene expression. However, an in-depth characterization of DHNs during bud dormancy progression is still missing. An extensive in silico characterization of the apple DHN gene family was performed. Additionally, we used five different experiments that generated samples with different dormancy status, including genotypes with contrasting dormancy traits, to analyze how DHN genes are being regulated during bud dormancy progression in apple by real-time quantitative polymerase chain reaction (RT-qPCR). Duplication events took place in the diversification of apple DHN family. Additionally, MdDHN genes presented tissue- and bud dormant-specific expression patterns. Our results indicate that MdDHN genes are highly divergent in function, with overlapping levels, and that their expressions are fine-tuned by the environment during the dormancy process in apple. © 2015 Scandinavian Plant Physiology Society.
Cai, Ziling; Chen, Jingxiang; Cheng, Jie
2017-01-01
Abstract Ambient temperature is an important factor limiting the abundance and distribution of insects, and heat shock protein (Hsp) gene expression is sensitive to extremes of cold and heat. In order to explore the role of Hsps during thermal stress and development in Monochamus alternatus Hope (Coleoptera: Cerambycidae), we cloned and characterized full-length Hsp genes, including MaHsp60, MaHsp70, and MaHsp90. M. alternatus were exposed to different temperatures (−15, −5, 5, 15, 25, 35, and 40℃) for 1 h and was allowed to recover at 25℃ for 1 h. Following the treatments, we investigated the expression of the Hsps by quantitative real-time polymerase chain reaction. In third instar larvae, MaHsp60, MaHsp70, and MaHsp90 expression was upregulated in response to cold and heat, but the three Hsps were especially sensitive to heat, specifically at 35℃ and 40℃. After heating M. alternatus to 35℃, the expression of MaHsp60, MaHsp70, and MaHsp90 was higher than at 5℃ and 25℃ in nearly all developmental stages. MaHsp60, MaHsp70, and MaHsp90 expression was highest in later pupal, early adult, and early adult stages, respectively. These results suggest that compared with normal ambient temperatures, thermal stress could induce high expression of the three Hsps.
Jansen, M; Geerts, A N; Rago, A; Spanier, K I; Denis, C; De Meester, L; Orsini, L
2017-04-01
Changes in temperature have occurred throughout Earth's history. However, current warming trends exacerbated by human activities impose severe and rapid loss of biodiversity. Although understanding the mechanisms orchestrating organismal response to climate change is important, remarkably few studies document their role in nature. This is because only few systems enable the combined analysis of genetic and plastic responses to environmental change over long time spans. Here, we characterize genetic and plastic responses to temperature increase in the aquatic keystone grazer Daphnia magna combining a candidate gene and an outlier analysis approach. We capitalize on the short generation time of our species, facilitating experimental evolution, and the production of dormant eggs enabling the analysis of long-term response to environmental change through a resurrection ecology approach. We quantify plasticity in the expression of 35 candidate genes in D. magna populations resurrected from a lake that experienced changes in average temperature over the past century and from experimental populations differing in thermal tolerance isolated from a selection experiment. By measuring expression in multiple genotypes from each of these populations in control and heat treatments, we assess plastic responses to extreme temperature events. By measuring evolutionary changes in gene expression between warm- and cold-adapted populations, we assess evolutionary response to temperature changes. Evolutionary response to temperature increase is also assessed via an outlier analysis using EST-linked microsatellite loci. This study provides the first insights into the role of plasticity and genetic adaptation in orchestrating adaptive responses to environmental change in D. magna. © 2017 John Wiley & Sons Ltd.
2011-01-01
Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548
Ou, Wenjun; Mao, Xiang; Huang, Chao; Tie, Weiwei; Yan, Yan; Ding, Zehong; Wu, Chunlai; Xia, Zhiqiang; Wang, Wenquan; Zhou, Shiyi; Li, Kaimian; Hu, Wei
2018-01-01
KT/HAK/KUP (KUP) family is responsible for potassium ion (K + ) transport, which plays a vital role in the response of plants to abiotic stress by maintaining osmotic balance. However, our understanding of the functions of the KUP family in the drought-resistant crop cassava ( Manihot esculenta Crantz) is limited. In the present study, 21 cassava KUP genes ( MeKUPs ) were identified and classified into four clusters based on phylogenetic relationships, conserved motifs, and gene structure analyses. Transcriptome analysis revealed the expression diversity of cassava KUPs in various tissues of three genotypes. Comparative transcriptome analysis showed that the activation of MeKUP genes by drought was more in roots than that in leaves of Arg7 and W14 genotypes, whereas less in roots than that in leaves of SC124 variety. These findings indicate that different cassava genotypes utilize various drought resistance mechanism mediated by KUP genes. Specific KUP genes showed broad upregulation after exposure to salt, osmotic, cold, H 2 O 2 , and abscisic acid (ABA) treatments. Taken together, this study provides insights into the KUP -mediated drought response of cassava at transcription levels and identifies candidate genes that may be utilized in improving crop tolerance to abiotic stress.
Tillett, Richard L.; Wheatley, Matthew D.; Tattersall, Elizabeth A.R.; Schlauch, Karen A.; Cramer, Grant R.; Cushman, John C.
2014-01-01
Summary Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. “Freedom” and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2°C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9–12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a greater than 1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation, and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. PMID:21914113
Sun, Peipei; Mao, Yunxiang; Li, Guiyang; Cao, Min; Kong, Fanna; Wang, Li; Bi, Guiqi
2015-06-17
Pyropia yezoensis is a model organism often used to investigate the mechanisms underlying stress tolerance in intertidal zones. The digital gene expression (DGE) approach was used to characterize a genome-wide comparative analysis of differentially expressed genes (DEGs) that influence the physiological, developmental or biochemical processes in samples subjected to 4 treatments: high-temperature stress (HT), chilling stress (CS), freezing stress (FS) and normal temperature (NT). Equal amounts of total RNAs collected from 8 samples (two biological replicates per treatment) were sequenced using the Illumina/Solexa platform. Compared with NT, a total of 2202, 1334 and 592 differentially expressed unigenes were detected in HT, CS and FS respectively. Clustering analysis suggested P. yezoensis acclimates to low and high-temperature stress condition using different mechanisms: In heat stress, the unigenes related to replication and repair of DNA and protein processing in endoplasmic reticulum were active; however at low temperature stresses, unigenes related to carbohydrate metabolism and energy metabolism were active. Analysis of gene differential expression showed that four categories of DEGs functioning as temperature sensors were found, including heat shock proteins, H2A, histone deacetylase complex and transcription factors. Heat stress caused chloroplast genes down-regulated and unigenes encoding metacaspases up-regulated, which is an important regulator of PCD. Cold stress caused an increase in the expression of FAD to improve the proportion of polyunsaturated fatty acids. An up-regulated unigene encoding farnesyl pyrophosphate synthase was found in cold stress, indicating that the plant hormone ABA also played an important role in responding to temperature stress in P. yezoensis. The variation of amount of unigenes and different gene expression pattern under different temperature stresses indicated the complicated and diverse regulation mechanism in response to temperature stress in P. yezoensis. Several common metabolism pathways were found both in P. yezoensis and in higher plants, such as FAD in low-temperature stress and HSP in heat stress. Meanwhile, many chloroplast genes and unigene related to the synthesis of abscisic acid were detected, revealing its unique temperature-regulation mechanism in this intertidal species. This sequencing dataset and analysis may serve as a valuable resource to study the mechanisms involved in abiotic stress tolerance in intertidal seaweeds.
Cold-Specific Induction of a Dehydrin Gene Family Member in Barley.
Van Zee, K.; Chen, F. Q.; Hayes, P. M.; Close, T. J.; Chen, THH.
1995-01-01
An interval on barley (Hordeum vulgare L.) chromosome 7 accounting for significant quantitative trait locus effects for winter hardiness were detected in a winter (Dicktoo) x spring (Morex) barley population (P.M. Hayes, T. Blake, T.H.H. Chen, S. Tragoonrung, F. Chen, A. Pan, and B. Liu [1993] Genome 36: 66-71). Two members of the barley dehydrin gene family, Dhn1 and Dhn2, were located within the region defining the winter hardiness quantitative trait locus effect (A. Pan, P.M. Hayes, F. Chen, T. Blake, T.H.H. Chen, T.T.S. Wright, I. Karsai, Z. Bedo [1994] Theor Appl Genet 89: 900-910). To investigate the possible role of Dhn1 and Dhn2 in winter hardiness, we examined the expression pattern of six barley dehydrin gene family members in shoot tissue in response to cold temperature. Incubation of 3-week-old barley plants at 2[deg]C resulted in a rapid induction of a single 86-kD polypeptide that was recognized by an antiserum against a peptide conserved in the dehydrin gene family. Northern blot analysis confirmed the induction of an mRNA corresponding to Dhn5. The expression patterns of cold-induced dehydrins in shoot tissue for Dicktoo and Morex were identical under the conditions studied, in spite of the known phenotypic differences in their winter hardiness. These results, together with the allelic structure of selected high- and low-survival lines, suggest that the Dicktoo alleles at the Dhn1 and Dhn2 may not be the primary determinants of winter hardiness in barley. PMID:12228540
Wiberley-Bradford, Amy E; Busse, James S; Jiang, Jiming; Bethke, Paul C
2014-11-16
Storing potato tubers at low temperatures minimizes sprouting and disease but can cause an accumulation of reducing sugars in a process called cold-induced sweetening. Tubers with increased amounts of reducing sugars produce dark-colored, bitter-tasting fried products with elevated amounts of acrylamide, a possible carcinogen. Vacuolar invertase (VInv), which converts sucrose produced by starch breakdown to glucose and fructose, is the key determinant of reducing sugar accumulation during cold-induced sweetening. In this study, wild-type tubers and tubers in which VInv expression was reduced by RNA interference were used to investigate time- and temperature-dependent changes in sugar contents, chip color, and expression of VInv and other genes involved in starch metabolism in tubers during long-term cold storage. VInv activities and tuber reducing sugar contents were much lower, and tuber sucrose contents were much higher, in transgenic than in wild-type tubers stored at 3-9°C for up to eight months. Large differences in VInv mRNA accumulation were not observed at later times in storage, especially at temperatures below 9°C, so differences in invertase activity were likely established early in the storage period and maintained by stability of the invertase protein. Sugar contents, chip color, and expression of several of the studied genes, including AGPase and GBSS, were affected by storage temperature in both wild-type and transgenic tubers. Though transcript accumulation for other sugar-metabolism genes was affected by storage temperature and duration, it was essentially unaffected by invertase silencing and altered sugar contents. Differences in stem- and bud-end sugar contents in wild-type and transgenic tubers suggested different compartmentalization of sucrose at the two ends of stored tubers. VInv silencing significantly reduced cold-induced sweetening in stored potato tubers, likely by means of differential VInv expression early in storage. Transgenic tubers retained sensitivity to storage temperature, and accumulated greater amounts of sucrose, glucose and fructose at 3°C than at 7-9°C. At each storage temperature, suppression of VInv expression and large differences in tuber sugar contents had no effect on expression of AGPase and GBSS, genes involved in starch metabolism, suggesting that transcription of these genes is not regulated by tuber sugar content.
Preliminary analysis of cold stress responsive proteins in Mesocestoides corti larvae.
Canclini, Lucía; Esteves, Adriana
2007-07-01
Many parasites undergo sudden changes in environmental conditions at some stage during their life cycle. The molecular response to this variation is characterised by a rapid transcriptional activation of a specific set of genes coding for proteins generically known as stress proteins. They appear to be also involved in various biological processes including cell proliferation and differentiation. The platyhelminth parasite, Mesocestoides corti (Cestoda) presents important properties as a model organism. Under stress conditions, key molecules involved in metabolic pathways as well as in the growth and differentiation of the parasite can be identified. 2D protein expression profile of tetrathyridia of M. corti, submitted to nutritional starvation and cold stress is described, as well as the recovery pattern. A set of specifically expressed proteins was observed in each experimental condition. Quantitative and qualitative differences and stress recovery pattern are also reported. This work makes evident the high plasticity and resistance to extreme environmental conditions of these parasites at the molecular level.
Zhai, Yiqian; Zhang, Lichao; Xia, Chuan; Fu, Silu; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying
2016-05-13
Although bHLH transcription factors play important roles regulating plant development and abiotic stress response and tolerance, few functional studies have been performed in wheat. In this study, we isolated and characterized a bHLH gene, TabHLH39, from wheat. The TabHLH39 gene is located on wheat chromosome 5DL, and the protein localized to the nucleus and activated transcription. TabHLH39 showed variable expression in roots, stems, leaves, glumes, pistils and stamens and was induced by polyethylene glycol, salt and cold treatments. Further analysis revealed that TabHLH39 overexpression in Arabidopsis significantly enhanced tolerance to drought, salt and freezing stress during the seedling stage, which was also demonstrated by enhanced abiotic stress-response gene expression and changes to several physiological indices. Therefore, TabHLH39 has potential in transgenic breeding applications to improve abiotic stress tolerance in crops. Copyright © 2016 Elsevier Inc. All rights reserved.
Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long
2013-08-01
Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.
Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Lan, Xiujin; Mao, Long
2013-01-01
Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat. PMID:23918959
Transcriptomic characterization of cold acclimation in larval zebrafish
2013-01-01
Background Temperature is one of key environmental parameters that affect the whole life of fishes and an increasing number of studies have been directed towards understanding the mechanisms of cold acclimation in fish. However, the adaptation of larvae to cold stress and the cold-specific transcriptional alterations in fish larvae remain largely unknown. In this study, we characterized the development of cold-tolerance in zebrafish larvae and investigated the transcriptional profiles under cold stress using RNA-seq. Results Pre-exposure of 96 hpf zebrafish larvae to cold stress (16°C) for 24 h significantly increased their survival rates under severe cold stress (12°C). RNA-seq generated 272 million raw reads from six sequencing libraries and about 92% of the processed reads were mapped to the reference genome of zebrafish. Differential expression analysis identified 1,431 up- and 399 down-regulated genes. Gene ontology enrichment analysis of cold-induced genes revealed that RNA splicing, ribosome biogenesis and protein catabolic process were the most highly overrepresented biological processes. Spliceosome, proteasome, eukaryotic ribosome biogenesis and RNA transport were the most highly enriched pathways for genes up-regulated by cold stress. Moreover, alternative splicing of 197 genes and promoter switching of 64 genes were found to be regulated by cold stress. A shorter isoform of stk16 that lacks 67 amino acids at the N-terminus was specifically generated by skipping the second exon in cold-treated larvae. Alternative promoter usage was detected for per3 gene under cold stress, which leading to a highly up-regulated transcript encoding a truncated protein lacking the C-terminal domains. Conclusions These findings indicate that zebrafish larvae possess the ability to build cold-tolerance under mild low temperature and transcriptional and post-transcriptional regulations are extensively involved in this acclimation process. PMID:24024969
Behr, Marc; Legay, Sylvain; Hausman, Jean-Francois; Guerriero, Gea
2015-07-16
Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop.
Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses
Behr, Marc; Legay, Sylvain; Hausman, Jean-Francois; Guerriero, Gea
2015-01-01
Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop. PMID:26193255
Hong, S W; Jon, J H; Kwak, J M; Nam, H G
1997-01-01
A cDNA clone for a receptor-like protein kinase gene (RPK1) was isolated from Arabidopsis thaliana. The clone is 1952 bp long with 1623 bp of an open reading frame encoding a peptide of 540 amino acids. The deduced peptide (RPK1) contains four distinctive domains characteristic of receptor kinases: (a) a putative amino-terminal signal sequence domain; (b) a domain with five extracellular leucine-rich repeat sequences; (c) a membrane-spanning domain; and (d) a cytoplasmic protein kinase domain that contains all of the 11 subdomains conserved among protein kinases. The RPK1 gene is expressed in flowers, stems, leaves, and roots. Expression of the RPK1 gene is induced within 1 h after treatment with abscisic acid (ABA). The gene is also rapidly induced by several environmental stresses such as dehydration, high salt, and low temperature, suggesting that the gene is involved in a general stress response. The dehydration-induced expression is not impaired in aba-1, abi1-1, abi2-1, and abi3-1 mutants, suggesting that the dehydration-induced expression of the RPK1 gene is ABA-independent. A possible role of this gene in the signal transduction pathway of ABA and the environmental stresses is discussed. PMID:9112773
Cold stress improves the ability of Lactobacillus plantarum L67 to survive freezing.
Song, Sooyeon; Bae, Dong-Won; Lim, Kwangsei; Griffiths, Mansel W; Oh, Sejong
2014-11-17
The stress resistance of bacteria is affected by the physiological status of the bacterial cell and environmental factors such as pH, salts and temperature. In this study, we report on the stress response of Lactobacillus plantarum L67 after four consecutive freeze-thaw cycles. The cold stress response of the cold-shock protein genes (cspC, cspL and cspP) and ATPase activities were then evaluated. The cold stress was adjusted to 5 °C when the bacteria were growing at the mid-exponential phase. A comparative proteomic analysis was performed with two-dimensional gel electrophoresis (2D SDS-PAGE) and a matrix assisted laser desorption/ionization-mass spectrometer. Only 56% of the L. plantarum L67 cells without prior exposure to cold stress survived after four consecutive freeze-thaw cycles. However, 78% of the L. plantarum L67 cells that were treated with cold stress at 5 °C for 6 h survived after freeze-thaw conditions. After applying cold stress to the culture for 6h, the cells were then stored for 60 days at 5 °C, 25 °C and 35 °C separately. The cold-stressed culture of L. plantarum L67 showed an 8% higher viability than the control culture. After applying cold stress for 6h, the transcript levels of two genes (cspP and cspL) were up-regulated 1.4 (cspP) and 1.2 (cspL) times compared to the control. However, cspC was not up-regulated. A proteomic analysis showed that the proteins increased after a reduction of the incubation temperature to 5 °C. The importance of the expression of 13 other relevant proteins was also determined through the study. The exposure of L. plantarum cells to low temperatures aids their ability to survive through subsequent freeze-thaw processes and lyophilization. Copyright © 2014. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Natural rubber biosynthesis in guayule (Parthenium argentatum) is associated with moderately cold night temperatures. To begin to dissect the molecular events triggered by cold temperatures that govern rubber synthesis induction in guayule, the transcriptome of bark tissue, where rubber is produced...
Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko
2015-01-20
Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.
Chen, Yu; Jiang, Jiafu; Song, Aiping; Chen, Sumei; Shan, Hong; Luo, Huolin; Gu, Chunsun; Sun, Jing; Zhu, Lu; Fang, Weimin; Chen, Fadi
2013-12-19
ICE (Inducer of CBF Expression) family genes play an important role in the regulation of cold tolerance pathways. In an earlier study, we isolated the gene CdICE1 from Chrysanthemum dichrum and demonstrated that freezing tolerance was enhanced by CdICE1 overexpression. Therefore, we sought to determine the mechanism by which ICE1 family genes participate in freezing tolerance. Using EMSA (Electrophoretic Mobility Shift Assay) and yeast one-hybrid assays, we confirmed that CdICE1 binds specifically to the MYC element in the CdDREBa promoter and activates transcription. In addition, overexpression of CdICE1 enhanced Arabidopsis freezing tolerance after transition from 23°C to 4°C or 16°C. We found that after acclimation to 4°C, CdICE1, like Arabidopsis AtICE1, promoted expression of CBFs (CRT/DRE Binding Factor) and their genes downstream involved in freezing tolerance, including COR15a (Cold-Regulated 15a), COR6.6, and RD29a (Responsive to Dessication 29a). Interestingly, we observed that CdICE1-overexpressing plants experienced significant reduction in miR398. In addition, its target genes CSD1 (Copper/zinc Superoxide Dismutase 1) and CSD2 showed inducible expression under acclimation at 16°C, indicating that the miR398-CSD pathway was involved in the induction of freezing tolerance. Our data indicate that CdICE1-mediated freezing tolerance occurs via different pathways, involving either CBF or miR398, under acclimation at two different temperatures.
2013-01-01
Background ICE (Inducer of CBF Expression) family genes play an important role in the regulation of cold tolerance pathways. In an earlier study, we isolated the gene CdICE1 from Chrysanthemum dichrum and demonstrated that freezing tolerance was enhanced by CdICE1 overexpression. Therefore, we sought to determine the mechanism by which ICE1 family genes participate in freezing tolerance. Results Using EMSA (Electrophoretic Mobility Shift Assay) and yeast one-hybrid assays, we confirmed that CdICE1 binds specifically to the MYC element in the CdDREBa promoter and activates transcription. In addition, overexpression of CdICE1 enhanced Arabidopsis freezing tolerance after transition from 23°C to 4°C or 16°C. We found that after acclimation to 4°C, CdICE1, like Arabidopsis AtICE1, promoted expression of CBFs (CRT/DRE Binding Factor) and their genes downstream involved in freezing tolerance, including COR15a (Cold-Regulated 15a), COR6.6, and RD29a (Responsive to Dessication 29a). Interestingly, we observed that CdICE1-overexpressing plants experienced significant reduction in miR398. In addition, its target genes CSD1 (Copper/zinc Superoxide Dismutase 1) and CSD2 showed inducible expression under acclimation at 16°C, indicating that the miR398-CSD pathway was involved in the induction of freezing tolerance. Conclusions Our data indicate that CdICE1-mediated freezing tolerance occurs via different pathways, involving either CBF or miR398, under acclimation at two different temperatures. PMID:24350981
Song, Jianbo; Mo, Xiaowei; Yang, Haiqi; Yue, Luming; Song, Jun; Mo, Beixin
2017-01-01
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.
Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping
2016-01-01
Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368
Wang, Bin; Wang, Guang; Shen, Fei; Zhu, Shijiang
2018-01-01
Plant glycine-rich RNA-binding proteins (GR-RBPs) have been shown to play important roles in response to abiotic stresses in actively proliferating organs such as young plants, root tips, and flowers, but their roles in chilling responses of harvested fruit remains largely unknown. Here, we investigated the role of CsGR-RBP3 in the chilling response of cucumber fruit. Pre-storage cold acclimation at 10°C (PsCA) for 3 days significantly enhanced chilling tolerance of cucumber fruit compared with the control fruit that were stored at 5°C. In the control fruit, only one of the six cucumber CsGR-RBP genes, CsGR-RBP2, was enhanced whereas the other five, i.e., CsGR-RBP3, CsGR-RBP4, CsGR-RBP5, CsGR-RBP-blt801, and CsGR-RBP-RZ1A were not. However, in the fruit exposed to PsCA before storage at 5°C, CsGR-RBP2 transcript levels were not obviously different from those in the controls, whereas the other five were highly upregulated, with CsGR-RBP3 the most significantly induced. Treatment with endogenous ABA and NO biosynthesis inhibitors, tungstate and L-nitro-arginine methyl ester, respectively, prior to PsCA treatment, clearly downregulated CsGR-RBP3 expression and significantly aggravated chilling injury. These results suggest a strong connection between CsGR-RBP3 expression and chilling tolerance in cucumber fruit. Transient expression in tobacco suggests CsGR-RBP3 was located in the mitochondria, implying a role for CsGR-RBP3 in maintaining mitochondria-related functions under low temperature. Arabidopsis lines overexpressing CsGR-RBP3 displayed faster growth at 23°C, lower electrolyte leakage and higher Fv/Fm ratio at 0°C, and higher survival rate at -20°C, than wild-type plants. Under cold stress conditions, Arabidopsis plants overexpressing CsGR-RBP3 displayed lower reactive oxygen species levels, and higher catalase and superoxide dismutase expression and activities, compared with the wild-type plants. In addition, overexpression of CsGR-RBP3 significantly upregulated nine Arabidopsis genes involved in defense responses to various stresses, including chilling. These results strongly suggest CsGR-RBP3 plays a positive role in defense against chilling stress. PMID:29740470
Haberman, Amnon; Bakhshian, Ortal; Cerezo-Medina, Sergio; Paltiel, Judith; Adler, Chen; Ben-Ari, Giora; Mercado, Jose Angel; Pliego-Alfaro, Fernando; Lavee, Shimon; Samach, Alon
2017-08-01
Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors. © 2017 John Wiley & Sons Ltd.
Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N
2008-12-01
Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.
Li, Jin; Liu, Hailiang; Xia, Wenwen; Mu, Jianqiang; Feng, Yujie; Liu, Ruina; Yan, Panyao; Wang, Aiying; Lin, Zhongping; Guo, Yong; Zhu, Jianbo; Chen, Xianfeng
2017-01-01
Saussurea involucrata grows in high mountain areas covered by snow throughout the year. The temperature of this habitat can change drastically in one day. To gain a better understanding of the cold response signaling pathways and molecular metabolic reactions involved in cold stress tolerance, genome-wide transcriptional analyses were performed using RNA-Seq technologies. A total of 199,758 transcripts were assembled, producing 138,540 unigenes with 46.8 Gb clean data. Overall, 184,416 (92.32%) transcripts were successfully annotated. The 365 transcription factors identified (292 unigenes) belonged to 49 transcription factor families associated with cold stress responses. A total of 343 transcripts on the signal transduction (132 upregulated and 212 downregulated in at least any one of the conditions) were strongly affected by cold temperature, such as the CBL-interacting serine/threonine-protein kinase (CIPKs), receptor-like protein kinases, and protein kinases. The circadian rhythm pathway was activated by cold adaptation, which was necessary to endure the severe temperature changes within a day. There were 346 differentially expressed genes (DEGs) related to transport, of which 138 were upregulated and 22 were downregulated in at least any one of the conditions. Under cold stress conditions, transcriptional regulation, molecular transport, and signal transduction were involved in the adaptation to low temperature in S. involucrata. These findings contribute to our understanding of the adaptation of plants to harsh environments and the survival traits of S. involucrata. In addition, the present study provides insight into the molecular mechanisms of chilling and freezing tolerance. PMID:28590406
Wang, Meiling; Wang, Yong; Wu, Hongqi; Xu, Jing; Li, Tingting; Hegebarth, Daniela; Jetter, Reinhard; Chen, Letian; Wang, Zhonghua
2016-01-01
Cuticular waxes play crucial roles in protecting plants against biotic and abiotic stresses. They are complex mixtures of very-long-chain fatty acids and their derivatives, including C20–C32 fatty alcohols. Here, we report the identification of 32 FAR-like genes and the detailed characterization of TaFAR2, TaFAR3 and TaFAR4, wax biosynthetic genes encoding fatty acyl-coenzyme A reductase (FAR) in wheat leaf cuticle. Heterologous expression of the three TaFARs in wild-type yeast and mutated yeast showed that TaFAR2, TaFAR3 and TaFAR4 were predominantly responsible for the accumulation of C18:0, C28:0 and C24:0 primary alcohols, respectively. Transgenic expression of the three TaFARs in tomato fruit and Arabidopsis cer4 mutant led to increased production of C22:0–C30:0 primary alcohols. GFP-fusion protein injection assay showed that the three encoded TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The transcriptional expression of the three TaFAR genes was induced by cold, salt, drought and ABA. Low air humidity led to increased expression of TaFAR genes and elevated wax accumulation in wheat leaves. Collectively, these data suggest that TaFAR2, TaFAR3 and TaFAR4 encode active alcohol-forming FARs involved in the synthesis of primary alcohol in wheat leaf and the response to environmental stresses. PMID:27112792
Huo, Chenmin; Zhang, Baowen; Wang, Hui; Wang, Fawei; Liu, Meng; Gao, Yingjie; Zhang, Wenhua; Deng, Zhiping; Sun, Daye; Tang, Wenqiang
2016-04-01
To understand the early signaling steps that regulate cold responses in rice, two-dimensional difference gel electrophoresis (2-D DIGE)(1)was used to study early cold-regulated proteins in rice seedlings. Using mass spectrometry, 32 spots, which represent 26 unique proteins that showed an altered expression level within 5 min of cold treatment were identified. Among these proteins, Western blot analyses confirmed that the cellular phospholipase D α1 (OsPLDα1) protein level was increased as early as 1 min after cold treatment. Genetic studies showed that reducing the expression ofOsPLDα1makes rice plants more sensitive to chilling stress as well as cold acclimation increased freezing tolerance. Correspondingly, cold-regulated proteomic changes and the expression of the cold-responsive C repeat/dehydration-responsive element binding 1 (OsDREB1) family of transcription factors were inhibited in thepldα1mutant. We also found that the expression ofOsPLDα1is directly regulated by OsDREB1A. This transcriptional regulation ofOsPLDα1could provide positive feedback regulation of the cold signal transduction pathway in rice. OsPLDα1 hydrolyzes phosphatidylcholine to produce the signal molecule phosphatidic acid (PA). By lipid-overlay assay, we demonstrated that the rice cold signaling proteins, MAP kinase 6 (OsMPK6) and OsSIZ1, bind directly to PA. Taken together, our results suggest that OsPLDα1 plays a key role in transducing cold signaling in rice by producing PA and regulatingOsDREB1s' expression by OsMPK6, OsSIZ1, and possibly other PA-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Hu, Wei; Yan, Yan; Shi, Haitao; Liu, Juhua; Miao, Hongxia; Tie, Weiwei; Ding, Zehong; Ding, XuPo; Wu, Chunlai; Liu, Yang; Wang, Jiashui; Xu, Biyu; Jin, Zhiqiang
2017-08-29
Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.
Natarajan, Sathishkumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup
2016-01-01
Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp. PMID:27627679
Han, Jeongsukhyeon; Thamilarasan, Senthil Kumar; Natarajan, Sathishkumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup
2016-01-01
Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp.
Lu, Ming-Xing; Li, Hong-Bo; Zheng, Yu-Tao; Shi, Liang; Du, Yu-Zhou
2016-04-01
The western flower thrips, Frankliniella occidentalis, is an important invasive pest with a strong tolerance for extreme temperatures; however, the molecular mechanisms that regulate thermotolerance in this insect remain unclear. In this study, four heat shock protein genes were cloned from F. occidentalis and named Fohsp90, Fohsc701, Fohsc702 and Fohsp60. These four Hsps exhibited typical characteristics of heat shock proteins. Subcellular localization signals and phylogenetic analysis indicated that FoHsp90 and FoHsc701 localize to the cytosol, whereas FoHsc702 and FoHsp60 were located in the endoplasmic reticulum and mitochondria, respectively. Analysis of genomic sequences revealed the presence of introns in the four genes (three, four, seven, and five introns for Fohsp90, Fohsc701, Fohsc702 and Fohsp60, respectively). Both the number and position of introns in these four genes were quite different from analogous genes in other species. qRT-PCR indicated that the four Fohsps were detected in second-stage larvae, one-day-old pupae, and one-day-old adults, and mRNA expression levels were lowest in larvae and highest in pupae. Fohsc701 and Fohsc702 possessed similar expression patterns and were not induced by cold or heat stress. Expression of Fohsp60 was significantly elevated by heat, and Fohsp90 was rapidly up-regulated after exposure to both cold and heat stress. Exposure to -8°C had no effect on expression of the four Fohsps; however, expression of Fohsp90 and Fohsp60 was highest after a 2-h incubation at 39°C. Furthermore, cold and heat hardening led to significant up-regulation of the four Fohsps compared to their respective controls. Collectively, our results indicate that the four FoHsps contribute to insect development and also function in rapid cold or heat hardening; furthermore, FoHsp90 and FoHsp60 contribute to thermotolerance in F. occidentalis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Karki, Amrit; Horvath, David P; Sutton, Fedora
2013-03-01
Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold-acclimation-specific processes and pathways, we utilized cold acclimation transcriptomic data from two lines varying in freeze survival but not vernalization. These lines, designated freeze-resistant (FR) and freeze-susceptible (FS), were the source of crown tissue RNA. Well-annotated differentially expressed genes (p ≤ 0.005 and fold change ≥ 2 in response to 4 weeks cold acclimation) were used for gene ontology and pathway analysis. "Abiotic stimuli" was identified as the most enriched and unique for FR. Unique to FS was "cytoplasmic components." Pathway analysis revealed the "triacylglycerol degradation" pathway as significantly downregulated and common to both FR and FS. The most enriched of FR pathways was "neighbors of DREB2A," with the highest positive median fold change. The "13-LOX and 13-HPL" and the "E2F" pathways were enriched in FR only with a negative median fold change. The "jasmonic acid biosynthesis" pathway and four "photosynthetic-associated" pathways were enriched in both FR and FS but with a more negative median fold change in FR than in FS. A pathway unique to FS was "binding partners of LHCA1," which was enriched only in FS with a significant negative median fold change. We propose that the DREB2A, E2F, jasmonic acid biosynthesis, and photosynthetic pathways are critical for discrimination between cold-acclimated lines varying in freeze survival.
Role of eIF2α Kinases in Translational Control and Adaptation to Cellular Stress.
Wek, Ronald C
2018-02-12
A central mechanism regulating translation initiation in response to environmental stress involves phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Phosphorylation of eIF2α causes inhibition of global translation, which conserves energy and facilitates reprogramming of gene expression and signaling pathways that help to restore protein homeostasis. Coincident with repression of protein synthesis, many gene transcripts involved in the stress response are not affected or are even preferentially translated in response to increased eIF2α phosphorylation by mechanisms involving upstream open reading frames (uORFs). This review highlights the mechanisms regulating eIF2α kinases, the role that uORFs play in translational control, and the impact that alteration of eIF2α phosphorylation by gene mutations or small molecule inhibitors can have on health and disease. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Rapacz, Marcin; Wolanin, Barbara; Hura, Katarzyna; Tyrka, Miroslaw
2008-04-01
Cold acclimation modifies the balance of the energy absorbed and metabolized in the dark processes of photosynthesis, which may affect the expression of cold-regulated (COR) genes. At the same time, a gradual acclimation to the relatively high light conditions is observed, thereby minimizing the potential for photo-oxidative damage. As a result, the resistance to photoinhibition in the cold has often been identified as a trait closely related to freezing tolerance. Using four barley genotypes that differentially express both traits, the effect of cold acclimation on freezing tolerance and high-light tolerance was studied together with the expression of COR14b, one of the best-characterized barley COR genes. Plants were cold acclimated for 2 weeks at 2 degrees C. Freezing tolerance was studied by means of electrolyte leakage. Changes in photosynthetic apparatus and high-light tolerance were monitored by means of chlorophyll fluorescence. Accumulation of COR14b and some proteins important in photosynthetic acclimation to cold were studied with western analysis. COR14b transcript accumulation during cold acclimation was assessed with real-time PCR. Cold acclimation increased both freezing tolerance and high-light tolerance, especially when plants were treated with high light after non-lethal freezing. In all plants, cold acclimation triggered the increase in photosynthetic capacity during high-light treatment. In two plants that were characterized by higher high-light tolerance but lower freezing tolerance, higher accumulation of COR14b transcript and protein was observed after 7 d and 14 d of cold acclimation, while a higher transient induction of COR14b expression was observed in freezing-tolerant plants during the first day of cold acclimation. High-light tolerant plants were also characterized with a higher level of PsbS accumulation and more efficient dissipation of excess light energy. Accumulation of COR14b in barley seems to be important for resistance to combined freezing and high-light tolerance, but not for freezing tolerance per se.
Jiang, Yuanzhong; Duan, Yanjiao; Yin, Jia; Ye, Shenglong; Zhu, Jingru; Zhang, Faqi; Lu, Wanxiang; Fan, Di; Luo, Keming
2014-01-01
WRKY proteins are a large family of regulators involved in various developmental and physiological processes, especially in coping with diverse biotic and abiotic stresses. In this study, 100 putative PtrWRKY genes encoded the proteins contained in the complete WRKY domain in Populus. Phylogenetic analysis revealed that the members of this superfamily among poplar, Arabidopsis, and other species were divided into three groups with several subgroups based on the structures of the WRKY protein sequences. Various cis-acting elements related to stress and defence responses were found in the promoter regions of PtrWRKY genes by promoter analysis. High-throughput transcriptomic analyses identified that 61 of the PtrWRKY genes were induced by biotic and abiotic treatments, such as Marssonina brunnea, salicylic acid (SA), methyl jasmonate (MeJA), wounding, cold, and salinity. Among these PtrWRKY genes, transcripts of 46 selected genes were observed in different tissues, including roots, stems, and leaves. Quantitative RT-PCR analysis further confirmed the induced expression of 18 PtrWRKY genes by one or more stress treatments. The overexpression of an SA-inducible gene, PtrWRKY89, accelerated expression of PR protein genes and improved resistance to pathogens in transgenic poplar, suggesting that PtrWRKY89 is a regulator of an SA-dependent defence-signalling pathway in poplar. Taken together, our results provided significant information for improving the resistance and stress tolerance of woody plants. PMID:25249073
Tobacco PR-2d promoter is induced in transgenic cucumber in response to biotic and abiotic stimuli.
Yin, Zhimin; Hennig, Jacek; Szwacka, Maria; Malepszy, Stefan
2004-05-01
The PR-2d promoter/uidA (GUS) gene construct was introduced into the cucumber (Cucumis sativus L.) genome and several transgenic lines were produced. Activation of the PR-2d promoter was investigated in these plants in response to inoculation with fungal pathogens and after salicylic acid (SA) or cold treatments. Treatment with exogenous SA increased GUS activity 2 to 11 fold over that of the control. Endogenous SA and its conjugate salicylic acid glucoside (SAG) rose in parallel after inoculation with the fungal pathogen Pseudoperonospora cubensis, with SAG becoming the predominant form. The free SA levels increased 15 fold above the basal level at 5 dpi and preceded the induction of the PR-2d promoter by five days, which occurred at 10 dpi with a 12 fold increase over the control. Inoculation with another fungal pathogen, Erysiphe polyphage, increased GUS activity 4 to 44 fold over that of the control. During normal development of flowers in the cucumber, the PR-2d/uidA gene expressed in the floral organs was similar to that of the primary host. In addition, we present the first evidence that the PR-2d promoter was induced (624 fold) under cold stress. We demonstrate that in the heterologous state the gene construct was expressed according to the signalling pattern of the native species and was stably transmitted to progeny over four generations.
Characterization of DNA methyltransferase and demethylase genes in Fragaria vesca.
Gu, Tingting; Ren, Shuai; Wang, Yuanhua; Han, Yuhui; Li, Yi
2016-06-01
DNA methylation is an epigenetic modification essential for gene regulations in plants, but understanding on how it is involved in fruit development, especially in non-climacteric fleshy fruit, is limited. The diploid woodland strawberry (Fragaria vesca) is an important model for non-climacteric fruit crops. In this study, we identified DNA methyltransferase genes and demethylase genes in Fragaria vesca and other angiosperm species. In accordance with previous studies, our phylogenetic analyses of those DNA methylation modifiers support the clustering of those genes into several classes. Our data indicate that whole-genome duplications and tandem duplications contributed to the expansion of those DNA methylation modifiers in angiosperms. We have further demonstrated that some DNA methylase and demethylase genes reach their highest expression levels in strawberry fleshy fruits when turning from white to red, suggesting that DNA methylation might undergo a dramatic change at the onset of fleshy fruit-ripening process. In addition, we have observed that expression of some DNA demethylase genes increases in response to various abiotic stresses including heat, cold, drought and salinity. Collectively, our study indicates a regulatory role of DNA methylation in the turning stage of non-climacteric fleshy fruit and responses to environment stimuli, and would facilitate functional studies of DNA methylation in the growth and development of non-climacteric fruits.
Tamirisa, Srinath; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao
2014-01-01
A potent cold and drought regulatory protein-encoding gene (CcCDR) was isolated from the subtractive cDNA library of pigeonpea plants subjected to drought stress. CcCDR was induced by different abiotic stress conditions in pigeonpea. Overexpression of CcCDR in Arabidopsis thaliana imparted enhanced tolerance against major abiotic stresses, namely drought, salinity, and low temperature, as evidenced by increased biomass, root length, and chlorophyll content. Transgenic plants also showed increased levels of antioxidant enzymes, proline, and reducing sugars under stress conditions. Furthermore, CcCDR-transgenic plants showed enhanced relative water content, osmotic potential, and cell membrane stability, as well as hypersensitivity to abscisic acid (ABA) as compared with control plants. Localization studies confirmed that CcCDR could enter the nucleus, as revealed by intense fluorescence, indicating its possible interaction with various nuclear proteins. Microarray analysis revealed that 1780 genes were up-regulated in CcCDR-transgenics compared with wild-type plants. Real-time PCR analysis on selected stress-responsive genes, involved in ABA-dependent and -independent signalling networks, revealed higher expression levels in transgenic plants, suggesting that CcCDR acts upstream of these genes. The overall results demonstrate the explicit role of CcCDR in conferring multiple abiotic stress tolerance at the whole-plant level. The multifunctional CcCDR seems promising as a prime candidate gene for enhancing abiotic stress tolerance in diverse plants. PMID:24868035
Wang, Junjuan; Tao, Fei; An, Fei; Zou, Yiping; Tian, Wei; Chen, Xianming; Xu, Xiangming; Hu, Xiaoping
2017-06-01
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat (Triticum aestivum) worldwide. Wheat high-temperature seedling plant (HTSP) resistance to Pst is non-race-specific and durable. WRKY transcription factors have been proven to play important roles in plant defence responses to attacks by several pathogens. However, there is no direct evidence as to whether WRKY transcription factors play a role in HTSP resistance to Pst. We isolated a WRKY gene, named TaWRKY70, from wheat cultivar Xiaoyan 6. The expression level of TaWRKY70 was increased significantly when exposed to high temperatures (HTs) during the initial symptom expression stage of Pst infection. The expression of this gene increased in plants treated with ethylene (ET), salicylic acid (SA) and cold (4°C) stresses, but decreased in plants treated with methyl jasmonate (MeJA) and heat (40°C) stresses. Silencing of TaWRKY70 led to greater susceptibility to Pst (in terms of the increase in length of uredinial pustules and the decrease in the number of necrotic cells) compared with non-silenced plants when exposed to HT during the initial symptom expression stage of Pst infection, coinciding with expression changes of the ET- and SA-responsive genes TaPIE1 and TaPR1.1. In contrast, the expression level of the jasmonic acid (JA)-responsive gene TaAOS was not affected by TaWRKY70. These results indicate that TaWRKY70 is positively involved in HTSP resistance, during which SA and ET signalling are probably activated. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Barth, Andreas S; Kumordzie, Ami; Frangakis, Constantine; Margulies, Kenneth B; Cappola, Thomas P; Tomaselli, Gordon F
2011-10-01
Systolic heart failure (HF) is a complex systemic syndrome that can result from a wide variety of clinical conditions and gene mutations. Despite phenotypic similarities, characterized by ventricular dilatation and reduced contractility, the extent of common and divergent gene expression between different forms of HF remains a matter of intense debate. Using a meta-analysis of 28 experimental (mouse, rat, dog) and human HF microarray studies, we demonstrate that gene expression changes are characterized by a coordinated and reciprocal regulation of major metabolic and signaling pathways. In response to a wide variety of stressors in animal models of HF, including ischemia, pressure overload, tachypacing, chronic isoproterenol infusion, Chagas disease, and transgenic mouse models, major metabolic pathways are invariably downregulated, whereas cell signaling pathways are upregulated. In contrast to this uniform transcriptional pattern that recapitulates a fetal gene expression program in experimental animal models of HF, human HF microarray studies displayed a greater heterogeneity, with some studies even showing upregulation of metabolic and downregulation of signaling pathways in end-stage human hearts. These discrepant results between animal and human studies are due to a number of factors, prominently cardiac disease and variable exposure to cold cardioplegic solution in nonfailing human samples, which can downregulate transcripts involved in oxidative phosphorylation (OXPHOS), thus mimicking gene expression patterns observed in failing samples. Additionally, β-blockers and ACE inhibitor use in end-stage human HF was associated with higher levels of myocardial OXPHOS transcripts, thus partially reversing the fetal gene expression pattern. In human failing samples, downregulation of metabolism was associated with hemodynamic markers of disease severity. Irrespective of the etiology, gene expression in failing myocardium is characterized by downregulation of metabolic transcripts and concomitant upregulation of cell signaling pathways. Gene expression changes along this metabolic-signaling axis in mammalian myocardium are a consistent feature in the heterogeneous transcriptional response observed in phenotypically similar models of HF.
Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa.
He, Hongsheng; Dong, Qing; Shao, Yuanhua; Jiang, Haiyang; Zhu, Suwen; Cheng, Beijiu; Xiang, Yan
2012-07-01
WRKY transcription factors participate in diverse physiological and developmental processes in plants. They have highly conserved WRKYGQK amino acid sequences in their N-termini, followed by the novel zinc-finger-like motifs, Cys₂His₂ or Cys₂HisCys. To date, numerous WRKY genes have been identified and characterized in a number of herbaceous species. Survey and characterization of WRKY genes in a ligneous species would facilitate a better understanding of the evolutionary processes and functions of this gene family. In this study, 104 poplar WRKY genes (PtWRKY) were identified in the latest poplar genome sequence. According to their structural features, the predicted members were divided into the previously defined groups I-III, as described in rice. In addition, chromosomal localization of the genes demonstrated that there might be WRKY gene hot spots in 2.3 Mb regions on chromosome 14. Furthermore, approximately 83% (86 out of 104) WRKY genes participated in gene duplication events, including 69% (29 out of 42) gene pairs which exhibited segmental duplication. Using semi-quantitative RT-PCR, the expression patterns of subgroup III genes were investigated under different stresses [cold, drought, salinity and salicylic acid (SA)]. The data revealed that these genes presented different expression levels in response to various stress conditions. Expression analysis exhibited PtWRKY76 gene induced markedly in 0.1 mM SA or 25% PEG-6000 treatment. The results presented here provide a fundamental clue for cloning specific function genes in further studies and applications. This study identified 104 poplar WRKY genes and demonstrated WRKY gene hot spots on chromosome 14. Furthermore, semi-quantitative RT-PCR showed variable stress responses in subgroup III.
2012-01-01
Background Thellungiella salsuginea is an important model plant due to its natural tolerance to abiotic stresses including salt, cold, and water deficits. Microarray and metabolite profiling have shown that Thellungiella undergoes stress-responsive changes in transcript and organic solute abundance when grown under controlled environmental conditions. However, few reports assess the capacity of plants to display stress-responsive traits in natural habitats where concurrent stresses are the norm. Results To determine whether stress-responsive changes observed in cabinet-grown plants are recapitulated in the field, we analyzed leaf transcript and metabolic profiles of Thellungiella growing in its native Yukon habitat during two years of contrasting meteorological conditions. We found 673 genes showing differential expression between field and unstressed, chamber-grown plants. There were comparatively few overlaps between genes expressed under field and cabinet treatment-specific conditions. Only 20 of 99 drought-responsive genes were expressed both in the field during a year of low precipitation and in plants subjected to drought treatments in cabinets. There was also a general pattern of lower abundance among metabolites found in field plants relative to control or stress-treated plants in growth cabinets. Nutrient availability may explain some of the observed differences. For example, proline accumulated to high levels in cold and salt-stressed cabinet-grown plants but proline content was, by comparison, negligible in plants at a saline Yukon field site. We show that proline accumulated in a stress-responsive manner in Thellungiella plants salinized in growth cabinets and in salt-stressed seedlings when nitrogen was provided at 1.0 mM. In seedlings grown on 0.1 mM nitrogen medium, the proline content was low while carbohydrates increased. The relatively higher content of sugar-like compounds in field plants and seedlings on low nitrogen media suggests that Thellungiella shows metabolic plasticity in response to environmental stress and that resource availability can influence the expression of stress tolerance traits under field conditions. Conclusion Comparisons between Thellungiella plants responding to stress in cabinets and in their natural habitats showed differences but also overlap between transcript and metabolite profiles. The traits in common offer potential targets for improving crops that must respond appropriately to multiple, concurrent stresses. PMID:23025749
Ke, Bibo; Shen, Xiu-Da; Gao, Feng; Busuttil, Ronald W.; Löwenstein, Pedro R.; Castro, Maria G.; Kupiec-Weglinski, Jerzy W.
2010-01-01
Liver injury induced by ischemia/reperfusion (I/R) is the prime factor in delayed or loss graft function following transplantation. CD4+ T lymphocytes are key cellular mediators of antigen-independent inflammatory response triggered by I/R. We attempted to modulate rat liver I/R injury by targeted gene therapy with CD40Ig, which blocks the CD40–CD154 costimulation pathway. One hundred percent of Ad-CD40Ig-pretreated orthotopic liver transplants (OLTs) subjected to 24 h of cold (4°C) ischemia survived >14 days (vs 50% in untreated/Ad-β-gal groups). Ad-CD40Ig treatment decreased sGOT levels and depressed neutrophil infiltration, compared with controls. These functional data correlated with histological Suzuki’s grading of hepatic injury, which in untreated/Ad-β-gal groups showed severe necrosis (>60%) and moderate to severe sinusoidal congestion; the Ad-CD40Ig-pretreated group revealed minimal sinusoidal congestion/necrosis. Unlike in controls, OLT expression of mRNA coding for IL-2/IFN-γ remained depressed, whereas that of IL-4/IL-13 reciprocally increased in the Ad-CD40Ig group. Ad-CD40Ig reduced frequency of TUNEL+ cells and proapoptotic Caspase-3, but enhanced antioxidant HO-1 and antiapoptotic Bcl-2/Bcl-xl expression. Thus, prolonged blockade of CD40–CD154 by CD40Ig exerts potent cytoprotection against hepatic I/R injury. These results provide the rationale for a novel gene therapy approach to maximize the organ donor pool through the safer use of liver transplants exposed to prolonged cold ischemia. PMID:14741776
Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming
2016-11-02
Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.
Intermittent cold exposure enhances fat accumulation in mice.
Yoo, Hyung Sun; Qiao, Liping; Bosco, Chris; Leong, Lok-Hei; Lytle, Nikki; Feng, Gen-Sheng; Chi, Nai-Wen; Shao, Jianhua
2014-01-01
Due to its high energy consuming characteristics, brown adipose tissue (BAT) has been suggested as a key player in energy metabolism. Cold exposure is a physiological activator of BAT. Intermittent cold exposure (ICE), unlike persistent exposure, is clinically feasible. The main objective of this study was to investigate whether ICE reduces adiposity in C57BL/6 mice. Surprisingly, we found that ICE actually increased adiposity despite enhancing Ucp1 expression in BAT and inducing beige adipocytes in subcutaneous white adipose tissue. ICE did not alter basal systemic insulin sensitivity, but it increased liver triglyceride content and secretion rate as well as blood triglyceride levels. Gene profiling further demonstrated that ICE, despite suppressing lipogenic gene expression in white adipose tissue and liver during cold exposure, enhanced lipogenesis between the exposure periods. Together, our results indicate that despite enhancing BAT recruitment, ICE in mice increases fat accumulation by stimulating de novo lipogenesis.
Intermittent Cold Exposure Enhances Fat Accumulation in Mice
Yoo, Hyung sun; Qiao, Liping; Bosco, Chris; Leong, Lok-Hei; Lytle, Nikki; Feng, Gen-Sheng; Chi, Nai-Wen; Shao, Jianhua
2014-01-01
Due to its high energy consuming characteristics, brown adipose tissue (BAT) has been suggested as a key player in energy metabolism. Cold exposure is a physiological activator of BAT. Intermittent cold exposure (ICE), unlike persistent exposure, is clinically feasible. The main objective of this study was to investigate whether ICE reduces adiposity in C57BL/6 mice. Surprisingly, we found that ICE actually increased adiposity despite enhancing Ucp1 expression in BAT and inducing beige adipocytes in subcutaneous white adipose tissue. ICE did not alter basal systemic insulin sensitivity, but it increased liver triglyceride content and secretion rate as well as blood triglyceride levels. Gene profiling further demonstrated that ICE, despite suppressing lipogenic gene expression in white adipose tissue and liver during cold exposure, enhanced lipogenesis between the exposure periods. Together, our results indicate that despite enhancing BAT recruitment, ICE in mice increases fat accumulation by stimulating de novo lipogenesis. PMID:24789228
Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun
2016-05-23
Cold exposure or β₃-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β₃-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1-5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.
Tillett, Richard L; Wheatley, Matthew D; Tattersall, Elizabeth A R; Schlauch, Karen A; Cramer, Grant R; Cushman, John C
2012-01-01
Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. 'Freedom' and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2 °C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9-12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a >1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps, suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Cloning, expression and structural stability of a cold-adapted ß-Galactosidase from Rahnella sp.R3
USDA-ARS?s Scientific Manuscript database
A novel gene was isolated for the first time from a psychrophilic gram-negative bacterium Rahnella sp.R3. It encoded a cold-adapted ß-galactosidase (R-ß-Gal). Recombinant R-ß-Gal was expressed in Escherichia coli BL21 (DE3), purified, and characterized. R-ß-Gal belongs to the glycosyl hydrolase fami...
RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.
Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei
2017-01-01
The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays . These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize.
RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.
Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei
2017-01-01
The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays. These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize. PMID:28223998
Rey, Benjamin; Dégletagne, Cyril; Bodennec, Jacques; Monternier, Pierre-Axel; Mortz, Mathieu; Roussel, Damien; Romestaing, Caroline; Rouanet, Jean-Louis; Tornos, Jeremy; Duchamp, Claude
2016-08-01
Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure in diving birds. Initial immersions in cold-water may initiate an hormetic response triggering essential changes in the adaptive antioxidant response to marine life. Copyright © 2016 Elsevier Inc. All rights reserved.
Dominguez-Avila, Norma; Ruiz-Castañeda, Gabriel; González-Ramírez, Javier; Fernandez-Jaramillo, Nora; Escoto, Jorge; Sánchez-Muñoz, Fausto; Marquez-Velasco, Ricardo; Bojalil, Rafael; Espinosa-Cervantes, Román; Sánchez, Fausto
2013-01-01
Transforming growth factor beta (TGFβ) is a family of genes that play a key role in mediating tissue remodeling in various forms of acute and chronic lung disease. In order to assess their role on pulmonary hypertension in broilers, we determined mRNA expression of genes of the TGFβ family and endothelin 1 in lung samples from 4-week-old chickens raised either under normal or cold temperature conditions. Both in control and cold-treated groups of broilers, endothelin 1 mRNA expression levels in lungs from ascitic chickens were higher than levels from healthy birds (P < 0.05), whereas levels in animals with cardiac failure were intermediate. Conversely, TGFβ2 and TGFβ3 gene expression in lungs were higher in healthy animals than in ascitic animals in both groups (P < 0.05). TGFβ1, TβRI, and TβRII mRNA gene expression among healthy, ascitic, and chickens with cardiac failure showed no differences (P > 0.05). BAMBI mRNA gene expression was lowest in birds with ascites only in the control group as compared with the values from healthy birds (P < 0.05). PMID:24286074
Cold-Induced Accumulation of hsp90 Transcripts in Brassica napus.
Krishna, P.; Sacco, M.; Cherutti, J. F.; Hill, S.
1995-01-01
Characterization of the expression of hsp90 genes of Brassica napus by northern blot analysis and immunoblotting showed that the hsp90 mRNA and protein are present in all B. napus tissues examined, albeit at different levels. High levels of hsp90 mRNA and protein were found in young and rapidly dividing tissues such as shoot apices and flower buds, suggesting that hsp90 may have an important role in plant growth and development. A significant increase in hsp90 mRNA levels was detected in seedlings exposed to 5[deg]C. The transcript levels reached a maximum within 1 d of cold treatment and remained elevated for the entire duration of cold treatment. The levels of hsp90 mRNA rapidly decreased to the level found in control plants upon return to 20[deg]C. The cold-induced accumulation of hsp90 mRNA closely resembles the expression of two previously identified cold-regulated genes of B. napus. We have also confirmed cold regulation of hsp90 mRNA in spinach (Spinacea oleracea). Our results suggest a role for hsp90 in adaptation to cold temperature stress. PMID:12228411
Song, Hong-Mei; Mu, Xi-Dong; Gu, Dang-En; Luo, Du; Yang, Ye-Xin; Xu, Meng; Luo, Jian-Ren; Zhang, Jia-En; Hu, Yin-Chang
2014-07-01
Heat-shock protein 70 (HSP70) is one of the most important heat-shock proteins that helps organisms to modulate stress response via over-expression. The HSP70 gene from Pomacea canaliculata was cloned using the RACE approach; the gene is 2,767 bp in length and contains an open reading frame of 1,932 bp, which is encoded by a polypeptide of 643 amino acids. BLAST analysis showed that the predicted amino acid sequence of the P. canaliculata HSP70 gene shared a relatively high similarity with that of other known eukaryotic species that display conserved HSP characteristics. The phylogeny demonstrated a separate clustering of the apple snail HSP70 with other constitutive members from other mollusk species. Quantitative real-time RT-PCR was used to detect the differential expression of HSP70 in both sexes of P. canaliculata at different temperature conditions. These results showed that HSP70 transcript levels decreased slightly under cold shock and increased significantly under heat-shock conditions in both sexes compared to normal temperatures (26 °C). Under cold-shock treatment, the sex effect was not significant. With heat treatment, HSP70 expression could be induced at 36 °C in both females and males, and it peaked at 42 and 39 °C in females and males, respectively. In addition, a clear time-dependent HSP70 expression pattern of the apple snail exposed to the same high temperature (36 °C) was observed at different time points. The maximal induction of HSP70 expression appeared at 12 and 48 h in males and females after heat shock, respectively. The maximal induction in females was significantly higher compared to males under heat stimulus. Taken together, these results strongly suggested that males were more susceptible to heat than females and provided useful molecular information for the ecological adaptability of P. canaliculata against extreme environmental stress.
Genome-wide analysis of the GH3 family in apple (Malus × domestica)
2013-01-01
Background Auxin plays important roles in hormone crosstalk and the plant’s stress response. The auxin-responsive Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acids (JAs) to amino acids during hormone- and stress-related signaling pathways. With the sequencing of the apple (Malus × domestica) genome completed, it is possible to carry out genomic studies on GH3 genes to indentify candidates with roles in abiotic/biotic stress responses. Results Malus sieversii Roem., an apple rootstock with strong drought tolerance and the ancestral species of cultivated apple species, was used as the experimental material. Following genome-wide computational and experimental identification of MdGH3 genes, we showed that MdGH3s were differentially expressed in the leaves and roots of M. sieversii and that some of these genes were significantly induced after various phytohormone and abiotic stress treatments. Given the role of GH3 in the negative feedback regulation of free IAA concentration, we examined whether phytohormones and abiotic stresses could alter the endogenous auxin level. By analyzing the GUS activity of DR5::GUS-transformed Arabidopsis seedlings, we showed that ABA, SA, salt, and cold treatments suppressed the auxin response. These findings suggest that other phytohormones and abiotic stress factors might alter endogenous auxin levels. Conclusion Previous studies showed that GH3 genes regulate hormonal homeostasis. Our study indicated that some GH3 genes were significantly induced in M. sieversii after various phytohormone and abiotic stress treatments, and that ABA, SA, salt, and cold treatments reduce the endogenous level of axuin. Taken together, this study provides evidence that GH3 genes play important roles in the crosstalk between auxin, other phytohormones, and the abiotic stress response by maintaining auxin homeostasis. PMID:23638690
Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.
Rauen, Thomas; Frye, Bjoern C; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R
2016-09-16
Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3' enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3' adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. Copyright © 2016 Elsevier Inc. All rights reserved.
[Role of thyroid system in adaptation to cold].
Maslov, L N; Vychuzhanova, E A; Gorbunov, A S; Tsybul'nikov, S Iu; Khaliulin, I G; Chauski, E
2014-06-01
Adaptation to cold promotes an increase in blood T3 and T4 levels in men and animals. The long-term cold exposure can induce a decrease in concentration of serum total and free T3 in human due to an enhancement of this hormone clearance. Endogenous catecholamines during adaptation to cold raise iodothyronine deiodinase D2 activity in brown fat due to α1-adrenergic receptor stimulation. Triiodothyronine is an inductor of iodothyronine deiodinase expression in brown fat, liver and kidney. Iodothyronine deiodinase D2 plays an important role in adaptation of organism to cold contributing to the high adrenergic reactivity of brown fat. At adaptation to cold T3 interacts with T3Rβ, it is formed T3Rβ-RXR complex, which binds to DNA with following transcription of UCP-1 and UCP-3 genes and UCP-1 and UCP-3 protein synthesis and uncoupling oxidative phosphorylation and an increase in heat production, where T3Rβ is T3-receptor-β, RXR is retinoid X-receptor, UCP is uncoupling protein. Triiodothyronine contributes to normal response to adrenergic agents of brown fat due to T3Rα activation. Sympatho-adrenomedullary and thyroid systems act as synergists in adaptation to cold.
Xue, Dong; Zhao, Jinming; Gai, Junyi; Guo, Na; Xing, Han
2013-01-01
Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max) remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1–GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1) in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline. PMID:23936107
Hu, Yang; Han, Yong-Tao; Wei, Wei; Li, Ya-Juan; Zhang, Kai; Gao, Yu-Rong; Zhao, Feng-Li; Feng, Jia-Yue
2015-01-01
Heat shock transcription factors (Hsfs) are known to play dominant roles in plant responses to heat, as well as other abiotic or biotic stress stimuli. While the strawberry is an economically important fruit plant, little is known about the Hsf family in the strawberry. To explore the functions of strawberry Hsfs in abiotic and biotic stress responses, this study identified 17 Hsf genes (FvHsfs) in a wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) and isolated 14 of these genes. Phylogenetic analysis divided the strawberry FvHsfs genes into three main groups. The evolutionary and structural analyses revealed that the FvHsf family is conserved. The promoter sequences of the FvHsf genes contain upstream regulatory elements corresponding to different stress stimuli. In addition, 14 FvHsf-GFP fusion proteins showed differential subcellular localization in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 17 FvHsf genes in wild diploid woodland strawberries under various conditions, including abiotic stresses (heat, cold, drought, and salt), biotic stress (powdery mildew infection), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). Fifteen of the seventeen FvHsf genes exhibited distinct changes on the transcriptional level during heat treatment. Of these 15 FvHsfs, 8 FvHsfs also exhibited distinct responses to other stimuli on the transcriptional level, indicating versatile roles in the response to abiotic and biotic stresses. Taken together, the present work may provide the basis for further studies to dissect FvHsf function in response to stress stimuli. PMID:26442049
Muñiz García, María Noelia; Giammaria, Verónica; Grandellis, Carolina; Téllez-Iñón, María Teresa; Ulloa, Rita María; Capiati, Daniela Andrea
2012-04-01
ABF/AREB bZIP transcription factors mediate plant abiotic stress responses by regulating the expression of stress-related genes. These proteins bind to the abscisic acid (ABA)-responsive element (ABRE), which is the major cis-acting regulatory sequence in ABA-dependent gene expression. In an effort to understand the molecular mechanisms of abiotic stress resistance in cultivated potato (Solanum tuberosum L.), we have cloned and characterized an ABF/AREB-like transcription factor from potato, named StABF1. The predicted protein shares 45-57% identity with A. thaliana ABFs proteins and 96% identity with the S. lycopersicum SlAREB1 and presents all of the distinctive features of ABF/AREB transcription factors. Furthermore, StABF1 is able to bind to the ABRE in vitro. StABF1 gene is induced in response to ABA, drought, salt stress and cold, suggesting that it might be a key regulator of ABA-dependent stress signaling pathways in cultivated potato. StABF1 is phosphorylated in response to ABA and salt stress in a calcium-dependent manner, and we have identified a potato CDPK isoform (StCDPK2) that phosphorylates StABF1 in vitro. Interestingly, StABF1 expression is increased during tuber development and by tuber-inducing conditions (high sucrose/nitrogen ratio) in leaves. We also found that StABF1 calcium-dependent phosphorylation is stimulated by tuber-inducing conditions and inhibited by gibberellic acid, which inhibits tuberization.
Bedon, Frank; Bomal, Claude; Caron, Sébastien; Levasseur, Caroline; Boyle, Brian; Mansfield, Shawn D.; Schmidt, Axel; Gershenzon, Jonathan; Grima-Pettenati, Jacqueline; Séguin, Armand; MacKay, John
2010-01-01
Transcription factors play a fundamental role in plants by orchestrating temporal and spatial gene expression in response to environmental stimuli. Several R2R3-MYB genes of the Arabidopsis subgroup 4 (Sg4) share a C-terminal EAR motif signature recently linked to stress response in angiosperm plants. It is reported here that nearly all Sg4 MYB genes in the conifer trees Picea glauca (white spruce) and Pinus taeda (loblolly pine) form a monophyletic clade (Sg4C) that expanded following the split of gymnosperm and angiosperm lineages. Deeper sequencing in P. glauca identified 10 distinct Sg4C sequences, indicating over-represention of Sg4 sequences compared with angiosperms such as Arabidopsis, Oryza, Vitis, and Populus. The Sg4C MYBs share the EAR motif core. Many of them had stress-responsive transcript profiles after wounding, jasmonic acid (JA) treatment, or exposure to cold in P. glauca and P. taeda, with MYB14 transcripts accumulating most strongly and rapidly. Functional characterization was initiated by expressing the P. taeda MYB14 (PtMYB14) gene in transgenic P. glauca plantlets with a tissue-preferential promoter (cinnamyl alcohol dehydrogenase) and a ubiquitous gene promoter (ubiquitin). Histological, metabolite, and transcript (microarray and targeted quantitiative real-time PCR) analyses of PtMYB14 transgenics, coupled with mechanical wounding and JA application experiments on wild-type plantlets, allowed identification of PtMYB14 as a putative regulator of an isoprenoid-oriented response that leads to the accumulation of sesquiterpene in conifers. Data further suggested that PtMYB14 may contribute to a broad defence response implicating flavonoids. This study also addresses the potential involvement of closely related Sg4C sequences in stress responses and plant evolution. PMID:20732878
Shu, Yongjun; Liu, Ying; Li, Wei; Song, Lili; Zhang, Jun; Guo, Changhong
2016-01-01
Winter damage, especially in northern climates, is a major limitation of the utilization of perennial forages such as alfalfa. Therefore, improving freezing tolerance is imperative in alfalfa genetic breeding. However, freezing tolerance is a complex trait that is determined by many genes. To understand the complex regulation mechanisms of freezing tolerance in alfalfa, we performed small RNA sequencing analysis under cold (4°) and freezing (−8°) stress. The sequencing results revealed that 173 known, and 24 novel miRNAs were expressed, and that the expression of 35 miRNAs was affected by cold and/or freezing stress. Meanwhile, 105 target genes cleaved by these miRNAs were characterized by degradome sequencing. These targets were associated with biological regulation, cellular processes, metabolic processes, and response to stress. Interestingly, most of them were characterized as transcription factors (TFs), including auxin response factors, SBP, NAC, AP2/ERF, and GRF, which play important roles in plant abiotic responses. In addition, important miRNAs and mRNAs involved in nodulation were also identified, for example, the relationship between miR169 and the TF CCAAT (also named as NF-YA/HAP2), which suggested that nodulation has an important function in freezing tolerance in alfalfa. Our results provide valuable information to help determine the molecular mechanisms of freezing tolerance in alfalfa, which will aid the application of these miRNAs and their targets in the improvement of freezing tolerance in alfalfa and related plants. PMID:26801649
Abscisic acid enhances cold tolerance in honeybee larvae
Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo
2017-01-01
The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee (Apis mellifera). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. PMID:28381619
Abscisic acid enhances cold tolerance in honeybee larvae.
Ramirez, Leonor; Negri, Pedro; Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo
2017-04-12
The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee ( Apis mellifera ). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro -reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin , and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. © 2017 The Author(s).
Interactions of Freshwater Cyanobacteria with Bacterial Antagonists
Beier, Sara; Grabherr, Manfred
2017-01-01
ABSTRACT Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas, Stenotrophomonas, Acinetobacter, and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes. IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species-specific responses in both heterotrophs and cyanobacteria were identified. The study contributes to a better understanding of the interspecies cellular interactions underpinning the persistence and collapse of cyanobacterial blooms. PMID:28115385
Interactions of Freshwater Cyanobacteria with Bacterial Antagonists.
Osman, Omneya Ahmed; Beier, Sara; Grabherr, Manfred; Bertilsson, Stefan
2017-04-01
Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas , Stenotrophomonas , Acinetobacter , and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes. IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species-specific responses in both heterotrophs and cyanobacteria were identified. The study contributes to a better understanding of the interspecies cellular interactions underpinning the persistence and collapse of cyanobacterial blooms. Copyright © 2017 Osman et al.
Yang, Haiqi; Yue, Luming; Song, Jun
2017-01-01
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula. PMID:28771553
Manipulating heat shock protein expression in laboratory animals.
Tolson, J Keith; Roberts, Stephen M
2005-02-01
Upregulation of heat shock proteins (Hsps) has been observed to impart resistance to a wide variety of physical and chemical insults. Elucidation of the role of Hsps in cellular defense processes depends, in part, on the ability to manipulate Hsp expression in laboratory animals. Simple methods of inducing whole body hyperthermia, such as warm water immersion or heating pad application, are effective in producing generalized expression of Hsps. Hsps can be upregulated locally with focused direct or indirect heating, such as with ultrasound or with laser or microwave radiation. Increased Hsp expression in response to toxic doses of xenobiotics has been commonly observed. Some pharmacologic agents are capable of altering Hsps more specifically by affecting processes involved in Hsp regulation. Gene manipulation offers the ability to selectively increase or decrease individual Hsps. Knockout mouse strains and Hsp-overexpressing transgenics have been used successfully to examine the role of specific Hsps in protection against hyperthermia, chemical insults, and ischemia-reperfusion injury. Gene therapy approaches also offer the possibility of selective alteration of Hsp expression. Some methods of increasing Hsp expression have application in specialized areas of research, such cold response, myocardial protection from exercise, and responses to stressful or traumatic stimuli. Each method of manipulating Hsp expression in laboratory animals has advantages and disadvantages, and selection of the best method depends upon the experimental objectives (e.g., the alteration in Hsp expression needed, its timing, and its location) and resources available.
Xie, Xing-Bin; Li, Shen; Zhang, Rui-Fen; Zhao, Jing; Chen, Ying-Chun; Zhao, Qiang; Yao, Yu-Xin; You, Chun-Xiang; Zhang, Xian-Sheng; Hao, Yu-Jin
2012-11-01
Low environmental temperatures promote anthocyanin accumulation and fruit colouration by up-regulating the expression of genes involved in anthocyanin biosynthesis and regulation in many fruit trees. However, the molecular mechanism by which fruit trees regulate this process in response to low temperature (LT) remains largely unknown. In this study, the cold-induced bHLH transcription factor gene MdbHLH3 was isolated from an apple tree and was found to interact physically and specifically through two regions (amino acids 1-23 and 186-228) at the N terminus with the MYB partner MdMYB1 (allelic to MdMYB10). Subsequently, MdbHLH3 bound to the promoters of the anthocyanin biosynthesis genes MdDFR and MdUFGT and the regulatory gene MdMYB1 to activate their expression. Furthermore, the MdbHLH3 protein was post-translationally modified, possibly involving phosphorylation following exposure to LTs, which enhanced its promoter-binding capacity and transcription activity. Our results demonstrate the molecular mechanism by which MdbHLH3 regulates LT-induced anthocyanin accumulation and fruit colouration in apple. © 2012 Blackwell Publishing Ltd.
Npvf: Hypothalamic Biomarker of Ambient Temperature Independent of Nutritional Status
Jaroslawska, Julia; Chabowska-Kita, Agnieszka; Kaczmarek, Monika M.; Kozak, Leslie P.
2015-01-01
The mechanism by which mice, exposed to the cold, mobilize endogenous or exogenous fuel sources for heat production is unknown. To address this issue we carried out experiments using 3 models of obesity in mice: C57BL/6J+/+ (wild-type B6) mice with variable susceptibility to obesity in response to being fed a high-fat diet (HFD), B6. Ucp1-/- mice with variable diet-induced obesity (DIO) and a deficiency in brown fat thermogenesis and B6. Lep-/- with defects in thermogenesis, fat mobilization and hyperphagia. Mice were exposed to the cold and monitored for changes in food intake and body composition to determine their energy balance phenotype. Upon cold exposure wild-type B6 and Ucp1-/- mice with diet-induced obesity burned endogenous fat in direct proportion to their fat reserves and changes in food intake were inversely related to fat mass, whereas leptin-deficient and lean wild-type B6 mice fed a chow diet depended on increased food intake to fuel thermogenesis. Analysis of gene expression in the hypothalamus to uncover a central regulatory mechanism revealed suppression of the Npvf gene in a manner that depends on the reduced ambient temperature and degree of exposure to the cold, but not on adiposity, leptin levels, food intake or functional brown fat. PMID:26070086
Jiang, Yuanzhong; Duan, Yanjiao; Yin, Jia; Ye, Shenglong; Zhu, Jingru; Zhang, Faqi; Lu, Wanxiang; Fan, Di; Luo, Keming
2014-12-01
WRKY proteins are a large family of regulators involved in various developmental and physiological processes, especially in coping with diverse biotic and abiotic stresses. In this study, 100 putative PtrWRKY genes encoded the proteins contained in the complete WRKY domain in Populus. Phylogenetic analysis revealed that the members of this superfamily among poplar, Arabidopsis, and other species were divided into three groups with several subgroups based on the structures of the WRKY protein sequences. Various cis-acting elements related to stress and defence responses were found in the promoter regions of PtrWRKY genes by promoter analysis. High-throughput transcriptomic analyses identified that 61 of the PtrWRKY genes were induced by biotic and abiotic treatments, such as Marssonina brunnea, salicylic acid (SA), methyl jasmonate (MeJA), wounding, cold, and salinity. Among these PtrWRKY genes, transcripts of 46 selected genes were observed in different tissues, including roots, stems, and leaves. Quantitative RT-PCR analysis further confirmed the induced expression of 18 PtrWRKY genes by one or more stress treatments. The overexpression of an SA-inducible gene, PtrWRKY89, accelerated expression of PR protein genes and improved resistance to pathogens in transgenic poplar, suggesting that PtrWRKY89 is a regulator of an SA-dependent defence-signalling pathway in poplar. Taken together, our results provided significant information for improving the resistance and stress tolerance of woody plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Lin, Chentao; Thomashow, Michael F.
1992-01-01
Previous studies have indicated that changes in gene expression occur in Arabidopsis thaliana L. (Heyn) during cold acclimation and that certain of the cor (cold-regulated) genes encode polypeptides that share the unusual property of remaining soluble upon boiling in aqueous solution. Here, we identify a cDNA clone for a cold-regulated gene encoding one of the “boiling-stable” polypeptides, COR15. DNA sequence analysis indicated that the gene, designated cor15, encodes a 14.7-kilodalton hydrophilic polypeptide having an N-terminal amino acid sequence that closely resembles transit peptides that target proteins to the stromal compartment of chloroplasts. Immunological studies indicated that COR15 is processed in vivo and that the mature polypeptide, COR 15m, is present in the soluble fraction of chloroplasts. Possible functions of COR 15m are discussed. ImagesFigure 1Figure 4Figure 5Figure 6Figure 7 PMID:16668917
Steward, N; Kusano, T; Sano, H
2000-09-01
A cDNA fragment encoding part of a DNA methyltransferase was isolated from maize. The putative amino acid sequence identically matched that deduced from a genomic sequence in the database (accession no. AF063403), and the corresponding gene was designated as ZmMET1. Bacterially expressed ZmMET1 actively methylated DNA in vitro. Transcripts of ZmMET1 could be shown to exclusively accumulate in actively proliferating cells of the meristems of mesocotyls and root apices, suggesting ZmMET1 expression to be associated with DNA replication. This was confirmed by simultaneous decrease of transcripts of ZmMET1 and histone H3, a marker for DNA replication, in seedlings exposed to wounding, desiccation and salinity, all of which suppress cell division. Cold stress also depressed both transcripts in root tissues. In contrast, however, accumulation of ZmMET1 transcripts in shoot mesocotyls was not affected by cold stress, whereas those for H3 sharply decreased. Such a differential accumulation of ZmMET1 transcripts was consistent with ZmMET1 protein levels as revealed by western blotting. Expression of ZmMET1 is thus coexistent, but not completely dependent on DNA replication. Southern hybridization analysis with a methylation-sensitive restriction enzyme revealed that cold treatment induced demethylation of DNA in the Ac/Ds transposon region, but not in other genes, and that such demethylation primarily occurred in roots. These results suggested that the methylation level was decreased selectively by cold treatment, and that ZmMET1 may, at least partly, prevent such demethylation.
Magnotta, Scot M; Gogarten, Johann Peter
2002-01-01
Background Vacuolar type H+-ATPases play a critical role in the maintenance of vacuolar homeostasis in plant cells. V-ATPases are also involved in plants' defense against environmental stress. This research examined the expression and regulation of the catalytic subunit of the vacuolar type H+-ATPase in Arabidopsis thaliana and the effect of environmental stress on multiple transcripts generated by this gene. Results Evidence suggests that subunit A of the vacuolar type H+-ATPase is encoded by a single gene in Arabidopsis thaliana. Genome blot analysis showed no indication of a second subunit A gene being present. The single gene identified was shown by whole RNA blot analysis to be transcribed in all organs of the plant. Subunit A was shown by sequencing the 3' end of multiple cDNA clones to exhibit multi site polyadenylation. Four different poly (A) tail attachment sites were revealed. Experiments were performed to determine the response of transcript levels for subunit A to environmental stress. A PCR based strategy was devised to amplify the four different transcripts from the subunit A gene. Conclusions Amplification of cDNA generated from seedlings exposed to cold, salt stress, and etiolation showed that transcript levels for subunit A of the vacuolar type H+-ATPase in Arabidopsis were responsive to stress conditions. Cold and salt stress resulted in a 2–4 fold increase in all four subunit A transcripts evaluated. Etiolation resulted in a slight increase in transcript levels. All four transcripts appeared to behave identically with respect to stress conditions tested with no significant differential regulation. PMID:11985780
Greenup, Aaron G.; Sasani, Shahryar; Oliver, Sandra N.; Talbot, Mark J.; Dennis, Elizabeth S.; Hemming, Megan N.; Trevaskis, Ben
2010-01-01
In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization. Vernalization represses OS2 independently of VERNALIZATION1 (VRN1) in a VRN1 deletion mutant of einkorn wheat (Triticum monococcum), but VRN1 is required to maintain down-regulation of OS2 in vernalized plants. Furthermore, barleys that carry active alleles of the VRN1 gene (HvVRN1) have reduced expression of HvOS2, suggesting that HvVRN1 down-regulates HvOS2 during development. Overexpression of HvOS2 delayed flowering and reduced spike, stem, and leaf length in transgenic barley plants. Plants overexpressing HvOS2 showed reduced expression of barley homologs of the Arabidopsis (Arabidopsis thaliana) gene FLOWERING PROMOTING FACTOR1 (FPF1) and increased expression of RNase-S-like genes. FPF1 promotes floral development and enhances cell elongation, so down-regulation of FPF1-like genes might explain the phenotypes of HvOS2 overexpression lines. We present an extended model of the genetic pathways controlling vernalization-induced flowering in cereals, which describes the regulatory relationships between VRN1, OS2, and FPF1-like genes. Overall, these findings highlight differences and similarities between the vernalization responses of temperate cereals and the model plant Arabidopsis. PMID:20431086
Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj
2014-09-01
C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.
Xu, Weirong; Li, Ruimin; Zhang, Ningbo; Ma, Fuli; Jiao, Yuntong; Wang, Zhenping
2014-11-01
Vitis amurensis Rupr. is an exceptional wild-growing Vitis (grape) species that can safely survive a wide range of cold conditions, but the underlying cold-adaptive mechanism associated with gene regulation is poorly investigated. We have analyzed the physiochemical and transcriptomic changes caused by cold stress in a cold-tolerant accession, 'Heilongjiang seedling', of Chinese wild V. amurensis. We statistically determined that a total of 6,850 cold-regulated transcripts were involved in cold regulation, including 3,676 up-regulated and 3,174 down-regulated transcripts. A global survey of messenger RNA revealed that skipped exon is the most prevalent form of alternative spicing event. Importantly, we found that the total splicing events increased with the prolonged cold stress. We also identified thirty-eight major TF families that were involved in cold regulation, some of which were previously unknown. Moreover, a large number of candidate pathways for the metabolism or biosynthesis of secondary metabolites were found to be regulated by cold, which is of potential importance in coordinating cold tolerance with growth and development. Several heat shock proteins and heat shock factors were also detected to be intensively cold-regulated. Furthermore, we validated the expression profiles of 16 candidates using qRT-PCR to further confirm the accuracy of the RNA-seq data. Our results provide a genome-wide view of the dynamic changes in the transcriptome of V. amurensis, in which it is evident that various structural and regulatory genes are crucial for cold tolerance/adaptation. Moreover, our robust dataset advances our knowledge of the genes involved in the complex regulatory networks of cold stress and leads to a better understanding of cold tolerance mechanisms in this extremely cold-tolerant Vitis species.
Modise, David M.; Gemeildien, Junaid; Ndimba, Bongani K.; Christoffels, Alan
2018-01-01
Background Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations. Methods In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO), Trait Ontology (TO), Plant Ontology (PO), Growth Ontology (GRO) and Environment Ontology (EO) were used to semantically integrate drought related information. Results Target genes linked to Quantitative Trait Loci (QTLs) controlling yield and stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%), salt (32%), cold (20%), heat (8%) and oxidative stress (25%) were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs associated with different traits that are responsive to multiple stresses. Ontology mapping was used to validate the identified genes, while reconstruction of the phylogenetic tree was instrumental to infer the evolutionary relationship of the sorghum orthologs. The results also show specific genes responsible for various interrelated components of drought response mechanism such as drought tolerance, drought avoidance and drought escape. Conclusions We submit that this approach is novel and to our knowledge, has not been used previously in any other research; it enables us to perform cross-species queries for genes that are likely to be associated with multiple stress tolerance, as a means to identify novel targets for engineering stress resistance in sorghum and possibly, in other crop species. PMID:29590108
Liu, Zhao-liang; Luo, Cong; Dong, Long; Van Toan, Can; Wei, Peng-xiao; He, Xin-hua
2014-04-25
The Rab family, the largest branch of Ras small GTPases, plays a crucial role in the vesicular transport in plants. The members of Rab family act as molecular switches that regulate the fusion of vesicles with target membranes through conformational changes. However, little is known about the Rab5 gene involved in fruit ripening and stress response. In this study, the MiRab5 gene was isolated from stress-induced Mangifera indica. The full-length cDNA sequence was 984bp and contained an open reading frame of 600bp, which encoded a 200 amino acid protein with a molecular weight of 21.83kDa and a theoretical isoelectric point of 6.99. The deduced amino acid sequence exhibited high homology with tomato (91% similarity) and contains all five characteristic Rab motifs. Real-time quantitative RT-PCR analysis demonstrated that MiRab5 was ubiquitously expressed in various mango tree tissues at different levels. The expression of MiRab5 was up-regulated during later stages of fruit ripening. Moreover, MiRab5 was generally up-regulated in response to various abiotic stresses (cold, salinity, and PEG treatments). Recombinant MiRab5 protein was successfully expressed and purified. SDS-PAGE and western blot analysis indicated that the expressed protein was recognized by the anti-6-His antibody. These results provide insights into the role of the MiRab5 gene family in fruit ripening and stress responses in the mango plant. Copyright © 2014 Elsevier B.V. All rights reserved.
Jin, Hyun Mi; Jeong, Hye Im; Kim, Kyung Hyun; Hahn, Yoonsoo; Madsen, Eugene L; Jeon, Che Ok
2016-02-18
A genome-wide transcriptional analysis of Alteromonas naphthalenivorans SN2 was performed to investigate its ecophysiological behavior in contaminated tidal flats and seawater. The experimental design mimicked these habitats that either added naphthalene or pyruvate; tidal flat-naphthalene (TF-N), tidal flat-pyruvate (TF-P), seawater-naphthalene (SW-N), and seawater-pyruvate (SW-P). The transcriptional profiles clustered by habitat (TF-N/TF-P and SW-N/SW-P), rather than carbon source, suggesting that the former may exert a greater influence on genome-wide expression in strain SN2 than the latter. Metabolic mapping of cDNA reads from strain SN2 based on KEGG pathway showed that metabolic and regulatory genes associated with energy metabolism, translation, and cell motility were highly expressed in all four test conditions, probably highlighting the copiotrophic properties of strain SN2 as an opportunistic marine r-strategist. Differential gene expression analysis revealed that strain SN2 displayed specific cellular responses to environmental variables (tidal flat, seawater, naphthalene, and pyruvate) and exhibited certain ecological fitness traits -- its notable PAH degradation capability in seasonally cold tidal flat might be reflected in elevated expression of stress response and chaperone proteins, while fast growth in nitrogen-deficient and aerobic seawater probably correlated with high expression of glutamine synthetase, enzymes utilizing nitrite/nitrate, and those involved in the removal of reactive oxygen species.
Jin, Hyun Mi; Jeong, Hye Im; Kim, Kyung Hyun; Hahn, Yoonsoo; Madsen, Eugene L.; Jeon, Che Ok
2016-01-01
A genome-wide transcriptional analysis of Alteromonas naphthalenivorans SN2 was performed to investigate its ecophysiological behavior in contaminated tidal flats and seawater. The experimental design mimicked these habitats that either added naphthalene or pyruvate; tidal flat-naphthalene (TF-N), tidal flat-pyruvate (TF-P), seawater-naphthalene (SW-N), and seawater-pyruvate (SW-P). The transcriptional profiles clustered by habitat (TF-N/TF-P and SW-N/SW-P), rather than carbon source, suggesting that the former may exert a greater influence on genome-wide expression in strain SN2 than the latter. Metabolic mapping of cDNA reads from strain SN2 based on KEGG pathway showed that metabolic and regulatory genes associated with energy metabolism, translation, and cell motility were highly expressed in all four test conditions, probably highlighting the copiotrophic properties of strain SN2 as an opportunistic marine r-strategist. Differential gene expression analysis revealed that strain SN2 displayed specific cellular responses to environmental variables (tidal flat, seawater, naphthalene, and pyruvate) and exhibited certain ecological fitness traits –– its notable PAH degradation capability in seasonally cold tidal flat might be reflected in elevated expression of stress response and chaperone proteins, while fast growth in nitrogen-deficient and aerobic seawater probably correlated with high expression of glutamine synthetase, enzymes utilizing nitrite/nitrate, and those involved in the removal of reactive oxygen species. PMID:26887987
Carvajal, F; Rosales, R; Palma, F; Manzano, S; Cañizares, J; Jamilena, M; Garrido, D
2018-02-07
Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been focused on the physiology and biochemistry of this process, with little information about the molecular mechanisms underlying it. In this work, we present a comprehensive analysis of transcriptomic changes that take place after cold storage in zucchini fruit of two commercial cultivars with contrasting response to chilling stress. RNA-Seq analysis was conducted in exocarp of fruit at harvest and after 14 days of storage at 4 and 20 °C. Differential expressed genes (DEGs) were obtained comparing fruit stored at 4 °C with their control at 20 °C, and then specific and common up and down-regulated DEGs of each cultivar were identified. Functional analysis of these DEGs identified similarities between the response of zucchini fruit to low temperature and other stresses, with an important number of GO terms related to biotic and abiotic stresses overrepresented in both cultivars. This study also revealed several molecular mechanisms that could be related to chilling tolerance, since they were up-regulated in cv. Natura (CI tolerant) or down-regulated in cv. Sinatra (CI sensitive). These mechanisms were mainly those related to carbohydrate and energy metabolism, transcription, signal transduction, and protein transport and degradation. Among DEGs belonging to these pathways, we selected candidate genes that could regulate or promote chilling tolerance in zucchini fruit including the transcription factors MYB76-like, ZAT10-like, DELLA protein GAIP, and AP2/ERF domain-containing protein. This study provides a broader understanding of the important mechanisms and processes related to coping with low temperature stress in zucchini fruit and allowed the identification of some candidate genes that may be involved in the acquisition of chilling tolerance in this crop. These genes will be the basis of future studies aimed to identify markers involved in cold tolerance and aid in zucchini breeding programs.
Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi
Cook, Nicola; Tournière, Océane; Sneddon, Tanya; Ritchie, Michael G.
2016-01-01
Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos), in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters as an adult in northern latitudes with extreme cold. We assessed cold tolerance of dsRNA knock-down flies using two metrics: chill-coma recovery time (CCRT) and mortality rate after cold acclimation. Injection of dsRNAInos did not alter CCRT, either overall or in interaction with the cold treatment, however it did induced cold-specific mortality, with high levels of mortality observed in injected flies acclimated at 5°C but not at 19°C. Overall, injection with dsRNAInos induced a temperature-sensitive mortality rate of over 60% in this normally cold-tolerant species. qPCR analysis confirmed that dsRNA injection successfully reduced gene expression of Inos. Thus, our results demonstrate the involvement of Inos in increasing cold tolerance in D. montana. The potential mechanisms involved by which Inos increases cold tolerance are also discussed. PMID:27832122
Jung, Y J; Lee, I H; Nou, I S; Lee, K D; Rashotte, A M; Kang, K K
2013-03-01
C3HC4-type RING zinc finger proteins are known to be essential in the regulation of plant processes, including responses to abiotic stress. Here, we identify, clone and examine the first C3HC4-type RING zinc finger protein (BrRZFP1) from Brassica rapa under stress conditions. Phylogenetic analysis of BrRZFP1 revealed strong sequence similarity to C3HC4-type zinc finger proteins from Arabidopsis that are induced by abiotic stresses. Diverse environmental stresses, including salt and cold, were found to induce BrRZFP1 transcripts greater than eightfold in B. rapa. Additional strong induction was shown of the stress hormone abscisic acid, together suggesting that BrRZFP1 could play a role as a general stress modulator. Similar profiles of induction for each of these stresses was found in both root and shoot tissues, although at much higher levels in roots. Constitutive expression of BrRZFP1 in Nicotiana tabacum was conducted to further analyse how changes in gene expression levels would affect plant stress responses. BrRZFP1 overexpression conferred increased tolerance to cold, salt and dehydration stresses. This was observed in several assays examining growth status throughout development, including increased germination, fresh weight and length of shoots and roots, as well as enhanced chlorophyll retention. These results suggest that the transcription factor BrRZFP1 is an important determinant of stress response in plants and that changes in its expression level in plants could increase stress tolerance. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Differential expression of cysteine desulfurases in soybean
2011-01-01
Background Iron-sulfur [Fe-S] clusters are prosthetic groups required to sustain fundamental life processes including electron transfer, metabolic reactions, sensing, signaling, gene regulation and stabilization of protein structures. In plants, the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the cell. Many environmental factors affect plant development and limit productivity and geographical distribution. The impact of these limiting factors is particularly relevant for major crops, such as soybean, which has worldwide economic importance. Results Here we analyze the transcriptional profile of the soybean cysteine desulfurases NFS1, NFS2 and ISD11 genes, involved in the biogenesis of [Fe-S] clusters, by quantitative RT-PCR. NFS1, ISD11 and NFS2 encoding two mitochondrial and one plastid located proteins, respectively, are duplicated and showed distinct transcript levels considering tissue and stress response. NFS1 and ISD11 are highly expressed in roots, whereas NFS2 showed no differential expression in tissues. Cold-treated plants showed a decrease in NFS2 and ISD11 transcript levels in roots, and an increased expression of NFS1 and ISD11 genes in leaves. Plants treated with salicylic acid exhibited increased NFS1 transcript levels in roots but lower levels in leaves. In silico analysis of promoter regions indicated the presence of different cis-elements in cysteine desulfurase genes, in good agreement with differential expression of each locus. Our data also showed that increasing of transcript levels of mitochondrial genes, NFS1/ISD11, are associated with higher activities of aldehyde oxidase and xanthine dehydrogenase, two cytosolic Fe-S proteins. Conclusions Our results suggest a relationship between gene expression pattern, biochemical effects, and transcription factor binding sites in promoter regions of cysteine desulfurase genes. Moreover, data show proportionality between NFS1 and ISD11 genes expression. PMID:22099069
Moazzam Jazi, Maryam; Ghadirzadeh Khorzoghi, Effat; Botanga, Christopher; Seyedi, Seyed Mahdi
2016-01-01
The tree species, Pistacia vera (P. vera) is an important commercial product that is salt-tolerant and long-lived, with a possible lifespan of over one thousand years. Gene expression analysis is an efficient method to explore the possible regulatory mechanisms underlying these characteristics. Therefore, having the most suitable set of reference genes is required for transcript level normalization under different conditions in P. vera. In the present study, we selected eight widely used reference genes, ACT, EF1α, α-TUB, β-TUB, GAPDH, CYP2, UBQ10, and 18S rRNA. Using qRT-PCR their expression was assessed in 54 different samples of three cultivars of P. vera. The samples were collected from different organs under various abiotic treatments (cold, drought, and salt) across three time points. Several statistical programs (geNorm, NormFinder, and BestKeeper) were applied to estimate the expression stability of candidate reference genes. Results obtained from the statistical analysis were then exposed to Rank aggregation package to generate a consensus gene rank. Based on our results, EF1α was found to be the superior reference gene in all samples under all abiotic treatments. In addition to EF1α, ACT and β-TUB were the second best reference genes for gene expression analysis in leaf and root. We recommended β-TUB as the second most stable gene for samples under the cold and drought treatments, while ACT holds the same position in samples analyzed under salt treatment. This report will benefit future research on the expression profiling of P. vera and other members of the Anacardiaceae family. PMID:27308855
Moazzam Jazi, Maryam; Ghadirzadeh Khorzoghi, Effat; Botanga, Christopher; Seyedi, Seyed Mahdi
2016-01-01
The tree species, Pistacia vera (P. vera) is an important commercial product that is salt-tolerant and long-lived, with a possible lifespan of over one thousand years. Gene expression analysis is an efficient method to explore the possible regulatory mechanisms underlying these characteristics. Therefore, having the most suitable set of reference genes is required for transcript level normalization under different conditions in P. vera. In the present study, we selected eight widely used reference genes, ACT, EF1α, α-TUB, β-TUB, GAPDH, CYP2, UBQ10, and 18S rRNA. Using qRT-PCR their expression was assessed in 54 different samples of three cultivars of P. vera. The samples were collected from different organs under various abiotic treatments (cold, drought, and salt) across three time points. Several statistical programs (geNorm, NormFinder, and BestKeeper) were applied to estimate the expression stability of candidate reference genes. Results obtained from the statistical analysis were then exposed to Rank aggregation package to generate a consensus gene rank. Based on our results, EF1α was found to be the superior reference gene in all samples under all abiotic treatments. In addition to EF1α, ACT and β-TUB were the second best reference genes for gene expression analysis in leaf and root. We recommended β-TUB as the second most stable gene for samples under the cold and drought treatments, while ACT holds the same position in samples analyzed under salt treatment. This report will benefit future research on the expression profiling of P. vera and other members of the Anacardiaceae family.
Acevedo, J P; Rodriguez, V; Saavedra, M; Muñoz, M; Salazar, O; Asenjo, J A; Andrews, B A
2013-02-01
Cloning, expression and characterization of a new cold-adapted protease with potential biotechnological application, isolated from Antarctic bacteria. A subtilisin-like gene was isolated from several Antarctic bacterial genus using CODPEHOP-designed primers and a genome walking method. This gene encodes a precursor protein, which undergoes an autocatalytic cleavage resulting in a 34.6 kDa active cold-adapted protease with a maximum activity at 25-35°C and optimum pH of 8.0-9.0. It showed a higher catalytic efficiency at lower temperatures compared to its mesophilic counterpart. Heat-induced inactivation resulted in a very low melting point. Local packing analysis using the homology model indicated Ala284 as an important cold-adaptation determinant, which was corroborated by the site-directed mutagenesis. A new thermolabile subtilisin-like protease has been successfully cloned and analysed, and an important hot spot in the evolution of the cold adaptation and substrate specificity of this enzyme was identified and tested. This work reports a new cold-adapted protease with a vast representation amongst Antarctic genus, suggesting therefore its evolutionary success in this cold environment. Likewise, important sites for genetic potentiation have been identified, which are extrapolated to other enzymes of the same kind. © 2012 The Society for Applied Microbiology.
Zhang, Zhengjing; Li, Yuanya
2016-01-01
The three tandemly arranged CBF genes, CBF1, CBF2, and CBF3, are involved in cold acclimation. Due to the lack of stable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants deficient in all three CBF genes, it is still unclear whether the CBF genes are essential for freezing tolerance and whether they may have other functions besides cold acclimation. In this study, we used the CRISPR/Cas9 system to generate cbf single, double, and triple mutants. Compared to the wild type, the cbf triple mutants are extremely sensitive to freezing after cold acclimation, demonstrating that the three CBF genes are essential for cold acclimation. Our results show that the three CBF genes also contribute to basal freezing tolerance. Unexpectedly, we found that the cbf triple mutants are defective in seedling development and salt stress tolerance. Transcript profiling revealed that the CBF genes regulate 414 cold-responsive (COR) genes, of which 346 are CBF-activated genes and 68 are CBF-repressed genes. The analysis suggested that CBF proteins are extensively involved in the regulation of carbohydrate and lipid metabolism, cell wall modification, and gene transcription. Interestingly, like the triple mutants, cbf2 cbf3 double mutants are more sensitive to freezing after cold acclimation compared to the wild type, but cbf1 cbf3 double mutants are more resistant, suggesting that CBF2 is more important than CBF1 and CBF3 in cold acclimation-dependent freezing tolerance. Our results not only demonstrate that the three CBF genes together are required for cold acclimation and freezing tolerance, but also reveal that they are important for salt tolerance and seedling development. PMID:27252305
Sun, Tao; Wang, Yan; Wang, Meng; Li, Tingting; Zhou, Yi; Wang, Xiatian; Wei, Shuya; He, Guangyuan; Yang, Guangxiao
2015-11-04
Calcineurin B-like (CBL) proteins belong to a unique group of calcium sensors in plant that decode the Ca(2+) signature by interacting with CBL-interacting protein kinases (CIPKs). Although CBL-CIPK complexes have been shown to play important roles in the responses to various stresses in plants, little is known about their functions in wheat. A total of seven TaCBL and 20 TaCIPK genes were amplified from bread wheat, Triticum aestivum cv. Chinese Spring. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and in silico expression analyses showed that TaCBL and TaCIPK genes were expressed at different levels in different tissues, or maintained at nearly constant expression levels during the whole life cycle of the wheat plant. Some TaCBL and TaCIPK genes showed up- or down-regulated expressions during seed germination. Preferential interactions between TaCBLs and TaCIPKs were observed in yeast two-hybrid and bimolecular fluorescence complementation experiments. Analyses of a deletion series of TaCIPK proteins with amino acid variations at the C-terminus provided new insights into the specificity of the interactions between TaCIPKs and TaCBLs, and indicated that the TaCBL-TaCIPK signaling pathway is very complex in wheat because of its hexaploid genome. The expressions of many TaCBLs and TaCIPKs were responsive to abiotic stresses (salt, cold, and simulated drought) and abscisic acid treatment. Transgenic Arabidopsis plants overexpressing TaCIPK24 exhibited improved salt tolerance through increased Na(+) efflux and an enhanced reactive oxygen species scavenging capacity. These results contribute to our understanding of the functions of CBL-CIPK complexes and provide the basis for selecting appropriate genes for in-depth functional studies of CBL-CIPK in wheat.
Association of coral algal symbionts with a diverse viral community responsive to heat shock.
Brüwer, Jan D; Agrawal, Shobhit; Liew, Yi Jin; Aranda, Manuel; Voolstra, Christian R
2017-08-17
Stony corals provide the structural foundation of coral reef ecosystems and are termed holobionts given they engage in symbioses, in particular with photosynthetic dinoflagellates of the genus Symbiodinium. Besides Symbiodinium, corals also engage with bacteria affecting metabolism, immunity, and resilience of the coral holobiont, but the role of associated viruses is largely unknown. In this regard, the increase of studies using RNA sequencing (RNA-Seq) to assess gene expression provides an opportunity to elucidate viral signatures encompassed within the data via careful delineation of sequence reads and their source of origin. Here, we re-analyzed an RNA-Seq dataset from a cultured coral symbiont (Symbiodinium microadriaticum, Clade A1) across four experimental treatments (control, cold shock, heat shock, dark shock) to characterize associated viral diversity, abundance, and gene expression. Our approach comprised the filtering and removal of host sequence reads, subsequent phylogenetic assignment of sequence reads of putative viral origin, and the assembly and analysis of differentially expressed viral genes. About 15.46% (123 million) of all sequence reads were non-host-related, of which <1% could be classified as archaea, bacteria, or virus. Of these, 18.78% were annotated as virus and comprised a diverse community consistent across experimental treatments. Further, non-host related sequence reads assembled into 56,064 contigs, including 4856 contigs of putative viral origin that featured 43 differentially expressed genes during heat shock. The differentially expressed genes included viral kinases, ubiquitin, and ankyrin repeat proteins (amongst others), which are suggested to help the virus proliferate and inhibit the algal host's antiviral response. Our results suggest that a diverse viral community is associated with coral algal endosymbionts of the genus Symbiodinium, which prompts further research on their ecological role in coral health and resilience.
Mayer, Boris F; Ali-Benali, Mohamed Ali; Demone, Jordan; Bertrand, Annick; Charron, Jean-Benoit
2015-11-01
Little is known about the capacity of Cannabis sativa to cold-acclimate and develop freezing tolerance. This study investigates the cold acclimation (CA) capacity of nine C. sativa varieties and the underlying genetic and epigenetic responses. The varieties were divided into three groups based on their contrasting CA capacities by comparing the survival of non-acclimated and cold-acclimated plants in whole-plant freeze tests. In response to the CA treatment, all varieties accumulated soluble sugars but only the varieties with superior capacity for CA could maintain higher levels throughout the treatment. In addition, the varieties that acclimated most efficiently accumulated higher transcript levels of cold-regulated (COR) genes and genes involved in de novo DNA methylation while displaying locus- and variety-specific changes in the levels of H3K9ac, H3K27me3 and methylcytosine (MeC) during CA. Furthermore, these hardy C. sativa varieties displayed significant increases in MeC levels at COR gene loci when deacclimated, suggesting a role for locus-specific DNA methylation in deacclimation. This study uncovers the molecular mechanisms underlying CA in C. sativa and reveals higher levels of complexity regarding how genetic, epigenetic and environmental factors intertwine. © 2014 Scandinavian Plant Physiology Society.